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Abstract

We study the identifiability and estimation
of functional causal models under selection
bias, with a focus on the situation where the
selection depends solely on the e↵ect variable,
which is known as outcome-dependent selec-
tion. We address two questions of identifia-
bility: the identifiability of the causal direc-
tion between two variables in the presence of
selection bias, and, given the causal direction,
the identifiability of the model with outcome-
dependent selection. Regarding the first, we
show that in the framework of post-nonlinear
causal models, once outcome-dependent se-
lection is properly modeled, the causal di-
rection between two variables is generically
identifiable; regarding the second, we identify
some mild conditions under which an additive
noise causal model with outcome-dependent
selection is to a large extent identifiable. We
also propose two methods for estimating an
additive noise model from data that are gen-
erated with outcome-dependent selection.

1 Introduction

Selection bias is an important issue in statistical in-
ference. Ideally, samples should be drawn randomly
from the population of interest. In reality, however,
it is commonplace that the probability of including a
unit in the sample depends on some attributes of the
unit. Such selection bias, if not corrected, often dis-
torts the results of statistical analysis. For example, it
is well known that in a regression analysis, if there is
selection on the dependent variable, the ordinary least
squares estimation of the regression coe�cients will be
biased and inconsistent (Heckman, 1979). The chal-
lenge is even bigger in causal inference; both the task
of learning causal structures from data and the task

of estimating causal mechanisms or parameters given
a causal structure are usually rendered more di�cult
by the presence of selection bias.

In this paper, we are concerned with the approach to
causal inference based on (restricted) functional causal
models (Shimizu et al., 2006; Hoyer et al., 2009; Zhang
& Hyvärinen, 2009), and aim to investigate the extent
to which selection bias can be handled within this ap-
proach. Specifically, we mainly focus on the outcome-
dependent selection bias, where the selection mecha-
nism depends only on the e↵ect, and are interested in
the following two questions:

• Is the causal direction between two random vari-
ables identifiable in the presence of selection bias?

• Is the causal mechanism as represented by a func-
tional causal model identifiable in the presence of
selection bias?

These two questions have to do with the two main
aspects of causal inference, respectively. The for-
mer question is about the inference of causal struc-
ture. In the traditional conditional-independence-
constraint-based approach to learning causal struc-
tures (Spirtes et al., 2001; Pearl, 2000), some methods
have been developed to handle selection bias (Spirtes
et al., 1999; Zhang, 2008; Borboudakis & Tsamardi-
nos, 2015). However, the structural information that
can be learned via the constraint-based approach is
typically limited to a Markov equivalence class. In
particular, the approach cannot distinguish cause from
e↵ect with just two variables. In contrast, a distinc-
tive virtue of the approach based on functional causal
models is that Markov equivalent causal structures can
usually be distinguished. In particular, the direction
between two random variables is generically identifi-
able. Whether this virtue survives the challenge posed
by selection bias is therefore worth investigating.

The latter question is related to the inference of causal
parameters (i.e., parameters or quantities that have



causal interpretations), including intervention e↵ects.
In addition to the work on various selection models
in econometrics and social science (Heckman, 1979;
Winship & Mare, 1992), recent literature has seen in-
teresting work on the recoverability of causal param-
eters based on graphical models (Didelez et al., 2010;
Bareinboim & Pearl, 2012; Bareinboim et al., 2014;
Evans & Didelez, 2015). Much of this work, however,
deals with linear models or discrete variables, whereas
we are concerned in this paper with continuous vari-
ables that may bear a nonlinear relationship.

We will proceed as follows. In Section 2, we introduce
the general setup and briefly discuss several types of
selection, before focusing our attention on the situa-
tion where the selection depends on the e↵ect variable,
known as outcome-dependent selection. In Section 3,
we show that in the framework of post-nonlinear causal
models, once outcome-dependent selection is properly
modeled, the causal direction between two variables is
generically identifiable. In Section 4, we identify some
mild conditions under which an additive noise causal
model with outcome-dependent selection is to a large
extent identifiable. We then propose, in Section 5, two
methods for estimating an additive noise model from
data that are generated with outcome-dependent se-
lection. Some experiments are reported in Section 6.

2 Outcome-Dependent Selection Bias

A common way to represent selection bias is to use a
binary selection variable S encoding whether or not
a unit is included in the sample. Suppose we are in-
terested in the relationship between X and Y , where
X has a causal influence on Y . Let p

XY

denote the
joint distribution of X and Y in the population. The
selected sample follows p

XY |S=1

instead of p
XY

. In
general, p

XY |S=1

6= p

XY

, and that is how selection
may distort statistical and causal inference. However,
di↵erent kinds of selection engender di↵erent levels of
di�culty. In general, S may depend on any number of
substantive variables, as illustrated in Figure 1, where
X = (X

1

, X

2

). 1

1In this paper, we assume that we only know which vari-
ables the selection variable S depends on, but the selection
mechanism is unknown, i.e., the probability of S = 1 given
those variables is unknown. Notice that we do not have
access to the data points that were not selected. This is
very di↵erent from Heckman’s framework to correct the
bias caused by a censored sample (Heckman, 1979), which
assumes access to an i.i.d. sample from the whole popula-
tion, on which the Y values are observable only for the data
points that satisfy the selection criterion (implied by the
selection equation), but other attributes of the “censored”
points are still available, enabling one to directly identify
the selection mechanism.
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Figure 1: Illustration of di↵erent situations with sam-
ple selection bias. (a) S depends on X = (X

1

, X

2

) but
not on Y . (b) S depends on X and is also statistically
dependent on Y given X due to a confounder U . (c)
S directly depends solely on Y (outcome-dependent
selection). (d) S depends on both X and Y .

