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Abstract

Learning the influence structure of multiple time
series data is of great interest to many disciplines.
This paper studies the problem of recovering the
causal structure in network of multivariate linear
Hawkes processes. In such processes, the occur-
rence of an event in one process affects the prob-
ability of occurrence of new events in some other
processes. Thus, a natural notion of causality ex-
ists between such processes captured by the sup-
port of the excitation matrix. We show that the
resulting causal influence network is equivalent
to the Directed Information graph (DIG) of the
processes, which encodes the causal factorization
of the joint distribution of the processes. Further-
more, we present an algorithm for learning the
support of excitation matrix of a class of multi-
variate Hawkes processes with exponential excit-
ing functions (or equivalently the DIG). The per-
formance of the algorithm is evaluated on syn-
thesized multivariate Hawkes networks as well
as a stock market and MemeTracker real-world
dataset.

1 INTRODUCTION

In many disciplines, including biology, economics, social
sciences, and computer science, it is important to learn the
structure of interacting networks of stochastic processes. In
particular, succinct representation of the causal interactions
in the network is of interest.

A lot of studies in the causality fields focus on causal dis-
covery from time series. To find causal relations from
time series, one may fit vector autoregressive models on
the time series, or more generally, evaluate the causal in-
fluences with transfer entropy [22] or directed information
[19]. This paper considers learning causal structure for a
specific type of time series, multivariate linear Hawkes pro-
cess [8]. Hawkes processes were originally motivated by

the quest for good statistical models for earthquake occur-
rences. Since then, they have been successfully applied to
seismology [15], biology [21], criminology [13], compu-
tational finance [5, 12, 14], etc. It is desirable to develop
specific causal discovery methods for such processes and
study the properties of existing methods in this particular
scenario.

In multivariate or mutually exciting point processes, occur-
rence of an event (arrival) in one process affects the con-
ditional probability of new occurrences, i.e., the intensity
function of other processes in the network. Such inter-
dependencies between the intensity functions of a linear
Hawkes process are modeled as follows: the intensity func-
tion of processes j is assumed to be a linear combination
of different terms, such that each term captures only the ef-
fects of one other process (See Section 2.1). Therefore, a
natural notion of functional dependence (causality) exists
among the processes in the sense that in linear mutually
exciting processes, if the coefficient pertaining to the ef-
fects of process i is non-zero in the intensity function of
process j, we know that process i is influencing process j.
This dependency is captured by the support of the excita-
tion matrix of the network. As a result, estimation of the
excitation (kernel) matrix of multivariate processes is cru-
cial both for learning the structure of their causal network
and for other inference tasks and has been the focus of re-
search. For instance, maximum likelihood estimators were
proposed for estimating the parameters of excitation matri-
ces with exponential and Laguerre decay in [16, 25]. These
estimators depend on existence of i.i.d. samples. However,
often we do not have access to i.i.d. samples when analyz-
ing time series. Second-order statistics of the multivariate
Hawkes processes were used to estimate the kernel matrix
of a subclass of multivariate Hawkes processes called sym-
metric Hawkes processes [1]. Utilizing the branching prop-
erty of the Hawkes processes, an expectation maximization
algorithm was proposed to estimate the excitation matrix in
[10].

We aim to investigate efficient approaches to estimation of
excitation matrix of Hawkes processes from time series that



does not require i.i.d. samples and investigate how the con-
cept of causality in such processes is related to other estab-
lished approaches to analyze causal effects in time series.

1.1 SUMMARY OF RESULTS AND
ORGANIZATION

Our contribution in this paper is two fold. First, we prove
that for linear multivariate Hawkes processes, the causal re-
lationships implied by the excitation matrix is equivalent to
a specific factorization of the joint distribution of the sys-
tem called minimal generative model. Minimal generative
models encode causal dependencies based on a generalized
notion of Granger causality, measured by causally condi-
tioned directed information [20]. One significance of this
result is that it provides a surrogate to directed informa-
tion measure for capturing causal influences for Hawkes
processes. Thus, instead of estimating the directed infor-
mation, which often requires estimating a high dimensional
joint distribution, it suffices to learn the support of the exci-
tation matrix. Our second contribution is indeed providing
an estimation method for learning the support of excitation
matrices with exponential form using second-order statis-
tics of the Hawkes processes.

