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Abstract

Open agent systems are multiagent systems in
which one or more agents may leave the system
at any time possibly resuming after some interval
and in which new agents may also join. Plan-
ning in such systems becomes challenging in the
absence of inter-agent communication because
agents must predict if others have left the system
or new agents are now present to decide on pos-
sibly choosing a different line of action. In this
paper, we prioritize open systems where agents
of differing types may leave and possibly reenter
but new agents do not join. With the help of a
realistic domain – wildfire suppression – we mo-
tivate the need for individual planning in open
environments and present a first approach for ro-
bust decision-theoretic planning in such multia-
gent systems. Evaluations in domain simulations
clearly demonstrate the improved performance
compared to previous methods that disregard the
openness.

1 INTRODUCTION

The past year has been witness to one of the worst seasons
of wildland fires, here onwards referred to as wildfires, on
record in the United States. There were more than fifty
thousand wildfires that burned more than nine million acres
of wildland. Both ground and various types of aerial fire-
fighting units are often deployed in suppressing these fires.
Consider the decision-making task of a small ground unit
of firefighters. As these fires are large, a unit needs to co-
ordinate with others to focus their resources on the same
area and make a difference. However, units may run out
of suppressants (such as water and chemicals) or suffer
from exhaustion causing them to temporarily leave. Con-
sequently, wildfire fighting units form an open and typed
multiagent system and a unit’s decision making about its
course of action becomes challenging if a leaving unit is

unable to radio its intent to temporarily disengage.

Open agent systems such as the one described above are
characterized by one or more interacting agents leaving
the system at any time and possibly resuming after some
interval, or new agents joining the system [1]. We refer
to this characteristic as agent openness. A second form of
openness is exhibited by a system when the types of agents
alter at any time perhaps just briefly; we refer to this as
type openness. The wildfire suppressing example presented
above exhibits agent openness but not type openness.

In this paper, we prioritize systems exhibiting agent open-
ness and further limit our attention to systems where agents
may disengage at any time and possibly reenter the system
but new agents do not enter the system. We are interested
in how an individual agent, for example the ground fire-
fighting unit, should plan its actions in such open and typed
multiagent systems. A perspectivistic approach makes this
investigation broadly applicable to cooperative, noncoop-
erative and mixed settings all of which may exhibit agent
openness.

Previous methods for individual decision-theoretic planning
such as algorithms for the well-known interactive partially
observable Markov decision process (I-POMDP) [2, 3] are
well suited for typed systems but do not model agent open-
ness so far. Similarly, algorithms for joint cooperative plan-
ning in frameworks such as the decentralized POMDP [4]
are not easily amended for open agent systems. As such,
there is a marked gap in the literature on principled planning
for open systems. We present a first approach for modeling
and planning in the context of agent openness when the
physical state may not be perfectly observed. In keeping
with our objective of individual planning and the presence
of agents of various types, we generalize the I-POMDP-Lite
framework [5] to allow for agent openness. This framework
is more efficient than the general I-POMDP because it as-
cribes a nested MDP to model others rather than a belief
hierarchy. We utilize a graph to model the interaction struc-
ture between various agents and extend the joint state to
model the event that neighboring agents could have disen-
gaged. In the absence of communication, we show how the



agent’s unexpected observations allow it to correct its model
of the other agent post hoc after the agent has left or has
reentered. Alternately, a proactive approach that seeks to
predict when agent may disengage or reenter should exhibit
improved benefit. However, the subject agent may not know
how factors relevant to others’ decisions to leave or reenter
evolve.

The generalized I-POMDP-Lite is utilized to model the
problem domain of wildfire suppression exhibiting open
and typed agent systems. We continue with Hoang and
Low’s [5] use of interactive point-based value iteration to
scalably plan and extend it appropriately to the generalized
I-POMDP-Lite. Evaluations in simulations of the domain
clearly demonstrate not only the improved performance of
the individual agent but also the performance of the entire
open system at a macro level in comparison to planning that
disregards agent openness.

2 RELATED WORK

Agent openness is a challenging property of realistic multia-
gent systems that has been identified at various points in the
literature. Shehory [1] noted that the openness of an agent
system refers to the ability of introducing additional agents
into the system in excess to the agents that comprise it ini-
tially. Calmet et al. [6] also studied openness in societies
of agents where an open society is one that is open to new
agents either with no definite goal or with goals not exceed-
ingly relevant to the society. Both definitions focused on the
system and software architecture to support openness.

Recently, additional properties for agent openness have been
reported. Jamroga et al. [7] defined the degree of openness
of multi-agency as the complexity of the minimal transfor-
mation that the system must undergo in order to add a new
agent to the system or remove an existing one from the sys-
tem. Jumadinova et al. [8] and Chen et al. [9] extended the
notion of openness to include both agent openness and task
openness to model the dynamic nature of the agents and
tasks in the environment. They considered fluctuations in
the availability of agents needed to perform tasks, as well as
dynamic changes in the type of tasks that appear over time.
In both papers, the degree of openness is defined as the rate
at which agents/tasks join and leave the environment.

Relevant to modeling individual agents in open environ-
ments, Huynh et al. [10] studied the problem of developing
trust and reputation models in open agent systems to enable
agents (owned by a variety of stakeholders) to assess the
quality of their peers’ likely performance. Similarly, Pinyol
and Sabater-Mir [11] studied, for open environments where
agents’ intentions are unknown, how to control the inter-
actions among the agents in order to protect good agents
from fraudulent entities, or to help agents find trustworthy
or reputable agents.