Selection Bias on the Cause For the purpose of
causal inference, the least problematic kind of situa-
tion is depicted in Figure 1(a), in which S is indepen-
dent of the e↵ect variable Y given the cause variable
X. It follows that p

Y |X,S=1

= p

Y |X . That is, the
selection bias does not distort the conditional distri-
bution of the e↵ect Y given the cause X or the struc-
tural equation model for the causal process. In such
a situation, causal inference can essentially proceed as
usual. However, if there is a (latent) confounder for
Y and S, as illustrated in Figure 1(b), S and Y are
not conditionally independent given X any more, that
is, p

Y |X,S=1

6= p

Y |X . Such a distortion may be cor-
rected under rather restrictive assumptions; see, e.g.,
Heckman’s correction (Heckman, 1979).

Selection Bias on the E↵ect If the selection de-
pends solely on the e↵ect, as depicted in Figure 1(c),
then p

Y |X,S=1

6= p

Y |X , and the selection bias, if not
corrected, will mislead inference. Consider, for exam-
ple, a standard assumption in functional causal mod-
eling that the e↵ect Y is a function of the cause vari-
able X and an noise variable E that is independent
of X. Suppose this assumption holds in the popula-
tion. With the outcome-dependent selection, X and
E are typically not independent in the selected sam-
ple, as they are typically not independent conditional
on S (which is a descendant of a collider between X

and E, i.e., Y ). Furthermore, even if one fits a regres-
sion model on selected sample, the estimated residual
(which is usually di↵erent from the true noise term in
the causal process) is usually not independent from X;
we will get back to this issue in Section 4.1.

This kind of selection is known as outcome-dependent
selection bias (OSB) (Didelez et al., 2010; Bareinboim
et al., 2014), and will be our focus in this paper. We
will show that although outcome-dependent selection
seriously complicates analysis, it can be handled in
the identification and estimation of functional causal



models. Note that in the case of outcome-dependent
selection, X is independent of S given Y , and so we
can model the distribution of the observed sample as:

p

�

XY

, p

XY |S=1

=
p

X,Y,S=1

P (S = 1)
= p

XY

· P (S = 1|X,Y )

P (S = 1)

= p

XY

· P (S = 1|Y )

P (S = 1)
= �(y)p

XY

, (1)

where the nonnegative function �(y) , P (S =
1|Y )/P (S = 1) is a density ratio for biased sampling
that only depends on Y . We will adopt this represen-
tation of outcome-dependent selection in what follows.

Selection Bias on Both the Cause and the Ef-
fect An even more general situation is depicted in
Figure 1(d), where the selection depends on both X

and Y (and probably others). In such a situation,
the density ratio function � will depend on both X

and Y . The selected sample follows the distribution
p

�

XY

/ p

XY

�(x, y, w). Roughly speaking, the se-
lection procedure is so flexible that without further
constraints on �(x, y, w), we cannot see much infor-
mation about the population p

XY

: if p

XY

is posi-
tive on (�1,+1), the same p

�

XY

can be generated
from a large class of distributions p

XY

with a suitably
chosen �(x, y, w). Moreover, the causal direction is
generally not identifiable, for with a su�ciently flex-
ible �(x, y, w), either direction can be made compat-
ible with whatever distribution. Interestingly, when
� depends only on Y , as is the case under outcome-
dependent selection, the causal direction according to
a restricted functional causal model is still generically
identifiable, without any substantial restriction on �.
To this result we now turn.

3 Identifiability of Causal Direction

In this section we investigate whether it is possible to
successfully recover the causal direction between two
variables when the data are generated according to a
functional causal model, but with outcome-dependent
selection. Here we assume that both X and Y are
scalar variables.

3.1 Identifiability Without Selection Bias

The traditional approaches to inferring causal struc-
ture from data, such as the constraint-based approach
(Spirtes et al., 2001; Pearl, 2000) and the score-based
approach (Chickering, 2002; Heckerman et al., 1995)
cannot distinguish Markov equivalent causal struc-
tures without background knowledge. In particular,
with only two variables, those methods cannot distin-
guish cause from e↵ect. The more recent approach
based on restricted functional causal models is usually

more powerful in this respect. In a functional causal
model, the e↵ect is taken to be a function of the direct
causes together with an noise term that is independent
of the direct causes (Pearl, 2000). When the class of
functions is constrained, the causal direction is usually
identifiable in that only one direction can satisfy the
model assumptions, such as the assumed independence
between the noise term and the direct causes. Avail-
able identifiability results include those on linear, non-
Gaussian, acyclic Model (LiNGAM) (Shimizu et al.,
2006)), additive noise model (ANM) (Hoyer et al.,
2009), and post-nonlinear (PNL) causal model (Zhang
& Hyvärinen, 2009). In this section, we will establish a
main result for the PNL causal model. The result also
applies to linear models and additive noise models, as
they are special cases of PNL models.

