
Budgeted Semi-supervised Support Vector Machine

Trung Le∗, Phuong Duong, Mi Dinh
Faculty of Information Technology
University of Pedagogy, Vietnam

{trunglm, phuongdth, midtt}@hcmup.edu.vn

Tu Dinh Nguyen, Vu Nguyen, Dinh Phung
Centre for Pattern Reccognition and Data Analytics

Deakin University, Australia
{tu.nguyen, v.nguyen, dinh.phung}@deakin.edu.au

Abstract

Due to the prevalence of unlabeled data, semi-
supervised learning has drawn significant atten-
tion and has been found applicable in many real-
world applications. In this paper, we present
the so-called Budgeted Semi-supervised Sup-
port Vector Machine (BS3VM), a method that
leverages the excellent generalization capacity of
kernel-based method with the adjacent and dis-
tributive information carried in a spectral graph
for semi-supervised learning purpose. The fact
that the optimization problem of BS3VM can be
solved directly in the primal form makes it fast
and efficient in memory usage. We validate the
proposed method on several benchmark datasets
to demonstrate its accuracy and efficiency. The
experimental results show that BS3VM can scale
up efficiently to the large-scale datasets where it
yields a comparable classification accuracy while
simultaneously achieving a significant computa-
tional speed-up compared with the baselines.

1 Introduction

Supervised learning constitutes one of the most fundamen-
tal problems in machine learning. While in no doubt this
theory has been applied successfully to many real-world
applications, a key limitation of this theory lies in the re-
quirement of annotated labels during training. However,
manual labeling process for large-scale data is labor inten-
sive and error-prone. Consequently, the collected datasets
frequently consist of a collection of labeled data jointly
with a larger collection of unlabeled data. Semi-supervised
learning (SSL) involves utilizing the intrinsic information
carried in unlabeled data to enhance the generalization ca-
pacity of the learning algorithms. During the past decade,

∗This work was carried out when the first author was sup-
ported and visiting the Centre for Pattern Recognition and Data
Analytics, Deakin University, Australia in 2015.

SSL has attracted significant attention and has been found
applicable in a variety of problems including text cate-
gorization [Joachims, 1999], and bioinformatics [Kasabov
et al., 2005] to name a few.

A notable approach to semi-supervised learning paradigm
is to employ a spectral graph for representing the adjacent
and distributive information in data. Several existing works
have leveraged on the expressiveness of spectral graphs for
SSL, including mincut [Blum et al., 2004], graph random
walk [Azran, 2007], manifold regularization [Belkin et al.,
2006], and spectral graph [Duong et al., 2015].

Inspired from the seminal work of [Joachims, 1999], a large
body of works has attempted to advance kernel methods
such as Support Vector Machine (SVM) [Cortes and Vap-
nik, 1995] within the semi-supervised learning paradigm.
The underlying idea is to solve standard SVM problem
while treating the unknown labels as optimization vari-
ables [Chapelle et al., 2008]. This leads to a non-convex
optimization problem with a combinatorial explosion of
label assignments. A wide spectrum of techniques have
been proposed to solve this optimization problem includ-
ing local combination search [Joachims, 1999], gradient
descent [Chapelle and Zien, 2005], convex-concave pro-
cedures [Collobert et al., 2006], and deterministic anneal-
ing [Sindhwani et al., 2006, Le et al., 2013, Nguyen et al.,
2014]. Although these approaches can somehow deal with
the combinatorial intractability, their requirement of re-
peated retraining the model renders them impractical for
many real-world problems.

At the intersection between kernel method and the spec-
tral graph theory, several existing works have attempted
to incorporate information carried in a spectral graph to
build a better kernel function [Smola and Kondor, 2003,
Zhu et al., 2004]. These works basically employed the
Laplacian matrix induced from the spectral graph to con-
struct the kernel function which can capture the features of
ambient space. Manifold regularization framework [Belkin
et al., 2006] exploited the geometry property of the proba-
bility distribution that generates data and incorporated it as
an additional regularization term. Two regularization terms

were introduced to control the complexity of the classifier
in the ambient space and to control the complexity mea-
sured by the geometry property of the data distribution.
However, the computational complexity for manifold reg-
ularization approach is cubical in the training size. Hence,
other approaches have been proposed to scale it up [Tsang
and Kwok, 2006, Melacci and Belkin, 2011]. In particu-
lar, the work of [Melacci and Belkin, 2011] (the Laplacian
Support Vector Machine or LapSVM) made use of precon-
ditioned conjugate gradient to solve the optimization prob-
lem of manifold regularization approach in the primal form.
This allows the computational complexity to be scaled up
to quadratic. However, this approach was to solve the cor-
responding optimization problem in the first dual layer in-
stead of in the primal form, hence renders the solution in-
feasible for online setting. Furthermore, LapSVM requires
storing a full Hessian matrix of the training size in the
memory, resulting in a quadratic memory complexity.

