
Bounded Rational Decision-Making in Feedforward Neural Networks

Felix Leibfried1,2,3 and Daniel A. Braun1,2

1Max Planck Institute for Intelligent Systems, Tübingen, Germany
2Max Planck Institute for Biological Cybernetics, Tübingen, Germany

3Graduate Training Center of Neuroscience, Tübingen, Germany

Abstract

Bounded rational decision-makers transform
sensory input into motor output under limited
computational resources. Mathematically, such
decision-makers can be modeled as information-
theoretic channels with limited transmission rate.
Here, we apply this formalism for the first time to
multilayer feedforward neural networks. We de-
rive synaptic weight update rules for two scenar-
ios, where either each neuron is considered as a
bounded rational decision-maker or the network
as a whole. In the update rules, bounded rational-
ity translates into information-theoretically moti-
vated types of regularization in weight space. In
experiments on the MNIST benchmark classifi-
cation task for handwritten digits, we show that
such information-theoretic regularization suc-
cessfully prevents overfitting across different ar-
chitectures and attains results that are compet-
itive with other recent techniques like dropout,
dropconnect and Bayes by backprop, for both or-
dinary and convolutional neural networks.

1 INTRODUCTION

Intelligent systems in biology excel through their ability to
flexibly adapt their behavior to changing environments so
as to maximize their (expected) benefit. In order to under-
stand such biological intelligence and to design artificial
intelligent systems, a central goal is to analyze adaptive be-
havior from a theoretical point of view. A formal frame-
work to achieve this goal is decision theory. An important
idea, originating from the foundations of decision theory,
is the principle of maximum expected utility [1]. Accord-
ing to the principle of maximum expected utility, an intel-
ligent agent is formalized as a decision-maker that chooses
optimal actions that maximize the expected benefit of an
outcome, where the agent’s benefit is quantified by a utility
function.

A fundamental problem of the maximum expected utility
principle is that it does not take into account computational
resources that are necessary to identify optimal actions—
it is for example computationally prohibitive to compute
an optimal chess move because of the vast amount of po-
tential board configurations. One way of taking computa-
tional resources into account is to study optimal decision-
making under information-processing constraints [2, 3].
In this study, we use an information-theoretic model of
bounded rational decision-making [4, 5, 6] that has pre-
cursors in the economic literature [7, 8, 9] and that is
closely related to recent advances harnessing information
theory for machine learning and perception-action systems
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].

Previously, this information-theoretic bounded rationality
model was applied to derive a synaptic weight update rule
for a single reward-maximizing spiking neuron [21]. It was
shown that such a neuron tries to keep its firing rate close to
its average firing rate, which ultimately leads to economiz-
ing of synaptic weights. Mathematically, such economiz-
ing is equivalent to a regularization that prevents synaptic
weights from growing without bounds. The bounded ratio-
nal weight update rule furthermore generalizes the synap-
tic weight update rule for an ordinary reward-maximizing
spiking neuron as presented for example in [22]. In our
current work, we extend the framework of information-
theoretic bounded rationality to networks of neurons, but
restrict ourselves for a start to deterministic settings. In
particular, we investigate two scenarios, where either each
single neuron is considered as a bounded rational decision-
maker or the network as a whole.

The remainder of this manuscript is organized as follows.
In Section 2, we explain the information-theoretic bounded
rationality model that we use. In Section 3, we apply
this model to derive bounded rational synaptic weight up-
date rules for single neurons and networks of neurons. In
Section 4, we demonstrate the regularizing effect of these
bounded rational weight update rules on the MNIST bench-
mark classification task. In Section 5, we conclude.

2 BACKGROUND ON BOUNDED
RATIONAL DECISION-MAKING

2.1 A FREE ENERGY PRINCIPLE FOR
BOUNDED RATIONALITY

A decision-maker is faced with the task to choose an op-
timal action out of a set of actions. Each action y is
associated with a given task-specific utility value U(y).
A fully rational decision-maker picks the action y∗ that
globally maximizes the utility function, where y∗ =
arg maxy U(y), assuming for notational simplicity that the
global maximum is unique. Under limited computational
resources however, the decision-maker may not be able to
identify the globally optimal action y∗ which leads to the
question of how limited computational resources should
be quantified. In general, the decision-maker’s behavior
can be expressed as a probability distribution over actions
p(y). The basic idea of information-theoretic bounded ra-
tionality is that changes in such probability distributions
are costly and necessitate computational resources. More
precisely, computational resources are quantified as in-
formational cost evoked by changing from a prior prob-
abilistic strategy p0(y) to a posterior probabilistic strat-
egy p(y) during the deliberation process preceding the
choice. Mathematically, this informational cost is given
by the Kullback-Leibler divergence DKL(p(y)||p0(y)) ≤
B between prior and posterior strategy, where computa-
tional resources are modeled as an upper bound B ≥ 0
[10, 5, 6, 13, 14, 15, 17, 18, 19, 20, 8, 9]. Accordingly,
bounded rational decision-making can be formalized by the
following free energy objective

p∗(y)

= arg max
p(y)

(1− β) 〈U(y)〉p(y) − βDKL(p(y)||p0(y))

= arg max
p(y)

〈
(1− β)U(y)− β ln

p(y)

p0(y)

〉
p(y)

,

(1)

where β ∈ (0; 1) controls the trade-off between expected
utility and informational cost. Note that the upper bound
B imposed on the Kullback-Leibler divergence determines
the value of β. Choosing the value ofB is hence equivalent
to choosing the value of β.

