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Abstract

We discuss a variant of Thompson sampling for
nonparametric reinforcement learning in count-
able classes of general stochastic environments.
These environments can be non-Markov, non-
ergodic, and partially observable. We show that
Thompson sampling learns the environment class
in the sense that (1) asymptotically its value con-
verges to the optimal value in mean and (2) given
a recoverability assumption regret is sublinear.
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1 INTRODUCTION

In reinforcement learning (RL) an agent interacts with an
unknown environment with the goal of maximizing re-
wards. Recently reinforcement learning has received a
surge of interest, triggered by its success in applications
such as simple video games [MKS+15]. However, theory
is lagging behind application and most theoretical analy-
ses has been done in the bandit framework and for Markov
decision processes (MDPs). These restricted environment
classes fall short of the full reinforcement learning problem
and theoretical results usually assume ergocity and visiting
every state infinitely often. Needless to say, these assump-
tions are not satisfied for any but the simplest applications.

Our goal is to lift these restrictions; we consider general re-
inforcement learning, a top-down approach to RL with the
aim to understand the fundamental underlying problems in
their generality. Our approach to general RL is nonpara-
metric: we only assume that the true environment belongs
to a given countable environment class.

We are interested in agents that maximize rewards opti-
mally. Since the agent does not know the true environment
in advance, it is not obvious what optimality should mean.

We discuss two different notions of optimality: asymptotic
optimality and worst-case regret.

Asymptotic optimality requires that asymptotically the
agent learns to act optimally, i.e., that the discounted
value of the agent’s policy π converges to the optimal dis-
counted value, V ∗µ − V πµ → 0 for all environments µ
from the environment class. This convergence is impos-
sible for deterministic policies since the agent has to ex-
plore infinitely often and for long stretches of time, but
there are policies that converge almost surely in Cesàro
average [LH11]. Bayes-optimal agents are generally not
asymptotically optimal [Ors13]. However, asymptotic op-
timality can be achieved through an exploration component
on top of a Bayes-optimal agent [Lat13, Ch. 5] or through
optimism [SH15].

Asymptotic optimality in mean is essentially a weaker vari-
ant of probably approximately correct (PAC) that comes
without a concrete convergence rate: for all ε > 0 and
δ > 0 the probability that our policy is ε-suboptimal con-
verges to zero (at an unknown rate). Eventually this prob-
ability will be less than δ. Since our environment class can
be very large and non-compact, concrete PAC/convergence
rates are likely impossible.

Regret is how many expected rewards the agent forfeits by
not following the best informed policy. Different prob-
lem classes have different regret rates, depending on the
structure and the difficulty of the problem class. Multi-
armed bandits provide a (problem-independent) worst-case
regret bound of Ω(

√
KT ) where K is the number of

arms [BB12]. In Markov decision processes (MDPs) the
lower bound is Ω(

√
DSAT ) where S is the number of

states, A the number of actions, and D the diameter of
the MDP [AJO10]. For a countable class of environments
given by state representation functions that map histories
to MDP states, a regret of Õ(T 2/3) is achievable assuming
the resulting MDP is weakly communicating [NMRO13].
A problem class is considered learnable if there is an algo-
rithm that has a sublinear regret guarantee.

This paper continues a narrative that started with definition
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of the Bayesian agent AIXI [Hut00] and the proof that it
satisfies various optimality guarantees [Hut02]. Recently it
was revealed that these optimality notions are trivial or sub-
jective [LH15]: a Bayesian agent does not explore enough
to lose the prior’s bias, and a particularly bad prior can
make the agent conform to any arbitrarily bad policy as
long as this policy yields some rewards. These negative re-
sults put the Bayesian approach to (general) RL into ques-
tion. In this paper we remedy the situation by showing that
using Bayesian techniques an agent can indeed be optimal
in an objective sense.

The agent we consider is known as Thompson sampling,
posterior sampling, or the Bayesian control rule [Tho33].
It samples an environment ρ from the posterior, follows
the ρ-optimal policy for one effective horizon (a lookahead
long enough to encompass most of the discount function’s
mass), and then repeats. We show that this agent’s policy is
asymptotically optimal in mean (and, equivalently, in prob-
ability). Furthermore, using a recoverability assumption on
the environment, and some (minor) assumptions on the dis-
count function, we prove that the worst-case regret is sub-
linear. This is the first time convergence and regret bounds
of Thompson sampling have been shown under such gen-
eral conditions.

Thompson sampling was originally proposed by Thomp-
son as a bandit algorithm [Tho33]. It is easy to im-
plement and often achieves quite good results [CL11].
In multi-armed bandits it attains optimal regret [AG11,
KKM12]. Thompson sampling has also been considered
for MDPs: as model-free method relying on distributions
over Q-functions with convergence guarantee [DFR98],
and as a model-based algorithm without theoretical anal-
ysis [Str00]. Bayesian and frequentist regret bounds have
also been established [ORvR13, OR14, GM15]. PAC guar-
antees have been established for an optimistic variant of
Thompson sampling for MDPs [ALL+09].

