
Bayesian Learning of Kernel Embeddings

Seth Flaxman

flaxman@stats.ox.ac.uk

Department of Statistics

University of Oxford

Dino Sejdinovic

dino.sejdinovic@stats.ox.ac.uk

Department of Statistics

University of Oxford

John P. Cunningham

jpc2181@columbia.edu

Department of Statistics

Columbia University

Sarah Filippi

filippi@stats.ox.ac.uk

Department of Statistics

University of Oxford

Abstract

Kernel methods are one of the mainstays of ma-

chine learning, but the problem of kernel learn-

ing remains challenging, with only a few heuris-

tics and very little theory. This is of particu-

lar importance in methods based on estimation

of kernel mean embeddings of probability mea-

sures. For characteristic kernels, which include

most commonly used ones, the kernel mean em-

bedding uniquely determines its probability mea-

sure, so it can be used to design a powerful sta-

tistical testing framework, which includes non-

parametric two-sample and independence tests.

In practice, however, the performance of these

tests can be very sensitive to the choice of ker-

nel and its lengthscale parameters. To address

this central issue, we propose a new probabilistic

model for kernel mean embeddings, the Bayesian

Kernel Embedding model, combining a Gaus-

sian process prior over the Reproducing Kernel

Hilbert Space containing the mean embedding

with a conjugate likelihood function, thus yield-

ing a closed form posterior over the mean em-

bedding. The posterior mean of our model is

closely related to recently proposed shrinkage es-

timators for kernel mean embeddings, while the

posterior uncertainty is a new, interesting feature

with various possible applications. Critically for

the purposes of kernel learning, our model gives

a simple, closed form marginal pseudolikelihood

of the observed data given the kernel hyperpa-

rameters. This marginal pseudolikelihood can ei-

ther be optimized to inform the hyperparameter

choice or fully Bayesian inference can be used.

1 INTRODUCTION

A large class of popular and successful machine learning

methods rely on kernels (positive semidefinite functions),

including support vector machines, kernel ridge regression,

kernel PCA (Schölkopf and Smola, 2002), Gaussian pro-

cesses (Rasmussen and Williams, 2006), and kernel-based

hypothesis testing (Gretton et al., 2005, 2008, 2012a). A

key component for many of these methods is that of esti-

mating kernel mean embeddings and covariance operators

of probability measures based on data. The use of simple

empirical estimators has been challenged recently (Muan-

det et al., 2016) and alternative, better-behaved frequentist

shrinkage strategies have been proposed. In this article,

we develop a Bayesian framework for estimation of kernel

mean embeddings, recovering desirable shrinkage proper-

ties as well as allowing quantification of full posterior un-

certainty. Moreover, the developed framework has an addi-

tional extremely useful feature. Namely, a persistent prob-

lem in kernel methods is that of kernel choice and hyper-

parameter selection, for which no general-purpose strategy

exists. When a large dataset is available in a supervised set-

ting, the standard approach is to use cross-validation. How-

ever, in unsupervised learning and kernel-based hypothesis

testing, cross-validation is not straightforward to apply and

yet the choice of kernel is critically important. Our frame-

work gives a tractable closed-form marginal pseudolikeli-

hood of the data allowing direct hyperparameter optimiza-

tion as well as fully Bayesian posterior inference through

integrating over the kernel hyperparameters. We empha-

sise that this approach is fully unsupervised: it is based

solely on the modelling of kernel mean embeddings – go-

ing beyond marginal likelihood based approaches in, e.g.,

Gaussian process regression – and is thus broadly applica-

ble in situations, such as kernel-based hypothesis testing,

where the hyperparameter choice has thus far been mainly

driven by heuristics.

In Section 2 we provide the necessary background on Re-

producing Kernel Hilbert Spaces (RKHS) as well as de-

scribe some related works. In Section 3 we develop our

Bayesian Kernel Embedding model, showing a rigorous

Gaussian process prior formulation for an RKHS. In Sec-

tion 4 we show how to perform kernel learning and pos-

terior inference with our model. In Section 5 we empiri-

cally evaluate our model, arguing that our Bayesian Ker-

nel Learning (BKL) objective should be considered as a

“drop-in” replacement for heuristic methods of choosing

kernel hyperparameters currently in use, especially in un-

supervised settings such as kernel-based testing. We close

in Section 6 with a discussion of various applications of our



approach and future work.

2 BACKGROUND AND RELATED

WORK

2.1 KERNEL EMBEDDINGS OF PROBABILITY

MEASURES

For any positive definite kernel function k : X × X →
R, there exists a unique reproducing kernel Hilbert space

(RKHS) Hk. RKHS is an (often infinite-dimensional)

space of functions h : X → R where evaluation can

be written as an inner product, and in particular h(x) =
〈h, k(·, x)〉Hk

for all h ∈ Hk, x ∈ X . Given a probability

measure P on X , its kernel embedding into Hk is defined

as:

µP =

∫
k (·, x)P(dx). (1)

Embedding µP is an element of Hk and serves as a rep-

resentation of P akin to a characteristic function. It rep-

resents expectations of RKHS functions in the form of an

inner product
∫
h(x)P(dx) = 〈h, µP〉Hk

. For a broad fam-

ily of kernels termed characteristic (Sriperumbudur et al.,

2011), every probability measure has a unique embedding

– thus, such embeddings completely determine their prob-

ability measures and capture all of the moment informa-

tion. This yields a framework for constructing nonpara-

metric hypothesis tests for the two-sample problem and for

independence, which are consistent against all alternatives

(Gretton et al., 2008, 2012a) – we review this framework in

the next section.