In this paper, we adopt the notion of dynamic agent openness
defined by Shehory, extended in Jumadinova et al. and Chen
et al. Similar to Huynh et al. and Pinyol and Sabater-Mir,
we are also interested in developing a solution to enable an
agent to model its transient neighbors in open environments.
However, our problem and approach differ in that we are
interested in modeling how neighbors will behave over time
(i.e., predicting what actions they might take, as well as their
future presence in the environment which directly impacts
when and how they might work together with or against an
agent), instead of determining how reliable a neighbor might
be. Similar to Jumadinova et al. and Chen et al., we also
seek to design agents capable of strategic, self-interested
reasoning, but we do so from the decision-theoretic perspec-
tive grounded in the tradition of Markov decision problems
with an added focus on modeling peer behavior in order to
plan and perform actions as a best response to the expected
behavior of peers.

Finally, we note that ad hoc cooperation – coming together
of multiple agents on the fly to meet a goal [12] – is just
one characteristic of an open agent system. As this paper’s
focus is instead on agents dynamically departing the system
and reentering, we do not discuss the emerging literature on
online planning for ad hoc teamwork.

3 BACKGROUND

I-POMDP-Lite mitigates the complexity of I-POMDPs by
predicting other agent’s actions using a nested MDP; this
assumes that the other perfectly observes the physical state.
A nested MDP [5] is a scalable framework for individual
planning in multiagent systems where the physical state and
others’ models are perfectly observable to each agent. It is
defined as a tuple for agent i:

Mi,l , 〈S,A, Ti, Ri, {πj,d, πk,d, . . . , πz,d}l−1
d=0, OCi〉

where:

• S is the set of physical states of the interacting agent
system. The space may be factored as, S = X1 ×X2 ×
. . .×Xk, where X1, . . . , Xk are k > 0 factors;

• A = Ai ×Aj × . . .×Az is the set of joint actions of all
interacting agents in the system;

• Transition of a state due to the joint actions to another
state may be stochastic and the transition function is
defined as, Ti : S × A × S → [0, 1]. The transition
probabilities may be conditionally factored based on the
factorization of the state space;

• Ri is the reward function of agent i that depends on the
state and joint actions, Ri : S ×A→ R;

• {πj,d, πk,d, . . . , πz,d}l−1
d=0 is the set of other agents j, k,

. . ., z reasoning models at all levels from 0 to l− 1. Each
of these models is a policy which is a mapping from states



to distributions over actions and is obtained by solving
a nested MDP for the agent at that level. However, a
level-0 reasoning model is a uniform distribution over an
agent’s actions;

• OCi is i’s optimality criterion. In this paper, we utilize a
finite horizon H with discount factor γ ∈ (0, 1).

Analogous to MDPs, we may associate a horizon 0 < h ≤
H value function withMi,l that extends the standard Bell-
man equation. Let A−i = Aj ×Ak × . . .×Az .

V hi,l(s) = max
ai∈Ai

∑
a−i∈A−i

∏
−i∈{j,k,...,z}

π̂−i,l−1(s, a−i)

×Qhi,l(s, ai,a−i) (1)

Here, Qhi,l(s, ai,a−i) is defined recursively:

Qhi,l(s, ai,a−i) =Ri(s, ai,a−i) + γ
∑
s′∈S

Ti(s, ai,a−i, s
′)

× V h−1
i,l (s′) (2)

Furthermore, π̂−i,l−1 in Eq. 1 is defined as a mixed strategy
that has a distribution over reasoning models at all levels
up to l − 1. If l − 1 = 0 in Eq. 1 then π̂−i,l−1 is a uniform
distribution over the other agent’s actions.

π̂j,l(s, aj) ,


l∑

d=0

Pr(d) πj,d(s, aj) l ≥ 1

1
|Aj | l = 0

(3)

Policy πj,d(s, aj) is obtained by solving the nested MDP of
agent j at level d, which involves optimizing the correspond-
ing value function similar to Eq. 1. Let Optj be the set of
j’s actions that optimizes it. Then, πj,d(s, aj) = 1

|Optj | if
aj ∈ |Optj | otherwise πj,d(s, aj) is 0. Distribution Pr(d)
on the nesting depth up to l is typically uniform but may
also be learned from data as well.

With all agents modeling each other, solution of a nested
MDP proceeds bottom up. Level-0 models of all agents de-
fault to uniform distributions. These are utilized in solving
level-1 nested MDPs,Mi,1,Mj,1, . . . ,Mz,1. Both level-0
and -1 solutions are utilized in solving nested MDPs at level
2; and so on up to level l. Consequently, in an N -agent
system we solve N − 1 models of others at any level and a
total of (N − 1)l models. This is linear in both the number
of nesting levels l and the number of agents, and scales well
with both. If all N agents plan using nested MDPs then a
total of O(N2l) such models are solved.

For individual planning in situations where the physical
state is not perfectly observable to the subject agent i al-
though the reasoning models of other agents are known and
are supposed to possess the capability to observe the state
perfectly, Hoang and Low [5] present the I-POMDP-Lite
framework.

I-POMDPLi,l , 〈S,A,Ωi, Ti, Oi, Ri, {Mj,l−1,Mk,l−1, . . . ,

Mz,l−1}, OCi〉

Parameters S, A, Ti and Ri are as defined previously in
the nested MDP framework. Ωi is the set of agent i’s
observations and Oi is the observation function, which
models the level of noise in the observations: Oi : S ×
Ai × Ωi → [0, 1]. Notice that the observation distribu-
tion is conditionally independent of other agents’ actions.
{Mj,l−1,Mk,l−1, . . . ,Mz,l−1} are the nested MDPs of
various interacting agents, and OCi is the optimality crite-
rion that may include a discount factor and an initial belief,
b0i , over the state space.