Our proposed learning approach, in contrast with the pre-
vious work [1, 24], is not limited to symmetric Hawkes
processes. In a symmetric Hawkes process, it is assumed
that the Laplace transform of the excitation matrix can be
factored into product of a diagonal matrix and a constant
unitary matrix. Moreover, it is assumed that the expected
values of all intensities are the same. A numerical method
to approximate the excitation matrix from a set of coupled
integral equations was recently proposed in [3]. Our ap-
proach is based on an exact analytical solution to find the
excitation matrix. Interestingly, the exact approach turns
out to be both more robust and less expensive in terms of
complexity compared to the numerical method of [3].

The rest of this paper is organized as follows. Background
material, some definitions, and the notation are presented
in Section 2. Specifically, therein, we formally introduce
multivariate Hawkes processes and directed information
graphs. In Section 3, we establish the connection between
the excitation matrix and the corresponding DIG. In Sec-
tion 4, we propose an algorithm for learning the excita-
tion matrix or equivalently the DIG of a class of stationary
multivariate linear Hawkes processes. Section 5 illustrates
the performance of the proposed algorithm in inferring the
causal structure in a network of synthesized mutually excit-
ing linear Hawkes processes and in stock market. Finally,
we conclude our work in Section 6.

2 PRELIMINARY DEFINITIONS

In this Section we review some basic definitions and our
notation. We denote random processes by capital let-

ters and a collection of m random processes by X [m] =
{X1, ..., Xm}, where [m] := {1, ...,m}. We denote the ith
random process at time t by Xi(t), the random process Xi

from time s up to time t by Xt
i,s, and a subset K ⊆ [m] of

random process up to time t byXt
K. The Laplace transform

and Fourier Transform of Xi are denoted, respectively by

L[Xi](s) =

∫ ∞
0

Xi(t)e
−stdt, (1)

F [Xi](ω) =

∫ ∞
−∞

Xi(t)e
−jωtdt,

where j =
√
−1. The convolution between two functions

f and g is defined as f ∗ g(t) :=
∫
R f(x)g(t − x)dx. The

joint distribution of processes {Xn
1 , ..., X

n
m} is represented

by PX(n).

2.1 MULTIVARIATE HAWKES PROCESSES

Fix a complete probability space (Ω,F , P ). Let N(t)
denotes the counting process representing the cumulative
number of events up to time t and let {F t}t≥0 be a set
of increasing σ-algebras such that F t = σ{N t}. The non-
negative,F t-measurable process λ(t) is called the intensity
of N(t) if

P (N(t+ dt)−N(t) = 1|F t) = λ(t)dt+ o(dt).

A classical example of mutually exciting processes, a mul-
tivariate Hawkes process [8], is a multidimensional process
N(t) = {N1, ..., Nm} such that for each i ∈ [m]

P
(
dNi(t) = 1|F t

)
= λi(t)dt+ o(dt), (2)

P (dNi(t) > 1|F t) = o(dt),

where F t = σ{N t}. The above equations imply that
E[dNi(t)/dt|F t] = λi(t). Furthermore, the intensities are
all positive and are given by

λi(t) = vi +

m∑
k=1

∫ t

0

γi,k(t− t′)dNk(t′). (3)

The exciting functions γi,k(·)s are in `1 such that λi(t) ≥ 0
for all t > 0. Equivalently, in matrix representation:

Λ(t) = v +

∫ t

0

Γ(t− t′)dN(t′), (4)

where Γ(·) denotes an m × m matrix with entries γi,j(·);
dN,Λ(·), and v are m × 1 arrays with entries dNi, λi(·),
and vi, respectively. Matrix Γ(·) is called the excitation
(kernel) matrix. Figure 1 illustrates the intensities of a
multivariate Hawkes process comprised of two processes
(m = 2) with the following parameters

v =

(
0.5
0.4

)
, Γ(t) =

(
0.1e−t 0.3e−1.1t

0.5e−0.9t 0.3e−t

)
u(t),

where u(t) is the unit step function.
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Figure 1: Intensities of the multivariate Hawkes process.

Assumption 1 A joint distribution is called positive (non-
degenerate), if there exists a reference measure φ such that
PX � φ and dPX

dφ > 0, where PX � φ denotes that PX is
absolutely continuous with respect to φ1.

Note that the Assumption 1 states that none of the processes
is fully determined by the other processes.

