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Abstract

The recent explosion in big data has created a
significant challenge for efficient and scalable
Bayesian inference. In this paper, we consider
a divide-and-conquer setting in which the data
is partitioned into different subsets with commu-
nication constraints, and a proper combination
strategy is used to aggregate the Monte Carlo
samples drawn from the local posteriors based
on the dataset subsets. We propose a new impor-
tance weighted consensus Monte Carlo method
for efficient Bayesian inference in this setting.
Our method outperforms the previous one-shot
combination strategies in terms of accuracy,
and is more computation- and communication-
efficient than the previous iterative combination
methods that require iterative re-sampling and
communication steps. We provide two practi-
cal versions of our approach, and illustrate their
properties both theoretically and empirically.

1 INTRODUCTION

Bayesian inference provides a powerful paradigm for rea-
soning with uncertain data by reducing inference problems
into computational problems that can be routinely solved
using efficient methods like Monte Carlo (MC) or Markov
chain Monte Carlo (MCMC) methods. However, the recent
explosion in big data has created a significant challenge for
efficient and scalable Bayesian inference due to the diffi-
culty for evaluating the likelihood across all the data points;
traditional methods like Gibbs sampling and Metropolis-
Hastings are extremely slow when the size of datasets is
large.

We consider a divide-and-conquer approach for Bayesian
computation under big data, in which case we partition the
data into multiple subsets, and draw posterior samples on
each subset separately, and then combine the results prop-

erly. Typical combination methods mostly rely on first ap-
proximating the subset posteriors using certain density es-
timation method and then combine the corresponding esti-
mated densities. For example, the consensus Monte Carlo
by Scott et al. (2013) fits the subset samples using nor-
mal distributions in which case the density combination re-
duces to a simple weighted linear averaging on the samples;
Neiswanger et al. (2013) instead approximates each subset
posterior using kernel density estimator (KDE), and uses
another MCMC to draw sample from the product of KDEs.
These methods are “one-shot” in that they do not require
any further communication beyond passing the posterior
samples; however, these methods critically rely on the qual-
ities of the density estimators and often do not perform well
in practice. Other iterative methods (e.g., Wang & Dunson,
2013; Xu et al., 2014) propose to iteratively resample from
the local posteriors with adjusted local priors to enforce a
consistency between the subset posteriors. Although being
able to improve the performance iteratively, these methods
require to re-draw the samples repeatedly, resulting higher
computation and communication costs.

We propose a new importance weighted consensus Monte
Carlo method for efficient distributed Bayesian infer-
ence. The key ingredient of our method is an importance
weighted consensus strategy that efficiently combines the
subset samples by leveraging their likelihood information.
Our method performs significantly better than the pervious
one-shot methods based on density estimations that solely
rely on the subset samples and ignore the likelihood infor-
mation. In addition, we show that our method can perform
as efficient as the iterative combination methods, but with
much less communication and computational costs.

Related Work The divided-and-conquer approach for
scalable Bayesian computation has been studied in a se-
ries of recent works (Huang & Gelman, 2005; Scott et al.,
2013; Neiswanger et al., 2013; Wang & Dunson, 2013; Xu
et al., 2014; Minsker et al., 2014; Rabinovich et al., 2015).
Another major approach for scalable Bayesian inference is
based on efficient subsampling; see e.g., Korattikara et al.
(2014); Welling & Teh (2011); Maclaurin & Adams (2014);



Bardenet et al. (2014). Despite being a relatively new topic,
there are already a rich set of comprehensive reviews (Bar-
denet et al., 2015; Green et al., 2015; Zhu et al., 2014;
Baker et al., 2015; Angelino et al., 2015).

Outline The rest of this paper is organized as follows.
Section 2 introduces backgrounds and review the existing
methods. Section 3 introduces our main method, where
we propose two practical versions of our method and study
their properties. Section 4 presents empirical results on
both simulated and real-world datasets. The conclusion is
made in Section 5.

2 BACKGROUND AND EXISTING
METHODS

Consider a probabilistic model p(D|x) where x is a ran-
dom parameter with prior p(x) and D is the observed
data. Bayesian computation involves inferring the pos-
terior distribution f(x) ∝ p(D|x)p(x), often in terms
of calculating posterior moments of form Ef [h(x)] =∫
h(x)f(x)dx, where h(x) is a test function, including

the mean, variance or credible intervals. Typical Monte
Carlo methods work by drawing samples from the posterior
{xi}ni=1 ∼ f(x), and approximating the posterior moments
by
∑n
i=1 h(xi)/n; this gives a consistent estimator with

mean squared error varf [h(x)]/n with i.i.d. samples. Un-
fortunately, directly sampling from p(D|x) requires to re-
peatedly evaluate the posterior probability and can be pro-
hibitively slow when the number of data instances in D is
very large.

