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Abstract

MLNs utilize relational structures that are ubiq-
uitous in real-world situations to represent large
probabilistic graphical models compactly. How-
ever, as is now well-known, inference complex-
ity is one of the main bottlenecks in MLNs.
Recently, several approaches have been pro-
posed that exploit approximate symmetries in the
MLN to reduce inference complexity. These
approaches approximate large domains contain-
ing many objects with much smaller domains
of meta-objects (or cluster-centers), so that in-
ference is considerably faster and more scal-
able. However, a drawback in most of these
approaches is that it is typically very hard to
tune the parameters (e.g., number of clusters)
such that inference is both efficient and accu-
rate. Here, we propose a novel non-parametric
approach that trades-off solution quality with ef-
ficiency to automatically learn the optimal do-
main approximation. Further, we show how to
perform Gibbs sampling effectively in a domain-
approximated MLN by adapting the sampler ac-
cording to the approximation. Our results on sev-
eral benchmarks show that our approach is scal-
able, accurate and converges faster than existing
methods.

1 INTRODUCTION

Markov Logic Networks (MLNs) offer a convenient way
to express uncertain domain knowledge in the form of
weighted first-order formulas. However, probabilistic in-
ference in MLNs is well-known to be a notoriously chal-
lenging problem since the size of the Markov network
underlying an MLN (ground Markov network) typically
grows at an exponential rate as we increase the number of
real-world objects that the MLN is defined over. There-
fore, for MLNs to be practically applicable, controlling in-

ference complexity in large domains is essential.

Efficient inference for MLNs and Statistical Relational
Models, in general, has received a great deal of attention
from the research community. In particular, the idea of
lifting inference over the domain of the MLN such that
we can perform inference over groups of objects instead
of individual objects has been widely explored over the
last few years. The main idea in lifted inference is to re-
duce complexity by taking advantage of exchangeable vari-
ables in the model. Several exact and approximate infer-
ence methods have been proposed over the past few years
starting with the work by Poole [20], including, FOVE [4],
WFOMC [26], Probabilistic Theorem Proving (PTP) [7]
and lifted inference with soft evidence [3]. Popular approx-
imate lifted inference methods include [16, 17, 22, 11, 8,
18, 29, 2, 1].

More recently, it has been understood that lifting even ap-
proximate inference techniques is typically insufficient to
ensure scalability in MLNs. The key problem with most
traditional lifting techniques is their over-reliance on ex-
act symmetries which are either not present in real-world
situations or are known to be broken fairly easily in the
presence of evidence [27]. Therefore, a new class of meth-
ods that utilize approximate symmetries thereby forgoing
strong theoretical guarantees in lieu of scalability have been
proposed making MLNs much more attractive from a prac-
tical perspective. In this work, we develop one such novel
approach by learning the lifting strategy automatically us-
ing non-parametric clustering and integrating a Gibbs sam-
pler that adapts itself with the learned strategy.

The idea of grouping nodes in the input model to reduce
inference complexity has been explored in previous work
such as Kersting et al. [12] who progressively refine a
model in the context of belief propagation and Broeck and
Darwiche [27] who compute an over-symmetric low-rank
boolean matrix approximation of the original MLN that is
more amenable to lifted inference. More recently, Hadiji
and Kersting [10] and Sarkhel et al. [21] apply grouping
strategies in the context of MAP inference to sometimes
obtain orders of magnitude reduction in the size of the



model. Venugopal and Gogate [30] formulate a cluster-
ing problem based on a distance measure computed with
the help of evidence given to the MLN and use off-the-
shelf clustering methods to approximately lift the MLN.
Specifically, the key idea in their approach is to pre-process
the original model and generate new, smaller domains con-
sisting of meta-objects that implicitly represent a cluster
of objects in the original MLN. However, the main prob-
lem with existing methods is that it is very hard to tune
the parameters (e.g., number of clusters) such that we se-
lect the optimal clustering for an MLN balancing accuracy
with complexity of inference. For example, consider a sim-
ple MLN with just one unit clause, R(x)w, then, it turns out
that given any evidence, the optimal number of clusters re-
quired to represent the complete domain of x accurately is
equal to 3. Specifically, we form one cluster with all atoms
for which the predicate R is known to be true, one cluster
that contains all atoms for which R is known to be false
and a third cluster of the remaining objects. On the other
hand, for a more complex MLN, such as, R(x, y) ∧ R(y,
z) ⇒ R(z, x) w, choosing the correct number of clusters
is not obvious. In this paper, we develop a novel method
that automatically finds the clustering that is in some sense
optimal. Specifically, we make the following contributions.

