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Abstract

We investigate the fairness of Bayesian estima-
tors (BEs) by viewing them as (irresolute) voting
rules and evaluating them by satisfaction of desir-
able social choice axioms. We characterize the
class of BEs that satisfy neutrality by the class
of BEs with neutral structures. We prove that
a BE with a neutral structure is a minimax rule
if it further satisfies parameter connectivity. We
prove that no BE satisfies strict Condorcet crite-
rion. We also propose three new BEs of natural
frameworks and investigate their computational
complexity and satisfaction of monotonicity and
Condorcet criterion.

1 INTRODUCTION

Bayesian estimators have been widely applied in rank ag-
gregation. For example, IMDb uses Bayesian estimators to
aggregate users’ votes to create the top-250 movie list [2].
However, users have complaint that such mechanisms are
“unfair” because the rank of a seemingly good film is not
high [1]. While this particular complaint may not be hard
to address, ideally we would like to use a fair rank aggrega-
tion method with high statistical efficiency. This raises the
following important questions.

Q1. How can we measure fairness in rank aggregation?

Q2. How can we design fair Bayesian estimators?

Same questions arise in many other rank aggregation situ-
ations, especially those where the voting agents are human
beings. For example, in political domains, important public
decisions are made by aggregating citizens’ votes; in low-
stakes voting scenarios, friends vote to decide the place for
dinner; in crowdsourcing, online workers’ noisy answers
are aggregated to estimate the correct answer [22].

Q1 has been partially answered by social choice theory.
Following Arrow’s celebrated impossibility theorem [4],

various kinds of measures on fairness, called axioms, have
been formulated and used to evaluate voting rules in politi-
cal elections. For example, the anonymity axiom states that
the voting rule is insensitive to permutations over agents’
votes, which can be seen as fairness for voters; neutrality is
a fairness condition for the alternatives; and Condorcet cri-
terion (informally) states that an obviously socially strong
alternative should win, which is similar in spirit to the com-
plaint by the IMDb user. The axiomatic approach has gone
beyond political elections to e.g. ranking systems [3], rec-
ommender systems [25], and community detection [9].

While there has been a growing literature on statistical
properties of commonly studied voting rules, there is lit-
tle work in the reverse direction, i.e. studying the sat-
isfaction of social choice axioms for commonly stud-
ied statistical estimators, especially Bayesian estimators.
Recently Azari Soufiani et al. [7] proposed a statistical
decision-theoretic framework (framework for short) to ob-
tain new voting rules as Bayesian estimators, and inves-
tigated the satisfaction of some axioms for two Bayesian
estimators. To the best of our knowledge, there is no gen-
eral characterizations of social choice axioms for Bayesian
estimators.

Our Contributions. We study the satisfaction of axioms
for Bayesian estimators (BEs) under the framework pro-
posed by Azari Soufiani et al. [7]. We answer Q2 for two
well-studied axioms: neutrality and strict Condorcet cri-
terion. We characterize BEs that satisfy neutrality by the
BEs of neutral frameworks. Therefore, to design neutral
BEs we only need to focus on neutral frameworks. We also
prove that no BE satisfies strict Condorcet criterion.

In addition, we prove that if a neutral framework satis-
fies parameter connectivity, then its BE is a minimax rule,
which means that the BE is optimal w.r.t. the worst-case
frequentist expected loss. We believe that this result is of
independent interest.

We also analyze the satisfaction of Condorcet crite-
rion, monotonicity, and computational complexity for four
classes of BEs. Each BE in each class is identified by a



Anonymity Strict Condorcet Neutrality Minimax Condorcet Monotonicity Comp.
BEs

Y
(trivial)

N
(Thm. 4)

Y/N Y/N Y/N Y/N P/NP-hard

fTop
Ma,ϕ

Y
(Thm. 2)

Y
(Thm. 1)

Y iff ϕ(1−ϕm−1)
1−ϕ ≤ 1

(Thm. 5)
Y [5] NP-hard [25]

fBorda
Co,ϕ

Y iff ϕ ≤ 1
m−1

(Thm. 7)
Y

(Prop. 1)
P

(Thm. 6)

f1
Pair,ϕ

Y iff ϕ ≤ 1
m−1

(Thm. 10)
Y

(Prop. 2)
P

(Thm. 9)
f2

Pair,ϕ
N

(Thm. 10)

Table 1: Main results. m is the number of alternatives.

dispersion value 0 < ϕ < 1. The first class has been stud-
ied [30, 27, 7] while the remaining three classes are new.
The four classes are (1) fTop

Ma,ϕ is the BE of Mallows’ model
with the top loss function. Condorcet criterion has been
studied for fTop

Ma,ϕ for ϕ > 1√
2

but the remaining cases are
open [7]1. (2) fBorda

Co,ϕ is the BE of Condorcet’s model with
the Borda loss function. (3) f1

Pair,ϕ and (4) f2
Pair,ϕ are the

BEs of a new model with different loss functions, where
a parameter can be interpreted as the “strongest pairwise
comparison”. Our results are summarized in Table 1.

The second row in Table 1 are results for general BEs. A
“Y/N” means that some Bayesian estimators satisfy the ax-
iom and some do not. For fTop

Ma,ϕ, we prove a dichotomy
theorem on its satisfaction of Condorcet criterion: it satis-
fies the Condorcet criterion if and only if ϕ(1−ϕm−1)

1−ϕ ≤ 1,
where m is the number of alternatives (Theorem 5). We
also proved similar dichotomy theorems for fBorda

Co,ϕ and
f1

Pair,ϕ, where the threshold is 1
m−1 (Theorem 7 and 10).

We would like to highlight two new classes of BEs: fBorda
Co,ϕ

and f1
Pair,ϕ, because they can satisfy all axioms studied in

this paper (except strict Condorcet criterion, which is not
satisfied by any BE) and can be computed in polynomial
time.