A PNL model for X ! Y is specified as follows:

Y = f

2

(f
1

(X) + E), (2)

where X and E are statistically independent, f

1

is
a non-constant smooth function, f

2

is an invertible
smooth function, and f

0
2

6= 0. This model is su�ciently
flexible to represent or approximate many causal pro-
cesses in reality (Zhang & Hyvärinen, 2009).

Similarly, for the reverse direction Y ! X, a PNL
model would take the following form:

X = g

2

(g
1

(Y ) + Ẽ), (3)

where Y and Ẽ are independent, g
1

is non-constant
and smooth, g

2

is invertible and smooth, and g

0
2

6= 0.

As shown in (Zhang & Hyvärinen, 2009), (2) and (3)
can generate the same distribution of X and Y only
for very special configurations of the functions and dis-
tributions. In generic cases, if data are generated ac-
cording to a model of form (2), there is no model of
form (3) that generates the same distribution. Hence
the causal direction is generically identifiable.

3.2 Identifiability of Causal Direction in
PNL-OSB

We now show that the generic identifiability of causal
direction based on PNL models still holds even if we
allow the possibilty of outcome-dependent selection.

Suppose the data distribution is generated by a PNL
causal model from X to Y in the form of (2), denoted
by F!, followed by an outcome-dependent selection
with an density ratio �(y), as in (1). Call (F!,�(y))
a PNL-OSB model, and let p!

XY

denote the joint den-
sity of X and Y resulting from (F!,�(y)). We are
interested in whether there is a PNL-OSB model in
the reverse direction that can generate the same data
distribution. That is, consider (F , v(x)), where F 



is a PNL causal model from Y to X in the form of
(3), and v(x) is an density ratio function that depends
on X. Let p

 
XY

denote the joint density of X and Y

resulting from (F , v(x)). When is it the case that
p

!
XY

= p

 
XY

?

To simplify the presentation, we define random vari-
ables T , g

�1
2

(X), Z , f

�1
2

(Y ), and function h ,
f

1

� g

2

. That is, h(t) = f

1

(g
2

(t)) = f

1

(x). Sim-
ilarly, h

1

, g

1

� f

2

is a function of Z. Moreover,
we let ⌘

1

(t) , log p
T

(t) = log p
X

(x) + log |g0
2

(t)|, and
⌘

2

(e) , log p
E

(e).

Note that T and E are independent (for X and E are
assumed to be independent), and Z and Ẽ are inde-
pendent (for Y and Ẽ are assumed to be independent).
It follows that

p

!
XY

= �(y)pF!
XY

= �(y)p
XE

/|f 0
2

| = �

f2(z)pT pE/|f 02g02|,
p

 
XY

= v(x)pF 
XY

= v(x)p
Y

˜

E

/|g0
2

| = v

g2(t)p
Z

˜

E

/|f 0
2

g

0
2

|,

where �
f2 = � � f

2

, and v

g2 = v � g
2

.

Now suppose
p

!
XY

= p

 
XY

(4)

This implies

p

Z

˜

E

=
�

f2(z)

v

g2(t)
p

T

p

E

,

or equivalently

log p
Z

˜

E

= log �
f2(z)� log v

g2(t) + log p
T

+ log p
E

= log �
f2(z) + ⌘̃

1

(t) + ⌘

2

(e), (5)

where ⌘̃
1

(t) , log p
T

� log v
g2(t) = ⌘

1

(t) � log v
g2(t).

Since Z and Ẽ are independent, we have

@

2 log p
Z

˜

E

@z@ẽ

⌘ 0. (6)

(5) and (6) entail very strong constraints on the dis-
tribution of E, as stated in the following theorem.

Theorem 1 Suppose that the densities of E and
T and the functions f

1

, f

2

, g

1

, g

2

, and v(x) are
third-order di↵erentiable and that p

E

is positive on
(�1,+1). The condition (4) implies that for every
point of (X,Y ) satisfying ⌘00

2

h

0 6= 0:

⌘̃

000
1

� ⌘̃

00
1

h

00

h

0 =
⇣
⌘

0
2

⌘

000
2

⌘

00
2

� 2⌘00
2

⌘
· h0h00 � ⌘

000
2

⌘

00
2

· h0⌘̃00
1

+ ⌘

0
2

·
⇣
h

000 � h

002

h

0

⌘
, (7)

and h

1

depends on ⌘̃
1

, ⌘
2

, and h in the following way:

1

h

0
1

=
⌘̃

00
1

+ ⌘

00
2

h

02 � ⌘

0
2

h

00

⌘

00
2

h

0 . (8)

Further assume that ⌘00
2

h

0 6= 0 almost everywhere.
Then in order for (7) to hold, p

E

and h must satisfy
one of the five conditions listed in Table 1.