For general RL Thompson sampling was first suggested in
[OB10] with resampling at every time step. The authors
prove that the action probabilities of Thompson sampling
converge to the action probability of the optimal policy al-
most surely, but require a finite environment class and two
(arguably quite strong) technical assumptions on the behav-
ior of the posterior distribution (akin to ergodicity) and the
similarity of environments in the class. Our convergence
results do not require these assumptions, but we rely on
an (unavoidable) recoverability assumption for our regret
bound.

Appendix A contains a list of notation and Appendix B
contains omitted proofs.

2 PRELIMINARIES

The set X ∗ :=
⋃∞
n=0 Xn is the set of all finite strings over

the alphabet X and the set X∞ is the set of all infinite
strings over the alphabet X . The empty string is denoted
by ε, not to be confused with the small positive real num-
ber ε. Given a string x ∈ X ∗, we denote its length by |x|.
For a (finite or infinite) string x of length ≥ k, we denote
with x1:k the first k characters of x, and with x<k the first
k − 1 characters of x.

The notation ∆Y denotes the set of probability distribu-
tions over Y .

In reinforcement learning, an agent interacts with an en-
vironment in cycles: at time step t the agent chooses an
action at ∈ A and receives a percept et = (ot, rt) ∈ E
consisting of an observation ot ∈ O and a real-valued re-
ward rt; the cycle then repeats for t + 1. We assume that
rewards are bounded between 0 and 1 and that the set of
actions A and the set of percepts E are finite.

We fix a discount function γ : N → R with γt ≥ 0 and∑∞
t=1 γt < ∞. Our goal is to maximize discounted re-

wards
∑∞
t=1 γtrt. The discount normalization factor is de-

fined as Γt :=
∑∞
k=t γk. The effective horizon Ht(ε) is a

horizon that is long enough to encompass all but an ε of the
discount function’s mass:

Ht(ε) := min{k | Γt+k/Γt ≤ ε} (1)

A history is an element of (A × E)∗. We use æ ∈ A × E
to denote one interaction cycle, and æ<t to denote a his-
tory of length t− 1. We treat action, percepts, and histories
both as outcomes and as random variables. A policy is a
function π : (A× E)∗ → ∆A mapping a history æ<t to a
distribution over the actions taken after seeing this history;
the probability of action a is denoted π(a | æ<t). An envi-
ronment is a function ν : (A× E)∗ ×A → ∆E mapping a
history æ<t and an action at to a distribution over the per-
cepts generated after this history; the probability of percept
e is denoted ν(e | æ<tat).

A policy π and an environment ν generate a probability
measure νπ over infinite histories (A×E)∞, defined by its
values on the cylinder sets {h ∈ (A× E)∞ | h<t = æ<t}:

νπ(æ<t) :=

t−1∏
k=1

π(ak | æ<k)ν(ek | æ<kak)

When we take an expectation Eπν of a random variable
Xt(æ<t) this is to be understood as the expectation of the
history æ<t for a fixed time step t drawn from νπ , i.e.,

Eπν [Xt(æ<t)] :=
∑
æ<t

νπ(æ<t)Xt(æ<t).

We often do not explicitly add the subscript t to time-
dependent random variables.



Definition 1 (Value Function). The value of a policy π in
an environment ν given history æ<t is defined as

V πν (æ<t) :=
1

Γt
Eπν

[ ∞∑
k=t

γkrk

∣∣∣∣∣æ<t

]
,

if Γt > 0 and V πν (æ<t) := 0 if Γt = 0. The optimal value
is defined as V ∗ν (h) := supπ V

π
ν (h).

The normalization constant 1/Γt ensures that values are
bounded between 0 and 1. We also use the truncated value
function

V π,mν (æ<t) :=
1

Γt
Eπν

[
m∑
k=t

γkrk

∣∣∣∣∣æ<t

]
.

For each environment µ there is an optimal policy π∗µ that
takes an optimal action for each history [LH14, Thm. 10]:

π∗µ(at | æ<t) > 0 =⇒ at ∈ arg max
a

V ∗µ (æ<ta)

Let M denote a countable class of environments. We as-
sume that M is large enough to contain the true environ-
ment (e.g. the class of all computable environments). Let
w ∈ ∆M be a prior probability distribution onM and let

ξ :=
∑
ν∈M

w(ν)ν

denote the corresponding Bayesian mixture over the class
M. After observing the history æ<t the prior w is updated
to the posterior

w(ν | æ<t) := w(ν)
ν(æ<t)

ξ(æ<t)
.

We also use the notation w(M′ | æ<t) :=
∑
ν∈M′ w(ν |

æ<t) for a set of environments M′ ⊆ M. Likewise we
define ν(A | æ<t) :=

∑
h∈A ν(h | æ<t) for a prefix-free

set of histories A ⊆ (A× E)∗.