Analogous to POMDPs, an agent maintains a belief over the
states and the planning method associates a value function
with the belief:

V hi,l(bi) = max
ai∈Ai

(ρi(bi, ai)

+γ
∑

s′∈S,oi∈Ωi

T ai,oii (s′, oi|bi, ai)× V h−1
i,l (b′i)

 (4)

where,

ρi(bi, ai) =
∑
s∈S

∑
a−i∈A−i

∏
−i∈{j,k,...,z}

π−i,l−1(s, a−i)

×Ri(s, ai,a−i) bi(s)

Policies π−i,l−1(s, a−i), −i ∈ {j, k, . . . , z} are solu-
tions of the other agents’ nested MDPs; and b′i denotes
the updated belief, Pr(s′|oi, ai,a−i, bi) ∝ Oi(s

′, ai, oi)
×
∑
s∈S

Ti(s, ai,a−i, s
′) bi(s).

Solution of I-POMDPLi,l requires solving the nested MDPs
that are a part of its definition to obtain the policies. As we
mentioned previously, this proceeds bottom up. At the top
most level only, a POMDP is solved by decomposing the
value function given in Eq. 4 into an inner product between
a set of alpha vectors and the belief. While the total number
of models that are solved remain linear in the nesting level
and the number of agents, the computational complexity is
higher because of the presence of a POMDP.

4 INDIVIDUAL PLANNING WITH
AGENT OPENNESS

Planning that can assist fighting wildfires must deal with
the event that units run out of suppressants – some types of
units run out more quickly than others – due to which units
temporarily leave the theater and thus the agent system. We
seek to reason about the agent openness found in such envi-
ronments as part of the individual planning in a principled
way.

Systems of many agents in the real world often exhibit
interaction structure. Specifically, not all agents interact
with one another; rather, interactions often happen among
small subgroups of agents.



(a) (b)

Figure 1: (a) An example wildfire scenario with 5 firefight-
ing units of three types situated in a 4 × 5 grid of forestland.
(b) Firefighting units must often coordinate on suppressing
fires. This coordination overlays an interaction graph.

A well-known data structure that explicates the interaction
structure is an interaction graph, which is an undirected
graph whose nodes represent agents and the absence of an
edge between two agents indicates that the reward of each
of the two agents is not dependent on any action of the
other agent. Interaction structure may be exploited during
planning for computational scalability [13, 14, 15]. We
motivate the interaction structure using an example:

Example 1. Figure 1(a) illustrates an example wildfire sup-
pressing scenario that consists of ground and two types of
aerial firefighting units. Units must coordinate on adjacent
or diagonally located fires to gradually suppress them and
prevent them from spreading. This coordination overlays an
interaction graph that is shown in Fig. 1(b). Notice that the
graph is not a clique and thus exhibits structure.

Each vertex in the graph denotes an agent i in the set N of
agents and an edge between a pair of agents whose individ-
ual payoffs depend on each other’s actions. Let ν(i) be the
set of nodes that are directly linked by an edge to node i.
We refer to ν(i) as the set of i’s neighboring agents.

4.1 Post Hoc Reasoning

Let Ẋ be the set of distinguished state factor(s) in S whose
value determines whether other agent j ∈ ν(i) temporarily
leaves the network. For example, this variable could reflect
j’s suppressant level. If i determines that j has left the
network, i replaces j’s predicted actions – using j’s policy
obtained by solving its nested MDPMj,l−1 – with a no
op action from then onward during which the agent does
not act. 1 Consequently, Aj is replaced with Aj ∪ {no
op}. This is beneficial because we need not change the
definitions of agent i’s transition, observation and reward
functions when an agent leaves the network if no op is
already in Aj . Otherwise, these are modified to model the
implications of j’s no operation to allow for agent openness.

1A caveat of this approach is that the agent’s absence is obser-
vationally equivalent with the agent intentionally not acting.

However, the problem of predicting when an agent has left
the network remains challenging because the state is par-
tially observable – the amount of j’s suppressant cannot be
directly observed as we preclude communication between
the separated units. Similarly, the problem of predicting if
and when an agent has resumed its activities is also chal-
lenging.

Define joint probability T ai,oii (s′, oi|ai, bi) as,

T ai,oii (s′, oi|ai, bi) =
∑
s∈S

bi(s)
∑

a−i∈A−i

Ti(s, ai,a−i, s
′)

Oi(s
′, ai,a−i, oi)

∏
−i∈{j,k,...,z}

π−i,l−1(s, a−i)

We make the following key observation that facilitates
progress in this challenging task:

Observation 1. Post hoc T ai,oii (s′, oi|ai, bi) immediately
after a neighboring agent has left the system will be small
but will generally increase with time until the agent reenters.

While agent j may abruptly leave the system at time step t,
the planning agent continues to predict j’s actions as if it
were part of the system until the observation at time t+ 1
reveals that the state did not transition as expected. In other
words, joint T ai,oii (s′, oi|ai, bi) will be small because next
state s′ that is obtained by predicting j’s action incorrectly
will have low likelihood given observation oi.