Table 1: All situations in which the causal direction
implied by the PNL-OSB model may be unidentifiable.

p

E

h = f1 � g2
1 Gaussian linear
2 log-mix-lin-exp linear
3 log-mix-lin-exp h strictly monotonic,

and h

0 ! 0, as t1 !
+1 or as t1 ! �1

4 generalized mixture
of two exponentials

Same as above

All proofs are given in the Supplementary material.
In the five situations given in Table 1, the causal di-
rection may not be identifiable according to the PNL-
OSB model, and the involved distribution p

E

is very
specific. For the definition of distributions of the form
log-mix-lin-exp or generalized mixture of two

exponentials, see (Zhang & Hyvärinen, 2009). As a
consequence, generally speaking, the causal direction
implied by PNL-OSB is identifiable.

This identifiability result regarding the causal direc-
tion implied by PNL-OSB is similar to the original re-
sult on PNL, which was given in (Zhang & Hyvärinen,
2009). The di↵erence is that ⌘

1

(t) = log p
T

(t) in the
original identifiability result on PNL is replaced by
⌘̃

1

(t) = log pT (t)

vg2 (t)
. Recall that v

g2(t) can be any valid

density ratio; if p
T

(t) is positive on (�1,+1), one

can always adjust v
g2(t) so that pT (t)

vg2 (t)
meets the con-

straint on ⌘
1

in (Zhang & Hyvärinen, 2009). That is,
in our result any p

T

(t) that is positive on (�1,+1)
is allowed. Therefore, our non-identifiable situations
(Table 1) do not contain any constraints on p

T

, but
still have very strong constraints on P

E

and h = f

1

�g
2

.

4 Identifiability of ANM-OSB Model

Given the causal direction, a further important ques-
tion is whether the causal mechanism, represented by
the functional causal model, and the selection proce-
dure, represented by �(y), can be recovered from data.

For simplicity of the derivation and presentation, we
shall consider the ANM for the causal mechanism (not
a PNL one in this section):

Y = f

AN (X) + E, (9)

where E ?? X. Here we further assume that f

AN is
smooth. The observed data are generated by applying
the selection bias on Y , i.e., they were drawn from the
distribution

p

�

XY

= �(y)pF
X

p

F
Y |X , (10)

where p

F
Y |X is specified by the causal model (9) and

p

F
X

denotes the distribution of X before applying the



selection procedure. Note that generally speaking, pF
X

is not identical to p

�

X

. Call the model (F ,�(y)) an
ANM-OSB model.

Suppose that the observed data are generated from an
ANM-OSB (F

1

,�

1

(y)). We are interested in whether
another ANM-OSB (F

2

,�

2

(y)) can generate the same
data distribution. Suppose it does. The observed data
distribution is then

p

�

XY

= p

F1
XY

�

1

(y) = p

F2
XY

�

2

(y). (11)

Let �

r

(y) , �2(y)

�1(y)
. Bear in mind that p

F1
XY

=

p

(1)

X

p

E1(Y �f

(1)(X)) and p

F2
XY

= p

(2)

X

p

E2(Y �f

(2)(X)).
If (11) holds, we have

�

�1
r

(y)p(1)
X

(x)p
E1(e1) = p

(2)

X

(x)p
E2(e2). (12)

Taking the logarithm of both sides gives

�log �
r

(y)+log p(1)
X

+log p
E1(e1) = log p(2)

X

+log p
E2(e2).
(13)

Now let us see whether it is possible for (13) to
hold and, if yes, what constraints the functions �

r

(y),

log p(1)
X

, and log p
E1(e1) must satisfy. Denote by

J

AN

, log p(2)
X

+ log p
E2(e2). As seen from the RHS,

(13) implies
@

2

J

AN

@x@e

2

⌘ 0. (14)

Let l
�

(y) = log �
r

(y), ⌘
X1(x) , log p(1)

X

and ⌘
E1(e1) ,

log p
E1(e1). By solving (14), we can establish the re-

lationship between the two ANM-OSB models.

4.1 General Results

Interestingly, as stated in the following theorem, if
the noise E

1

is non-Gaussian, then f

(2)(x) must be a
shifted version of f (1)(x); in other words, the underly-
ing function f

AN is identifiable up to a constant. Fur-
thermore, if E

1

is non-Gaussian, the selection weight
�(y) can be recovered up to a factor which is an expo-
nential function of y, i.e., �

2

(y) / �

2

(y) · ec2y, where
c

2

is a constant; accordingly, p
E2 / p

E1 · e�c2e1 .

Theorem 2 Let Assumptions A

1

and A

2

hold true:

A

1

. p

(1)

X

and p

E1 are positive on (�1,+1).

A

2

. ⌘00
E1

(e
1

)f (1)

0
(x) = 0 only at finite points.2

Then if (11) is true, the following statements hold.

a) If E
1

is not Gaussian, then f

(2)(x) = f

(1)(x)+c

1

,
and �

2

(y) = �

1

(y)�
r

(y), where �
r

(y) = e

c2y+d1 =

2This excludes the special case where f

(1)0 ⌘ 0, i.e.,
where X and Y are independent; in this case clearly the
selection procedure is not identifiable.

e

d1 · ec2f(1)
(x) · ec2e1 . Accordingly, p

(2)

X

/ p

(1)

X

·
e

�c2f1(x), and p

E2 / p

E1 ·e�c2e1 . Here c

1

, c
2

, and
d

1

are constants, and d

1

guarantees that �
2

(y) is
a valid density ratio.