Let ν, ρ ∈ M be two environments, let π1, π2 be two poli-
cies, and let m ∈ N be a lookahead time step. The total
variation distance is defined as

Dm(νπ1 , ρπ2 | æ<t) :=

sup
A⊆(A×E)m

∣∣∣νπ1(A | æ<t)− ρπ2(A | æ<t)
∣∣∣.

with D∞(νπ1 , ρπ2 | æ<t) := limm→∞Dm(νπ1 , ρπ2 |
æ<t).

Lemma 2 (Bounds on Value Difference). For any policies
π1, π2, any environments ρ and ν, and any horizon t ≤
m ≤ ∞,

|V π1,m
ν (æ<t)− V π2,m

ρ (æ<t)| ≤ Dm(νπ1 , ρπ2 | æ<t)

Proof. See Appendix B.

3 THOMPSON SAMPLING IS
ASYMPTOTICALLY OPTIMAL

Strens proposes following the optimal policy for one
episode or “related to the number of state transitions the
agent is likely to need to plan ahead” [Str00]. We follow
Strens’ suggestion and resample at the effective horizon.

Let εt be a monotone decreasing sequence of positive reals
such that εt → 0 as t → ∞. We define our Thompson-
sampling policy πT in Algorithm 1.

Algorithm 1 Thompson sampling policy πT
1: while true do
2: sample ρ ∼ w( · | æ<t)
3: follow π∗ρ for Ht(εt) steps

Note that πT is a stochastic policy since we occasionally
sample from a distribution. We assume that this sampling
is independent of everything else.

Definition 3 (Asymptotic Optimality). A policy π is
asymptotically optimal in an environment class M iff for
all µ ∈M

V ∗µ (æ<t)− V πµ (æ<t)→ 0 as t→∞ (2)

on histories drawn from µπ .

There are different types of asymptotic optimalities based
on the type of stochastic convergence in (2). If this con-
vergence occurs almost surely, it is called strong asymp-
totic optimality [LH11, Def. 7]; if this convergence occurs
in mean, it is called asymptotic optimality in mean; if this
convergence occurs in probability, it is called asymptotic
optimality in probability; and if the Cesàro averages con-
verge almost surely, it is called weak asymptotic optimal-
ity [LH11, Def. 7].

3.1 ASYMPTOTIC OPTIMALITY IN MEAN

This subsection is dedicated to proving the following theo-
rem.

Theorem 4 (Thompson Sampling is Asymptotically Opti-
mal in Mean). For all environments µ ∈M,

EπTµ
[
V ∗µ (æ<t)− V πTµ (æ<t)

]
→ 0 as t→∞.

This theorem immediately implies that Thompson sam-
pling is also asymptotically optimal in probability: The
convergence in mean of the random variables Xt :=
V ∗µ (æ<t) − V πTµ (æ<t) stated in Theorem 4 is equivalent
to convergence in probability in the sense that µπT [Xt >
ε] → 0 as t → ∞ for all ε > 0 because the random vari-
ables Xt are nonnegative and bounded. However, this does
not imply almost sure convergence (see Section 3.3).



Define the Bayes-expected total variation distance

Fπm(æ<t) :=
∑
ρ∈M

w(ρ | æ<t)Dm(ρπ, ξπ | æ<t)

for m ≤ ∞.

If we replace the distance measure Dm by cross-entropy,
then the quantity Fπm(æ<t) becomes the Bayes-expected
information gain [Lat13, Eq. 3.5].

For the proof of Theorem 4 we need the following lemma.

Lemma 5 (F Vanishes On-Policy). For any policy π and
any environment µ,

Eπµ[Fπ∞(æ<t)]→ 0 as t→∞.

Proof. See Appendix B.

Proof of Theorem 4. Let β, δ > 0 and let εt > 0 denote
the sequence used to define πT in Algorithm 1. We assume
that t is large enough such that εk ≤ β for all k ≥ t and
that δ is small enough such that w(µ | æ<t) > 4δ for all
t, which holds since w(µ | æ<t) 6→ 0 µπ-almost surely for
any policy π [Hut09, Lem. 3i].

The stochastic process w(ν | æ<t) is a ξπT -martingale
since

EπTξ [w(ν | æ1:t) | æ<t]

=
∑
atet

ξπT (æt | æ<t)w(ν)
νπT (æ1:t)

ξπT (æ1:t)

=
∑
atet

ξπT (æt | æ<t)w(ν | æ<t)
νπT (æt | æ<t)

ξπT (æt | æ<t)

= w(ν | æ<t)
∑
atet

νπT (æt | æ<t)

= w(ν | æ<t).

By the martingale convergence theorem [Dur10,
Thm. 5.2.8] w(ν | æ<t) converges ξπT -almost surely and
because ξπT ≥ w(µ)µπT it also converges µπT -almost
surely.

We argue that we can choose t0 to be one of πT ’s resam-
pling time steps large enough such that for all t ≥ t0
the following three events hold simultaneously with µπT -
probability at least 1− δ.