2.2 KERNEL MEAN EMBEDDING AND

HYPOTHESIS TESTING

Given a kernel k and probability measures P and Q, the

maximum mean discrepancy (MMD) between P and Q

(Gretton et al., 2012a) is defined as the squared RKHS

distance ‖µP − µQ‖2Hk
between their embeddings. A re-

lated quantity is the Hilbert Schmidt Independence Crite-

rion (HSIC) (Gretton et al., 2005, 2008), a nonparametric

dependence measure between random variables X and Y
on domains X and Y respectively, defined as the squared

RKHS distance ‖µPXY
− µPXPY

‖2Hκ
between the embed-

dings of the joint distribution PXY and of the product of the

marginals PXPY with respect to a kernel κ : (X × Y) ×
(X×Y) → R on the product space. Typically, κ factorises,

i.e. κ ((x, y), (x′, y′)) = k(x, x′)l(y, y′). The empirical

versions of MMD and HSIC are used as test statistics for

the two-sample (H0 : P = Q vs. H1 : P 6= Q) and inde-

pendence (H0 : X ⊥⊥ Y vs. H1 : X 6 ⊥⊥ Y ) tests, respec-

tively. With the help of the approximations to the asymp-

totic distribution under the null hypothesis, corresponding

p-values can be computed (Gretton et al., 2012a). In addi-

tion, the so-called “witness function” which is proportional

to µP − µQ can be used to assess where the difference be-

tween the distributions arises.

2.3 KERNEL MEAN EMBEDDING

ESTIMATORS

For a set of i.i.d. samples x1, . . . , xn, the kernel mean

embedding is typically estimated by its empirical version

µ̂P = µ
P̂
=

1

n

n∑

i=1

k(·, xi), (2)

from which various associated quantities, including the

estimators of the squared RKHS distances between em-

beddings needed for kernel-based hypothesis tests, follow.

As an empirical mean in an infinite-dimensional space,

(2) is affected by Stein’s phenomenon, as overviewed by

Muandet et al. (2013) who also propose alternative shrink-

age estimators similar to the well known James-Stein es-

timator. Improvements of test power using such shrink-

age estimators are reported by Ramdas and Wehbe (2015).

Connections between the James-Stein estimator and em-

pirical Bayes procedures are classical (Efron and Morris,

1973), and thus a natural question to consider is whether

a Bayesian formulation of the problem of kernel embed-

ding estimation would yield similar shrinkage properties.

In this paper, we will give a Bayesian perspective of the

problem of kernel embedding estimation. In particular, we

will construct a flexible model for underlying probability

measures based on Gaussian measures in RKHSs which al-

lows derivation of a full posterior distribution of µP, recov-

ering similar shrinkage properties to Muandet et al. (2013),

as discussed in Section 4.2. The model will give us a fur-

ther advantage, however – as the marginal likelihood of the

data given the kernel parameter can be derived leading to

an informed choice of kernel parameters.

2.4 SELECTION OF KERNEL

PARAMETERS

In supervised kernel methods like support vector machines,

leave-one-out or k-fold crossvalidation is an effective and

widely used method for kernel selection, and the myriad

papers on multiple kernel learning (e.g. Bach et al. (2004);

Sonnenburg et al. (2006); Gönen and Alpaydın (2011)) as-

sume that some loss function is available and thus focus

on effective ways of learning combinations of kernels. In

the related but distinct world of smoothing kernels and ker-

nel density estimation, there are a variety of long-standing

approaches to bandwidth selection, again based on a loss

function (in this case, mean integrated squared error is a

popular choice (Bowman, 1985), and there is even a for-

mula giving the optimal smoothing parameter asymptoti-

cally, see Rosenblatt (1956); Parzen (1962)) but we are not

aware of work linking this literature to methods based on

positive definite/RKHS kernels we study here. Separately,



Gaussian process learning can be undertaken by maximiz-

ing the marginal likelihood, which has a convenient closed

form. This is noteworthy for its success and general appli-

cability even for learning complicated combinations of ker-

nels (Duvenaud et al., 2013) or rich kernel families (Wilson

and Adams, 2013). Our approach has the same basic design

as that of Gaussian process learning, yet it is applicable to

learning kernel embeddings, which falls outside the realm

of supervised learning.

