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Abstract

We propose an accelerated stochastic block co-
ordinate descent algorithm for nonconvex opti-
mization under sparsity constraint in the high di-
mensional regime. The core of our algorithm
is leveraging both stochastic partial gradient and
full partial gradient restricted to each coordinate
block to accelerate the convergence. We prove
that the algorithm converges to the unknown true
parameter at a linear rate, up to the statistical
error of the underlying model. Experiments on
both synthetic and real datasets backup our the-
ory.

1 INTRODUCTION

High-dimensional statistics (Bühlmann and Van De Geer,
2011) deals with models in which the number of param-
eters d is comparable to or even larger than the sample
size n. Since it is usually impossible to obtain a consis-
tent estimator when both d and n increase, various types
of statistical models with structural assumptions includ-
ing sparse vectors, sparse matrices, low-rank matrices have
been proposed and widely studied. In such a high di-
mensional regime, a general approach is solving a regular-
ized optimization problem, which consists of a loss func-
tion measuring how well the model fits the data and some
penalty function that encourages the assumed structures.
For an overview of high dimensional statistics, please re-
fer to Bühlmann and Van De Geer (2011); Negahban et al.
(2009).

In this paper, instead of considering regularized estimator,
we focus on the following sparsity constrained optimiza-
tion problem:

min
β
F (β) subject to ‖β‖0 ≤ s, (1.1)

where F (β) = n−1
∑n
i=1 fi(β) is a sum of a finite num-

ber of convex and smooth functions, ‖β‖0 is the number

of nonzero elements in β, and s is a tuning parameter that
controls the sparsity of β. The above problem is common
in machine learning and statistics, such as the empirical
risk minimization (ERM) and M-estimator, where F (β) is
the empirical loss function averaged over the training sam-
ple. For example, by choosing the squared loss fi(β) =
(〈β,xi〉−yi)2/2, (1.1) becomes a sparsity constrained lin-
ear regression problem (Tropp and Gilbert, 2007).

Due to the nonconvexity of the sparsity constraint, the
problem in (1.1) is in general NP hard. In order to ob-
tain an approximate solution to (1.1), a variety of algo-
rithms have been proposed. For example, when the objec-
tive function F (β) is chosen to be the square loss function,
it can be solved approximately by matching pursuit (Mal-
lat and Zhang, 1993), orthogonal matching pursuit (Tropp
and Gilbert, 2007), CoSaMP (Needell and Tropp, 2009),
hard thresholding pursuit (Foucart, 2011), iterative hard
thresholding (Blumensath and Davies, 2009) and forward
backward feature selection algorithm (Zhang, 2011). For
general loss functions, there also exists a set of algorithms
such as forward feature selection (Shalev-Shwartz et al.,
2010; Bahmani et al., 2013), forward backward feature se-
lection algorithm (Jalali et al., 2011; Liu et al., 2013) and
iterative gradient hard thresholding (Yuan et al., 2013; Jain
et al., 2014). However, all the above algorithms are based
on deterministic optimization such as gradient descent al-
gorithm. In each iteration of gradient descent algorithm,
it requires the evaluation of the full gradient over the n
component functions, which is computationally very ex-
pensive, especially when n is large. In order to address
this issue, Nguyen et al. (2014) proposed two stochastic
iterative greedy algorithms. Yet neither of the algorithms
attain linear rate of convergence for the objective function
value. Li et al. (2016) proposed a stochastic variance re-
duced gradient hard thresholding algorithm. Nevertheless,
it cannot leverage the coordinate block to accelerate the
convergence.

In this paper, by leveraging the advantages of both stochas-
tic gradient descent (Nemirovski et al., 2009; Lan, 2012)
and randomized block coordinate descent (Shalev-Shwartz



and Tewari, 2011; Nesterov, 2012; Beck and Tetruashvili,
2013; Richtárik and Takáč, 2014; Lu and Xiao, 2015), we
propose a stochastic block coordinate gradient descent al-
gorithm to solve the nonconvex sparsity constrained opti-
mization problem in (1.1). The core of our algorithm is
to exploit both stochastic partial gradient and full partial
gradient restricted to each coordinate block. In detail, our
algorithm consists of two layers of loops. For each iteration
of the outer loop, the full gradient is computed once; while
in the follow-up inner loop, partial stochastic gradient is
computed to adjust the full gradient. We also incorporate
mini-batch gradient computation into our algorithm, to fur-
ther accelerate the convergence. Replacing full gradients
with stochastic gradients restricted on coordinate blocks es-
sentially trades the number of iterations with a low compu-
tational cost per iteration. We prove that the algorithm is
guaranteed converge to the unknown true parameter β∗ at
a linear rate up to statistical error. The gradient complexity1

of our algorithm is

O
((
n+ κs̃|B|/k

)
log(1/ε)