(i) There is a finite setM′ ⊂ M with w(M′ | æ<t) >
1−δ andw(ν | æ<k) 6→ 0 as k →∞ for all ν ∈M′.

(ii) |w(M′′ | æ<t)− w(M′′ | æ<t0)| ≤ δ for allM′′ ⊆
M′.

(iii) FπT∞ (æ<t) < δβw2
min.

where wmin := inf{w(ν | æ<k) | k ∈ N, ν ∈ M′}, which
is positive by (i).

(i) and (ii) are satisfied eventually because the posterior
w( · | æ<t) converges µπT -almost surely. Note that the
setM′ is random: the limit of w(ν | æ<t) as t → ∞ de-
pends on the history æ1:∞. Without loss of generality, we
assume the true environment µ is contained in M′ since
w(µ | æ<t) 6→ 0 µπT -almost surely. (iii) follows from
Lemma 5 since convergence in mean implies convergence
in probability.

Moreover, we define the horizon m := t + Ht(εt) as the
time step of the effective horizon at time step t. Let æ<t be
a fixed history for which (i-iii) is satisfied. Then we have

δβw2
min > FπT∞ (æ<t)

=
∑
ν∈M

w(ν | æ<t)D∞(νπT , ξπT | æ<t)

= Eν∼w( ·|æ<t) [D∞(νπT , ξπT | æ<t)]

≥ Eν∼w( ·|æ<t) [Dm(νπT , ξπT | æ<t)]

≥ βw2
minw(M\M′′ | æ<t)

by Markov’s inequality where

M′′ :=
{
ν ∈M

∣∣ Dm(νπT , ξπT | æ<t) < βw2
min

}
.

For our fixed history æ<t we have

1− δ < w(M′′ | æ<t)

(i)

≤ w(M′′ ∩M′ | æ<t) + δ

(ii)

≤ w(M′′ ∩M′ | æ<t0) + 2δ

(i)

≤ w(M′′ | æ<t0) + 3δ

and thus we get

1− 4δ < w
[
Dm(νπT , ξπT | æ<t) < βw2

min

∣∣ æ<t0

]
.
(3)

In particular, this bound holds for ν = µ since w(µ |
æ<t0) > 4δ by assumption.

It remains to show that with high probability the value V
π∗ρ
µ

of the sample ρ’s optimal policy π∗ρ is sufficiently close to
the µ-optimal value V ∗µ . The worst case is that we draw
the worst sample from M′ ∩ M′′ twice in a row. From
now on, let ρ denote the sample environment we draw at
time step t0, and let t denote some time step between t0
and t1 := t0 +Ht0(εt0) (before the next resampling). With
probability w(ν′ | æ<t0)w(ν′ | æ<t1) we sample ν′ both
at t0 and t1 when following πT . Therefore we have for all
æt:m and all ν ∈M

νπT (æ1:m | æ<t)

≥ w(ν′ | æ<t0)w(ν′ | æ<t1)νπ
∗
ν′ (æ1:m | æ<t).



Thus we get for all ν ∈M′ (in particular ρ and µ)

Dm(µπT , ρπT | æ<t)

≥ sup
ν′∈M

sup
A⊆(A×E)m

∣∣∣w(ν′ | æ<t0)w(ν′ | æ<t1)

(µπ
∗
ν′ (A | æ<t)− ρπ

∗
ν′ (A | æ<t))

∣∣∣
≥ w(ν | æ<t0)w(ν | æ<t1)

sup
A⊆(A×E)m

∣∣∣µπ∗ν (A | æ<t)− ρπ
∗
ν (A | æ<t)

∣∣∣
≥ w2

minDm(µπ
∗
ν , ρπ

∗
ν | æ<t).

For ρ ∈M′′ we get

Dm(µπT , ρπT | æ<t)

≤ Dm(µπT , ξπT | æ<t) +Dm(ρπT , ξπT | æ<t)

(3)
< βw2

min + βw2
min = 2βw2

min,

which implies together with Lemma 2 and the fact that re-
wards in [0, 1]∣∣∣V π∗νµ (æ<t)− V

π∗ν
ρ (æ<t)

∣∣∣
≤

Γt+Ht(εt)

Γt
+
∣∣∣V π∗ν ,mµ (æ<t)− V

π∗ν ,m
ρ (æ<t)

∣∣∣
≤ εt +Dm(µπ

∗
ν , ρπ

∗
ν | æ<t)

≤ εt + 1
w2

min
Dm(µπT , ρπT | æ<t)

< β + 2β = 3β.

Hence we get (omitting history arguments æ<t for simplic-
ity)

V ∗µ = V
π∗µ
µ < V

π∗µ
ρ + 3β ≤ V ∗ρ + 3β

= V
π∗ρ
ρ + 3β < V

π∗ρ
µ + 3β + 3β = V

π∗ρ
µ + 6β.

