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Abstract

Random sampling in compressive sensing (CS)
enables the compression of large amounts of in-
put signals in an efficient manner, which is use-
ful for many applications. CS reconstructs the
compressed signals exactly with overwhelming
probability when incoming data can be sparsely
represented with a few components. However,
the theory of CS framework including random
sampling has been focused on exact recovery of
signal; impreciseness in signal recovery has been
neglected. This can be problematic when there is
uncertainty in the number of sparse components
such as signal sparsity in dynamic systems that
can change over time. We present a new theoret-
ical framework that handles uncertainty in signal
recovery from the perspective of recovery suc-
cess and quality. We show that the signal recov-
ery success in our model is more accurate than
the success probability analysis in the CS frame-
work. Our model is then extended to the case
where the success or failure of signal recovery
can be relaxed. We represent the number of com-
ponents included in signal recovery with a right-
tailed distribution and focus on recovery quality.
Experimental results confirm the accuracy of our
model in dynamic systems.

1 INTRODUCTION

Continuous flows of big data are generated by many
sources nowadays. Among these, resource limited devices
occupy a significant portion. For these devices, sensing and
transmitting massive data are important challenges, as they
are concerned with saving resources.

Compressive sensing (CS) (Seeger & Nickisch, 2008; Hsu
et al., 2009; Lopes, 2013; Malioutov & Varshney, 2013;
Zhu & Gu, 2015) is a well suited choice for resource

limited devices because it enables the sensing and com-
pression of massive data without the complexity burden
imposed by conventional schemes. Recent advances in
CS reduce the complexity burden even further with ran-
dom sampling, by which CS schemes have been success-
fully applied to broader application areas such as sampling
of spatio-temporal data (Foucart & Rauhut, 2013; Lee &
Choi, 2014).

CS reconstructs the exact signals from the compressed
measurements with overwhelming probability when in-
coming data can be sparsely represented (i.e., small num-
bers of components). Therefore, most CS frameworks
are built based on the assumption that incoming data with
sparse representation can be exactly recovered when an
enough number of measurements is given.

Unfortunately, this assumption does not hold in practice
when there is no guarantee of enough measurements for
varying signal sparsity. This uncertainty occurs especially
with many dynamic systems where the numbers of compo-
nents change over time. The assumption also implies that
the reconstruction would fail when input signals have more
components (denser) than a predefined threshold. This pre-
vents deriving a tight probabilistic model which takes ac-
count of the numbers of components and measurements
in signal recovery. In this regard, recently introduced dy-
namic CS frameworks (Malioutov et al., 2010; Sejdinovic
et al., 2010; Shahrasbi et al., 2011; Vaswani & Lu, 2010;
Ziniel & Schniter, 2013) provide the way of reducing the
number of necessary measurements exploiting temporal
correlation between measurements. Nevertheless, a recov-
ery success/quality analysis with uncertainty in signal spar-
sity has not been provided by existing CS frameworks yet.

This paper presents a new theoretical framework for the
random sampling in CS that handles impreciseness in sig-
nal recovery when the number of measurements lacks for
varying signal sparsity. Our framework incorporates the
beta distribution to present the signal recovery success
more accurately than the success probability analysis in the
CS framework. Furthermore, we relax the concept of sig-
nal recovery success and present the number of components



included in the signal recovery as a varying quantity, for
which we propose right-tailed distribution modeling. We
believe our new framework will bridge the gap between
success and failure of signal recovery in CS frameworks.

2 COMPRESSIVE SENSING AND
RANDOM SAMPLING

Compressive sensing, or compressed sampling (CS), is an
efficient signal processing framework which incorporates
signal acquisition and compression simultaneously (Bara-
niuk, 2007; Candès & Wakin, 2008). CS enables a signal
to be acquired with a number of samples that is far fewer
than an original signal dimension and of the same order as
the number of (significant) components.

2.1 COMPRESSING WHILE SENSING

In CS, a signal is projected onto random vectors whose car-
dinality is far below the dimension of the signal. Consider
a signal x ∈ RN is compactly represented with a sparsi-
fying basis Ψ having just a few components: x = Ψs,
where s ∈ RN is the vector of transformed coefficients
with a few significant coefficients. Here, Ψ could be a ba-
sis that makes x sparse in a transform domain such as the
DCT, wavelet transform domains, or even the canonical ba-
sis, i.e., the identity matrix I, if x is sparse itself without the
help of a transform.