)
,

where k is the number of coordinate blocks, |B| is the mini
batch size, ε is the optimization error for the objective func-
tion value, and κs̃ is the condition number of the Hessian
matrix ∇2F (β) restricted on any s̃ × s̃ principal subma-
trix. When k = 1 and |B| = 1, our algorithm is reduced
to accelerated gradient descent for the sparsity constrained
nonconvex optimization problem. It improves the gradi-
ent complexity for gradient hard thresholding algorithms
(Yuan et al., 2013; Jain et al., 2014) from O(nκs̃ log(1/ε))
to O[(n + κs̃) log(1/ε)]. Furthermore, for both sparse lin-
ear regression and sparse generalized linear model estima-
tion, we show that the estimator from our algorithm attains
the minimax optimal statistical rate. Experiments on both
synthetic and real datasets backup our theory.

The remainder of this paper is organized as follows. In Sec-
tion 2, we briefly review some related work. In Section 3,
we review two examples of the optimization problems. We
present the algorithm in Section 4, and analyze it in Section
5. In addition, we apply our theory to two specific exam-
ples and illustrate the corresponding theory for the two ex-
amples. We compare the proposed algorithm with existing
algorithms in Section 6. Finally, we conclude this paper in
Section 7.

Notation Let A = [Aij ] ∈ Rd×d be a matrix and x =
[x1, . . . , xd]

> ∈ Rd be vector. For 0 < q < ∞, we define
the `0, `q and `∞ vector norms as ‖x‖0 =

∑d
i=1 1(xi 6=

0), ‖x‖q =

(∑d
i=1 |xi|q

) 1
q

and ‖x‖∞ = max1≤i≤d |xi|,

where 1(·) represents the indicator function. For a vector

1Gradient complexity is defined to be the iteration complex-
ity times the number of gradient evaluation on each component
function

x, we define supp(x) as the index set of nonzero entries of
x, and supp(x, s) as the index set of the top s entries of x
in terms of magnitude. In addition, we denote by xS the
restriction of x onto a index set S, such that [xS ]i = xi
if i ∈ S, and [xS ]i = 0 if i /∈ S. In addition, we denote
by xs the restriction of x onto the top s entries in terms of
magnitude, i.e., [xs]i = xi if i ∈ supp(x, s), and [xs]i = 0
if i /∈ supp(x, s). For a set B, we denote its cardinality by
|B|. For a matrix X, its i-th row is denoted by Xi∗ and its
j-th column is denoted by X∗j .

2 RELATED WORK

In this section, we briefly review additional lines of re-
search beyond the sparsity constrained nonconvex opti-
mization, that are relevant to our work.

Gradient descent is computationally expensive at each iter-
ation, hence stochastic gradient descent is often used when
the data set is large. At each iteration, only one or a mini-
batch of the n component functions fi is sampled (Ne-
mirovski et al., 2009; Lan, 2012). Due to the variance in
estimating the gradient by stochastic sampling, stochastic
gradient descent has a sublinear rate of convergence even
when F (β) is strongly convex and smooth. To acceler-
ate stochastic gradient descent, various types of acceler-
ated stochastic gradient descent algorithms (Schmidt et al.,
2013; Johnson and Zhang, 2013; Konečnỳ and Richtárik,
2013; Defazio et al., 2014b; Mairal, 2014; Defazio et al.,
2014a). The most relevant work to ours is stochastic vari-
ance reduced gradient (SVRG) (Johnson and Zhang, 2013)
and its variants (Xiao and Zhang, 2014; Konečnỳ et al.,
2014a).

In contrast to gradient descent, block coordinate descent
(BCD) (Shalev-Shwartz and Tewari, 2011; Nesterov, 2012;
Beck and Tetruashvili, 2013; Richtárik and Takáč, 2014; Lu
and Xiao, 2015) only computes the full gradient of F (β)
restricted on a randomly selected coordinate block at each
iteration. Compared with gradient descent, the per-iteration
time complexity of RBCD is much lower. However, such
algorithms still compute the partial full gradient based on
all the n component functions per iteration.

Stochastic block coordinate gradient descent was proposed
recently (Dang and Lan, 2015; Xu and Yin, 2015; Reddi
et al., 2014), which integrates the advantages of stochastic
gradient descent and block coordinate descent. Such algo-
rithms compute the stochastic partial gradient restricted to
one coordinate block with respect to one component func-
tion, rather than the full partial derivative with respect to
all the component functions. These algorithms essentially
employ sampling of both coordinates and data instances at
each iteration. However, they can only achieve a sublinear
rate of convergence. Recently, randomized block coordi-
nate descent using mini-batches (Zhao et al., 2014; Wang
and Banerjee, 2014; Konečnỳ et al., 2014b) are proposed



independently to accelerate the convergence of stochastic
block coordinate gradient descent.

