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Abstract

Several recent works have explored stochastic
gradient methods for variational inference that
exploit the geometry of the variational-parameter
space. However, the theoretical properties of
these methods are not well-understood and these
methods typically only apply to conditionally-
conjugate models. We present a new stochas-
tic method for variational inference which ex-
ploits the geometry of the variational-parameter
space and also yields simple closed-form updates
even for non-conjugate models. We also give
a convergence-rate analysis of our method and
many other previous methods which exploit the
geometry of the space. Our analysis general-
izes existing convergence results for stochastic
mirror-descent on non-convex objectives by us-
ing a more general class of divergence functions.
Beyond giving a theoretical justification for a va-
riety of recent methods, our experiments show
that new algorithms derived in this framework
lead to state of the art results on a variety of prob-
lems. Further, due to its generality, we expect
that our theoretical analysis could also apply to
other applications.

1 INTRODUCTION

Variational inference methods are one of the most widely-
used computational tools to deal with the intractability of
Bayesian inference, while stochastic gradient (SG) meth-
ods are one of the most widely-used tools for solving op-
timization problems on huge datasets. The last three years
have seen an explosion of work exploring SG methods for
variational inference (Hoffman et al., 2013; Salimans et al.,

2013; Ranganath et al., 2013; Titsias & Lázaro-Gredilla,
2014; Mnih & Gregor, 2014; Kucukelbir et al., 2014). In
many settings, these methods can yield simple updates and
scale to huge datasets.

A challenge that has been addressed in many of the recent
works on this topic is that the “black-box” SG method ig-
nores the geometry of the variational-parameter space. This
has lead to methods like the stochastic variational infer-
ence (SVI) method of Hoffman et al. (2013), that uses nat-
ural gradients to exploit the geometry. This leads to better
performance in practice, but this approach only applies to
conditionally-conjugate models. In addition, it is not clear
how using natural gradients for variational inference affects
the theoretical convergence rate of SG methods.

In this work we consider a general framework that (i) can
be stochastic to allow huge datasets, (ii) can exploit the ge-
ometry of the variational-parameter space to improve per-
formance, and (iii) can yield a closed-form update even for
non-conjugate models. The new framework can be viewed
as a stochastic generalization of the proximal-gradient
method of Khan et al. (2015), which splits the objective
into conjugate and non-conjugate terms. By linearizing the
non-conjugate terms, this previous method as well as our
new method yield simple closed-form proximal-gradient
updates even for non-conjugate models.

While proximal-gradient methods have been well-studied
in the optimization community (Beck & Teboulle, 2009),
like SVI there is nothing known about the convergence rate
of the method of Khan et al. (2015) because it uses “di-
vergence” functions which do not satisfy standard assump-
tions. Our second contribution is to analyze the conver-
gence rate of the proposed method. In particular, we gener-
alize an existing result on the convergence rate of stochas-
tic mirror descent in non-convex settings (Ghadimi et al.,
2014) to allow a general class of divergence functions that
includes the cases above (in both deterministic and stochas-



tic settings). While it has been observed empirically that
including an appropriate divergence function enables larger
steps than basic SG methods, this work gives the first the-
oretical result justifying the use of these more-general di-
vergence functions. It in particular reveals how different
factors affect the convergence rate such as the Lipschitz-
continuity of the lower bound, the information geometry of
the divergence functions, and the variance of the stochas-
tic approximation. Our results also suggest conditions un-
der which the proximal-gradient steps of Khan et al. (2015)
can make more progress than (non-split) gradient steps, and
sheds light on the choice of step-size for these methods. A
notable aspect of our results is that, for the stochastic case
and a fixed accuracy, there is always a sufficiently-small
fixed step-size that leads to a solution with this accuracy
or higher. Our experimental results indicate that the new
method leads to improvements in performance on a vari-
ety of problems, and we note that the algorithm and theory
might be useful beyond the variational inference scenarios
we have considered in this work.

2 VARIATIONAL INFERENCE

Consider a general latent variable model where we have a
data vector y of length N and a latent vector z of length
D. In Bayesian inference, we are interested in comput-
ing the marginal likelihood p(y), which can be written as
the integral of the joint distribution p(y, z) over all val-
ues of z. This integral is often intractable, and in varia-
tional inference we typically approximate it with the ev-
idence lower-bound optimization (ELBO) approximation
L. This approximation introduces a distribution q(z|λ) and
chooses the variational parameters λ to maximize the fol-
lowing lower bound on the marginal likelihood:

log p(y) = log

∫
q(z|λ)

p(y, z)

q(z|λ)
dz,

≥ max
λ∈S
L(λ) := Eq(z|λ)

[
log

p(y, z)

q(z|λ)

]
.

(1)

The inequality follows from concavity of the logarithm
function. The set S is the set of valid parameters λ.