We consider a divided-and-conquer approach in which
case the data D is partitioned into m independent, non-
overlapping subsets D1, . . . , Dm, so that we have

f(x)
def
= p(x|D) ∝ p(x)

m∏
k=1

p(Dk|x).

This allows us to decompose the global posterior f(x) into
a product of “local posteriors” fk(x):

f(x) ∝
∏
k

fk(x), fk(x) = p(Dk|x)p(x)1/m,

where each local posterior fk(x) receives 1/m of the origi-
nal prior. Note that we do not assumeDm to have the same
size nor follow a same probabilistic model.

Since each subset contains less data points, it is easier to
sample from each of the local posteriors independently,
which can be done in a parallel fashion. A critical prob-
lem, however, is how to inference about the global poste-
rior f(x), or estimate Ef [h(x)], using the samples from the
local posteriors {xki }ni=1 ∼ fk(x), k = 1, . . . ,m.

Existing Methods Useful perspectives can be obtained
by considering the special case when fk(x) are assumed to
be normal distributions, e.g., fk(x) = N (x;µk,Σk). This
is justified by Bernstein-Von Mises Theorem, which says
that the posterior fk(x) is close to normal when the num-
ber of data points in Dk is large. An important property
of Gaussian distributions is that the product f ∝

∏
k fk

of the densities fk is equivalent to the density function
of a weighted averaging x̄ =

∑
k wkx

k, where wk =
(
∑
k Σ−1

k )−1Σ−1
k and xk ∼ fk. This motivates the con-

sensus Monte Carlo (CMC) method (Scott et al., 2013) that
combines the subset posterior samples by

x̄i =
∑
k

ŵkx
k
i , ŵk = (

∑
k

Σ̂−1
k )−1Σ̂−1

k ,

where the exact covariance matrix Σk is replaced by the
empirical covariance matrix Σ̂k of {xki }ni=1.

Unfortunately, CMC does not provide guarantees for non-
Gaussian cases. Neiswanger et al. (2013) proposed a more
general approach which approximates each subset posterior
fk(x) with a Gaussian kernel density estimator (KDE), and
then sample from the product of the KDEs using MCMC.
This methods, however, does not scale well in high dimen-
sions due to the use of non-parametric density estimation;
in particular, the MSE of this method is O(n−2/(2+d)),
where d is the dimension of x; when d > 2, this is worse
than the typical parametric rate O(n−1/2) that we would
get from the global posterior sampling.

In fact, we argue that inferring the global posterior f ∝∏
k fk using only the subset samples xki ∼ fk(x) is fun-

damentally difficult, since it involves evaluating non-linear
functionals of form

∫
h(x)

∏
k fk(x)dx for which certain

non-parametric density estimates of fk are unavoidable,
and subjects to non-parametric minimax lower bounds
that are generally worse than O(n−1/2); see, for exam-
ple, Birge & Massart (1995); Krishnamurthy et al. (2015,
2014) for discussions related to estimating the simpler form∫
f1(x)f2(x)dx.

Therefore, acquiring further information is critical for im-
proving the performance. Several authors (Wang & Dun-
son, 2013; Xu et al., 2014) have proposed to iteratively
adjust and resample from the local posteriors to improve
the results. Specifically, they set the local posteriors to be
fk(x) ∝ p(Dk|x)pk(x), where pk(x) is a local “prior” that
is adjusted iteratively. In particular, Xu et al. (2014) takes
pk(x) =

∏
k′ 6=k ĝk′(x) where ĝk is an approximation of

p(D|x)/p(Dk|x) based on the current subset samples. In
this way, we have fk ≈ f , and hence the subset samples
can be treated as drawn from the global posterior f approx-
imately.

In Wang & Dunson (2013), pk(x) are instead chosen to
enforce the local samples {xki }ni=1 to be consistent with



each other; in particular, it is based on the observation that∏
k

fk(x) =

∫ ∏
k

fk(xk) exp

[
− (xk − x)2

2h2

]
dxk +O(h2)

for small h, and evaluates the above integral using a Gibbs
sampler that alternatively sample {xk} and x. This meth-
ods, however, critically depends on the value of h, since
large h gives poor approximation (we need h = O(n−1/4)
to obtain an O(n−1/2) approximation error), while small h
makes Gibbs sampler difficult to converge. Wang & Dun-
son (2013) proposed to gradually decrease the value of h,
making it essentially an annealed MCMC (Gibbs sampling)
algorithm over the augmented distribution of {xk} and x; it
is therefore difficult to formally guarantee the convergence
of this algorithm. In addition, each iteration of the Gibbs
sampling has a relatively expensive computation and com-
munication cost in that it requires a fully convergent sam-
pling from the local posteriors as well as communicating
the subset posterior samples between the local subsets and
the fusion center.

