
Markov Beta Processes for Time Evolving Dictionary Learning

Amar Shah
Machine Learning Group
University of Cambridge

as793@cam.ac.uk

Zoubin Ghahramani
Machine Learning Group
University of Cambridge
zoubin@eng.cam.ac.uk

Abstract

We develop Markov beta processes (MBP) as
a model suitable for data which can be rep-
resented by a sparse set of latent features
which evolve over time. Most time evolv-
ing nonparametric latent feature models in
the literature vary feature usage, but main-
tain a constant set of features over time. We
show that being able to model features which
themselves evolve over time results in the
MBP outperforming other beta process based
models. Our construction utilizes Poisson
process operations, which leave each trans-
formed beta process marginally beta process
distributed. This allows one to analytically
marginalize out latent beta processes, ex-
ploiting conjugacy when we couple them with
Bernoulli processes, leading to a surprisingly
elegant Gibbs MCMC scheme considering the
expressiveness of the prior. We apply the
model to the task of denoising and interpolat-
ing noisy image sequences and in predicting
time evolving gene expression data, demon-
strating superior performance to other beta
process based methods.

1 INTRODUCTION

Latent variable models provide an intuitive way
to study the structure of observed data. Pioneer-
ing examples of latent variable models are factor
analyzers [Bartholomew, 1987] and finite mixture
models [MacLachan and Peel, 2000]. Nonparametric
Bayesian priors provide an elegant solution to the
problem of inferring the number of latent features
by sampling over latent feature representations with
varying number of features a posteriori.

Griffiths and Ghahramani [2011] develop the In-

dian buffet process (IBP), a stochastic process on
features which can be thought of as a factorial analog
of the Chinese restaurant process. The IBP is a non-
parametric Bayesian prior on binary matrices with an
unbounded number of columns, which is exchangeable
over the customers (or rows). The underlying measure
which results in this exchangeability is of particular
interest. Thibaux and Jordan [2007] show that
the beta process is the underlying de Finetti mixing
distribution which generates the Indian buffet process.

The beta process (BP) can be drawn as a Pois-
son process (with a particular Lévy measure), which
opens many doors since Poisson processes have been
studied in great depth [Kingman, 1993]. In particular,
there exist operations which one can apply to a
Poisson process draw such that the resultant object
remains a draw from a Poisson process marginally.
This construction has been exploited by Lin et al.
[2010] and Chen et al. [2012] to develop dependent
Dirichlet processes and dependent normalized random
measures more generally.

In this work we apply Poisson process preserv-
ing operations to construct a Markov chain of beta
processes. Each beta process is then used as a base
measure for a sequence of Bernoulli process draws.
Sampling an entire beta process at each ‘time’ step
seems like a daunting task, however, the elegant
consequence of the Poisson process preserving opera-
tions is that each beta process in the chain actually
is marginally a draw from a beta process with an
evolved form of base measure. This fact along with
the conjugacy of the beta and Bernoulli processes
permits us to marginalize over the entire chain of beta
processes analytically.

Whilst previous attempts have been made to encode
dependencies between feature usage i.e. between the
binary matrices over multiple time steps [Williamson
et al., 2010, Foulds et al., 2011], very little work has

been done on making features themselves evolve over
time. Not only is our model capable of modeling a
vast array of Markov dependencies amongst features,
it permits an elegant Gibbs based inference algorithm
which is efficiently able to learn structure amongst
data. A key insight is that our model permits the
analytic integration of a Dirichlet process used to
model the time evolving features, and the entire
Markov beta process chain. We believe that this is
the first instance of dependent beta process work
where such analytic integration is possible.

We utilize a Markov chain of beta processes for
image denoising and inpainting tasks as well as
for modeling time evolving gene expression data.
Sparse methods have been successfully used for image
analysis and gene data modeling. Our model, a
natural extension of the beta Bernoulli model for
time-evolving datasets, often outperforms other beta
process based models on the tasks we consider.

2 BETA AND BERNOULLI
PROCESSES

In this section, we review the beta, Bernoulli and
Indian buffet processes following Thibaux and Jordan
[2007], and proceed to discuss Poisson process prop-
erties Kingman [1993].

A beta process B ∼ BP(c,B0) is a positive ran-
dom measure on a space Ω, where c is a positive
function on Ω, and B0 is a fixed measure on Ω,
called the base measure. In our work, we assume c is
constant. When B0 is continuous, then a draw B can
be represented as B =

∑∞
k=1 pkωk, where ωk are i.i.d.

draws from B/B(Ω) and pk are independent draws
from a degenerate beta distribution with parameter
c. If B0 is discrete of the form B0 =

∑
k qkδωk , then

B =
∑
k pkδωk , with pk ∼ Beta(cqk, c(1 − qk)) inde-

pendently. When B0 is mixed discrete-continuous, B
is generated as the sum of independent contributions
from the discrete and continuous parts.

We now consider a draw X ∼ BeP(B) from a
Bernoulli process, for measure B on Ω. If B is contin-
uous, then X =

∑K
k=1 δωk , where K ∼ Poisson(B(Ω)),

and ωk are i.i.d. draws from B/B(Ω). If B is discrete
and of the form B =

∑
k pkδωk , then X =

∑
k bkδωk ,

where the bk ∼ Bernoulli(pk) independently.