The free energy objective in Equation (1) is concave with
respect to p(y) and the optimal solution p∗(y) can be ex-
pressed in closed analytic form:

p∗(y) =
p0(y) exp(1−β

β U(y))∑
y′ p0(y′) exp(1−β

β U(y′))
. (2)

In the limit cases of none (β → 1) and infinite (β → 0)

resources, the optimal strategy from Equation (2) becomes

lim
β→1

p∗(y) = p0(y), (3)

lim
β→0

p∗(y) = δyy∗ , (4)

respectively, where y∗ = arg maxy U(y) represents an
action that globally maximizes the utility function. A
decision-maker without any computational resources (β →
1) sticks to its prior strategy p0(y), whereas a decision-
maker that can access an arbitrarily large amount of re-
sources (β → 0) always picks a globally optimal action
and recovers thus the fully rational decision-maker.

2.2 A RATE DISTORTION PRINCIPLE FOR
CONTEXT-DEPENDENT DECISION-MAKING

In the face of multiple contexts, fully rational decision-
making requires to find an optimal action y for each en-
vironment x, where optimality is defined through a util-
ity function U(x, y). Bounded rational decision-making
in multiple contexts means to compute multiple strategies,
expressed as conditional probability distributions p(y|x),
under limited computational resources. Limited compu-
tational resources are modeled through an upper bound
B ≥ 0 on the expected Kullback-Leibler divergence
〈DKL(p(y|x)||p0(y))〉p(x) ≤ B between the strategies
p(y|x) and a common prior p0(y), averaged over all possi-
ble environments described by the distribution p(x) [4, 15].
The resulting optimization problem may be formalized as

p∗(y|x) = arg max
p(y|x)

(1− β) 〈U(x, y)〉p(x,y)

− β 〈DKL (p(y|x)||p0(y))〉p(x) ,
(5)

where β ∈ (0; 1) governs the trade-off between expected
utility and informational cost. It can be shown that the
most economic prior p0(y) is given by the marginal dis-
tribution p0(y) = p(y) =

∑
x p(y|x)p(x), because the

marginal distribution minimizes the expected Kullback-
Leibler divergence for a given set of conditional distribu-
tions p(y|x)—see [23]. In this case, the expected Kullback-
Leibler divergence becomes identical to the mutual infor-
mation I(x, y) between the environment x and the action
y [4, 21, 11, 12, 7, 16]. Accordingly, bounded rational
decision-making can be formalized through the following
objective

p∗(y|x)

= arg max
p(y|x)

(1− β) 〈U(x, y)〉p(x,y) − βI(x, y)

= arg max
p(y|x)

〈
(1− β)U(x, y)− β ln

p(y|x)

p(y)

〉
p(x,y)

,

(6)

which is mathematically equivalent to the rate distortion
problem from information theory [24].

The rate distortion objective in Equation (6) is concave with
respect to p(y|x) but there is unfortunately no closed ana-
lytic form solution. It is however possible to express the
optimal solution as a set of self-consistent equations:

p∗(y|x) =
p(y) exp(1−β

β U(x, y))∑
y′ p(y

′) exp(1−β
β U(x, y′))

, (7)

p(y) =
∑
x

p∗(y|x)p(x). (8)

These self-consistent equations are solved by replacing
p(y) with an initial arbitrary distribution q(y) and iterat-
ing through Equations (7) and (8) in an alternating fash-
ion. This procedure is known as Blahut-Arimoto algorithm
[25, 26] and is guaranteed to converge to a global optimum
[27] presupposed that q(y) does not assign zero probability
mass to any y.

In the limit cases of none (β → 1) and infinite (β → 0)
resources, the optimal strategy from Equations (7) and (8)
may be expressed in closed analytic form

lim
β→1

p∗(y|x) = p(y) = δyy∗ , (9)

lim
β→0

p∗(y|x) = δyy∗x , (10)

where y∗ = arg maxy 〈U(x, y)〉p(x) refers to an action that
globally maximizes the expected utility averaged over all
possible environments, and y∗x refers to an action that glob-
ally maximizes the utility for one particular environment
x—assuming for notational simplicity that global maxima
are unique in both cases. In the absence of any compu-
tational resources (β → 1), the decision-maker chooses
the same strategy no matter which environment is encoun-
tered in order to minimize the deviation between the condi-
tional strategies p(y|x) and the average strategy p(y). The
decision-maker chooses however a strategy that maximizes
the average expected utility. In case of access to an arbitrar-
ily large amount of computational resources (β → 0), the
decision-maker picks the best action for each environment
and recovers thus the fully rational decision-maker.

3 THEORETICAL RESULTS: SYNAPTIC
WEIGHT UPDATE RULES

3.1 PARAMETERIZED STRATEGIES AND
ONLINE RULES

Computing the optimal solution to the rate distortion prob-
lem in Equation (6) with help of Equations (7) and (8)
through the Blahut-Arimoto algorithm has two severe
drawbacks. First, it requires to compute and store the con-
ditional strategies p(y|x) and the marginal strategy p(y)
explicitly, which is prohibitive for large environment and
action spaces. And second, it requires that the decision-
maker is able to evaluate the utility function for arbitrary

environment-action pairs (x, y), which is a plausible as-
sumption in planning, but not in reinforcement learning
where samples from the utility function can only be ob-
tained from interactions with the environment.