In addition to satisfaction of axioms, we also study the lim-
iting cases of the three new BEs as ϕ → 0 and ϕ → 1.
While all classes converge to refinements of the Borda rule
as ϕ → 1, they converge to refinements of different rules
as ϕ → 0. Interestingly, fBorda

Co,ϕ converges to a refinement
of Copeland0.5 (Theorem 8) and for any ϕ ≤ 1

m−1 , f1
Pair,ϕ

is a refinement of maximin (Theorem 11).

Related Work and Discussions. As discussed above our
theorems on neutrality and strict Condorcet criterion an-
swer Q2 for the two axioms. We are not aware of other
general results on satisfaction of axioms for Bayesian esti-
mators. In particular, Azari Soufiani et al. [7] studied the
satisfaction of some axioms for two classes of BEs but did
not obtain general results for BEs.

1The original paper has a typo on the direction of the inequal-
ity.

Most previous work at the intersection of social choice and
statistics focused on computational aspects of the maxi-
mum likelihood estimators (MLEs) of various ranking mod-
els [14, 10, 15, 17, 29, 20, 24, 27, 5, 6, 16, 19]. The focuses
of our work are different. We focus on Bayesian estima-
tors, which are more general than MLEs, and we focus on
the satisfaction of axioms rather than computation.

Minimax rules for various statistical models with contin-
uous parameter spaces have been characterized by Berger
[8]. Choirat and Seri [12] provided a sufficient condition on
discrete-parameter models for MLEs to be minimax. In the
social choice context, Caragiannis et al. [11] proved that the
uniformly randomized MLE has the least sample complex-
ity w.r.t. Mallows’ model, which is equivalent to minimax-
ity. Our minimaxity proof can be seen as an application of
techniques by Berger [8] to social choice frameworks. As
we will see in Corollary 1, our results can be easily applied
to Mallows’ model and other models.

Our work is also related to statistical justification of com-
monly studied voting rules. Conitzer and Sandholm [14]
studied whether some commonly studied voting rules can
be rationalized as MLEs of some statistical models. They
showed that if a voting rule does not satisfy consistency,
then it cannot be an MLE. Pivato [26] further investigated
voting rules that can be viewed as MLEs, maximum a pos-
teriori estimators, and Bayesian estimators. Our impossi-
bility theorem on strict Condorcet criterion can be used to
prove that a voting rule cannot be justified a Bayesian es-
timator. In Corollary 2, we show that a number of voting
rules including Copeland1 and maximin are not Bayesian
estimators. On the other hand, we prove that as ϕ → 0,
fBorda

Co,ϕ converges to a refinement of Copeland0.5 (Theo-
rem 8), and for all for any ϕ < 1

m−1 , f1
Pair,ϕ is a refinement

of maximin (Theorem 11). Therefore, f1
Pair,ϕ for ϕ < 1

m−1
are desirable refinements of maximin because they can be
justified as BEs. Previously it was only known that a re-
finement of Kemeny is a BE [27] and a refinement of Tide-
man’s rule is a BE [16].



2 PRELIMINARIES

Let A = {a1, . . . , am} denote a set of m alternatives and
let L(A) denote the set of all linear orders over A. Let n
denote the number of agents. Each agent’s vote is a lin-
ear order in L(A). The collection P of all agents’ votes
is called a profile. An irresolute voting rule r maps each
profile to a non-empty set of winning alternatives. That is,
r :
⋃∞
n=1 L(A)n → (2A \ {∅}).

For example, an irresolute positional scoring rule is char-
acterized by a scoring vector ~s = (s1, . . . , sm) with s1 ≥
s2 ≥ · · · ≥ sm. For any alternative a and any linear or-
der V , we let ~s(V, a) = sj , where j is the rank of a in
V . Given a profile P , an irresolute positional scoring rule
chooses all alternatives a with maximum

∑
V ∈P ~s(V, a),

where P is viewed as a multi-set of votes. The Borda rule
is a positional scoring rule with ~s = (m−1,m−2, . . . , 1).

For any profile P and any pair of alternatives a, b, we let
P (a � b) denote the number of votes in P where a is
preferred to b. The weighted majority graph of P , de-
noted by WMG(P ) is a directed weighted graph where the
weight wP (a, b) on any edge a → b is wP (a, b) = P (a �
b)− P (b � a). Clearly wP (a, b) = −wP (b, a).

Given 0 ≤ α ≤ 1, the Copelandα score of an alternative
a in a profile P is the number of alternatives beaten by
a in head-to-head competitions plus α times the alterna-
tives tied with a. Copelandα chooses all alternatives with
the maximum Copelandα score as the winners. The max-
imin rule chooses all alternatives a with the maximum min-
score. The min-score of a is minb wP (a, b).

We will focus on the following axioms in this paper. An
irresolute r satisfies
• anonymity, if r is insensitive to permutations over agents;
• neutrality, if r is insensitive to permutations over alterna-
tives;
•monotonicity, if for any P , any a ∈ r(P ), and any P ′ that
is obtained from P by only raising the positions of a, we
have a ∈ r(P ′);
• Condorcet criterion, if for any profile P , whenever a
Condorcet winner a exists, it must be the unique winner.
That is, r(P ) = {a}. A Condorcet winner is an alternative
that beats all other alternatives in their head-to-head com-
petitions;
• strict Condorcet criterion [18], if for any profile P ,
whenever the set of weak Condorcet winners is non-empty,
it must be the output of r. A weak Condorcet winner is an
alternative that never loses to any other alternative in their
head-to-head competition.

Azari Soufiani et al. [7] defined a statistical decision-
theoretic framework for social choice (framework for short)
to be a tuple F = (MA,D, L), where A is the set of alter-
natives,MA = (Θ, ~π) is a parametric ranking model, D is
the decision space, and L : Θ×D → R is a loss function.

MA = (Θ, ~π) has two parts: a parameter space Θ and
a set of probability distributions ~π = {πθ : θ ∈ Θ} over
L(A). Agents’ votes are generated i.i.d. according toMA,
which means that the sample space is L(A)n and is omitted
for simplicity. In this paper we focus on frameworks with
finite parameter spaces and finite decision spaces.