To optimize λ, one of the seemingly-simplest approaches
is gradient descent: λk+1 = λk + βk∇L(λk), which can
be viewed as optimizing a quadratic approximation of L,

λk+1 = argmin
λ∈S

[
−λT∇L(λk) +

1

2βk
‖λ− λk‖22

]
. (2)

While we can often choose the family q so that it has con-
venient computational properties, it might be impractical
to apply gradient descent in this context when we have a
very large dataset or when some terms in the lower bound
are intractable. Recently, SG methods have been proposed
to deal with these issues (Ranganath et al., 2013; Titsias

& Lázaro-Gredilla, 2014): they allow large datasets by us-
ing random subsets (mini-batches) and can approximate in-
tractable integrals using Monte Carlo methods that draw
samples from q(z|λ).

A second drawback of applying gradient descent to varia-
tional inference is that it uses the Euclidean distance and
thus ignores the geometry of the variational-parameter
space, which often results in slow convergence. Intuitively,
(2) implies that we should move in the direction of the gra-
dient, but not move λk+1 too far away from λk in terms
of the Euclidean distance. However, the Euclidean dis-
tance is not appropriate for variational inference because
λ is the parameter vector of a distribution; the Euclidean
distance is often a poor measure of dissimilarity between
distributions. The following example from Hoffman et al.
(2013) illustrates this point: the two normal distributions
N (0, 10000) and N (10, 10000) are almost indistinguish-
able, yet the Euclidean distance between their parameter
vectors is 10, whereas the distributions N (0, 0.01) and
N (0.1, 0.01) barely overlap, but their Euclidean distance
between parameters is only 0.1.

Natural-Gradient Methods: The canonical way to ad-
dress the problem above is by replacing the Euclidean dis-
tance in (2) with another divergence function. For example,
the natural gradient method defines the iteration by using
the symmetric Kullback-Leibler (KL) divergence (Hoff-
man et al., 2013; Pascanu & Bengio, 2013; Amari, 1998),

λk+1 =

argmin
λ∈S

[
−λT∇L(λk) +

1

βk
DsymKL [q(z|λ) ‖ q(z|λk)]

]
.

(3)
This leads to the update

λk+1 = λk + βk
[
∇2G(λk)

]−1∇L(λk), (4)

where G(λ) is the Fisher information-matrix,

G(λ) := Eq(z|λ)
{

[∇ log q(z|λ)] [∇ log q(z|λ)]
T
}
.

Hoffman et al. (2013) show that the natural-gradient up-
date can be computationally simpler than gradient descent
for conditionally-conjugate exponential family models. In
this family, we assume that the distribution of z factorizes
as
∏
i p(z

i|pai) where zi are disjoint subsets of z and pai

are the parents of the zi in a directed acyclic graph. This
family also assumes that each conditional distribution is in
the exponential family,

p(zi|pai) := hi(zi) exp
[
[ηi(pai)]TTi(zi)−Ai(ηi)

]
,

where ηi are the natural parameters, Ti(zi) are the suffi-
cient statistics, Ai(ηi) is the partition function, and hi(zi)
is the base measure. Hoffman et al. (2013) consider a
mean-field approximation q(z|λ) =

∏
i q
i(zi|λi) where



each qi belongs to the same exponential-family distribution
as the joint distribution,

qi(zi) := hi(zi) exp
[
(λi)TTi(zi)−Ai(λi)

]
.

The parameters of this distribution are denoted by λi to dif-
ferentiate them from the joint-distribution parameters ηi.

As shown by Hoffman et al. (2013), the Fisher matrix for
this problem is equal to ∇2Ai(λi) and the gradient of the
lower bound with respect to λi is equal to∇2Ai(λi)(λi −
λi∗) where λi∗ are the mean-field parameters (see Paquet,
2014). Therefore, when computing the natural-gradient,
the ∇2Ai(λi) terms cancel out and the natural-gradient is
simply λi − λi∗ which is much easier to compute than the
actual gradient. Unfortunately, for non-conjugate models
this cancellation does not happen and the simplicity of the
update is lost. The Riemannian conjugate-gradient method
of Honkela et al. (2011) has similar issues, in that comput-
ing ∇2A(λ) is typically very costly.

KL-Divergence Based Methods: Rather than using the
symmetric-KL, Theis & Hoffman (2015) consider us-
ing the KL divergence DKL[q(z|λ) ‖ q(z|λk)] within a
stochastic proximal-point method:

λk+1 = argmin
λ∈S

[
−L(λ) +

1

βk
DKL[q(z|λ) ‖ q(z|λk)]

]
.

(5)
This method yields better convergence properties, but re-
quires numerical optimization to implement the update
even for conditionally-conjugate models. Khan et al.
(2015) considers a deterministic proximal-gradient variant
of this method by splitting the lower bound into −L :=
f + h, where f contains all the “easy” terms and h con-
tains all the “difficult” terms. By linearizing the “difficult”
terms, this leads to a closed-form update even for non-
conjugate models. The update is given by:

λk+1 = argmin
λ∈S

[
λT [∇f(λk)] + h(λ)

+
1

βk
DKL[q(z|λ) ‖ q(z|λk)]

]
.