Our work departs from the above studies by considering
a sparsity constrained nonconvex optimization problem in-
stead of convex optimization. Due to the nonconvex nature
of (1.1), our algorithm is no longer guaranteed to converge
to the global optimum. Nevertheless, by taking into ac-
count the underlying statistical models, we illustrate that
proposed algorithm is guaranteed to converge to the un-
known true model parameters up to the statistical error.

3 ILLUSTRATIVE EXAMPLES OF
SPARSITY CONSTRAINED
OPTIMIZATION

In this section, we give two examples of the statistical es-
timation problems, which fall in the sparsity constrained
optimization problem in (1.1). We return to demonstrate
the implication of our general algorithm and theory to these
examples in Section 5.

Example 3.1 (Sparse Linear Regression). Consider the
following linear regression model

y = Xβ∗ + ε, (3.1)

where y ∈ Rn denotes a vector of the responses, and
X ∈ Rn×d is the design matrix, β∗ ∈ Rd is the unknown
regression coefficient vector such that ‖β∗‖0 ≤ s∗, and
ε ∈ Rd is a noise vector. A commonly used estimator for
the above sparse linear regression problem is the Lasso es-
timator (Tibshirani, 1996) with `1 norm penalty. An alter-
native estimator is the sparsity constrained estimator

min
β∈Rd

1

2n
‖Xβ − y‖22 subject to ‖β‖0 ≤ s, (3.2)

where s is a tuning parameter, which controls the sparsity
of β. This is indeed an example of the nonconvex optimiza-
tion problem in (1.1) where F (β) = 1/(2n)‖Xβ − y‖22,
fi(β) = 1/2(x>i β − yi)2 and xi ∈ Rd is the i-th row of
X. Similar estimator has been studied by Tropp and Gilbert
(2007); Zhang (2011); Jain et al. (2014), to mention a few.

Example 3.2 (Sparse Generalized Linear Models). We as-
sume that the observations in each task are generated from
generalized linear models

P(y|x,β∗, σ) = exp

{
y〈β∗,x〉 − Φ(β∗>x)

c(σ)

}
, (3.3)

where Φ(·) : R → R is a link function, y ∈ R is the re-
sponse variable, x ∈ Rd is the predictor vector, β∗ ∈ Rd is
the parameter such that ‖β∗‖0 ≤ s∗, and c(σ) ∈ R is fixed
and known scale parameter. A special example of general-
ized linear model is the linear regression model where the
noise follows from a Gaussian distribution, which corre-
sponds to c(σ) = σ2 and Φ(t) = t2. Logistic regression is

another special case of the generalized linear model, where
Φ(t) = log(1 + exp(t)), c(σ) = 1 and y ∈ {0, 1}.

Given {xi, yi}ni=1, a widely used estimator for β∗ is the
`1 regularized maximum likelihood estimator (Negahban
et al., 2009; Loh and Wainwright, 2013). An alternative
estimator is the sparsity constrained maximum likelihood
estimator as follows

min
β
− 1

n

n∑
i=1

1

c(σ)

[
yi〈β,xi〉 − Φ(β∗>x)

]
,

subject to ‖β‖0 ≤ s. (3.4)

The estimator in (3.4) has been investigated by Jalali et al.
(2011); Yuan et al. (2013); Li et al. (2016).

For more examples, please refer to Yuan et al. (2013); Jain
et al. (2014) and references therein.

4 THE PROPOSED ALGORITHM

In this section, we present an accelerated stochastic block
coordinate descent algorithm based on nonconvex opti-
mization for solving the proposed estimator in (1.1). The
key motivation of the algorithm is using iterative hard
thresholding to ensure cardinality constraint and mixed
mini-batch partial gradient to reduce the variance of the
stochastic gradient and accelerate the convergence. We dis-
play the algorithm in Algorithm 1.

Algorithm 1 Accelerated Stochastic Block Coordinate
Gradient Descent with Hard Thresholding (ASBCDHT)

1: Initialization: β̃(0) with ‖β̃(0)‖0 ≤ s
2: for ` = 1, 2, . . . do
3: β̃ = β̃(`−1)

4: µ̃ = 1
n

∑n
i=1∇fi(β̃)

5: β(0) = β̃
6: Randomly sample z uniformly from {0, . . . ,m −

1}
7: for t = 0, 1, . . . , z − 1 do
8: Randomly sample a mini-batch B from

{1, . . . , n} uniformly
9: Randomly sample j from {1, . . . , k} uniformly

10: [v]Gj = 1
|B|
∑
i∈B∇Gjfi(β(t))−∇Gjfi(β̃)+µ̃Gj

11: β(t+0.5) = β(t) − η[v]Gj
12: β(t+1) = HT

(
β(t+0.5), s

)
13: end for
14: Set β̃(`) = β(z)

15: end for

Note that in Algorithm 1, we have two layers of loops.
In the outer loop, β̃(r−1) denotes the estimated parameter
from previous stage, and µ̃ denotes the full gradient com-
puted based on β̃(r−1).