We now recall two popular parametric ranking models. For
any pair of linear orders V,W in L(A), let Kd(V,W ) de-
note the Kendall-tau distance between V and W , which is
the total number of pairwise disagreements between V and
W .
Definition 1 (Mallows’ model with fixed dispersion [21]).
Given 0 < ϕ < 1, the Mallows model with fixed dis-
persion ϕ is denoted by MMa,ϕ = (L(A), ~π), where the
parameter space is L(A) and for any V,W ∈ L(A),
πW (V ) = 1

Zϕ
Kd(V,W ), whereZ is the normalization factor

with Z =
∑
V ∈L(A) ϕ

Kd(V,W ).

Let B(A) denote the set of all irreflexive, antisymmetric,
and total binary relations over A. We have L(A) ⊆ B(A)
and the Kendall-tau distance can be easily extended to
B(A) by counting the number of pairwise disagreements.
Definition 2 (Condorcet’s model [13, 30]). Given 0 < ϕ <
1, the Condorcet model is denoted byMCo,ϕ = (B(A), ~π),
where the parameter space is B(A) and for anyW ∈ B(A)
and V ∈ L(A), πW (V ) = 1

Zϕ
Kd(V,W ), where Z is the

normalization factor.

Next, we give three examples of loss functions. When Θ =
D, the 0-1 loss function, denoted by L0-1(θ, d), outputs 0
if θ = d, otherwise it outputs 1. When D = A and Θ is
L(A) or B(A), the top loss function, denoted by Ltop(θ, d),
outputs 0 if for all other alternatives c ∈ A, d � c in θ,
otherwise it outputs 1. The Borda loss function, denoted
by LBorda(θ, d), outputs the number of alternatives that are
preferred to d in θ, that is, LBorda(θ, d) = #{c ∈ A :
c �θ d}. All loss functions can be naturally generalized to
evaluate a subset D of D by computing the average loss of
the decisions inD. More precisely, for anyD ⊆ D and any
θ ∈ Θ, we let L(θ,D) =

∑
d∈D L(θ, d)/|D|.

Given a frameworkF , the Bayesian expected loss of d ∈ D
given a profile P is ELF (d|P ) =

∑
θ∈Θ Pr(θ|P )L(θ, d).

The subscript F is often omitted without introducing con-
fusions. In this paper we focus on the uniform prior.
The Bayesian estimator of F , denoted by BEF , takes a
profile P as input and outputs all decisions with min-
imum expected Bayesian loss. That is, BEF (P ) =
arg mind∈D EL(d|P ).

Let fTop
Ma,ϕ denote the Bayesian estimator of the framework

(MMa,ϕ, Ltop). It was proved by Azari Soufiani et al.
[7] that fTop

Ma,ϕ satisfy anonymity, neutrality, monotonicity,
but fails to satisfy the Condorcet criterion for some ϕ.
Let fBorda

Co,ϕ denote the Bayesian estimator of the framework
(MCo,ϕ, LBorda). We will study the satisfaction of axioms



for fBorda
Co,ϕ .

Given a framework F , a parameter θ ∈ Θ, n ∈ N, and a
voting rule r, the frequentist loss FLn(θ, r) is the expected
loss of the output of r against θ for randomly generated
profiles of n votes. More precisely,

FLn(θ, r) =
∑
Pn∈L(A)n πθ(Pn)L(θ, r(Pn))

Definition 3 ([8]). Given a framework F =
(MA,D, L), a voting rule r is minimax, if
r ∈ arg minr∗ maxθ∈Θ FLn(θ, r∗).

That is, a minimax rule minimizes the worst-case fre-
quentist loss among all deterministic or randomized rules.
Minimaxity is an important statistical criteria for decision
functions—a minimax rule is the most robust rule against
the adversarial nature who controls the true state of the
world (the parameter). A minimax rule can be seen as hav-
ing the minimum sample complexity [11].

3 NEUTRAL FRAMEWORKS AND
MINIMAXITY

We first define the neutrality of a framework for general de-
cision spaces. Intuitively, a framework F = (MA,D, L)
is neutral if and only all of its three components are neutral
w.r.t. permutations σ over A. Because σ may not be well-
defined for the parameter space and the decision space, we
require the existence of homomorphisms from the permuta-
tion group overA to the permutation groups over Θ andD,
respectively. Formally, we have the following definition.

Definition 4. A framework F = (MA,D, L) where
MA = (Θ, ~π) is neutral, if each permutation σ over A
is mapped to a permutation σΘ over Θ and a permutation
σD over D that satisfy the following conditions.

(i) Homomorphism. For any pair of permutations γ and
β over A, (γ ◦ β)Θ = γΘ ◦ βΘ and (γ ◦ β)D = γD ◦ βD.

(ii) Model neutrality. For any θ ∈ Θ, any V ∈
L(A), and any permutation σ over A, we have πθ(V ) =
πσΘ(θ)(σ(V )).

(iii) Loss function neutrality. For any θ ∈ Θ, any
d ∈ D, and any permutation σ over A, we have L(θ, d) =
L(σΘ(θ), σD(d)).

Example 1. For any 0 < ϕ < 1, (MMa,ϕ,A, Ltop),
(MMa,ϕ,A, LBorda), (MCo,ϕ,A, Ltop), (MCo,ϕ,A, LBorda)
are neutral, where σΘ = σD = σ.

The main theorem of this section states that if a neutral
framework further satisfies the following connectivity con-
dition, then its Bayesian estimator is a minimax rule.

(iv) Parameter connectivity. For any pair θ1, θ2 ∈ Θ,
there exists a permutation σ overA such that σΘ(θ1) = θ2.

Theorem 1. For any neutral framework F that satisfies

parameter connectivity and any n ∈ N, BEF is a minimax
rule.2

Proof: Any deterministic Bayesian estimator BEF can be
seen as a randomized rule that chooses a single decision
uniformly at random from the output of BEF . Our proof is
based on the following lemma.