We therefore assume a parameterized form of the strategy
pw(y|x), from which the decision-maker can draw samples
y for a given sample of the environment x, and optimize
the rate distortion objective from Equation (6) with help
of gradient ascent [21]—also referred to as policy gradi-
ent in the reinforcement learning literature [22]. Gradi-
ent ascent requires to compute the derivative of the ob-
jective function L(w) with respect to the strategy param-
eters w and to update the parameters according to the rule
w ← w + α · ∂

∂wL(w) in each time step, where α > 0

denotes the learning rate and ∂
∂wL(w) is defined as

∂

∂w
L(w) =〈(
∂

∂w
ln pw(y|x)

)
(1− β)U(x, y)

〉
pw(x,y)

−
〈(

∂

∂w
ln pw(y|x)

)
β ln

pw(y|x)

pw(y)

〉
pw(x,y)

.

(11)

Note that the update rule from Equation (11) requires the
computation of an expected value over pw(x, y). This ex-
pected value can be approximated through environment-
action samples (x, y) in either a batch or an online man-
ner. For the rest of this paper, we assume an online update
rule where the agent adapts its behavior instantaneously af-
ter each interaction with the environment in response to an
immediate reward signal U(x, y) as is typical for reinforce-
ment learning.

Informally, the rate distortion model for bounded rational
decision-making translates into a specific form of regular-
ization that penalizes deviations of the decision-maker’s
instantaneous strategy pw(y|x), given the current environ-
ment x, from the decision-maker’s mean strategy pw(y) =∑
x pw(y|x)p(x), averaged over all possible environments.

Previously, Equation (11) was applied to a single spiking
neuron that was stochastic [21]. Here, we generalize this
approach to deterministic networks of neurons that have
neural input (environmental context x), neural output (ac-
tion y) and a reward signal (utility U). We derive parameter
update rules in the style of Equation (11) that allow to ad-
just synaptic weights in an online fashion. In particular, we
investigate two scenarios where either each single neuron
is considered as a bounded rational decision-maker or the
network as a whole.

3.2 A STOCHASTIC NEURON AS A BOUNDED
RATIONAL DECISION-MAKER

A stochastic neuron may be considered as a bounded ratio-
nal decision-maker [21]: the neuron’s presynaptic input is

interpreted as environmental context and the neuron’s out-
put is interpreted as action variable. The neuron’s param-
eterized strategy corresponds to its firing behavior and is
given by

pw(y|x) = y · ρ(w>x) + (1− y) · (1− ρ(w>x)), (12)

where y ∈ {0, 1} is a binary variable reflecting the neu-
ron’s current firing state, x is a binary column vector rep-
resenting the neuron’s current presynaptic input and w is
a real-valued column vector representing the strength of
presynaptic weights. ρ ∈ (0; 1) is a monotonically increas-
ing function denoting the neuron’s current firing probabil-
ity. In a similar way, the neuron’s mean firing behavior can
be expressed as:

pw(y) = y · ρ̄(w) + (1− y) · (1− ρ̄(w)), (13)

where ρ̄(w) =
∑

x ρ(w>x)p(x) denotes the neuron’s
mean firing probability averaged over all possible inputs x.
The mean firing probability ρ̄(w) can be easily estimated
with help of an exponential window in an online manner
according to

ρ̄(w)← (1− 1

τ
)ρ̄(w) +

1

τ
ρ(w>x), (14)

where τ is a constant defining the time horizon [21].

Assuming a task-specific utility function U(x, y) determin-
ing the neuron’s instantaneous reward and assuming fur-
thermore that the neuron’s output y does not impact the
presynaptic input x of the next time step, the bounded ra-
tional neuron may be thought of as optimizing a rate distor-
tion objective according to Equation (6) with gradient as-
cent as outlined in Section 3.1 [21]. Equation (11) is then
applicable by using the quantities

∂

∂wi
ln pw(y|x) =

xiρ
′(w>x)

(
y

ρ(w>x)
− 1− y

1− ρ(w>x)

)
,

(15)

and

ln
pw(y|x)

pw(y)
=

y ln
ρ(w>x)

ρ̄(w)
+ (1− y) ln

1− ρ(w>x)

1− ρ̄(w)
.

(16)

By averaging over the binary quantity y, a more concise
weight update rule is derived [21]:

∂

∂wi
L(w) =〈

xiρ
′(w>x)(1− β)∆U(x)

〉
p(x)

−
〈
xiρ
′(w>x)β ln

ρ(w>x)(1− ρ̄(w))

ρ̄(w)(1− ρ(w>x))

〉
p(x)

,

(17)

where ∆U(x) = U(x, y = 1) − U(x, y = 0) denotes the
difference in utility between firing (y = 1) and not firing
(y = 0) for a given x. If the conditional and marginal
strategies are initialized to be roughly equal pw0

(y) ≈
pw0

(y|x), where w0 ≈ 0 refers to the initial value of
w, the hyperparameter β determines how fast the decision-
maker’s strategy converges. A high value of β implies little
computational resources and quick convergence due to the
fact that conditional and marginal strategies are initially al-
most equal. On the opposite, a low value of β indicating
vast computational resources allows the decision-maker to
find an optimal strategy for each environment where con-
ditional and marginal strategies may deviate substantially.