In the inner loop, Algorithm 1 integrates the advantages of
randomized block coordinate descent and stochastic gra-
dient descent together. Let {G1, . . . ,Gk} be a partition of
all the d coordinates where Gj is a block of coordinates.
In step 7, it uniformly samples a mini batch of component
functions. And in step 8, it uniformly samples a coordi-
nate block. The random sampling significantly reduces the
computational cost. Based on the mini batch of component
functions, and the coordinate block, it calculates the mixed
partial gradient [v]Gj restricted on the selected coordinate
block, which is the combination of the partial stochastic
gradient and the partial full gradient (See step 9). Note that
similar mixed gradient has been originally introduced in
Johnson and Zhang (2013) and later adopted by Xiao and
Zhang (2014); Konečnỳ et al. (2014a); Zhao et al. (2014);
Konečnỳ et al. (2014b) to reduce the variance introduced by
random sampling. More specifically, we can show that the
variance of [v]Gj i.e., E[‖vS̃ − ∇S̃F (β(t))‖22] diminishes
when β(t) approaches the unknown true model parameter
vector β∗. β(t+0.5) is the output of coordinate gradient de-
scent step. Since β(t+0.5) is not necessarily sparse after
the coordinate descent update, in order to make it sparse,
we apply a hard thresholding procedure (Yuan et al., 2013;
Jain et al., 2014) right after coordinate descent step. The
hard thresholding operator is defined as follows:

[HT(β, s)]i =

{
βi, if i ∈ supp(β, s),
0, otherwise. (4.1)

The hard thresholding step preserves the entries of β(t+0.5)

with the top s large magnitudes and sets the rest to zero.
This gives rise to β(t+1). Recall that s is a tuning parameter
that controls the sparsity level.

5 MAIN THEORY AND IMPLICATIONS

In this section, we will present the main theory that char-
acterizes the performance of Algorithm 1, followed which
we show the consequences of our theory when it is applied
to the two examples in Section 3.

5.1 MAIN THEORETICAL RESULTS

We first layout a set of definition and assumptions, that are
essential for our main theory.

Definition 5.1 (Sparse Eigenvalues). Let s̃ be a positive
integer. The largest and smallest s-sparse eigenvalues of
the Hessian matrix∇2F (β) are

ρ+(s̃) = sup
v

{
v>∇2F (β)v : ‖v‖0 ≤ s̃, ‖v‖2 = 1,β ∈ Rd

}
,

ρ−(s̃) = inf
v

{
v>∇2F (β)v : ‖v‖0 ≤ s̃, ‖v‖2 = 1,β ∈ Rd

}
.

Moreover, we define the restricted condition number κs̃ =
ρ+(s̃)/ρ−(s̃).

Based on the sparse eigenvalues, we make the following
assumptions on fi(β) and F (β) with respect to ρ+(s̃) and
ρ−(s̃) mentioned above.

Assumption 5.2 (Restricted Strong Smoothness). fi(β)
satisfies restricted strong smoothness condition at sparsity
level s̃ with a constant ρ+(s̃) > 0: for all β,β′ such that
‖β − β′‖0 ≤ s̃, we have

fi(β) ≤ fi(β′) +∇fi(β′)>(β − β′) +
ρ+(s̃)

2
‖β − β′‖22.

Assumption 5.3 (Restricted Strong Convexity). F (β) sat-
isfies restricted strong convexity condition at sparsity level
s̃ with a constant ρ−(s̃) > 0: for all β,β′ such that
‖β − β′‖0 ≤ s̃, we have

F (β) ≥ F (β′) +∇F (β′)>(β − β′) +
ρ−(s̃)

2
‖β − β′‖22.

Assumptions 5.2 and 5.3 indicate that function fi(β) is
smooth and function F (β) is strongly convex when re-
stricted on to a sparse subspace. These restricted strong
smoothness and strong convexity conditions ensure that the
standard convex optimization results for strongly convex
and smooth objective functions (Nesterov, 2004) can be ap-
plied to our problem settings as well. It is worth noting that
we do not require each fi(β) to be restricted strongly con-
vex, we only require their summation F (β) is restricted
strongly convex. fi(β) typically does not satisfy restricted
strong convexity for s̃ > 1. Recall that, in Example 3.1,
fi(β) = 1/2(x>i β−yi)2, which is obviously not restricted
strongly convex unless s̃ = 1.

Now we are ready to present our main theorem.