Nevertheless, observation oi when used in the belief update
to obtain b′i will cause the probability mass in bi to shift to
states that make oi more likely. These are likely to be states
at which πj,l−1(s′, no op) is high; i.e., j is not performing
any significant action because j has left the system. With
more such observations that support the fact that j has left
the system, more probability mass in the updated beliefs
settles on states at which j is predicted to not perform any
significant action. Therefore, joint T ai,oii (s′, oi|ai, bi) will
start rising until another such event occurs. We illustrate
this observation:

Example 2. Let firefighting unit j exit a team that consists
of units i and j who are coordinating on suppressing a high
intensity wildfire. Unit i expects the intensity of the fire to
continue reducing in the next time step but instead observes
that the intensity remained the same as before. This low
probability observation makes i subsequently believe that
perhaps j is not fighting the fire anymore (because it may
have left the system); a belief that gets strengthened further
as the fire continues to burn at the same intensity despite
i fighting it. When its predictions of j performing no ops
are sufficiently certain, i may choose to coordinate on a
different wildfire with another unit.

Observation 1 continues to hold when ν(i) has two or more
agents but i may not be able to pinpoint which agent has
exited.



Moving forward, let agent j reenter the system and resume
its actions. Again, agent i may experience a phenomenon
similar to that described in Observation 1 where post hoc
Ti(s′, oi|ai, bi) drops because the observations do not sup-
port the next predicted state. This is because i is attributing
no op to j despite j having reentered. However, persistent
observations will shift the probability mass in i’s belief to
states at which j is predicted to be performing actions other
than no op thereby modeling the fact that j is active again.

To illustrate, if unit i continued fighting the same wildfire
as before, it may suddenly witness the intensity reducing
significantly. This is indicative of the fact that unit j is active
again and i’s revised beliefs will emphasize those states at
which j could also be suppressing the fire. On reentering,
an agent can be expected to remain committed to fighting
the fire if the intensity is steadily reducing, until the fire is
suppressed or the agent’s suppressant becomes low.

The observation below summarizes this subsection:

Observation 2. Decision-theoretic planning that integrates
modeling behaviors of other agents and a Bayesian belief
update can reason about agent openness post hoc and plan
accordingly with minimal extension.

However, the limitation is that the adaptation of planning
to the dynamic openness is delayed due to the post hoc
reasoning.

4.2 Predicting Agent Openness

A better way to act in open agent systems would be to
predict when a neighboring agent leaves or reenters the
system. Presuming that the agent’s departure is a policy-
guided behavior and the agent’s policy is known, we must
predict changes in the distinguished state factors Ẋ that may
cause the other agent to leave the system. However, the main
challenge is that the subject agent is usually uninformed
about how these factors evolve over time.

For example, the rate at which the other firefighting unit
consumes its suppressant is typically not known and may
not be observed due to the separation between the two units.
Nevertheless, observations related to the unit leaving the
system over time provide information from which the rate
could be gradually learned and utilized in the prediction.

Let Ṫi(ẋ, ai,a−i, ẋ′) be the transition distribution for Ẋ
given i’s action ai, neighbors’ joint actions a−i, and previ-
ous value of the factor ẋ ∈ Ẋ. For notational convenience,
we assume that Ṫi may be factored out from function Ti.
Subsequently, predicting when neighboring agents j ∈ ν(i)
are likely to leave the system is dependent on knowing
Ṫi(ẋ, ai, a−i, ẋ

′) for all pairs of state factors and joint ac-
tions.

Our approach is Bayesian; it involves explicitly modeling
the uncertainty over the distribution, updating it over time

based on expected next states and utilizing it in the offline
planning.

We may model the uncertainty over the distribution
Ṫi(ẋ, ai,a−i, ·) as a Dirichlet process (DP), and the un-
certainty over all such distributions as a system of Dirichlet
processes. Formally, Ṫi(ẋ, ai,a−i, ·) ∼ DP (n,C), where
n is a positive integer and C is a distribution over Ẋ. Let
factor(s) Ẋ assume values {ẋ1, ẋ2, . . . , ẋ|Ẋ|}, then(
Ṫi(ẋ, ai,a−i, ẋ1), Ṫi(ẋ, ai,a−i, ẋ2), . . . , Ṫi(ẋ, ai,a−i,

ẋ|Ẋ|)
)
∼ Dir(n · c

ẋaẋ1

n
, n · c

ẋaẋ2

n
, . . . , n · c

ẋaẋ|Ẋ|

n
)

(5)

where cẋaẋ1 is the number of samples where transition
(ẋ, ai,a−i, ẋ1) occurs, and analogously for others; n ,∑|Ẋ|

q=1 c
ẋaẋq is the total number of samples. A Dirichlet pro-

cess has the appealing property that the mean of its marginal,
E[Ṫi(ẋ, ai,a−i, ẋ1)] = cẋaẋ1

n and the concentration param-
eter n inversely impacts the variance.

Let us obtain a sequence of n′ next states {ẋ′1, . . . , ẋ′n′}
given the current state ẋ and actions ai,a−i in independent
draws. Then the posterior distributions become,(
Ṫi(ẋ, ai,a−i, ẋ1), Ṫi(ẋ, ai,a−i, ẋ2), . . . ,

Ṫi(ẋ, ai,a−i, ẋ|Ẋ|)
)
|ẋ′1, . . . , ẋ′n′ ∼ Dir (n+

n′ ·
cẋaẋ1 +

∑n′

q=1 δẋ1
(ẋq)

n+ n′
, n+ n′ ·

cẋaẋ2 +
∑n′

q=1 δẋ2
(ẋq)

n+ n′
,

. . . , n+ n′ ·
cẋaẋ|Ẋ| +

∑n′

q=1 δẋ|Ẋ|(ẋq)

n+ n′

 (6)

where δẋ′1(ẋq) is a point mass located at ẋ1. As the posterior
continues to be Dirichlet distributed, the posterior is also a
Dirichlet process with concentration parameter that simply
adds the count of new samples to the previous count and a
base probability that is the proportion of the total number
of samples in which say state ẋ1 occurs. As such, the
Dirichlet process provides a conjugate family of priors over
distributions.

