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Abstract

Lossy compression fundamentally involves a
decision about what is relevant and what is
not. The information bottleneck (IB) by Tishby,
Pereira, and Bialek formalized this notion as an
information-theoretic optimization problem and
proposed an optimal tradeoff between throwing
away as many bits as possible, and selectively
keeping those that are most important. Here, we
introduce an alternative formulation, the deter-
ministic information bottleneck (DIB), that we
argue better captures this notion of compression.
As suggested by its name, the solution to the DIB
problem is a deterministic encoder, as opposed to
the stochastic encoder that is optimal under the
IB. We then compare the IB and DIB on synthetic
data, showing that the IB and DIB perform sim-
ilarly in terms of the IB cost function, but that
the DIB vastly outperforms the IB in terms of
the DIB cost function. Moreover, the DIB of-
fered a 1-2 order of magnitude speedup over the
IB in our experiments. Our derivation of the DIB
also offers a method for continuously interpolat-
ing between the soft clustering of the IB and the
hard clustering of the DIB.

1 INTRODUCTION

Compression is a ubiquitous task for humans and machines
alike [Cover & Thomas (2006), MacKay (2002)]. For ex-
ample, machines must turn the large pixel grids of color
that form pictures into small files capable of being shared
quickly on the web [Wallace (1991)], humans must com-
press the vast stream of ongoing sensory information they
receive into small changes in the brain that form memories
[Kandel et al (2000)], and data scientists must turn large
amounts of high-dimensional and messy data into more
manageable and interpretable clusters [MacKay (2002)].

Lossy compression involve an implicit decision about what

is relevant and what is not [Cover & Thomas (2006),
MacKay (2002)]. In the example of image compression,
the algorithms we use deem some features essential to rep-
resenting the subject matter well, and others are thrown
away. In the example of human memory, our brains deem
some details important enough to warrant attention, and
others are forgotten. And in the example of data clustering,
information about some features is preserved in the map-
ping from data point to cluster ID, while information about
others is discarded.

In many cases, the criterion for “relevance” can be de-
scribed as information about some other variable(s) of in-
terest. Let’s call X the signal we are compressing, T the
compressed version, Y the other variable of interest, and
I(T ;Y ) the “information” that T has about Y (we will for-
mally define this later). For human memory, X is past sen-
sory input, T the brain’s internal representation (e.g. the
activity of a neural population, or the strengths of a set of
synapses), and Y the features of the future environment that
the brain is interested in predicting, such as extrapolating
the position of a moving object. Thus, I(T ;Y ) represents
the predictive power of the memories formed [Palmer et al
(2015)]. For data clustering, X is the original data, T is the
cluster ID, and Y is the target for prediction, for example
purchasing or ad-clicking behavior in a user segmentation
problem. In summary, a good compression algorithm can
be described as a tradeoff between the compression of a
signal and the selective maintenance of the “relevant” bits
that help predict another signal.

This problem was formalized as the “information bottle-
neck” (IB) by Tishby, Pereira, and Bialek [Tishby (1999)].
In their formulation, compression was measured by the mu-
tual information I(X;T ). This compression metric has its
origins in rate-distortion theory and channel coding, where
I(X;T ) represents the maximal information transfer rate,
or capacity, of the communication channel between X and
T [Cover & Thomas (2006)]. While this approach has its
applications, often one is more interested in directly re-
stricting the amount of resources required to represent T ,
represented by the entropy H(T ). This latter notion comes



from the source coding literature and implies a restriction
on the representational cost of T . In the case of human
memory, for example, H(T ) would roughly correspond to
the number of neurons or synapses required to represent or
store a sensory signal X . In the case of data clustering,
H(T ) is related to the number of clusters.

In the following paper, we introduce an alternative formula-
tion of the IB, replacing the compression measure I(X;T )
with H(T ), thus emphasizing contraints on representation,
rather than communication. We begin with a general in-
troduction to the IB. Then, we introduce our alternative
formulation, which we call the deterministic information
bottleneck (DIB). Finally, we compare the IB and DIB so-
lutions on synthetic data to help illustrate their differences.

