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Université d’Artois, France
koriche@cril.fr

Abstract

Online density estimation is the problem of
predicting a sequence of outcomes, revealed one
at a time, almost as well as the best expert chosen
from a reference class of probabilistic models. The
performance of each expert is measured with the
log-likelihood loss. The class of experts examined in
this paper is the family of discrete, acyclic graphical
models, also known as Markov forests. By coupling
Bayesian mixtures with symmetric Dirichlet priors
for parameter learning, and a variant of “Follow the
Perturbed Leader” strategy for structure learning, we
derive an online forest density estimation algorithm
that achieves a regret of Õ(

√
T), with a per-round

time complexity that is quasi-quadratic in the input
dimension. Using simple and flexible update rules,
this algorithm can be easily adapted to predict with
Markov trees or mixtures of Markov forests. Em-
pirical results indicate that our online algorithm is a
practical alternative to the state-of-the-art batch algo-
rithms for learning tree-structured graphical models.

1 INTRODUCTION

Graphical models have attracted considerable interest in AI,
computational statistics, and machine learning (Wainwright
and Jordan, 2008; Koller and Friedman, 2009). One of the
key virtues of these models is to allow a separation between
qualitative, structural aspects of uncertain knowledge, and
quantitative, parametric aspects of uncertainty. As such, graph-
ical models are able to represent, in a compact and intelligible
way, high-dimensional probability distributions, using local in-
teractions between variables. For undirected graphical models,
also known as Markov networks, the structure is an undirected
graphG, and the parameters are grouped into a set θ of factors
associated with the cliques of G. The probability PM(x)
assigned to an outcome x by a model M = (G,θ) is given
by the product of factors in θ which are activated by x, divided
by a normalization constant, known as the partition function.

A fundamental problem in graphical models is to extract from
a series of observed outcomes, the structure and the parameters
of a model that accurately predicts future, unseen, outcomes.
This learning problem, which can be generalized to arbitrary
probabilistic models, is often referred to as density estimation
in the literature (Grünwald, 2007; Rissanen, 2012). In the batch
density estimation setting, it is assumed that outcomes are
sampled independently from a fixed (but unknown) target distri-
bution. The data samples, available ahead of time, are separated
into a training set for learning the model, and a test set for
evaluating its performance. Contrastingly, in the online density
estimation setting, there are no statistical assumptions about
the series of outcomes (Merhav and Feder, 1998; Cesa-Bianchi
and Lugosi, 2006). The learner receives inputs sequentially,
and its performance is measured over all the observed sequence.
The absence of statistical assumption makes online algorithms
applicable in adaptive or “dynamic” environments, where the
target distribution is allowed to arbitrarily change in response
to various events, including the learner’s decisions. Even
in “static” environments, online algorithms can provide a
practical alternative to batch algorithms, by processing only one
outcome at a time. They are indeed particularly suited to handle
streaming applications, where all the data is not available in
advance, or large-scale domains with massive amounts of data.

Conceptually, online density estimation with graphical models
can be viewed as a repeated game between the learner and its
environment. The parameters of the game are an outcome space
X and a classM of graphical models over X , called experts.
During each trial t of the game, the learner selects (possibly
at random) a model Mt ∈ M, the environment responds by
an outcome xt ∈ X , and the learner incurs the log-likelihood
loss (or log-loss, for short) `(Mt,xt) = − lnPMt(xt). The
quality of an online learning algorithm is measured according
to two standard metrics. The first, called regret, measures the
difference in cumulative loss between the algorithm and the
best expert inM. Borrowing the terminology of game theory,
an online learning algorithm is called Hannan-consistent if
its regret over any possible sequence of T outcomes is only
sublinear in T . The second metric is computational complexity,
i.e. the amount of resources required to compute Mt at each
round t, given the sequence of outcomes observed so far.



In this paper, we examine the problem of online density
estimation for the class of (discrete) Markov forests, which
represent discrete multivariate probability distributions where
interdependencies are restricted to an acyclic graph. Markov
forests are endowed with two remarkable properties, namely, (i)
they can be factorized into a closed form which does not involve
a partition function, and (ii) the space of all acyclic graphs
upon which a Markov forest can be constructed is a matroid.
As observed in (Pearl, 1988; Lauritzen, 1996), the closed-form
expression of the probability distribution PM associated with
an n-dimensional Markov forestM = (F,θ) is given by

PM(x) =

n∏
i=1

θi(xi)
∏

(i,j)∈F

θij(xi, xj)

θi(xi)θj(xj)
(1)

where θi(xi) and θij(xi, xj) are the marginal densities of the
node i and the edge (i, j), respectively. Based on (1), proba-
bilistic inference in Markov forests can be performed in linear
time. Moreover, the matroid associated with the structure space
of Markov forests allows linear optimization to be performed
in low-polynomial time, using the greedy matroid algorithm.

Based on these properties, the “batch” forest density estimation
problem can be solved in quasi-quadratic time (in the input
dimension n), by finding a maximum weight spanning tree
in the complete graph of order n, whose edges are weighted
according to the empirical bivariate marginals measured on the
training set. This simple and elegant strategy, due to Chow and
Liu (1968), is the blueprint of more sophisticated algorithms
for learning other tree-structured graphical models, such as
constrained Markov forests (Liu et al., 2011; Tan et al., 2011),
and mixtures of Markov trees (Meila and Jordan, 2000; Kumar
and Koller, 2009). Beyond Markov forests and their variants,
the problem of finding the structure and the parameters of a
maximum likelihood graphical model is, in general, NP-hard
(Chickering, 1995), even for the restricted classes of Bayesian
polytrees (Dasgupta, 1999) and Markov networks of bounded
treewidth (Srebro, 2003).