The above methods use only the information in the local
posterior samples and do not make use of the values of their
posterior probabilities which can carry important informa-
tion. In this work, we propose a new combination method
that avoids the density estimation using an important sam-
pling strategy that assigns importance weights to the subset
samples based on their likelihood values. We show that our
method can significantly improve over the one-shot combi-
nation methods based on density estimations, while avoid-
ing the expensive resampling steps in the iterative methods.
We provide two versions of our method: our Method I is
a valid importance sampling estimator and hence provides
a consistent estimator with a typical parametric O(n−1/2)
estimator for generic non-Gaussian cases; our Method II
provides a heuristic that works exceptionally well when fk
are nearly Gaussian, although without a formal consistency
guarantee in generic cases.

3 IMPORTANCE WEIGHTED
CONSENSUS MONTE CARLO

Assume we want to combine the local samples xi =
[x1
i , . . . , x

m
i ] via a generic consensus function x̄i =

φ(x1
i , . . . , x

m
i ) = φ(x); this includes, but does not limit

to, the weighted averaging function x̄ =
∑m
k=1 wkx

k. The
key component of our approach is an auxiliary distribution
over [x1, . . . , xm] under which the consensus x̄ = φ(x) is
distributed according to the global posterior f =

∏
k fk.

Proposition 3.1. Let g(x1, . . . , xm) be an arbitrary den-
sity function, and g(x̄) is the corresponding density func-
tion of x̄ = φ(x), that is,

g(x̄) =

∫
Sx̄

g(x1, . . . , xm)dSx̄,

where the integral is over on the surface Sx̄ = {x : φ(x) =
x̄}. We define an auxiliary distribution

p(x1, . . . , xm) = f(x̄)g(x1, . . . , xm | x̄)

= f(x̄)g(x1, . . . , xm)/g(x̄),

then the distribution p(x̄) of x̄ under p(x1, . . . , xm) equals
f(·), that is, p(x̄) = f(x̄), and hence

Ef [h(x)] = Ep[h(x̄)].

for any function h(x).

Proof. Simply note that

p(x̄) =

∫
Sx̄

f(x̄)g(x1, . . . , xm)/g(x̄)dSx̄ = f(x̄).

This result allows us to transform the estimation prob-
lem of f(x) to that of a higher dimensional distribution
p(x1, . . . , xm). Now given the local posterior samples
{xki }ni=1 ∼ fk, we can treat xi = [x1

i , . . . , x
m
i ] as drawn

from the product distribution
∏
k fk(xk)

def
= q(x). Using

q(x) as a proposal distribution allows us to construct a con-
venient importance sampling estimator:

Ef [h(x)] = Ep[h(x̄)] ≈
∑n
i=1 w(xi)h(x̄i)∑n

i=1 w(xi)

def
= ẑh, (1)

where x̄i = φ(xi) and the estimator ẑh is a self normalized
importance sampling estimator with importance weights

w(xi) =
p(xi)

q(xi)
=
g(x1

i , . . . , x
m
i )
∏
k fk(x̄i)

g(x̄i)
∏
k fk(xki )

. (2)

Note that we do not need to know the normalization con-
stants in fk(x) to calculate ẑh; calculating the normaliza-
tion constants is often a critically difficult task.

Since ẑh is a standard importance sampling estimator, it
forms a consistent estimator for zh = Ef [h(x)] in that
Pr(limn→∞ ẑh = zh) = 1 if q(x) > 0 whenever p(x) > 0
(see e.g., Theorem 9.2 in Owen (2013) ). In addition, the
asymptotic MSE E[(ẑh − zh)2] can be calculated using the
Delta method:

E[(ẑh − zh)2] � 1

n
Eq[(h(x̄)− zh)2w(x)2]. (3)

Therefore, ẑh approximates zh with a typical parametric
O(n−1/2) error rate.

The MSE (3) depends on the test function h(·); a more
generic measure of efficiency that is independent of h(x)
is the variance of the importance weights,

varq(w(x)) =

∫
q(x)

[
p(x)

q(x)
− 1

]2

dx, (4)



or equivalently, the effective sample size (ESS)
n/(varq(w(x)) + 1). We would like to have the im-
portance weights w(x) to be as uniform as possible,
having a small variance or a large effective sample size 1

(ideally w(x) = 1, ∀x, in which case q(x) = p(x)).

3.1 OPTIMAL CHOICE OF φ(·) AND g(·)

The estimator ẑh depends on both the consensus function
φ(·) and the auxiliary distribution g(·). In this section, we
discuss the optimal choice of φ(·) and g(·) in terms of mini-
mizing the variance varq(w(x)) of the importance weights.

Proposition 3.2. (i). The optimal g(x1, . . . , xm) that min-
imizes the variance varq(w(x)) is

g∗(x1, . . . , xm) =

m∏
k=1

fk(xk),

in which case g∗(x̄) =
∫
Sx̄

∏m
k=1 fk(xk)dSx̄ with Sx̄ =

{x : x̄ = φ(x)} and w(x) =
∏m
k=1 fk(x̄)/g∗(x̄).