Theorem 5.4. Suppose Assumptions 5.2 and 5.3 hold with
s̃ = 2s + s∗. In addition, assume that 0 < η ≤
1/(18ρ+(s̃)) and m, s are chosen such that,

α =
2kτm−1(τ − 1)

ρ−(s̃)ηγ(τm − 1)
+

12ηρ+(s̃)(n− |B|)
|B|(n− 1)γ

< 1,

where γ = 1−12ηρ+(s̃)(n−|B|)/
[
|B|(n−1)

]
−6ηρ+(s̃)

and τ = 1 + 2
√
s∗/
√
s− s∗. Then the estimator β̃(`) from

Algorithm 1 satisfies

E
[
F (β̃(`))− F (β∗)

]
≤ α`E

[
F (β̃(0))− F (β∗)

]
+

3η

2γ(1− α)
‖∇s̃F (β∗)‖22. (5.1)

We have the following remarks regarding the above theo-
rem results:

Remark 5.5. Theorem 5.4 implies that in order to achieve
linear rate of convergence, the learning rate η need to be set
sufficiently small, the sparsity constraint s and the number
of inner loop iterations m should be set sufficiently large
such that α ≤ 1. Here we provide an example showing



Table 1: A comparison of gradient complexity for different
algorithms.

Algorithms Gradient Complexity

Nguyen et al. (2014) O
(
1/ε
)

Yuan et al. (2013) O
(
nκs̃ · log(1/ε)

)
Li et al. (2016) O

(
[n+ κs̃] · log(1/ε)

)
Ours O

(
(n+ κs̃|B|/k) · log(1/ε)

)
this is absolutely achievable. Without loss of generality, we
consider the simplified scenario where the batch size |B| =
1 and coordinate block number k = 1. As stated in the
theorem condition, suppose we choose η = 1/(36ρ+(s̃)),
then we have γ = 1/2. This simplifies the expression of α
to:

α = 144κs̃ ·
τm

τm − 1

(
1− 1

τ

)
+

2

3
,

Therefore, provided that s is chosen to be

s ≥
(
1 + 4(1728κs̃ − 1)2

)
s∗, m ≥ log 2 · (1728κs̃ − 1),

we have,

τm

τm − 1
≤ 2,

(
1− 1

τ

)
≤ 1

1728κs̃
,

which immediately verifies that α ≤ 5
6 < 1.

Remark 5.6. Theorem 5.4 illustrates the linear rate of con-
vergence in objective function value gap. From (5.1), in
order to ensure that the linear converging term satisfies
α`
[
F (β̃(0)) − F (β∗)

]
≤ ε, the number of stages should

satisfy

` ≥ logα−1

F (β̃(0))− F (β∗)

ε
.

Thus we needO(log(1/ε)) outer iterations in Algorithm 1.
Recall that from Remark 5.5, we have m = Ω(κs̃). Since
in each outer iteration, we need to compute one full gradi-
ent and m mixed mini-batch gradient, the overall gradient
complexity is O

(
(n + κs̃ · |B|/k) · log(1/ε)

)
, where k is

the number of coordinate blocks, |B| is the batch size, and
κs̃ is the restricted condition number of ∇2F (β∗). For the
ease of comparison, we summarize the gradient complexity
of our algorithm as well as the other state of the art algo-
rithms in Table 1. As we can see, our proposed algorithm
improves gradient complexity over previous work. In par-
ticular, with k > 1 and |B| = 1, the gradient complexity
of our algorithm outperforms that of Li et al. (2016). In
the special case that k = 1 and |B| = 1, our algorithm has
the same gradient complexity as Li et al. (2016). In gen-
eral, our algorithm provides more flexibility than Li et al.
(2016) by incorporating mini-batch technique.

Theorem 5.4 immediately implies the following results.

Corollary 5.7. Under the same conditions of Theorem 5.4,
the estimator β̃(`) from Algorithm 1 satisfies

E‖β̃(`) − β∗‖2 ≤ α`/2
√

2
[
F (β̃(0))− F (β∗)

]
ρ−(s̃)︸ ︷︷ ︸

Optimization Error

+

(
2

ρ−(s̃)
+

√
3η

γρ−(s̃)(1− α)

)
√
s̃‖∇F (β∗)‖∞︸ ︷︷ ︸

Statistical Error

.

(5.2)

We have the following remark regarding the above result.

Remark 5.8. The right hand side of (5.2) consists of two
terms. The first term is the optimization error, which goes
to zero as ` increase, since α ∈ (0, 1). The second term
corresponds to the statistical error, and is proportional to√
s̃‖∇F (β∗)‖∞. Since s̃ = s + s∗ and s = O(s∗),

the statistical is actually in the order of
√
s∗‖∇F (β∗)‖∞.

Note that the statistical error of the regularized M estima-
tors (Negahban et al., 2009; Loh and Wainwright, 2013)
for sparse linear regression and generalized linear models,
is also proportional to

√
s∗‖∇F (β∗)‖∞. Theorem 5.7 sug-

gests that our algorithm attains a linear rate of convergence
to the true parameter, up to the statistical error. In other
words, our algorithm linearly converges to a local optima,
which enjoys good statistical property.