Definition (K-sparse Signal). A signal x is called K-
sparse if it is a linear combination of only K�N basis
vectors such that

∑K
i=1 sni

ψni
, where {n1, . . ., nK} ⊂

{1, . . ., N}; sni
is a coefficient in s; and ψni

is a column
of Ψ.

In practice, some signals may not be exactly K-sparse.
Rather, they can be closely approximated withK basis vec-
tors by ignoring many small coefficients close to zero. This
type of signal is called compressible (Baraniuk, 2007; Fou-
cart & Rauhut, 2013).

CS projects x onto a random sensing basis Φ ∈ RM×N as
follows (M<N ):

y = Φx = ΦΨs, (1)

where Φ should have the restricted isometry property
(RIP).1 A conventional approach for Φ to satisfy RIP is
sampling its independent identically distributed (i.i.d.) ele-
ments from the Gaussian distribution or other sub-Gaussian
distributions (e.g., Rademacher/Bernoulli distribution).

The system shown in (1) is underdetermined, as the num-
ber of equations M is smaller than the number of variables

1The random sensing basis Φ have RIP if (1 − δ)‖s‖22 ≤
‖ΦΨs‖22 ≤ (1 + δ)‖s‖22 for small δ ≥ 0, and this condition
applies to all K-sparse s.

N , i.e., there are infinitely many x’s that satisfy y = Φx.
Nevertheless, this system can be solved with overwhelm-
ing probability exploiting the fact that s is K-sparse. Here
M = O(K log(N/K)) in the case of Gaussian and sub-
Gaussian sensing matrices (Candès & Wakin, 2008).

2.2 RANDOM SAMPLING

Random sampling is a variant of CS which can further re-
duce the computational complexity to a constant time (Fou-
cart & Rauhut, 2013; Lee & Choi, 2014). The random sam-
pling scheme is based on the fact that it is possible to con-
struct Φ in (1) from a random selection of rows from the
identity matrix I, which is equivalent to the random sam-
pling of coefficients in x.

Note that the sparsifying basis Ψ should be incoherent2

with I, such as the DCT and wavelet transform bases, for
the successful recovery of the original signal (Candès &
Wakin, 2008; Foucart & Rauhut, 2013). Unless they are
incoherent, the measurement vector y ∈ RM in (1) would
contain zero entries. Here, the number of required mea-
surements M is larger than in the cases of Gaussian and
sub-Gaussian matrices, that is, M = O(K logN).

2.3 RECOVERY OF SIGNAL

A signal recovery algorithm takes measurements y, a ran-
dom sensing matrix Φ, and the sparsifying basis Ψ. The
sensing matrix Φ and sparsifying basis Ψ are assumed to
be known to a decoder. The signal recovery algorithm then
recovers s knowing that s is sparse. Once we recover s, the
original signal x can be recovered through x = Ψs. The
recovery algorithm reconstructs s by the following linear
program:

argmin ‖s̃‖1 subject to ΦΨs̃ = y. (2)

The optimization problem in (2) is solved by a `1-
minimization method (basis pursuit) (Boyd & Vanden-
berghe, 2004), greedy methods such as orthogonal match-
ing pursuit (Pati et al., 1993), or thresholding-based meth-
ods such as iterative hard thresholding (Blumensath &
Davies, 2008). Choosing a specific algorithm depends on
Φ, M , N , and K: recovery success rates and speed can
only be determined by numerical tests (Foucart & Rauhut,
2013).3 In this paper, we reconstruct signals by the basis
pursuit.

Specifically in the case of random sampling, the solution
s? to (2) obeys

‖s? − s‖2 ≤ C1 · ‖s− sK‖1 (3)

2The two bases Φ and Ψ are incoherent when the rows of Φ
cannot sparsely represent the columns of Ψ and vice versa.

3Note that greedy methods are not always fast.



Figure 1: Recovery error of audio data for different num-
bers of measurements M over time. Each frame has a sig-
nal length N = 512. Colors close to blue represent smaller
errors, whereas colors close to red represent larger errors.

for some constant C1 > 0, where sK is the vector s
with all but the largest K components set to 0. When
an original signal is exactly K-sparse, then s = sK with
M = O(K logN) measurements, which implies that the
recovery is exact, i.e., s? = s.