2.2 CAUSAL STRUCTURE

A causal model allows the factorization of the joint distri-
bution in some specific ways. Generative model graphs are
a type of graphical model that similar to Bayesian networks
[17] represent a causal factorization of the joint [19]. More
precisely, it was shown in [19] that under Assumption 1,
the joint distribution of a causal2 discrete-time dynamical
system with m processes can be factorized as follows,

PX =

m∏
i=1

PXi||XBi
, (5)

where B(i) ⊆ −{i} is the minimal3 set of processes that
causes process Xi, i.e., parent set of node i in the corre-
sponding minimal generative model graph. Such factoriza-
tion of the joint distribution is called minimal generative
model. In Equation (5),

PXi||XBi
:=

n∏
t=1

PXi(t)|Ft−1
B∪{i}

,

and F t−1
B∪{i} = σ{Xt−1

B∪{i}}.

1A measure PX on Borel subsets of the real line is absolutely
continuous with respect to measure φ if for every measurable set
B, φ(B) = 0 implies PX(B) = 0.

2In causal systems, given the full past of the system, the
present of the processes become independent.

3Minimal in terms of its cardinality.
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Figure 2: Minimal generative model graph of Example 1.

Extending the definition of generative model graphs
to continuous-time systems requires some technicalities
which are not necessary for the purpose of this paper.
Hence we illustrate the general idea through an example.

The following example demonstrates the minimal genera-
tive model graph of a simple continuous-time system.

Example 1 Consider a dynamical system in which the pro-
cesses evolve over time horizon [0, T ] through the following
coupled differential equations:

dX1 = f(X1, X2)dt+ dW,

dX2 = g(X2)dt+ dU,

dX3 = h(X1, X2, X3)dt+ dV,

where W,U and V are independent exogenous noises. For
small time dt, this becomes,

dX1(t+ dt) ≈ ∆f(X1(t), X2(t)) + dW (t),

dX2(t+ dt) ≈ ∆g(X2(t)) + dU(t),

dX3(t+ dt) ≈ ∆h(X1(t), X2(t), X3(t)) + dV (t).

(6)

In this example, since the system is causal, the correspond-
ing joint distribution can be factorized as follows,

PX =

3∏
j=1

∏
k≥0

PXj(T−kdt)|FT−(k+1)dt , (7)

where FT−(k+1)dt = σ{XT−(k+1)dt
{1,2,3} }. Due to (6), we can

rewrite (7) as

PX = PX1||X2
PX2

PX3||X1,X2
. (8)

Figure 2 demonstrates the corresponding generative model
graph of the factorization in (8).

In general, the joint distribution of a causal dynamical sys-
tem can be factorized as PX =

∏m
i=1 PXi||XBi

, where
B(i) ⊆ −{i} is the parent set of node i in the correspond-
ing minimal generative model graph, and

PXi||XBi
=
∏
k≥0

P
Xi(T−kdt)|FT−(k+1)dt

Bi

.

3 TWO EQUIVALENT NOTATIONS OF
CAUSALITY FOR HAWKES
PROCESSES

In linear multivariate Hawkes processes, a natural notion
of causation exists in the following sense: if γi,j 6= 0, then



occurrence of an event in jth process will affect the likeli-
hood of the arrivals in ith process. Next, we establish the
relationship between the excitation matrix of multivariate
Hawkes processes and their generative model graph. To do
so, first, we discuss the equivalence of directed informa-
tion graphs and generative models graphs which was estab-
lished in [20].

3.1 DIRECTED INFORMATION GRAPHS (DIGs)

An alternative graphical model to encode statistical interde-
pendencies in stochastic causal dynamical systems are di-
rected information graphs (DIGs) [19]. Such graphs are de-
fined based on an information-theoretic quantity, directed
information (DI) that generalizes the Granger causality and
it was shown in [20] that under some mild assumptions,
they are equivalent to the minimal generative model graphs.
Hence, DIGs also represent a minimal factorization of the
joint distribution.

In a DIG, to determine whether Xj causes Xi over a time
horizon [0, T ] in a network of m random processes, two
conditional probabilities are compared in KL-divergence
sense: one is the conditional probability ofXi(t+dt) given
full past, i.e., F t := σ{Xt} and the other one is the con-
ditional probability of Xi(t+ dt) given full past except the
past of Xj , i.e., F t−{j} := σ{Xt

−{j}}. It is declared that
there is no influence from Xj on Xi, if the two conditional
probabilities are the same. More precisely, there is an in-
fluence from Xj on Xi if and only if the following directed
information measure is positive [19],

IT (Xj → Xi||X−{i,j}) := inf
t∈T (0,T )

Ĩt(Xj → Xi||X−{i,j}),

(9)
where−{i, j} := [m]\{i, j}, T denotes the set of all finite
partitions of the time interval [0, T ] [23], and

Ĩt(Xj → Xi||X−{i,j}) :=

n∑
k=0

I
(
Xtk
i,tk−1

;Xtk
j,0|F

tk−1

−{j}

)
,

where t := (0 = t0, t1, ..., tn = T ). Finally, I(X;Y |Z)
represents the conditional mutual information between X
and X given Z and it is given by

I(X;Y |Z) := EPX,Y,Z

[
log

dPX|Y,Z

dPX|Z

]
.