That is, f (2)(x) is equal to f

(1)(x) (up to a con-
stant), and with proper scaling, �

2

(y) equals �
1

(y)
times an exponential function of y.

b) If E

1

is Gaussian, then �

2

(y) = �

1

(y)�
r

(y),

where �

r

(y) = e

�ab
2 y

2
+c4y+d4 , and f

(2)(x) =
1

1+b

f

(1)(x)+d

3

. Here a, b, c
4

, d
3

, and d

4

are con-
stants, d

4

guarantees that �
2

(y) is a valid density
ratio, and a 6= 0.

That is, with proper scaling, �
2

(y) equals �
1

(y)
times a Gaussian function of y (which includes
the exponential function of y as a special case by
setting b = 0).

An interesting implication of Theorem 2 is that gen-
erally speaking, fitting an ordinary ANM on the data
that were generated by an ANM-OSB will not pro-
duce an independent error term. That is, under
mild assumptions, if one sets �

2

(y) ⌘ 1, (F
2

,�

2

(y))
cannot produce the same distribution over (X,Y ) as
(F

1

,�

1

(y)) does, as is given in the following corollary.

Corollary 3 Let Assumptions A1 and A2 hold. Then
under either of the following conditions, there does not
exist an ANM, specified by (9), to generate the same
distribution over (X,Y ) as (F

1

,�

1

(y)) does.

a) E

1

is not Gaussian and �
1

(y) is not proportional to
e

c

0
y for any c

0.

b) E

1

is Gaussian and �

1

(y) is not proportional to

e

a

0
y

2
+c

0
y for any a

0 and c

0 (i.e., �
1

(y) is not propor-
tional to an exponential function of any polynomial of
y of degree 1 or 2).

4.2 When the Noise is Gaussian

When p

E1 is Gaussian, as stated in b) of Theorem 2,
the function f

AN is not identifiable any more: f (2)(x)
and f

(1)(x)can di↵er by an a�ne transformation (not
simply a shift). Accordingly, �

2

(y) can di↵er from
�

1

(y) in a Gaussian function of y. Compared to the
case where E

1

is non-Gaussian, the Gaussian case suf-
fers from more indeterminacies because the product
of two Gaussian functions is still a Gaussian func-
tion. In particular, since ��1

r

(y) and p

E1(y � f

(1)(x))
(or pF1

Y |X(y|x)) are both Gaussian functions in y, their
product is still a Gaussian function in y. Accordingly,
(12) will hold true, by setting p

E2 to another appropri-
ate Gaussian density; in other words, in this case two
additive noise models F

1

and F
2

can both generate



the same observed data, by applying the bias selection
procedures �

1

(y) and �
2

(y) = �

1

(y)�
r

(y), respectively.

More specifically, we can derive the function f

(2)(x)

and noise distribution p

E2(e2) for the model F
2

. As
shown above, f

(2)(x) = 1

1+b

f

(1)(x) + d

3

. Eq. 12,
combined with (25) and (26), implies that p

E2(e2) /
e

a
2 e

2
2+

ab
2 e

2
2 = e

a(1+b)
2 e

2
2 , while p

E1(e1) / e

a
2 e

2
1 .

Figure 2 gives an illustration of this result. Notice
that the identifiability results imply some constraints
on �

r

(y) = �

2

(y)/�
1

(y), not on �
1

(y), so without loss
of generality, we set �

1

(y) ⌘ 1, leading to �

2

(y) =
�

r

(y). The circles denote the data points generated by
applying the density ratio �

1

(y) ⌘ 1 on additive noise
model F

1

: the dash line shows the nonlinear function
f

(1)(x), and the red solid line shows the shape of p
E1 .

In contrast, additive noise model F
2

uses nonlinear
function f

(2)(x), which is di↵erent from f

(1)(x), and
its noise variance is slightly larger than that in F

1

.
The crosses denote the data points generated by F

2

.
Although F

1

and F
2

are not the same in this case,
applying the density ratio function �

r

(y) on p

F2
XY

gives
the same joint distribution as p

F1
XY

, i.e., �
1

(y)pF1
XY

=
p

F1
XY

= �

r

(y)pF2
XY

= �

2

(y)pF2
XY

.

Figure 2: Illustration of the non-identifiability of the
additive noise model, especially f

AN , when the noise
is Gaussian. Red circles denote data points generated
by the ANM F

1

, or by the ANM-OSB (F
1

,�

1

(y) ⌘
1). The gray crosses denote data generated by the
ANM F

2

. The two ANM-OSB models, (F
2

,�

r

(y)) and
(F

1

, 1), produce the same distribution of (X,Y ).