(ii). With g = g∗, the optimal consensus function x̄ =
φ(x) should be chosen such that g∗(x̄) ∝

∏
k fk(x̄). In

the special case when fk(x) are Gaussian, that is, fk(x) =
N (x;µk,Σk), the optimal φ(·) is the weighted averaging
φ(x) =

∑m
k=1 wkx

k with wk = (
∑
k Σ−1

k )−1Σ−1
k , and in

this case, we havew(x) = 1, ∀x and varq(w(x)) = 0. But
there is no closed form for such an optimal φ(·) in general
cases.

Proof. (i). Since Eq[w(x)] = 1, minimizing the variance
varq(w(x)) is equivalent to minimizing Eq[w(x)2],

Eq[w(x)2] =

∫
p(x)2

q(x)
dx =

∫ ∏
k fk(x̄)2

g(x̄)2
Φg(x̄)dx̄,

where Φg(x̄) =
∫
Sx̄

g(x)2∏
k fk(xk)

dSx̄; one can show that g∗

minimizes Φg(x̄) for any fixed x̄, and hence minimizes
Eq[w(x)2].

(ii). With g = g∗, we have Φg∗(x̄) = g∗(x̄) and hence

Eq[w(x)2] =
∫ ∏

k fk(x̄)2

g∗(x̄) dx̄, which is minimized when
g∗(x̄) ∝

∏
k fk(x̄).

Remark With g∗(x) =
∏
k fk(xk), our estimator ẑh can

be treated as simply an importance sampler on f(x̄) with
proposal g∗(x̄). The difficulty, however, is that g∗(x̄) is
usually intractable to calculate, making it essential to find
suboptimal g(x) that is more computationally tractable.

1A simple connection between (4) and (3) is that
(varq(w(x)) + 1)/n can be treated as the expectation of
the MSE E[(ẑh − zh)

2] when the value of h(x), ∀x is drawn
from standard normal distribution.

Algorithm 1 Importance Weighted Consensus Monte
Carlo

Input: Samples from the local posteriors {xki }ni=1 ∼
fk, ∀k = 1, . . . ,m. Test function h(x).
Output: Estimate E(h(x)) under the global posterior
f(x) ∝

∏
k fk(x).

Consensus: Let Σ̂k be the empirical covariance matrix
of subsample {xki }ni=1. Calculate

x̄i =
∑
i

wkx
k
i , where wk = (

∑
k

Σ̂−1
k )−1Σ̂−1

k .

Reweighting: Calculate the importance weights w(xi)
by Method I as defined in (5) or Method II in (6).

Estimating: E(h) ≈
∑
i wih(x̄i)/

∑
i wi

3.2 PRACTICAL IMPLEMENTATION

Although the optimal choices in Proposition 3.2 are in-
tractable in general cases, we can leverage Bernstein-von
Mises theorem to obtain near optimal choices. In particular,
Proposition 3.2 justified the use of the weighted averaging
φ(x) =

∑m
k=1 wkx

k, with weights decided by the empir-
ical variance wk = (

∑
k Σ̂−1

k )−1Σ̂−1
k , which is the same

as the consensus MC in Scott et al. (2013). Our method
also requires to set a good auxiliary distribution g(x); we
explore two simple choices in this paper:

1. Method I. Motivated by Bernstein-von Mises theo-
rem, we approximate each fk(x) by a Gaussian f̂k(x) =
N (x; µ̂k, Σ̂k), where µ̂k and Σ̂k are the empirical mean
and covariance matrices of the k-th local sample {xki : i ∈
[n]}, respectively. We then construct the auxiliary distri-
bution g(x) to be g(x) =

∏
k f̂k(xk), under which we

have g(x̄) = N (x̄; µ̄, Σ̄), with µ̄ =
∑
k wkµ̂k, and

Σ̄−1 = (
∑
k wkΣ̂−1

k ). In this case, the importance weight
in (2) reduces to

w(xi) =

∏
k fk(x̄i)

N (x̄i; µ̄, Σ̄)
·
∏
kN (xki ; µ̂k, Σ̂k)∏

k fk(xki )
. (5)

2. Method II. Instead of approximating each fk, we ex-
plicitly set the auxiliary distribution g(x) to be the opti-
mal choice suggested in Proposition 3.2, that is, g(x) =∏
k fk(xk), and then approximate the corresponding g(x̄)

with a Gaussian distribution, that is, we approximate g(x̄)
by ĝ(x̄) = N (x̄, µ̄, Σ̄), which gives an importance weight
of form

w(xi) =

∏
k fk(x̄i)

N (x̄i; µ̄, Σ̄)
. (6)

This can be justified in two possible scenarios: a) when
each fk is close to Gaussian by Bernstein-von Mises
theorem, the distribution g(x̄) of their averaging x̄ =



∑m
k=1 wkx

k
i should also be close to Gaussian; b) when

the number m of subsets is large, the averaging x̄ =∑m
k=1 wkx

k
i is approximately Gaussian by the central limit

theorem.