3.3 A DETERMINISTIC NEURON AS A
BOUNDED RATIONAL DECISION-MAKER

In a deterministic setup, the neuron’s parameterized firing
behavior in a small time window ∆t may be expressed
through its firing rate φ(w>ξ) as:

pw(y|ξ) = y·φ(w>ξ)∆t+(1−y)·(1−φ(w>ξ)∆t), (18)

where ξ is a real-valued column vector indicating the presy-
naptic firing rates and φ > 0 is a monotonically increasing
function. In a similar fashion, the neuron’s mean firing be-
havior is given by

pw(y) = y · φ̄(w)∆t+ (1− y) · (1− φ̄(w)∆t), (19)

where φ̄(w) =
∑

ξ φ(w>ξ)p(ξ) refers to the neuron’s
mean firing rate averaged over all possible presynaptic fir-
ing rates ξ. In accordance with the previous section, the
mean firing rate φ̄(w) can be conveniently approximated
in an online manner through an exponential window with a
time constant τ as:

φ̄(w)← (1− 1

τ
)φ̄(w) +

1

τ
φ(w>ξ). (20)

Using the quantities introduced above, we can define a mu-
tual information rate between the presynaptic firing rates ξ
and the instantaneous firing state of the neuron y ∈ {0; 1}:

lim
∆t→0

1

∆t
I(ξ, y)

= lim
∆t→0

1

∆t

〈∑
y

pw(y|ξ) ln
pw(y|ξ)

pw(y)

〉
p(ξ)

=

〈
φ(w>ξ) ln

φ(w>ξ)

φ̄(w)

〉
p(ξ)

.

(21)

A derivation of Equation (21) can be found in Section A.1.
Assuming a rate-dependent utility function U(ξ, φ(w>ξ)),
a deterministic neuron can be interpreted as a bounded ra-
tional decision-maker similar to Equation (6) with the fol-

lowing rate distortion objective

w∗ = arg max
w

(1− β)
〈
U(ξ, φ(w>ξ))

〉
p(ξ)

− β lim
∆t→0

1

∆t
I(ξ, y)

= arg max
w

〈
(1− β)U(ξ, φ(w>ξ))

〉
p(ξ)

−
〈
βφ(w>ξ) ln

φ(w>ξ)

φ̄(w)

〉
p(ξ)

.

(22)

Optimizing the neuron’s weights with gradient ascent, a
similar weight update rule as in Equation (17) is derived
for the deterministic case:

∂

∂wi
L(w) =〈

ξiφ
′(w>ξ)(1− β)

∂

∂φ
U(ξ, φ(w>ξ))

〉
p(ξ)

−
〈
ξiφ
′(w>ξ)β ln

φ(w>ξ)

φ̄(w)

〉
p(ξ)

,

(23)

where ∂
∂φU(ξ, φ(w>ξ)) denotes the derivative of the

utility function with respect to the neuron’s firing rate.
The solution in Equation (23) requires the derivative of
two terms with respect to wi. The derivative of the
expected utility

〈
U(ξ, φ(w>ξ))

〉
p(ξ)

is straightforward,
whereas the derivative of the mutual information rate
lim∆t→0

1
∆tI(ξ, y) is not so trivial and explained in more

detail in Section A.2.

3.4 A NEURAL NETWORK OF BOUNDED
RATIONAL DETERMINISTIC NEURONS

Here, we consider a feedforward multilayer perceptron that
can be imagined to consist of individual bounded rational
deterministic neurons as described in the previous section.
Assuming that all neurons aim at maximizing a global util-
ity function while at the same time minimizing their local
mutual information rate, each neuron n may be interpreted
as solving a deterministic rate distortion objective where
the utility function is shared among all neurons but the mu-
tual information cost is neuron-specific:

wn∗ = arg max
wn

(1− β)
〈
U(ξin, f(W, ξin))

〉
p(ξin)

− β lim
∆t→0

1

∆t
I(ξn, yn),

(24)

where wn, ξn and yn refer to the presynaptic weight vec-
tor, the presynaptic firing rates and the current firing state
of neuron n respectively and whereW denotes the entirety
of all weights in the whole neural network. The global
utility U(ξin, f(W, ξin)) is expressed as a function of the
network’s input rates ξin and the network’s output rates
f(W, ξin).

The corresponding synaptic weight update rule for gradient
ascent is similar to Equation (23) and given by

∂

∂wni
Ln(W) =〈

(1− β)
∂

∂wni
U(ξin, f(W, ξin))

〉
p(ξin)

−
〈
βξni φ

′(wn>ξn) ln
φ(wn>ξn)

φ̄(wn)

〉
p(ξin)

,

(25)

where Ln(W) refers to the rate distortion objective of neu-
ron n. The derivative of the utility function with respect to
the weight ∂

∂wn
i
U(ξin, f(W, ξin)) can be straightforwardly

derived via ordinary backpropagation [28].

3.5 A DETERMINISTIC NEURAL NETWORK AS
A BOUNDED RATIONAL DECISION-MAKER

While focusing on individual neurons as bounded rational
decision-makers in the previous section, it is also possi-
ble to interpret an entire feedforward multilayer perceptron
as one bounded rational decision-maker. To allow for this
interpretation, we consider in the following the network’s
output rates fj(W, ξ) ∈ (0; 1) as the event probabilities
of a categorical distribution (for example, by using a soft-
max activation function in the last layer). Importantly, the
categorical distribution is considered as a bounded rational
strategy

pW(y|ξ) =
∑
j

yjfj(W, ξ), (26)

that generates a binary unit output vector y given the input
rates ξ and the set of all weights in the entire network de-
noted byW . The average bounded rational strategy is then
given by

pW(y) =
∑
j

yj f̄j(W), (27)

where f̄j(W) is the mean rate of output unit j that can
again be approximated in an online manner according to

f̄j(W)← (1− 1

τ
)f̄j(W) +

1

τ
fj(W, ξ), (28)

by use of an exponential window with a time constant τ in
line with previous sections.

Accordingly, the informational cost can be quantified by
the mutual information between ξ and y:

I(ξ,y) =

〈∑
y

pW(y|ξ) ln
pW(y|ξ)

pW(y)

〉
p(ξ)

=

〈∑
j

fj(W, ξ) ln
fj(W, ξ)

f̄j(W)

〉
p(ξ)

.