3 A NEW PERSPECTIVE ON
RECOVERY SUCCESS

The success of signal reconstruction in compressive sens-
ing (CS) is not deterministic. For instance, when we say an
exact recovery of aK-sparse signal is achievable with over-
whelming probability, it implies there is also the chance of
recovery not being exact.

Most CS literature assumes a sufficient number of mea-
surements M such that an exact recovery is almost always
achievable (Candès & Wakin, 2008; Foucart & Rauhut,
2013), which is based on an assumption that sparsity K
is already known or does not exceed a certain bound. How-
ever, the signal sparsity in dynamic systems may change
over time and an excessive number of measurements may
waste resources such as network bandwidth and storage
space. For example, Figure 1 shows recovery error over
time for audio data (a 7 second recording of a trumpet
solo) (Ziniel et al., 2012), where varying signal sparsity in-
curs different recovery error with a fixed number of mea-
surements over time. Here we cannot simply increase the
number of measurements to eliminate error, as it is unrea-
sonable in terms of compression. Therefore, we propose a
new theoretical framework for the random sampling of CS
and provide a new perspective on signal recovery.

3.1 COMPRESSIVE SENSING FRAMEWORK

In the random sampling of CS, the number of required
measurements M = O(K logN) can be detailed as fol-
lows (Foucart & Rauhut, 2013):

M ≥ C ·K ln(N) ln(ε−1) (4)

for some constant C > 0, where ε ∈ (0, 1) denotes the
probability of an inexact recovery of the K-sparse signal.
In particular, the signal recovery succeeds with a probabil-
ity of at least 1− ε if (4) holds.4

We can then express (4) with regard to the probability of
failure ε, which is given by

IP(s? 6= s |M,N,K) := ε ≤ exp

(
− M

C · ln(N)K

)
.

(5)
Thus, the probability of failure (inexact recovery) IP(s? 6=
s | M,N,K) is conditional upon M , N , and K. Since we
are interested in the dynamic signal sparsity K, we model
K as a random variable with M and N as fixed quantities.

If we denote an arbitrary probability density function (pdf)
of K as fK(k), we can marginalize over k and find the
upper bound of failure probability as follows:

IP(s? 6= s |M,N) =

∫
k

IP(s? 6= s |M,N,K) · fK(k) dk

≤
∫
k

exp

(
− M

C · ln(N)K

)
fK(k) dk.

(6)

Therefore, we can state that a signal recovery succeeds
with a probability of at least 1 −

∫
k

exp(−M/(C ·
ln(N)K))fK(k)dk, given the distribution of signal spar-
sity fK(k).

The upper bound in (6) may have an analytic solution when
K follows certain distributions such as the inverse Gaus-
sian distribution and the gamma distribution.5

Remark Assuming fK(k) = IG(µ, λ), the upper bound
of (6) is
√
λ exp(λ/µ−

√
2λ/µ2

√
M/(C · ln(N)) + λ/2)√

2M/(C · ln(N)) + λ
, (7)

where µ and λ are the mean and the shape parameter of the
inverse Gaussian distribution, respectively.

Remark Assuming fK(k) = Gamma(κ, θ), the upper
bound of (6) is

2

Γ(κ)

(
M

C · ln(N)θ

)κ/2
K−κ

(
2

√
M

C · ln(N)θ

)
, (8)

4See Theorem 12.20 (Foucart & Rauhut, 2013).
5Since K ≥ 0, probability distributions supported on semi-

infinite intervals, i.e., (0,∞), are rational choices.



where κ and θ are the shape parameter and the scale pa-
rameter of the gamma distribution, respectively; Γ(·) is the
gamma function; and K−κ(·) is the modified Bessel func-
tion of the second kind.

3.2 MODELING SUCCESS AND FAILURE

Unfortunately, the probability of signal recovery failure ε
given in (5) does not hold in practice because there is a dis-
crepancy between the failure probabilities in the CS frame-
work and actual random sampling, as will be further ex-
plained in Section 5.1. Thus we have to model the success
or failure probability of signal recovery from a new per-
spective.

We can model the new pdf of signal recovery success us-
ing the mixture of the Dirac delta function and the beta
distribution, which incorporates both stochastic and deter-
ministic cases. We introduce Kmin and Kmax to denote the
minimum and the maximum signal sparsities which yield
stochastic probability, as opposed to a deterministic result
where signal recovery always succeeds or always fails.