Now consider the generative process B ∼ BP(c,B0)
and Xi|B ∼ BeP(B), for i = 1, ..., n. The posterior

distribution of B is

B|{Xi}i=1:n ∼ BP
(
c+ n,

c

c+ n
B0 +

1

c+ n

n∑
i=1

Xi

)
.

The BP is the conjugate prior for BeP and we can
therefore integrate out B analytically when we con-
sider sequential draws from the beta Bernoulli process

Xn+1|{Xi}i=1:n ∼ BeP
(c

c+ n
B0 +

1

c+ n

n∑
i=1

Xi

)
.

Note that 1
c+n

∑n
i=1Xi ≡

∑
k
mn,k
c+n δωk , where ωk

represent the unique atoms selected by the first n
data points and mn,k represents how many of the
first n data points selected the kth atom. Note that
Xn+1|{Xi}i=1:n is sampled from the sum of two
contributions: one from BeP(c

c+nB0) and the other

from BeP(1
c+n

∑n
i=1Xi). This sampling process is

equivalent to that of the Indian buffet process prior
[Griffiths and Ghahramani, 2011].

When B0 is a non-atomic measure, a draw from
a beta process B ∼ BP(c,B0) is equivalent to a
Poisson process (PP) draw with base measure ν,
where

ν(dω, dp) = cp−1(1− p)c−1dpB0(dω). (1)

The Poisson process draw will consist of points of the
form (ωk, pk) ∈ [0, 1] × Ω, which should be used to
define B =

∑
k pkδωk . Poisson process preserving op-

erations are operations one can apply to a draw from a
Poisson process such that the resultant draw remains
marginally a draw from a Poisson process, with a mod-
ified base measure. We utilize such operations to con-
struct dependent beta process, in particular, we con-
sider subsampling, point transition and superposition.
See Kingman [1993] for a review of Poisson process
properties.

3 MARKOV BETA PROCESSES

3.1 CONSTRUCTION

Given a draw from a beta process, we construct a re-
lated beta process by 1) partitioning atoms into clus-
ters, 2) applying stochastic transformations to atoms
in each cluster and 3) recombining all the atoms to
give a new atomic base measure. We shall show that
the transformed beta process draw is marginally a beta
process, by applying the theory of Poisson processes.

Definition 1. A probabilistic transition function is a
function T : Ω→ R+, such that for each ω ∈ Ω, T (ω)

is a probability measure on Ω. A measure, µ, over Ω
is transformed by T to give measure T [µ], defined as

(T [µ])(A) :=

∫
Ω

T (ω)(A)µ(dω). (2)

for each measurable A ⊆ Ω. We denote a sample from
T (ω) as T (ω).

Our approach is to consider parameteric probabilistic
transition functions, T θ, for parameters θ from
some measurable parameter space Θ. An example
of a probabilistic transition function is a Gaussian
probability density function e.g. T θ(ω) = N (ω; 0, θ).

In order to partition the set of atoms and de-
cide how they should be transitioned, we use a draw
from a Dirichlet process, D =

∑
j λjδθj ∼ DP(α,H),

for a DP concentration parameter α and a base
measure, H, on Θ. The λj are non-negative and
sum to 1. We define the probabilistic transition
T D =

∑
j λjT θj , which we can think of as a convex

combination of probabilistic transition functions. The
probabilities, λj , are used to define a multinomial
distribution which is used to decide to which cluster
each atom would be assigned to. Once clustered,
atoms in cluster j are transitioned using T θj .

Let B0 be a base measure on Ω, and
B1 =

∑
k qkδωk ∼ BP(c,B0). For each k, sam-

ple uk ∼ Mult(1,λ), and Tθuk (ωk) ∼ T θuk
(ωk).

Finally, set B1 =
∑
k qkδTθuk (ωk). We prove that

marginally, B1 is a draw from a beta process.

Lemma 2. If B1 is constructed as above, then
marginally, B1 ∼ BP(c,T ∗[B0]) for measure T ∗[B0]
defined such that for A ⊆ Ω, T ∗[B0](A) ≡∫

(T D[B0])(A)DP(D;α,H)dD

Proof. The distribution of qk remain unchanged. Also
T D[B0](Ω) =

∑
j λjT θj [B0](Ω) = B0(Ω). Integrat-

ing over D and sk, the new location of atom k is
marginally distributed as T ∗[B0]/B0(Ω). Hence B1

is a PP draw with base measure ν̃(dω, dp) = cp−1(1−
p)c−1dpT ∗[B0](dω), making it marginally a beta pro-
cess draw.

Whilst we have not explicitly invoked theorems
regarding Poisson preserving operations, they provide
some intuition as to why the transformed beta
processes are marginally beta process draws. The
operation of clustering the atoms of the original beta
process is analogous to the Poisson process operation
of subsampling. A subsampled Poisson process is
marginally a Poisson process. Point transition is a
Poisson process preserving operation, as is the super-
position of Poisson process draws. The composition of

these three Poisson preserving operations accurately
describes the nature of our construction of dependent
beta processes. An illustration of the formulation is
seen in Figure 1.