(29)

Presupposing again a rate dependent utility function
U(ξ, f(W, ξ)), the entire deterministic network may be in-
terpreted to solve the subsequent rate distortion objective

W∗ = arg max
W

(1− β) 〈U(ξ, f(W, ξ))〉p(ξ)

− βI(ξ,y)

= arg max
W

〈(1− β)U(ξ, f(W, ξ))〉p(ξ)

−

〈
β
∑
j

fj(W, ξ) ln
fj(W, ξ)

f̄j(W)

〉
p(ξ)

,

(30)

Assuming that synaptic weights are updated via gradient
ascent, the following weight update rule can be derived

∂

∂wni
L(W) =〈

(1− β)
∑
j

(
∂

∂wni
fj(W, ξ)

)(
∂

∂fj
U(ξ, f(W, ξ))

)〉
p(ξ)

−

〈
β
∑
j

(
∂

∂wni
fj(W, ξ)

)
ln
fj(W, ξ)

f̄j(W)

〉
p(ξ)

,

(31)

where ∂
∂wn

i
denotes the derivative with respect to the ith

weight of neuron n, and ∂
∂fj

U(ξ, f(W, ξ)) denotes the
derivative of the utility function with respect to the firing
rate of the jth output neuron. Equation (31) requires to dif-
ferentiate two terms with respect to wni . The derivative of
the expected utility is straightforward while the derivative
of the mutual information is explained in Section A.3.

Note that the derivative of the rate distortion objective
∂

∂wn
i
L(W) takes a convenient form which can be easily

computed by extending ordinary backpropagation [28]. In
ordinary backpropagation, the quantity ∂

∂fj
U(ξ, f(W, ξ))

is propagated backwards through the network. The core al-
gorithm of ordinary backpropagation can be employed for
computing ∂

∂wn
i
L(W) by simply replacing the derivative of

the utility function ∂
∂fj

U(ξ, f(W, ξ)) with the more gen-

eral quantity (1− β) ∂
∂fj

U(ξ, f(W, ξ))− β ln
fj(W,ξ)

f̄j(W)
.

4 EXPERIMENTAL RESULTS: MNIST
CLASSIFICATION

In our simulations, we applied both types of rate distor-
tion regularization (the local type from Section 3.4 and the
global type from Section 3.5) on the MNIST benchmark
classification task. In particular, we investigated in how far
this information-theoretically motivated regularization sub-
serves generalization. To this end, we trained classification
on the MNIST training set, consisting of 60, 000 grayscale
images of handwritten digits, and tested generalization on

the MNIST test set, consisting of 10, 000 examples. For all
our simulations, we used a network with two hidden layers
of rectified linear units [29] and a top layer of 10 softmax
units implemented in Lua with Torch [30]. We chose as op-
timization criterion the negative cross entropy between the
class labels and the network output [31]

U(ξ, f(W, ξ)) =
∑
j

δjl(ξ) ln fj(W, ξ), (32)

where δ denotes the Kronecker delta and ξ the vectorized
input image—note that pixels were normalized to lie in the
range [0; 1]. The variable j ∈ {1, 10} is an index over
the network’s output units and l(ξ) ∈ {1, 10} denotes the
label of image ξ.

In order to assess the robustness of our regularizers, we
performed our experiments with networks of different ar-
chitectures. In particular, we used network architectures
with two hidden layers and varied the number of neu-
rons #neu ∈ {529, 1024, 2025, 4096} per hidden layer.
We performed gradient ascent with a learning rate α =
0.01 updating weights online after each training exam-
ple. We trained the networks for 70 epochs where one
epoch corresponded to one sweep through the entire train-
ing set. After each epoch, the learning rate decayed ac-
cording to α ← α

1+t·η where t denotes the current epoch
and η = 0.002 is a decay parameter. Weights were
updated by use of a momentum γ = 0.9 according to
∆wni ← γ∆wni +(1−γ) ∂

∂wn
i
L(W) and were randomly ini-

tialized in the range (−(#in(n))−0.5; (#in(n))−0.5) with
help of a uniform distribution at the beginning of the
simulation where #in(n) denotes the number of inputs
to neuron n. Each non-input neuron had an additional
bias weight that was initialized in the same way as the
presynaptic weights of that neuron. Rate distortion reg-
ularization required furthermore to compute the mean fir-
ing rate φ̄(wn) of individual neurons n through an ex-
ponential window in an online fashion with a time con-
stant τ = 1000. In order to ensure numerical stability
when using rate distortion regularization, terms of the form
ln φ(wn>ξn)

φ̄(wn)
in the weight update rules were computed

according to ln max{φ(wn>ξn), ε} − ln max{φ̄(wn), ε}
with ε = 2.22 · 10−16.

To find optimal values for the rate distortion trade-off pa-
rameter β, we conducted pilot studies with small networks
comprising 529 neurons per hidden layer that were trained
for only 50 epochs on the MNIST training set according
to the aforementioned training scheme and subsequently
evaluated on the MNIST test set. While this might induce
overfitting of β on the test set in the small networks, we
used the same β-values as a heuristic for all larger archi-
tectures and did not tune the hyperparameter any further.
In global rate distortion regularization (Grdi), the best test
error was achieved around β = 0.2 although Grdi seems to
behave rather robust in the range β ∈ [0; 0.8]—see middle

left panel in Figure 1. In local rate distortion regularization
(Lrdi), the best test error was achieved for β = 0 with ordi-
nary utility maximization without regularization—see mid-
dle right panel. However, when measuring the performance
in terms of expected utility on the test set, Lrdi achieved a
significant performance increase compared to ordinary util-
ity maximization in the range β ∈ [10−5, 5·10−4]—see up-
per right panel. In our final studies, we could furthermore
ascertain that Lrdi performs reasonably well on larger ar-
chitectures as it achieved a test error of 1.26% compared
to 1.43% in ordinary utility maximization when increasing
the number of units per hidden layer to 4096.