(6)

However, this method requires the exact gradients which is
usually not feasible for large dataset and/or complex mod-
els.

Mirror Descent Methods: In the optimization litera-
ture, mirror descent (and stochastic mirror descent) al-
gorithms are a generalization of (2) where the squared-
Euclidean distance can be replaced by any Bregman diver-
gence DF (λ‖λk) generated from a strongly-convex func-
tion F (λ) (Beck & Teboulle, 2003),

λk+1 = argmin
λ∈S

{
−λT∇L(λk) +

1

βk
DF (λ‖λk)

}
. (7)

The convergence rate of mirror descent algorithm has been
analyzed in convex (Duchi et al., 2010) and more re-
cently in non-convex (Ghadimi et al., 2014) settings. How-
ever, mirror descent does not cover the cases described
above in (5) and (6) when a KL divergence between
two exponential-family distributions is used with λ as the
natural-parameter. For such cases, the Bregman divergence
corresponds to a KL divergence with swapped parame-
ters (see Nielsen & Garcia, 2009, Equation 29),

DA(λ‖λk) := A(λ)−A(λk)− [5A(λk)]T (λ− λk)

= DKL[q(z|λk) ‖ q(z|λ)]. (8)

where A(λ) is the partition function of q. Because (5) and
(6) both use a KL divergence where the second argument
is fixed to λk, instead of the first argument, they are not
covered under the mirror-descent framework. In addition,
even though mirror-descent has been used for variational
inference (Ravikumar et al., 2010), Bregman divergences
do not yield an efficient update in many scenarios.

3 PROXIMAL-GRADIENT SVI

Our proximal-gradient stochastic variational inference
(PG-SVI) method extends (6) to allow stochastic gradients
∇̂f(λk) and general divergence functions D(λ‖λk) by us-
ing the iteration

λk+1 = argmin
λ∈S

{
λT
[
5̂f(λk)

]
+ h(λ) +

1

βk
D(λ ‖λk)

}
.

(9)

This unifies a variety of existing approaches since it allows:

1. Splitting of L into a difficult term f and a simple term
h, similar to the method of Khan et al. (2015).

2. A stochastic approximation ∇̂f of the gradient of the
difficult term, similar to SG methods.

3. Divergence functions D that incorporate the geometry
of the parameter space, similar to methods discussed
in Section 2 (see (3), (5), (6), and (7)).

Below, we describe each feature in detail, along with the
precise assumptions used in our analysis.

3.1 SPLITTING

Following Khan et al. (2015), we split the lower bound into
a sum of a “difficult” term f and an “easy” term h, enabling
a closed-form solution for (9). Specifically, we split using
p(y, z)/q(z|λ) = c p̃d(z|λ)p̃e(z|λ), where p̃d contains all
factors that make the optimization difficult, and p̃e contains
the rest (while c is a constant). By substituting in (1), we



get the following split of the lower bound:

L(λ) = Eq[log p̃d(z|λ)]︸ ︷︷ ︸
−f(λ)

+Eq[log p̃e(z|λ)]︸ ︷︷ ︸
−h(λ)

+ log c.

Note that p̃d and p̃e need not be probability distributions.

We make the following assumptions about f and h:

(A1) The function f is differentiable and its gradient is
L−Lipschitz-continuous, i.e. ∀λ and λ′ ∈ S we have

‖∇f(λ)−∇f(λ′)‖ ≤ L‖λ− λ′‖.

(A2) The function h can be a general convex function.

These assumptions are very weak. The function f can be
non-convex and the Lipschitz-continuity assumption is typ-
ically satisfied in practice (and indeed the analysis can be
generalized to only require this assumption on a smaller
set containing the iterations). The assumption that h is
convex seems strong, but note that we can always take
h = 0 in the split if the function has no “nice” convex
part. Below, we give several illustrative examples of such
splits for variational-Gaussian inference with q(z|λ) :=
N (z|m,V), so that λ = {m,V} with m being the mean
and V being the covariance matrix.

Gaussian Process (GP) Models: Consider GP mod-
els (Kuss & Rasmussen, 2005) for N input-output pairs
{yn,xn} indexed by n. Let zn := f(xn) be the latent
function drawn from a GP with mean 0 and covariance K.
We use a non-Gaussian likelihood p(yn|zn) to model the
output. We can then use the following split, where the non-
Gaussian terms are in p̃d and the Gaussian terms are in p̃e:

p(y, z)

q(z|λ)
=

N∏
n=1

p(yn|zn)︸ ︷︷ ︸
p̃d(z|λ)

N (z|0,K)

N (z|m,V)︸ ︷︷ ︸
p̃e(z|λ)

. (10)

The detailed derivation is in the appendix. By substituting
in (1), we obtain the lower bound L(λ) shown below along
with its split:∑
n

Eq[log p(yn|zn)]︸ ︷︷ ︸
−f(λ)

−DKL[N (z|m,V) ‖N (z|0,K)]︸ ︷︷ ︸
h(λ)

.