3.2 EQUIVALENCE BETWEEN GENERATIVE
MODEL GRAPHS AND SUPPORT OF
EXCITATION MATRIX

As mentioned earlier, the corresponding minimal genera-
tive model graph and the DIG of a causal dynamical sys-
tem are equivalent. Thus, to characterize the corresponding
minimal generative model graphs of a multivariate Hawkes
system, we study the properties of its corresponding DIG.

Proposition 1 Consider a set of mutually exciting pro-
cesses N with excitation matrix Γ(t). Under Assumption
1, IT (Nj → Ni||N−{i,j}) = 0 if and only if γi,j ≡ 0 over
time interval [0, T ].

Proof: See Section 7.1. �

Proposition 1 signifies that the support of the excitation ma-
trix Γ(·) determines the adjacency matrix of the DIG and
vice versa. Therefore, learning DIG of a mutually exciting
Hawkes processes satisfying Assumption 1 is equivalent to
learning the excitation matrix given samples from each of
the processes. In other word, in the presence of side infor-
mation that the processes are Hawkes, it is more efficient
to learn the causal structure through learning the excita-
tion matrix rather than the directed information needed for
learning the DIG in general.

4 LEARNING THE EXCIATIONA
MATRIX

In this section, we present an approach for learning the
causal structure of a stationary Hawkes network with ex-
ponential exciting functions through learning the excitation
matrix. This method is based on second order statistic of
the Hawkes processes and it is suitable for the case when
no i.i.d. samples are available. Note that when i.i.d. sam-
ples are available, non-parametric methods for learning the
excitation matrix such as MMEL algorithm [25] exist. In
this approach the exciting functions are expressed as linear
combination of a set of base kernels and a penalized like-
lihood is used to estimate the parameters of the model. As
mentioned earlier, we focus on learning the excitation ma-
trix of multivariate Hawkes processes with exponential ex-
citing functions. This class of Hawkes processes has been
widely applied in many areas such as seismology, criminol-
ogy, and finance [15, 21, 13, 5].

Definition 2 The excitation matrix of a multivariate
Hawkes processes with exponential exciting functions is de-
fined as follows

E xp(m) := {
D∑
d=1

Ade
−βdtu(t) : Ad ∈ Rm×m,

(

D∑
d=1

Ade
−βdt)i,j ≥ 0, ρ(

D∑
d=1

Ad
βd

) < 1, D ∈ N}, (10)

where {βd} > 0 is called the set of exciting modes.

Example 2 Consider a set ofm = 5 mutually exciting pro-
cesses with the following exponential excitation matrix
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Figure 3: Corresponding DIG of the network in Example 2
with the excitation matrix given by (11)

2 0 0 0 0
0 0 .5 0 0
0 1.5 0 0 0
0 0 0 1.3 0
0 0 0 0 1

 e−t

20
+

0 0 .5 0 0
0 0 0 0 2
0 1 0 2.5 0
.1 0 0 0 0
0 0 0 1 0

 e−1.4t

20

+

1 1.5 1 0 0
0 0 0 0 −1
0 0 2 0 0
2 0 0 0 0
0 0 0 0 0

 e−2t

20
(11)

In this example D = 3 and the exciting modes are
{1, 1.4, 2}. By Proposition 1, the adjacency matrix of the
corresponding DIG of this network is given by the support
of its excitation matrix. Figure 3 depicts the corresponding
DIG.

Before describing our algorithm, we need to derive some
useful properties of moments of the process. A multivariate
Hawkes process with the excitation matrix Γ has stationary
increments, i.e., the intensity processes is stationary, if and
only if the following assumption holds [8, 6]:

Assumption 2 The spectral radius (the supremum of the
absolute values of the eigenvalues) of the matrix Γ, where
[Γ]i,j = ||γi,j ||1 is strictly less than one, i.e., ρ(Γ) < 1.