Table 1: Classification Errors on the MNIST Test Set in the
Permutation Invariant Setup

Method #neu Error [%]
Bayes by backprop [10] 1200 1.32

Dropout [32] 800 1.28
Dropconnect [32] 800 1.20

Dropout [33] 4096 1.01
529 1.36

Local rate distortion (Lrdi) 1024 1.34
β = 10−5 2025 1.28

4096 1.26
529 1.23

Global rate distortion (Grdi) 1024 1.17
β = 0.2 2025 1.14

4096 1.11

The results of our final studies where we trained networks
for 70 epochs are illustrated in Table 1 which compares rate
distortion regularization to other techniques from the lit-
erature for different network architectures comprising two
hidden layers. It can be seen that both local and global rate
distortion regularization (Lrdi and Grdi respectively) attain
results in the permutation invariant setting (Lrdi: 1,26%,
Grdi: 1.11%) that are competitive with other recent tech-
niques like dropout (1.01% [33] and 1.28% [32]), dropcon-
nect (1.20% [32]) and Bayes by backprop (1.32% [10]).
It is furthermore shown that both rate distortion regulariz-
ers lead to a decreasing generalization error when increas-
ing the number of neurons in hidden layers which demon-
strates successful prevention of overfitting. Successful pre-
vention of overfitting is additionally demonstrated by ap-
plying global rate distortion regularization (Grid, β = 0.2)
to a convolutional neural network with an architecture ac-
cording to [32]—see Section B.2 in [32]—attaining an
error of 0.61% without tuning any hyperparameters (see
Table 2). This result is also competitive with other re-
cent techniques in the permutation non-invariant setting—
compare to dropout (0.59% [32]) and dropconnect (0.63%
[32]). In line with [33], we preprocessed the input with
ZCA whitening and added a max-norm regularizer to limit
the size of presynaptic weight vectors to at most 3.5.

Table 2: Classification Errors on the MNIST Test Set in the
Permutation Non-Invariant Setup

Method Error [%]
Conv net + Dropconnect [32] 0.63

Conv net + Grdi (β = 0.2) 0.61
Conv net + Dropout [32] 0.59

The lower panels of Figure 1 show the development of the
test set error over epochs for both rate distortion regulariz-
ers (red) compared to ordinary utility maximization with-
out regularization (Umax, black) for the different network
architectures that we used in the permutation invariant set-
ting. It can be seen that the global variant of our regularizer
(Grdi with β = 0.2, see lower left panel in Figure 1) leads
to a significant increase in performance across different ar-
chitectures as demonstrated by the two separate clusters of
trajectories. In addition, Grdi also leads to faster learning
as the red trajectories in the lower left panel of Figure 1 de-
crease significantly faster then the black trajectories during
the first ten epochs of training. For the local variant of our
regularizer (Lrdi with β = 10−5, see lower right panel in
Figure 1), the performance improvements are less promi-
nent when compared to the global variant.

5 CONCLUSION

Previously, a synaptic weight update rule for a single
reward-maximizing spiking neuron was devised, where the
neuron was interpreted as a bounded rational decision-
maker under limited computational resources with help
of rate distortion theory [21]. It was shown that such a
bounded rational weight update rule leads to an efficient
regularization by preventing synaptic weights from grow-
ing without bounds. In our current work, we extend these
results to deterministic neurons and neural networks. On
the MNIST benchmark classification task, we have demon-
strated the regularizing effect of our approach as networks
were successfully prevented from overfitting. These results
are robust as we conducted experiments with different net-
work architectures achieving performance competitive with
other recent techniques like dropout [33], dropconnect [32]
and Bayes by backprop [10] for both ordinary and convolu-
tional networks. The strength of rate distortion regulariza-
tion is that it is a more principled approach than for exam-
ple dropout and dropconnect as it may be applied to general
artificial agents with parameterized policies and not only to
neural networks. Parameterized policies that optimize the
rate distortion objective have been previously applied to un-
supervised density estimation tasks with autoencoder net-
works [12]. Our current work extends this kind of approach
to the theory of reinforcement and supervised learning with
feedforward neural networks, and also provides evidence
that this approach scales well on large data sets.

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70
Epochs

Local rate distortion regularization (Lrdi)

Lrdi (β = 10-5)
Umax

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70

C
la

ss
ifi

ca
ti

o
n
 e

rr
o
r

in
 %

Epochs

Global rate distortion regularization (Grdi)

Grdi (β = 0.2)
Umax

0

0.5

1

1.5

2

0.0001 0.001 0.01 0.1 1

C
la

ss
ifi

ca
ti

o
n
 e

rr
o
r

in
 %

Trade-off parameter β

Global rate distortion regularization (Grdi)

Training errors Grdi
Test errors Grdi
Test error Umax

0

0.5

1

1.5

2

1e-05 0.0001 0.001
Trade-off parameter β

Local rate distortion regularization (Lrdi)

Training errors Lrdi
Test errors Lrdi

Test error Umax

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.0001 0.001 0.01 0.1 1

N
e
g
a
ti

v
e
 c

ro
ss

 e
n
tr

o
p
y
 i
n
 n

a
ts

Trade-off parameter β

Global rate distortion regularization (Grdi)