Definition (Recovery Success Model). Let
IP(s?=s|M,N) := Π. The pdf of Π given K is given by6

fΠ|K(π | k):=

δ(π − 1) k < Kmin

Beta(αK , βK) Kmin ≤ k ≤ Kmax

δ(π) Kmax < k
. (9)

Combining this definition with an arbitrary pdf fK(k) of
the dynamic signal sparsity K, we can find the success
probability distribution marginalized over k as follows:

fΠ(π) =

∫
k

fΠ|K(π | k)fK(k) dk

=

∫ Kmin

0

δ(π − 1)fK(k) dk

+

∫ Kmax

Kmin

Beta(αK , βK) · fK(k) dk

+

∫ ∞
Kmax

δ(π)fK(k) dk

= δ(π − 1)FK(Kmin) + δ(π)(1− FK(Kmax))

+

∫ Kmax

Kmin

Beta(αK , βK) · fK(k) dk, (10)

where FK(·) is the cumulative distribution function (CDF)
of K.

The two Dirac delta function terms in (10) can be inter-
preted as probability masses. Since

∫Kmax

Kmin
Beta(αK , βK) ·

fK(k) dk does not have an analytic solution, we compute
this value numerically.

6Beta(αK , βK) here is used to denote the pdf of the beta dis-
tribution.
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Figure 2: Histograms of success probability for various
K’s. Success probability distribution for each K was ob-
tained with 300 different random signed spike vectors for
N = 512 and M = 100. A single success probability for
each signed spike vector was calculated with 300 experi-
ments.

As an illustrative example, suppose that we examine the
success probability by generating many different signed
spike (±1) vectors for each signal sparsity and then per-
forming experiments for each signed spike vector.7 Fig-
ure 2 shows histograms of success probability for various
signal sparsities, where Kmin = 20 and Kmax = 30.

The success probability shown in Figure 2 naturally fol-
lows the beta distribution with its parameters α and β de-
pending on signal sparsity, i.e., IP(s?=s | M,N,K) ∼
Beta(αK , βK).8 The beta distribution is well known as the
conjugate prior for the Bernoulli and the binomial distribu-
tions which are ideal for modeling success/failure.

3.3 MODELING ACCURACY

Here, we present the main theoretical contribution: the
recovery success model defined in (9) is tighter than the
lower bound of that in the existing CS framework explained
in Section 3.1, when the number of measurements is not
enough. We show the failure probability in the CS frame-
work (5) is incapable of reflecting the actual failure prob-
ability of signal recovery. Not only can’t the inequality
IP(s? 6= s | M,N,K) ≤ exp(−M/(C · ln(N)K)) pro-
vide tight probability of failure, but the inequality itself is
inaccurate.

This inaccuracy results from the slowly decaying lower
bound of success probability, that is, 1 − exp(−M/(C ·
ln(N)K)). In fact, we can show this lower bound decays
slower than a power-law decay by the following lemma.

7Detailed settings are explained in Section 5.1.
8If more than 300 experiments had been performed, each

success probability distribution would have been more sharply
peaked due to a smaller variance.



Lemma 1 (Slackness of Recovery Success Probability).
There exists K0 > 0 such that for all K > K0, the lower
bound of recovery success probability in the CS framework
(Section 3.1) is greater than the value of a power-law-
decay function.

Proof. We need to show the following inequality

1− exp

(
− M

C · ln(N)K

)
> K−α (11)

holds if K > K0 for some K0 > 0, where α > 0. Adding,
subtracting, and taking the power K on both sides yields

(1−K−α)K > exp

(
− M

C · ln(N)

)
. (12)

We now use the binomial approximation on the left-hand
side: (1−K−α)K ≥ 1−K ·K−α. Thus we instead prove
the following inequality

1−K1−α > exp

(
− M

C · ln(N)

)
(13)

holds if K > K0 for some K0 > 0.

If we assume α > 1, then adding, subtracting, and taking
the power 1/(1− α) on both sides of (13) yields(

1− exp

(
− M

C · ln(N)

))1/(1−α)

< K. (14)

SettingK0 = (1−exp(−M/(C · ln(N))))1/(1−α), we can
argue that for all K > K0, the lower bound of recovery
success probability is greater than the value of a power-
law-decay function.

Corollary 2. In the CS framework (Section 3.1), there is
always a chance of succeeding at signal recovery however
large K is.