As noted in Gretton et al. (2012b), the choice of the ker-

nel k is critically important for the power of the tests pre-

sented in Section 2.2. However, no general, theoretically-

grounded approaches for kernel selection in this context

exist. The difficulty is that, unlike in supervised kernel

methods, a simple cross-validation approach for the ker-

nel parameter selection is not possible. What would be an

ideal objective function – asymptotic test power – cannot

be computed due to a complicated asymptotic null distribu-

tion. Moreover, even if we were able to estimate the power

by performing tests on “training data” for each of the in-

dividual candidate kernels, in order to account for multiple

comparisons, this training data would have to be disjoint

from the one on which the hypothesis test is performed,

which is clearly wasteful of power and appropriate only in

the type of large-scale settings discussed in Gretton et al.

(2012b). For these reasons, most users of kernel hypothe-

sis tests in practice resort to using a parameterized kernel

family such as squared exponential, and setting the length-

scale parameter based on the “median heuristic.”

The exact origins of the median heuristic are unclear (in-

terestingly, it does not appear in the book that is most com-

monly cited as its source, Schölkopf and Smola (2002))

but it may have been derived from Takeuchi et al. (2006)

and has precursors in classical work on bandwidth selec-

tion for kernel density estimation (Bowman, 1985). Note

that there are two versions of the median heuristic in

the literature: in both versions, given a set of observa-

tions x1, . . . , xn we calculate ℓ = median(‖xi − xj‖2)
and then one version (e.g. Mooij et al. (2015)) uses the

Gaussian RBF / squared exponential kernel parameter-

ized as k(x, x′) = exp(−‖x−x′‖2

ℓ2 ) and the second ver-

sion (e.g. Muandet et al. (2014)) uses the parameterization

k(x, x′) = exp(−‖x−x′‖2

2ℓ2 ). Some recent work has high-

lighted the situations in which the median heuristic can

lead to poor performance (Gretton et al., 2012b). Cases

in which the median heuristic performs quite well and also

cases in which it performs quite poorly are discussed in

(Reddi et al., 2015; Ramdas et al., 2015). We note that the

median heuristic has also been used as a default value for

supervised learning tasks (e.g. for the SVM implementa-

tion in R package kernlab) or when cross-validation is

simply too expensive.

Outside of kernel methods, the same basic conundrum

arises in spectral clustering in the choice of the parame-

ters for the similarity graph (Von Luxburg, 2007, Section

8.1) and it is implicitly an issue in any unsupervised statis-

tical method based on distances or dissimilarities, like the

distance covariance (which is in fact equivalent to HSIC

with a certain family of kernel functions (Sejdinovic et al.,

2013)), or even the choice of the number of neighbors k in

k-nearest neighbors algorithms.

3 OUR MODEL: BAYESIAN KERNEL

EMBEDDING

Below, we will work with a parametric family of ker-

nels {kθ(·, ·)}θ∈Θ. Given a dataset {xi}ni=1 ∼ P of ob-

servations in R
D for an unknown probability distribu-

tion P, we wish to infer the kernel embedding µP,θ =∫
kθ (·, x)P(dx) for a given kernel kθ in the parametric

family. Moreover, we wish to construct a model that will al-

low inference of the kernel hyperparameter θ as well. Note

that the two goals are related, since θ determines the space

in which the embedding µP,θ lies. When it is obvious from

context, we suppress the dependence of the embeddings on

the underlying measure P, writing µθ to emphasize the de-

pendence on θ. Similarly, we will use µ̂θ to denote the

simple empirical estimator from Eq. (2), which depends on

a fixed sample {xi}ni=1.

Our Bayesian Kernel Embedding (BKE) approach consists

in specifying a prior on the kernel mean embedding µθ and

a likelihood function linking it to the observations through

the empirical estimator µ̂θ. This will then allow us to infer

the posterior distribution of the kernel mean embedding.

The hyperparameter θ can itself have a prior, with the goal

of learning a posterior distribution over the hyperparameter

space.

3.1 PRIOR

A given hyperparameter θ (which can itself have a prior dis-

tribution), parameterizes a kernel kθ and a corresponding

RKHS Hkθ
. While it is tempting to define a GP(0, kθ(·, ·))

prior on µθ, this is problematic since draws from such prior

would almost surely fall outside Hk (Wahba, 1990). There-

fore, we define a GP prior over µθ as follows:

µθ | θ ∼ GP(0, rθ(·, ·)) , (3)

rθ(x, y) :=

∫
kθ(x, u)kθ(u, y)ν(du) . (4)

where ν is any finite measure on X . This choice of rθ
ensures that µθ ∈ Hkθ

with probability 1 by the nuclear

dominance (Lukić and Beder, 2001; Pillai et al., 2007) of

kθ over rθ for any stationary kernel kθ and more broadly

whenever
∫
kθ(x, x)ν(dx) < ∞. For completeness, we

provide details of this construction in the Appendix in Sec-

tion A.2. Since Eq. (4) is the convolution of a kernel with



itself with respect to ν, for typical kernels kθ, the resulting

kernel rθ can be thought of as a smoother version of kθ. A

particularly convenient choice for X = R
D is to take ν to

be proportional to a Gaussian measure in which case rθ can

be computed analytically for a squared exponential kernel

kθ. The derivation is given in the Appendix in Section A.3,

where we further show that if we set ν to be proportional

to an isotropic Gaussian measure with a large variance pa-

rameter, rθ becomes very similar to a squared exponential

kernel with lengthscale θ
√
2.