Note that the Dirichlet process prior can be re-
placed with other priors without affecting the proof.
We choose a DP in our experiments for its modeling
flexibility.

Repeating the above approach to construct
B2, B3, ... results in a Markov chain of beta pro-
cesses. Define T t

D[B0] to be the measure resulting
in applying T D t times to measure B0. Then
marginally, Bt ∼ BP(c,T t

∗[B0]), where for A ⊆ Ω,
T t
∗[B0](A) =

∫
(T t

D[B0])(A)DP(D;α,H)dD. Hence-
forth we refer to our construction of dependent beta
processes as Markov beta processes. When B1, ..., BT
is a draw from a Markov beta process, we write
B1, ..., BT ,u1, ...,uT |D ∼ MBP(c,B0,D,T , T).

To the best of out knowledge, our construction
of dependent beta processes is the first to leave each
transformed beta process marginally a beta process
draw. Most existing models all keep features (atoms)
constant but vary the feature probabilities qk over
time or space. We discuss the related models in the
next subsection.

3.2 RELATED DEPENDENT BETA
PROCESS CONSTRUCTIONS

In our construction of Markov dependent beta pro-
cesses, the atom locations evolve over time, whilst the
atom weights remain constant. This is in contrast to
the majority of existing constructions of dependent
beta processes. Existing research has tended to focus
on maintaining a time invariant set of atoms, whilst
varying the weights.

The Markov IBP introduced by Van Gael et al.
[2008] is a model where features remain constant
over time, but feature allocations follow a Markov
chain on the space {0, 1} (1 indicates presence of
a feature and 0 indicates absence). The transition
matrix governing the chain also remains constant over
time, suggesting that the Markov IBP would be unfit
to model non-stationary data. Most importantly,
this model does not have the ability to jointly model
multiple related time series unlike the model we
propose in this work. The authors propose several
inference schemes for the Markov IBP, but comment
that adequate performance is only observed with
more complicated algorithms.

Foulds et al. [2011] use a similar idea to the Markov

Figure 1: Example illustrating how Bt+1 is constructed from Bt. First the atoms are partitioned or clustered
into, in this case, 3 clusters. Next, atoms undergo probabilistic point transition based on the cluster they belong
to. Finally atoms are superimposed to create Bt+1.

IBP for modeling time evolving social networks.
Their DRIFT model incorporates a Markov process
to decide whether or not features are present at each
time step whilst maintaining constant features over
time. Unlike the Markov IBP, DRIFT is able to
model an arbitrary number of items.

Williamson et al. [2010] construct dependent IBPs
using Gaussian process draws and the stick breaking
construction of the IBP [Teh et al., 2007] to introduce
dependencies between customers for each feature
as well as temporal dependencies. The dIBP has
high flexibility due to the nonparametric temporal
dependence structure, but this comes with a high
computational cost. Features also remain constant
over time in the dIBP model, unlike in our MBP
model.

The kernel beta process [Ren et al., 2011] is a
generalization of the beta process and has the form
Bx =

∑
k πkK(x, x∗|ψ)δωk , where x belongs to a

covariate space X and K is a kernel function on
X × X taking values in [0, 1] for parameters x∗ and
ψ. The use of the kernel allows weights to vary over
a covariate space, whilst the atom locations remain
fixed.

The dependent hierarchical beta process Zhou
et al. [2011] is constructed as a convex combination
of i.i.d. draws from a hierarchical beta process. The
convex weights are made to depend on a kernel over
a covariate space. More specifically, a kernel function
is defined between the covariates (each data point has
one covariate), inducing correlation of feature usage
between data points. The covariate being used is the
location of the patch within the entire image, the idea
being that neighbouring patches are more likely to use

similar dictionary elements for image denoising and
interpolation. The way it has been constructed by
the authors, it would not explicitly be able to model
temporal structure amongst image sequences.

3.3 COLLAPSED GIBBS SAMPLER

None of the models discussed above result in simple
marginal distributions, and consequently each use an
uncollapsed Gibbs sampler to perform posterior infer-
ence. Nonparametric Bayesian priors are usually easy
to sample from, but posterior inference is typically
difficult because of the flexibility of the models and
the presence of poor local optima in the posterior
conditional distributions of the latent variables.
Whilst an uncollapsed Gibbs sampler algorithms are
usually easy to implement, they are prone to get stuck
in poor modes and converge much more slowly than
collapsed samplers [Doshi-Velez and Ghahramani,
2009]. In our Markov beta processes, having marginal
beta process distributions permits a marginalized
posterior sampler which has a better chance of mixing
well and has an elegant restaurant analogy.

At each time step, t, we draw xit|Bt ∼ BeP(Bt)
iid for i = 1, ..., nt. Let Xt ≡ {xit}

nt
i=1. We show how

to sample each xit marginalizing out the Markov beta
process chain in the following lemma and corollary.
For t > 1, we let ωjt denote a sample from (a)
T D(ωjt−1) if j ≤ kt−1, or (b) T t−1

D [B0]/B0(Ω) if
j > kt−1.