1. We develop a fully non-parametric approach to ap-
proximate the domain in an MLN with a new domain
of meta-objects that correspond to the optimal cluster-
ing for that domain.

2. We integrate our clustering method with a Gibbs sam-
pler that adapts itself based on the domain approxima-
tion in order to minimize sampling errors.

We perform an evaluation of our approach in terms of both
accuracy and convergence on benchmarks chosen from
Alchemy [13]. Our results clearly illustrate that our ap-
proach is scalable, yields accurate results and importantly
converges quickly on large models.

2 BACKGROUND

2.1 FIRST-ORDER LOGIC

We assume a strict subset of first-order logic, called finite
Herbrand logic. Thus, we assume that we have no function
constants and finitely many object constants. A first-order
knowledge base (KB) is a set of first-order formulas. A
formula in first-order logic is made up of quantifiers (∀ and
∃), logical variables, constants, predicates and logical con-
nectives (∨, ∧, ¬,⇒, and⇔). We denote logical variables
by lower case letters (e.g., x, y, z, etc.) and constants by
strings that begin with an upper case letter (e.g., A, Ana,
Bob, etc.). Constants model objects in the real-world do-
main. A predicate is a relation that takes a specific num-
ber of arguments (called its arity) as input and outputs ei-

ther True (synonymous with 1) or False (synonymous with
0). A term is either a logical variable or a constant. We
denote predicates by strings in typewriter font (e.g., R, S,
Smokes, etc.) followed by a parenthesized list of terms.

A first-order formula is recursively defined as follows:
(i) An atomic formula is a predicate; (ii) Negation of an
atomic formula is a formula; (iii) If f and g are formulas
then connecting them by binary connectives such as ∧ and
∨ yields a formula; and (iv) If f is a formula and x is a log-
ical variable then ∀xf and ∃xf are formulas. We assume
that each argument of each predicate is typed and can only
be assigned to a fixed subset of constants. We refer to a
ground atom as an atom that contains no logical variables,
i.e., all its variables have been substituted by constants. A
possible world, denoted by ω, is a truth assignment to all
possible ground atoms that can be formed from the con-
stants and the predicates.

2.2 MARKOV LOGIC NETWORKS

Markov logic networks (MLNs) combine Markov networks
and first-order logic. Formally, an MLN is a set of pairs
(fi, θi) where fi is a formula in first-order logic and θi is
a real number. Given a set of constants, an MLN repre-
sents a ground Markov network, defined as follows. We
have one binary random variable in the Markov network
for each possible ground atom. We have one propositional
feature for each possible grounding of each first-order for-
mula. The weight associated with the feature is the weight
attached to the corresponding formula. The ground Markov
network represents the following probability distribution:

Pr(ω) =
1

Z
exp

(∑
i

θiNfi(ω)

)
(1)

where Nfi(ω) is the number of groundings of fi that eval-
uate to True given a world ω (assignment to every ground
atom).

Important inference queries in MLNs are computing the
partition function, finding the marginal probability of an
atom given evidence (an assignment to a subset of vari-
ables) and finding the most probable assignment to all
atoms given evidence (MAP inference). Here, we focus
on the marginal inference problem.

2.3 GIBBS SAMPLING

Gibbs sampling [6] is one of the most widely used MCMC
algorithms to date. Gibbs sampling changes one variable at
a time by sampling that variable from its conditional distri-
bution given all other variables as described below.

Given a set of n variables X1 . . . Xn, the Gibbs sam-
pling algorithm begins with a random assignment x(0) to
all variables. Then, for t = 1, . . . , T , it performs the fol-
lowing steps (each step is called a Gibbs iteration). Let



(X1, . . . , Xn) be an arbitrary ordering of variables inM.
Then, for i = 1 to n, it generates a new value x(t)i for
Xi by sampling a value from the distribution P (Xi|x(t)

−i)

where x
(t)
−i = (xt1, . . . , x

t
i−1, x

(t−1)
i+1 , . . . , x

(t−1)
n ).

Gibbs sampling is typically used to estimate the marginal
probabilities. Typically, the sampler is allowed to run for
some time (called the burn-in time) to allow it to mix which
ensures that it forgets its initialization, and after T samples
from a mixed Gibbs sampler are generated, the 1-variable
marginal probabilities can be estimated using the following
equation.