Our Results. The challenge of the “online” forest density
estimation problem lies in the fact that outcomes are revealed
only one at a time, thus forcing the learner to iteratively update
both the structure and the parameters of a Markov forest, so
as to minimize the cumulative log-loss over the sequence
of outcomes observed so far. This difficulty naturally raises
the question of whether there exist Hannan-consistent forest
density estimation algorithms with a total runtime complexity
comparable to that of batch learning algorithms. By exploiting
the closed form of Markov forests and the matroid of their
structure space, we answer this question in the affirmative
using easily implementable update strategies.

The key point of our online learning algorithm and its regret
analysis lies in the fact that the parameters and the structure
of a forest can be updated in an independent way. Indeed, in
light of the closed-form expression (1), the log-likelihood loss
of a Markov forest can be additively decomposed to the nodes

and the edges of a forest, in such a way that the contribution
of the local components are independent of the forest structure.
Thus, the regret of any algorithm producing the sequence
M1, · · · ,MT of Markov forests can be decomposed into a
telescopic sum of two regret expressions, namely, a “parametric”
part defined over the forest parameters θ1, · · · ,θT , and a
“structural” part defined over the forest structures F1, · · · , FT .

By exploiting the additive decomposition of the log-loss, the
parametric part can, in turn, be decomposed into a sum of
“local” regrets defined over node and edge parameters. This
observation naturally suggests the use of Bayesian mixtures
under Dirichlet priors for estimating univariate marginals
and bivariate marginals. Such mixtures, which have been
extensively studied in the literature of density estimation (see
e.g. Cesa-Bianchi and Lugosi (2006); Grünwald (2007)), can
be implemented using very simple update rules. Namely, by
selecting Jeffreys mixtures for univariate and bivariate marginal
estimators, our strategy achieves a regret that is logarithmic
in the number T of rounds, with a per-round time complexity
that is quadratic in the input dimension n.

Concerning the structural part of the regret, the log-loss is an
affine function of the forest structure. This, together with the
matroid property of forest structures, opens up the possibility
of using various online combinatorial optimization algorithms
(see e.g. Koolen et al. (2010); Audibert et al. (2011)). Here, our
structure-update strategy is based on the well-known Follow the
Perturbed Leader (FPL) algorithm (Hannan, 1957; Kalai and
Vempala, 2005), which essentially adds a random perturbation
to the total loss observed so far, and selects the forest structure
that minimizes the resulting cost function. In order to attenuate
the possibly unstable effects of perturbations, our strategy
uses a convex combination of forest structures, coupled with a
swap-rounding method (Chekuri et al., 2010) for generating, at
each iteration, a forest that is consistent with the current convex
mixture. By ignoring logarithmic factors, this strategy achieves
a regret of Õ(

√
T), with a quadratic per-round time complexity.

In a nutshell, our online forest density estimation algorithm
achieves Hannan-consistency with a cumulative runtime com-
plexity that is comparable to that of the Chow-Liu algorithm.
Furthermore, our algorithm can be easily adapted to predict
with Markov trees, and mixtures of Markov forests (with shared
parameters). Experiments conducted on several real-world
datasets support our theoretical approach. Notably, our online
learning algorithm rapidly converges to the estimations of the
state-of-the-art batch algorithms for Markov trees (Chow and
Liu, 1968), and thresholded Markov forests (Tan et al., 2011).

Paper Structure. After introducing the necessary back-
ground in forest polytopes (Section 2) and Markov forests
(Section 3), we present our online forest density estimation
algorithm in Section 4. Its regret analysis is detailed in Section
5, and its experimental validation is presented in Section 6.
Finally, Section 7 concludes with some related work in online
learning, together with several perspectives of further research.



2 FOREST POLYTOPES

We start with some notations and definitions which will be
used throughout the paper. Let [n] denote the set {1, · · · , n},
and

(
[n]
2

)
denote the set {(i, j) ∈ [n] × [n], i < j}. To

simplify notation, we use the abbreviation x1:t to designate
any sequence of vectors x1, · · · ,xt. For x,y ∈ Rn and
p ∈ [1,∞], we use ‖x‖p to denote the Lp norm of x, and we
use〈x,y〉 to denote the scalar product of x and y. For a subset
X ⊆ Rn, we denote by convX the convex hull ofX.

In what follows, we shall adopt set and vector notations
interchangeably for describing graphs over the node set [n];
in the set notation, G is a subset of

(
[n]
2

)
, and in the vector

notation g is a vector in {0,1}(
n
2), such that gij = 1 if and

only if (i, j) ∈ G. As usual, a forest is an acyclic graph, and
a spanning tree is an acyclic, connected graph that spans [n].
The spaces of all forests and all spanning trees of order n are
denoted Fn and Tn, respectively. It is well-known that the set
of all forests of order n defines a matroid over the ground set(
[n]
2

)
, where Fn is the collection of independent sets, and Tn

is the collection of bases. The rank of this matroid is n− 1,
which corresponds to the size of any spanning tree over [n].

The convex hull of Fn, where elements are viewed in vector
notation, is called the forest polytope. This polyhedron of
dimension n− 1 is characterized by the system of inequalities:

conv Fn=

{
p ∈ R(n2)

+ :〈p,g〉 ≤ n−1, for all g ∈ {0,1}(
n
2)
}

Such inequalities are often referred to as acyclicity constraints
in the literature (Shrijver, 2003). The convex hull of Tn, called
the spanning tree polytope, is the subset of conv Fn formed
by the points p satisfying the equality 〈p,1〉 = n− 1, where
1 is the all-ones vector in Rn. By Carathéodory’s theorem, any
point p ∈ conv Fn (resp. p ∈ conv Tn) can be represented
as a convex combination of t ≤ n− 1 forests (resp. spanning
trees), i.e. p =

∑t
τ=1 ατ f

τ , whereα ∈ Rt+ and ‖α‖1 = 1.