Recently, stochastic gradient descent (SGD) method
[Shalev-Shwartz and Singer, 2007, Kakade and Shalev-
Shwartz, 2008, Lacoste-Julien et al., 2012, Rakhlin et al.,
2012, Hazan and Kale, 2014] has emerged as a promising
framework to scale up fast and online learning algorithms.
SGD possesses three key advantages: i) very fast; ii) ca-
pacity to run in online mode; and iii) economic memory
usage. However, SGD-based methods are vulnerable to
the curse of kernelization [Wang et al., 2012], that is, the
model size linearly grows up with the training size accu-
mulated over time. To bound the model size, budget-based
algorithms limit the model size to a predefined budget B.
When the model size exceeds the budget, a budget main-
tenance procedure is invoked to decrease the model size
by one. Three widely-used budget maintenance strategies
are removal, projection, and merging. In the removal strat-
egy, the most redundant support vector is simply discarded
[Crammer et al., 2004, Cavallanti et al., 2007, Wang and
Vucetic, 2010, Le et al., 2016]. In the projection strat-
egy, the information of the most redundant support vector is
partly preserved through its projection onto the linear span
of the remaining support vectors [Wang and Vucetic, 2010,
Wang et al., 2012, Le et al., 2016]. The merging strategy
first selects two vectors, and then merges them into one be-
fore discarding them [Wang et al., 2012].

Leveraging on the advantages of kernel method, spectral
graph theory and stochastic gradient descent, we propose
in this paper a novel approach to semi-supervised learning,
termed as Budgeted Semi-supervised Support Vector Ma-
chine (BS3VM). To devise BS3VM, we first conjoin the
theory of kernel method with the framework of spectral-
graph-based semi-supervised learning. This allows us to
form a specific optimization problem which involves the
core optimization problem of kernel method and simulta-
neously enables the label propagation. We then apply SGD
method to solve the incurred optimization problem directly

in the primal form. To avoid the curse of kernelization, we
employ two budgets Bl and Bu for the labeled and unlabeled
portions. When either the labeled or unlabeled portion in
the model exceeds its budget, the corresponding budget
maintenance strategy will be invoked accordingly. We also
establish a rigorous convergence analysis for BS3VM. The
theoretical result shows that there exists a gap between the
proposed and optimal solutions. This gap can be explic-
itly quantified and crucially depends on the budget mainte-
nance rates and the coefficients accompanied with the re-
moved vectors. We further establish the extensive exper-
iments on several real-world datasets. The experimental
results show that our proposed BS3VM can offer a compa-
rable predictive performance while simultaneously achiev-
ing a significant computational speed-up comparing with
the state-of-the-art baselines.

2 Spectral-graph-based Semi-supervised
Learning

2.1 Spectral Graph

Spectral graph is a useful tool to capture the geometrical
and distributive information carried in data. It is usually an
undirected graph whose vertices are data instances. In the
context of semi-supervised learning, we are given a train-
ing set X = Xl ∪Xu where Xl = {(xi,yi)}l

i=1 specifies la-
beled data and Xu = {xi}l+u

i=l+1 identifies unlabeled data.
We can start constructing the spectral graph G = (V ,E)
with the vertex set V including all labeled and unlabeled
instances (i.e., V = {xi}l+u

i=1). An edge ei j = xix j ∈ E be-
tween two vertices xi, x j represents the similarity of these
two instances. Let µi j be the weight of this edge. The prin-
ciple is that if µi j is sufficiently large then two labels yi, y j
are expected to be the same. The set of edges G and its
weighs can be established using the following ways:

• Fully connected graph: every pair of vertices xi, x j
is connected by an edge. The edge weight decreases
when the distance

∥∥xi− x j
∥∥ increases. The Gaussian

kernel weight function widely used is given by

µi j = e−‖xi−x j‖2
/(2σ2)

where σ is known as the bandwidth parameter and
controls how quickly the weight decreases.

• k-NN: each vertex xi defines its k nearest neighbors
(k-NN) and makes an edge with one of its k-NN. The
Gaussian kernel weight function can be used for the
edge weight. Empirically, k-NN graphs with small k
tend to perform well.

• ε-NN: we connect xi and x j if
∥∥xi− x j

∥∥ ≤ ε . Again
the Gaussian kernel weight function can be used to
weight the connected edges. In practice, ε-NN graphs
are easier to construct than k-NN graphs.

It is noteworthy that when constructing the spectral graph,
we avoid connecting the edge of two labeled instances
since we do not need to propagate the label between them.

2.2 Label Propagation

After constructing the spectral graph, a semi-supervised
learning problem is cast to assign labels to the unlabeled
vertices. To this end, we need a mechanism to rationally
propagate labels from the labeled vertices to the unlabeled
ones. The key idea is that if µi j is large, then the two labels
yi, y j are expected to be the same.

To assign labels to the unlabeled instances, it is desirable to
learn a map f : X −→ Y where X and Y are domains
of data and label, respectively such that

• f (xi) is as closest to its label yi as possible for all la-
beled instances xi (1≤ i≤ l).

• f should be smooth on the whole graph G , i.e., if xi
is very close to x j (i.e., xi, x j are very similar or µi j
is large), the discrepancy between fi and f j (i.e., | fi−
f j|) is small.

Therefore, the following optimization problem is proposed
to solve

min
f

(
∞.

l

∑
i=1

(fi− yi)
2 + ∑

(i, j)∈E
µi j
∣∣ fi− f j

∣∣) (1)

where by convention we define ∞.0 = 0 and fi = f (xi).