P̂T (xi) =
1

T

T∑
t=1

P (xi|x(t)
−i) (2)

2.4 DP-MEANS

DP-Means [14] is a non-parametric clustering method that
unifies K-means clustering with Bayesian non-parametric
models. Specifically, Kullis and Jordan showed that modi-
fying the K-means objective with a penalty term is asymp-
totically equivalent to performing Gibbs sampling in a
Dirichlet-process Mixture Model to infer the right number
of clusters. The modified objective is as follows:

min
`c

k∑
c=1

∑
x∈`c

||x−µc||2+λk where µc =
1

|`c|
∑
x∈`c

x (3)

To solve the modified K-means objective, DP-Means cre-
ates new clusters only when points are sufficiently far off
from existing clusters. For completeness sake, we restate
the key aspects of the algorithm in Algorithm 1.

Input: x1, . . . xn;λ
Output: clustering: `1 . . . `k
while converged=false do

for each input point xi do
m = Compute minimum distance of xi w.r.t all
current cluster centers
if m > λ then

Create new cluster and assign xi to new cluster
end
else

Assign xi to its closest cluster
end

end
end

Algorithm 1: DP-Means

Kulis and Jordan showed that Algorithm 1 converges to a
local optimal solution. Depending on the value of λ, we
would converge to solutions that place more (or less) em-
phasis on reducing the overall number of clusters.

Formulas:
R(x) ∨ S(x, y), w
Original Domains:
∆x = {A1, B1, C1, D1}
∆y = {A2, B2, C2, D2}
Domain Approximation:
∆′x = {µ1, µ2}
∆′y = {µ3, µ}

(a)

Meta-Objects:
µ1 = {A1, B1}; µ2 = {C1, D1}
µ3 = {A2, B2}; and µ4 = {C2, D2}

(b)

Meta-Atoms:
R1(µ1) = {R(A1),R(B1)}
R2(µ2) = {R(C1),R(D1)}
S1(µ1, µ2) = {S(A1, C1),S(A1, D1),
S(B1, C1),S(B1, D1)}
. . .

(c)

Figure 1: (a) an example MLNM and a possible domain
approximation for the original domain ofM.M′ contains
meta-objects and meta-atoms, i.e., objects that represent
multiple objects in the original domain and atoms that rep-
resent multiple atoms inM as shown in (b) and (c)

3 NON-PARAMETRIC DOMAIN
APPROXIMATION

It is now quite widely understood that in order to scale
up inference in MLNs, one needs to perform domain lift-
ing [25], i.e., take advantage of symmetries or exchange-
ability of variables in the MLN [19] to perform efficient
inference over groups of objects in the MLN. Following
a similar vein, the idea behind approximate domain lift-
ing is to relax the notion of symmetries or exchangeable
variables such that domain lifting is applicable to a much
larger class of MLNs. One way to find such symmetries is
to treat the problem of domain lifting as an unsupervised
machine learning problem and use clustering algorithms
to learn symmetries based on the structure of the MLN,
the given inference query, and evidence. Specifically, for
marginal inference, ideally, we would like to cluster to-
gether all ground atoms that have similar marginal prob-
abilities. This would then allow us to treat all atoms in
the cluster uniformly without having to explicitly compute
the marginal probabilities separately for every atom in the
cluster. However, it should be noted that clustering at the
ground atom level is a non-trivial problem and one that
is computationally expensive since the number of ground
atoms may themselves be extremely large in MLNs that
encode application domains such as Natural Language Un-
derstanding.



As an alternative to clustering at the level of ground atoms,
Venugopal and Gogate [30], and Broeck and Darwiche [27]
proposed clustering approaches at the object-level. That
is, given a set of domains D = {D1, . . . DM}, where each
Dj is a set of real-world objects that can be instantiated in
M, and evidence E, we cluster each domain inD indepen-
dently and replace the set of objects with meta-objects, i.e.,
the set of cluster-centers, to generate a new domain D′ =
{D′1, . . . D′k}, where each |D′j | << |Dj |. Replacing the
domain in M with D′ yields a new MLN M′ which we
refer to as the domain-approximated version ofM. InM′,
each ground atom is now a meta-atom since it implicitly
represents a set of ground atoms inM. An example MLN
and its domain approximation is shown in Fig 1.

Clearly, choosing the right domain approximation is crucial
to ensuring the quality of inference results. Therefore, the
key question that we wish to answer here is: GivenM, D
and E, how do we chooseD′1,D′2 . . . D

′
k to obtainM′ that

is in some sense optimal?