Although the forest polytope and the spanning tree polytope
are characterized by an exponential number N of acyclicity
constraints, linear optimization under these combinatorial struc-
tures can be performed in low polynomial time. Indeed, by Ed-
mond’s theorem (1970), both conv Fn and conv Tn are totally
dual-integral, and hence, any minimizer p∗ of a linear objective
〈w,p〉 subject to p ∈ conv Fn (resp. p ∈ conv Tn) is an
extreme point in Fn (resp. Tn). This point p∗ can be found in
O(n2 logn) time, using the greedy matroid algorithm. Specifi-
cally, for the forest polytope, the greedy algorithm first sorts the(
n
2

)
edges in decreasing order according to the linear objective

w, next keeps the firstm edges with non-positive weight, and
then iteratively finds a minimum cost forest F over these m
ordered edges. For the spanning tree polytope, the greedy al-
gorithm coincides with Kruskal’s method, which also sorts the
edges according tow, but uses (in the worst case) all the

(
n
2

)
ordered edges for generating a minimum cost spanning tree.

Finally, in order to round fractional points in matroid poly-
topes, we shall focus on SWAP method proposed by Chekuri
et al. (2010). This algorithm takes as input a fractional point
p ∈ conv Fn (resp. p ∈ conv Tn), given as a convex combi-
nation p =

∑t
τ=1 ατf

τ of forests (resp. spanning trees), and
iteratively generates the sequence of points p1, · · · ,pt, such
that p1 = p, pt is an extreme point in Fn (resp. Tn), and
E[pτ ] = p for all τ ∈ [t]. Each point pτ+1 is obtained from
pτ by arbitrarily choosing two components αif i and αjfj in
pτ , and by replacing them with a new component (αi +αj)f

′.
Here, f ′ is generated in O(n2) time using random base ex-
changes. So, p can be rounded using t− 1 quadratic-time oper-
ations. Importantly, SWAP can be interrupted at any iteration τ
to give a convex combinationpτ of t+1−τ graphical structures.
In what follows, we use SWAPk(p) to denote the application of
at most τ = t+ 1− k iterations of the SWAP algorithm, which
returns a convex combination including at most k components.

3 MARKOV FORESTS

The graphical models examined in this paper are defined over
a set {X1, · · · ,Xn} of multinomial random variables, each
taking values over a finite alphabet {1, · · · ,m}, withm ≥ 2.

A probability table for a random variable Xi, is a vector θi
in them-dimensional probability simplex, where θi(u) denotes
the probability that Xi = u. Similarly, a probability table
for a pair of random variables (Xi,Xj) is a vector θij in the
m2-dimensional probability simplex, where θij(u, v) indicates
the probability thatXi = u andXj = v. By Θm,n, we denote
the set of all mappings θ that assign a probability table θi to
each i ∈ [n], and a probability table θij to each (i, j) ∈

(
[n]
2

)
,

while satisfying the marginalization constraints:

m∑
u=1

θij(u, v) = θj(v) and
m∑
v=1

θij(u, v) = θi(u) (2)

Note that the dimension of θ is d = mn + m2
(
n
2

)
. The

class of m-ary n-dimensional Markov forests is defined as
Fm,n = Fn ×Θm,n, and the class of m-ary n-dimensional
Markov trees is given by Tm,n = Tn×Θm,n. For a classM∈
{Fm,n,Tm,n}, we denote byP (M) the matroid polytope as-
sociated with the structure space ofM, i.e. P (M) = conv Fn
ifM = Fm,n, andP (M) = conv Tn ifM = Tm,n.

By taking into account the acyclicity constraints of Fn and
the marginalization constraints of Θm,n, the probability
distribution PM over X = [m]n represented by a Markov
forestM = (f ,θ) is given by the closed-form expression (1).
More generally, if (p,θ) is a pair of vectors inP (M)×Θm,n,
then the corresponding distribution is given by

Pp,θ(x) =
∏
i∈[n]

θi(xi)
∏

(i,j)∈([n]
2 )

(
θij(xi, xj)

θi(xi)θj(xj)

)pij
(3)
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Figure 1: A binary Markov forest.

When p is described as a convex combination of forests (resp.
trees), the pair (p,θ) can be viewed as a mixture of Markov
forests (resp. Markov trees) sharing the same parameters.

4 ONLINE MARKOV FORESTS

Recall that online learning can be viewed as a repeated
game between a learning algorithm A and its environment.
During each trial t ∈ [T ], the learner A starts by choosing
(possibly at random) a model Mt ∈ M, whereM is a class
of graphical models. Next, the environment responds by
supplying an outcome xt ∈ X , and then,A incurs the log-loss
`(Mt,xt) = − lnPMt(xt). The (expected) regret of the
learning algorithmA with respect to the sequence of outcomes
x1:T = (x1, · · · ,xT ) is given by

Rx1:T (A) =

T∑
t=1

E
[
`(Mt,xt)

]
− min
M∈M

T∑
t=1

`(M,xt) (4)

where the expectation is taken with respect to the learner’s
internal randomization. By extension, the minimax regret ofA
at horizon T , denoted RT (A), is the maximum of Rx1:T (A)
over any sequence x1:T in XT . A is called Hannan-consistent
if its minimax regret is sublinear in T , or equivalently, if its
average minimax regretRT (A)/T vanishes as T →∞.