Lemma 1 (Section 5.3.2 III in [8]). Given a framework
F . Let rπ∗ denote a Bayesian estimator for prior π∗. If
FLn(θ, rπ∗) are equal for all θ ∈ Θ, then rπ∗ is minimax.

Let rU denote the randomized decision rule that outputs all
decisions with the minimum Bayesian expected loss uni-
formly at random. By Lemma 1, it suffices to show that for
all θ ∈ Θ, FLn(θ, rU ) are equal. For any pair of parame-
ters θ1, θ2 ∈ Θ, we let σ(θ1,θ2) denote a permutation overA
such σ(θ1,θ2)

Θ (θ1) = θ2, which is guaranteed by Condition
(iv).

Claim 1. For any profile P of n votes and
any d∗ ∈ D, rU (P )(d∗) > 0 if and only if
rU (σ(θ1,θ2)(P ))(σ

(θ1,θ2)
D (d∗)) > 0.

Proof: To simplify the notation, in this proof we let σ∗

denote σ(θ1,θ2). rU (P ) has positive probability on d∗ if and
only if d∗ minimizes the Bayesian loss at P under uniform
prior, which is equivalent to requiring that for all d′ ∈ D,∑
θ L(θ, d∗) Pr(θ|P ) ≤

∑
θ L(θ, d′) Pr(θ|P ). We have

the following calculation, where Pr(P |θ) = πθ(P ).∑
θ
L(θ, d∗) Pr(θ|P ) ≤

∑
θ
L(θ, d′) Pr(θ|P )

⇔
∑

θ
L(θ, d∗) Pr(P |θ) ≤

∑
θ
L(θ, d′) Pr(P |θ) (1)

⇔
∑
θ

L(σ∗Θ(θ), σ∗D(d∗)) Pr(σ∗(P )|σ∗Θ(θ))

≤
∑
θ

L(σ∗Θ(θ), σ∗D(d′)) Pr(σ∗(P )|σ∗Θ(θ)) (2)

⇔
∑
θ

L(θ, σ∗D(d∗)) Pr(σ∗(P )|θ)

≤
∑
θ

L(θ, σ∗D(d′)) Pr(σ∗(P )|θ) (3)

⇔
∑
θ

L(θ, σ∗D(d∗)) Pr(θ|σ∗(P ))

≤
∑
θ

L(θ, σ∗D(d′)) Pr(θ|σ∗(P )) (4)

Therefore, d∗ minimizes the Bayesian loss for P if and
only if σ∗D(d∗) minimizes the Bayesian loss for σ∗(P ),
which means that rU (σ∗(P )) has positive probability on
(σ∗D(d∗)). (1) and (4) are due to Bayes’ rule and the uni-
form prior assumption. (2) is obtained from applying σ∗,
σ∗Θ, and σ∗D on both sides of the inequality and then con-
sidering the neutrality of the framework. (3) is a change of

2A similar result was presented at COMSOC-14 work-
shop [28].



variable names, which is possible because for any pair of
parameters θ 6= θ′ and any permutation σ over A, we must
have σΘ(θ) 6= σΘ(θ′), because σΘ is a permutation over
Θ. 2

We note that rU chooses a decisions d with rU (P )(d) > 0
uniformly at random. Therefore, by Claim 1, for any
θ1 6= θ2 and any profile P , we have rU (σ(θ1,θ2)(P )) =

σ
(θ1,θ2)
D (rU (P )). By neutrality of F , we have
L(θ1, rU (P )) = L(σ

(θ1,θ2)
Θ (θ1), σ

(θ1,θ2)
D (rU (P ))) =

L(θ2, rU (σ(θ1,θ2)(P ))).

Finally, we have:

FLn(θ1, rU ) =
∑
P

L(θ1, rU (P )) Pr(P |θ1)

=
∑
P

L(θ2, rU (σ(θ1,θ2)(P ))) Pr(σ(θ1,θ2)(P )|θ2)

=FLn(θ2, rU )

By Lemma 1, rU is a minimax rule. We note that for any
θ and any profile P , L(θ, rU (P )) = L(θ,BEF (P )). This
means that BEF is a minimax rule. 2

It is not hard to verify that all models mentioned in Ex-
ample 1 satisfy parameter connectivity. Therefore, their
Bayesian estimators are minimax rules. In particular, fTop

Ma,ϕ
is a minimax rule for (MMa,ϕ, LTop). When the 0-1 loss
function is used, the Bayesian estimator becomes maximum
likelihood estimator (MLE). Therefore, Theorem 1 imme-
diately implies that MLE is minimax.

Corollary 1. For any neutral framework F =
(MA,A, L0-1), its MLE (that outputs all alternatives
with the maximum likelihood) is a minimax rule.

The special case of Corollary 1 for MMa,ϕ was proved
by Caragiannis et al. [11]. We note that in Appendix A
of [11], an example was shown to illustrate that MLE is not
minimax w.r.t. L0-1. This does not contradict Theorem 1
and Corollary 1 because the framework in the example is
not neutral.

As shown in the following example, not all Bayesian esti-
mators of neutral frameworks satisfy minimaxity.

Example 2. Let A = {a, b}. Consider a framework
(M, L) for two alternatives whereM = (Θ, ~π) combines
two Mallows’ models with dispersion parameter 0.6 and
0.7 respectively. Formally, let Θ = {0.6, 0.7} × {a �
b, b � a}. For each (ϕ,W ) ∈ Θ, π(ϕ,W ) is the same
as πW in Mallows’ model with dispersion ϕ. For any
W ∈ L(A) and c ∈ A, we let L((0.6,W ), c) = Ltop(W, c)
and L((0.7,W ), c) = 1− Ltop(W, c).

It can be verified that F is neutral by letting γΘ be a per-
mutation that only applies to the second component of the
parameter (the ranking). Let n = 1. When the vote is
a � b, the posterior distribution is the following.