3.2 LIKELIHOOD

We need a likelihood linking the kernel mean embedding

µθ to the observations {xi}ni=1. We define the likelihood

via the empirical mean embedding estimator of Eq. (2), µ̂θ

which depends on {xi}ni=1 and θ. Consider evaluating µ̂θ at

some x ∈ R
D (which need not be one of our observations).

The result is a real number giving an empirical estimate of

µθ(x) based on {xi}ni=1 and θ. We link the empirical esti-

mate, µ̂θ(x), to the corresponding modeled estimate, µθ(x)
using a Gaussian distribution with variance τ2/n:

p(µ̂θ(x)|µθ(x)) = N (µ̂θ(x);µθ(x), τ
2/n), x ∈ X .

(5)

Our motivation for choosing this likelihood comes from the

Central Limit Theorem. For a fixed location x, µ̂θ(x) =
1
n

∑n
i=1 kθ(xi, x) is an average of i.i.d. random variables

so it satisfies:

√
n(µ̂θ(x)− µθ(x))

D→ N (0,VarX∼P[kθ(X,x)]). (6)

We note that considering a heteroscedastic variance depen-

dent on x in (5) would be a straightforward extension to

our model, but we do not pursue this idea further here, i.e.

while τ2 can depend both on θ and x, we treat it as a single

hyperparameter in the model.

3.3 JUSTIFICATION FOR THE MODEL

There are various ways to understand the construction of

our hierarchical model. {xi}ni=1 are drawn iid from P,

which we do not have access to. We could estimate P

directly (e.g. with a Gaussian mixture model) obtaining

P̂, and then estimate µθ,P̂. But since density estimation

is challenging in high dimensions, we posit a generative

model for µθ directly.

Beginning at the top of the hierarchy, we have a fixed or

random hyperparameter θ, which immediately defines kθ
and the corresponding RKHS Hkθ

. Then, we introduce a

GP prior over µθ to ensure that µθ ∈ Hkθ
. A few real-

izations of µθ drawn from our prior are shown in Figure 1

(A), for an illustrative one-dimensional example where the

prior is a Gaussian process with squared exponential kernel

with lengthscale θ = 0.25. Small values of θ yield rough

functions and large values of θ yield smooth functions.
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−3 −2 −1 0 1 2 3

−
0.

5
0.

0
0.

5

(C) Posterior

x

p(
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Figure 1: An illustration of the Bayesian Kernel Embed-

ding model, where kθ is a squared exponential kernel with

lengthscale 0.1. Three draws of µθ from the prior are

shown in (A). The empirical mean estimator µ̂θ, which is

the link function for the likelihood, is shown in (B) with

the observations shown as a rug plot. In (C), the poste-

rior mean embedding (black line) with uncertainty intervals

(gray lines) is shown, as is the true mean embedding (blue

line) based on the true data generating process (a mixture

of Gaussians) and the same kθ.

Next, we need to define the likelihood, which links these

draws from the prior to the observations {xi}ni=1. Since µθ

is an infinite dimensional element in a Hilbert space and

{xi}ni=1 ∈ X we need to transform the observations so that

we can put a probability distribution over them. We use

the empirical estimate of the mean embedding µ̂θ as our

link function. Given a few observations, µ̂θ is shown in

Figure 1 (B). Our likelihood links µ̂θ to µθ at the observa-

tion locations {xi}ni=1 by assuming a squared loss function,

i.e. Gaussian errors. As mentioned above, the motivation is

the Central Limit Theorem, but also the convenient conju-

gate form that a Gaussian process with Gaussian likelihood

yields. A plot of the posterior over the mean embedding



is shown in Figure 1 (C). A few points are worth noting:

since the empirical estimator is already quite smooth (no-

tice its similarity to a kernel density estimate), the posterior

mean embedding is only slightly smoother than the empir-

ical mean embedding. Notice that unlike kernel density

estimation, there is no requirement that the kernel mean

embedding be non-negative, thus explaining the posterior

uncertainty intervals which are below zero.

Our original motivation for considering a Bayesian model

for kernel mean embeddings was to see whether there was

a coherent Bayesian formulation that corresponded to the

shrinkage estimators in Muandet et al. (2013), while also

enabling us to learn the hyperparameters. The first diffi-

culty we faced was how to define a valid prior over the

RKHS and a reasonable likelihood function. Our choices

are by no means definitive, and we hope to see further de-

velopment in this area in the future. The second difficulty

was that of developing a method for inferring hyperparam-

eters, to which we turn in the next section.