2 THE ORIGINAL INFORMATION
BOTTLENECK (IB)

Given the joint distribution p(x, y), the encoding distribu-
tion q(t | x) is obtained through the following “information
bottleneck” (IB) optimization problem:

min
q(t|x)

L[q(t | x)] = I(X;T )− βI(T ;Y ) , (1)

subject to the Markov constraint T ↔ X ↔ Y .
Here I(X;T ) denotes the mutual information between
X and T , that is I(X;T ) ≡ H(T ) − H(T | X) =∑
x,t p(x, t) log

(
p(x,t)
p(x)p(t)

)
= DKL[p(x, t) | p(x) p(t)],1

where DKL denotes the Kullback-Leibler divergence.2

The first term in the cost function is meant to encourage
compression, while the second relevance. β is a non-
negative free parameter representing the relative impor-
tance of compression and relevance, and our solution will
be a function of it. The Markov constraint simply enforces
the probabilistic graphical structure of the task; the com-
pressed representation T is a (possibly stochastic) function

1Implicit in the summation here, we have assumed that X , Y ,
and T are discrete. We will be keeping this assumption through-
out for convenience of notation, but note that the IB generalizes
naturally toX , Y , and T continuous by simply replacing the sums
with integrals (see, for example, [Chechik et al (2005)]).

2For those unfamiliar with it, mutual information is a very
general measure of how related two variables are. Classic cor-
relation measures typically assume a certain form of the relation-
ship between two variables, say linear, whereas mutual informa-
tion is agnostic as to the details of the relationship. One intu-
itive picture comes from the entropy decomposition: I(X;Y ) ≡
H(X) − H(X | Y ). Since entropy measures uncertainty, mu-
tual information measures the reduction in uncertainty in one
variable when observing the other. Moreover, it is symmet-
ric (I(X;Y ) = I(Y ;X)), so the information is mutual. An-
other intuitive picture comes from the DKL form: I(X;Y ) ≡
DKL[p(x, y) | p(x) p(y)]. Since DKL measures the distance be-
tween two probability distributions, the mutual information quan-
tifies how far the relationship between x and y is from a prob-
abilistically independent one, that is how far the joint p(x, y) is
from the factorized p(x) p(y).

of X and can only get information about Y through X .
Note that we are using p to denote distributions that are
given and fixed, and q to denote distributions that we are
free to change and that are being updated throughout the
optimization process.

Through a standard application of variational calculus (see
Section 7 for a detailed derivation of the solution to a more
general problem introduced below), one finds the formal
solution:3

q(t | x) = q(t)

Z(x, β)
exp[−βDKL[p(y | x) | q(y | t)]] (2)

q(y | t) = 1

q(t)

∑
x

q(t | x) p(x, y) , (3)

where Z(x, β) ≡ exp
[
−λ(x)p(x) − β

∑
y p(y | x) log

p(y|x)
p(y)

]
is a normalization factor, and λ(x) is a Lagrange multi-
plier that enters enforcing normalization of q(t | x).4 To
get an intuition for this solution, it is useful to take a clus-
tering perspective - since we are compressing X into T ,
many X will be mapped to the same T and so we can
think of the IB as “clustering” xs into their cluster labels
t. The solution q(t | x) is then likely to map x to t when
DKL[p(y | x) | q(y | t)] is small, or in other words, when
the distributions p(y | x) and q(y | t) are similar. These
distributions are similar to the extent that x and t provide
similar information about y. In summary, inputs x get
mapped to clusters t that maintain information about y, as
was desired.

This solution is “formal” because the first equation depends
on the second and vice versa. However, [Tishby (1999)]
showed that an iterative approach can be built on the the
above equations which provably converges to a local opti-
mum of the IB cost function (eqn 1).

Starting with some initial distributions q(0)(t | x), q(0)(t),
and q(0)(y | t), the nth update is given by:

d(n−1)(x, t) ≡ DKL

[
p(y | x) | q(n−1)(y | t)

]
(4)

q(n)(t | x) = q(n−1)(t)

Z(x, β)
exp
[
−βd(n−1)(x, t)

]
(5)

q(n)(t) =
∑
x

p(x) q(n)(t | x) (6)

q(n)(y | t) = 1

q(n)(t)

∑
x

q(n)(t | x) p(x, y) . (7)

3For the reader familiar with rate-distortion theory, eqn 2 can
be viewed as the solution to a rate-distortion problem with distor-
tion measure given by the KL-divergence term in the exponent.

4More explicitly, our cost function L also implicitly includes
a term

∑
x λ(x)

[
1−

∑
t q(t|x)

]
and this is where λ(x) comes

in to the equation. See Section 7 for details.



Note that the first pair of equations is the only “meaty” bit;
the rest are just there to enforce consistency with the laws
of probability (e.g. that marginals are related to joints as
they should be). In principle, with no proof of convergence
to a global optimum, it might be possible for the solution
obtained to vary with the initialization, but in practice, the
cost function is “smooth enough” that this does not seem to
happen. This algorithm is summarized in algorithm 1. Note
that while the general solution is iterative, there is at least
one known case in which an analytic solution is possible,
name when X and Y are jointly Gaussian [Chechik et al
(2005)].