(11)

A1 is satisfied for common likelihoods, while it is easy to
establish that h is convex. We show in Section 6 that this
split leads to a closed-form update for iteration (9).

Generalized Linear Models (GLMs): A similar split can
be obtained for GLMs (Nelder & Baker, 1972), where the
non-conjugate terms are in p̃d and the rest are in p̃e. De-
noting the weights by z and assuming a standard Gaussian

prior over it, we can use the following split:

p(y, z)

q(z|λ)
=

N∏
n=1

p(yn|xTnz)︸ ︷︷ ︸
p̃d(z|λ)

N (z|0, I)

N (z|m,V)︸ ︷︷ ︸
p̃e(z|λ)

.

We give further details about the bound for this case in the
appendix.

Correlated Topic Model (CTM): Given a text document
with a vocabulary ofN words, denote its word-count vector
by y. Let K be the number of topics and z be the vector of
topic-proportions. We can then use the following split:

p(y, z)

q(z|λ)
=

N∏
n=1

[
K∑
k=1

βn,k
ezk∑
j e
zj

]yn
︸ ︷︷ ︸

p̃d(z|λ)

N (z|µ,Σ)

N (z|m,V)︸ ︷︷ ︸
p̃e(z|λ)

,

where µ,Σ are parameters of the Gaussian prior and βn,k
are parameters of K multinomials. We give further details
about the bound in the appendix.

3.2 STOCHASTIC-APPROXIMATION

The approach of Khan et al. (2015) considers (9) in the spe-
cial case of (6) where we use the exact gradient∇f(λk) in
the first term. But in practice this gradient is often diffi-
cult to compute. In our framework, we allow a stochastic
approximation of ∇f(λ) which we denote by ∇̂f(λk).

As shown in the previous section, f might take a form
f(λ) := ΣNn=1Eq[f̃n(z)] for a set of functions f̃n as in
the GP model (11). In some situations, Eq[f̃n(z)] is com-
putationally expensive or intractable. For example, in GP
models the expectation is equal to Eq[log p(yn|zn)], which
is intractable for most non-Gaussian likelihoods. In such
cases, we can form a stochastic approximation by using a
few samples z(s) from q(z|λ), as shown below:

∇Eq[f̃n(z)] ≈ ĝ(λ, ξn) :=
1

S

S∑
s=1

f̃n(z(s))∇[log q(z(s)|λ)]

where ξn represents the noise in the stochastic ap-
proximation ĝ and we use the identity ∇q(z|λ) =
q(z|λ)∇[log q(z|λ)] to derive the expression (Ranganath
et al., 2013). We can then form a stochastic-gradient by
randomly selecting a mini-batch ofM functions f̃ni(z) and
employing the estimate

∇̂f(λ) =
N

M

M∑
i=1

ĝ(λ, ξni
). (12)

In our analysis we make the following two assumptions re-
garding the stochastic approximation of the gradient:

(A3) The estimate is unbiased: E[ĝ(λ, ξn)] = 5f(λ).



(A4) Its variance is upper bounded: Var[ĝ(λ, ξn)] ≤ σ2.

In both the assumptions, the expectation is taken with re-
spect to the noise ξn. The first assumption is true for the
stochastic approximations of (12). The second assumption
is stronger, but only needs to hold for all λk so is almost
always satisfied in practice.

3.3 DIVERGENCE FUNCTIONS

To incorporate the geometry of q we incorporate a diver-
gence function D between λ and λk. The set of divergence
functions need to satisfy two assumptions:

(A5) D(λ ‖λ′) > 0, for all λ 6= λ′.

(A6) There exist an α > 0 such that for all λ,λ′ generated
by (9) we have:

(λ− λ′)T∇λD(λ ‖λ′) ≥ α‖λ− λ′‖2. (13)

The first assumption is reasonable and is satisfied by typical
divergence functions like the squared Euclidean distance
and variants of the KL divergence. In the next section we
show that, whenever the iteration (9) is defined and all λk
stay within a compact set, the second assumption is satis-
fied for all divergence functions considered in Section 2.

4 SPECIAL CASES

Most methods discussed in Section 2 are special cases of
the proposed iteration (9). We obtain gradient descent
if h = 0, f = −L , ∇̂f = ∇f , and D(λ‖λk) =
(1/2)‖λ − λk‖2 (in this case A6 is satisfied with α = 1).
From here, there are three standard generalizations in the
optimization literature: SG methods do not require that
∇̂f = ∇f , proximal-gradient methods do not require that
h = 0, and mirror descent allows D to be a different Breg-
man divergence generated by a strongly-convex function.
Our analysis applies to all these variations on existing op-
timization algorithms because A1 to A5 are standard as-
sumptions (Ghadimi et al., 2014) and, as we now show, A6
is satisfied for this class of Bregman divergences. In par-
ticular, consider the generic Bregman divergence shown in
the left side of (8) for some strongly-convex functionA(λ).
By taking the gradient with respect to λ and substituting in
(13), we obtain that A6 is equivalent to

(λ− λk)T [5A(λ)−5A(λk)] ≥ α‖λ− λk‖2,

which is equivalent to strong-convexity of the function
A(λ) (Nesterov, 2004, Theorem 2.1.9).