3.1 PROBLEM FORMULATION

We learn the approximate domains for an MLN using a
non-parametric approach. Specifically, we use the DP-
means algorithm to find the optimal clustering. Note that
other notable alternatives for non-parametric clustering ex-
ist, such as Dirichlet Process Mixture Models, which uses
the Bayesian non-parametric framework for learning clus-
ters without fixing them apriori. However, it turns out that
DP-means is a much simpler, more scalable approach and
seamlessly integrates Bayesian non-parametrics with the
classical and universally popular K-means clustering algo-
rithm which makes it an ideal model for our problem.

Specifically, we formulate the non-parametric domain ap-
proximation problem for a given MLN as follows:

min
{`cj}

|D′
j
|;M

c=1;j=1

M∑
j=1

|D′
j |∑

c=1

∑
x∈`cj

||x− µcj ||2 + λ|D′j | (4)

where µcj = 1
|`cj |

∑
x∈`cj x, λ is a parameter that controls

the number of clusters created for each domain inM. ||x−
µcj ||2 is the Euclidean distance between the cluster center
µcj and x.

Given a constant λ, it is easy to see that we can decom-
pose Eq. (4) into M independent objective functions and
optimize each objective independently. This will yield the
approximate domains for the input MLNM. However, the
challenging task is to automatically tune the parameter λ
such that M′ is in some way a “good” approximation of
M. We next describe an approach to quantify the error
made byM′ in approximatingM and incorporate this er-
ror to automatically tune λ in Eq. (4).

3.2 DOMAIN APPROXIMATION ERROR

LetM be the original MLN andM′ be the MLN obtained
after approximating each domain in M. Clearly, the dis-
tributions PM and PM′ are defined over spaces with dif-
ferent cardinalities since they have a different number of
possible ground atoms. It turns out computing a valid dis-
tance metric that can directly compare such distributions
is extremely challenging and is shown to be NP-hard [32].
Thus, we need to design approximations that can reason-
ably compare PM and PM′ .

Consider a single meta-atom inM′, X , which corresponds
to a set of ground atoms in M which we denote by X.
Thus, to map P ′M to PM, we need to map a 0/1 assignment
of X to a vector of 0/1 assignments to X. Clearly, there are
2|X| different ways to define this mapping. For each map-
ping, we will end up with a different approximation to PM.
If we fix a specific mapping ρ, clearly, we can convert any
sample x drawn from PM′ to a set of samples ρ(x) in PM.
In this case, the (un-normalized) probability PM′(x) can
be computed by summing over the (un-normalized) proba-
bilities of ρ(x) as follows:

PM′(x) =
∑

y∈ρ(x)

PM(y)

However, computing the above probability is clearly infea-
sible since it involves a summation over the probabilities
in the original space which can be very large and is pre-
cisely the reason to perform domain-approximation in the
first place. Instead, if we choose ρ to be a one-to-one map-
ping, we map each sample in PM′ to exactly one sample in
PM. In other words we assume that all other samples that
x can be mapped to have negligible probabilities. Using
this assumption, the above equation now reduces to

PM′(x) ≈ PM(ρ(x))

Even with the above approximation of one-to-one map-
ping, computing PM′(x) may be hard since we addition-
ally require that PM(ρ(x) should be sufficiently easy to
compute. That is, given x, we should be able to compute
PM(ρ(x) in bounded time/space. Unfortunately, for an ar-
bitrary ρ, this problem requires computing the counts of
satisfied formulas in a sample as its sub-step and is thus
#P -complete [24]. However, consider a special ρ, namely,
given a sample from M′ with meta-atom X assigned to
x, we assign the same value x to all atoms in M that X
corresponds to. We refer to such a mapping as a uniform
assignment mapping and under this mapping, it turns out
that marginal probabilities in PM and P ′M have a direct
relationship. Specifically,

Theorem 1. Given an MLN M and its domain-reduced
approximation M′, under the assumption of uniform as-
signment mapping and no evidence atoms, for any ground
atom X inM′, PM′(X) = PM(X ′), where X ′ ∈X.



Proof. Let ω′ be a world in M′ and ω be a world in M
obtained by the mapping function ρ.

P (ω′) ∝ exp(
∑
i

Ni(ω
′)θi)

P (ω) ∝ exp(
∑
i

Ni(ω)θi)

Since we assume that ρ is a uniform assignment mapping,
we have that for any formula fi, Ni(ω′) ∝ Ni(ω). Fur-
ther, note that since there is no evidence in the model, ∀ω,
P (ω) > 0. Therefore, P (ω′) ∝ P (ω). Summing over
all worlds, the partition function, Z(M′) ∝ Z(M). Since
marginal probabilities are simply ratios of partition func-
tions, the result of the theorem holds.