The classes of experts investigated in this study are Markov
forests and Markov trees, that is,M ∈ {Fm,n,Tm,n}. The
log-loss can be extended toP (M)×Θm,n ×X → R, using
`(p,θ,x) = − lnPp,θ(x), where Pp,θ is defined according to
the closed-form expression (3). Interestingly, we can observe
that ` is an affine function of p, given by

`(p,θ,x) = ψ(x) + 〈p,φ(x)〉 (5)

where

ψ(x) =
∑
i∈[n]

ln
1

θi(xi)
and φij(xi, xj) = ln

(
θi(xi)θj(xj)

θij(xi, xj)

)

It is important to keep in mind that the sign of the components
in the vector φ(x) ∈ R(n2) can be positive or negative. A
negative weight φij(xi, xj) can be interpreted as a positive
contribution (or gain) in favor of using the edge (i, j) in the
graphical structure. Contrarily, a positive weight φij(xi, xj)
provides a negative contribution to the candidate edge (i, j).

With these notions in hand, we are now in position to exam-
ine the online forest density estimation (OFDE) algorithm. As
specified in Algorithm 1, OFDE takes as input a class of experts
M∈ {Fm,n,Tm,n}, and an upper bound k on the number of
candidate structures maintained by its mixture. During each
trial t, the learner maintains a pair (pt,θt) ∈ P (M)×Θm,n,
where pt is a convex combination of at most k structures. The
model Mt = (ft,θt) used to predict the outcome xt is ob-
tained by generating ft at random according to pt (Line 4). Af-
ter observingxt (Line 5), the learner updates its parameters and
its structure according to Lines 6-7 and Lines 8-12, respectively.

The vector of parameters θt is updated by applying the Jeffreys
(1946) rule to the probability table of each node i ∈ [n] and
each candidate edge (i, j) ∈

(
[n]
2

)
. Here, tu (resp. tv) is the

number of u’s (resp. v’s) in the sequence x1i , · · · , xti, and tuv is
the number of occurrences of (u, v) in (xi, xj)

1, · · · , (xi, xj)t.

The mixture pt is updated using the following operations: first,
apply the FPL strategy to produce an intermediate structure
ft+

1
2 (Lines 9-10); next, combine this structure with pt to

yield a new intermediate mixture pt+
1
2 (Line 11), and then

use SWAPk to build a new mixture with at most k components
(Line 12). The values of the hyperparameters αt and βt, used
to generate mixtures and perturbations, will be derived from
regret analysis. Note that the same algorithmic scheme is
used to learn with Markov forests and Markov trees. The
key difference lies in the behavior of the greedy matroid
algorithm; as mentioned above, the greedy algorithm uses
only non-positive weights in φt(xt) to find an optimal point in
conv Fn for the linear objectivewt, while it uses all weights
in φt(xt) to produce an optimal point in conv Tn forwt.

Theorem 1. The per-round time complexity of the OFDE
algorithm is inO

(
n2m2 + n2 logn+ kn2

)
.

Proof. Based on the Jeffreys rule, the parameters θt+1 are
computed in O(d) time, where d = mn+m2

(
n
2

)
. Further-

more, ft+
1
2 is obtained in O(n2 logn) time by applying the

greedy matroid algorithm, and by exploiting the fact that the
objectivewt can be maintained in O(n2) time per trial using
w0 = 0 and wt = wt−1 + φt(xt). Since pt+

1
2 includes at

most k + 1 components, the updated mixture pt+1 and the
updated forest ft+1 are obtained using SWAP in O(n2) time
andO(kn2) time, respectively.

Note that the time complexity of the Chow-Liu algorithm for a
training set of sizeT is inO(Tm2n2+n2 logn). So, if k is con-
stant or logarithmic in n, then the overall complexity of OFDE
at horizon T is comparable to that of the Chow-Liu algorithm.



Algorithm 1: Online Forest Density Estimation (OFDE)

Input:
a class of expertsM∈ {Fm,n,Tm,n}, and mixture size k

Initialization step
1 θ1i (u)← 1

m for all i ∈ [n], u ∈ [m]

2 θ1ij(u, v)← 1
m2 for all (i, j) ∈

(
[n]
2

)
, u, v ∈ [m]

3 p1 ← 0

Trials
foreach t← 1, . . . do

4 PlayMt ← (ft,θt) where ft = SWAP1(p
t)

5 Receive xt

Parameter update

6 θt+1
i (u)←

tu + 1
2

t+ m
2

for all i ∈ [n], u ∈ [m]

7 θt+1
ij (u, v)←

tuv + 1
2

t+ m2

2

for all (i, j) ∈
(
[n]
2

)
, u, v ∈ [m]

Structure update
8 Choose αt and βt in (0,1)

9 Draw rt in
[
0, 1
βt

](n2)
uniformly at random

10 ft+
1
2 ← argminp∈P (wt) where
wt ← rt +

∑t
τ=1 φ

τ(xτ)

11 pt+
1
2 ← αtp

t + (1− αt)ft+
1
2

12 pt+1 ← SWAPk(p
t+1

2 )

5 REGRET ANALYSIS

Based on the decomposable form of the log-loss (5), the regret
of the OFDE algorithm can be expressed as a telescopic sum
of two separate components, namely, a “parametric” regret
with fixed structure and varying parameters, and a “structural”
regret, with fixed parameters and varying structure. Formally,
let (p,θ)1:T = ((p1,θ1), · · · , (pT ,θT )) be the sequence
generated by the algorithm during T rounds. Then,

Rx1:T [(p,θ)1:T ] = Rx1:T (θ1:T ) +Rx1:T (p1:T )

where

Rx1:T (p1:T ) =

T∑
t=1

`(pt,θt,xt)− `(p∗,θt,xt), (6)

Rx1:T (θ1:T ) =

T∑
t=1

`(p∗,θt,xt)− `(p∗,θ∗,xt) (7)

and where (p∗,θ∗) is any minimizer inP (M)×Θm,n of the
cumulative log-loss

∑T
t=1 `(p,θ,x

t). The rest of this section
is devoted to the analysis of each separate part (7) and (6), and
the unification of our results.