4 BAYESIAN KERNEL LEARNING

In this section we show how to perform learning and in-

ference in the Bayesian Kernel Embedding model intro-

duced in the previous section. Our model inherits various

attractive properties from the Gaussian process framework

(Rasmussen and Williams, 2006). First, we derive the pos-

terior and posterior predictive distributions for the kernel

mean embedding in closed form due to the conjugacy of

our model, and show the relationship with previously pro-

posed shrinkage estimators. We then derive the tractable

marginal likelihood of the observations given the hyperpa-

rameters allowing for efficient MAP estimation or posterior

inference for hyperparameters.

4.1 POSTERIOR AND POSTERIOR PREDICTIVE

DISTRIBUTIONS

Similarly to GP models, the posterior mean of µθ is avail-

able in closed form due to the conjugacy of Gaussians. Per-

haps given our data we wish to infer µθ at a new location

x∗ ∈ R
D. Given a value of the hyperparameter θ we can

calculate the posterior distribution of µθ as well as the pos-

terior predictive distribution p(µθ(x
∗)|µ̂θ, θ).

Standard GP results (Rasmussen and Williams, 2006) yield

the posterior distribution as:

[µθ(x1), . . . , µθ(xn)]
⊤ | [µ̂θ(x1), . . . , µ̂θ(xn)]

⊤, θ

∼ N (Rθ(Rθ + (τ2/n)In)
−1[µ̂θ(x1), . . . , µ̂θ(xn)]

⊤,

Rθ −Rθ(Rθ + (τ2/n)In)
−1Rθ),

(7)

where Rθ is the n× n matrix such that its (i, j)-th element

is rθ(xi, xj). The posterior predictive distribution at a new

location x∗ is:

µθ(x
∗)⊤ | [µ̂θ(x1), . . . , µ̂θ(xn)]

⊤, θ

∼ N (R∗⊤
θ (Rθ + (τ2/n)In)

−1[µ̂θ(x1), . . . , µ̂θ(xn)]
⊤,

r∗∗θ −R∗⊤
θ (Rθ + (τ2/n)In)

−1R∗
θ)

(8)

where R∗
θ = [rθ(x

∗, x1), . . . rθ(x
∗, xn)]

⊤
and r∗∗θ =

rθ(x
∗, x∗).

As in standard GP inference, the time complexity is O(n3)
due to the matrix inverses and the storage is O(n2) to store

the n× n matrix Rθ.

4.2 RELATION TO THE SHRINKAGE

ESTIMATOR

The spectral kernel mean shrinkage estimator (S-KMSE)

of Muandet et al. (2013) for a fixed kernel k is defined as:

µ̌λ = Σ̂XX(Σ̂XX + λI)−1µ̂, (9)

where µ̂ =
∑n

i=1 k(·, xi) is the empirical embedding,

Σ̂XX = 1
n

∑n
i=1 k(·, xi) ⊗ k(·, xi) is the empirical co-

variance operator on Hk, and λ is a regularization param-

eter. (Muandet et al., 2013, Proposition 12) shows that

µ̌λ can be expressed as a weighted kernel mean µ̌λ =∑n
i=1 βik(·, xi), where

β =
1

n
(K + nλI)−1K1

= (K + nλI)−1[µ̂(x1), . . . , µ̂(xn)]
⊤.

Now, evaluating S-KMSE at any point x∗ gives

µ̌λ(x
∗) =

n∑

i=1

βik(x
∗, xi)

= K⊤
∗ (K + nλI)−1[µ̂(x1), . . . , µ̂(xn)]

⊤,

where K∗ = [k(x∗, x1), . . . , k(x
∗, xn)]

⊤
. Thus, the pos-

terior mean in Eq. (7) recovers the S-KMSE estimator

(Muandet et al., 2013), where the regularization parameter

is related to the variance in the likelihood model (5), with a

difference that in our case the kernel kθ used to compute the

empirical embedding is not the same as the kernel rθ used

to compute the kernel matrices. We note that our method

has various advantages over the frequentist estimator µ̌λ:

we have a closed-form uncertainty estimate, while we are

not aware of a principled way of calculating the standard er-

ror of the frequentist estimators of embeddings. Our model

also leads to a method for learning the hyperparameters,

which we discuss next.

4.3 INFERENCE OF THE KERNEL

PARAMETERS

In this section we focus on hyperparameter learning in our

model. For the purposes of hyperparameter learning, we



want to integrate out the kernel mean embedding µθ and

consider the probability of our observations {xi}ni=1 given

the hyperparameters θ. In order to link our generative

model directly to the observations, we use a pseudolike-

lihood approach as discussed in detail below.

We use the term pseudolikelihood because the model in this

section will not correspond to the likelihood of the infinite

dimensional empirical embedding; rather it will rely on the

evaluations of the empirical embedding at a finite set of

points. Let us fix a set of points z1, . . . , zm in X ⊂ R
D,

with m ≥ D. These points are not treated as random, and

the inference method we develop does not require any spe-

cific choice of {zj}mj=1. However, to ensure that there is

a reasonable variability in the values of k(xi, zj), these

points should be placed in the high density regions of P.