5.2 IMPLICATION FOR SPECIFIC STATISTICAL
ESTIMATION PROBLEMS

We now turn to the consequences of our algorithm and gen-
eral theory for specific statistical estimation problems that
arise in applications. In particular, we show the theoretical
results by applying our theory to the two examples intro-
duced in Section 3.

We begin with a corollary for the problem of sparse lin-
ear regression, as introduced in Example 3.1. We assume
that the noise vector ε in (3.1) is zero-mean and has sub-
Gaussian tails.

Assumption 5.9. ε is a zero mean random vector, and
there exists a constant σ > 0 such that for any fixed
‖v‖2 = 1, we have

P
(
|v>ε| > δ

)
≤ 2 exp

(
− δ2

2σ2

)
for all δ > 0.

In addition, without loss of generality, we make an addi-
tional assumption on the design matrices X in (3.1).

Assumption 5.10. For all columns in X ∈ Rn×d, we have
‖X∗j‖2 ≤

√
n, where X∗j is the j-th column of X.

Note that Assumption 5.10 is often made in the analysis of
Lasso estimator (Negahban et al., 2009; Zhang et al., 2009).



Corollary 5.11. Under the same conditions as Corollary
5.7, if Assumptions 5.9 and 5.10 hold, then with probability
at least 1 − 1/d, the estimator β̃(`) from Algorithm 1 for
sparse linear regression in (3.2) satisfies

E‖β̃(`) − β∗‖2 ≤ α`/2
√

2
[
F (β̃(0))− F (β∗)

]
ρ−(s̃)︸ ︷︷ ︸

Optimization Error

+ C

(
2

ρ−(s̃)
+

√
3η

γρ−(s̃)(1− α)

)
σ

√
s∗ log d

n︸ ︷︷ ︸
Statistical Error

, (5.3)

where σ is the variance proxy of the sub-Gaussian random
vector ε.

Corollary 5.11 suggests that when applying our algorithm
to sparse linear regression, it achieves O(

√
s∗ log d/n)

statistical error. It matches the minimax optimal rate for
sparse linear regression (Raskutti et al., 2011).

We then provide a corollary for the problem of sparse gen-
eralized linear model estimation, as introduced in Exam-
ple 3.2. For generalized linear model, we need the follow-
ing assumption on its link function Φ(t), which is intro-
duced in (3.3).

Assumption 5.12. There exists one αu > 0 such that the
second derivative of the link function satisfies Φ′′(t) ≤ αu
for all t ∈ R.

Similar assumption has been made in Loh and Wainwright
(2013).

Corollary 5.13. Under the same conditions as Corollary
5.7, if Assumptions 5.10 and 5.12 hold, then with probabil-
ity at least 1−1/d, the estimator β̃(`) from Algorithm 1 for
sparse generalized linear models in (3.4) satisfies

E‖β̃(`) − β∗‖2 ≤ α`/2
√

2
[
F (β̃(0))− F (β∗)

]
ρ−(s̃)︸ ︷︷ ︸

Optimization Error

+ C

(
2

ρ−(s̃)
+

√
3η

γρ−(s̃)(1− α)

)
αu

√
s∗ log d

n︸ ︷︷ ︸
Statistical Error

,

(5.4)

where αu is an upper bound on the second derivative of the
link function Φ(t).

Corollary 5.13 demonstrates that when applying our al-
gorithm to sparse generalized linear models, it achieves
O(
√
s∗ log d/n) statistical error rate. It is also minimax

rate-optimal.

6 EXPERIMENTS

In this section, we apply Algorithm 1 to the two examples
discussed in Section 3, and present numerical results on
both synthetic and large-scale real datasets to verify the per-
formance of the proposed algorithm, and compare it with
state-of-the-art sparsity cardinality constraint methods.

6.1 BASELINE METHODS

We compare our algorithm with several state-of-the-art
baseline methods: (1) gradient descent with hard thresh-
olding (GraHTP) by Yuan et al. (2013) ; (2) stochastic vari-
ance reduced gradient with hard thresholding by Li et al.
(2016) (SVRGHT); (3) Our proposed accelerated stochas-
tic block coordinate gradient descent with hard threshold-
ing (ASBCDHT) with batch size |B| = 1; and (4) Our pro-
posed accelerated stochastic block coordinate descent with
hard thresholding (ASBCDHT) with batch size |B| = 10.
Since our algorithm involves coordinate block, we set the
block number as k = 10, where each block has (almost) the
same number of coordinates. In addition, SVRGHT and
ASBCDHT are based on mixed (partial) gradients, hence
we need to specify the number of iterations for the inner
loop. We simply choose m = n since our theory demon-
strates that m should be chosen as Ω(κs̃).