5.1 PARAMETRIC REGRET

For the analysis of the parametric regretRx1:T (θ1:T ), we con-
sider the problem of online density estimation problem with the
class of experts ({p},Θm,n), wherep is an arbitrary point inP .
As mentioned above, p can be viewed as a convex combination
p = E[f ] of graphical structures f ∈M. Using the additive
decomposition (5) and the linearity of expectations, we have

Rx1:T (θ1:T ) = E

[
T∑
t=1

`(f ,θt,xt)− `(f ,θ∗,xt)

]

= E

[
ln

T∏
t=1

Pf,θ∗(xt)
Pf,θt(xt)

]
(8)

In light of the closed-form expression (1), the logarithmic term
inside the expectation in (8) can be reformulated as

ln

T∏
t=1

Pf,θ∗(xt)
Pf,θt(xt)

=

n∑
i=1

ln
θ∗i (x

1:T
i )

θ1:Ti (x1:Ti )
+

∑
(i,j)∈F

ln
θ∗ij(x

1:T
ij )

θ1:Tij (x1:Tij )
+
∑

(i,j)∈F

ln
θ1:Ti (x1:Ti )

θ∗i (x
1:T
i )

θ1:Tj (x1:Tj )

θ∗j (x
1:T
j )

(9)

where

θ∗i (x
1:t
i ) =

t∏
τ=1

θ∗i (x
τ
i ), θ1:ti (x1:ti ) =

t∏
τ=1

θτi (xτi )

θ∗ij(x
1:t
ij ) =

t∏
τ=1

θ∗ij(x
τ
i , x

τ
j ), θ1:tij (x1:tij ) =

t∏
τ=1

θτij(x
τ
i , x

τ
j )

We may observe that (9) is essentially a composition of local
regrets defined over univariate density estimators θ1:Ti (x1:Ti )
and bivariate density estimators θ1:Tij (x1:Tij ). Notably, for each
edge (i, j) ∈ F , the regret of the bivariate estimator θ1:Tij (x1:Tij )
is compensated by the relative gains of the univariate estimators
θ1:Ti (x1:Ti ) and θ1:Tj (x1:Tj ). Such a decomposition motivates
the use of well-known Bayesian mixtures with Dirichlet priors
for specifying the estimators. We focus here on symmetric
Dirichlet priors, given by

pµ(λ) =
Γ(mµ)

Γ(µ)m

m∏
v=1

(λ(v))µ−1

where λ is a vector in them-dimensional probability simplex,
Γ(z) =

∫∞
0
tz−1e−tdt is the gamma function, and µ ∈ [0,1]

is a hyperparameter. The corresponding Bayesian mixture
λ(x1:t) for the sequence x1:t = (x1, · · · , xt) is given by∫ t∏

τ=1

Pλ(xτ)pµ(λ)dλ =
Γ(mµ)

Γ(µ)m

∏m
v=1 Γ(tv + µ)

Γ(t+mµ)
(10)

where tv is the number of v’s in x1:t. Thus, by applying (10)
withµ = 1/2 to the estimators θti(x

1:t
i ) and θ1:tij (x1:tij ), we derive

the update rules specified by Lines 6-7 of the OFDE algorithm.



Before deriving a bound for the parametric regret (7), we
present two useful double inequalities for log-gamma functions,
summarized in the next lemma.

Lemma 1. Letm be a positive integer. Then for any t > 0,

− ln
√

2 ≤ ln Γ

(
t+

1

2

)
− t ln t+ t− ln

√
2π ≤ 0 (11)

0 ≤ ln Γ
(
t+

m

2

)
− ln Γ

(
t+

1

2

)
− m−1

2
ln t ≤ o(1) (12)

Proof. (11) is a reformulation of Lemma 1 in (Watanabe and
Roos, 2015), and the right-hand inequality of (12) follows from
the classical asymptotic relation (see e.g. Qi and Luo (2013)):

lim
t→∞

[
tb−a

Γ(t+ a)

Γ(t+ b)

]
= 1

using a = m/2 and b = 1/2. For the left-hand inequality of
(12), we can observe that

ln
Γ
(
t+ m

2

)
Γ
(
t+ 1

2

) = ln
Γ
(
z + m−1

2

)
Γ (z + k)

+ ln
Γ (z + k)

Γ (z)
(13)

where z = t + 1/2 and k = bm−12 c. Based on the identity
ln Γ(z + k) = ln Γ(z) +

∑k−1
i=0 ln(z + i), the second term in

the right-hand side of (13) is lower bounded by k ln z. So, if
m is odd, then k = m−1

2 , and hence, (13) is lower bounded by
m−1
2 ln t, as desired. Now, ifm is even, then using z′ = t+ k,

we can observe that the first term in the right-hand side of (13)
can be rewritten as the log-ratio of Γ(z′ + 1) to Γ(z′ + 1

2).
Thus, by Wendel’s inequality (1948), we have

1

2
ln z′ ≤ ln

Γ(z′ + 1)

Γ(z′ + 1
2)
≤ 1

2
ln

(
z′ +

1

2

)
By combining the lower bounds k ln z and 1

2 ln z′, it follows
that (13) is lower bounded by (k+ 1

2) ln t = m−1
2 ln t, which

again yields the desired result.