The above theorem means that under the assumption of uni-
form assignment mapping, we can perform marginal in-
ference as follows. We approximate the domains in M
and without changing the weights or formulas in M, we
can simply replace the original domain by its domain-
approximation to yield M′. We then generate samples
fromM′ and estimate the marginal probabilities from the
generated samples for each meta-atom X . We can finally
compute the marginal probabilities in M by using P (X)
for all atoms inM that meta-atom X represents.

3.3 ADAPTIVE GIBBS SAMPLING

In the presence of evidence, Theorem 1 no longer holds
since we need to first translate the evidence E observed for
M toM′. Depending on this translation, PM(·|E) may be
very different from PM′(·|E′) even under the assumption
of uniform assignment mapping. Previous approaches such
as [30] have proposed the transformation of evidence based
on majority voting. Specifically, ifX is a meta-atom inM′
that corresponds to X inM,X is assigned as true evidence
inM′ if the number of true evidence atoms in X outweighs
the number of false or unknown atoms. However, consider
sampling from PM′(·|E′), where E′ has been generated
by applying the aforementioned majority voting. Unless
every meta-atom in M′ represents a set of atoms that are
all either evidence or all non-evidence atoms, each sample
derived from PM′(·|E′) when mapped toM using a uni-
form assignment mapping, will have inconsistencies. For
example, let X,Y, Z, U be the ground atoms inM and let
C1 = X,Y, Z and C2 = U be the meta-atoms ofM′. If
X = 1 is given as evidence toM, then no evidence is set
in M′. Therefore, in every sample generated from M′ is
inconsistent with evidence X = 1. Similarly, if Y = 1
is added as evidence, then C1 = 1, and no samples with
Z = 0 are generated. Our main idea is to reduce the ex-
pected number of inconsistencies when we generate sam-
ples fromM′ via Gibbs sampling.

In each iteration of Gibbs sampling, we pick a meta-
atom, say X in M′ and sample an assignment to this

meta-atom from the conditional probability distribution
PM′(X|X−i), whereX−i is the set of all meta-atoms other
than X . The choice of which meta-atom to sample in each
iteration is according to a distribution of selection prob-
abilities. Typically, in random-scan Gibbs sampling, this
selection probability is a uniform distribution over the non-
evidence atoms. However, in general, we can select the
selection probabilities to be non-uniform, i.e. a probability
αi for atom Xi. It has also been shown that as long as the
selection probabilities are not continuously updated (also
called vanishing adaptation), we can show that the Markov
chain remains ergodic (cf. [9])

We now formalize the expected error in a sample drawn
from the Gibbs sampler as follows. Let X1 . . . XK be the
meta-atoms in M′ and let X1 . . . XK be sets of ground
atoms in M where Xi is a meta-atom for all the ground
atoms in Xi. If Xi consists of both evidence and non-
evidence atoms and we sample X , clearly, the sample gen-
erated may be erroneous on every evidence atom in Xi. But
if we choose not sample X at all (i.e., treat it as hard evi-
dence), then we will never sample the non-evidence atoms
in X. The expected error can be formulated as,

EG =

K∑
i=1

αi
∑

X′∈Xi

I(X ′) + (1− αi)

(|Xi| −
∑

X′∈Xi

I(X ′)) (5)

where 0 ≤ αi ≤ 1 is the selection probability for meta-
atom Xi and I(X ′) = 1 if X ′ is an evidence atom and 0
otherwise.

Note that if the amount of evidence corresponding to Xi

is large, EG can be reduced by reducing αi, while, if
the amount of evidence corresponding to Xi is small, EG
can be reduced by increasing αi. Therefore, we set αi
= 1 −

∑
X′∈Xi

I(X′)

|Xi| . At the extreme ends, if Xi corre-
sponds to only evidence atoms, it is never sampled in the
compressed model (αi = 0) while if Xi corresponds to
only non-evidence atoms, it is always sampled in the com-
pressed model (αi = 1).