Comparing with (5), the importance weight in (6) simply
drops the terms that involve xki , and hence should have
smaller variance, but with the risk of introducing addi-
tional biases. We note that although Method I is a valid
importance sampling (IS) estimator, and gives consistent
estimates in general cases, Method II is no longer a valid
IS estimator, and hence is not consistent for general non-
Gaussian distributions. Nevertheless, we find that Method
II often performs surprisingly well in practice, and has at-
tractive theoretical properties when fk are indeed Gaussian.

3.3 GAUSSIAN CASES

It is illustrative to study the properties of Method I and
Method II under the simple case when fk are Gaussian.
In particular, we show that, despite being inconsistent for
non-Gaussian cases, Method II is guaranteed to outperform
Method I in Gaussian cases, that is, it exploits the Gaus-
sianity more aggressively.

Assume fk(x) = N (x;µk,Σk) and denote by f̂k(x) =
N (x; µ̂k, Σ̂k), where µ̂k, Σ̂k are the empirical mean and
covariance of the local sample {xki }ni=1 on the k-th sub-
set. Let θ = {µk,Σ−1

k : ∀k} be the set of true parameters
and θ̂ = {µ̂k, Σ̂−1

k : ∀k} the empirical estimates; corre-
spondingly we denote q(x|θ) =

∏
k fk(xk) and q(x|θ̂) =∏

k f̂k(xk). Then θ̂ is the maximum likelihood estimator
of θ based on data {xi}ni=1.

Denote by ẑIh and ẑIIh the estimates given by Method I and
Method II, respectively. Let t(x) = h(x)p(x)

q(x) , then

ẑIh =
1

n

n∑
i=1

t(xi), ẑIIh =

∑n
i=1 ω(xi)t(xi)∑n

i=1 ω(xi)
.

where ω(xi) = q(xi|θ)
q(xi|θ̂)

. Note that here the weights ω(xi)

should be very close to one when the sample size n is large
since θ̂ is a maximum likelihood estimator of θ (assuming
all fk are Gaussian). However, as observed in Henmi et al.
(2007); Henmi & Eguchi (2004), the ω(xi) in fact can act
as a control variate to cancel part of the variance in t(xi).
As a result, ẑIIh is guaranteed to have lower variance than
ẑIh when all fk are Gaussian.

Lemma 3.3 (Henmi et al. (2007)). Assume each fk is
Gaussian, e.g., fk(x) = N (x;µk,Σk), ∀k ∈ [m]. Denote
by ŝ =

∑n
i=1∇θ log q(xi|θ)/n , then Eŝ = 0 and

ẑIIh = ẑIh − E[ẑIhŝ
>][var(ŝ)]−1ŝ+Op(1/n).

Proof. See the proof of Theorem 1 and Equation (10) in
Henmi et al. (2007).

Therefore, ẑIIh is asymptotically equivalent to a variance
reduced version of ẑIh by using the score function ŝ as a
control variate; see e.g., Owen (2013) for background on
control variate.

Theorem 3.4. Assume fk(x) = N (x;µk,Σk), ∀k ∈ [m].
Denote by MSE(ẑh) = limn→+∞ nE[(ẑh − zh)2] the
asymptotic mean square error of ẑh, then we have

MSE(ẑIh) = varf (h(x)) ≥ MSE(ẑIIh ), (7)

where varf (h(x)) is the variance of h(x) under the global
posterior f(x) ∝

∏
k fk(x).

Proof. The fact that MSE(ẑIh) ≥ MSE(ẑIIh ) is a result
of Lemma 3.3 by the property of control variate (also see
Henmi et al. (2007, Theorem 1)). The proof of MSE(ẑIh) =
varf (h(x)) is shown in the Appendix.

Therefore, despite being inconsistent in general non-
Gaussian cases, Method II is guaranteed to outperform
Method I in Gaussian cases, that is, it relies on a stronger
assumption, and works well if the assumption is indeed sat-
isfied. In contrast, Method I is more robust in that it is a
consistent estimator for generic non-Gaussian fk (but may
also have large variances in bad cases). In practical cases
when the size of each local dataset Dk is large, each fk is
close to Gaussian by Bernstein-von-Mises theorem, and we
observe that Method II often performs better than Method I
empirically.

3.4 FURTHER DISCUSSIONS

Our algorithm is summarized in Algorithm 1. We further
discuss some issues here.