Parameter (0.6, a � b) (0.6, b � a) (0.7, a � b) (0.7, b � a)
Post. Prob. 1

3.2
0.6
3.2

1
3.4

0.7
3.4

Loss for a 0 1 1 0

Therefore, EL(a|{a � b}) = 0.6
3.2 <

0.7
3.4 = EL(b|{a � b}).

Therefore, BEF (a � b) = a. Similarly BEF (b � a) = b.

When the ground truth parameter is (0.7, a � b), the fre-
quentist expected loss of BEF is 1

1.7 >
1
2 . We note that the

worst-case frequentist loss of the voting rule that always
output A is 1

2 , which means that BEF is not a minimax
rule. 2

4 GENERAL RESULTS ON
SATISFACTION OF AXIOMS

To analyze the satisfaction of axioms of Bayesian estima-
tors, in the rest of this paper we focus on a special class
of frameworks where the decision space is A. We let
F = (MA, L) denote such a framework where the deci-
sion space is omitted. For neutral frameworks, we further
require that σA = σ, where σA is the corresponding per-
mutation over the decision space, which isA in this section.

Theorem 2. The Bayesian estimator of any neutral frame-
work satisfies neutrality.

Proof: Let S(A) denote the set of all permutations over
A. It suffices to prove that the expected loss function is
insensitive to permutations. For any neutral framework F ,
any profile P , any alternative a, and any γ ∈ S(A), we
have

EL(a|P ) =
∑
θ∈Θ

Pr(θ|P )L(θ, a) ∝
∑
θ∈Θ

Pr(P |θ)L(θ, a)

=
∑
θ∈Θ

Pr(γ(P )|γΘ(θ))L(γΘ(θ), γ(a))

∝
∑
θ∈Θ

Pr(γΘ(θ)|γ(P ))L(γΘ(θ), γ(a)) = EL(γ(a)|γ(P ))

2

Theorem 3. If the Bayesian estimator BEF of a framework
F satisfies neutrality then there exists a neutral framework
F∗ such that BEF∗ = BEF .

All missing proofs can be found in the full version on
arXiv.

Theorem 4. No Bayesian estimator satisfies strict Con-
dorcet criterion.

Proof: For the sake of contradiction suppose a Bayesian
estimator r of F = (MA, L) satisfies strict Condorcet cri-
terion whereMA = (Θ, ~π).

We first prove that for any profile P , if alternatives a and
b are tied in their head-to-head competition, then expected
loss for a must be the same as the expected loss for b.



Lemma 2. Suppose r = BEF satisfies strict Condorcet
criterion. For any profile P and any pair of alternatives
(a, b), if wP (a, b) = 0 then EL(a|P ) = EL(b|P ).

Proof: For any distribution π over Θ, let Sπ =
{S1, . . . , Sp} denote the partition of Θ into equivalent
classes according to π, where p is the number of equiva-
lent classes. That is, for any S ∈ Sπ and any θ1, θ2 ∈ S,
we have π(θ1) = π(θ2). Let Tπ denote the total order over
Sπ such that for any pair S, S′ ∈ Sπ , we have S �Tπ S′ if
and only if the π value of parameters in S is strictly larger
than the π value of parameters in S′.

For any profile P , let SP denote SPr(·|P ). That is, SP
is the partition of Θ according to the posterior distribu-
tion over Θ given P . TP is defined similarly. The next
lemma states that for any profile P and any pair of co-
winners (a, b), the total loss of a and b within each equiva-
lent class in SP must be the same. For any S ⊆ Θ, we let
L(S, a) =

∑
θ∈S L(θ, a).

Lemma 3. Suppose r = BEF satisfies strict Condorcet
criterion. For any profile P and any S ∈ SP , if there
are at least two weak Condorcet winners {a, b} in P , then
L(S, a) = L(S, b).

Proof: For the sake of contradiction suppose the lemma
does not hold for a profile P where {a, b} are two weak
Condorcet winners. Let TP = S1 � S2 � · · · � Sp. Let
Si denote the highest-ranked equivalent class in TP such
that the total loss of a and the total loss of b on Si are differ-
ent. W.l.o.g. suppose L(Si, a) > L(Si, b). For any natural
number k, it follows that a and b are also weak Condorcet
winners in kP , whose weighted majority graph is exactly
WMG(P ) times k. We next show that when k is suffi-
ciently large, EL(a|kP ) > EL(b|kP ). For any i ≤ p, let
θi ∈ Si be an arbitrary parameter in Si.

EL(a|kP ) =
∑
θ∈Θ

Pr(θ|kP )L(θ, a)

∝
∑
θ∈Θ

Pr(θ|P )kL(θ, a) =

p∑
i=1

∑
θ∈Si

Pr(θ|P )kL(θ, a)

=

p∑
i=1

Pr(θi|P )kL(Si, a)

Because for any i′ > i we have Pr(θi|P ) >

Pr(θi′ |P ), there exists k ∈ N such that ( Pr(θi|P )
Pr(θi+1|P ) )k >∑p

l=i+1(L(Sl,a)−L(Sl,b))

L(Si,a)−L(Si,b)
. Therefore, for such k we have∑p

i=1 Pr(θi|P )kL(Si, a) >
∑p
i=1 Pr(θi|P )kL(Si, b) ∝

EL(b|kP ). This means that b cannot be a co-winner in
r(kP ), which contradicts the assumption that r satisfies
strict Condorcet criterion. 2

For any pair of partitions S1 and S2 of Θ, we let S1 ⊕ S2

denote the coarsest partition of Θ that refines both S1 and

S2. That is,

S1 ⊕ S2 = {S1 ∩ S2 : S1 ∈ S1, S2 ∈ S2} \ {∅}

Lemma 4. For any statistical model and any pair of pro-
files P1, P2, there exists k ∈ N such that SkP1∪P2

=
SP1
⊕ SP2

.