In this case, from (4) and Equation (2):

Λ = E[Λ(t)] = v +

∫ t

0

Γ(t− t′)E[dN(t′)]

= v +

∫ t

0

Γ(t− t′)Λdt′ = v + ΓΛ. (12)

By Assumption 2,
∑
i≥0 Γ

i
converges to (I − Γ)−1, thus

Λ = (I − Γ)−1v. The normalized covariance matrix of
a stationary multivariate Hawkes process with lag τ and
window size z > 0 is defined by

Σz(τ) :=
1

z
E
[∫ t+z

t

dN(x)

∫ t+τ+z

t+τ

(dN(y))T
]
−ΛΛT z,

(13)
where

∫ t+t′
t

dN(x) denotes the number of events in time
interval (t, t+ t′].

Theorem 3 [1] The Fourier transform of the normalized
covariance matrix of a stationary multivariate Hawkes pro-
cess with lag τ and window size z > 0 is given by

F [Σz](−ω) (14)

= 4
sin2 zω/2

ω2z
(I −F [Γ](ω))

−1
diag(Λ) (I −F [Γ](ω))

−†
,

where A† denotes the Hermitian conjugate of matrix A,
and diag(Λ) is a diagonal matrix with vector Λ as the main
diagonal.

In order to learn the excitation matrix with exponential
exciting functions, we need to learn the exciting modes
{βd}, the number of components D, and coefficient matri-
ces {Ad}. Next results establishes the relationship between
the exciting modes and the number of components D with
the normalized covariance matrix of the process.

Corollary 4 Consider a network of a stationary multivari-
ate Hawkes processes with excitation matrix Γ(t) belong-
ing to Exp(m). Then the exciting modes of Γ(t) are the
absolute values of the zeros of 1/TrF [Σz]

−1(ω).

Proof: See Section 7.2. �

Next, we need to find the coefficient matrices {Ad}. To
do so, we use the covariance density of the processes. The
covariance density of a stationary multivariate Hawkes pro-
cess for τ > 0 is defined as [8]

Ω(τ) := E
[
(dN(t+ τ)/dt− Λ)(dN(t)/dt− Λ)T

]
.

(15)
Since the processes have stationary increments, we have
Ω(−τ) = ΩT (τ).

Lemma 5 [8]

Ω(τ) = Γ(τ)diag(Λ) + Γ ∗ Ω(τ), τ > 0. (16)

It has been shown in [3] that the above equation admit a
unique solution for Γ(τ). Next proposition provides a sys-
tem of linear equations that allows us to learn the coeffi-
cient matrices.

Proposition 6 Consider a network of a stationary multi-
variate Hawkes processes with excitation matrix Γ(t) ∈
Exp(m), and exciting modes {β1, ..., βD}. Then {Ad} are
a solution of the linear system of equations: S = AH,
where Hm2×m2 is a block matrix with (i, j)th block given
by

Hi,j =
diag(Λ) + L[Ω](βj) + L[Ω]T (βi)

βj + βi
,

and A = [A1, ..., AD] and S = [L[Ω](β1), ...,L[Ω](βD)].

Proof: See Section 7.3.�



Combining the results of Corollary 4 and Proposition 6 al-
lows us to learn the excitation matrix of exponential multi-
variate Hawkes processes from the second order moments.
Consequently applying Proposition 1, the causal structure
of the network can be learned by drawing an arrow from
node i to j, when

∑D
d=1 |(Ad)j,i| > 0.

4.1 ESTIMATION AND ALGORITHM

This section discusses estimators for the second order mo-
ments, namely the normalized covariance matrix and the
covariance density of a stationary multivariate Hawkes pro-
cesses from data. Once such estimators are available, the
approach of previous section maybe used to learn the net-
work. The most intuitive estimator for Λ defined by Equa-
tion (12) is N(T )/T . It turns out that this estimator con-
verges almost surely to Λ as T goes to infinity [2]. Further-
more, [2] proposes an empirical estimator for the normal-
ized covariance matrix as follows

Σ̂z,T (τ) :=
1

T

bT/zc∑
i=1

(Xiz −X(i−1)z)(Xiz+τ −X(i−1)z+τ )T ,

(17)
where Xt := N(t) − Λt. In the same paper, it has
been shown that under Assumption 2, the above estima-
tor converges in `2 to the normalized covariance matrix
(13), i.e., Σ̂z,T (τ) −→

T→∞
Σz(τ). Notice that the normal-

ized covariance matrix and the covariance density are re-
lated by Σdt(τ)/dt = ΩT (τ). Therefore, we can esti-
mate the covariance density matrix using Equation (17)
by choosing small enough window size z = ∆. Namely,
Ω̂T∆(τ) = Σ̂∆(τ)/∆.