Communication Cost. Our methods outperform the pre-
vious one-shot combination methods such as Scott et al.
(2013) and Neiswanger et al. (2013) in that Method I gives
a consistent estimator for general fk with a parametric
O(n−1/2) rate, while Method II provides exceptionally
good estimates when fk are (nearly) Gaussian. This is
not surprising given that our methods leverage more infor-
mation: it depends on both the local posterior samples xki
and their (unnormalized) likelihoods fk(xki ), as well as the
(unnormalized) likelihoods fk(x̄i) of the combined sam-
ple x̄i. Therefore, compared with the one-shot methods,
our methods require two additional rounds of communica-
tion between the subsets and the fusion center to evaluate
and communicate the likelihood of the combined sample
{x̄i}. The overall communication cost of our method is
O(mn(2d + 1)), where m is the number of machines, n
is the Monte Carlo sample size and d is the dimension of
the parameter, while that of Neiswanger et al. (2013) is
O(mnd), and that of Scott et al. (2013) is O(d2) which
only needs to communicate the first two moments of the
subset samples.
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Figure 1: Results on the toy Gaussian mixture model. (a)-(b) The simulated distributions f1(x) and f2(x) when σ = 0.5
(highly non-Gaussian) and σ = 10 (highly Gaussian), respectively. (c)-(d) The MSE for estimating the mean Ef [x] under
the two cases shown in (a) and (b), respectively. (e) The relative MSE compared to Global Baseline I when we vary σ from
0.5 to 10, so that f1(x) and f2(x) change from being highly non-Gaussian to highly Gaussian.

Meanwhile, our method is still much more communication-
efficient compared with the iterative combination methods
that require more iterative rounds of communications, and
resampling steps. The communication complexity of Wang
& Dunson (2013) with T iterations is O(mndT ), and that
of Xu et al. (2014) is O(nd2T ) because it only passes
the first two empirical moments instead of the samples.
Our method has a significant advantage because the main
practical bottleneck is often the number of communication
rounds, regardless of the amount of information exchanged
at each round. In our empirical results, we show that our
methods work competitively with the iterative methods at
their convergence.

Computational Cost. The total computational cost of
our combination method is O(nm(d3 + L)) where d3 is
due to the inverse of the covariance matrices and L de-
notes the cost for evaluating the local posterior probabil-
ity fk(x); this is slightly worse than the linear averaging
(Scott et al., 2013) which costs O(nmd3), but has advan-
tage over Neiswanger et al. (2013) which requires a full
MCMC procedure over the product of the KDEs for the
combination. Further, the iterative combination methods
have significantly higher computational cost, because they
requires to re-draw subset samples iteratively, which is of-
ten much more expensive than the combination steps.

Random Permutation. The total size of all the local poste-
rior samples is mn, while the size of the combined sam-
ple {x̄i} is only n, that is, we lose a size of (m − 1)n

when making the combination. To obtain more combined
samples, we can randomly permute each subset sample
{xki : i ∈ [n]} and combined the permuted subset sam-
ples, and repeat the process for multiple times. However,
our empirical results do not suggest a significant improve-
ment of performance by using multiple random permuta-
tions (e.g., we did not find significant improvement by av-
eraging 10 random permutations).

4 EXPERIMENTS

We report empirical results for our method using a toy ex-
ample of mixture of Gaussians as well as a Bayesian probit
model with both simulated and real world datasets. We
compare with the following algorithms:

1. Our Method I and Method II as shown in Algorithm 1.

2. Global Baseline I and Global Baseline II, which draw
sample {x∗i } from the global posterior f(x) ∝

∏
k fk(x),

and estimate Ef (h(x)) by

ẑ∗Ih =
1

n

∑
i

h(x∗i ), ẑ∗IIh =

∑
i ω(x∗i )h(x∗i )∑

i ω(x∗i )
,

respectively, where ω(x∗i ) = f(x∗i )/f̂(x∗i ), and f̂(x) =

N (x; µ̂∗, Σ̂∗) with µ̂∗ and Σ̂∗ being the empirical mean
and covariance matrix of {x∗i }. Note that ẑ∗Ih and ẑ∗IIh can
be treated as the global version of Method I and Method II,
respectively; following Henmi et al. (2007), we can show
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Figure 2: Results on probit regression model with simulated data D of size 12, 000, partitioned into m = 10 subsets.
(a)-(b) The MSE for estimating Ef [x] and Ef [x2], respectively, when the dimension p of x is 10. (c)-(d) The results when
the dimension p increases to 50. All the results are averaged over 500 random trials.

that ẑ∗IIh always has smaller variance than ẑ∗Ih when f(x)
is a Gaussian distribution.

3. Weighted Avg, which is the consensus Monte Carlo
method by Scott et al. (2013).

4. The KDE method by Neiswanger et al. (2013).2

5. An naive multiple importance weighted estimator (Mul-
tiple IS) in which each subset sample {xki }ni=1 ∼ fk is used
to directly construct an importance sampling estimator for
Ef (h(x)):

ẑkh =

∑
i h(xki )w(xki )∑

i w(xki )
, where w(xki ) =

f(xki )

fk(xki )
,

and the results from different subsets are combined by a
weighted linear averaging:

ẑMIS
h =

∑
k vkẑ

k
h∑

i vk
,

where vk is chosen to be vk = 1/v̂ar(ẑih).