The optimization problem in Eq. (1) peaks its minimum as
the first term is exactly 0 and the second term is as smallest
as possible. It is therefore rewritten as follows

min
f

(
∑

(i, j)∈E
µi j
∣∣ fi− f j

∣∣) (2)

s.t. : ∀l
i=1 : fi = yi

To extend the representation ability of the prediction func-
tion f , we relax the discrete function f to be a real-valued.
The drawback of the relaxation is that in the solution, f (x)
is now real-valued, hence does not directly correspond to
a label. This can however be addressed by thresholding
f (x) at zero to produce discrete label predictions, i.e., if
f (x)≥ 0, predict y = 1, and if f (x)< 0, predict y =−1.

3 Budgeted Semi-supervised Support Vector
Machine

In this section, we present our proposed Budgeted Semi-
supervised Support Vector Machine (BS3VM). We start

this section with the introduction of the optimization prob-
lem of BS3VM. We then propose SGD-based solution for
BS3VM with two budgets for the labeled and unlabeled
portions, followed by the convergence analysis.

3.1 BS3VM Optimization Problem

Let Φ : X −→H be a transformation from the input space
X to a Reproducing Hilbert Kernel Space (RHKS) H . We
use the function f (x)=wTΦ(x)−ρ =∑

l+u
i=1 αiK (xi,x)−ρ ,

where w = ∑
l+u
i=1 αiΦ(xi) and K (., .) is kernel function, to

predict label. Inspired from the optimization problem in
Eq. (2), the following optimization problem is proposed

min
w

(
1
2
‖w‖ 2 +

C
l

l

∑
i=1

ξi +
C′

|E | ∑
(i, j)∈E

µi j
∣∣ fi− f j

∣∣) (3)

s.t. : ∀l
i=1 : yi

(
wT

Φ(xi)−ρ
)
≥ 1−ξi

∀l
i=1 : ξi ≥ 0

where fi = wTΦ(xi)−ρ .

In the optimization formulation of Eq. (3), we mini-
mize 1

2 ‖w‖
2 to maximize the margin for motivating the

generalization capacity. At the same time, we mini-
mize ∑(i, j)∈E µi j

∣∣ fi− f j
∣∣ to make the prediction function

smoother on the spectral graph.

We rewrite the optimization problem in Eq. (3) in the pri-
mal form as follows1

min
w

(
1
2
‖w‖ 2 +

C
l

l

∑
i=1

l (w;zi)+
C′

|E | ∑
(i, j)∈E

µi jl1
(
wT

Φi j
))
(4)

where zi = (xi,yi), l (w;x,y) = max
{

0,1− ywTΦ(x)
}

,
Φi j = Φ(xi)−Φ(x j), lp (t) = |t|p with t ∈ R, and p≥ 1.

3.2 Budgeted SGD-based Solution for BS3VM

We now present the SGD-based solution for the optimiza-
tion problem in Eq. (4). To resolve the curse of kerneliza-
tion, we employ two budgets for the labeled and unlabeled
portions whose budget sizes are Bl and Bu, respectively.
When either the size of labeled or unlabeled portion in the
current model exceeds its budget, the corresponding budget
maintenance strategy is executed to maintain the model.

Let us denote the objective function in Eq. (4) by J (w).
At the iteration t, we construct the instantaneous objective
function Jt (w) which is defined as

Jt (w) =
1
2
‖w‖2 +Cl (w;xit ,yit)+C′µut vt l1

(
wT

Φut vt

)
where it is uniformly sampled from {1, ..., l} = [l] and the
edge (ut ,vt) connected xut and xvt is uniformly sampled
from the set of edges E .

1We can eliminate the bias ρ by simply adjusting the kernel.

Inspired from the SGD method, we update wt as

wt+1 = wt −ηtgt = wt −
1
t

J
′
(wt) =

t−1
t

wt

+
Cαtyit Φ(xit)

t
+C′

µut vt βt (Φ(xut)−Φ(xvt))

t
(5)

where αt = −l
′
o (wt ;xit ,yit), βt = −sign

(
wT

t Φut vt

)
, the

learning rate ηt =
1
t , and gt = J

′
(wt).

It is noteworthy that we denote o = wTΦ(x) which im-
plies l (w;x,y) is now a function of o, and l

′
o (w;x,y) is the

derivative of the loss function w.r.t the variable o.

The update formula shown in Eq. (5) is vulnerable to the
curse of kernelization, that is, the model size linearly grows
with the data size accumulated over time. To address this
issue, we propose to use two budgets for the labeled and
unlabeled portions whose sizes are Bl and Bu, respectively.

Algorithm 1 Algorithm for training BS3VM.