Training utility Grdi
Test utility Grdi

Test utility Umax -0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

1e-05 0.0001 0.001
Trade-off parameter β

Local rate distortion regularization (Lrdi)

Training utility Lrdi
Test utility Lrdi

Test utility Umax

Local rate distortion regularization (Lrdi)

Training errors

Global rate distortion regularization (Grdi)

Training errors

Figure 1: Performance on MNIST in the Permutation Invariant Setup. The left column refers to analyses with global rate
distortion regularization (Grdi) and the right column to analyses with local rate distortion regularization (Lrdi). The upper
and middle panels show the results of the pilot studies on the smallest network architecture. Trajectories in the upper
panels illustrate the expected utility (the negative cross entropy) after 50 epochs of training for different values of β—black
solid lines reflect the expected utility on the training set, red solid lines reflect the expected utility on the test set and red
dashed horizontal lines reflect the expected utility on the test set in ordinary utility maximization (Umax, β = 0). The
middle panels show classification errors instead of utility values. In the Grdi case, the negative cross entropy drops sharply
for larger betas, because the regularization drives the output rates towards a flatter distribution, even though the mode
of the distribution is maintained, which allows for robust performance in terms of classification error. The lower panels
show the results of our final simulations with four different network architectures and fixed β-values. The plots compare
the development of the test set error over epochs between ordinary utility maximization (black trajectories, Umax) and
rate distortion regularization (red trajectories, Grdi with β = 0.2 and Lrdi with β = 10−5 respectively). Each trajectory
corresponds to one of the four different network architectures.

A APPENDIX

A.1 MUTUAL INFORMATION RATE OF A
DETERMINISTIC NEURON

lim
∆t→0

1

∆t
I(ξ, y)

= lim
∆t→0

1

∆t

〈∑
y

pw(y|ξ) ln
pw(y|ξ)

pw(y)

〉
p(ξ)

= lim
∆t→0

1

∆t

〈
φ(w>ξ)∆t ln

φ(w>ξ)

φ̄(w)

〉
p(ξ)

+ lim
∆t→0

1

∆t

〈
(1− φ(w>ξ)∆t) ln

1− φ(w>ξ)∆t

1− φ̄(w)∆t︸ ︷︷ ︸
→0

〉
p(ξ)

=

〈
φ(w>ξ) ln

φ(w>ξ)

φ̄(w)

〉
p(ξ)

.

(33)

A.2 DERIVATIVE OF THE MUTUAL
INFORMATION RATE

∂

∂wi
lim

∆t→0

1

∆t
I(ξ, y)

= lim
∆t→0

1

∆t

∂

∂wi

〈∑
y

pw(y|ξ) ln
pw(y|ξ)

pw(y)

〉
p(ξ)

= lim
∆t→0

1

∆t

〈∑
y

(
∂

∂wi
pw(y|ξ)

)
ln
pw(y|ξ)

pw(y)

〉
p(ξ)

+ lim
∆t→0

1

∆t

〈∑
y

pw(y|ξ)

(
∂

∂wi
ln pw(y|ξ)

)〉
p(ξ)︸ ︷︷ ︸

=
〈∑

y
∂

∂wi
pw(y|ξ)

〉
p(ξ)

= ∂
∂wi

1=0

− lim
∆t→0

1

∆t

〈∑
y

pw(y|ξ)

(
∂

∂wi
ln pw(y)

)〉
p(ξ)︸ ︷︷ ︸

=
∑

y
∂

∂wi
pw(y)= ∂

∂wi
1=0

= lim
∆t→0

1

∆t

〈
ξiφ
′(w>ξ)∆t ln

φ(w>ξ)

φ̄(w)

〉
p(ξ)

− lim
∆t→0

1

∆t

〈
ξiφ
′(w>ξ)∆t ln

1− φ(w>ξ)∆t

1− φ̄(w)∆t︸ ︷︷ ︸
→0

〉
p(ξ)

=

〈
ξiφ
′(w>ξ) ln

φ(w>ξ)

φ̄(w)

〉
p(ξ)

.

(34)

A.3 DERIVATIVE OF THE GLOBAL MUTUAL
INFORMATION

∂

∂wni
I(ξ,y)

=
∂

∂wni

〈∑
y

pW(y|ξ) ln
pW(y|ξ)

pW(y)

〉
p(ξ)

=

〈∑
y

(
∂

∂wni
pW(y|ξ)

)
ln
pW(y|ξ)

pW(y)

〉
p(ξ)

+

〈∑
y

pW(y|ξ)

(
∂

∂wni
ln pW(y|ξ)

)〉
p(ξ)︸ ︷︷ ︸

=
〈∑

y
∂

∂wn
i
pW(y|ξ)

〉
p(ξ)

= ∂
∂wn

i
1=0

−

〈∑
y

pW(y|ξ)

(
∂

∂wni
ln pW(y)

)〉
p(ξ)︸ ︷︷ ︸

=
∑

y
∂

∂wn
i
pW(y)= ∂

∂wn
i

1=0

=

〈∑
j

(
∂

∂wni
fj(W, ξ)

)
ln
fj(W, ξ)

f̄j(W)

〉
p(ξ)

.

(35)

Acknowledgements

This study was supported by the DFG, Emmy Noether
grant BR4164/1-1.

References

[1] J von Neumann and O Morgenstern. Theory of Games
and Economic Behavior. Princeton University Press,
1944.

[2] S J Gershman, E J Horvitz, and J B Tenenbaum. Com-
putational rationality: a converging paradigm for in-
telligence in brains, minds, and machines. Science,
349(6245):273–278, 2015.