Lemma 3. For ct = c+
∑t
s=1 ns,

Bt|D, B0, X1:t ∼ BP

(
ct,

c

ct
T t−1

D [B0] +

kt∑
j=1

mj
t

ct
δωjt

)

Proof. We prove the claim by induction. Note that

B1|D, B0 ∼ BP(c,T D[B0]) by Lemma 2. By conju-
gacy of the beta and Bernoulli processes, we then have

B1|D, B0, X1 ∼ BP
(
c1,

c
c1
T D[B0] +

∑k1
j=1

mj1
c1
δωj1

)
.

Now let t > 1. By induction and Lemma

2, Bt|D, B0, X1:t−1 ∼ BP
(
ct−1,

c
ct−1

T t−1
D [B0] +∑kt−1

j=1

mjt−1

ct−1
δωjt

)
. The final result follows from the con-

jugacy of the beta and Bernoulli processes.

Corollary 4.

xnt+1
t |D, B0, X1:t ∼ BeP

(
c

ct
T t−1

D [B0] +

kt∑
j=1

mj
t

ct
δωjt

)

Proof. Since xnt+1
t |Bt ∼ BeP(Bt) and

p(x◦t |D, B0, X1:t) =
∫
p(x◦t |Bt)p(Bt|D, B0, X1:t)dBt,

the result follows from conjugacy and Lemma 3.

The result in Corollary 4 motivates a sampling scheme
with a restaurant analogy similar to the one developed
for the Indian buffet process [Griffiths and Ghahra-
mani, 2011]. On day t = 1, customer i1 = 1 tastes
a number of dishes sampled from Poisson(cB0(Ω)).
He tries dishes in Ω sampled independently from
probability measure B0/B0(Ω). Suppose i1 > 1 and
let mj be the number of people who have tasted
the jth dish so far. Customer i1 tries each of the

existing dishes independently with probability mj

c+i1−1 ,

and samples Poisson
(

c
c+i1−1B0(Ω)

)
new dishes. On

a new day, t > 1, each dish from the previous day
evolves stochastically using the probabilistic transition
function T D. Customer it tries each existing dish

with independent probability mj

ct−1+it−1 , and samples

Poisson
(

c
ct−1+it−1B0(Ω)

)
new dishes independently

from T t−1
D [B0]/B0(Ω).

As is the case for the IBP, dishes which are
popular are more likely to be tried over time. The
key difference in our Markov beta process framework,
is that the dishes evolve stochastically over time,
and the base distribution from which new dishes are
drawn also evolves stochastically over time.

4 TIME EVOLVING DICTIONARY
LEARNING

In this section we illustrate how a draw from a Markov
beta process prior may be used to perform time evolv-
ing dictionary learning. Each ωk ∈ Ω which appears in
a beta process draw is a dictionary element, with each
associated qk being the probability that a data point
uses ωk. We consider the case Ω = RP , and refer to
dictionary element k at time t as a column vector, dkt .

The entire dictionary at time t is a matrix denoted
Dt ≡ [d1

t , ...,d
kt
t] ∈ RP×kt . We may model datapoint

i at time t, xit, as

xit = Dt(s
i
t ◦ zit) + εit, (3)

where ◦ represents the Hadamard product, sit, ε
i
t ∈ Rkt

and zit ∈ {0, 1}kt . zikt represents whether or not xit
uses dictionary element k and is a draw from
Bernoulli(qk). sikt determines how much of dictionary
element k to use and εit is simply additive noise.

A natural probabilistic transition function in the
case Ω = RP , is a Gaussian distribution. We set
Θ = RP+ and define T θ(d) to be a multivariate
Gaussian probability density function with mean d
and diagonal covariance matrix with diagonal θ−1.

We can generate data from t = 1, ..., T , k = 1, ..., kt
and i = 1, ..., nt as follows,

D =
∑
j

λjδθj ∼ DP(α,H), (4)

D1, ...,DT , q,u1, ...,uT−1|D ∼ MBP(c,B0,D,T , T),

zikt |qk ∼ Bernoulli(qk),

sikt ∼ N (0, γ−1
s)

xit|Dt, s
i
t, z

i
t ∼ N

(
Dt(s

i
t ◦ zit), γ−1

ε IP
)
,

where H is a measure on Θ = RP+ which is the prod-
uct of P Gamma measures of the form Gamma(1, P)
on each component and B0 is a multivariate Gaussian
measure of the form N

(
0, 1

P I
)
. We place Gamma pri-

ors on γs and γε.

4.1 INFERENCE

We train the model based on a collapsed Gibbs
based MCMC scheme, where the probabilities qk are
marginalized out. The update equations are summa-
rized below.

Update Dt. The posterior density for dkt is

p(dkt |−) ∼ exp
(
− 1

2

P∑
p=1

θukt−1,p

(
dkt,p − dkt−1,p

)2
− 1

2

P∑
p=1

θukt ,p
(
dkt+1 − dkt

)2
− γε

2

N∑
i=1

∥∥ψi,−kt − dkt (si,kt zi,kt)
∥∥2
)

where ψi,−kt = xit −
∑
k′ 6=k s

ik
t z

ik
t d

k
t .