Input: Bl , Bu, K (., .) ,C,C
′
, σ

1: w1 = 0
2: bl = 0
3: bu = 0
4: for t = 1 to T do
5: Uniformly sample it from [l]
6: Uniformly sample the edge (ut ,vt) from E
7: Update

wt+1 =
t−1

t
wt +

C
t

αtyit Φ(xit)

+
C′

t
µut vt βt (Φ(xut)−Φ(xvt))

8: bl = bl +1+ Iut≤l + Ivt≤l
9: bu = bu + Iut>l + Ivt>l

10: if bl > Bl then
11: BM(wt+1,

′ l′) // labeled portion
12: bl = Bl
13: end if
14: if bu > Bu then
15: BM(wt+1,

′ u′) // unlabeled portion
16: bu = Bu
17: end if
18: end for
Output: wT = 1

T ∑
T
t=1 wt or wT+1

Algorithm 1 presents the pseudocode of BS3VM. The
model of BS3VM is represented through the labeled and
unlabeled portions whose current sizes are bl and bu, re-
spectively. When either bl or bu exceeds its budget, a
budget maintenance procedure is triggered to maintain the
model size (cf. lines 11 and 15 in Algorithm 1). We have
two kinds of budget maintenance (BM) which involve the
labeled and unlabeled portions, respectively. To differen-
tiate these two kinds of BM, we employ the second argu-

ment in BM procedure wherein ′l′ involves BM for the la-
beled portion and ′u′ involves BM for the unlabeled por-
tion. In addition, two options (i.e., ′l′ or ′u′) involve the
same functional activity. The only difference is that they
refer to either labeled or unlabeled portions. In addition,
we utilize the fully connected spectral graph wherein the
edge weights are computed on the fly as necessary.

3.3 Budget Maintenance Strategy

In this section, we present the BM strategies used in this
paper which are removal and projection. The original pro-
jection strategy can partly preserve the information of the
removed vectors and hence, usually offers better predictive
performance than removal strategy. However, it requires a
costly computation of the inverse of a matrix whose dimen-
sion is either Bl or Bu. To resolve this computational bur-
den, we propose two special projection strategies which are
nearest-neighbor projection (NNP) and random-neighbor
projection (RNP). At the outset of this section, we define
the index sets of the labeled and unlabeled portions at the
iteration t as Il

t ⊂ [l]2 and Iu
t ⊂ [l +1 : l +u]3, respectively.

Hence, the current model wt can be written as

wt = ∑
i∈Il

t

δiΦ(xi)+ ∑
i∈Iu

t

δiΦ(xi)

Both the removal and projection strategies involve the vec-
tors whose coefficients have smallest absolute values in the
labeled and unlabeled portions. We now define

lt = argmin
i∈Il

t

|δi| and ut = argmin
i∈Iu

t

|δi|

3.3.1 Removal

In the removal strategy, we simply remove Φ(xlt) or
Φ(xut). This strategy is efficient, but the information of
the removed vectors are completely vanished.

3.3.2 Projection

To keep the information of the removed vector, the origi-
nal projection strategy performs a projection of this vector
onto the linear span of the remaining vectors. Although this
full projection can efficiently preserve the information of
the removed vector, it requires a costly computation of the
inverse of Bl (or Bu) by Bl (or Bu) matrix which costs cu-
bically over the budget sizes. Furthermore, decreasing the
budget sizes to reduce the computational cost may signifi-
cantly compromise the learning performance. To speed up
the computation and omit the computational dependence
of the projection on the budget sizes, we propose two vari-
ations of the projection which are nearest-neighbor projec-

2We denote [l] = {1,2, . . . , l}.
3We denote [l +1 : l +u] = {l +1, l +2, . . . , l +u}.

tion (NNP) and random-neighbor projection (RNP) strate-
gies. For brevity in presentation, we denote

xrt =

{
xlt for the option ’l’ of BM
xut for the option ’u’ of BM

Nearest-Neighbor Projection (NNP). To efficiently pre-
serve the information of xrt , before removing it, we find k-
NN of xrt and do projection of xrt onto the linear span of
this set. Our intuition is that if the vector x falls into the
k-NN of xrt then x is close to xrt ; consequently the induced
dot product K (x,xrt) = Φ(x)T Φ(xrt) is high and hence,
Φ(x) can largely keep the information of Φ(xrt).

Random-Neighbor Projection (RNP). To further speed
up the NNP strategy, we propose random-neighbor pro-
jection (NNP) wherein we first randomly choose k vectors
from the support set and then project Φ(xrt) onto the linear
span of these vectors to preserve its information.

3.4 Convergence Analysis

In what follows we present the convergence analysis for
BS3VM. Given an instance x, in a BM procedure, we re-
place this instance by its approximation A(x) which incurs
the difference vector D(x) = Φ(x)−A(x). In particular,
with the removal strategy, A(x) = 0, ∀x, with the full pro-
jection strategy, A(x) = PL (x) , ∀x where PL (x) specifies
the linear span of the remaining vectors in the support set,
and with NNP or RNP strategy, A(x) = PL (x) , ∀x where
PL (x) specifies the linear span of k corresponding vectors.
We further define w∗ = argmin

w
J (w). For simplification,

we assume that ‖Φ(x)‖= K (x,x)1/2 = 1, ∀x.