(4)

With µπT -probability at least 1−δ (i), (ii), and (iii) are true,
with µπT -probability at least 1−δ our sample ρ happens to
be inM′ by (i), and with w( · | æ<t0)-probability at least
1− 4δ the sample is inM′′ by (3). All of these events are
true simultaneously with probability at least 1 − (δ + δ +
4δ) = 1 − 6δ. Hence the bound (4) transfers for πT such
that with µπT -probability ≥ 1− 6δ we have

V ∗µ (æ<t)− V πTµ (æ<t) < 6β.

Therefore µπT [V ∗µ (æ<t) − V πTµ (æ<t) ≥ 6β] < 6δ and
with δ → 0 we get that V ∗µ (æ<t) − V πTµ (æ<t) → 0 as
t→∞ in probability. The value function is bounded, thus
it also converges in mean by the dominated convergence
theorem.

3.2 WEAK ASYMPTOTIC OPTIMALITY

It might appear that convergence in mean is more natural
than the convergence of Cesàro averages of weak asymp-

totic optimality. However, both notions are not so funda-
mentally different because they both allow an infinite num-
ber of bad mistakes (actions that lead to V ∗µ − V πµ being
large). Asymptotic optimality in mean allows bad mistakes
as long as their probability converges to zero; weak asymp-
totic optimality allows bad mistakes as long as the total
time spent on bad mistakes grows sublinearly.

Lattimore and Hutter show that weak asymptotic optimal-
ity is possible in a countable class of deterministic envi-
ronments using an MDL-agent that explores through bursts
of random walks [LH11, Def. 10]. For classes of stochas-
tic environments, BayesExp is weakly asymptotically op-
timal [Lat13, Ch. 5]. However, this requires the addi-
tional condition that the effective horizon grows sublin-
early, Ht(εt) ∈ o(t), while Theorem 4 does not require
this condition.

Generally, weak asymptotic optimality and asymptotic op-
timality in mean are incomparable because the notions of
convergence are incomparable for (bounded) random vari-
ables. First, for deterministic sequences (i.e. determin-
istic policies in deterministic environments), convergence
in mean is equivalent to (regular) convergence, which im-
plies convergence in Cesàro average, but not vice versa.
Second, convergence in probability (and hence conver-
gence in mean for bounded random variables) does not
imply almost sure convergence of Cesàro averages [Sto13,
Sec. 14.18]. We leave open the question whether the policy
πT is weakly asymptotically optimal.

3.3 STRONG ASYMPTOTIC OPTIMALITY

Strong asymptotic optimality is known to be impossible
for deterministic policies [LH11, Thm. 8.1], but whether
it is possible for stochastic policies is an open question.
However, we show that Thompson sampling is not strongly
asymptotically optimal.
Example 6 (Thompson Sampling is not Strongly Asymp-
totically Optimal). Define A := {α, β}, E := {0, 1/2, 1},
and assume geometric discounting, γt := γt for γ ∈
(0, 1). Consider the following class of environmentsM :=
{ν∞, ν1, ν2, . . .} (transitions are labeled with action, re-
ward):

s0

s1

s2

β, 1
2

α, 0

β, 0

α, 0

∗, 0

s0

s1

s2

s3

s4

β, 1
2

t < k : α, 0

β, 0

α, 0

∗, 0

t ≥ k : α, 0

α, 0
β, 0

α, 1

β, 0

ν∞ νk

Environment νk works just like environment ν∞ except



that after time step k, the path to state s3 gets unlocked
and the optimal policy is to take action α twice from state
s0. The classM is a class of deterministic weakly commu-
nicating MDPs (but as an MDP νk has more than 5 states).
The optimal policy in environment ν∞ is to always take
action β, the optimal policy for environment νk is to take
action β for t < k and then take action β in state s1 and
action α otherwise.

Suppose the policy πT is acting in environment ν∞. Since
it is asymptotically optimal in the class M, it has to take
actions αα from s0 infinitely often: for t < k environment
νk is indistinguishable from ν∞, so the posterior for νk is
larger or equal to the prior. Hence there is always a constant
chance of sampling νk until taking actions αα, at which
point all environments νk for k ≤ t become falsified.

If the policy πT decides to explore and take the first action
α, it will be in state s1. Let æ<t denote the current history.
Then the ν∞-optimal action is β and

V ∗ν∞(æ<t) = (1− γ)

(
0 + γ

1

2
+ γ2

1

2
+ . . .

)
=
γ

2
.

The next action taken by πT is α since any optimal policy
for any sampled environment that takes actionα once, takes
that action again (and we are following that policy for an
εt-effective horizon). Hence

V πTν∞ (æ<t) ≤ (1−γ)

(
0 + 0 + γ2

1

2
+ γ3

1

2
+ . . .

)
=
γ2

2
.

Therefore V ∗ν∞ − V
πT
ν∞ ≥ (γ − γ2)/2 > 0. This happens

infinitely often with probability one and thus we cannot get
almost sure convergence. ♦

We expect that strong asymptotic optimality can be
achieved with Thompson sampling by resampling at every
time step (with strong assumptions on the discount func-
tion).