Next, with the help of a simple example MLN, we illus-
trate that adapting the selection probabilities of meta-atoms
based on the clustering is likely to yield more accurate es-
timates as opposed to randomly choosing a meta-atom to
sample. Here, we considered a simple MLN with three
formulas w1; R(x) ∨ S(x), w2; R(x) and w2; S(x) where x
has 10000 objects. We introduced 25% random evidence
on the ground atoms of R and S. We then randomly di-
vided the objects in x into K clusters to approximate its
domain. Thus, there are 2K meta-atoms with each meta-
atom representing a variable number of original atoms with
varying evidence. We compared the performance of Gibbs
sampling with random selection probabilities which we re-
fer to as cgibbs and our approach where the selection
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Figure 2: Illustrating the effect of adapting the selection probabilities in Gibbs sampling based on the clustering. The
results are shown for w1; R(x) ∨ S(x), w2; R(x) and w2; S(x) with a domain of 10000 objects and randomly generated
evidence. K signifies the number of clusters into which the domain objects were divided. cgibbs denotes Gibbs
sampling without adapting the selection probability and acgibbs denotes Gibbs sampling with adapting the selection
probability. The curves are shown as the average mean square error between the true marginal probabilities and the
marginal probabilities computed by the samples.

probabilities are tied to the clustering, which we refer to
as acgibbs. Specifically, we compared the average er-
ror between marginal probabilities output by cgibbs and
acgibbswith the true marginal probabilities for the MLN
(which we could easily compute due to our choice of the
specific MLN structure). The results are shown in Fig. 2
for varying number of clusters (K). As seen in the figure,
acgibbs generates much more accurate estimates of the
marginal probability by reducing the number of inconsis-
tent samples that were generated. The effect is even more
pronounced when we have fewer but larger clusters, i.e.,
Fig. 2 (c), where since K is small, each meta-atom there-
fore represents a large number of atoms. Here, using ran-
dom scan Gibbs is much worse since the number of incon-
sistencies in each sample is extremely large yielding to less
accurate estimates of marginal probabilities.

3.4 GIBBS SAMPLING EFFICIENCY

If the Gibbs sampler contains N variables, since each vari-
able is sampled one at a time, it roughly takes aboutN sam-
pling steps to change the complete state of the sampler just
once. Thus, supposeM has a million non-evidence atoms,
we need to at least perform a million sampling operations
to sample every variable in the model once which is pro-
hibitively expensive. Further, the mixing time of the Gibbs
sampler is roughly proportional to the number of variables
in the model [15]. Thus, we would like our Gibbs sampler
to have a bounded number of variables for efficiency and
fast mixing. To specify this, givenM′ which is a domain-
approximated version of M, we define the sampling effi-
ciency (SG) ofM′ to be proportional the total number of
meta-atoms inM′.

Input:M, β1, β2, ε
Output:M′
λ = 10000
while converged=false do

// Find the clustering for a fixed λ
for each domain Di inM do

D′i = DP-Means(Di)
end
M′ = Replace-Domains(M, D1, . . .)
EG(λ) = Evaluate Eq (5) forM′
SG(λ) = Number of meta-atoms inM′
if EG(λ) < β1 and SG(λ) < β2 then

converged=true
returnM′

end
else if SG(λ) > β2 then

// Could not find solution
returnM′

end
else

// Reduce λ
λ = ελ

end
end

Algorithm 2: NP-Cluster

3.5 COMPUTING THE OPTIMAL CLUSTERS

We now re-formulate the minimization problem in Eq. (4)
by incorporating the sampling error (EG) and the sampling
efficiency (SG). That is, given constants β1 and β2, our
clustering problem is defined as,

min
{`cj}

|D′
j
|;M

c=1;j=1;λ

M∑
j=1

|D′
j |∑

c=1

∑
x∈`cj

||x− µcj ||2 + λ|D′j | (6)



where EG(λ) < β1 and SG(λ) < β2

Note that both the sampling error and efficiency depend
upon the parameter λ. That is, if λ is large, then we penal-
ize the number of clusters a lot more, therefore, our solu-
tion will yield very few meta-atoms which results in a large
EG(λ) but small SG(λ). Similarly, smaller λ will yield
solutions that has small EG(λ) but large SG(λ). Jointly

optimizing {`cj}
|D′

j |;M
c=1;j=1;λ is challenging because we need

to consider every possible clustering with every possible
parameter λ. Instead, we use a co-ordinate descent type of
approach where we pick a λ and find the best clusters, and
then fix the clustering and pick the next best λ.