Let us denote two Bernoulli random variables which indi-
cate whether the budget maintenances for the labeled por-
tion (i.e., the option ’l’) and for the unlabeled portion (i.e.,
the option ’u’) are performed by Zl

t , Zu
t . The update rule is

wt+1 = wt −ηtgt −Zl
t δlt D(xlt)−Zu

t δut D(xut) (6)

It is noteworthy that the update rule in Eq. (6) covers all
BM strategies. In addition, our convergence analysis can
be applied to all aforementioned BM strategies but for com-
prehensibility, we present the theoretical results for the re-
moval strategy.

Lemma 1 establishes an upper bound on ‖wt‖, followed by
Lemma 2 which establishes an upper bound on ‖gt‖.
Lemma 1. The following statement holds

‖wt‖ ≤C+2C
′
, ∀t

Lemma 2. The following statement holds

‖gt‖ ≤ G = 2
(

C+2C
′
)
, ∀t

In Algorithm 1, the labeled-vertex sampling (cf. line 5) up-
dates the coefficient of one labeled support vector while the
edge sampling (cf. line 6) updates two coefficients of two
support vectors. To proceed the convergence analysis, we
assume that before removed, the coefficient of the labeled
vector Φ(xlt) is updated at most m times via the labeled-
vertex sampling and n times via the edge sampling and
the coefficient of the unlabeled vector Φ(xut) is updated
at most p times via the edge sampling. Particularly, in the
context of online learning, the labeled vector Φ(xlt) might
be sampled from a continuous distribution and so might be
the edge. It follows that m = n = p = 1 and the assumption
is naturally valid.
Lemma 3. Given two positive integer numbers m,n, as-
sume that before removed, the coefficient of Φ(xlt) is up-
dated at most m times via the labeled-vertex sampling and
n times via the edge sampling. We then have

|δlt | ≤
(

mC+nC
′
)
/t, ∀t

Lemma 4. Given a positive integer number p, assume that
before removed, the coefficient of Φ(xut) is updated at most
p times via the edge sampling. We then have

|δut | ≤ pC
′
/t, ∀t

Lemma 5 establishes an upper bound on ‖ht‖ , fol-
lowed by Lemma 6 establishing an upper bound on

E
[
‖wt −w∗‖2

]1/2
.

Lemma 5. We define ρi =
δi
ηt

= tδi and ht = Zl
t ρlt D(xlt)+

Zu
t ρut D(xut). Then we have

‖ht‖ ≤ H = mC+(n+ p)C
′
, ∀t

Lemma 6. The following statement holds

E
[
‖wt −w∗‖2

]1/2
≤W = H +

√
H2 +(G+H)2, ∀t

We can now state Theorem 7 which establishes an upper
bound on the regret. This theorem also reveals that there
exists a gap between the rendered and optimal solutions.
This gap crucially depends on the budget maintenance rates
for the labeled and unlabeled portions.
Theorem 7. Let us consider the running of Algorithm 1.
The following statement holds

E [J (wt)]− J (w∗)≤ 1
T

T

∑
t=1

E [J (wt)]− J (w∗)

≤ (G+H)2 (log T +1)
2T

+
W
T

T

∑
t=1

P
(

Zl
t = 1

)
E
[
ρ

2
lt

]1/2

+
W
T

T

∑
t=1

P(Zu
t = 1)E

[
ρ

2
ut

]1/2

where ρlt = δlt/ηt and ρut = δut/ηt .

Remark 8. The theoretical result gained in Theorem 7
also encompasses the standard analysis. In particular,
if the BM procedures never happen (i.e., P

(
Zl

t = 1
)
=

P(Zu
t = 1) = 0, ∀t), we achieve the logarithm regret bound

(G+H)2(log T+1)
T . Furthermore, to minimize the gap, we

should choose to remove the vectors with the smallest ab-
solute coefficients (since ρlt =

δlt
ηt

and ρut =
δut
ηt

).

4 Experiments

We establish quantitative experiments to investigate the in-
fluence of the budget sizes (i.e., Bl and Bu) to the accuracy
and training time, and to prove the accuracy and efficiency
of our proposed BS3VM on several benchmark datasets.
The data statistics is given in Table 1. To simulate the semi-
supervised learning context, we randomly remove 80% and
90% data labels in each dataset. We create three versions of
our approach: BS3VM with the removal strategy (BS3VM-
R), BS3VM with the nearest-neighbor projection strategy
(BS3VM-NNP), and BS3VM with the random-neighbor
projection strategy (BS3VM-RNP).

Baselines. In order to investigate the efficiency and accu-
racy of BS3VM, we compare with the following baselines:

• LapSVM [Melacci and Belkin, 2011]: Laplacian Sup-
port Vector Machine is a state-of-the-art method in
semi-supervised classification based on manifold reg-
ularization framework. It can reduce the computa-
tional complexity from O

(
n3
)

to O
(
n2
)

where n is
the training size using the preconditioned conjugate
gradient and an early stopping strategy.

• CCCP-TSVM [Collobert et al., 2006]: A kernel-based
semi-supervised method was proposed to solve the op-
timization problem using convex-concave procedures.

All codes of the baselines are achieved from the corre-
sponding authors. All compared methods run on a Win-
dows machine with the configuration of 24-vcore CPU
Xeon 3.47 GHz and 96GB RAM.