Proof: We let P ∗ = kP1 ∪ P2 for a sufficiently large k
such that the “gap” between two equivalent classes in kP
is large enough that the only effect of P2 is to refine the
equivalent classes in kP . More formally, we choose k ∈
N such that for any θ1, θ2 ∈ Θ, Pr(θ1|P1)k Pr(θ1|P2) >
Pr(θ2|P1)k Pr(θ2|P2) if and only if one of the following
two conditions hold: (1) Pr(θ1|P1) > Pr(θ2|P1), or (2)
Pr(θ1|P1) = Pr(θ1|P2) and Pr(θ1|P2) > Pr(θ2|P2). 2

For any a, b ∈ A, let Lab denote the set of all rankings
where a � b. Let Pab denote the set of all two-agent pro-
files where one vote comes from Lab and the other vote
comes from Lba. That is,

Pab = {{V1, V2} : V1 ∈ Lab, V2 ∈ Lba}

Let Sab denote the finest partition of Θ that refines all parti-
tions induced by profiles in Pab. That is, Sab = ⊕Pab. By
Lemma 4, there exists a profile Pab such that SPab = Sab.
Lemma 5. Suppose r = BEF satisfies strict Condorcet
criterion. For any a, b ∈ A and any S ∈ Sab, we have
L(S, a) = L(S, b).

Proof: Let P ∗ be an arbitrary profile with the following
conditions. (1) wP∗(a, b) = wP∗(b, a) = 0. (2) For any
c 6∈ {a, b}, we have wP∗(a, c) > 0 and wP∗(b, c) > 0.
By Lemma 4, there exists a sufficiently large k ∈ N
such that both conditions still hold for kP ∗ ∪ Pab, and
SkP∗∪Pab = Sab. The latter is because P ∗ can be seen as
the union of |P ∗|/2 profiles inPab, which means that Sab is
a refinement of SkP∗ . The lemma follows after Lemma 3.
2

We note that for any a, b ∈ A, any profile P where
wP (a, b) = 0 can be seen as the union of |P |/2 pro-
files in Pab. This means that Sab is a refinement of
SP . Therefore, any S ∈ SP must be the union
of some equivalent classes in Sab. By Lemma 5 we
have that L(S, a) = L(S, b). We have EL(a|P ) =∑
S∈SP Pr(θS |P )L(S, a) =

∑
S∈SP Pr(θS |P )L(S, b) =

EL(b|P ), where θS denote an arbitrary element in S. This
proves Lemma 2. 2

Consider any profile P where wP (a, b) = wP (b, c) = 0,
wP (a, c) = 2, a and b are the only two weak Condorcet
winners, and c loses to all other alternatives in head-to-
head competitions. Such a profile exists due to McGarvey’s
theorem [23]. By Lemma 2, EL(a|P ) = EL(b|P ) =
EL(c|P ). However, because r satisfies strict Condorcet
criterion, c 6∈ r(P ), which is a contradiction. 2



A direct corollary is that any voting rule that satisfies strict
Condorcet criterion cannot be the BE of any framework.

Corollary 2. Copeland1, maximin, Black’s function,3

Dodgson’s function, Young’s function, Condorcet’s func-
tion, and Fishburn’s function cannot be the Bayesian esti-
mator of any framework.

5 NEW BAYESIAN ESTIMATORS AS
VOTING RULES

The following theorem solves the open question about the
satisfaction of Condorcet criterion for fTop

Ma,ϕ [7].

Theorem 5. fTop
Ma,ϕ satisfies the Condorcet criterion if and

only if ϕ(1−ϕm−1)
1−ϕ ≤ 1.

Proof: The “if part”: suppose ϕ(1−ϕm−1)
1−ϕ ≤ 1. Let P be a

profile where a is the Condorcet winner. For any c, d ∈ A,
we let A−c = A \ {c} and A−cd = A \ {c, d}. For any
c ∈ A, let Lc denote the set of all rankings where c is
ranked at the top. For any profile P , let P |−a denote its
restriction on A−a.

1− EL(c|P ) =
∑
V ∈Lc

Pr(V |P )

∝
∑
V ∈Lc

Pr(P |V ) ∝
∑
V ∈Lc

ϕKd(P,V )

Fix b 6= a. For any ranking V−ab ∈ L(A−ab), we let
Q(V−ab) denote the set of m − 1 rankings over A \ {a}
obtained by inserting b to V−ab without changing the rela-
tive positions of other alternatives. Let J(V−ab) ∈ L(A−a)
be the ranking in Q(V−ab) with the minimum Kentall-tau
distance from P |−a. If there are multiple such rankings, let
J(V−ab) be the one where b is ranked at the highest posi-
tion.

Let H : Lb → La denote the following mapping. For
any b � V−b ∈ Lb we first look at V−ab and decide the
best position to insert b, then put a at the top, where V−ab
is obtained from V−b by removing a. Formally, H(b �
A−b) = a � J(V−ab).

It follows that for any pair of rankings V,W ∈ Lb, where
the only difference is the position of a, we have H(V ) =
H(W ). Therefore, for any V ∈ H(Lb), H−1(V ) con-
tains exactly m − 1 rankings in Lb that correspond to the
m − 1 positions of a (from the second position to the m-
th position—the first position is occupied by b). For each
2 ≤ i ≤ m, let Wi ∈ H−1(V ) denote the ranking where a

3Definitions of these rules except Copeland and maximin can
be found in [18], where it was proved that they satisfy strict Con-
dorcet criterion.

is ranked at the i-th position.