The simplest approach is to use a small held out portion of

the data (with m ≪ n but m ≥ D). Now, when we eval-

uate µ̂θ at these points, our modelling assumption from (5)

on vector µ̂θ(z) = [µ̂θ(z1), . . . , µ̂θ(zm)] can be written as

µ̂θ(z)|µθ ∼ N
(
µθ(z),

τ2

n
Im

)
. (10)

However, as µ̂θ(zj) =
1
n

∑n
i=1 kθ(Xi, zj) and all the terms

kθ(Xi, zj) are independent given µθ, by Cramér’s decom-

position theorem, this modelling assumption is for the map-

ping φz : RD 7→ R
m, given by

φz(x) := [kθ(x, z1), . . . , kθ(x, zm)] ∈ R
m,

equivalent to:

φz(Xi)|µθ ∼ N
(
µθ(z), τ

2Im
)
. (11)

Applying the change of variable x 7→ φz(x) and using

the generalization of the change-of-variables formula to

non-square Jacobian matrices as described in (Ben-Israel,

1999), we obtain a distribution for x conditionally on µθ

and θ:

p(x|µθ, θ) = p (φz(x)|µθ(z)) vol [Jθ(x)] , (12)

where Jθ(x) =
[
∂kθ(x,zi)

∂x(j)

]
ij

is an m × D matrix,

and

vol [Jθ(x)] =
(
det

[
Jθ(x)

⊤Jθ(x)
])1/2

=


det

[
m∑

l=1

∂kθ(x, zl)

∂x(i)

∂kθ(x, zl)

∂x(j)

]

ij




1/2

=: γθ(x) . (13)

The notation γθ(x) highlights the dependence on both θ
and x. An explicit calculation of γθ(x) for squared expo-

nential kernels is described in Section 4.4.

By the conditional independence of {φz(Xi)}ni=1 given

µθ, we obtain the pseudolikelihood of all n observa-

tions:

p(x1, . . . , xn|µθ, θ) =

n∏

i=1

N
(
φz(xi);µθ(z), τ

2Im
)
γθ(xi)

= N
(
φz(x);mθ(z), τ

2Imn

) n∏

i=1

γθ(xi), (14)

where

φz(x) =
[
φz(x1)

⊤ · · ·φz(xn)
⊤
]⊤

= vec {Kθ,zx} ∈ R
mn

and in the mean vector mθ(z) =
[
µθ(z)

⊤ · · ·µθ(z)
⊤
]⊤

,

µθ(z) repeats n times. Under the prior (3), this mean vector

has mean 0 and covariance 1n1
⊤
n ⊗ Rθ,zz where Rθ,zz is

the m×m matrix such that its (i, j)-th element is rθ(zi, zj).
Combining this prior and the pseudolikelihood in (14), we

have the marginal pseudolikelihood:

p(x1, . . . , xn|θ) =
∫

p(x1, . . . , xn|µθ, θ)p(µθ|θ)dµθ

=

∫
N

(
φz(x);mθ(z), τ

2Imn

)
[

n∏

i=1

γθ(xi)

]
p(µθ|θ)dµθ

= N
(
φz(x);0,1n1

⊤
n ⊗Rθ,zz + τ2Imn

) n∏

i=1

γθ(xi).

(15)

While the marginal pseudolikelihood in Eq. (15) involves

a computation of the likelihood for an mn-dimensional

normal distribution, the Kronecker structure of the covari-

ance matrix allows efficient computation as described in

Appendix A.4. The complexity for calculating this like-

lihood is O(m3 + mn) (dominated by the inversion of

Rθ,zz + (τ2/n)Im). The Jacobian term depends on the

parametric form of kθ, but a typical cost as shown in Sec-

tion 4.4 for the squared exponential kernel is O(nD3 +
nmD2). In this case, the computation of matrices Rθ,zz

and φz(x) = vec {Kθ,zx} is O(m2D) and O(mnD) re-

spectively.

Just as in GP modeling, the marginal pseudolikelihood can

be maximized directly for maximum likelihood II (also

known as empirical Bayes) estimation, in which we look

for a single best θ̂, or it can be used to construct an efficient

MCMC sampler from the posterior of θ.

4.4 EXPLICIT CALCULATIONS FOR SQUARED

EXPONENTIAL (RBF) KERNEL

Consider the isotropic squared exponential kernel with

lengthscale matrix θ2ID defined by

kθ(x, y) = exp(−.5(x− y)⊤θ−2ID(x− y)). (16)



In this case, we can analytically calculate rθ(x, y), exact

form is given in the Appendix in Section A.3.

The partial derivatives of kθ(x, y) with respect to x(i) for

i = 1, . . . D can be easily derived as

∂kθ(x, y)

∂x(i)
= kθ(x, y)

x(i) − y(i)

θ2

and therefore the Jacobian from Eq. (13) is equal to

γθ(x) =


det

[
m∑

l=1

kθ(x, zl)
2 (x(i) − z

(j)
l )2

θ4

]

ij




1/2

.

(17)

The computation of the matrix is O(mD2) and the determi-

nant is O(D3). Since we must calculate γθ(xi) for each xi,

the overall time complexity is O(nD3 + nmD2).