By modeling the dynamic uncertainty over the transition
function of distinguished state factors as a Dirichlet process,
we may limit our attention to the counts of the different state
samples. Let φ be the vector of counts of all transitions; its
size is |Ẋ|2|A|. Next, we show how to include the Dirichlet
process in I-POMDP-Lite.

We augment the state space of I-POMDPLi,l to include this
vector: S = S × Φ where Φ is the space of all such vectors
and is of size N|Ẋ|2|A|. Given the augmented state space,
we redefine the transition, observation and reward functions



of I-POMDPLi,l as follows:

Ti(〈s, φ〉, ai,a−i, 〈s′, φ′〉) =
Ti(s/ẋ, ai,a−i, s

′
/ẋ) if φ′ = φ+ δẋaẋ′

×E[Ṫi(ẋ, ai,a−i, ẋ
′)]

0 otherwise

Here, δẋaẋ′ is a vector of size |Ẋ|2|A| with all 0s except
for a 1 at the location indexed by (ẋ,a, ẋ′) where ẋ is
the distinguished factor of state s and ẋ′ is a factor of s′.
The expected transition probability is obtained from the
posterior Dirichlet process. The observation function is
now defined as,

Oi(〈s, φ〉, ai,a−i, 〈s′, φ′〉, oi) ={
Oi(s

′, ai,a−i, oi) if φ′ = φ+ δẋaẋ′

0 otherwise
(7)

The reward function is straightforward:
Ri(〈s, φ〉, ai,a−i) = Ri(s, ai, a−i). The optimality
criteria remains the same as before.

Consequently, the augmented
I-POMDPLi,l is defined by the tuple
〈S, A, Ti,Ωi,Oi,Ri, {Mj,l−1,Mk,l−1, . . . ,Mz,l−1},
OCi〉, where the new parameters are defined as above. It
shares commonality with the Bayes-adaptive I-POMDP
framework [16] though we are uncertain over partial
transition distributions only and our framework differs
by limiting attention to nested MDPs as models of
others. Acting optimally in response to observations in
this augmented framework entails the standard balance
between exploring to learn the transition distributions of
the distinguished state factor(s) with greater confidence and
exploiting the learned distributions for reward. However,
compared to traditional online methods for reinforcement
learning, this balance is achieved offline as an integral part
of the planning.

The exact solution of the augmented I-POMDPLi,l is chal-
lenged by the infinite state space because the count vector φ
grows unboundedly. If the count vector somehow reflects
the true transition probabilities, then Ti effectively collapses
into the true transition function and we may obtain the exact
solution of the planning problem. However, by the law of
large numbers we can only approach the true distributions
asymptotically using counts. Nevertheless, the following ob-
servation provides guidance on how we can move forward:
Observation 3. With increasing numbers of samples,
means of the posterior Dirichlet processes DP (n,C) come
arbitrarily close to the true transition probabilities. Conse-
quently, values of the policies using the estimated transition
functions may also come arbitrarily close to the value of the
exact policy.

Indeed, Ross et al. [17] exploit the above observation in
the context of POMDPs and identify an ε-dependent finite

space of counts of both transitions and observations whose
consideration leads to policies with values that are within ε
of the exact (obtained using the infinite space). We extend
these results to our context where the uncertainty is over
the partial transition function only but involving multiple
agents; this allows solving the augmented I-POMDPLi,l with
finite state spaces as bounded approximation of the exact.

Let αt(s, φ;πi,l) be i’s expected value of following pol-
icy πi,l from augmented state (s, φ) at some time step

t. Let N ẋa
φ =

|Ẋ|∑
q=1

φẋaẋq where φẋaẋq is the count for

the transition (ẋ,a, ẋq) contained in the vector φ; and

N ε = max
(
|Ẋ|(1+ε′)

ε′ , 1
ε′′ − 1

)
where ε′ = ε(1−γ)2

8γRmax and

ε′′ = ε(1−γ)2 ln(γ−ε)
32γRmax . Here,Rmax is the largest value inR.

Proposition 1 shows that for transition counts that exceed
N ε, there exist counts less than or equal toN ε such that the
negative impact of the reduced count on the expected value
of following policy πi,l from the same state is bounded.
More formally,
Proposition 1 (Bounded difference in value). Given ε
> 0 and for any (s, φ) such that N ẋa

φ > N ε for all
ẋ,a, there exist φ′ such that N ẋa

φ′ ≤ N ε for all ẋ,a, and
|αh(s, φ;πi,l)− αh(s, φ′;πi,l)| ≤ ε.