Hence dkt |− ∼ N (φ,Φ), where

Φ =

(
diag

(
θukt−1

+ θukt

)
+ γε

∑
i:zi,kt =1

si,kt
2
)−1

IP

φ = Φ

(
diag

(
θukt−1

)
dkt−1 + diag

(
θukt

)
dkt+1

+ γε
∑

i:zi,kt =1

si,kt ψ
i,−k
t

)

Update ukt . The posterior density for ukt is

p(ukt = j|−) ∝ λj
P∏
p=1

[√
θj,p exp

(
− 1

2
θj,pδ

k
t,p

2
)]

where δkt,p =
(
dkt+1,p−dkt,p

)
, a multinomial distribution.

Update zi,kt . The posterior odds of zi,kt is

p(zi,kt = 1|−)

p(zi,kt = 0|−)
=

exp
(
− γε

2

∥∥ψi,−kt − si,kt d
k
t

∥∥2
)
πi,kt

exp
(
− γε

2

∥∥ψi,−kt

∥∥2
)

(1− πi,kt)
,

where

πi,kt =

∑T
s=1

∑ks
j=1 z

i,j
s − z

i,k
t

c+
∑T
s=1 ns − 1

.

Update si,kt . The posterior density for si,kt is

p(si,kt |−) ∝ exp
(
− γε

2

∥∥ψi,−kt − si,kt d
k
t

∥∥2 − γs
2
si,kt

2
)
,

hence si,kt ∼ N (ϕ, κ), where

κ =
(
γεd

k
t

>
dkt + γs

)−1

ϕ = κ
(
γεd

k
t

>
ψi,−kt

)
.

Update λ. The posterior distribution of λ is

p(λ|−) ∝
∏
j

λj
α+

∑T−1
s=t

∑ks
k=1 I[ukt=j]−1.

Update θj. The posterior distribution of θj is

p(θj |−) ∝ exp

(
− P

2
θj
>θj

− 1

2

T−1∑
t=1

kt∑
k=1

I[ukt = j]θj
>(δkt ◦ δkt)),

hence θj |− ∼ N
(
ςj ,

1
P I
)
, where

ςj =
1

2P

T−1∑
t=1

kt∑
k=1

I[ukt = j]
(
δkt ◦ δ

k
t

)
.

5 EXPERIMENTS

In this section we describe the findings of various ex-
periments we performed using Markov beta processes
to induce a chain of evolving latent features. We in-
vestigated two tasks, the problem of denoising and in-
painting a sequence of images and time evoloving gene
expression data. First we try to answer various ques-
tions with synthetic experiments.

5.1 SYNTHETIC EXPERIMENTS

A key quesion we set out to address in this work is
‘are Markov evolving features more useful for multi-
ple sequence modeling than Markov evolving feature
probabilities?’ When there are no clear task specific
reasons to choose one approach over the other, one
would want to choose the framework that is gener-
ally more reliable to make useful predictions. Set-
ting N = 500, D = 40,K = 50, we generated Synth-
MBP from the MBP prior, and Synth-DRIFT from
the DRIFT model. The MBP, DRIFT and BP models
were trained on these datasets with 10% of the points
randomly chosen and held out for prediction. Table
1 summarizes the test mean squared errors of predici-
tons of the three models.

We initialize features using random subsets of the
observable data and use a k-means initialization for
the clustering of the feature transitions for the MBP
model. The Z and S matrices are subsequently ini-
tialized with a linear least squares estimate given the
features. The same approach is used in all subsequent
experiments.

Both the MBP and DRIFT models outperform the
BP model, suggesting that each of them are able to
learn some level of temporal structure, as we would
have liked. However, it is interesting to see that
the MBP model’s outperformance versus the DRIFT
model on Synth-MBP is much larger than the DRIFT
model’s outperformance versus the MBP model on
Synth-DRIFT. The Dirichlet process transition pro-
cess between features appears to be responsible for the
MBP’s predictive power on the DRIFT-Synth data set.
We replaced the DP with a single Gaussian transition
function for all features, and found the mean squared
errors dropped to 2.04 and 2.11 on MBP-Synth and
DRIFT-Synth respectively.

The fact that we are able to utilize a flexible DP based
transition function using a collapsed Gibbs sampler
which mixes fast is key to the high performance of the
MBP model. Inference in models with complicated
dependencies between binary feature usage variables
is more difficult. Our MBP model is useful because of
the efficient Gibbs based sampler we are able to derive

t = 1 t = 2 t = 3 t = 4

1

(a) Synthetic data

t = 1 t = 2 t = 3 t = 4

1

(b) Time-evolving features learned by MBP

t = 1 t = 2

1

(c) DRIFT features

Figure 2: Synthetic image data experimental results. (a) Each row represents an image sequence used for the
synthetic image experiment. (b) Time-evolving features learned by the MBP model. (c) Stationary features
learned by the DRIFT model.

Table 1: Mean-squared error results of prediction on
synthetic datasets using MBP, DRIFT and BP models,
with standard deviation of multiple runs in brackets.