Algorithm 1 - The information bottleneck (IB) method.
1: Given p(x, y), β ≥ 0
2: Initialize q(0)(t | x) and set n = 0
3: q(0)(t) =

∑
x p(x) q

(0)(t | x)
4: q(0)(y | t) = 1

q(0)(t)

∑
x p(x, y) q

(0)(t | x)
5: while not converged do
6: n = n+ 1
7: d(n−1)(x, t) ≡ DKL

[
p(y | x) | q(n−1)(y | t)

]
8: q(n)(t | x) = q(n−1)(t)

Z(x,β) exp
[
−βd(n−1)(x, t)

]
9: q(n)(t) =

∑
x p(x) q

(n)(t | x)
10: q(n)(y | t) = 1

q(n)(t)

∑
x q

(n)(t | x) p(x, y)
11: end while

In summary, given the joint distribution p(x, y), the IB
method extracts a compressive encoder q(t | x) that selec-
tively maintains the bits from X that are informative about
Y . As the encoder is a function of the free parameter β,
we can visualize the entire family of solutions on a curve
(figure 1), showing the tradeoff between compression (on
the x-axis) and relevance (on the y-axis). For small β,
compression is more important than prediction and we find
ourselves at the bottom left of the curve in the high com-
pression, low prediction regime. As β increases, predic-
tion becomes more important relative to compression, and
we see that both I(X;T ) and I(T ;Y ) increase. At some
point, I(T ;Y ) saturates, because there is no more informa-
tion about Y that can be extracted from X (either because
I(T ;Y ) has reached I(X;Y ) or because T has too small
cardinality). Note that the region below the curve is shaded
because this area is feasible; for suboptimal q(t | x), solu-
tions will lie in this region. Optimal solutions will of course
lie on the curve, and no solutions will lie above the curve.

Additional work on the IB has highlighted its relation-
ship with maximum likelihood on a multinomial mixture
model [Slonim & Weiss (2002)] and canonical correla-
tion analysis [Creutzig et al (2009)] (and therefore linear
Gaussian models [Bach & Jordan (2005)] and slow feature
analysis [Turner & Sahani (2007)]). Applications have in-
cluded speech recognition [Hecht & Tishby (2005), Hecht
& Tishby (2008), Hecht et al (2009)], topic modeling

[Slonim & Tishby (2000),Slonim & Tishby (2001),Bekker-
man et al (2001), Bekkerman et al (2003)], and neural cod-
ing [Schneidman et al (2002), Palmer et al (2015)]. Most
recently, the IB has even been proposed as a method for
benchmarking the performance of deep neural networks
[Tishby & Zaslavsky (2015)].

0

I(X,Y)

0 log |T|
I(X;T)

I(
T

;Y
)

Figure 1: An illustrative IB curve. I(T ;Y ) is the rele-
vance term from eqn 1; I(X;T ) is the compression term.
I(X;Y ) is an upper bound on I(T ;Y ) since T only gets its
information about Y via X . log(|T |), where |T | is the car-
dinality of the compression variable, is a bound on I(X;T )
since I(X;T ) = H(T )−H(T | X) ≤ H(T ) ≤ log(|T |).

3 THE DETERMINISTIC
INFORMATION BOTTLENECK (DIB)

Our motivation for introducing an alternative formulation
of the information bottleneck is rooted in the “compression
term” of the IB cost function; there, the minimization of
the mutual information I(X;T ) represents compression.
As discussed above, this measure of compression comes
from the channel coding literature and implies a restriction
on the communication cost between X and T. Here, we
are interested in the source coding notion of compression,
which implies a restriction on the representational cost of
T . For example, in neuroscience, there is a long history of
work on “redundancy reduction” in the brain in the form of
minimizing H(T ) [Barlow (1981), Barlow (2001), Barlow
(2001)].

Let us call the original IB cost function LIB, that is LIB ≡
I(X;T ) − βI(T ;Y ). We now introduce the deterministic
information bottleneck (DIB) cost function:

LDIB[q(t | x)] ≡ H(T )− βI(T ;Y ) , (8)

which is to be minimized over q(t | x) and subject to the
same Markov constraint as the original formulation (eqn 1).
The “deterministic” in its name will become clear below.