The proof of this proposition extends the proof of a similar
proposition by Ross et al. [17] to the multiagent context of
I-POMDPLi,l in a straightforward way. Let Sε be the set of
augmented states of I-POMDPLi,l such that the count vectors
are all limited to the following set, Φε = {φ ∈ Φ : N ẋa

φ ≤
N ε ∀ẋ,a}; in other words, Sε = S × Φε. Then, define a
new transition function over the augmented and bounded
state space, T εi : Sε ×A× Sε → [0, 1] such that

T εi (〈s, φ〉, ai,a−i, 〈s′, φ′〉) =
Ti(s/ẋ, ai,a−i, s

′
/ẋ) if φ′ = ζ(φ+ δẋaẋ′)

×E[Ṫi(ẋ, ai,a−i, ẋ
′)]

0 otherwise

Here, ζ is a function that projects those counts which
cause N ẋa

φ to exceed N ε back to values so that the lat-
ter is not exceeded. If φ + δẋa· does not exceed N ε, then
ζ is an identity function. Observation function with the
bounded state space also applies the projection ζ to Eq. 7
similarly to its use above. Finally, the reward function
Rεi(〈s, φ〉, ai,a−i) = Ri(s, ai,a−i).

Subsequently, the definition of I-POMDPLi,l
modifies to be the tuple 〈Sε, A, T εi ,Ωi, Oεi ,Ri,
{Mj,l−1,Mk,l−1, . . . ,Mz,l−1}, OCi〉. Let
αh,ε(s, φ;πi,l) be the expected value of following
policy πi,l from state (s, φ) according to the modified
framework with the bounded state space. Then, we may
bound the negative impact on expected value due to using
the new framework as follows:



Proposition 2 (Bounded difference in convergent value).
Given ε > 0 and the augmented I-POMDPL,εi,l with the
bounded state space Sε, the following holds:

|αh(s, φ;πi,l)− αh,ε(s, φ′;πi,l)| ≤
ε

1− γ

for any (s, φ) ∈ S and some (s, φ′) ∈ Sε where φ′ = ζ(φ).

The proof of this proposition essentially generalizes Prop. 1
to the infinite horizon and is given in the Appendix. Con-
sequently, Prop. 2 allows us to solve the augmented I-
POMDPL,εi,l while incurring a bounded loss.

In the context of open agent systems, the augmented frame-
work provides a way to learn the transition probabilities
of state factors that influence the other agents’ decisions
about whether they ought to leave the network, as a part of
planning.

5 EXPERIMENTS

While the predictive method has the obvious advantage of
potentially anticipating agent departures, it must first learn
the transition probabilities accurately. Consequently, an em-
pirical evaluation of the presented approaches on multiple
configurations is needed.

5.1 Setup

We empirically evaluate our methods labeled I-PBVI
PostHoc and I-PBVI Predictive using a realistic simula-
tion of the complex wildfire domain (adapted from [18],
similar to [19]). In the simulation, an agent obtains a re-
ward of 1 each step and for each location that is not on fire,
and a penalty of 100 for doing anything but a NOOP while
recharging suppressant or trying to fight a nonexistent fire.
Agents have three suppressant levels: empty and recharging,
half full, and full with stochastic transitions between levels.

We measure the performance of agents employing both
methods in two ways: (1) the average of discounted and
cumulative rewards obtained by each agent; and (2) the
average intensity of each fire over time (where intensity
ranges from 0 for no fire to 4 for a burned-out location).
The former evaluates the agent’s planning method for max-
imizing rewards, whereas the latter evaluates the system-
level performance of the team of agents in achieving their
overall objective – suppressing the wildfire in the forest.
Furthermore, we also include the performance of baselines
that represent what would happen to the forest (1) if no
agents were present (called NOOP as this situation is equiv-
alent to all agents always taking NOOP actions), (2) if each
agent randomly chooses between actions that put out fires
or NOOP (labeled Random), representing a scenario where
agents do not plan how or when to interact with their peers,

and (3) if each agent carries out actions selected according
to a heuristic-variant of Random (called Heuristic) – fight
existing fires (chosen by random selection) only if the agent
has available suppressant, else take a NOOP.

Config 1 Config 2 

Config 5 

Config 4 

Config 3 

Config 6 

A0 A1 

A0 

A1 

A2 

A0 A2 A1 A1 

A1 

A0 

A2 

A3 

A4 

A0 A0 A0 A1 A1 

Figure 2: Illustration of experimental configurations.

To elicit different interactions between agents, we consider
six configurations in our experiments, illustrated in Fig. 2:
configurations C1, C2, and C3 where two agents are respon-
sible for protecting the forest with three fires in each 2 × 3
grid, configuration C4 where three agents fight three fires in
a 2× 3 grid, configuration C5 where three agents fight three
fires in a more spread out 3 × 3 grid, and configuration 6
where five agents fight 3 fires in a much larger 5 ×4 grid. In
each of the six configurations, an agent can only put out a
fire that is immediately adjacent – to its south, north, east,
or west, or diagonal from the agent. In each configuration,
I-PBVI PostHoc agents assume a uniform transition distri-
bution for how peers’ suppressant levels change, whereas
I-PBVI Predictive agents perform random actions in sim-
ulation to learn the transition dynamics to better model
openness and its impacts on joint behavior. After learn-
ing a transition model (i.e., after 100 steps and 30 trials),
each agent in the predictive method will use this model for
planning.