5 EXPERIMENTS

We demonstrate our approach on two synthetic datasets and

one example on real data, focusing on two-sample test-

ing with MMD and independence testing with HSIC. First,

we use our Bayesian Kernel Embedding model and learn

the kernel hyperparameters with maximum likelihood II,

optimizing the marginal likelihood. Second, we take a

fully Bayesian approach to inference and learning with our

model. Finally, we apply the PC algorithm for causal struc-

ture discovery to a real dataset. The PC algorithm relies

on a series of independence tests; we use HSIC with the

lengthscales set with Bayesian Kernel Learning.

Choosing lengthscales with the median heuristic is often a

very bad idea. In the case of two sample testing, Gretton

et al. (2012b) showed that MMD with the median heuristic

failed to reject the null hypothesis when comparing sam-

ples from a grid of isotropic Gaussians to samples from a

grid of non-isotropic Gaussians. We repeated this exper-

iment by considering a distribution P of a mixture of bi-

variate Gaussians centered on a grid with diagonal covari-

ance and unit variance and a distribution Q of a mixture

of bivariate Gaussians centered at the same locations but

with rotated covariance matrices with a ratio ǫ of largest to

smallest covariance eigenvalues.

As illustrated in Figures 2(A) and (B), for small values of

ǫ both distributions are very similar whereas the distinction

between P and Q becomes more apparent as ǫ increases.

For different values of ǫ, we sample 100 observations from

each mixture component, yielding 900 observations from

P and 900 observations from Q and then perform a two-

sample test (H0 : P = Q vs. H1 : P 6= Q) using the MMD

empirical estimate with an isotropic squared exponential

kernel with one hyperparameter, the lengthscale. The type

II error (i.e. probability that the test fails to reject the null

hypothesis that P = Q at α = 0.05) is shown in Figure

2(C) for differently skewed covariances (ǫ from 0.5 to 15)

when the median heuristic is chosen to select the kernel

lengthscale or when using the Bayesian Kernel Learning.

In this example, the median heuristic picks a kernel with a

large lengthscale, since the median distance between points

is large. With this large lengthscale MMD always fails to

reject at α = 0.05 even for simple cases where ǫ is large.

When we use Bayesian Kernel Learning and optimize the

marginal likelihood of Eq. (15) for τ2 = 1 (our results

were not sensitive to the choice of this parameter, but in

the fully Bayesian case below we show that we can learn

it) we found the maximum marginal likelihood at a length-

scale of 0.85. With this choice of lengthscale, MMD cor-

rectly rejects the null hypothesis at α = 0.05 even for very

hard situations when ǫ = 2. We observe that when ǫ is

smaller than 2, the type II error of MMD is very high for

both choices of lengthscale, because the two distributions P

and Q are so similar that the test always retains the null hy-

pothesis. In Figure 2(D) we illustrate the BKL marginal

likelihood across a range of lengthscales. Interestingly,

there are multiple local optima and the median heuristic

lies between the two main modes. The plot indicates that

multiple scales may be of interest for this dataset, which

makes sense given that the true data generating process is

a mixture model. This insight can be incorporated into the

Bayesian Kernel Embedding framework by expanding our

model, as discussed below. In Figure 2(E) we used the BKE

posterior to estimate the witness function µP,θ−µQ,θ. This

function is large in magnitude in the locations where the

two distributions differ. For ease of visualization we do not

try to include posterior uncertainty intervals, but these are

readily available from our model, and we show them for a

1-dimensional case below.

Our model does not just provide a better way of choos-

ing lengthscales. We can also use it in a fully Bayesian

context, where we place priors over the hyperparameters

θ and τ2, and then integrate them out to learn a posterior

distribution over the mean embedding. Switching to one

dimension, we consider a distribution P = N (0, 1) and a

distribution Q = Laplace(0,
√
.5). The densities are shown

in Figure 3(A). Notice that the first two moments of these

distributions are equal. To create a synthetic dataset we

sampled n observations from each distribution, and then

combined them together into a sample of size 2n, follow-

ing the strategy in the previous experiment to learn a sin-

gle lengthscale and kernel mean embedding for the com-

bined dataset. We ran a Hamiltonian Monte Carlo sampler

(HMC) with NUTS (Stan source code is in the Appendix in

Section B) for the Bayesian Kernel Embedding model with

a squared exponential kernel, placing a Gamma(1, 1) prior

on the lengthscale θ of the kernel and a Gamma(1, 1) prior

on τ2. We ran 4 chains for 400 iterations, discarding 200

iterations as warmup, with the chains starting at different

random initial values. Standard convergence and mixing
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Figure 2: Two sample testing on a challenging simulated data set: comparing samples from a grid of isotropic Gaussians

(black dots) to samples from a grid of non-isotropic Gaussians (red dots) with a ratio ǫ of largest to smallest covariance

eigenvalues. Panels (A) and (B) illustrate such samples for two values of ǫ. (C) Type II error as a function of ǫ for significant

level α = 0.05 following the median heuristic or the BKL approach to choose the lengthscale. (D) BKL marginal log-

likelihood across a range of lengthscales. It is maximised for a lengthscale of 0.85 whereas the median heuristic suggests

a value of 20. (E) Witness function for the difficult case where ǫ = 2 using the BKL lengthscale.