6. The sampling via moment sharing (SMS) method by Xu
et al. (2014),3 which iteratively adjusts the local priors and
draw local samples repeatedly.

2We used the code available at https://www.cs.cmu.
edu/˜wdn/research/embParMCMC/index.html.

3We used the code available at https://github.com/
BigBayes/SMS

4.1 TOY EXAMPLE

We first consider two Gaussian mixtures with 10 compo-
nents,

fk(x) =
1

10

10∑
j=1

N (x;µjk, σ
2), k = 1, 2,

where µjk is randomly drawn from Uniform([0, 10]) for
f1(x) and Uniform([10, 20]) for f2(x). The variance σ2

is used to adjust the Gaussianity of fk(x). With a small σ
(see Figure 1a), f1(x) and f2(x) are highly multi-modal,
and are far away from each other; with a large σ (see Fig-
ure 1b), f1(x) and f2(x) become close to Gaussian and
have a significant overlap with each other.

Figure 1(a) & (b) also shows the shapes of the correspond-
ing product f(x) ∝ f1(x)f2(x) and the density function
fx̄(x) of the weighted averaging x̄ = w1x1 + w2x2 with
wi ∝ 1/varfi(x). We see that with a small σ, fx̄(x) is very
different from f(x) but still covers a large part of f(x),
and hence can serve as a good importance sampling pro-
posal (as approximately used in our methods). With a large
σ, both f(x) and fx̄(x) are Gaussian like and are almost
identical with each other.

Figure 1(c) & (e) shows the MSE of different algorithms
when estimating the posterior mean Ef (h(x)) with h(x) =
x. Figure 1(c) shows the results of different algorithms
when σ = 0.5 (the highly non-Gaussian case), in which
we find that Method I works better than Method II and

https://www.cs.cmu.edu/~wdn/research/embParMCMC/index.html
https://www.cs.cmu.edu/~wdn/research/embParMCMC/index.html
https://github.com/BigBayes/SMS
https://github.com/BigBayes/SMS
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Figure 3: Results on probit regression model with simulated data D of size 12, 000, partitioned into m subsets, with m
ranging from 2 to 100. (a)-(b) The MSE for estimating Ef [x] and Ef [x2], respectively; the posterior sample size is fixed
to be n = 5× 103 in both cases. All the results are averaged over 500 random trials.
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Figure 4: Comparing with SMS by Xu et al. (2014) on
Bayesian probit regression. The setting is the same as that
in Figure 3, except with fixed subset number m = 10.

Method II is clearly inconsistent in that its MSE stops de-
crease when the sample increases. Figure 1d shows the re-
sult of different algorithms when σ = 10 (the almost Gaus-
sian case), in which we find that Method II works better
than Method I as predicted by Theorem 3.4.

Figure 1(e) shows the results of different algorithms when
we range σ from 0.5 to 10 (from highly non-Gaussian to
highly Gaussian), and we can find that the performance of
Method I converges to that of Global baseline I as predicted
by Theorem 3.4, and that of Method II converges to Global
baseline II. In all the cases, we find that both Weighted Avg
and KDE perform much worse. Multiple IS tends to per-
form well when f1 and f2 are close to each other, but is
worse when they are far apart from each other.

4.2 BAYESIAN PROBIT REGRESSION

We consider the Bayesian probit regression model for bi-
nary classification. Let D = {χ`, ζ`}N`=1 be a set of ob-
served data with p-dimensional features χ` ∈ Rp and bi-
nary labels ζ` ∈ {0, 1}. The probit model is

p(D|x) =

N∏
`=1

[
ζ`Φ(x>χ`) + (1− ζ`)(1− Φ(x>χ`))

]
,

where Φ(·) represents the cumulative distribution function
of the standard normal distribution. We use an uninforma-
tive Gaussian prior p(x) = N (x; 0, 0.1) on x throughout
our experiments.

We start with testing our methods on simulated datasets,
where we first generate a true value of x with 50% zero
elements and 50% elements drawn randomly from stan-
dard normal distribution, and then simulate a dataset D =
{χ`, ζ`}N`=1 that is subsequently evenly partitioned into
m subsets {Dk}mk=1, each of which includes N/m data
points. We simulate N = 12, 000 number of points
throughout our experiments.

Figure 2(a) & (b) show the mean square error when estimat-
ing the posterior mean Ef [x] and the second order moment
Ef [x2], respectively, both when the datasetD is partitioned
intom = 10 subsets (so that each subsetDk receives 1, 200
data points). We can see that as the posterior sample size
n of the subset samples {xki }ni=1 ∼ p(x|Dk) increases,
our Method I and Method II match closely with the Global
Baseline I and Global Baseline II, respectively; this may
suggest that the local posteriors fk are close to Gaussian
in this case. The other methods, including Weighted Avg,
KDE and Multiple IS, work significantly worse than both
of our methods.