Hyperparameter Setting. The standard RBF kernel,

given by K
(

x,x
′
)

= e−γ

∥∥∥x−x
′∥∥∥2

, is used in the ex-
periments. For LapSVM, we use the parameter set-
tings proposed in [Melacci and Belkin, 2011], wherein
the parameters γA and γI are searched in the range{

10−6, 10−4, 10−2, 10−1, 1, 10, 100
}

. In all experiments
with LapSVM, we utilize the preconditioned conjugate gra-
dient version, which is more suitable for the LapSVM
optimization problem [Melacci and Belkin, 2011]. For
CCCP-TSVM, we use the setting CCCP-TSVM|s=0

UC∗=LC.
The trade-off parameter C is tuned in the range{

2−5,2−3, . . . ,23,25
}

and the width of kernel δ is varied in

the range
{

2−5,2−3, . . . ,23,25
}

. Regarding our proposed
BS3VM, the bandwidth σ of Gaussian kernel weight func-
tion is set as to 1

2σ2 = γ , and the second trade-off parameter
C
′

is set to be equal the first trade-off parameter C. We em-
ploy the standard training-testing split with 90% of data for
training and 10% of data for testing. We run 5-fold cross-
validation, and then select the parameter set that yields the
highest classification accuracy. We set the number of iter-
ations T in BS3VM to d0.01× (l +u)e for the large-scale
datasets such as MUSHROOMS, W5A, W8A, COD-RNA,
and COVTYPE, and to d0.1× (l +u)e for the remaining
datasets. Each experiment is carried out five times to com-
pute the average of the reported measures.

Dataset Dimension Size
G50C 50 551

COIL20 1,014 145
USPST 256 601

AUSTRALIAN 14 690
A1A 123 1,605

MUSHROOM 112 8,124
SVMGUIDE3 21 1,243
SVMGUIDE2 20 391

W5A 300 9,888
W8A 300 49,749

COR-RNA 8 59,535
COVTYPE 54 100,945

Table 1: The statistics of the experimental datasets.

Experimental Results. The experimental results are re-
ported in Tables 2 and 3. For readability, we emphasize
in boldface the highest accuracy and in italics the short-
est training time. Regarding the classification accuracy,
our proposed BS3VMs are comparable with other base-
lines and CCCP-TSVM is slightly better than others. How-
ever, our BS3VMs scale impressively with the large-scale
datasets whilst CCCP-TSVM scale unsatisfactorily. The
version BS3VM-R wins the shortest training time over
all experimental datasets, except for the dataset W5A un-
der 80%-unlabeled setting. Besides, two other versions
BS3VM-NNP and BS3VM-RNP also scale efficiently with
the training size, and their training times only slightly ex-
ceed those of BS3VM-R on all datasets. This implies that
the simplified projection strategies (i.e., NNP and RNP) do
not incur a significant computational burden. Interestingly,
BS3VM-R always offers comparable accuracies comparing
with BS3VM-NNP and BS3VM-RNP, which indicates that
the information loss occurring in the removal of vector in
BS3VM-R is tolerant. It is noteworthy that although we
only set small budgets for all datasets (i.e., 50 or 100), the
classification accuracies attained by three versions on all
datasets are still remarkable. This fact confirms the effec-
tiveness of our proposed budget maintenance strategies in
eliminating the redundant vectors and in keeping the core
vectors which sufficiently characterize the training set.

Datasets [B] BS3VM-R BS3VM-NNP BS3VM-RNP LapSVM CCCP
Acc Time Acc Time Acc Time Acc Time Acc Time

G50C [50] 95.45 0.131 95.45 0.14 95.45 0.133 96.2 0.29 98.18 0.141
COIL20 [50] 100 0.083 100 0.094 100 0.088 100 0.39 98.1 1.078
USPST [50] 99.17 0.091 99.17 0.217 99.17 0.134 99.2 0.28 99.58 0.61

AUSTRALIAN [50] 88.41 0.041 87.68 0.098 86.96 0.085 85.9 0.94 81.88 0.002
A1A [50] 80.1 0.146 78.19 0.192 79.44 0.167 80.1 0.21 79.75 0.953

MUSHROOM [50] 96.12 0.506 96.86 0.874 97.05 0.566 98.8 5.25 100 28.078
SVMGUIDE3 [50] 78.23 0.056 77.02 0.289 78.23 0.116 75.8 0.33 81.45 1.421
SVMGUIDE2 [50] 76.12 0.02 79.1 0.03 86.57 0.024 85.1 0.41 90.27 0.078

W5A [50] 96.46 1.732 96.97 2.471 97.27 2.348 97 1.18 98.33 146.28
W8A [100] 97.02 18 97.02 18.15 96.8 18.1 97.4 26.15 97.1 1,380.16

COR-RNA [100] 85.53 0.545 85.95 0.937 86.53 0.836 85.7 13.14 88.47 3,900.43
COVTYPE [100] 87.07 8.273 84.56 8.931 84.12 8.51 81.8 19.75 85.91 5,958.07

Table 2: Cross-validation accuracies (in %) and training times (in second) on the experimental datasets when 80% of data
labels are removed. We set the same value for Bl and Bu which is the notation [B] next to the dataset name.