Kd(P,Wi)

=Kd(P |−a, (Wi)−a) +
∑
d�Wia

P (a � d)

+
∑
a�Wid

P (d � a)

≥Kd(P |−a, J((Wi)−ab)) +
∑
d6=a

P (d � a) + i− 1 (5)

=Kd(P, V ) + i− 1

Inequality (5) is because a is the Condorcet winner, which
means that for any d 6= a we have #P (a � d) ≥ #P (d �
a) + 1. Therefore, for each V ∈ H(Lb) we have∑

W∈H−1(V )

ϕKd(P,W ) ≤ (ϕ+ · · ·+ ϕm−1)ϕKd(P,V )

=
ϕ(1− ϕm−1)

1− ϕ
ϕKd(P,V )

Therefore,∑
W∈Lb

ϕKd(P,W ) ≤ ϕ(1− ϕm−1)

1− ϕ
∑

V ∈H(Lb)

ϕKd(P,V )

<
ϕ(1− ϕm−1)

1− ϕ
∑
V ∈La

ϕKd(P,V ) ≤
∑
V ∈La

ϕKd(P,V )

Therefore, we have 1 − EL(a|P ) > 1 − EL(b|P ), which
means that EL(a|P ) < EL(b|P ) and a is the unique win-
ner.

The “only if part”: suppose ϕ(1−ϕm−1)
1−ϕ > 1. For any odd

number k ∈ N we consider the a profile Pk whose weighted
majority graph is the same as in Figure 1. The existence
of P ∗ is guaranteed by McGarvey’s theorem [23]. More
precisely, in Figure 1 the weight on the edges from a to all
other alternatives is 1; the weight on the edges from b to all
other alternatives (except a) is k; for any 3 ≤ i1 < i2 < m,
the weight on ai1 → ai2 is k.

a b

a3 ama4 …

k
1

1
11 k k

k

Figure 1: The WMG of Pk for odd k.

Let Va = a � b � a3 � · · · � am and for
each 2 ≤ i ≤ m, let V ib be the ranking obtained
from Va by moving a to the i-th position. It is not

hard to check that limk→∞

∑
V ∈La ϕ

Kd(Pk,V )

ϕKd(Pk,Va)
= 1 and



limk→∞

∑
V ∈Lb ϕ

Kd(Pk,V )∑m
i=2 ϕ

Kd(Pk,V ib )
= 1. We note that for each

2 ≤ i ≤ m, Kd(Pk, V
i
b ) = Kd(Pk, Va) + i − 1. This

means that

lim
k→∞

∑
V ∈Lb ϕ

Kd(Pk,V )∑
V ∈La ϕ

Kd(Pk,V )
= lim
k→∞

∑m
i=2 ϕ

Kd(Pk,V
i
b )

ϕKd(Pk,Va)

=ϕ+ ϕ2 + · · ·ϕm−1 =
ϕ(1− ϕm−1)

1− ϕ
> 1

Therefore, there exists odd k ∈ N such that EL(b|Pk) <
EL(a|Pk), which means that a cannot be the winner. Be-
cause a is the Condorcet winner in Pk, fTop

Ma,ϕ does not sat-
isfy Condorcet criterion. 2

Theorem 6. For any profile P , fBorda
Co,ϕ (P ) =

arg maxa∈A
∑
c 6=a

1
1+ϕwP (a,c) .

Proof: For anyW ∈ B(A) and any pair of alternatives a, b,
let IW (a � b) = 1 if a �W b; otherwise IW (a � b) = 0.
It follows that m− 1− LBorda(W,a) =

∑
b 6=a IW (a � b).

Let Ba�b denote the set of all rankings overAwhere a � b.

m− 1− EL(a|P )

=
∑

W∈B(A)

Pr(W |P )(m− 1− LBorda(W,a))

=
∑

W∈B(A)

Pr(W |P )
∑
c6=a

IW (a � c)

=
∑
c6=a

∑
W∈Ba�c

Pr(W |P )

Following similar calculations as in [16, 7], we have∑
c6=a

∑
W∈Ba�c

Pr(W |P )

∝
∑
c6=a

ϕP (c�a)
∏

{b,d}:{b,d}6={a,c}

(ϕP (b�d) + ϕP (d�b))

∝
∑
c6=a

ϕP (c�a)

ϕP (c�a) + ϕP (a�c) =
∑
c6=a

1

1 + ϕwP (a,c)

Therefore, for any pair of alternatives (a, b),
EL(a|P ) ≤ EL(b|P ) if and only if

∑
c 6=a

1
1+ϕwP (a,c) ≥∑

c 6=b
1

1+ϕwP (b,c) . This proves the theorem. 2

Proposition 1. For all 0 < ϕ < 1, fBorda
Co,ϕ satisfies mono-

tonicity.

Proof: For any profile P , any a ∈ fBorda
Co,ϕ (P ) and

any profile P ′ obtained from P by raising the posi-
tions of a without changing relative positions of other
alternatives. It is not hard to check that for any b 6=
a, wP ′(a, b) > wP (a, b), and the weights of edges
not involving a do not change. Therefore, for any
b 6= a,

∑
c 6=a

1

1+ϕwP ′ (a,c)
>

∑
c6=a

1
1+ϕwP (a,c) ≥∑

c 6=b
1

1+ϕwP (b,c) >
∑
c6=b

1

1+ϕwP ′ (b,c)
. It follows from

Theorem 6 that a ∈ fBorda
Co,ϕ (P ′). 2

Theorem 7. fBorda
Co,ϕ satisfies the Condorcet criterion if and

only if ϕ ≤ 1
m−1 .

Proof: The “if” part. Let P be any profile where a is
the Condorcet winner. This means that for any c 6= a,
wP (a, c) ≥ 1. By Theorem 6 we have

∑
c 6=a

1
1+ϕwP (a,c) ≥

m−1
1+ϕ . For any b 6= a, we have

∑
c6=a

1
1+ϕwP (a,c) <

1
1+ϕ−1 +m−2. When ϕ ≤ 1

m−1 , we have 1
1+ϕ−1 +m−2 ≤

m−1
1+ϕ . Therefore, a is the unique winner.

The “only if” part is proved by considering the profile Pk
whose WMG is in Figure 1 and let k →∞. 2

Theorem 8. As ϕ→ 0, fBorda
Co,ϕ converges to a refinement of

Copeland0.5. As ϕ → 1, fBorda
Co,ϕ converges to a refinement

of Borda.