4 REGRET

4.1 SETUP

In general environments classes worst-case regret is linear
because the agent can get caught in a trap and be unable
to recover [Hut05, Sec. 5.3.2]. To achieve sublinear regret
we need to ensure that the agent can recover from mistakes.
Formally, we make the following assumption.

Definition 7 (Recoverability). An environment ν satisfies
the recoverability assumption iff

sup
π

∣∣∣Eπ∗νν [V ∗ν (æ<t)]− Eπν [V ∗ν (æ<t)]
∣∣∣→ 0 as t→∞.

Recoverability compares following the worst policy π for
t−1 time steps and then switching to the optimal policy π∗ν

to having followed π∗ν from the beginning. The recoverabil-
ity assumption states that switching to the optimal policy at
any time step enables the recovery of most of the value.

Note that Definition 7 demands that it becomes less costly
to recover from mistakes as time progresses. This should be
regarded as an effect of the discount function: if the (effec-
tive) horizon grows, recovery becomes easier because the
optimal policy has more time to perform a recovery. More-
over, recoverability is on the optimal policy, in contrast to
the notion of ergodicity in MDPs which demands returning
to a starting state regardless of the policy.

Remark 8 (Weakly Communicating POMDPs are Recov-
erable). If the effective horizon is growing, Ht(ε)→∞ as
t → ∞, then any weakly communicating finite state par-
tially observable MDP satisfies the recoverability assump-
tion.

Definition 9 (Regret). The regret of a policy π in environ-
ment µ is

Rm(π, µ) := sup
π′

Eπ
′

µ

[
m∑
t=1

rt

]
− Eπµ

[
m∑
t=1

rt

]
.

Note that regret is undiscounted and always nonnegative.
Moreover, the supremum is always attained by some pol-
icy (not necessarily the (Vµ-)optimal policy π∗µ because that
policy uses discounting), since the space of possible differ-
ent policies for the firstm actions is finite since we assumed
the set of actions A and the set of percepts E to be finite.

Assumption 10 (Discount Function). Let the discount
function γ be such that

(a) γt > 0 for all t,

(b) γt is monotone decreasing in t, and

(c) Ht(ε) ∈ o(t) for all ε > 0.

This assumption demands that the discount function is
somewhat well-behaved: the function has no oscillations,
does not become 0, and the horizon is not growing too fast.

Assumption 10 is satisfied by geometric discounting: γt :=
γt > 0 (a) for some fixed constant γ ∈ (0, 1) is monotone
decreasing (b), Γt = γt/(1 − γ), and Ht(ε) = dlogγ εe ∈
o(t) (c).

The problem with geometric discounting is that it makes
the recoverability assumption very strong: since the hori-
zon is not growing, the environment has to enable faster
recovery as time progresses; in this case weakly communi-
cating partially observable MDPs are not recoverable.

A choice with Ht(ε) → ∞ that satisfies Assumption 10
is γt := e−

√
t/
√
t [Lat13, Sec. 2.3.1]. For this discount

function Γt ≈ 2e−
√
t, Ht(ε) ≈ −

√
t log ε + (log ε)2 ∈

o(t), and thus Ht(ε)→∞ as t→∞.



4.2 SUBLINEAR REGRET

This subsection is dedicated to the following theorem.

Theorem 11 (Sublinear Regret). If the discount function
γ satisfies Assumption 10, the environment µ ∈ M satis-
fies the recoverability assumption, and π is asymptotically
optimal in mean, i.e.,

Eπµ
[
V ∗µ (æ<t)− V πµ (æ<t)

]
→ 0 as t→∞,

then Rm(π, µ) ∈ o(m).

If the items in Assumption 10 are violated, Theorem 11 can
fail:

• If γt = 0 for some time steps t, our policy does not
care about those time steps and might take actions that
have large regret.

• Similarly if γ oscillates between high values and very
low values: our policy might take high-regret actions
in time steps with comparatively lower γ-weight.

• If the horizon grows linearly, infinitely often our pol-
icy might spend some constant fraction of the current
effective horizon exploring, which incurs a cost that is
a constant fraction of the total regret so far.

To prove Theorem 11, we apply the following technical
lemma.

Lemma 12 (Value and Regret). Let ε > 0 and assume the
discount function γ satisfies Assumption 10. Let (dt)t∈N be
a sequence of numbers with |dt| ≤ 1 for all t. If there is a
time step t0 with

1

Γt

∞∑
k=t

γkdk < ε ∀t ≥ t0 (5)

then

m∑
t=1

dt ≤ t0 + ε(m− t0 + 1) +
1 + ε

1− ε
Hm(ε)

Proof. This proof essentially follows the proof of [Hut06,
Thm. 17]; see Appendix B.

Proof of Theorem 11. Let (πm)m∈N denote any sequence
of policies, such as a sequence of policies that attain the
supremum in the definition of regret. We want to show that

Eπmµ

[
m∑
t=1

rt

]
− Eπµ

[
m∑
t=1

rt

]
∈ o(m).