4.3 With Further Constraints

Not surprisingly, if we have more knowledge about the
noise distribution p

E

or the density ratio function �(y),

the ANM model, including the function, the noise dis-
tribution, and the density ratio, can be fully identifi-
able. Below is an example showing that this is the case
if we know that p

E

is symmetric and non-Gaussian.

Corollary 4 Let the assumptions made in Theorem 2
A

1

and A

2

hold. Suppose E

1

is not Gaussian. Then If
both p

E1 and p

E2 are symmetric about the origin, then
f

(2)(x) = f

(1)(x), E

1

= E

2

, p

E1(e1) = p

E2(e2), and
�

r

(y) ⌘ 1, i.e., �
1

(y) = �

2

(y).

5 Estimation of ANM-OSB

Eq. 10 gives the distribution for the observed data. In
theory, we can then estimate the parameters involved
in �(y), pF

Y |X , as well as p
X

, by maximum likelihood.
However, when using maximum likelihood, we have to
guarantee that the quantity on the right hand side of
(10) is a valid density. This constraint is notoriously
di�cult to enforce in the optimization procedure. Be-
low we propose two methods to estimate the under-
lying additive noise model and �(y); one is maximum
likelihood with the above constraint enforced approxi-
mately, and the other makes use of the score matching
technique.

5.1 Maximum Likelihood Estimation with a
Sample Approximation Constraint

To estimate the involved functions �(y), pF
X

, and p

F
Y |X ,

we can maximize the data likelihood:

L =

nX

k=1

log p�
XY

(x
k

, y

k

)

=

nX

k=1

⇥
log �(y

k

) + log pF
X

(x
k

) + log pF
Y |X(y

k

|x
k

)
⇤
. (15)

According to the theory shown in Section 4, the so-
lution to �y, pF

X

, and p

F
Y |X su↵ers from some indeter-

minacies, e.g., the solution to �y may di↵er from the
true one by an exponential transformation. To find the
solution for which the biased selection procedure is as
weak as possible, we regularize the likelihood function
with the constraint that log �(y) is close to 0. That is,
we maximize

Lr = L� �

r

nX

k=1

p
(log �(y

k

))2 + r, (16)

where the regularization parameter �
r

was set to 10�3

in our experiments, and r is a small positive number
and was set to 0.02.

Now we have two issues to consider. One is how to
parameterize the involved functions. The other is how
to enforce that p�

XY

, specified in (10), corresponds to



a valid density. More specifically, the constraint is

�(y)pF
X

p

F
Y |X > 0, or equivalently �(y) > 0, and (17)

Z
�(y)pF

X

p

F
Y |Xdxdy = 1. (18)

Without constraint (18), the scale of p�
XY

will go to
infinity during the process of maximizing (15).

Parameterization The additive noise model for the
data-generating process, (9), implies that p

F
Y |X =

p

E

(y � f

AN (x)). We parameterize �(y) as the expo-
nential transformation of a nonlinear function repre-
sented by MLP’s (with the tanh activation function);
this automatically guarantees the nonnegativity con-
straint of �(y), as required in (17). Furthermore, we
represent pF

X

with a mixture of Gaussians, the nonlin-
ear function f

AN with MLP’s (with the tanh activa-
tion function), and p

E

with another mixture of Gaus-
sians.

Enforcing p

�

XY

to Be a Valid Density We present
a sample-average approximation scheme to approxi-
mately enforce the condition that the right hand side of
(10) corresponds to a valid distribution, or more specif-
ically, to impose the constraint (18). Notice that the
given data points {x

k

, y

k

}n
k=1

were drawn from p

�

XY

.
As a matter of fact, we have

Z
�(y)pF

X

p

F
Y |X =

Z
p

o

XY

�(y)pF
X

p

F
Y |X

p

o

XY

dxdy (19)

⇡ 1

n

nX

k=1

�(y
k

)pF
X

(x
k

)pF
Y |X(y

k

|x
k

)

p

o

XY

(x
k

, y

k

)
(20)

⇡ 1

n

nX

k=1

�(y
k

)pF
X

(x
k

)pF
Y |X(y

k

|x
k

)

p̂

o

XY

(x
k

, y

k

)
, (21)

where p

o

XY

denotes the data distribution of (X,Y ),
and p̂

o

XY

(x
k

, y

k

) denotes its estimate at point (x
k

, y

k

).
Here the expression in (20) is an empirical estimate of
(19) on the sample drawn from the distribution p

o

XY

;
furthermore, (20) replaces the density p

o

XY

(x
k

, y

k

)
with its empirical estimate p̂

o

XY

(x
k

, y

k

). As a con-
sequence, the constraint (18) can be (approximately)
achieved by enforcing

1

n

nX

k=1

�(y
k

)pF
X

(x
k

)pF
Y |X(y

k

|x
k

)

p̂

o

XY

(x
k

, y

k

)
= 1. (22)

In our experiments, we used kernel density estima-
tion with a Gaussian kernel for p̂

o

XY

(x
k

, y

k

); for each
dimension, we set the kernel width to the median dis-
tance between points in the sample, as in (Gretton
et al., 2007).

Under the parameterization given in (27) and with the
above approach to guarantee that p

o

XY

is (approxi-
mately) a valid density, one can then maximize the

likelihood function given in (15) to estimate the func-
tion f

AN , the noise distribution, and �(y).