Datasets [B] BS3VM-R BS3VM-NNP BS3VM-RNP LapSVM CCCP
Acc Time Acc Time Acc Time Acc Time Acc Time

G50C [50] 95.45 0.129 94.55 0.128 95.45 0.131 94.5 0.29 94.55 0.509
COIL20 [50] 92.86 0.011 96.43 0.025 100 0.015 100 0.16 100 0.366
USPST [50] 100 0.012 100 0.032 100 0.017 99.6 0.38 100 2.17

AUSTRALIAN [50] 86.23 0.004 85.51 0.013 85.51 0.009 86.2 0.32 89.85 0.031
A1A [50] 82.24 0.018 81.26 0.035 81.62 0.024 81.6 0.24 82.37 0.047

MUSHROOM [50] 91.38 0.09 91.02 0.141 94.29 0.105 97.5 0.334 99.96 8.82
SVMGUIDE3 [50] 77.82 0.005 77.42 0.017 77.02 0.005 77.9 0.28 83.37 0.054
SVMGUIDE2 [50] 82.09 0.004 79.1 0.007 79.1 0.005 80.6 0.38 85.12 0.02

W5A [50] 97.17 0.329 97.27 0.412 91.17 0.323 97.5 0.521 97.39 7.41
W8A [100] 97.03 3.215 96.93 3.982 97.01 3.79 97.32 9.15 97.18 379.06

COR-RNA [100] 83.33 0.519 82.73 0.82 92.92 0.682 86.1 11.42 89.74 326.72
COVTYPE [100] 80.98 4.628 86.89 5.142 86.38 4.897 80.2 34.02 85.75 1,275.22

Table 3: Cross-validation accuracies (in %) and training times (in second) on the experimental datasets when 90% of data
labels are removed. We set the same value for Bl and Bu which is the notation [B] next to the dataset name.

(a) The variation of the classification accuracy. (b) The variation of the training time.

Figure 1: The variations of the classification accuracy and training time on the dataset AUSTRALIAN when two budget
sizes Bl and Bu are varied.

(a) The variation of the classification accuracy. (b) The variation of the training time.

Figure 2: The variations of the classification accuracy and training time on the dataset COIL20 when two budget sizes Bl
and Bu are varied.

(a) The variation of the classification accuracy. (b) The variation of the training time.

Figure 3: The variations of the classification accuracy and training time on the dataset G50C when two budget sizes Bl and
Bu are varied.

(a) The variation of the classification accuracy. (b) The variation of the training time.

Figure 4: The variations of the classification accuracy and training time on the dataset SVMGUIDE3 when two budget
sizes Bl and Bu are varied.

Influence of Budget Sizes to Learning Performance.
We investigate the influence of the budget sizes (i.e., Bl
and Bu) to the learning performance. We choose to conduct
a simulation study on 4 datasets AUSTRALIAN, COIL20,
G50C, and SVMGUIDE3. For each dataset, we simulta-
neously vary the labeled budget size Bl and the unlabeled
budget size Bu to measure the classification accuracy and
the training time. We visualize the classification accuracies
and the training times using heat maps shown in Figures 1,
2, 3, and 4. It can be observed that when increasing the bud-
get sizes (i.e., Bl and Bu), the classification accuracy tends
to increase and the training time tends to decrease or fluctu-
ate. The reason is that large budget sizes enrich the expres-
siveness of the model, and hence boost the accuracy. In the
meanwhile, when increasing the budget sizes, there appears
a trade-off between the computational cost in each iteration
and the budget maintenance rate which fluctuates the train-
ing time depending on which factor dominates. In prac-
tice, using these heat maps, one can conveniently find the
optimal pair (Bl ,Bu) that balances the classification accu-
racy and the training time for example (50,300) for AUS-
TRALIAN, (50,50) for COIL20, (40,320) for G50C, and
(60,300) for SVMGUIDE3. Another observation is that
the increases of Bl and Bu fairly equally affect the classifi-
cation accuracy while increasing Bu strongly affects to the
training time than increasing Bl . Finally, the training time
becomes worst if we set one budget size to a small value
and gradually increase another.

5 Conclusion

In this paper, we have proposed Budgeted Semi-supervised
Support Vector Machine (BS3VM) for semi-supervised
learning purpose. We first leverage the theory of kernel
method with the framework of spectral-graph-based semi-
supervised learning to form a specific optimization prob-
lem, which involves the core optimization problem of ker-
nel method for learning on labeled data and simultane-
ously allows the label propagation. We then apply the
SGD method to directly solve such optimization problem
in the primal form. To resolve the curse of kernelization,
we employ two budgets for the labeled and unlabeled por-
tions in the model. We further establish a rigorous conver-
gence analysis for BS3VM. The theoretical results reveal
that there exists a gap between the rendered and optimal
solutions. This gap crucially depends on the budget main-
tenance rates and the coefficients accompanied with the re-
moved vectors. Finally, we conduct extensive experiments
on several benchmark datasets. The experimental results
show that BS3VM yields a comparable classification accu-
racy while simultaneously achieving a significant compu-
tational speed-up comparing with the state-of-the-art base-
lines.