In order to fairly compare the above algorithms, we notice
that at each iteration of GradHTP and SVRGHT, the gra-
dient is updated with respect to all coordinates. When in
our algorithm, at each iteration of Algorithm 1 the gradi-
ent is updated with respect to only a sampled coordinate
block among all coordinates, so the computational cost is
lower than that of gradient descent per iteration. Therefore,
comparing algorithms that update the gradient with respect
to different numbers of coordinates per iteration should be
based on the same number of entire data passes (the least
possible iterations for passing through the entire data set
with respect to all coordinates).

6.2 SPARSE LINEAR REGRESSION

We first investigate the sparsity constrained linear regres-
sion problem in (3.2).

6.2.1 Synthetic Data

We generate an n × d design matrix X with rows
drawn independently from a multivariate normal distribu-
tion N(0,Σ), where each element of Σ is defined by
Σij = 0.6|i−j|. The true regression coefficient vector β∗

has s∗ nonzero entries that are drawn independently from
the standard normal distribution. The response vector is
generated by y = X>β∗ + ε, where each entry of ε fol-
lows a normal distribution with zero mean and variance
σ2 = 0.01. In this part, we test our proposed algorithm
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Figure 1: Comparison of different algorithms for sparsity constrained sparse linear regression on the two synthetic datasets:
(1) n = 1000, d = 2000, s∗ = 100 (shown in (a) and (b)); (2) n = 5000, d = 10000, s∗ = 500 (shown in (c) and (d)). (a)
and (c) show the logarithm of the function value gap for the two datasets. (b) and (d) demonstrate the estimation error for
the two datasets.

Table 2: Regression on E2006-TFIDF: MSE comparison of algorithms for the same entire effective data passes over 10
replications. The boldfaced results denote the lowest MSE among all the algorithms for the same entire effective data
passes.

Method #Data Passes=3 #Data Passes=6 #Data Passes=9 #Data Passes=12 #Data Passes=15

GraHTP 1.3388 1.1204 1.0522 1.0190 0.9970
SVRGHT 0.8809±0.0949 0.8150±0.0718 0.7819±0.0612 0.7574±0.0539 0.7385±0.0483
ASBCDHT(|B| =1) 0.7039±0.1037 0.6835±0.0789 0.6709±0.0677 0.6607±0.0600 0.6518±0.0533
ASBCDHT(|B| =10) 0.7003±0.1118 0.6769±0.0806 0.6627±0.0626 0.6519±0.0519 0.6426±0.0415
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Figure 2: Comparison of different algorithms in terms of
the logarithm of objective function value gap on E2006-
TFIDF dataset.

along with with the state-of-the-art algorithms in two dif-
ferent settings: (1) n = 1000, d = 2000, s∗ = 100; and
(2) n = 5000, d = 10000, s∗ = 500. Each experiment is
repeated for 10 times. For each algorithm, we plot the loga-
rithm of the objective function value gap and the estimation
error ‖β(t)−β∗‖2 for comparison. The sparsity parameter
s is set to s = 1.2s∗ for all the algorithms according to the
theory. The step size η of different algorithms is tuned by
cross validation.

In Figure 1, we compare the logarithm of the function value
gap and the estimation error in the above two datasets for

all algorithms. Figure 1 (a) and (c) demonstrate that the
optimization error decreases to zero at a linear rate while 1
(b) and (d) show that the estimation error of the estimator
converges to certain level after some number of effective
data passes. This is consistent with our theory in Corol-
lary 5.11 that the estimation error of our algorithm consists
of two terms: the optimization error that goes to zero, and
the statistical error that depends on the problem parame-
ters (d, n, s∗ and so on). From Figure 1, it is obvious that
our proposed algorithm outperforms other state-of-the-art
algorithms in estimation error after the same number of ef-
fective data passes. Also note that when the data size is rel-
atively small, our algorithm with batch size equals 10 per-
forms better than the case when batch size equals 1, while
this advantage decays as the data size grows. This is proba-
bly because the mini-batch sampling is more advantageous
when the data are relatively small.

6.2.2 E2006-TFIDF Data

We use E2006-TFIDF dataset to test the sparsity con-
strained linear regression, which predicts risk from finan-
cial reports from thousands of publicly traded U.S. com-
panies (Kogan et al., 2009). It contains 16, 087 training
instances, 3, 308 testing instances and we randomly sam-
ple 50, 000 features for this experiment. In this section, we
choose s = 2000 and compare all algorithms using mean
square error (MSE) for 15 entire effective data passes over
10 replications. The step size η is chosen by cross valida-
tion on the training data.
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Figure 3: Comparison of different algorithms for sparsity constrained sparse logistic regression on the two synthetic
datasets: (1) n = 1000, d = 2000, s∗ = 100 (shown in (a) and (b)); (2) n = 5000, d = 10000, s∗ = 500 (shown in
(c) and (d)). (a) and (c) show the logarithm of the function value gap for the two datasets. (b) and (d) are the estimation
error for the two datasets.

Table 3: Classification on RCV1: classification error comparison of algorithms for the same entire effective data passes
over 10 replications. The boldfaced results denote the lowest classification error among all the algorithms for the same
entire effective data passes.