Proof. The power-law-decay function K−α in (11) slowly
converges to zero as K → ∞: its value is noticeably
greater than zero even with a large K. As the lower bound
of recovery success probability is greater than the value of
the power-law-decay function for all K > K0, there is al-
ways a chance of recovery success however largeK is.

The claim of the CS framework in Corollary 2 is in fact im-
plausible because it says we can even setK > M and there
is still a chance of success. We cannot expect signal recov-
ery with a number of measurements M less than K. We
now show that our recovery success model provides more
accurate success probability by the following theorem.

Theorem 3. The recovery success model in (9) is tighter
than the lower bound of recovery success probability given
by the CS framework (Section 3.1) with a limited number
of measurements.

Proof. In contrast to Corollary 2, our recovery success
model can yield IP(s? = s |M,N,K) = 0 with a bounded
Kmax. In particular, we can let the mean of Beta(αK , βK),
αK/(αK + βK), converge to zero with αKmax

→ 0.

Similarly, we show this mean converges to one (IP(s? = s |
M,N,K) = 1) with Kmin which is not so close to zero,
whereas the lower bound of the recovery success probabil-
ity given by the CS framework converges to one only if K
is very close to zero.

We can let αK/(αK + βK) converge to one with βKmin
→

0. In contrast, 1 − exp(−M/(C · ln(N)K)) → 1 if, and
only if, K → 0. Since 0 < Kmin < Kmax < ∞, we can
argue that our recovery success model can provide tighter
recovery success probability.

3.4 PARAMETER LEARNING IN DYNAMIC
SYSTEMS

When the signal sparsity K changes in dynamic systems,
it does not change in an abrupt manner; rather, it tends to
smoothly change over time (Vaswani & Lu, 2010; Ziniel
& Schniter, 2013). One simple way to model this correla-
tion between K’s is to utilize the Markov model (Ziniel &
Schniter, 2013). In this setup, each K makes up a state and
each state is associated with the recovery success probabil-
ity. This can be best modeled by the hidden Markov model,
where each state K generates success/failure according to
the emission probability.

In our scenario, signal recovery success is observed in an
environment where the signal sparsity varies over time. We
want to estimate parameters of the hidden Markov model,
especially the emission probabilities. Since our recovery
success model employs the beta distribution as conjugate
distributions (prior and posterior), we can learn its parame-
ters αK and βK for each state K.

Specifically, the decoder can observe signal recovery suc-
cess/failure and corresponding signal sparsity K at each
decoding step. Then using these emission and state se-
quences, it can sequentially update the parameters αK and
βK for each state K (Durbin et al., 1998), by simply incre-
menting the value of αK by 1 for each success or the value
of βK by 1 for each failure.

In order to prevent over-fitting with insufficient observa-
tions, it is preferable to have hyperparameters of the prior
beta distribution set according to K’s. In Figure 2, we can
clearly see the trend of αK and βK for different K’s: αK
decreases, whereas βK increases as K grows.9 Therefore,
these hyperparameters can act as the effective numbers
of observations of recovery success/failure, reflecting our
prior belief on signal recovery success for different K’s.

9Also, see the proof of Theorem 3.



4 FURTHER ANALYSIS ON RECOVERY
QUALITY

When a signal of interest is not exactly K-sparse but com-
pressible, as discussed in Section 2.1, the signal recovery in
Section 2.3 can be treated from a different perspective (Lee
& Choi, 2015). In particular, the inequality (3) is consid-
ered differently.

If an original signal is compressible, then the quality of a
recovered signal is proportional to that of the K most sig-
nificant pieces of information. We get progressively bet-
ter results as we compute more measurements M , since
M = O(K logN) (Candès & Wakin, 2008). Therefore,
Ψs? ∈ RN also makes progress on its quality as M in-
creases.10

From this viewpoint, the success or failure of signal recov-
ery no longer exists. Rather, we can view the number of
components included in the signal recovery as a varying
quantity. Specifically, if a signal recovery is about to fail
with a given K, then K can be lowered to make the re-
covery eventually succeed. Here the number of included
components K varies for different recoveries and signals,
as analogous to the success probability in Section 3.2 that
can be calculated with different recoveries and varies for
different signals.