Algorithm 1
1: Input : NT .
2: Output : DIG.
3: Λ̂← N(T )/T
4: Choose σ > 0, z > 0, and small ∆ > 0.
5: Compute Σ̂z,T (τ) and Ω̂∆(τ) using (17).
6: {β̂d}D̂d=1 ← Zeros of 1/TrF [Σz]

−1(ω).
7: Compute L[Ω̂∆](β̂d) for d = 1, ..., D̂.
8: Solve the set of equations arises from (20) for Âd.
9: Draw (j, i) if

∑D̂
d=1 |(Âd)i,j | ≥ σ.

Algorithm 1 summarizes the steps of our proposed ap-
proach for learning the excitation matrix and consequently
the causal structure of an exponential multivariate Hawkes
process.

5 EXPERIMENTAL RESULTS

In this section, we present our experimental results for both
synthetic and real data.
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Figure 5: True causal structure of the synthesized example.

5.1 SYNTHETIC DATA

We apply the proposed algorithms to learn the causal struc-
ture of the multivariate Hawkes network of Example 2 with
v = (0.5, 0.4, 0.5, 1, 0.3)T . This network satisfies As-
sumption 2, since ρ(Γ) ≈ 0.16. The exciting modes are
{1, 1.4, 2}. We observed the arrivals of all processes dur-
ing a time period T . Figure 4 depicts the outputs of al-
gorithms 1 for ∆ = 0.2, z = 2, and observation lengths
T ∈ {1000, 2100}. As illustrated in Figure 4, by increas-
ing the length of observation T , the output graph converges
the true DIG shown in Figure 3. As a comparison, we ap-
plied the MMEL algorithm proposed in [25] to learn the ex-
citation matrix for this example and the numerical method
based on Nystrom method proposed in [3] with T = 2100
and the number of quadrature Q = 70. Since MMEL re-
quires i.i.d. samples, we generate 35 i.i.d. samples each of
length 60 to obtain Figure 4(MMEL). Our proposed algo-
rithm outperforms both MMEL and the numerical method
of [3].

Furthermore, we conducted another experiment for a net-
work of 15 processes with 102 edges illustrated in Figure
5. For a sample of length T = 2500, our algorithm was
able to recover 70 edges correctly but identified 34 false ar-
rows. MMEL could only recover 58 arrows correctly while
detecting another 41 false arrows. The input for MMEL
was 25 sequences each of length 100.

5.2 STOCK MARKET DATA

As an example of how our approach may discover causal
structure in real-world data, we analyzed the causal rela-
tionship between stock prices of 12 technology companies
of the New York Stock Exchange sourced from Google Fi-
nance. The prices were sampled every 2 minutes for twenty
market days (03/03/2008 - 03/28/2008). Every time a stock
price changed by ±1% of its current price an event was
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Figure 4: Recovered DIG of the network in Example 2 with the excitation matrix given by (11), (a), (b) Algorithm 1 with
∆ = 0.2, z = 2, and T ∈ {1000, 2100}, (c) the numerical method of [3] with Q = 70 and T = 2100, and (d) MMEL with
35 i.i.d. samples each of length 60. Our approach learns the graph with T = 2100, while other approaches fail at the same
sample size.
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Figure 6: Causal structures for the S&P (a) using Algorithm 1, (b) by estimating the directed information DIG, and (c)
using MMEL algorithm.

logged on the stock’s process. In order to prevent the sub-
stantial changes in stock’s prices due to the opening and
closing of the market, we ignored the samples at the be-
ginning and at the end of each working day. For this part,
we have assumed that the jumps occurring in stock’s prices
are correlated through a multivariate Hawkes process. This
model class was advocated in [11, 2]. Figure 6(a) illustrate
the causal graph resulting from Algorithm 1, with z = 30
and ∆ = 2 minutes.