With these inequalities in hand, we can derive “sandwiching”
bounds for the regret of the Jeffreys mixture. Specifically, using
the Bayes mixture (10) with µ = 1/2, the regret expression
ln θ∗(x1:T )− ln θ1:T (x1:T ) is equal to

ln

[
m∏
u=1

(
tu
T

)tu]
+ ln

Γ
(
T + m

2

)∏m
u=1 Γ

(
tu + 1

2

) +Cm (14)

where Cm = m ln Γ(12)− ln Γ(m2 ). By coupling the double
inequalities (11) and (12), we can deduce that

− ln
√

2 ≤ ln Γ
(
T +

m

2

)
+ T − T lnT

− m− 1

2
lnT − ln

√
2π ≤ o(1)

Similarly, using the double inequality (11) and summing over
m values, we can infer that

−m ln
√

2 ≤ ln

m∏
u=1

Γ

(
tu +

1

2

)
−

m∑
u=1

tu ln tu

+ T −m ln
√

2π ≤ 0

Now, using the fact that the first term in (14) is equal to∑m
u=1 tu ln tu − T lnT , we can combine the above two

double inequalities to derive the sandwiching bounds:

− ln
√

2 ≤ ln
θ∗(x1:T )

θ1:T (x1:T )
− m− 1

2
ln
T

2π
−Cm

≤m ln
√

2 + o(1) (15)

Unsurprisingly, the right-hand inequality of (15) coincides with
the regret bound of the Jeffreys mixture established by Xie and
Barron (2000). As shown below, the left-hand inequality of (15)
will also prove useful for bounding the regret expression (9).

Lemma 2. The parametric regret Rx1:T(θ1:T ) of the OFDE
algorithm is upper bounded by

n(m−1) + (n−1)(m−1)2

2
ln
T

2π
+Cm,n + o(m2n)

where Cm,n = nCm + (n− 1)(Cm2 − 2Cm).

Proof. As specified by Equality (8), any upper bound on
the minimax regret of (9) is an upper bound on Rx1:T(θ1:T ).
Based on this observation, consider the first term of (9),
given by

∑n
i=1 ln[θ∗i (x

1:T
i )/θ1:Ti (x1:Ti )]. Using the right-hand

inequality of (15) and summing over n nodes, this term is
upper bounded by

n(m− 1)

2
ln
T

2π
+ nCm +mn ln

√
2 + o(n)

Clearly, a similar strategy can be applied to the second term∑
(i,j)∈F ln[θ∗ij(x

1:T
ij )/θ1:Tij (x1:Tij )] of (9). Since |F | ≤ n− 1,

this term is upper bounded by

(n−1)(m2−1)

2
ln
T

2π
+ (n−1)Cm2 + (n−1)m2ln

√
2 + o(n)

Finally, the third term of (9) can be reformulated as a sum over
each (i, j) ∈ F of two components: ln[θ1:Ti (x1:Ti )/θ∗i (x

1:T
i )]

and ln[θ1:Tj (x1:Tj )/θ∗j (x
1:T
j )]. By applying the left-hand side

inequality of (15) to each component, and summing over at
most n− 1 edges, this term is upper bounded by

−(n−1)(m−1) ln
T

2π
−2(n−1)Cm+2(n−1) ln

√
2

By combining the above three bounds, rearranging terms, and
taking into account the fact that [(n−1)(m2 +2)+mn] ln

√
2

is in o(m2n) (form ≥ 2), we get the desired result.



In the binomial case (m = 2), it is easy to check that C2,n =
n lnπ. By reporting this result into Lemma 2, we may derive
for binary Markov forests a parametric regret bound of the form:

Rx1:T(θ1:T ) ≤
(
n− 1

2

)
lnT + o(n) (16)

5.2 STRUCTURAL REGRET

Before deriving a bound for the structural part of the regret, we
first examine some analytic properties of the loss function (5),
specified as an affine function of the predicted structure.

Lemma 3. Given a class of modelsM ∈ {Fm,n,Tm,n}, let
θ1:T be the sequence of parameters in Θm,n generated by the
OFDE algorithm on the sequence of outcomes x1:T . Then, for
any t ∈ [T ], any p,q ∈ P (M), and any x ∈ X ,∥∥φt(x)

∥∥
∞ ≤ ln

(
T

2
+
m2

4

)
‖p− q‖1 ≤ 2(n− 1)

Proof. For the first property, consider two values u, v ∈ [m].
We may observe that φ1ij(u, v) = 0 < ln(T/2 + m2

/4), for
m ≥ 2. Furthermore, using the Jeffreys update rule, we have

φt+1
ij (u, v) = ln

(tu + 1/2)(tv + 1/2)

(t+m/2)2
+ ln

t+m2
/2

tuv + 1/2

≤ ln
1

4
+ ln

t+m2
/2

tuv + 1/2
≤ ln

(
T

2
+
m2

4

)
where the first inequality follows from the fact that the
maximizer of (tu + 1/2)(tv + 1/2) subject to the constraint
tu + tv ≤ t is given by tu = tv = t

2 . Concerning the second
property, recall that the dimension ofP (M) is n−1, which im-
plies that ‖p‖1 ≤ n−1 for all p ∈ P (M). This, together with
the fact that ‖p− q‖1 ≤ ‖p‖1 + ‖q‖1, implies the result.

Based on these properties, we derive a regret bound for
the structural part of the OFDE algorithm by analyzing the
update rules in Lines 10-12. Specifically, the expression (6)
is decomposed into the telescopic sum:

Rx1:T (p1:T ) ≤
T∑
t=1

〈pt,`t〉 − 〈pt+1
2 ,`t〉 (17)

+

T∑
t=1

〈pt+1
2 ,`t〉 − 〈ft+1

2 ,`t〉 (18)

+

T∑
t=1

〈ft+1
2 ,`t〉 − 〈p∗,`t〉 (19)

where `t is used here as a shorthand of φt(xt). Recall
that each point pt in the sequence p1:T includes at most k
forests. So, the difference (17) captures the regret of the OFDE
algorithm with respect to its unbounded version, where the
swap rounding step at Line 12 is omitted.