MBP DRIFT BP

Synth-MBP
1.03

(0.04)
2.16
(0.08)

2.84
(0.10)

Synth-DRIFT
1.66
(0.05)

1.37
(0.07)

2.45
(0.09)

for modeling expressive transitions between features.

5.2 IMAGE DENOISING AND
INPAINTING

Sequences of grayscale images were considered for this
task, but our method easily extends to color image se-
quences. The baseline model we compare our model to,
is the beta process model of Zhou et al. [2009], mod-
eling each image within the sequence independently.
We implement the Foulds et al. [2011] model to as-
sess the benefit of time-evolving feature usage ver-
sus time-evolving features and finally, we consider the
dHBP [Zhou et al., 2011], which is designed to ex-
ploit intra-image dependencies. Inference in the dIBP
[Williamson et al., 2010] unfortunately scales in N3

which is prohibitive for this task.

Consider a sequence of T images of size Qx ×Qy. We
model overlapping patches of size 8 × 8 as individual
data points, giving a total of N = (Qx− 7)× (Qy − 7)

data points, each with dimension D = 8. Whilst this
breaks the exchangeability assumption of the prior, we
benefit from model averaging, as each final pixel esti-
mate is in fact an average of the estimates of 64 patches
(except for near edge pixels).

Our first experiment involved synthetically generated
data of the form shown in Figure 2a. We formed
N = 500 sequences of images of size 12 × 12. In
each sequence, we observe shapes traverse left to right
in the top half of the images and other shapes tra-
verse right to left. We trained both the MBP and
the DRIFT models on this dataset using K = 75 fea-
tures. The MBP was able to learn interesting struc-
ture amongst features as can be seen in Figure 2b.
The model was able to identify the individual shapes
which traversed left and right across the image over
time. Since the DRIFT model uses a stationary set of
features, it tended to learn features as noisy composi-
tions of various data points 2c, not exhibiting the more
elegant structure we found amongst the MBP features.

Notice that the shapes in the synthetic sequences often
switch from frame to frame; squares become triangles,
crosses become squares, etc. The MBP model is ca-
pable of modeling these transitions because whilst fea-
ture probabilities are stationary, actual feature usage
between time points is conditionally independent given
the feature probabilies. (More succinctly, ztik ⊥⊥ zt

′

ik|πk
for t 6= t′.) On average, the DP transition function
of the MBP model used 16 clusters for the synthetic
image data. This was somewhat crucial in being able
to learn the time-evolving features we see in Figure 2b.

(a) (b) (c) (d)

Figure 3: Image sequence experiment on horse data. (a) Image 6 of the sequence. (b) Image with 50% of pixels
omitted at random with pixels corrupted with Gaussian noise. Zoomed reconstructions of (c) MBP and (d)
dHBP models.

We ran an experiment restricting the MBP model to
have a single transition function, and noticed that the
model learned features more similar to those learned
by the DRIFT model.

We test the methods on four black and white image
sequences: (i) 8 frames of size 241×241 of a lady riding
a horse in a field [Ochs et al., 2014], (ii) 8 frames of
size 192 × 256 with a set of mountains being panned
about a fixed axis [Porzi et al., 2014], (iii) 8 frames of
size 120× 216 of a rabbit leaping across a living room
[Ochs et al., 2014], and (iv) 10 frames of size 60 × 64
of a hand holding a bowl and rotating it [Wang, 1997].

Pixels in these datasets take integer values in [0, 255].
We added Gaussian noise with standard deviation 15
independently to each pixel. For each image sequence,
we sample a binary matrix, Σ, of size Qx ×Qy, where
each entry is an independent Bernoulli sample. Σ in-
dicates which pixels are used for training by each al-
gorithm for each image sequence. A typical evaluation
metric for image reconstruction is the peak signal-to-
noise ratio (PSNR), defined as

MSE =

T∑
t=1

Qx∑
qx=1

Qy∑
qy=1

(
Πt(qx, qy)− Π̂t(qx, qy)

)2

TQxQy

PSNR = 10 log10

(
2552

MSE

)
, (5)

where Πt is the original Qx ×Qy image at time t and

Π̂t is the estimate of this image. We allow the samplers
to burn-in for 2000 iterations, and then use 500 Gibbs
samples for predictions, using K = 250 features.

The experiments on each set of image sequences were
repeated using 20%, 30% and 50% of the pixels chosen
uniformly at random for training, the results are sum-
marized in Table 2. The MBP approach tends to out-
perform other methods consistently, in particular the
DRIFT model which does encode time evolving fea-

ture usage. The dHBP model, designed particularly
for the task of image denoising and inpainting does
well on most sequence tasks without modeling tempo-
ral dependencies, but on the whole does not perform
as well as the MBP. The MBP does not model the
intra-image dependencies, and we believe that com-
bining the temporal modeling of the MBP with the
intra-image dependencies of the dHBP would lead to
a highly sophisticated image sequence denoising and
inpainting framework. Since our focus in this paper is
on the MBP model and not the specific task of image
sequence analysis, we leave the combined model idea
to future work.