To see the distinction between the two cost functions, note
that:

LIB − LDIB = I(X;T )−H(T ) (9)
= −H(T | X) , (10)



where we have used the decomposition of the mutual infor-
mation I(X;T ) = H(T )−H(T | X). H(T | X) is some-
times called the “noise entropy” and measures the stochas-
ticity in the mapping from X to T . Since we are minimiz-
ing these cost functions, this means that the IB cost func-
tion encourages stochasticity in the encoding distribution
q(t | x) relative to the DIB cost function. In fact, we will
see that by removing this encouragement of stochasticity,
the DIB problem actually produces a deterministic encod-
ing distribution, i.e. an encoding function, hence the “de-
terministic” in its name.

Naively taking the same variational calculus approach as
for the IB problem, one cannot solve the DIB problem.5 To
make this problem tractable, we are going to define a family
of cost functions of which the IB and DIB cost functions are
limiting cases. That family, indexed by α, is defined as:6

Lα ≡ H(T )− αH(T | X)− βI(T ;Y ) . (11)

Clearly, LIB = L1. However, instead of looking at LDIB as
the α = 0 case, we’ll define the DIB solution qDIB(t | x) as
the α → 0 limit of the solution to the generalized problem
qα(t | x):7

qDIB(t | x) ≡ lim
α→0

qα(t | x) . (12)

Taking the variational calculus approach to minimizing Lα
(under the Markov constraint), we get the following so-
lution for the encoding distribution (see Section 7 for the
derivation and explicit form of the normalization factor
Z(x, a, β)):

dα(x, t) ≡ DKL[p(y | x) | qα(y | t)] (13)
`α,β(x, t) ≡ log qα(t)− βdα(x, t) (14)

qα(t | x) =
1

Z(x, α, β)
exp

[
1

α
`α,β(x, t)

]
(15)

qα(y | t) =
1

qα(t)

∑
x

qα(t | x) p(x, y) . (16)

5When you take the variational derivative of LDIB +
Lagrange multiplier term with respect to q(t | x) and set it to
zero, you get no explicit q(t | x) term, and it is therefore not ob-
vious how to solve these equations. We cannot rule that that ap-
proach is possible, of course; we have just here taken a different
route.

6Note that for α < 1, we cannot allow T to be continuous
since H(T ) can become infinitely negative, and the optimal so-
lution in that case will trivially be a delta function over a single
value of T for all X , across all values of β. This is in constrast to
the IB, which can handle continuous T . In any case, we continue
to assume discrete X , Y , and T for convenience.

7Note a subtlety here that we cannot claim that the qDIB is the
solution to LDIB, for although LDIB = limα→0 Lα and qDIB =
limα→0 qα, the solution of the limit need not be equal to the limit
of the solution. It would, however, be surprising if that were not
the case.

Note that the last equation is just eqn 3, since this just fol-
lows from the Markov constraint. With α = 1, we can see
that the other three equations just become the IB solution
from eqn 2, as should be the case.

Before we take the α→ 0 limit, note that we can now write
a generalized IB iterative algorithm (indexed by α) which
includes the original as a special case (α = 1):

d(n−1)α (x, t) ≡ DKL

[
p(y | x) | q(n−1)α (y | t)

]
(17)

`
(n−1)
α,β (x, t) ≡ log q(n−1)α (t)− βd(n−1)α (x, t) (18)

q(n)α (t | x) = 1

Z(x, α, β)
exp

[
1

α
`
(n−1)
α,β (x, t)

]
(19)

q(n)α (t) =
∑
x

p(x) q(n)α (t | x) (20)

q(n)α (y | t) = 1

q
(n)
α (t)

∑
x

q(n)α (t | x) p(x, y) . (21)

This generalized algorithm can be used in its own right,
however we will not discuss that option further here.

For now, we take the limit α → 0 and see that something
interesting happens with qα(t | x) - the argument of the ex-
ponential begins to blow up. For a fixed x, this means that
q(t | x) will collapse into a delta function at the value of t
which maximizes log q(t)−βDKL[p(y | x) | q(y | t)]. That
is:

lim
α→0

qα(t | x) = f : X → T, (22)

where:

f(x) ≡ t∗ = argmax
t

`(x, t) (23)

`(x, t) ≡ log q(t)− βDKL[p(y | x) | q(y | t)] . (24)

So, as anticipated, the solution to the DIB problem is a de-
terministic encoding distribution. The log q(t) above en-
courages that we use as few values of t as possible, via a
“rich-get-richer” scheme that assigns each x preferentially
to a t already with many xs assigned to it. The KL diver-
gence term, as in the original IB problem, just makes sure
we pick ts which retain as much information from x about
y as possible. The parameter β, as in the original problem,
controls the tradeoff between how much we value compres-
sion and prediction.