Lemma 4. The OFDE algorithm has no regret with respect to
its unbounded version:

∑T
t=1〈pt,`t〉 − 〈pt+

1
2 ,`t〉 = 0.

Proof. Let p̃1:T be the sequence of points given by the un-
bounded version of OFDE, that is, p̃1 = p1 and p̃t+1 = αtp̃

t+
(1− αt)ft+

1
2 for each t ∈ [T ]. We prove that E[pt] = pt+

1
2

by induction on t ∈ [T ]. The case t = 1 follows from
p1 = p̃1. Suppose by induction hypothesis that E[pt] = p̃t.
Using the SWAP algorithm, E[pt+1] = αtp

t + (1− αt)ft+
1
2 .

Furthermore, by induction hypothesis, we also know that
E[αtp

t+ (1−αt)ft+
1
2 ] = αtE[pt] + (1−αt)ft+

1
2 = p̃t+1.

Since E[E[pt+1]] = E[pt+1], it follows that E[pt+1] = p̃t+1,
as desired. Based on this invariant, the result follows from
the linearity of expectations:

∑T
t=1〈E[pt],`t〉 − 〈pt+1

2 ,`t〉
=
∑T
t=1E〈pt+

1
2 − pt+1

2 ,`t〉 = 0.

With this result in hand, the structural regret of the OFDE
algorithm is reduced to the sum of (18) and (19). Using appro-
priate choices for the hyperparameters αt and βt we can derive
sublinear regret bounds in both the horizon-dependent setting
(where T is known) and the horizon-independent setting.

Lemma 5. Let γ = ln(T/2 + m2
/4). The structural regret

Rx1:T (p1:T ) of the OFDE algorithm is bounded by

• n2γ
√

2T in the horizon-dependent case, using
0 < αt ≤ 1

2
√
2t

and βt = 1
γn

√
2/t;

• n2(γ+1)2
√

2T in the horizon-independent case, using
0 < αt ≤ 1

4
√
2t

and βt = 1
n

√
2/t.

Proof. Consider the regret expression (18), and letαt = α′/
√
t.

Using the specification of pt+
1
2 given at Line 11, we get

T∑
t=1

〈pt+1
2−ft+1

2 ,`t〉 =
T∑
t=1

αt〈pt−ft+
1
2 ,`t〉

≤ 2(n−1)γ

T∑
t=1

αt ≤ 4(n−1)γα′
√
T

where the first inequality follows from Hölder’s inequality
〈pt−ft+1

2 ,`t〉 ≤ ‖pt−ft+1
2‖1‖`t‖∞, and the application of

Lemma 3. The last inequality follows from
∑T
t=1

1/
√
t ≤ 2

√
T .

Now, observe that (19) is the regret of the FPL strategy. Let
βt = β′/

√
t. By applying Theorem 3.3 in (Kalai and Vempala,

2005), we can derive that

T∑
t=1

〈ft+1
2−p∗,`t〉 ≤ 2β′RA

√
T + D

β′

√
T

≤ (n− 1)n2γ2β′
√
T + 2(n−1)

β′

√
T

using the facts that R = maxt∈[T ]〈ft+
1
2 ,`t〉 ≤ 2(n − 1)γ

from Hölder inequality, A = maxt∈[T ] ‖`t‖1 ≤ γn2/2, and



D = maxt∈[T ] ‖ft+
1
2 −ft−1

2‖1 ≤ 2(n− 1). Combining the
derived bounds for (18) and (19), and rearranging, yields

Rx1:T (p1:T ) ≤ (n− 1)
√
T

(
4γα′ + n2γ2β′ +

2

β′

)
In the horizon-dependent case, we can take β′ =

√
2/γn to

derive thatRx1:T (p1:T ) ≤ γ(n− 1)(4α′ + n
√

2)
√
T , which

is bounded by n2γ
√

2T for α′ ≤ 1/2
√
2. In the horizon-

independent case, γ is unknown. So, using β′ =
√
2/n, we

get that Rx1:T (p1:T ) ≤ (n− 1)[4γα′ + (n/
√
2)(γ2 + 1)]

√
T ,

which is bounded by n2(γ + 1)2
√

2T for α′ ≤ 1/4
√
2.

5.3 MAIN RESULTS

We have now all ingredients in hand to prove the Hannan-
consistency of our online learning algorithm. The next theorem
is obtained by coupling Lemma 2 with Lemma 5. The corollary
is simply derived by replacing the bound in Lemma 2 with (16).

Theorem 2. For the classes of Markov forests Fm,n
and Markov trees Tm,n, there exists an online density
estimation algorithm achieving a minimax regret in
O(m2n lnT+n2 lnT

√
T) in the horizon-dependent case, and

O(m2n lnT +n2(lnT)2
√
T) in the horizon-independent case.

Corollary 1. For the classes of binary Markov forests F2,n

and Markov trees T2,n, there exists an online density estimation
algorithm that attains (in the horizon-dependent case) a
minimax regret of n2 ln(T2 + 1)

√
2T + (n− 1

2) lnT + o(n).

To conclude the theoretical part of this study, recall that
the competitor used in both parts (6) and (7) of the regret
analysis is an expert in (P (M),Θm,n). As mentioned
above, such experts are tree-structured mixtures sharing the
same parameters, which predict according to the probability
distribution (3). As stated in Lemma 2, the parametric
regret Rx1:T (θ1:T ) of the OFDE algorithm with respect to
these experts is in O(m2n lnT). Since the regret bounds in
Lemma 5 also hold for these competitors, it follows that OFDE
is Hannan-consistent with respect to tree-structured mixtures.

6 EXPERIMENTS

In order to empirically evaluate our algorithm, we performed
simulations on 4 publicly available datasets1, listed in Table 1.
Though all these datasets are binary-valued, they differ in the
number of variables and the number of instances.