To compare our learning approach with other approaches,
we applied the MMEL algorithm to learn the correspond-
ing causal graph. For this scenario, we assumed that the
data collected from each day is generated i.i.d. Hence,
a total of 20 i.i.d. samples were used. Figure 6(c) illus-
trates the resulting graph. As one can see, Figures 6(a) and
6(c) convey pretty much a similar causal interactions in the
dataset. For instance both of these graphs suggest that one
of the most influential companies in that period of time was
Hewlett-Packard (HP). Looking into the global PC market
share during 2008, we find that this was indeed the case.4

To use another modality, we derive the corresponding DIG

4Gartner, http://www.gartner.com/newsroom/id/856712

of this network applying Equation (9). For this part, we
used the market based on the Black-Scholes model [4] in
which the stock’s prices are modeled via a set of coupled
stochastic PDEs. We assumed that the logarithm of the
stock’s prices are jointly Gaussian and therefore the cor-
responding DIs were estimated using Equation (24) in [7].
The resulting DIG is shown in Figure 6(b). Note that this
DIG is derived from the logarithm of prices and not the
jump processes we used earlier. Still it shares a lot of simi-
larities with the two other graphs. For instance, it also iden-
tifies HP as one of the most influential companies and Mi-
crosoft as one the most influenced companies in that time
period.

Alg. 1 DIG MMEL
Alg. 1 33 25 26
DIG 25 30 24
MMEL 26 24 34

This table shows the number of edges that each of the
above approaches recovers and the number of edges that
they jointly recover. This demonstrates the power of expo-
nential kernels even when data does not come from such a
model class.



5.3 MEMETRACKER DATA

We also studied causal influences in a blogosphere. The
causal flow of information between media sites may be cap-
tured by studying hyperlinks provided in one media site to
others. Specifically, the time of such linking can be mod-
eled using a linear multivariate Hawkes processes with ex-
ponential exciting functions [25, 18]. This model is also
intuitive in the sense that after emerging a new hot topic, in
the first several days, the blogs or websites are more likely
feature that topics and it is also more likely that the topic
would trigger further discussions and create more hyper-
links. Thus, exponential exciting functions are well suited
to capture such phenomenon as the exiting functions should
have relatively large values at first and decay fast as time
elapses.

For this experiment, we used the MemeTracker5 dataset.
The data contains time-stamped phrase and hyperlink in-
formation for news media articles and blog posts from over
a million different websites. We extracted the times that
hyperlinks to 10 well-known websites listed in Table 1 are
created during August 2008 to April 2009. When a hy-
perlink to a website is created at a certain time, an arrival
events is recorded at that time. More precisely, in this ex-
periment, we picked 30 different phrases that appeared on
different websites at different times. If a website that pub-
lished one of the phrases at time t also contained a hyper-
link to one of the 10 listed websites, an arrival event was
recorded at time t for that website in our list.

Figure 7(a) illustrates the resulting causal structure learned
by Algorithm 1 for z = 12 hours and ∆ = 1 hour. In this
graph, an arrow from a node to another, say node Ye to Yo,
means creating a hyperlink to yelp.com triggers creation
of further hyperlinks to youtube.com.

We also applied the MMEL algorithm with one exponential
kernel function to learn the excitation matrix. For this ex-
periment, the data corresponding to each phrase was treated
as an i.i.d. realization of the system. The resulting causal
structure is depicted in Figure 7(b).

As Figure 7(a) illustrates, the nodes can be clustered into
two main groups: {Cr, Ye, Am, Yo} and {Bb, Cn, Gu,
Hu, Sp, Wi}. The first group consists of mainly merchan-
dise and reviewing websites and the second group contains
the broadcasting websites. However, this is not as clear in
Figure 7(b). This is because MMEL requires more i.i.d.
samples (phrases) to be able to identify the correct arrows.
Note that as we increase the number of phrases (110), Fig-
ure 7(c), both graphs become similar with two clearly visi-
ble main clusters.

5
http://memetracker.org/data/links.html

Cr craigslist.org
Ye yelp.com
Am amazon.com
Sp spiegel.de
Wi wikipedia.org
Yo youtube.com
Cn cnn.com
Gu guardian.co.uk
Hu humanevents.com
Bb bbc.co.uk

Table 1: List of websites studied in MemeTracker experi-
ment.