The algorithm for non-parametric clustering of domains is
shown in Algorithm 2. Algorithm 2 starts by fixing λ to
a large constant and computes the optimal clustering for
the domains of the input MLN, at this value of λ. The
DP-Means algorithm is used a sub-step to compute opti-
mal clustering for a given λ. Once, we compute the op-
timal clustering of the domains, we evaluate the sampling
error and efficiency based on the new MLN generated from
the clusters. If we satisfy the constraints on sampling error
bound and efficiency, then the algorithm has reached a lo-
cal optima and we output the domain-approximated MLN.
However, if we fail to satisfy the constraints, we check if
SG(λ) is greater than β2 in which case, we cannot find a so-
lution, else we reduce λ by ε to improveEG(λ) and SG(λ).

4 RELATED WORK

In recent years many methods have been proposed that
use symmetries for improving the scalability both in ex-
act inference [20, 4, 7, 26, 3] as well as approximate in-
ference [22, 11, 8, 18, 29, 2]. Niepert and Broeck [19]
recently showed that most of the earlier work on lifted in-
ference can be connected to the concept of exploiting fi-
nite partial exchangeability in statistics that allows one to
perform inference over groups of exchangeable variables
efficiently. However, lifted inference that only looks for
exact exchangeability tends to work with limited classes of
MLNs as shown in [27]. Previous work that has addressed
this issue in the context of belief propagation include Ker-
sting et al. [12] and Singla et al [23], where scalability
was achieved through message approximation. Broeck and
Darwiche [27] proposed a general over symmetric approx-
imation by adding symmetries to the MLN thereby making
it liftable. Venugopal and Gogate [30] proposed the use
of unsupervised machine learning methods to cluster sim-
ilar domain objects together based on the evidence given
to the MLN. Similar clustering ideas have been used in
MAP inference algorithms and it has been shown that in
some cases one can achieve orders of magnitude reduction
in the size of the MLN network without sacrificing much
accuracy [10, 21]. In the context of sampling based in-
ference algorithms, Broeck and Niepert [28] introduced a

Dataset #Clauses #Atoms #Parameters
WebKB 892 million 20 million 64
Protein 408 million 3.3 million 211

ER 1.7 trillion 5.5 million 15

Table 1: Dataset sizes.

Metropolis-Hastings sampler by utilizing over-symmetric
approximations of MLNs in their proposal distribution, and
Venugopal and Gogate [31] developed an importance sam-
pler by constructing an tractable proposal from the clus-
tered domain objects. However, unlike the aforementioned
approaches which use parametric methods that can be dif-
ficult to tune, here, we propose a fully non-parametric ap-
proach integrated with Gibbs sampling that systematically
trades-off sampling error with efficiency.

5 EXPERIMENTS

We evaluate our approach, which we refer to as
acgibbs, using three benchmark MLNs obtained from
the Alchemy [13] website: Webkb MLN that models the re-
lations between web-page links and topics in the webpage,
Protein MLN that models the interaction between proteins,
and the ER MLN that is used for entity resolution in NLP.
The details of these benchmarks are shown in Table 1. For
each MLN, we randomly set the weights of the individ-
ual formulas between 0 and 1. We evaluate our approach
along two dimensions: accuracy in estimating the marginal
probabilities and convergence of the Markov Chain. We
compare our results with regular Gibbs sampling (Gibbs)
and the approach proposed in Venugopal and Gogate [30]
(cgibbs), where they use clustering algorithms such as
KMeans to derive an approximate MLN and then sample
this MLN using regular Gibbs sampling.

For cgibbs, since we explicitly need to set the number
of clusters for each domain, we set this to be 10% of the
original domain-size. Note that we set this size to be ap-
proximately the same size as the number of clusters that
computed by our non-parametric methods. For acgibbs,
for an approximate MLN, M′, we set the threshold β1
as 0.01% of the number of meta-atoms in M′ and β2 as
10K. For fairness, in both cgibbs and acgibbs, we
used the same features as specified in [30] for computing
the distances. Specifically, for each object in the MLN,
the method proposed in Venugopal and Gogate partially
grounds the MLN with that specific object and approxi-
mately counts the number of true groundings in each for-
mula for the partially ground MLN given evidence. The
approximate counting is performed by generating tractable
SQL queries with a bounded number of joins. The feature
vector for each object is computed with the counts obtained
for each formula in the MLN.
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Figure 3: Accuracy Plots for various benchmarks. The domain size of each benchmark was reduced to 10% of its original
size to ensure that we get better estimates with gibbs. The plots are shown for the average Hellinger distance between
the marginal probabilities generated by gibbs and that generated by cgibbs and acgibbs respectively. (a) and (b)
correspond to the Protein benchmark with 25% and 50% evidence respectively. Similarly (c) and (d) correspond to the
Webkb benchmark, and (e), (f) correspond to the ER benchmark.