Also like in the original problem, the solution above is only
a formal solution, since eqn 15 depends on eqn 16 and vice
versa. So we will again need to take an iterative approach;
in analogy to the IB case, we repeat the following updates
to convergence (from some initialization):8

8Note that, if at step m no xs are assigned to a particular t =
t∗, then qm(t∗) = 0 and for all future steps n > m, no xs will



d(n−1)(x, t) ≡ DKL

[
p(y | x) | q(n−1)(y | t)

]
(25)

`
(n−1)
β (x, t) ≡ log q(t)− βd(n−1)(x, t) (26)

f (n)(x) = argmax
t

`
(n−1)
β (x, t) (27)

q(n)(t | x) = δ
(
t− f (n)(x)

)
(28)

q(n)(t) =
∑
x

q(n)(t | x) p(x) (29)

=
∑

x:f(n)(x)=t

p(x) (30)

q(n)(y | t) = 1

q(n)(t)

∑
x

q(n)(t | x) p(x, y) (31)

=

∑
x:f(n)(x)=t p(x, y)∑
x:f(n)(x)=t p(x)

. (32)

This process is summarized in algorithm 2.

Like with the IB, the DIB solutions can be plotted as a func-
tion of β. However, in this case, it is more natural to plot
I(T ;Y ) as a function of H(T ), rather than I(X;T ). That
said, in order to compare the IB and DIB, they need to be
plotted in the same plane. When plotting in the I(X;T )
plane, the DIB curve will of course lie below the IB curve,
since in this plane, the IB curve is optimal; the opposite
will be true when plotting in theH(T ) plane. Comparisons
with experimental data can be performed in either plane.

Algorithm 2 - The deterministic information bottleneck
(DIB) method.

1: Given p(x, y), β ≥ 0
2: Initialize f (0)(x) and set n = 0
3: q(0)(t) =

∑
x:f(0)(x)=t p(x)

4: q(0)(y | t) =
∑

x:f(0)(x)=t
p(x,y)∑

x:f(0)(x)=t
p(x)

5: while not converged do
6: n = n+ 1
7: d(n−1)(x, t) ≡ DKL

[
p(y | x) | q(n−1)(y | t)

]
8: `

(n−1)
β (x, t) ≡ log q(t)− βd(n−1)(x, t)

9: f (n)(x) = argmax
t

`
(n−1)
β (x, t)

10: q(n)(t) =
∑
x:f(n)(x)=t p(x)

11: q(n)(y | t) =
∑

x:f(n)(x)=t
p(x,y)∑

x:f(n)(x)=t
p(x)

12: end while

ever again be assigned to t∗ since log qn(t
∗) = −∞. In other

words, the number of ts “in use” can only decrease during the
iterative algorithm above (or remain constant). Thus, it seems
plausible that our solution will not depend on the cardinality of
T , provided it is chosen to be large enough.

4 COMPARISON OF IB AND DIB

To get an idea of how the IB and DIB solutions differ in
practice, we generated a series of random joint distribu-
tions p(x, y), solved for the IB and DIB solutions for each,
and compared them in both the IB and DIB plane. To gen-
erate the p(x, y), we first sampled p(x) from a symmetric
Dirichlet distribution with concentration parameter αx (so
p(x) ∼ Dir[αx]), and then sampled each row of p(y | x)
from another symmetric Dirichlet distribution with concen-
tration parameter αy (so p(y | x) ∼ Dir[αy] , ∀x). Since
the number of clusters in use for both IB and DIB can only
decrease from iteration to iteration (see footnote 8), we al-
ways initialized |T | = |X|.9 For the DIB, we initialized the
cluster assignments to be as even across the cluster as pos-
sible, i.e. each data points belonged to its own cluster. For
IB, we initalized the cluster assignments to a normalized
draw of a uniform random vector.

An illustrative pair of solutions is shown in figure 2. The
key feature to note is that, while performance of the IB and
DIB solutions are very similar in the IB plane, their behav-
ior differs drastically in the DIB plane.