For
d
(m)
k := Eπmµ [rk]− Eπµ[rk] (6)

we have −1 ≤ d
(m)
k ≤ 1 since we assumed rewards to

be bounded between 0 and 1. Because the environment µ
satisfies the recoverability assumption we have∣∣∣Eπ∗µµ [V ∗µ (æ<t)]− Eπµ[V ∗µ (æ<t)]

∣∣∣→ 0 as t→∞, and

sup
m

∣∣∣Eπ∗µµ [V ∗µ (æ<t)]− Eπmµ [V ∗µ (æ<t)]
∣∣∣→ 0 as t→∞,

so we conclude that

sup
m

∣∣Eπµ[V ∗µ (æ<t)]− Eπmµ [V ∗µ (æ<t)]
∣∣→ 0

by the triangle inequality and thus

sup
m

Eπmµ [V ∗µ (æ<t)]− Eπµ[V ∗µ (æ<t)]→ 0 as t→∞. (7)

By assumption the policy π is asymptotically optimal in
mean, so we have

Eπµ[V ∗µ (æ<t)]− Eπµ[V πµ (æ<t)]→ 0 as t→∞,

and with (7) this combines to

sup
m

Eπmµ [V ∗µ (æ<t)]− Eπµ[V πµ (æ<t)]→ 0 as t→∞.

From V ∗µ (æ<t) ≥ V πmµ (æ<t) we get

lim sup
t→∞

(
sup
m

Eπmµ [V πmµ (æ<t)]− Eπµ[V πµ (æ<t)]

)
≤ 0.

(8)
For π′ ∈ {π, π1, π2, . . .} we have

Eπ
′

µ [V π
′

µ (æ<t)] = Eπ
′

µ

[
1

Γt
Eπ
′

µ

[ ∞∑
k=t

γkrk

∣∣∣∣∣æ<t

]]

= Eπ
′

µ

[
1

Γt

∞∑
k=t

γkrk

]

=
1

Γt

∞∑
k=t

γkEπ
′

µ [rk],

so from (6) and (8) we get

lim sup
t→∞

sup
m

1

Γt

∞∑
k=t

γkd
(m)
k ≤ 0.

Let ε > 0 and choose t0 independent of m and large
enough such that supm

∑∞
k=t γkd

(m)
k /Γt < ε for all t ≥

t0. Now we let m ∈ N be given and apply Lemma 12 to
get

Rm(π, µ)

m
=

∑m
k=1 d

(m)
k

m

≤
t0 + ε(m− t0 + 1) + 1+ε

1−εHm(ε)

m
.

Since Ht(ε) ∈ o(t) according to Assumption 10c we get
lim supm→∞Rm(π, µ)/m ≤ 0.



Example 13 (Converse of Theorem 11 is False). Let µ
be a two-armed Bernoulli bandit with means 0 and 1 and
suppose we are using geometric discounting with discount
factor γ ∈ [0, 1). This environment is recoverable. If our
policy π pulls the suboptimal arm exactly on time steps
1, 2, 4, 8, 16, . . ., regret will be logarithmic. However, on
time steps t = 2n for n ∈ N the value difference V ∗µ − V πµ
is deterministically at least 1− γ > 0. ♦

4.3 IMPLICATIONS

We get the following immediate consequence.

Corollary 14 (Sublinear Regret for the Optimal Dis-
counted Policy). If the discount function γ satisfies As-
sumption 10 and the environment µ satisfies the recover-
ability assumption, then Rm(π∗µ, µ) ∈ o(m).

Proof. From Theorem 11 since the policy π∗µ is (trivially)
asymptotically optimal in µ.

If the environment does not satisfy the recoverability as-
sumption, regret may be linear even on the optimal policy:
the optimal policy maximizes discounted rewards and this
short-sightedness might incur a tradeoff that leads to linear
regret later on if the environment does not allow recovery.

Corollary 15 (Sublinear Regret for Thompson Sampling).
If the discount function γ satisfies Assumption 10 and the
environment µ ∈ M satisfies the recoverability assump-
tion, then Rm(πT , µ) ∈ o(m) for the Thompson sampling
policy πT .

Proof. From Theorem 4 and Theorem 11.

5 DISCUSSION

In this paper we introduced a reinforcement learning pol-
icy πT based on Thompson sampling for general countable
environment classes (Algorithm 1). We proved two asymp-
totic statements about this policy. Theorem 4 states that πT
is asymptotically optimal in mean: the value of πT in the
true environment converges to the optimal value. Corol-
lary 15 states that the regret of πT is sublinear: the differ-
ence of the expected average rewards between πT and the
best informed policy converges to 0. Both statements come
without a concrete convergence rate because of the weak
assumptions we made on the environment class.