In this regard, (3) can be utilized to infer varying K’s over
different recoveries and signals. Here our assumption is
that the upper bound in (3) is tight such that we solve the
following optimization problem:

maxK subject to ‖s? − s‖2 ≤ C1 · ‖s− sK‖1.
(15)

In (15), C1 has to be determined, where the maximum sig-
nal sparsity Kmax introduced in Section 3.2 plays a key
role to set the upper limit on how large K can be, since
K > Kmax is not reasonable.

In particular, we can generate a compressible signal si ∈ S
such that ‖si‖1 = C`1 and ‖si‖2 = C`2 for all i, where
S is the set containing many different signals; C`1 > 0
and C`2 > 0 are constants. For each si, we have a set S?i
which contains many different recoveries s?ij . Then C1 can
be found as follows:

C1 =
min ‖s?ij − si‖2
‖si − sKmax

i ‖1
, (16)

where sKmax
i denotes the compressible signal si with all but

the largest Kmax components set to 0.

Varying K’s obtained through (15) can be represented by
a pdf, which has been empirically shown to follow the
gamma distribution (Lee & Choi, 2015). We are interested

10The error bound follows (3) as well if Ψ is an orthogonal
matrix, which is usually the case.

in the shape of this pdf, which is shown by the following
proposition.
Proposition 1. The pdf of K, the number of components
included in the signal recovery of a compressible signal, is
skewed to the right, i.e., right tailed.

Proof. Since ‖si‖1 = C`1 and ‖si‖2 = C`2 for all i, we
can conceive the same sequence {sn} of elements (absolute
values) in si for all i. Then we have

‖si − sKi ‖1 =

N−K∑
n=1

sn. (17)

Without loss of generality, we consider the partial sum∑N−K
n=1 sn in (17) to be an arithmetic series which can be

represented by a quadratic function in terms of K. We also
assume the inequality constraint in (15) is the equality con-
straint such that ‖s? − s‖2 = C1 · ‖s− sK‖1.

If we take the (partial) inverse function of the
quadratic function, we have K ∼ Kmax −√
‖s? − s‖2 − (min ‖s?ij − si‖2). Assuming the dis-

tribution of ‖s? − s‖2 is symmetric (zero skewness), this
asymptotic relation says ‖s? − s‖2 will be compressed as
it becomes large, which in turn makes the pdf of K right
tailed.

A similar claim can be made if we consider the partial
sum

∑N−K
n=1 sn to be a geometric series, where K ∼

N − log(‖s? − s‖2). In this case, the pdf of K is skewed
to the right as well.

4.1 ERROR ANALYSIS IN DYNAMIC SYSTEMS

Since the success or failure of signal recovery does not exist
in this framework, we instead investigate the amount of er-
ror occurring during the recovery procedure in an expected
value sense. In particular, the best K-term approximation
‖s− sK‖1 in (3) is known to be bounded as follows (Bara-
niuk et al., 2010):

‖s− sK‖1 ≤
2G

K
, (18)

where the constant G can be learned by the power-law de-
cay such that each magnitude of components in s, sorted in
decreasing order, is upper bounded byG/i2. (i = 1, . . . , N
is the sorted index.)

Then we can analyze the `2 error E of signal recovery as-
suming fK(k) = Gamma(κ, θ), which is given by

E =

∫
k

C1 ·
2G

k
fK(k) dk =

2C1G

θ
B(κ− 1, 1), (19)

where B(·, ·) is the beta function (Lee & Choi, 2015). Here
the pdf fK(k) is employed to represent varying K’s.11

11Note that this pdf is different from the one introduced in Sec-
tion 3.



In this framework, there is no longer such an indicator as
the timely varying signal sparsity K in Section 3, because
signals are compressible and their coefficients are already
populated with small, but non-zero, coefficients. Thus, we
may assume the same gamma distribution over time, whose
parameters κ and θ can then be estimated.

In order to prevent over-fitting to insufficient observations,
we introduce the conjugate prior for the gamma distribu-
tion. It is known that the conjugate prior of the gamma dis-
tribution has the following form (Miller, 1980; Fink, 1997).