[3] H A Simon. Theories of bounded rationality. Deci-
sion and Organization, 1:161–176, 1972.

[4] T Genewein, F Leibfried, J Grau-Moya, and D A
Braun. Bounded rationality, abstraction and hier-
archical decision-making: an information-theoretic
optimality principle. Frontiers in Robotics and AI,
2(27), 2015.

[5] P A Ortega, D A Braun, J Dyer, K-E Kim, and
N Tishby. Information-theoretic bounded rationality.
arXiv preprint arXiv:1512.06789, 2015.

[6] P A Ortega and D A Braun. Thermodynamics
as a theory of decision-making with information-
processing costs. Proceedings of the Royal Society
A, 469(2153):1–26, 2013.

[7] C A Sims. Rational inattention and monetary eco-
nomics. In Handbook of Monetary Economics, vol-
ume 3, chapter 4. Elsevier, 2011.

[8] D H Wolpert. Information theory - the bridge con-
necting bounded rational game theory and statistical
physics. In Complex Engineered Systems, chapter 12.
Springer, 2004.

[9] L G Mattsson and J W Weibull. Probabilistic choice
and procedurally bounded rationality. Games and
Economic Behavior, 41(1):61–78, 2002.

[10] C Blundell, J Cornebise, K Kavukcuoglu, and
D Wierstra. Weight uncertainty in neural networks.
In Proceedings of the 32nd International Conference
on Machine Learning, 2015.

[11] S Still. Lossy is lazy. In Workshop on Information
Theoretic Methods in Science and Engineering, pages
17–21, 2014.

[12] L G Sanchez Giraldo and J C Principe. Rate-
distortion auto-encoders. arXiv preprint
arXiv:1312.7381, 2013.

[13] H J Kappen, V Gómez, and M Opper. Optimal con-
trol as a graphical model inference problem. Machine
Learning, 87(2):159–182, 2012.

[14] K Rawlik, M Toussaint, and S Vijayakumar. On
stochastic optimal control and reinforcement learn-
ing by approximate inference. Proceedings Robotics:
Science and Systems, 2012.

[15] J Rubin, O Shamir, and N Tishby. Trading value and
information in MDPs. In Decision Making with Im-
perfect Decision Makers, chapter 3. Springer, 2012.

[16] N Tishby and D Polani. Information theory of deci-
sions and actions. In Perception-Action Cycle, chap-
ter 19. Springer, 2011.

[17] K Friston. The free-energy principle: a unified brain
theory? Nature Reviews Neuroscience, 11(2):127–
138, 2010.

[18] J Peters, K Muelling, and Y Altun. Relative entropy
policy search. In Proceedings of the National Confer-
ence on Artificial Intelligence, 2010.

[19] S Still. Information-theoretic approach to interactive
learning. Europhysics Letters, 85(2):28005, 2009.

[20] E Todorov. Efficient computation of optimal actions.
Proceedings of the National Academy of Sciences of
the United States of America, 106(28):11478–11483,
2009.

[21] F Leibfried and D A Braun. A reward-maximizing
spiking neuron as a bounded rational decision maker.
Neural Computation, 27(8):1686–720, 2015.

[22] X Xie and H S Seung. Learning in neural networks by
reinforcement of irregular spiking. Physical Review
E, 69(4 Pt 1):041909, 2004.

[23] N Tishby, F C Pereira, and W Bialek. The information
bottleneck method. In Proceedings of the 37th Annual
Allerton Conference on Communication, Control and
Computing, pages 368–377, 1999.

[24] C E Shannon. Coding theorems for a discrete source
with a fidelity criterion. Institute of Radio Engineers,
International Convention Record, 7:142–163, 1959.

[25] S Arimoto. An algorithm for computing the capac-
ity of arbitrary discrete memoryless channels. IEEE
Transactions on Information Theory, 18(1):14–20,
1972.

[26] R Blahut. Computation of channel capacity and rate-
distortion functions. IEEE Transactions on Informa-
tion Theory, 18(4):460–473, 1972.

[27] I. Csiszar. On the computation of rate-distortion func-
tions. IEEE Transactions on Information Theory,
20(1):122–124, 1974.

[28] Y LeCun, L Bottou, G B Orr, and K R Müller. Ef-
ficient backprop. In Neural Networks: Tricks of the
Trade, volume 1524, chapter 2, pages 9–50. Springer
Berlin Heidelberg, 1998.

[29] X Glorot, A Bordes, and Y Bengio. Deep sparse rec-
tifier neural networks. In Proceedings of the Four-
teenth International Conference on Artificial Intelli-
gence and Statistics, pages 315–323, 2011.

[30] R Collobert, K Kavukcuoglu, and C Farabet. Torch7:
a matlab-like environment for machine learning.
In BigLearn, NIPS Workshop. No. EPFL-CONF-
192376, 2011.

[31] P Y Simard, D Steinkraus, and J C Platt. Best prac-
tices for convolutional neural networks applied to vi-
sual document analysis. In Proceedings of the Seventh
International Conference on Document Analysis and
Recognition, 2003.

[32] L Wan, M Zeiler, S Zhang, Y LeCun, and R Fergus.
Regularization of neural networks using dropconnect.
In Proceedings of the 30th International Conference
on Machine Learning, 2013.

[33] N Srivastava, G E Hinton, A Krizhevsky, I Sutskever,
and R Salakhutdinov. Dropout : a simple way to pre-
vent neural networks from overfitting. Journal of Ma-
chine Learning Research, 15:1929–1958, 2014.