6 CONCLUSION

Learning the causal structure (DIG) of a stochastic network
of processes requires estimation of conditional directed in-
formation (9). Estimating this quantity in general has high
complexity and requires a large number of samples. How-
ever, the complexity of the learning task could be signif-
icantly reduced, if side information about the underlying
structure of system dynamics is available. As proved in 1,
for multivariate Hawkes processes, estimating the support
of the excitation matrix suffices to learn the associated DIG.
Therefore, all approaches for learning the excitation matrix
of the multivariate Hawkes processes such as ML estima-
tion [16, 25], EM algorithm [10], non-parametric estima-
tion techniques proposed in [2], and the proposed method
in this paper may be used to learn the causal interactions
in such networks. The previous estimation approaches ei-
ther require i.i.d. samples such as MMEL or are limited to
the class of symmetric Hawkes processes. The proposed
algorithm in this work allows us to learn the support of the
excitation matrix in a larger class of matrices in the absence
of i.i.d. samples.
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7 TECHNICAL PROOFS

7.1 Proof of Proposition 1

Suppose γi,j ≡ 0. (3) implies that for every t ≤ T , λi(t) is
F t−{j}(= σ{N t

−{j}})-measurable and from (2), we have

P
(
dNi(t) = 1|F t

)
= P (dNi(t) = 1|F t−{j}).

Equivalently, for every 0 ≤ tk−1 < tk,

I
(
N tk
i,tk−1

;N tk
j,0|F

tk−1

−{j}

)
= 0, (18)
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Figure 7: Recovered causal structure of the MemeTracker dataset using (a) Algorithm 1, (b) MMEL for 30 different
phrases, and (c) both Algorithm 1 and MMEL for 110 different phrases.

and thus, Ĩt(Nj → Ni||N−{i,j}) = 0, for any finite parti-
tion t ∈ T (0, T ).
For the converse we use proof by contradiction. Suppose
IT (Nj → Ni||N−{i,j}) = 0 and γi,j 6= 0. Using the def-
inition in (9), it is straightforward to observe that for any
t < T ,

It(Nj → Ni||N−{i,j}) = 0.

Similarly, It+dt(Nj → Ni||N−{i,j}) = 0. Consequently,

0 = It+dt(Nj → Ni||N−{i,j})− It(Nj → Ni||N−{i,j})

= I
(
dNi(t);N

t
j,0|F t−{j}

)
.

This implies P (dNi(t) = 1|F t−{j}) = λi(t)dt+ o(dt), or
λi(t) isF t−{j}-measurable. Since, we have assumed γi.j 6=
0, we obtain Nj(t) is F t−{j}-measurable, for all t ≤ T . In
words, jth process is determined by other processes which
contradicts with the Assumption 1 that states there is no
deterministic relationships between processes.

7.2 Proof of Corollary 4

If the excitation matrix belongs to Exp(m), from Equation
(14) we have(
I −

D∑
d=1

ATd
jω + βd

)
diag(Λ)−1

(
I −

D∑
d=1

Ad
−jω + βd

)

=
4 sin2 zω/2

ω2z
F [Σz]

−1(ω).

By evaluating the trace of the above equation, we obtain

m∑
i=1

|1− ai,i|2

λi
+

∑
i6=j

|ai,j |2

λi
=

4 sin2 zω/2

ω2z
TrF [Σz]

−1(ω),

(19)

where ai,j =
∑D
d=1

a
(d)
i,j

−jω+βd
, and Ad = [a

(d)
i,j ]. To learn

the entire set {±jβd}, we have to show that there are no

pole zero cancellations in (19). That is, the nominator and
denominator of (19) have no common roots. Let

g(ω) :=

 m∑
i=1

|1− ai,i|2

λi
+
∑
i 6=j

|ai,j |2

λi

 D∏
d=1

|−jω+βd|2,

which is the nominator of Equation (19). It is straightfor-
ward to check that for ω = −jβk, the above quantity is
non-zero, due to the fact that βds are distinct and Ak 6= 0.
Since g(ω) is a polynomial with real coefficients, from
complex conjugate root theorem [9], we have g(jβk) 6= 0.
Therefore, the set {±jβd} contains all the poles of (19).

7.3 Proof of Proposition 6

From Lemma 5, the Laplace transform of the covariance
density can be written as

L[Ω](s) = L[Γ](s) (diag(Λ) + L[Ω](s))

+

∫ ∞
0

∫ ∞
t

Γ(t′)ΩT (t)e−s(t
′−t)dt′dt.

When Γ(t) ∈ Exp(m), it can be shown that (1) becomes

L[Ω](s) =

D∑
d=1

Ad
s+ βd

(
diag(Λ) + L[Ω](s) + L[Ω]T (βd)

)
.

(20)
If the set of exciting modes are given, we can insert s =
βd, for d = 1, . . . , D in the above equation and obtain the
system of D equations.
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