5.2 With Score Matching

Alternatively, we can estimate the parameters by score
matching (Hyvärinen, 2005), i.e., by minimizing the
expected squared distance between the gradient of the
log-density given by the model and the gradient of the
log-density of the observed data. This procedure aims
to match the shape of the density given by the model
and that of the empirical density of the observed data,
and is invariant to the scaling factor of the model den-
sity. As a clear advantage, in the optimization pro-
cedure one does not need to guarantee that p

�

XY

is a
valid density.

Given any model density p

Z

(z; ✓) of a m-dimensional
random vector Z, the score function is the gra-
dient of the log-density w.r.t. the data vec-
tor, i.e.,  (z; ✓) = ( 

1

(z; ✓), ..., 
m

(z; ✓))| =

(@ log pZ(z;✓)

@z1
, ...,

@ log pZ(z;✓)

@zm
)|. Note that the score

function is invariant to scale transformations in
p

Z

(z), i.e., it is invariant to the normalization con-
stant for a valid density. One can then estimate
model parameters by minimize the expected squared
distance between the model score function  (·; ✓)
and the data score function  

Z

(·; ✓), i.e., minimize
1

2

R
z2Rm p

Z

(z)|| (z; ✓)� 
Z

(z)||2dz. It has been shown
in (Hyvärinen, 2005) that minimizing the above
squared distance is equivalent to minimizing

J

SM (✓) =

Z

z2Rm

p

Z

(z)
mX

i=1

⇥
 ̃

i

(z; ✓) +
1

2
 

2

i

(z; ✓)
⇤
dz,

where  ̃

i

(z; ✓) = @ i(z;✓)

@zi
. The sample version of

J

SM (✓) over the sample z
1

, ..., z
n

is

Ĵ

SM (✓) =
1

n

nX

k=1

mX

i=1

⇥
 ̃

i

(z
k

; ✓) +
1

2
 

2

i

(z
k

; ✓)
⇤
. (23)

In particular, here we have  
1

=  

X

and  

2

=  

Y

;
noting that p

F
Y |X = p

E

(y � f

AN (x)), we can write

down the involved derivatives involved in (28), and
then minimize the regularized score function (with the
same regularization term as in Eq. 16) to estimate the
involved parameter.

6 Experiments

Simulations The simulated data are generated by
applying the biased selection procedure on the data
generated by a additive noise model with function
f

AN , i.e., by (9) and (10). As shown in Section 4,
the function f

AN is identifiable up to some shift when



the noise is non-Gaussian. We shall study the esti-
mation quality of the regression function f

AN under
di↵erent settings.
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Figure 3: Simulation settings and results. (a) shows
the density ratio functions for OSB, �

1

(y), �
2

(y), and
�

3

(y), which are used in settings 1-4, 5-8, and 9-12,
respectively. (b), (c), and (d) show the pairwise MSE
of the estimated function for the proposed methods
against GP regression on the given sample, in settings
1-4, 5-8, and 9-12, respectively. The dashed line marks
the threshold where the proposed methods and GP
regression on the given sample perform equally well.

We consider three settings for OSB, by setting �(y)
(see Eq. 10) to di↵erent functions. As shown in Fig-
ure 3(a), �(1)(y) is a piecewise linear function, �(2)(y)
is a (scaled) Gaussian function with mean -1 and stan-
dard deviation 2, and �(3)(y) corresponding to a hard
biased selection procedure: it drops all data points
corresponding to the 10% largest values of Y .

We use two ways to generate the distributions ofX and
E; one is the uniform distribution, and the other the
mixture of three Gaussians with random coe�cients.
The function f

AN is a mixture of the linear, tanh, and
cubic function with random coe�cients (the coe�cient
for the cubic function is constrained to be small to
avoid extreme values in Y ).

In total there are 2 ⇥ 2 ⇥ 3 simulation settings. For
each setting we repeat the experiment with 15 random
replications. We use the methods proposed in Sec-
tion 5 to recover this function. Denote by f̂

AN

ML

the esti-
mate given by the (approximate) maximum likelihood
method, and by f̂

AN

SM

that given by the score match-

ing method. The estimation performance is evaluated
by the mean square error (MSE) between the estimate
and the true function, 1

n

P
n

i=1

(f̂AN (x
i

) � f

AN (x
i

))2.
We compare the estimates produced by our methods
with that estimated by Gaussian process (GP) regres-
sion on the given sample, denoted by f̂

GP

. Figure 3(b-
d) compares the estimation quality of f̂AN

ML

and f̂

AN

SM

against f̂
GP

; note that they are plotted on a log scale.
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Figure 4: Results of a typical run estimated by the
maximum likelihood approach. The four subfigures
show the data produced by the ANM, the selected
sample and the estimates of fAN , the estimate of �(y),
and the estimates of p

X

and p

E

, respectively.