The method of Theis & Hoffman (2015) corresponds
to choosing h = −L, f = 0, and D(λ||λk) :=
DKL[q(z|λ) ‖ q(z|λk)] where q is an exponential family

distribution with natural parameters λ. Since we assume
h to be convex, only limited cases of their approach are
covered under our framework. The method of Khan et al.
(2015) also uses the KL divergence and focuses on the de-
terministic case where ∇̂f(λ) = ∇f(λ), but uses the split
−L = f + h to allow for non-conjugate models. In both
of these models, A6 is satisfied when the Fisher matrix
52A(λ) is positive-definite. This can be shown by using
the definition of the KL divergence for exponential families
(Nielsen & Garcia, 2009):

DKL[q(z|λ) ‖ q(z|λk)]

:= A(λk)−A(λ)− [5A(λ)]T (λk − λ).
(14)

Taking the derivative with respect to λ and substituting in
(13) with λ′ = λk, we get the condition

(λ− λk)T [52A(λ)](λ− λk) ≥ α‖λ− λk‖2,

which is satisfied when52A(λ) is positive-definite over a
compact set for α equal to its lowest eigenvalue on the set.

Methods based on natural-gradient using iteration (3) (like
SVI) correspond to using h = 0, f = −L, and the sym-
metric KL divergence. Assumption A1 to A5 are usually
assumed for these methods and, as we show next, A6 is
also satisfied. In particular, when q is an exponential fam-
ily distribution the symmetric KL divergence can be written
as the sum of the Bregman divergence shown in (8) and the
KL divergence shown in (14),

DsymKL [q(z|λ) ‖ q(z|λk)]

:= DKL[q(z|λk) ‖ q(z|λ)] + DKL[q(z|λ) ‖ q(z|λk)]

= DA(λ‖λk) + DKL[q(z|λ) ‖ q(z|λk)]

where the first equality follows from the definition of the
symmetric KL divergence and the second one follows from
(8). Since the two divergences in the sum satisfy A6, the
symmetric KL divergence also satisfies the assumption.

5 CONVERGENCE OF PG-SVI

We first analyze the convergence rate of deterministic
methods where the gradient is exact, ∇̂f(λ) = ∇f(λ).
This yields a simplified result that applies to a wide variety
of existing variational methods. Subsequently, we consider
the more general case where a stochastic approximation of
the gradient is used.

5.1 DETERMINISTIC METHODS

The following theorem establishes the convergence under
a fixed step-size. We use C0 = L∗ − L(λ0) as the initial
(constant) sub-optimality, and express our result in terms
of the quantity ‖λk+1 − λk‖.



Proposition 1. Let A1, A2, A5, and A6 be satisfied. If we
run t iterations of (9) with a fixed step-size βk = α/L for
all k and an exact gradient ∇f(λ), then we have

min
k∈{0,1,...,t−1}

‖λk+1 − λk‖2 ≤
2C0

αt
(15)

We give a proof in the appendix. Roughly, the theorem
states that the minimum distance moved across all itera-
tions must be in O(1/t). If the objective is bounded be-
low (C0 is finite), then this result implies that the algorithm
converges to a stationary point and also gives a rate of con-
vergence.

Stating the result in terms of ‖λk+1 − λk‖ may appear to
be unconventional, but this quantity is useful since it char-
acterizes a fixed point of the algorithm. For example, con-
sider the special case of gradient descent where h = 0 and
D(λ,λk) = 1

2‖λ − λk‖2. In this case, α = 1 and βk =
1/L, therefore we have ‖λk+1−λk‖ = ‖∇f(λk)‖2/L and
Proposition 1 implies that mink ‖∇f(λk)‖2 has a conver-
gence rate of O(1/t). This in turn shows that the method
converges at a sublinear rate to an approximate stationary
point, which would be a global minimum in the special case
where f is convex.

If we use a divergence with α > 1 then we can use a step-
size larger than 1/L and the error will decrease faster than
gradient-descent. To our knowledge, this is the first re-
sult that formally shows that natural-gradient methods can
achieve faster convergence rates. The splitting of the ob-
jective into f and h functions is also likely to improve the
step-size. Since L only depends on f , sometimes it might
be possible to reduce the Lipschitz constant by choosing an
appropriate split.

We next give a more general result that allows a per-
iteration step size.