Our experimental objective was to compare the OFDE algorithm
with respect to batch learning algorithms which have the benefit
of hindsight for the train set. To this end, we used the Chow-Liu
(CL) algorithm (Chow and Liu, 1968) that learns a Markov
tree, and the Chow-Liu with Thresholding (CLT) algorithm
(Tan et al., 2011), that learns a Markov forest by pruning the

1alchemy.cs.washington.edu/papers/davis10a/

Dataset Train set Tune set Test set Vars (n)
Abalone 3,134 417 626 31
Covertype 30,000 4,000 6,000 84
KDDCup 2000 180,092 19,907 34,955 64
MSNBC 291,326 38,843 58,265 17

Table 1: Dataset Characteristics.

Chow-Liu tree. The CL and OFDE algorithms were trained
without using the tune set. As CLT relies on a user-supplied
threshold parameter ε ∈ (0,1), we performed experiments
using several values {1/4, 1/2, 3/4} for this parameter and kept in
our results the best choice of εmeasured on the tune set. In our
implementation of CLT, we used a slight refinement of the origi-
nal pruning rule: any edge (i, j) for which the empirical mutual
information is lower than n−ε is removed from the tree. Our
OFDE algorithm was trained with both reference classes F2,n

and T2,n. Here, we denote by OFDEF (resp. OFDET ) the instan-
tiation of OFDE with Markov forests (resp. Markov trees). Both
instances of OFDE were trained under the horizon-independent
setting, using k = lnn, αt = 1

4
√
2t

, and βt = 1
n

√
2/t.

The batch algorithms CL and CLT were trained on the whole
train set, and their generalization performance was measured
using the average log-loss evaluated on the test set. For
the online learners OFDEF and OFDET , the instances were
revealed only one at a time and, at the end of each iteration, the
performance was measured by evaluating the average log-loss
on the test set. The sequence of observations was generated
by simply listing the instances of the train set.

The results, averaged over 10 experiments per dataset, are re-
ported in Figure 2. Unsurprisingly, the performance of OFDET
is generally better than OFDEF , since the batch tree learner
CL outperforms its forest variant CLT. Yet, it is apparent that
OFDET and OFDEF respectively converge to the estimations of
CL and CLT. The convergence rates are particularly remarkable
for the datasets Covertype, KDDCup 2000, and MSNBC,
where a logarithmic scale is used for the number of iterations.

Concerning runtimes, the three algorithms were implemented
in C++ and tested on a Quad-core Intel XEON X5550. For all
datasets, the per-round runtime of OFDE (using forests or trees)
is less than 3 ms. This indicates that OFDE can be used as prac-
tical alternative to CL(T) for handling streaming applications.

7 DISCUSSION

As a fundamental result in universal prediction, it is known that
the optimal solution achieving minimax regret for any classM
of discrete probabilistic models is obtained by the normalized
maximum likelihood strategy (Shtarkov, 1987). Unfortunately,
for this optimal strategy, the time horizon T must be known
in advance, and the computation of the log-loss at each round
t ∈ [T ] requires the evaluation of exponentially many marginal-
ization terms. Thus, one of the key challenges in online density
estimation is to devise horizon-independent strategies that pro-
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Figure 2: Comparison of OFDET and OFDEF with CL and CLT on the four datasets.

vide a good compromise between minimax optimality and
computational complexity. Several easily implementable nearly
optimal strategies have been proposed for unidimensional prob-
abilistic models, including binomial and multinomial families
(Freund, 1996; Xie and Barron, 2000; Watanabe and Roos,
2015), and, more generally, univariate exponential families
(Takimoto and Warmuth, 2000; Azoury and Warmuth, 2001;
Kotłowski and Grünwald, 2011). Much less is known, how-
ever, about multidimensional families, especially the classes of
graphical models characterized by multiple interdependencies
between variables. A notable exception is the work by Bauer
et al. (1997) for sequentially predicting the parameters of a
Bayesian network. Yet, the target network structure is known in
advance. To our knowledge, the present paper is one of the first
studies that investigates both structural and parametric aspects
of graphical models in online density estimation.

By considering classes of experts defined over varying
structures, our study has intimate connections with online
combinatorial optimization, a topic of online learning where
the reference classes are combinatorial spaces. Several Hannan-
consistent algorithms have been proposed in this setting,
including the Follow the Perturbed Leader (FPL) strategy (Han-
nan, 1957; Kalai and Vempala, 2005), and the Online Mirror
Descent (OMD) strategy (Koolen et al., 2010; Audibert et al.,

2011; Rajkumar and Agarwal, 2014). Though OMD is known
to achieve better regret bounds than FPL, it relies on a projection
step performed at each iteration, in order to maintain the current
estimate in the convex hull of the combinatorial space. The com-
putational complexity of this projection step is typically much
worse than the cost of linear optimization, especially when the
combinatorial space is a matroid. The FPL strategy, advocated
in this study, provides a reasonable compromise between opti-
mality and computational complexity. Yet, alternative strategies
can be devised in our setting such as, for example, online
Franck-Wolfe optimization methods (Hazan and Kale, 2012).

A natural perspective of research that emerges from our study
is to devise lower bounds for the minimax regret of forest
density estimators. In a related setting, Kveton et al. (2014)
have recently shown that such lower bounds are essentially
logarithmic in T for the reference class of partition matroids.
We conjecture that similar bounds holds for graphical matroids,
and more generally for the classes Fm,n and Tm,n. Finally,
our work is also related to mixtures of trees (Meila and Jordan,
2000; Kumar and Koller, 2009). To this point, we have shown
that OFDE is Hannan-consistent with mixtures of forests
(or trees) sharing the same parameters. An interesting open
question is to determine whether arbitrary mixtures of trees
are learnable in the online density estimation setting.
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