Figure 3 illustrates a situation where the dHBP per-
forms worse than the MBP. The dHBP model uses
patches which are close in Euclidean distances to use
similar sets of features. A consequence of this prop-
erty, is that the area of the image under the body of
the horse, appears to have a uniform color. This is
likely because the bottom section of the horse body
also has uniform color. Conversely the MBP model
is better able to learn features which are separate for
the horse body and the background grass, leading to
a clearer reconstruction. The tail in the dHBP recon-
struction also exhibits more smoothing and less detail
than that of the MBP.

5.3 GENE EXPRESSION DATA

Time-course gene expression data are often mea-
sured to study dynamic biological systems and gene-
regulatory networks. Vast amounts of biological data
are being collected as technology in the field advances.
This is a setting where the number of time points may
be small, but the dimension of the data is large (po-
tentially of the order of 10s of 1000s). Sparse methods
have been successful in modeling genetic data [Car-
valho et al., 2008, Knowles and Ghahramani, 2011],

Table 2: Results of gray-scale image sequence denois-
ing and interpolation (PSNR) for BP, dHBP, DRIFT
and MBP, using patch size 8 × 8, varying the ratio
of observed pixels. Image pixels have Gaussian white
noise (standard deviation 15).

Ratio Horse
Moun-
tains

Rabbit Hand

20%

BP 25.32 27.68 24.46 30.22

dHBP 26.21 28.91 25.43 31.58

DRIFT 26.04 28.23 24.85 30.74

MBP 26.81 29.09 25.61 31.62

30%

BP 26.58 28.85 25.52 31.43

dHBP 27.09 29.78 26.03 32.56

DRIFT 27.02 29.34 25.94 31.96

MBP 27.47 29.94 26.54 32.51

50%

BP 27.45 29.95 26.38 32.64

dHBP 28.09 30.55 26.84 33.28

DRIFT 28.14 30.50 26.82 33.19

MBP 28.38 30.66 26.92 33.22

and subsequently, using the MBP to model time-
evolving gene data seems an appropriate extension.
Comparisons between the MBP, DRIFT, BP and dIBP
models are made. We consider 2 datasets, discarding
2000 samples to allow the Markov chains to burn-in
and using the following 500 samples for prediction, and
using K = 500 features.

Yeast cell cycle Spellman et al. [1998] measured
the genome-wide mRNA levels for 6108 genes during
2 cell cycles over T = 17 time points. We consider
N = 2 strands, cdc15 and cdc28 and randomly pick
D = 1000 genes randomly from the ones which have
no missing data.

Transcriptome alterations in mice This dataset,
collected by Piechota et al. [2010], consists of readings
from 46632 proteins collected from mice brains under
the infuence of 1 of N = 8 types of drugs over T = 4
time points. We select a random subset of D = 1000
proteins for our experiments.

In each of the experiments we hold out 15% of the
data points uniformly at random for prediction. Re-
sults of the experiments on the 2 gene data sets are
summarized in Table 3. The dIBP performs best on
the yeast cell cycle data set, as the Gaussian process
draws controlling feature usage over time are best able
to pick up the periodic nature of the cell cycle sequence
data. However, the MBP is not far off the accuracy of
the dIBP here. The MBP outperforms other methods
on the mice transcriptome data set, which has fewer
time points. The DP in the MBP inference proce-

Table 3: Mean-squared error results of prediction on
gene datasets using MBP, DRIFT, BP and dIBP.

MBP DRIFT BP dIBP

Yeast 0.92 1.06 1.63 0.88
Mice 1.12 1.42 1.67 1.28

dure used an average of 82 transition functions after
burn-in. Note that the total number of transitions is
K × (T − 1) = 1500, and hence 82 clusters is per-
fectly reasonable. In the yeast cell cycle task, we have
K × (T − 1) = 8000 feature transitions, which is very
large, and illustrates to some extent the requirement
for highly flexible mixture model of transition func-
tions, such as the Dirichlet process mixture we employ.

6 CONCLUSIONS

In this work, we construct a Markov chain of beta
processes for use as a model for learning time evolving
sparse latent representations. Particularly we exploit
the property that the beta process is a type of Pois-
son process. This enables us to invoke well known
operations, which when applied to a Poisson process
draw keep the object marginally Poisson process dis-
tributed. Having marginal beta process objects cru-
cially allows us to develop a simple and fast mixing
Gibbs sampler. To illustrate the power of our model
and inference scheme, we considered image denoising
and inpainting tasks and gene expression data, show-
ing superior performance over other beta process re-
lated models. The high flexibility of our model leads to
a potential drawback when modelling long time series.
Inference may become prohibitively slow as the time
series are made longer, and to compromise, it may be
necessary to replace the DP based transition function
with a small fixed mixture of Gaussians.

Most machine learning problems involve constructing
an appropriate model and then developing an infer-
ence scheme to train the model and use it for predic-
tion. Whilst Bayesian nonparametrics make it simple
to write down a model, the inference often requires
a complicated and slow procedure which significantly
can reduce its applicability to real problems. We hope
is that our exploitation of Poisson process preserving
operations and conjugacy encourages further investi-
gation in how one can develop flexible nonparametric
Bayesian models which are amenable to elegant in-
ference techniques, by exploiting interesting and well
grounded mathematical concepts.