diagnostics were good (R̂ ≈ 1), so we considered the re-

sult to be 800 draws from the posterior distribution. Recall

that for fixed hyperparameters θ and τ2 we can obtain a

posterior distribution over µP,θ and µQ,θ. For each of our

800 draws, we drew a sample from these two distributions

and then calculated the witness function as the difference,

thus obtaining a random function drawn from the posterior

distribution over µP,θ − µQ,θ (where in practice we eval-

uate this function at a fine grid for plotting purposes). We

thus obtained the full posterior distribution over the wit-

ness function, integrating over the kernel hyperparameter.

We followed this procedure twice to create a dataset with

n = 50 and a dataset with n = 400. In Figure 3(B) we see

that the witness function for the small dataset is not able to

distinguish between the distributions as it rarely excludes 0.

(Note that our model has the function 0 as its prior, which

corresponds to the null hypothesis that the two distributions

are equal. This could easily be changed to incorporate any

relevant prior information.). As shown in Figure 3(C), with

more data the witness function is able to distinguish be-

tween the two distributions, mostly excluding 0.

Finally, we consider the ozone dataset analyzed in Breiman

and Friedman (1985), consisting of daily measurements of

ozone concentration and eight related meteorological vari-

ables. Following the approach in Flaxman et al. (2015), we

first pre-whiten the data to control for underlying tempo-

ral autocorrelation, then we use a combination of Gaussian

process regression followed by HSIC to test for conditional

independence. Each time we run HSIC, we set the ker-

nel hyperparameters using Bayesian Kernel Learning. The

graphical model that we learn is shown in Figure 4. The

directed edge from the temperature variable to ozone is en-

couraging, as higher temperatures favor ozone formation

through a variety of chemical processes which are not rep-

resented by variables in this dataset (Bloomer et al., 2009;

Sillman, 1999). Note that this edge was not present in the

graphical model in Flaxman et al. (2015) in which the me-

dian heuristic was used.

6 DISCUSSION

We developed a framework for Bayesian learning of ker-

nel embeddings of probability measures. It is primarily

designed for unsupervised settings, and in particular for

kernel-based hypothesis testing. In these settings, one re-

lies critically on a good choice of kernel and our framework

yields a new method, termed Bayesian Kernel Learning, to

inform this choice. We only explored learning the length-

scale of the squared exponential kernel, but our method ex-

tends to the case of richer kernels with more hyperparame-

ters. We conceive of Bayesian Kernel Learning as a drop-

in replacement for selecting the kernel hyperparameters in

settings where cross-validation is unavailable. A sampling-

based Bayesian approach is also demonstrated, enabling in-

tegration over kernel hyperparameters, and e.g., obtaining
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Figure 3: The true data generating process is shown in (A)

where two samples of size n are drawn from distributions

with equal means and variances. We then fit our Bayesian

Kernel Embedding model, with priors over the hyperpa-

rameters θ and τ2 to obtain a posterior over the witness

function for two-sampling testing. The witness function

indicates the model’s posterior estimates of where the two

distributions differ (when the witness function is zero, it in-

dicates no difference between the distributions). Posterior

means and 80% uncertainty intervals are shown. In (B) the

small sample size means that the model does not effectively

distinguish between samples from a normal and a Laplace

distribution, while in (C) larger samples enable the model

to find a clear difference, with much of the uncertainty en-

velope excluding 0.

the full posterior distribution over the witness function in

two-sample testing.

While our method is designed for unsupervised settings,

there are various reasons it might be helpful in supervised

settings or in applied Bayesian modelling more generally.

With the rise of large-scale kernel methods, it has become

possible to apply, e.g. SVMs or GPs to very large datasets.

Ozone

Temp InvHt

Pres

Vis Hgt

Hum InvTmp

Wind

Figure 4: Graphical model representing an equivalence

class of DAGs for the Ozone dataset from Breiman and

Friedman (1985), learned using the PC algorithm follow-

ing the approach in Flaxman et al. (2015) with HSIC to test

for independence. We used BKL to set hyperparameters of

HSIC. Singly directed edges represent causal links, while

bidirected edges represent edges that the algorithm failed

to orient. The causal edge from temperature to ozone ac-

cords with scientific understanding, and was not present in

the graphical model learned in Flaxman et al. (2015) which

employed the median heuristic.

But even with efficient methods, it can be very costly to

run cross-validation over a large space of hyperparameters.

In practice, when, e.g. large scale approximations based

on random Fourier features (Rahimi and Recht, 2007) are

used, we have not seen much attention paid to kernel learn-

ing – the features are often just one part of a complicated

pipeline, so again the median heuristic is often employed.

For these reasons, we think that the developed method for

Bayesian Kernel Learning would be a judicious alterna-

tive. Moreover, it would be straightforward to develop scal-

able approximate versions of Bayesian Kernel Learning it-

self.
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