As one can see from Figure 3(b-d), the proposed meth-
ods may converge to unwanted solutions, as shown by
the few points above the dashed lines. However, in
most cases the proposed method provides a better es-
timate of the function f

AN . As suggested by (Demšar,
2006), we use the Wilcoxon signed ranks test to check
whether MSE(f̂AN

, f

AN ) is significantly better than
MSE(f̂

GP

, f

AN ) under all the three settings for �(y).
It is a nonparametric test to detect shifts in popula-
tions given a number of paired samples. Under the null
hypothesis the distribution of di↵erences between the
two populations is symmetric about 0. We find that
under all the three sets of settings, for the score match-
ing method, the null hypothesis is always rejected at
the 0.01 level (the p-values are 6⇥10�7, 2⇥10�6, and
8 ⇥ 10�5, respectively). For the maximum likelihood
method, the null is rejected in settings 1-4 and 5-9 (the
p-values are 2⇥ 10�7, and 8⇥ 10�5, respectively); we
fail to reject the null in settings 5-8 (with the p-value
0.22): this seems to be caused by local optima, which
will be discussed below. This means that the proposed
method outperforms the method that fits GP regres-
sion on the observed data, in terms of the estimation
quality of the true function.

Figure 4 gives the result of a typical run (with �
3

(y))
produced by maximum likelihood. Interestingly, one



can see that compared to the true �(t), which is �
3

(y)
in Figure 3(a), �̂(y) contains an additional factor of
the form e

c2y with some constant c
2

. The estimates of
p

X

and p

E

are also skewed accordingly. This verifies
the statements given in Theorem 2(a).

As seen from Figure 3, both algorithms may get stuck
in local optima. Let us have a closer look at the re-
sults given by maximum likelihood. We found that
for each simulation setting, in all runs where the func-
tion f

AN was not accurately recovered, or more specif-
ically, where MSE(f̂AN

ML

, f

AN ) > MSE(f̂
GP

, f

AN ),
the corresponding likelihood values are among the low-
est across all 15 runs. That is, the attained likelihood
value suggests whether the algorithm converges to a
local optimum. Therefore, in practice one may run
the algorithms multiple times with random initializa-
tions and choose the one which gives the best model
fit (e.g., the highest likelihood). However, this is not
the case for the score matching-based approach: we
did not find that the unwanted solutions always corre-
spond to relatively large score distances. The precise
reason for this phenomenon is still under investigation.
Hence, below we only report the results given by the
(approximate) maximum likelihood approach.

Experiments on Real Data We went through the
cause-e↵ect pairs (http://webdav.tuebingen.mpg.
de/cause-effect/) to find data sets which are likely
to su↵er the OSB issue according to commonsense or
background knowledge. We selected Pairs 25, 40, and
41. Here to save space, we only report the results on
Pair 25; it is about the relationship between the age
(X) and the concrete compressive strength (Y ) of dif-
ferent samples of concrete.

The empirical distribution of the data in Pair 25 sug-
gests that it is very likely for the e↵ect to su↵er from
a PNL distortion. We use a rough way to take into
account both the PNL distortion in the causal process
and the OSB. We first fit the PNL causal model (Zhang
& Hyvärinen, 2009) on the data and correct the data
with the estimated PNL transformation on Y . We
then fit the ANM-OSB procedure on the corrected
data. To avoid local optima, we run the (approxi-
mate) maximum likelihood algorithm presented in Sec-
tion 5.1 five times with random initializations and
choose the one with the highest likelihood. Figure 7
shows the result on Pair 25. As seen from �̂(y), it
seems for some reason, the samples whose compressive
strength is very high were not selected. The estimated
function f̂

GP

ML

seems to address this issue.

7 Conclusion and Discussions

As we have shown, in the presence of outcome-
dependent selection, the causal direction is still generi-
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Figure 5: Results on pair 25 of the cause-e↵ect pairs.
(a) The scatterplot of the data (after correcting the
nonlinear distortion in Y with the PNL causal model),
the nonlinear regression function f̂

GP

on the data, and
the estimated function f̂

AN

ML

by the maximum likeli-
hood approach. (b) The estimated density ratio �(y).

cally identifiable if the causal relationship can be mod-
eled by a post-nonlinear causal model. Moreover, in
the case of an additive noise model, the causal mech-
anism as represented by the function in the model
is identifiable up to a constant if the noise term is
non-Gaussian (and completely identified if the noise
term follows a symmetric, non-Gaussian distribution).
However, due to the selection bias, the estimation re-
quires more care than standard methods for fitting
such models, and we developed two estimation pro-
cedures in this paper.

This is a first step towards a better understanding of
the bearing of selection bias on the identifiability and
estimation of functional causal models. There are sev-
eral interesting problems for future work. First, the
identifiability result on additive noise models can be
generalized to post-nonlinear models, but it will take
more work to put the more general result in a su�-
ciently simple form. Second, our positive results here
are confined to outcome-dependent selection. Thanks
to this restriction, our results do not rely on any sub-
stantial assumption on the selection mechanism. For
more complex structures of selection, such as when
the selection depends on both cause and e↵ect, iden-
tifiability will require more specifications of the selec-
tion model. Third, our result on the identification of
causal direction is confined to the two-variable case
without latent confounders; how to handle selection
in multi-variable structural learning, with or without
latent confounders, remains an open problem.
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