5.1 ACCURACY

We compare the accuracy of cgibbs and acgibbs us-
ing the following approach. We assume that the gibbs
algorithm outputs the true marginal probabilities and com-
pare the results of cgibbs and acgibbs with that of
gibbs. We measure the average Hellinger distance be-
tween the marginal probabilities of the query atoms output
by gibbs with the probabilities output by acgibbs and
cgibbs. We considered all ground atoms not set as ev-
idence to be the query atoms. We measured accuracy on
small MLNs since for larger MLNs the output of gibbs is
not reliable. Specifically, we subsampled the true domain
of the benchmarks and derived smaller MLNs out of the
original benchmarks. Further, we also evaluated the per-
formance of the algorithms in the presence of low as well
as high evidence. Fig. 3 shows the results that we obtained
for our benchmarks. As seen here, for the protein bench-
mark, acgibbs performs much better than cgibbs. For
the Webkb benchmark, the accuracy of acgibbs is again
better than cgibbs. For the ER benchmark, for the low
evidence case, acgibbs was slightly worse than cgibbs
but for the high evidence case, acgibbs was much bet-
ter than cgibbs. One hypothesis for this behavior is that
perhaps gibbs is not very accurate on this benchmark as
shown by the poor convergence property that it exhibits for

this benchmark (see next section). Overall, acgibbs was
seen to be more accurate than cgibbs in our evaluation.

5.2 CONVERGENCE

We compare the mixing time of gibbs, cgibbs and
acgibbs based on the Gelman-Rubin (G-R) Statistic [5].
For a well-mixed sampler, the G-R statistic should ide-
ally decrease over time illustrating that the MCMC chain
has mixed. To compute the G-R statistics, we set up 5
Gibbs samplers from random initialization points and mea-
sure the within chain and across chain variances for the
marginal probabilities for 1000 randomly chosen query
ground atoms. We compute the G-R statistics for each of
the 1000 query atoms and measure the mean G-R statis-
tic. Fig. 4 shows our results on the benchmarks. Note
that, here we consider larger sized MLNs, i.e., we evalu-
ate on the full benchmark without subsampling the MLN
domain. As seen here, for the protein benchmark cgibbs
and acgibbs mix much faster than gibbs which has
an upward trajectory for the G-R statistic indicating that
it has not mixed at all. Among cgibbs and acgibbs,
acgibbs mixes faster than cgibbs because the selec-
tion probability ensures that we spend more resources on
sampling meta-atoms which are less deterministic (there is
less evidence on the atoms that the meta-atom represents)
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Figure 4: Convergence Plots for various benchmarks. The plots are shown for the average Gelman-Rubin statistic com-
puted using 5 runs of the algorithms across 1000 randomly chosen estimates for the marginal probabilities. (a) and (b)
correspond to the Protein benchmark with 25% and 50% evidence respectively. Similarly (c) and (d) correspond to the
Webkb benchmark, and (e), (f) correspond to the ER benchmark.

as compared to meta-atoms which are more deterministic
(more or less all the atoms represented by the meta-atom
are evidence atoms). For the Webkb benchmark, the results
look similar with gibbs not mixing and acgibbsmixing
faster than gibbs. For the ER case, the curve for gibbs
stays flat at almost 0. Due to the large size of the bench-
mark, gibbs is very slow in its iterations and most of the
query atoms remain un-sampled and thus only retain their
initialization values. Even cgibbs and acgibbs though
clearly better than gibbs, have slower mixing times as
compared to the other two benchmarks.

6 CONCLUSION

Exploiting approximate symmetries has been recognized as
a practical approach to obtain scalable inference algorithms
in MLNs. Several inference methods that take advantage
of approximate symmetries have been proposed over the
past few years. However, a major disadvantage of existing
methods is that it is quite difficult to manually tune the pa-
rameters in these approaches to obtain accurate inference
results. Here, we proposed a non-parametric approach that
approximates the domains of an MLN and can systemati-
cally trade-off accuracy with efficiency. Further, we inte-
grated our approach with a Gibbs sampling algorithm that

adapts itself based on the domain-approximation to gen-
erate higher quality samples. Our results on benchmarks
showed the promise of our approach in terms of scalability,
accuracy and convergence.

In future, we would like to explore more complex mapping
functions from meta-atoms to the original atoms, integrate
our approach with variational distances and adapt our ap-
proach for MAP inference algorithms.
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