References
A. Azran. The rendezvous algorithm: Multiclass semi-

supervised learning with markov random walks. In Pro-
ceedings of the 24th International Conference on Ma-
chine Learning, ICML 2007, pages 49–56, 2007.

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regu-
larization: A geometric framework for learning from la-
beled and unlabeled examples. J. Mach. Learn. Res., 7:
2399–2434, December 2006.

A. Blum, J. D. Lafferty, M. R. Rwebangira, and R. Reddy.
Semi-supervised learning using randomized mincuts. In
ICML, volume 69, 2004.

G. Cavallanti, N. Cesa-Bianchi, and C. Gentile. Track-
ing the best hyperplane with a simple budget perceptron.
Machine Learning, 69(2-3):143–167, 2007.

O. Chapelle and A. Zien. Semi-supervised classification by
low density separation, 2005.

O. Chapelle, V. Sindhwani, and S.S. Keerthi. Optimization
techniques for semi-supervised support vector machines.
Journal of Machine Learning Research, 9:203–233, June
2008.

R. Collobert, F. Sinz, J. Weston, L. Bottou, and
T. Joachims. Large scale transductive svms. Journal
of Machine Learning Research, 2006.

C. Cortes and V. Vapnik. Support-vector networks. In Ma-
chine Learning, pages 273–297, 1995.

K. Crammer, J. Kandola, and Y. Singer. Online classifi-
cation on a budget. In Advances in Neural Information
Processing Systems 16. MIT Press, 2004.

P. Duong, V. Nguyen, M. Dinh, T. Le, D. Tran, and W. Ma.
Graph-based semi-supervised support vector data de-
scription for novelty detection. In 2015 International
Joint Conference on Neural Networks (IJCNN), pages 1–
6, July 2015.

E. Hazan and S. Kale. Beyond the regret minimization bar-
rier: Optimal algorithms for stochastic strongly-convex
optimization. J. Mach. Learn. Res., 15(1):2489–2512,
January 2014. ISSN 1532-4435.

T. Joachims. Transductive inference for text classification
using support vector machines. In International Con-
ference on Machine Learning (ICML), pages 200–209,
Bled, Slowenien, 1999.

S. Kakade and Shalev-Shwartz. Mind the duality gap: Log-
arithmic regret algorithms for online optimization. In
NIPS, 2008.

N. Kasabov, D. Zhang, and P.S. Pang. Incremental learning
in autonomous systems: evolving connectionist systems
for on-line image and speech recognition. In Advanced
Robotics and its Social Impacts, 2005. IEEE Workshop
on, pages 120 – 125, june 2005.

S. Lacoste-Julien, M. W. Schmidt, and F. Bach. A simpler
approach to obtaining an o(1/t) convergence rate for the
projected stochastic subgradient method. CoRR, 2012.

T. Le, D. Tran, T. Tran, K. Nguyen, and W. Ma. Fuzzy
entropy semi-supervised support vector data description.
In 2013 International Joint Conference on Neural Net-
works (IJCNN), pages 1–5, Aug 2013.

T. Le, V. Nguyen, D. T. Nguyen, and D. Phung. Nonpara-
metric budgeted stochastic gradient descent. In Proceed-
ings of the 19th International Conference on Artificial
Intelligence and Statistics, pages 654–662, 2016.

S. Melacci and M. Belkin. Laplacian support vector ma-
chines trained in the primal. J. Mach. Learn. Res., 12:
1149–1184, jul 2011.

V. Nguyen, T. Le, T. Pham, M. Dinh, and T. H. Le. Kernel-
based semi-supervised learning for novelty detection.
In 2014 International Joint Conference on Neural Net-
works (IJCNN), pages 4129–4136, July 2014.

A. Rakhlin, O. Shamir, and K. Sridharan. Making gradient
descent optimal for strongly convex stochastic optimiza-
tion. In ICML 2012, pages 449–456, 2012.

S. Shalev-Shwartz and Y. Singer. Logarithmic regret al-
gorithms for strongly convex repeated games. In The
Hebrew University, 2007.

V. Sindhwani, S.S. Keerthi, and O. Chapelle. Determin-
istic annealing for semi-supervised kernel machines. In
Proceedings of the 23rd international conference on Ma-
chine learning, ICML 2006, pages 841–848, 2006.

A. J. Smola and I. R. Kondor. Kernels and regularization
on graphs. In Proceedings of the Annual Conference on
Computational Learning Theory, 2003.

I. W. Tsang and J. T. Kwok. Large-scale sparsified mani-
fold regularization. pages 1401–1408. MIT Press, 2006.

Z. Wang and S. Vucetic. Online passive-aggressive algo-
rithms on a budget. In AISTATS, volume 9, pages 908–
915, 2010.

Z. Wang, K. Crammer, and S. Vucetic. Breaking the curse
of kernelization: Budgeted stochastic gradient descent
for large-scale svm training. Journal of Machine Learn-
ing Research, 13(1):3103–3131, 2012.

X. Zhu, J. S. Kandola, Z. Ghahramani, and J. D. Laf-
ferty. Nonparametric transforms of graph kernels for
semi-supervised learning. In NIPS 2004, pages 1641–
1648, 2004.