IP(κ, θ | p, q, r, s) =
1

Z
· p

κ−1 exp(−q/θ)
Γ(κ)rθsκ

, (20)

where p, q, r, s > 0 are hyperparameters that are sequen-
tially updated with p′ = pk, q′ = q + k, r′ = r + 1, and
s′ = s+ 1;12 and the normalizing constant Z is

Z =

∫ ∞
0

pκ−1Γ(sκ+ 1)

Γ(κ)rqsκ+1
dκ. (21)

Using (19) and (20), we can marginalize over κ and θ to
estimate error Ê as follows:

Ê =

∫
κ

∫
θ

E · IP(κ, θ | p, q, r, s) dθ dκ

=
2C1G

Z

∫ ∞
0

pκ−1

(κ− 1)Γ(κ)r

∫ ∞
0

exp(−q/θ)
θsκ+1

dθ dκ

=
2C1G

Z

∫ ∞
0

pκ−1Γ(sκ)

(κ− 1)Γ(κ)rqsκ
dκ, (22)

which can be computed numerically.

5 EXPERIMENTAL RESULTS

5.1 RECOVERY SUCCESS

In Section 3, we discussed the discrepancy between the
failure probabilities in the CS framework and actual ran-
dom sampling. In order to show this discrepancy, we arti-
ficially generated signed spikes ±1 at random locations in
proportion to desired sparsities and densified these spikes
using Ψ13 to perform the random sampling.

For each signal sparsity K, the actual failure probability
can be calculated for different recovery experiments. To
this end, we adopted a standard optimization method (ba-
sis pursuit) to solve the optimization problem in (2) (Chen
et al., 1998). Specifically, the primal-dual algorithm
based on the interior point method was employed to solve
(2) (Boyd & Vandenberghe, 2004).

12Here, p′, q′, r′, and s′ are updated posterior hyperparameters;
and k is a single observation.

13We used DCT as the sparsifying basis Ψ throughout experi-
ments.
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Figure 3: Comparison between actual failure probability
and failure probabilities given in (5) with varying C’s. Ac-
tual failure probability of each signal sparsity K was ob-
tained with 300 experiments for N = 512 and M = 100.

Figure 3 shows that the actual failure probability of signal
recovery with varying signal sparsity does not follow the
failure probability given in the CS framework. The failure
probability in (5) cannot model the actual failure proba-
bility of signal recovery, regardless of the value chosen for
constant C. This result confirms Lemma 1 and Corollary 2.

Moreover, in Section 3.2 we modeled the new pdf of sig-
nal recovery success fΠ(π) in (10). We compared this new
pdf with the upper bound of failure in (6), given a dynamic
signal sparsity K. Specifically, we employed the inverse
Gaussian distribution such that fK(k) = IG(30, 200). Fig-
ure 4 exhibits the efficacy of our recovery success model,
where the lower bounds of success probability given in the
CS framework fail to capture actual success probability in
random sampling case. This result confirms Theorem 3.

Note that our recovery success model provides the base-
line of recovery success for any CS frameworks that are
specifically designed to handle varying signal sparsity. For
instance, Figure 5 shows histograms of success probability
for various signal sparsities using Modified-CS (Vaswani
& Lu, 2010).14 Compared with Figure 2, the success prob-
ability shown in Figure 5 also follows the beta distribution;
but success probability is higher than that of basis pursuit
for a given sparsity K (Kmin = 21 and Kmax = 31),
thanks to the ability of Modified-CS to handle dynamic
signal sparsity. The recovery success model in (9) is still
effective here as a theoretical framework, or the recovery
success model using the basis pursuit may promise a mini-
mum guarantee for the recovery success of other CS frame-
works.

We also employed real-world environmental data sets ob-

14Results were obtained with two frames where the second
frame has one more spike than the first frame so that Modified-
CS could exploit smoothly varying signal sparsity. Histograms in
Figure 5 are the success probabilities of the second frame.
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Figure 4: Comparison between our new success probabil-
ity distribution in (10) and the lower bounds of success
probability obtained by (6) with varying C’s. The inverse
Gaussian distribution was used for fK(k). Two probability
masses are shown by vertical arrows, where solid boxes
atop the arrows denote their probabilities. Three verti-
cal dashed/dotted lines represent the lower bounds by (6):
C = 0.5 at 0.6781; C = 1 at 0.4450; and C = 2 at 0.2596.
Here, Kmin = 20 and Kmax = 30.
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Figure 5: Histograms of success probability for various
K’s using Modified-CS (Vaswani & Lu, 2010). Success
probability distribution for each K was obtained with 100
different random signed spike vectors for N = 512 and
M = 100. A single success probability for each signed
spike vector was calculated with 100 experiments. Com-
pared with the results with basis pursuit in Figure 2, suc-
cess probability is higher for a given sparsity K. Note also
that 100 experiments resulted in a larger variance for each
K.

tained from wireless sensor network deployments (Quer
et al., 2012): humidity and temperature. In addition, au-
dio data shown in Figure 1 was used for comparison as
well. Random numbers representing the dynamic signal
sparsity K were drawn from the inverse Gaussian distri-
bution (fK(k) = IG(30, 200)) and we used this K to ran-
domly choose components sorted in decreasing order; other

components were set to zero. Figure 6 shows the success
probability of signal recovery follows the shape of Figure 4.