Proposition 2. If we choose the step-sizes βk to be such
that 0 < βk ≤ 2α/L with βk < 2α/L for at least one k,
then,

min
k∈{0,1...t−1}

1

βk
‖λk+1 − λk‖2 ≤

C0∑t−1
k=0 (αβk − Lβ2

k/2)
(16)

We give a proof in the appendix. For gradient-descent, the
above result implies that we can use any step-size less than
2/L, which agrees with the classical step-size choices for
gradient and proximal-gradient methods.

5.2 STOCHASTIC METHODS

We now give a bound for the more general case where we
use a stochastic approximation of the gradient.

Proposition 3. Let A1-A6 be satisfied. If we run t iterations
of (9) for a fixed step-size βk = γα∗/L (where 0 < γ < 2

is a scalar) and fixed batch-size Mk = M for all k with a
stochastic gradient ∇̂f(λ), then we have

ER,ξ(‖λR+1 − λR‖2) ≤ 1

2− γ

[
2C0

α∗t
+
γcσ2

ML

]
.

where c is a constant such that c > 1/(2α) and α∗ :=
α − 1/(2c). The expectation is taken with respect to the
noise ξ := {ξ0, ξ1, . . . , ξt−1}, and a random variable R
which follows the uniform distribution Prob(R = k) =
1/t,∀k ∈ {0, 1, 2, . . . , t− 1}.

Unlike the bound of Proposition 1, this bound depends
on the noise variance σ2 as well the mini-batch size M .
In particular, as we would expect, the bound gets tighter
as the variance gets smaller and as the size of our mini-
batch grows. Notice that we can also make the second
term smaller by decreasing the value of γ and the first
term smaller by increasing the number of iterations. There-
fore, this bound indicates that a small enough constant step-
size γ (or a sufficiently-large batch-size M ) can be used to
reach any target level of accuracy. In the appendix, we give
a more general result that allows a per-iteration step-size
which can used to give an “anytime” algorithm that is able
to converge to an arbitrary level of accuracy by using a de-
creasing sequence of step sizes (but we found that constant
step-sizes work better empirically). Note that while stating
the result in terms of a randomized iteration might seem
strange, in practice we typically just take the last iteration
as the minimizer.

6 CLOSED-FORM UPDATES FOR
NON-CONJUGATE MODELS

We now give an example where iteration (9) attains a
closed-form solution. We expect such closed-form solu-
tion to exist for a large class of problems, including models
where q is an exponential-family distribution, but here we
focus on the GP model discussed in Section 3.1.

For the GP model, we rewrite the lower bound (11) as

−L(m,V) :=

N∑
n=1

fn(mn, vn)︸ ︷︷ ︸
f(m,V )

+DKL[q ‖ p]︸ ︷︷ ︸
h(m,V )

(17)

where we’ve used q := N (z|m,V), p := N (z|0,K), and
fn(mn, vn) := −Eq[log p(yn|zn)] with mn being the en-
try n of m and vn being the diagonal entry n of V. We
can compute a stochastic approximation of f using (12) by
randomly selecting an example nk (choosing M = 1) and
using a Monte Carlo gradient approximation of fnk

. Us-
ing this approximation, the linearized term in (9) can be



simplified to the following:

λT
[
5̂f(λk)

]
= mnN [∇mnfnk

(mnk,k, vnk,k)]︸ ︷︷ ︸
:=αnk,k

+ vnN [∇vnfnk
(mnk,k, vnk,k)]︸ ︷︷ ︸

:=2 γnk,k

= mnαnk,k + 1
2vnγnk,k (18)

where mnk,k and vnk,k denote the value of mn and vn in
the k’th iteration for n = nk. By using the KL divergence
as our divergence function in iteration (9), and by denoting
N (z|mk,Vk) by qk, we can express the two last two terms
in (9) as a single KL divergence function as shown below:

λT
[
5̂f(λk)

]
+ h(λ) +

1

βk
D(λ‖λk),

= (mnαn,k + 1
2vnγn,k) + DKL[q ‖ p] +

1

βk
DKL[q ‖ qk],

= (mnαn,k + 1
2vnγn,k) +

1

1− rk
DKL[q ‖ p1−rkqrkk ],

where rk := 1/(1 + βk). Comparing this to (17), we see
that this objective is similar to that of a GP model with a
Gaussian prior1 p1−rkqrkk and a linear Gaussian-like log-
likelihood. Therefore, we can obtain closed-form updates
for its minimization.

The updates are shown below and a detailed derivation is
given in the appendix.

γ̃k = rkγ̃k−1 + (1− rk)γnk,k1nk
,

mk+1 = mk − (1− rk)(I−KA−1k )(mk + αnk,kκnk
),

vnk+1,k+1 = κnk+1,nk+1
− κTnk+1

A−1k κnk+1
, (19)

where γ̃0 is initialized to a small positive constant to avoid
numerical issues, 1nk

is a vector with all zero entries ex-
cept nk’th entry which is equal to 1, κk is nk’th column
of K, and Ak := K + [diag(γ̃k)]−1. For iteration k + 1,
we use mnk+1,k+1 and vnk+1,k+1 to compute the gradients
αnk+1,k+1 and γnk+1,k+1, and run the above updates again.
We continue until a convergence criteria is reached.