Method #Data Passes=3 #Data Passes=6 #Data Passes=9 #Data Passes=12 #Data Passes=15

GraHTP 0.0758 0.0748 0.0739 0.0733 0.0727
SVRGHT 0.0848±0.0043 0.0763±0.0034 0.0708±0.0029 0.0677±0.0025 0.0671±0.0020
ASBCDHT(|B| =1) 0.0662±0.0044 0.0648±0.0025 0.0644±0.0019 0.0642±0.0021 0.0639±0.0021
ASBCDHT(|B| =10) 0.0550±0.0043 0.0542±0.0034 0.0539±0.0029 0.0534±0.0025 0.0527±0.0020

Figure 2 illustrates the logarithm of the objective function
value gap for all the baseline algorithms and ours. We
can see that our algorithm converges faster than the other
baselines and our algorithm converges to much smaller ob-
jective function value than the other algorithms. In addi-
tion, Table 2 shows the mean value as well as the stan-
dard error of MSE for all the algorithms with respect to
the number of effective data passes. Since there is no ran-
domness in GraHTP, its standard error is zero. We can see
that our algorithm attains much smaller mean square error
than the other baseline algorithms for the same entire ef-
fective data passes. In particular, when the number of data
passes equals 3, 6, 9 and 12, our ASBCDHT with batch size
B = 10 achieves the lowest MSE; and when the number
of data passes equals 15, our ASBCDHT with batch size
B = 1 achieves the best performance.

6.3 SPARSE LOGISTIC REGRESSION

We then evaluate the sparsity constrained generalized lin-
ear model, by considering a particular instance of sparse
generalized linear model, i.e., sparse logistic regression. Its
estimator is given by

min
β∈Rd

1

n

n∑
i=1

[
− yi · x>i β + log

(
1 + exp(x>i β)

)]
subject to ‖β‖0 ≤ s,

where yi ∈ {0, 1}. Similar estimator has been studied by
Yuan et al. (2013).
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Figure 4: Comparison of different algorithms in terms of
the logarithm of the objective function value gap on RCV1
dataset.

6.3.1 Synthetic Data

We generate an n × d design matrix X with rows
drawn independently from a multivariate normal distribu-
tion N(0, I), where I is a d × d identity matrix. The true
regression coefficient vector β∗ has s∗ nonzero entries that
are drawn independently from the standard normal distribu-
tion. Each response variable is generated from the logistic
distribution

yi =

{
1, with probability 1/(1 + exp(x>i β

∗)),

0, with probability 1− 1/(1 + exp(x>i β
∗)).



In this part, we test our proposed algorithm along with
the baseline algorithms in two different datasets: (1) n =
1000, d = 2000, s∗ = 100; and (2) n = 5000, d =
10000, s∗ = 500. Each experiment is repeated for 10 times
and for all algorithms we plot the logarithm of the objective
function value gap and the estimation error ‖β(t) − β∗‖2
for comparison. The sparsity parameter s is again set to
s = 1.2s∗. And the step size η is chosen by cross valida-
tion.

Figure 3 illustrates the logarithm of the function value gap
and the estimation error ‖β(t)−β∗‖2. The four sub-figures
in Figure 3 demonstrate the similar trends as in Figure 1.
Our proposed algorithm outperforms the other baseline al-
gorithms by a large margin.

6.3.2 RCV1 Data

In order to evaluate the sparsity constrained logistic regres-
sion, we use RCV1 dataset, which is a Reuters Corpus Vol-
ume I data set for text categorization research (Lewis et al.,
2004). Reuters Corpus Volume I (RCV1) is an archive of
over 800,000 manually categorized newswire stories made
available by Reuters, Ltd. for research purposes. This
dataset contains 20, 242 training instances, 677, 399 test-
ing instances and 47, 236 features. We use the whole train-
ing set and a subset of the test set, which contains 20, 000
testing instances for our experiment. In detail, we choose
s = 500 and compare all algorithms in terms of their clas-
sification error on the test set for 15 entire effective data
passes over 10 replications. The step size η is chosen by
cross validation on the training set.

Table 3 demonstrates the classification results for the four
algorithms including ours. It is obvious that our proposed
algorithm achieves the lowest test error on RCV1 dataset on
all periods of effective data passes and beats the other state-
of-the-art baseline algorithms. Figure 4 further illustrates
the logarithm of the objective function value gap for both
the baseline algorithms and ours. This clearly demonstrates
the superiority of our algorithm.

7 CONCLUSIONS

We proposed an accelerated stochastic block coordinate de-
scent algorithm for sparsity constrained nonconvex opti-
mization problems. We show that the algorithm enjoys a
linear rate of convergence to the unknown true parameter
up to the statistical error. Experiments on both synthetic
and real datasets verify the effectiveness of our algorithm.
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