5.2 RECOVERY QUALITY

When a signal is compressible and not exactly K-sparse,
this signal is basically dense. In Section 4, we regarded the
number of components included in the signal recovery as
a varying quantity. We are interested in the general shape
of this quantity in distribution. In order to verify Propo-
sition 1, we performed experiments using real data sets as
well as artificially generated random signed spikes.

We first provide results with real-world data sets to verify
Proposition 1. Figure 7 displays the histograms of K, the
number of components included in each signal recovery,
which was obtained using the method explained in Sec-
tion 4. We can identify that Proposition 1 actually holds
here, as all distributions are skewed to the right. Fur-
thermore, the distributions follow the gamma distribution,
which is also natural since the gamma distribution has pos-
itive skewness, i.e., right tailed.

In addition, random signed spikes were artificially gen-
erated in different magnitudes at random locations and
densified to perform random sampling. In particu-
lar, we considered an arithmetic sequence of length 50
(2, 4, 6, . . ., 98, 100), whose elements were placed at ran-
dom locations in each vector. These signals are dense
enough to be used for experiments because signal recovery
always fails when K > 30 in our case, as shown in Fig-
ure 3. Figure 8 displays the histogram ofK and the gamma
distribution fitting, where we can again see that Proposi-
tion 1 holds.

Furthermore, we analyze the `2 error E of signal recov-
ery assuming fK(k) = Gamma(κ, θ) using (19). In or-
der to show its efficacy, we compared the solutions of (19)
with real data sets. For humidity data, E = 94.3533 while
the average `2 norm of data is 564.8585; for temperature
data, E = 75.5441 while the average `2 norm of data is
627.8038; and for audio data, E = 5.0979 while the aver-
age `2 norm of data is 1.5866. Apart from the case of audio
data, (19) provides useful estimators for the upper bound
of amount of error during recovery. It should be noted that
this bound is rather loose due to a large constant G in (18),
which could be improved with a less conservative G.

6 CONCLUSION

We have presented a new theoretical CS framework in ran-
dom sampling which handles uncertainty in signal recovery
from a new perspective. The success probability of signal
recovery in random sampling was investigated when signal
sparsity can vary with an insufficient number of measure-
ments. The success probability analysis in the existing CS
framework was shown to be incapable of reflecting actual
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Figure 6: Histograms of success probability for (a) humidity data, (b) temperature data, and (c) audio data. Histogram was
obtained with 1,500 random number generations (the inverse Gaussian distribution) to choose different signals and 100
different experiments for each signal with N = 512 and M = 100. All histograms closely follow the shape of Figure 4.
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(b) temperature
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Figure 7: Distributions of K fitted with gamma distributions for (a) humidity data (Gamma(5.69, 2.45)), (b) temperature
data (Gamma(5.56, 2.54)), and (c) audio data (Gamma(6.92, 2.21)). Histograms were obtained with 34 different signals
and 1,000 different experiments for each signal (a and b); with 153 different signals and 500 different experiments for each
signal (c), with N = 512 and M = 100.
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Figure 8: Distribution of K fitted with a gamma distri-
bution Gamma(242.81, 0.09), using the maximum likeli-
hood estimation. Histogram was obtained with 300 differ-
ent signals and 300 different experiments for each signal,
with N = 512 and M = 100.

success probability by both theoretical analysis and exper-
iments. On the contrary, our recovery success model could
closely reflect actual success probability.

We also considered signals which cannot be exactly repre-
sented with sparse representations, where we could alter-
natively view the number of components included in the
signal recovery as a varying quantity. This quantity was
shown by both theoretical analysis and experiments to fol-
low a right-tailed distribution such as the gamma distribu-
tion. We provided error analysis for these signals.
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