There are numerous advantages of these updates. First, We
do not need to store the full covariance matrix V. The up-
dates avoid forming the matrix and only update m. This
works because we only need one diagonal element in each
iteration to compute the stochastic gradient γnk,k. For large
N this is a clear advantage since the memory cost is O(N)
rather than O(N2). Second, computation of the mean vec-
tor m and a diagonal entry of V only require solving two
linear equations, as shown in the second and third line of
(19). In general, for a mini-batch of size M , we need a
total of 2M linear equations, which is a lot cheaper than
an explicit inversion. Finally, the linear equations at iter-
ation k + 1 are very similar to those at iteration k, since

1Since p and q are Gaussian, the product is a Gaussian.

Figure 1: We show the number of examples required for
convergence versus fixed step-sizes for binary GP classifi-
cation. Methods based on proximal-gradient require fewer
number of examples compared to gradient descent (GD).
Step-size is upper bounded for all methods (upper bound
shown with vertical lines). PG-SVI surprisingly converges
at the same rate as PG.

Ak differ only at one entry from Ak+1. Therefore, we can
reuse computations from the previous iteration to improve
the computational efficiency of the updates.

7 EXPERIMENTAL RESULTS

In this section, we compare our method to many exist-
ing approaches such as SGD and four adaptive gradient-
methods (ADAGRAD, ADADELTA, RMSprop, ADAM),
as well as two variational inference methods for non-
conjugate models (the Delta method and Laplace method).
We show results on Gaussian process classification (Kuss
& Rasmussen, 2005) and correlated topic models (Blei &
Lafferty, 2007). The code to reproduce these experiments
can be found at this link2.

7.1 GAUSSIAN PROCESS CLASSIFICATION

We consider binary classification by using a GP model with
Bernoulli-logit likelihood on three datasets: Sonar, Iono-
sphere, and USPS-3vs5. These datasets can be found at
the UCI data repository3 and their details are discussed
in Kuss & Rasmussen (2005). For the GP prior, we use
the zero mean-function, and a squared-exponential covari-
ance function with hyperparameters σ and l as defined in
Kuss & Rasmussen (2005) (see Eq. 33). We set the val-
ues of the hyperparameters using cross-validation. For the
three datasets, the hyperparameters (log l, log σ) are set to
(−1, 6), (1, 2.5), and (2.5, 5), respectively.

2https://github.com/emtiyaz/prox-grad-svi
3https://archive.ics.uci.edu/ml/datasets.

html
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Figure 2: Comparison with adaptive gradient methods for binary classification using GP. We compare PG-SVI to SGD,
ADADELTA, RMSprop, ADAGRAD, and ADAM on three datasets. Each column shows results for a dataset. Top row
shows the negative of the lower bound, while the bottom row shows the test log-loss. In each plot, the X-axis shows the
number of passes made through the data. Markers are shown at 0, 1, 2, 4, 7, and 9 passes through the data. Our method
always converges within 10 passes through the data, while other methods more than 100 passes.

7.1.1 Performance Under a Fixed Step-Size

In our first experiment, we compare the performance un-
der a fixed step-size. These results demonstrate that the
step-size required for convergence is upper-bounded, as
shown in our convergence analysis. The results also
demonstrate the faster convergence of our method com-
pared to gradient-descent methods. We compare the fol-
lowing four algorithms on the Ionosphere dataset: (1) batch
gradient-descent (referred to as ‘GD’), (2) batch proximal-
gradient algorithm (referred to as ‘PG’), (3) batch ver-
sion of proximal-gradient algorithm with gradients approx-
imated by using Monte-Carlo (referred to as ‘PG-MC’),
and (4) proposed proximal-gradient stochastic variational-
inference (referred to as ‘PG-SVI’) where stochastic gradi-
ents are obtained using (12) with M = 5. For Monte Carlo
approximation, we use S = 500 samples.

Figure 1 shows the number of examples required for con-
vergence versus the step-size. A lower number implies
faster convergence. The vertical lines show the step-size
above which a method diverges. Convergence is assessed
by monitoring the lower bound, and when the change in
consecutive iterations do not exceed a certain threshold, we
stop the algorithm.

We clearly see that GD requires many more passes through

the data, and methods based on proximal-gradient method
converge faster than GD. In addition, the upper bound on
the step-size for PG is much larger than GD. This im-
plies that PG can potentially take larger steps than the GD
method. PG-SVI is surprisingly as fast as PG which shows
the advantage of our approach over the approach of Khan
et al. (2015).