References

D. J. Bartholomew. The Foundations of Factor Anal-
ysis. Biometrika, 1987.

C. M. Carvalho, J. Chang, J. E. Lucas, J. R. Nevins,
Q. Wang, and M. West. High Dimensional Sparse
Factor Modeling: Applications in Gene Expression
Genomins. Journal of the American Statistical As-
sociation, 2008.

C. Chen, N. Ding, and W. Buntine. Dependent Hier-
archical Normalized Random Measures for Dynamic
Topic Modeling. Proceedings of the 29th Interna-
tional Conference on Machine Learning, 2012.

F. Doshi-Velez and Z. Ghahramani. Accelerated Sam-
pling for the Indian Buffet Process. Proceedings
of the 26th International Conference on Machine
Learning, 2009.

J. Foulds, C. DuBois, A. U. Asuncion, C. T. Butts, and
P. Smyth. A Dynamic Relational Infinite Feature
Model for Longitudinal Social Networks. Proceed-
ings of the 14th Conference on Artificial Intelligence
and Statistics, 2011.

T. Griffiths and Z. Ghahramani. The Indian Buffet
Process: An introduction and review. Journal of
Machine Learning Research, 12:1185–1224, 2011.

J. Kingman. Poisson Processes. Oxford University
Press, 1993.

D. Knowles and Z. Ghahramani. Nonparametric
Bayesian Sparse Factor Models with Application to
Gene Expression Modeling. The Annals of Applied
Statistics, 2011.

D. Lin, E. Grimson, and J. Fisher. Construction of De-
pendent Dirichlet Processes based on Poisson Pro-
cesses. Advances in Neural Information Processing
Systems, 2010.

G. MacLachan and D. Peel. Finite Mixture Models.
John Wiley & Sons, 2000.

P. Ochs, J. Malik, and T. Brox. Segmentation of mov-
ing objects by long term video analysis. IEEE Trans.
Pattern Analysis and Machine Intelligence, 2014.

M. Piechota, M. Korostynski, W. Solecki,
A. Gieryk, M. Slezak1, W. Bilecki, B. Ziolkowska,
E. Kostrzewa, I. Cymerman, L. Swiech, J. Jaworski,
and R. Przewlocki. The dissection of trancriptional
modules regulated by various drugs of abuse in the
mouse striatum. Genome Biology, 11:R48, 2010.

L. Porzi, S. R. Bulo, P. Valigi, O. Lanz, and E. Ricci.
Learning Contours for Automatic Annotations of
Mountains on a Smartphone. ACM/IEEE Intl. Con-
ference on Distributed Smart Cameras, 2014.

L. Ren, Y. Wang, D. Dunson, and L. Carin. The Ker-
nel Beta Process. Advances in Neural Information
Processing Systems, 2011.

P. Spellman, G. Sherlock, W. Q. Zhang, V. R. Iyer,
K. Anders, M. B. Eisen, P. O. Brown, D. Botstein,
and B. Futcher. Comprehensive identification of cell
cycle-regulated genes of the yeast Saccharomyces
cerevisiae by microarray hybridization. Mol. Biol.
Cell, 9:3273–3297, 1998.

Y. W. Teh, D. Görür, and Z. Ghahramani. Stick break-
ing construction for the Indian buffet process. Pro-
ceedings of the 11th Conference on Artificial Intelli-
gence and Statistics, 2007.

R. Thibaux and M. I. Jordan. Hierarchical Beta Pro-
cesses and the Indian Buffet Process. Proceedings
of the 11th Conference on Artificial Intelligence and
Statistics, 2007.

J. Van Gael, Y. W. Teh, and Z. Ghahramani. Infi-
nite Factorial Hidden Markov Model. Advances in
Neural Information Processing Systems, 2008.

C. C. Wang. Carnegie Mellon Image Database, 1997.
URL vasc.ri.cmu.edu/idb/.

S. Williamson, P. Orbanz, and Z. Ghahramani. Depen-
dent Indian Buffet Processes. Proceedings of the 13th
Conference on Artificial Intelligence and Statistics,
2010.

M. Zhou, H. Chen, J. Paisley, L. Ren, G. Sapiro,
and L. Carin. Non-Parametric Bayesian Dictionary
Learning for Sparse Image Representations. Ad-
vances in Neural Information Processing Systems,
2009.

M. Zhou, H. Yang, G. Sapiro, D. Dunson, and
L. Carin. Dependent Hierarchical Beta Process for
Image Interpolation and Denoising. Proceedings of
the 14th Conference on Artificial Intelligence and
Statistics, 2011.

vasc.ri.cmu.edu/idb/

	INTRODUCTION
	BETA AND BERNOULLI PROCESSES
	MARKOV BETA PROCESSES
	CONSTRUCTION
	RELATED DEPENDENT BETA PROCESS CONSTRUCTIONS
	COLLAPSED GIBBS SAMPLER

	TIME EVOLVING DICTIONARY LEARNING
	INFERENCE

	EXPERIMENTS
	SYNTHETIC EXPERIMENTS
	IMAGE DENOISING AND INPAINTING
	GENE EXPRESSION DATA

	CONCLUSIONS