Perhaps most unintuitive is the behavior of the IB solu-
tion in the DIB plane. To understand this behavior, recall
that the IB’s compression term is the mutual information
I(X,T ) = H(T ) − H(T | X). This term is minimized
by any q(t | x) that maps ts independently of xs. Consider
two extremes of such mappings. One is to map all val-
ues of X to a single value of T ; this leads to H(T ) =
H(T | X) = I(X,T ) = 0. The other is to map each
value of X uniformly across all values of T ; this leads to
H(T ) = H(T | X) = log |T | and I(X,T ) = 0. In our ini-
tial studies, the IB consistently took the latter approach.10

Since the DIB cost function favors the former approach
(and indeed the DIB solution follows this approach), the IB
consistently performs poorly by the DIB’s standards. This
difference is especially apparent at small β, where the com-
pression term matters most, and as β increases, the DIB and
IB solutions converge in the DIB plane.

To encourage the IB into more DIB-like behavior, we next
altered our initialization scheme of q(t | x). Originally, we
used a normalized vector of uniform random numbers for
each x. Next, we tried a series of delta-like functions, for
which q(t | x) = p0 for all x and one t, and the rest of
the entries were uniform with a small amount of noise to
break symmetry. The intended effect was to start the IB
closer to solutions in which all data points were mapped to
a single cluster. Results are shown in figure 3. While the
different initialization schemes didn’t change behavior in

9An even more efficient setting might be to set the cardinality
of T based on the entropy of X , say |T | = ceiling(exp(H(X))),
but we didn’t experiment with this.

10Intuitively, this approach is “more random” and is therefore
easier to stumble upon during optimization.



the IB plane, we can see a gradual shift of the IB towards
DIB-like behavior in the DIB plane as p0 → 1, i.e. the
initialization scheme approaches a true delta. However, the
IB still fails to reach the level of performance of the DIB,
especially for large β, where the effect of the initialization
washes out completely.

To summarize, the IB and DIB perform similarly by the IB
standards, but the DIB tends to outperform the IB dramat-
ically by the DIB’s standards. Careful initialization of the
IB can make up some of the difference, but not all.

It is also worth noting that, across all the datasets we tested,
the DIB took 1-2 orders of magnitude fewer steps and time
to converge, as illustrated in figure 4. About half of IB fits
took at least an hour, while nearly a quarter took at least
five hours. Contrast this with about half of DIB fits taking
only five minutes, and more than 80% finishing within ten
minutes. Put another way, about half of all DIB fits finished
ten times faster than their IB counterpart, while about a
quarter finished fifty times faster.

Note that the computational advantage of the DIB over the
IB may vary by dataset and stopping criteria. In our case,
we defined convergence for both algorithms as a change in
cost function of less than 108 from one step to the next.

5 RELATED WORK

The DIB is not the first hard clustering version of IB.11

Indeed, the agglomerative information bottleneck (AIB)
[Slonim & Tishby (1999)] also produces hard clustering
and was introduced soon after the IB. Thus, it is impor-
tant to distinguish between the two approaches. AIB is a
bottom-up, greedy method which starts with all data points
belonging to their own clusters and iteratively merges clus-
ters in a way which maximizes the gain in relevant informa-
tion. It was explicitly designed to produce a hard cluster-
ing. DIB is a top-down method derived from a cost function
that was not designed to produce a hard clustering. Our
starting point was to alter the IB cost function to match
the source coding notion of compression. The emergence
of hard clustering in DIB is itself a result. Thus, while
AIB does provide a hard clustering version of IB, DIB con-
tributes the following in addition: 1) Our study emphasizes
why a stochastic encoder is optimal for IB, namely due to
the noise entropy term. The optimality of a stochastic en-
coder has been, for many, neither obvious nor necessarily
desirable. 2) Our study provides a principled, top-down
derivation of a hard clustering version of IB, based upon
an intuitive change to the cost function. 3) Our non-trivial
derivation also provides a cost-function and solution which
interpolates between DIB and IB, by adding back the noise

11In fact, even the IB itself produces a hard clustering in the
large β limit. However, it trivially assigns all data points to their
own clusters.

entropy continuously, i.e. with 0 < α < 1. This interpola-
tion may be viewed as adding a regularization term to DIB.
We are in fact currently exploring whether this type of reg-
ularization may be useful in dealing with finitely sampled
data. Another interpretation of the cost function with inter-
mediate α is as a penalty on both the mutual information
between X and T as well as the entropy of the compres-
sion, H(T ). 4) It is likely that DIB offers a computational
advantage to AIB. In the AIB paper, the authors say, “The
main disadvantage of this method is computational, since
it starts from the limit of a cluster per each member of the
set X.” In our experiments, we find that DIB is much more
efficient than IB. Therefore, we expect that DIB will offer a
considerable advantage in efficiency to AIB. However, we
have not yet tested this.