7.1.2 Comparison with Adaptive Gradient Methods

We also compare PG-SVI to SGD and four adaptive meth-
ods, namely ADADELTA (Zeiler, 2012), RMSprop (Tiele-
man & Hinton, 2012), ADAGRAD (Duchi et al., 2011),
and ADAM (Kingma & Ba, 2014). The implementation
details of these algorithms are given in the appendix. We
compare the value of the lower bound versus number of
passes through the data. We also compare the average
log-loss on the test data: −

∑
n log p̂n/N∗ where p̂n =

p(yn|σ, l,Dt) is the predictive probabilities of the test point
yn given training dataDt andN∗ is the total number of test-
pairs. A lower value is better for the log-loss, and a value
of 1 is equal to the performance of random coin-flipping.

Figure 2 summarizes the results. Each column shows re-
sults for a dataset. The top row shows the negative of the
lower bound, while the bottom row shows the test log-loss.



Lower values are better for both. In all plots, the X-axis
shows the number of passes made through the data. Mark-
ers are shown at 0, 1, 2, 4, 7, and 9 passes through the data
(one pass means the number of randomly selected exam-
ples is equal to the total number of examples). Our method
is much faster to converge than other methods, and it al-
ways converges within 10 passes through the data, while
other methods requires more than 100 passes.

7.2 CORRELATED TOPIC MODEL

We now show results for correlated topic model on two col-
lections of documents, namely NIPS dataset and Associ-
ated Press (AP) dataset. The NIPS4 dataset contains 1500
documents from the NIPS conferences held between 1987
and 1999 (a vocabulary-size of 12,419 words and a total of
around 1.9M words). The AP5 collection contains 2,246
documents from the Associated Press (a vocabulary-size of
10,473 words and a total of 436K observed words). We use
50% of the documents for training and 50% for testing.

We compare to the Delta method and the Laplace method
discussed in Wang & Blei (2013), and also to the original
mean-field (MF) method of Blei & Lafferty (2007). For
these methods, we use the implementation available at this
link6. All of these methods approximate the lower bound
by using approximations to the expectation of log-sum-exp
functions (see Appendix for details). We compare these
methods to the two versions of our algorithm which do not
use such approximations, rather use a stochastic gradient as
explain in Section 3.2. Specifically, we use the following
two versions: one with full covariance (referred to as PG-
SVI), and the other with diagonal covariance (referred to as
PG-SVI-MF). For both of these algorithms, we use a fixed
step-size of 0.001, and a mini-batch size of 2 documents.

Following Wang & Blei (2013), we compare the held-out
log-likelihood, which is computed as follows: a new test
document y is split into two halves (y1,y2), then we com-
pute the approximate posterior q(z) to the posterior p(z|y1)
using which we compute the held-out log-likelihood for
each yn ∈ y2 as follows:

log p(yn) ≈ log

∫
z

[
K∑
k=1

βn,k
ezk∑
j e
zj

]yn
q(z)dz (20)

We use Monte Carlo to approximate this quantity by using
a large number of samples from q (unlike Wang & Blei
(2013) who approximate it by using the Delta method). We
report the average of this quantity over all words in y2.

Figure 3 shows the negative of the average held-out log-
likelihood versus time for 10 topics. Lower values are bet-

4https://archive.ics.uci.edu/
5http://www.cs.columbia.edu/˜blei/lda-c/

index.html
6https://www.cs.princeton.edu/˜chongw/

resource.html
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Figure 3: Results on NIPS (left) and AP (right) datasets
using correlated topic model with 10 topics. We plot the
negative of the average held-out log-likelihood versus time.
Lower values are better. Methods based on proximal-
gradient algorithm perform better.

ter. Markers are shown at iterations after second and fifth
passes through the data. We see that methods based on
proximal-gradient algorithm converge a little bit faster than
the existing methods. More importantly, they achieves bet-
ter performance. This could be due to the fact that we do
not approximate the expectation of the log-sum-exp func-
tion, unlike the Delta and Laplace method. We obtained
similar results for different number of topics.

8 DISCUSSION

This work has made two contributions. First, we proposed
a new variational inference method that combines variable
splitting, stochastic gradients, and general divergence func-
tions. This method is well-suited for a huge variety of the
variational inference problems that arise in practice, and we
anticipate that it may improve over state of the art meth-
ods in a variety of settings. Our second contribution is a
theoretical analysis of the convergence rate of this general
method. Our analysis generalizes existing results for the
mirror descent algorithm in optimization, and resolves the
convergences of a variety of existing variational inference
methods. Due to its generality we expect that this anal-
ysis could be useful to establish convergence of other al-
gorithms that we have not thought of, perhaps beyond the
variational inference settings we consider in this work.

One issue that we have not satisfactorily resolved is giv-
ing a theoretically-justified way to set the step-size in prac-
tice; our analysis only indicates that it must be sufficiently
small. However, this problem is common in many meth-
ods in the literature and our analysis at least suggests the
factors that should be taken into account. Another open
issue is the applicability our method to many other latent
variable models; in this paper we have shown applications
to variational-Gaussian inference, but we expect that our
method should result in simple updates for a larger class
of latent variable models such as non-conjugate exponen-
tial family distribution models. Additional work on these
issues will improve usability of our method.
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