Figure 2(c) & (d) shows the results under the same setting
as Figure 2(a) & (b), except when the dimension p increases
to 50, where we observe that our Method I and Method II
match less closely with the corresponding global baselines,
but still tend to significantly outperform all the other dis-
tributed algorithms.

Figure 3(a) & (b) show the results when we fix the dimen-
sion p = 10 and a posterior sample size of n = 5×103 and
partition the dataset D into different number m of subsets
(so that each subset Dk receives 12, 000/m data points),
with m range from 2 to 100. We observed that our Method
I and Method II again match closely with the Global Base-
line I and Global Baseline II, except when the partition
number m is very high (e.g., m ≥ 30 for Method I, and
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Figure 5: Probit regression on the CoverType dataset. The dataset is partitioned evenly into 10 subsets. The result of
Multiple IS in (b) is much worse than the other methods and is not shown in the figure.

m ≥ 100 for Method II).

Figure 4 shows the result when we compare our methods
with the iterative SMS method by Xu et al. (2014), where
we find that our Method I and Method II tend to perform
as well as SMS at its convergence, but has the advantage
of requiring no iterative communication or re-sampling.
We also tested the Weistrass sampler by Wang & Dunson
(2013) (result does not report), but find it often performs
worse (results similar to Figure 3 of Xu et al. (2014)).

In addition, we experimented with an iterative version of
our method which introduces local priors pk(x) that satisfy∏
k pk(x) = p(x) where p(x) is the original global prior,

and iteratively updates pk(x) to make the local posteriors
fk(x) = p(Dk|x)pk(x) match with each other. We ob-
serve that this iterative version does not improve the result
significantly, likely because the non-iterative version of our
method is already good enough.

Binary CoverType Dataset We then test our methods on
the Forest Covertype dataset from the UCI machine learn-
ing repository (Bache & Lichman, 2013); it has 54 features,
and is reprocessed to get binary labels following Collobert
et al. (2002). For our experiment, we take the first 12,000
data points, and partition them into 10 subsets. The results
of different algorithms are shown in Figure 5, in which we
see that our Method I and Method II still perform signifi-
cantly better than the other distributed algorithms.

5 CONCLUSION

We propose an importance weighted consensus Monte
Carlo approach for distributed Bayesian inference. Two
practical versions of our method are proposed, and their
properties are studied both theoretically and empirically.
Our methods have significant advantages over the previ-
ous one-shot methods based on density estimates in terms
of accuracy, as well as the iterative methods in terms of
computational and communication costs.

APPENDIX

Proof of Theorem 3.4. We only prove MSE(zIh) =
varf (h(x)) here; the fact that MSE(zIh) ≥ MSE(zIIh ) can
be found in Henmi et al. (2007, Theorem 1).

Let MLEn(ẑIh) = nE[(ẑIh − zh)2]; using the Delta method
we can show that MLEn(zIh) � Eq[(h(x̄)− zh)2wn(x)2],
with

wn(x) =
pn(x)

q(x)
=
N (x̄, µ0,Σ0)

N (x̄, µ̂0, Σ̂0)

∏
k

N (xk, µk,Σk)

N (xk, µ̂k, Σ̂k)
,

where q(x) =
∏
kN (xk; µk,Σk), and pn(x) =

N (x̄; µ0,Σ0)
∏
kN (xk; µ̂k, Σ̂k)/N (x̄; µ̂0, Σ̂0); here

wn(x) and pn(x) are indexed with sample size n since they
dependent on the empirical means and variances. Since
varf (h(x)) = Epn [(h(x̄) − zh)2] by Proposition 3.1, we
have

MSEn(zIh)− varf (h(x))

� Eq[(h(x̄)− zh)2wn(x)2]− Epn [(h(x̄)− zh)2]

= Epn [(h(x̄)− zh)2wn(x)]− Epn [(h(x̄)− zh)2]

= Epn [(h(x̄)− zh)2(wn(x)− 1)]

Using Cauchy-Schwarz inequality, we have(
MSE(zIh)− varf (h(x))

)2
≤ Epn [(h(x̄)− zh)4] · Epn [(wn(x)− 1)2]

= Ef [(h(x)− zh)4] · Eq[wn(x)(wn(x)− 1)2].

Therefore, we just need to show that Eq[wn(x)(wn(x) −
1)2] → 0. This can be done using dominant convergence
theorem: Let ψn(x) = q(x)wn(x)(wn(x) − 1)2, then we
have ψn(x) → 0, ∀x since µ̂k → µk, Σ̂k → Σk and
hence wn(x) → 1 for ∀x; in addition, we can show that
|ψn(x)| ≤ q(x)1/2 for large enough n and q(x)1/2 is an
integrable function.
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