First configuration C1 contains two agents, each with an
individual fire to fight (F0, F2, respectively) while also shar-
ing a fire (F1). Each agent in C1 can lower the intensity of
a fire by one. Configuration C2 represents an environment
similar to C1, except all three fires are adjacent, and thus
can spread to neighboring locations, increasing the pressure
on agents to control the wildfires in the environment. Con-
figuration C3, on the other hand, is the same as C2 except
that agents are of differing types: A0 lowers the intensity
of a fire by one, while A1 is more powerful and can accom-
plish twice as much reduction when it fights a fire. Together,



Table 1: Average team discounted rewards with 95% confidence intervals.
Configuration I-PBVI Predictive I-PBVI PostHoc Heuristic Random NOOP

C1 16.635 ± 1.613 15.001± 0.479 5.709± 1.952 −380.114± 56.552 0.000± 0.000
C2 14.706 ± 0.573 14.681± 0.422 7.517± 2.369 −442.186± 58.427 0.000± 0.000
C3 27.459 ± 1.107 26.202± 1.267 11.455± 2.811 −488.988± 66.531 0.000± 0.000
C4 49.607 ± 3.211 44.340± 3.235 26.419± 3.606 −552.740± 74.620 0.000± 0.000
C5 49.341 ± 0.859 48.676± 1.773 25.365± 2.052 −844.951± 50.143 0.000± 0.000
C6 103.735 ± 2.859 87.532± 1.432 56.006± 14.481 −1272.801± 37.768 0.000± 0.000

Table 2: Average fire intensities with 95% confidence intervals.
Configuration I-PBVI Predictive I-PBVI PostHoc Heuristic Random NOOP

C1 2.597 ± 0.038 2.686± 0.038 3.063± 0.032 3.379± 0.027 3.948 ± 0.005
C2 2.683 ± 0.038 2.695± 0.038 3.053± 0.033 3.630± 0.021 3.953 ± 0.004
C3 1.537 ± 0.039 1.670± 0.039 2.806± 0.035 3.250± 0.030 3.953 ± 0.004
C4 0.834 ± 0.031 1.024± 0.034 2.068± 0.039 2.841± 0.035 3.954 ± 0.004
C5 1.361 ± 0.038 1.374± 0.038 1.929± 0.040 2.222± 0.040 3.953 ± 0.004
C6 1.025 ± 0.018 1.222± 0.019 1.684± 0.015 1.999± 0.017 3.958 ± 0.002

these configurations enable us to evaluate (1) how agents
are able to balance between fighting a shared fire and their
own individual fires in C1; (2) how agents behave under a
more pressing situation in C2; and (3) how different types
of agents interact in C3.

In configuration C4, we extend C2 to add a third agent,
which simultaneously makes others’ actions more difficult
to predict since each agent has an extra neighbor that it
can work together with, while at the same time provides
more firefighting ability to control wildfires in the forest.
Note that agent A1 in C4 can fight all 3 fires. Configuration
C5 adds to the complexity – it not only represents a larger,
more spread out forest but it also involves more intricate
relationships among three agents, each of different types.
Namely, the three agents A0, A1, and A2 can each reduce
the intensity of a fire by 1, 2, and 3 with each firefighting
action, respectively. Thus, A2 (who shares fires with both
A0 and A1) is quite powerful and is able to put out fires
entirely by itself. As a result, its neighbors face interesting
decisions of predicting what A2 will do in order to choose
their optimal best response (either fighting a different fire, or
conserving suppressant to fight future fires). Configuration
C6 further adds to the complexity of C5 – it represents a
much larger forest involving five agents. Agents A0-4 in C6
can reduce the fire intensity by 1, 1, 2, 3, and 3 respectively.
Comparing all six of these configurations, we note that the
complexity of agent reasoning increases as the configuration
number increases, because more fire locations are shared
between agents, more agents interact with one another, and
more types of agents are introduced in the environment. For
each configuration, we conducted 30 runs of 100 steps, and
we average the results of our performance measures.

5.2 Results and Analysis

Tables 1 and 2 present the average discounted, cumulative
rewards earned (summed across the team of agents) and the

average intensity across all fires per time step, respectively.
From these results, we first observe that agents using the
I-PBVI Predictive and PostHoc solutions earned greater
cumulative rewards, as well as achieved lower average fire
intensities than the baseline approaches. This indicates that
our approaches to planning about the presence of peer agents
in open environments is indeed beneficial toward both agent
performance as measured by cumulative rewards, as well as
desired system behavior due to reduction in wildfires.

Comparing between our two approaches, we make several
additional important observations. First, I-PBVI Predictive
performed better than I-PBVI PostHoc in all configurations
in terms of average fire intensity (with statistical significance
at the p = 0.05 level in configurations C1, C3, C4, C5 and
C6). Thus, learning how to predict when peer agents will be
available and when they might be absent from the environ-
ment is indeed beneficial to helping agents achieve system-
level goals (i.e., minimizing fires in our domain). In terms of
discounted rewards, I-PBVI Predictive also outperformed I-
PBVI PostHoc in larger configurations but with only a slight
(non-statistically significant) advantage in smaller ones.

To better understand the differences in agent behavior pro-
duced by I-PBVI Predictive and PostHoc, we further inves-
tigated the different types of interactions between agents.
These interactions are based on the types of actions chosen
by agents, including putting out individual fires, collaborat-
ing with another agent in fighting a fire, fighting alone a fire
that is shared by multiple agents, performing a NOOP due
to recharging the agent’s suppressant, performing a NOOP
because there was no fire to fight, and performing a NOOP
to conserve suppressant instead of fighting an available fire.

We discovered that I-PBVI Predictive consistently carried
out a higher percentage of NOOP actions in order to con-
serve suppressant than did I-PBVI PostHoc–1.23 to 1.56
times more in configurations C1, C2, and C3, 2.18 times
more in configuration C4, 20.36 times more in configuration



C5 and 28.21 times more in C6. Thus, I-PBVI Predictive
caused an agent to conserve its valuable, limited suppres-
sant so that it would be able to contribute when its potential
partner agent becomes available to jointly fight the shared
fire (as indicated by the combination of more NOOPs when
fires were present and lower overall average fire intensity).
Further, this provides evidence that learning to predict the
presence of neighbors in open environments (using I-PBVI
Predictive) does lead to agents that better consider the im-
pacts of interactions between their joint actions, which in
turn results in better global behavior toward system goals.