Proof: For any profile P any pair of alternatives a, b we
have

limϕ→0
1

1+ϕwP (a,b) =

 1 if wP (a, b) > 0
0.5 if wP (a, b) = 0
0 otherwise

Therefore, for any alternative a, limϕ→0

∑
c6=a

1
1+ϕwP (a,c)

is its Copeland0.5 score, which means that the winners must
also be winners under Copeland0.5.

For any k > 0, when ε → 0, we have 1
1+(1−ε)k =

1
2 (1+ kε

2 +o(ε)) and 1
1+(1−ε)−k = 1

2 (1− kε
2 +o(ε)). There-

fore, for any alternative a,
∑
c 6=a

1
1+ϕwP (a,c) = m−1

2 +
1
4 (
∑
c6=a wP (a, c))(1 − ϕ) + o(1 − ϕ). We note that∑

c 6=a wP (a, c) equals to twice the Borda score of a in P
minus n(m − 1). Therefore, as ϕ → 1, all fBorda

Co,ϕ winners
must be Borda winners. 2

We propose a new class of ranking model and framework
as follows.

Definition 5. For any 0 < ϕ < 1 we define MPair,ϕ as
follows. The parameter space Θ = {θbc : b 6= c ∈ A}. For

any V ∈ L(A) we let πθbc(V ) ∝
{

1 if b �V c
ϕ otherwise .

Let L1(θbc, a) =

{
1 if a = c
0 otherwise and

L2(θbc, a) =

{
0 if a = b
1 otherwise .

Let F1
Pair,ϕ = (MPair,ϕ, L1) and F2

Pair,ϕ = (MPair,ϕ, L2).

That is, the parameters in MPair,ϕ correspond to pairwise
comparisons between alternatives. A parameter θbc can be
interpreted as “b � c is the strongest pairwise comparison”.
The first loss function states that the loss of a is 1 if and
only if a is the less preferred alternative in the parameter.
The second loss function states that the loss of a is 0 if and
only if a is the preferred alternative in the parameter.

MPair,ϕ might be of independent interest. In this paper we



focus on the satisfaction of axioms for the two Bayesian
estimators and leave further exploration of the model for
future work. We note that given ϕ, the normalization factor
for all θbc are the same.

Theorem 9. The Bayesian estimator f1
Pair,ϕ of F1

Pair,ϕ

is arg mina∈Θ

∑
b6=a ϕ

wP (a,b)/2. The Bayesian estimator
f2

Pair,ϕ of F2
Pair,ϕ is arg maxa∈Θ

∑
b 6=a ϕ

wP (b,a)/2.

It is easy to check that both F1
Pair,ϕ and F2

Pair,ϕ satisfy
neutrality and parameter connectivity. Therefore, their
Bayesian estimators satisfy neutrality and minimaxity.

Corollary 3. f1
Pair,ϕ and f2

Pair,ϕ satisfy neutrality and min-
imaxity (w.r.t. to F1

Pair,ϕ and F2
Pair,ϕ, respectively).

Proposition 2. f1
Pair,ϕ and f2

Pair,ϕ satisfy monotonicity.

Proof: The proof is similar to the proof of Theorem 1. We
note that raising the position of a will increase the weight
on some edges a → b. Weights on other edges do not
change. Monotonicity of both rules can be verified by ap-
plying Theorem 9. 2

Theorem 10. f1
Pair,ϕ satisfies the Condorcet criterion if and

only if ϕ ≤ 1
m−1 . For all 0 < ϕ < 1, f2

Pair,ϕ does not
satisfy Concorcet criterion.

Proof: The “if” part for f1
Pair,ϕ follows after Theorem 11

because when ϕ < 1
m−1 , f1

Pair,ϕ is a refinement of maximin
and any refinement of maximin satisfies the Condorcet cri-
terion.

The “only if” part for f1
Pair,ϕ and the non-satisfaction for

f2
Pair,ϕ are proved by considering the profile Pk whose

weighted majority graph is in Figure 1 and let k → ∞.
2

For any profile P , the maximax rule to chooses all alter-
natives with the maximum weight on at least one outgoing
edge in the weighted majority graph. That is, the rule is
arg maxa maxb wP (a, b).

Theorem 11. For any ϕ ≤ 1
m−1 , f1

Pair,ϕ is a refinement of
maximin, and f2

Pair,ϕ is a refinement of maximax. Asϕ→ 1,
both rules converge to refinements of Borda.

Proof: By Theorem 9, for any ϕ ≤ 1
m−1 , for

any alternative a,
∑
b6=a ϕ

wP (a,b)/2 is mainly deter-
mined by minb 6=a wP (a, b)/2, which is half of a’s min-
score. It follows that all winners under f1

Pair,ϕ must
be maximin winners. Similarly,

∑
b 6=a ϕ

wP (b,a)/2 is de-
termined by minb6=a wP (b, a)/2, which corresponds to
maxb6=a wP (a, b)/2. It follows that the winner under
f2

Pair,ϕ must be maximax winners.

For any ε > 0, we have
∑
b 6=a(1− ε)wP (a,b)/2 = m− 1−∑

b 6=a
wP (a,b)

2 ε+ o(ε). Similar to the proof of Theorem 8,
the minimizers of this function as ε → 0, which is f1

Pair,ϕ

as ϕ → 1, must be Borda winners. The proof for f2
Pair,ϕ is

similar. 2

6 SUMMARY AND FUTURE WORK

We characterized neutrality and proved an impossibility
theorem about strict Condorcet criterion for Bayesian es-
timators. We also proposed new frameworks to obtain new
BEs and showed that some of them satisfy many desirable
axioms and can be computed in polynomial time.

There are many directions for future work. Can we an-
swer Q2 in the Introduction for other desirable axioms
such as homogeneity? How about axioms for other types
preferences such as ratings? Are there any BEs that are
refinements of other commonly studied rules, especially
Copelandα for α 6∈ {0.5, 1}, STV, and ranked pairs? What
are other natural frameworks and which axioms do their
BEs satisfy?
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