The original IB also provides a deterministic encoding
upon taking the limit β → ∞ that corresponds to the
causal-state partition of histories [Still et al (2010)]. How-
ever, this is the limit of no compression, whereas our ap-
proach allows for an entire family of deterministic encoders
with varying degrees of compression.

6 DISCUSSION

Here we have introduced the deterministic information bot-
tleneck (DIB) as an alternative to the information bottle-
neck (IB) for compression and clustering. We have ar-
gued that the DIB cost function better embodies the goal
of lossy compression of relevant information, and shown
that it leads to a non-trivial deterministic version of the IB.
We have compared the DIB and IB solutions on synthetic
data and found that, in our experiments, the DIB performs
nearly identically to the IB in terms of the IB cost function,
but far superior in terms of its own cost function. We also
noted that the DIB achieved this performance at a compu-
tational efficiency 1-2 orders of magnitude better than the
IB.

Of course, in addition to the studies with synthetic data
here, it is important to compare the DIB and IB on real
world datasets as well to see whether the DIB’s apparent
advantages hold. The linearity of the IB and DIB curves
displayed above are indeed a signature of relatively simple
data with not particularly complicated tradeoffs between
compression and relevance.

One particular application of interest is maximally infor-
mative clustering. Previous work has, for example, offered
a principled way of choosing the number of clusters based
on the finiteness of the data [Still & Bialek (2004)]. Sim-
ilarly interesting results may exist for the DIB, as well as
relationships to other popular clustering algorithms such as
k-means. More generally, there are learning theory results
showing generalization bounds on IB for which an analog
on DIB would be interesting as well [Shamir et al (2010)].



●●●●●●●●●

●

●●●●●●●●●

●●

●●

●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●

H(X) log(|T|)
0.0

0.5

1.0

1.5

2.0

0 2 4 6 8
I(X;T)

I(
T

;Y
)

●●●●●●●●●

●

●●●●●●●●●

●●

●●

●●

●

●●

●●●●●●●●●●●●●●●●●●●●●●

H(X) log(|T|)
0.0

0.5

1.0

1.5

2.0

0 2 4 6 8
H(T)

I(
T

;Y
) algorithm

● DIB
IB

Figure 2: Example IB and DIB solutions. Left: IB plane. Right: DIB plane. Upper limit of the y-axes is I(X,Y ), since
this is the maximal possible value of I(T ;Y ). Solid vertical line marks log(|T |), since this is the maximal possible value
ofH(T ) and I(X,T ) (the latter being true since I(X,T ) is bounded above by bothH(T ) andH(X), and |T | < |X|). The
dashed vertical line marks H(X), which is both an upper bound for I(X,T ) and a natural comparison for H(T ) (since to
place each data point in its own cluster, we need H(T ) = H(X)). Here, |X| = |Y | = 1024 and |T | = 256.
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Figure 3: Example IB and DIB solutions across different IB initializations. Details identical to figure 2, except colors
represent different initializations for the IB, as described in the text. “IB (random)” denotes the original initialization
scheme of a normalized vector of uniform random numbers.
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Figure 4: Fit times for IB and DIB, as well as their ratios. Left: cumulative distribution of IB fit times. Data shown
here are for the original initialization of IB, though the delta-like initializations lead to nearly identical results. Mean fit
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Another potential area of application is modeling the ex-
traction of predictive information in the brain (which is one
particular example in a long line of work on the exploitation
of environmental statistics by the brain [Barlow (1981),
Barlow (2001),Barlow (2001),Atick & Redlich (1992),Ol-
shausen & Field (1996), Olshausen & Field (1997), Si-
moncelli & Olshausen (2001),Olshausen & Field (2004)]).
There, X would be the stimulus at time t, Y the stimulus a
short time in the future t+τ , and T the activity of a popula-
tion of sensory neurons. One could even consider neurons
deeper in the brain by allowing X and Y to correspond
not to an external stimulus, but to the activity of upstream
neurons. An analysis of this nature using retinal data was
recently performed with the IB [Palmer et al (2015)]. It
would be interesting to see if the same data corresponds
better to the behavior of the DIB, particularly in the DIB
plane where the IB and DIB differ dramatically.