We also discovered that I-PBVI Predictive caused agents
to be 2.85 and 1.13 times more likely to fight their own
individual fires in C1 and C3, respectively, when there were
fewest agents available to fight fires and more individual be-
havior was necessary. In the similar C2 environment where
fires spread faster than C1 and agents had less overall fire-
fighting ability than in C3 (where one agent could reduce
fires faster), and thus it was more difficult to fight individ-
ual fires than in C1 and C3, both I-PBVI Predictive and
PostHoc focused solely on fighting the joint fire that they
could feasibly extinguish together. These results further
indicate that learning to predict the presence of peers also
helps agents better balance individual-centered behavior vs.
collaborative behavior in open environments, depending on
the needs of the environment.

6 CONCLUSION

As a first paper on modeling open agent systems from a
decision-theoretic perspective, the focus of this effort was
to study the impact of agents leaving and reentering from
the perspective of an individual agent and to point out areas
where existing frameworks can be generalized to tackle this
problem in a principled manner. As an immediate next step,
we are looking into Monte-Carlo based approaches for better
scalability during planning. Furthermore, we are currently
exploring how anonymity – the problem structure that it
doesn’t matter who fights the fire, but how many agents
fight it – can be featured into frameworks like I-POMDP-
Lite. Anonymity coupled with better planners may help
scale to real-world problems involving 1000+ agents.
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Appendix

Proposition 1 (Bounded difference in convergent value).
Given ε > 0 and the augmented I-POMDPLi,l with the

bounded state space Sε, the following holds:

|αh,ε(s, φ′;πi,l)− αh(s, φ;πi,l)| ≤
ε

1− γ

for any (s, φ) ∈ S and some (s, φ′) ∈ Sε where φ′ = ζ(φ).

Proof. The proof of this proposition essentially gener-
alizes Prop. 1 to the infinite horizon. Let Eh =

max
αh,ε,αh,s,φ

|αh,ε(s, φ′;πi,l)−αh(s, φ;πi,l)|. Omitting writ-

ing the max norm for brevity, we have,

E = |αh,ε(s, φ′;πi,l)− αh(s, φ′;πi,l) + αh(s, φ′;πi,l)

− αh(s, φ;πi,l)|

≤ |αh,ε(s, φ′;πi,l)− αh(s, φ′;πi,l)|+ |αh(s, φ′;πi,l)

− αh(s, φ;πi,l)|(from the law of triangle inequality)

≤ |αh,ε(s, φ′;πi,l)− αh(s, φ′;πi,l)|+ ε (from Prop. 1)

= |Rεi(s, φ′, ai,a−i) + γ
∑

s′∈S,oi∈Ωi

T εi (〈s, φ′〉, ai,a−i,

〈s′, φ′′〉)×Oεi (〈s′, φ′′〉, ai,a−i, oi) αh−1,ε
oi (s′, φ′′;πi,l)

−Ri(s, φ′, ai,a−i) + γ
∑

s′∈S,oi∈Ωi

Ti(〈s, φ′〉, ai,a−i, 〈s′, φ′′〉)

Oi(〈s′, φ′′〉, ai,a−i, oi)× αh−1
oi (s′, φ′′;πi,l1)|+ ε

= |Ri(s, φ′ai,a−i) + γ
∑

s′∈S,oi∈Ωi

Ti(s/ẋ, ai,a−i, s
′
/ẋ〉)

E[Ṫi(ẋ, ai,a−i, ẋ
′)] Oi(s

′, ai,a−i, oi) α
h−1,ε
oi (s′, φ′′;πi,l)

−Ri(s, φ′, ai,a−i) + γ
∑

s′∈S,oi∈Ωi

Ti(s/ẋ, ai,a−i, s
′
/ẋ)

E[Ṫi(ẋ, ai,a−i, ẋ
′)]×Oi(s′, ai,a−i, oi)

αh−1
oi (s′, φ′′;πi,l1)|+ ε

≤ γ
∑

s′∈S,oi∈Ωi

Ti(s/ẋ, ai,a−i, s
′
/ẋ〉) E[Ṫi(ẋ, ai,a−i, ẋ

′)]

Oi(s
′, ai,a−i, oi)|αh−1,ε

oi (s′, φ′′;πi,l)− αh−1
oi (s′, φ′′;πi,l)|+ ε

≤ γ
∑

s′∈S,oi∈Ωi

Ti(s/ẋ, ai,a−i, s
′
/ẋ〉) E[Ṫi(ẋ, ai,a−i, ẋ

′)]

Oi(s
′, ai,a−i, oi) max

s′,oi,φ′′
|αh+1,ε
oi (s′, φ′′;πi,l)

− αh+1
oi (s′, φ′′;πi,l)|+ ε

= γ max
s′,oi,φ′′

|αh−1,ε(s′, φ′′;πi,l)− αh−1(s′, φ′′;πi,l)|+ ε

= γ Eh−1 + ε

Notice that |α1,ε(s′, φ′′;πi,l) − α1(s′, φ′′;πi,l)|
= |Rεi(s′, φ′′, ai,a−i) −Ri(s′, φ′′, ai,a−i)| =
|Ri(s′, ai,a−i) −Ri(s′, ai,a−i)| = 0. The above re-
cursion is a geometric series with a base case of 0.
Therefore, Eh ≤ ε

1−γ .
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