Asymptotic optimality has to be taken with a grain of salt.
It provides no incentive to the agent to avoid traps in the en-
vironment. Once the agent gets caught in a trap, all actions
are equally bad and thus optimal: asymptotic optimality
has been achieved. Even worse, an asymptotically optimal
agent has to explore all the traps because they might con-
tain hidden treasure. Overall, there is a dichotomy between
the asymptotic nature of asymptotic optimality and the use

of discounting to prioritize the present over the future. Ide-
ally, we would want to give finite guarantees instead, but
without additional assumptions this is likely impossible in
this general setting. Our regret bound could be a step in the
right direction, even though itself asymptotic in nature.

For Bayesians asymptotic optimality means that the pos-
terior distribution w( · | æ<t) concentrates on environ-
ments that are indistinguishable from the true environment
(but generally not on the true environment). This is why
Thompson sampling works: any optimal policy of the en-
vironment we draw from the posterior will, with higher and
higher probability, also be (almost) optimal in the true en-
vironment.

If the Bayesian mixture ξ is inside the classM (as it is the
case for the class of lower semicomputable chronological
semimeasures [Hut05]), then we can assign ξ a prior prob-
ability that is arbitrarily close to 1. Since the posterior of
ξ is the same as the prior, Thompson sampling will act ac-
cording to the Bayes-optimal policy most of the time. This
means the Bayes-value of Thompson sampling can be very
good; formally, V ∗ξ (ε) − V πTξ (ε) can be made arbitrarily
small, and thus Thompson sampling can have near-optimal
Legg-Hutter intelligence [LH07].

In contrast, the Bayes-value of Thompson sampling can
also be very bad: Suppose you have a class of (n+1)-armed
bandits indexed 1, . . . , n where bandit i gives reward 1− ε
on arm 1, reward 1 on arm i+ 1, and reward 0 on all other
arms. For geometric discounting and ε < (1− γ)/(2− γ),
it is Bayes-optimal to pull arm 1 while Thompson sam-
pling will explore on average n/2 arms until it finds the
optimal arm. The Bayes-value of Thompson sampling is
1/(n−γn−1) in contract to (1−ε) achieved by Bayes. For
a horizon of n, the Bayes-optimal policy suffers a regret of
εn and Thompson sampling a regret of n/2, which is much
larger for small ε.

The exploration performed by Thompson sampling
is qualitatively different from the exploration by
BayesExp [Lat13, Ch. 5]. BayesExp performs phases
of exploration in which it maximizes the expected in-
formation gain. This explores the environment class
completely, even achieving off-policy prediction [OLH13,
Thm. 7]. In contrast, Thompson sampling only explores
on the optimal policies, and in some environment classes
this will not yield off-policy prediction. So in this sense
the exploration mechanism of Thompson sampling is more
reward-oriented than maximizing information gain.

Possible avenues of future research are providing concrete
convergence rates for specific environment classes and re-
sults for uncountable (parameterized) environment classes.
For the latter, we have to use different analysis techniques
because the true environment µ is typically assigned a prior
probability of 0 (only a positive density) but the proofs
of Lemma 5 and Theorem 4 rely on dividing by or tak-



ing a minimum over prior probabilities. We also left open
whether Thompson sampling is weakly asymptotically op-
timal.
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Regret analysis of stochastic and nonstochas-
tic multi-armed bandit problems. Foundations
and Trends in Machine Learning, 5(1):1–122,
2012.

[BD62] David Blackwell and Lester Dubins. Merging
of opinions with increasing information. The
Annals of Mathematical Statistics, pages 882–
886, 1962.

[CL11] Olivier Chapelle and Lihong Li. An empirical
evaluation of Thompson sampling. In Neural
Information Processing Systems, pages 2249–
2257, 2011.

[DFR98] Richard Dearden, Nir Friedman, and Stuart
Russell. Bayesian Q-learning. In AAAI, pages
761–768, 1998.

[Dur10] Rick Durrett. Probability: Theory and Exam-
ples. Cambridge University Press, 4th edition,
2010.

[GM15] Aditya Gopalan and Shie Mannor. Thompson
sampling for learning parameterized Markov
decision processes. In Conference on Learn-
ing Theory, pages 861–898, 2015.

[Hut00] Marcus Hutter. A theory of universal artificial
intelligence based on algorithmic complexity.
Technical report, 2000. http://arxiv.
org/abs/cs.AI/0004001.

[Hut02] Marcus Hutter. Self-optimizing and Pareto-
optimal policies in general environments
based on Bayes-mixtures. In Computational
Learning Theory, pages 364–379. Springer,
2002.

[Hut05] Marcus Hutter. Universal Artificial Intelli-
gence: Sequential Decisions Based on Algo-
rithmic Probability. Springer, 2005.

[Hut06] Marcus Hutter. General discounting versus
average reward. In Algorithmic Learning The-
ory, pages 244–258. Springer, 2006.

[Hut09] Marcus Hutter. Discrete MDL predicts in total
variation. In Neural Information Processing
Systems, pages 817–825, 2009.

[KKM12] Emilie Kaufmann, Nathaniel Korda, and Rémi
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