7 APPENDIX: DERIVATION OF
GENERALIZED IB SOLUTION

Given p(x, y) and subject to the Markov constraint T ↔
X ↔ Y , the generalized IB problem is:

min
q(t|x)

L[q(t | x)] = H(T )− αH(T | X) (33)

− βI(T ;Y )−
∑
x,t

λ(x) q(t | x) ,

where we have now included the Lagrange multiplier term
(which enforces normalization of q(t | x)) explicitly. The
Markov constraint implies the following factorizations:

q(t | y) =
∑
x

q(t | x) p(x | y) (34)

q(t) =
∑
x

q(t | x) p(x) , (35)

which give us the following useful derivatives:

δq(t | y)
δq(t | x)

= p(x | y) (36)

δq(t)

δq(t | x)
= p(x) . (37)

Now taking the derivative of the cost function with respect
to the encoding distribution, we get:

δL

δq(t | x)
= − δ

δq(t | x)
∑
t

q(t) log q(t) (38)

− δ

δq(t | x)
∑
x,t

λ(x) q(t | x)

+ α
δ

δq(t | x)
∑
x,t

q(t | x) p(x) log q(t | x)

− β δ

δq(t | x)
∑
y,t

q(t | y) p(y) log
[
q(t | y)
q(t)

]
= − log q(t)

δq(t)

δq(t | x)
− q(t) δ log q(t)

δq(t | x)
(39)

− λ(x) δq(t | x)
δq(t | x)

+ α

[
p(x) log q(t | x) δq(t | x)

δq(t | x)

+q(t | x) p(x) δ log q(t | x)
δq(t | x)

]
− β

∑
y

[
p(y) log

[
q(t | y)
q(t)

]
δq(t | y)
δq(t | x)

]
+ β

∑
y

[
q(t | y) p(y) δ log q(t | y)

δq(t | x)

+q(t | y) p(y) δ log q(t)
δq(t | x)

]
= −p(x) log q(t)− p(x)− λ(x) (40)
+ α [p(x) log q(t | x) + p(x)]

− β
∑
y

[
p(y) log

[
q(t | y)
q(t)

]
p(x | y)

+p(y) p(x | y)− q(t | y) p(y) p(x)
q(t)

]
= −p(x) log q(t)− p(x)− λ(x) (41)
+ α [p(x) log q(t | x) + p(x)]

− βp(x)

[∑
y

p(y | x) log
[
q(t | y)
q(t)

]

+
∑
y

p(y | x)−
∑
y

q(y | t)

]

= p(x)

[
−1− log q(t)− λ(x)

p(x)
(42)

+ α log q(t | x) + α

−β

[∑
y

p(y | x) log
[
q(t | y)
q(t)

]]]
.



Setting this to zero implies that:

α log q(t | x) = 1− α+ log q(t) +
λ(x)

p(x)
(43)

+ β

[∑
y

p(y | x) log
[
q(t | y)
q(t)

]]
.

We want to rewrite the β term as a KL diver-
gence. First, we will need that log

[
q(t|y)
q(t)

]
=

log
[
q(t,y)
q(t)p(y)

]
= log

[
q(y|t)
p(y)

]
. Second, we will add and sub-

tract β
∑
y p(y | x) log

[
p(y|x)
p(y)

]
. This gives us:

α log q(t | x) = 1− α+ log q(t) +
λ(x)

p(x)
(44)

+ β
∑
y

p(y | x) log
[
p(y | x)
p(y)

]

− β

[∑
y

p(y | x) log
[
p(y | x)
q(y | t)

]]
.

The second β term is now just DKL[p(y | x) | q(y | t)].
This leaves us with the equation:

log q(t | x) = z(x, α, β) +
1

α
log q(t) (45)

− β

α
DKL[p(y | x) | q(y | t)] ,

where we have divided both sides by α and absorbed all the
terms that don’t depend on t into the factor:

z(x, α, β) ≡ 1

α
− 1 +

λ(x)

αp(x)
(46)

+
β

α

∑
y

p(y | x) log
[
p(y | x)
p(y)

]
.

Exponentiating both sides to solve for q(t | x), we get:

d(x, t) ≡ DKL[p(y | x) | q(y | t)] (47)
`β(x, t) ≡ log q(t)− βd(x, t) (48)

q(t | x) = 1

Z
exp

[
1

α
`β(x, t)

]
(49)

where:

Z(x, α, β) ≡ exp[−z] (50)

is just a normalization factor. Now that we’re done with
the general derivation, let’s add a subscript to the solution
to distinguish it from the special cases of the IB and DIB.

qα(t | x) =
1

Z
exp

[
1

α
`β(x, t)

]
. (51)

The IB solution is then:

qIB(t | x) = qα=1(t | x) (52)

=
q(t)

Z
exp[−βd(x, t)] , (53)

while the DIB solution is:

qDIB(t | x) = lim
α→0

qα(t | x) (54)

= δ(t− t∗(x)) , (55)

with:

t∗(x) = argmax
t

`β(x, t) . (56)
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