Finite Sample Complexity of Rare Pattern Anomaly Detection

Md Amran Siddiqui, Alan Fern, Thomas G. Dietterich and Shubhomoy Das School of EECS Oregon State University

Anomaly Detection

• Goal: Identify rare or strange objects

Challenges

• Every object is unusual in some ways!

• Anomaly detection in high-dimension seems impossible 😕

State-of-the-art

- Often perform very well with a surprisingly small number of examples ⁽ⁱ⁾
- Performance depends on:
 - ✓ Sample Complexity
 - ✓ Notion of Anomaly

Notion of Anomaly

Statistical

- Algorithm/representation specific
- Example: density of a point

Application specific

• Example: A threat in security

Motivation

Many state-of-the-art algorithms [Chen et al. 2015, Liu et al. 2008, Wu et al. 2014, Tomas Pevny 2016] exhibit the following steps:

 Choose a "pattern space" (analogous to hypothesis space)

Motivation

Many state-of-the-art algorithms [Chen et al. 2015, Liu et al. 2008, Wu et al. 2014, Tomas Pevny 2016] exhibit the following steps:

- Choose a "pattern space" (analogous to hypothesis space)
- 2. Monitor the empirical frequency of the patterns
- 3. Compute anomaly score based on the frequencies

Rare Pattern Anomaly Detection (RPAD)

Rare Pattern Anomaly Detection (RPAD)

- $\boldsymbol{\mathcal{H}}$ Pattern space, $\{h_1, h_2, h_3\}$
- $\boldsymbol{\mathcal{H}}[\boldsymbol{x}] \quad \begin{array}{l} \text{Set of patterns that contain } \boldsymbol{x}, \\ \{h_1, h_2\} \end{array}$
- $\boldsymbol{f}(\boldsymbol{h}) \quad \begin{array}{l} \text{Frequency of a pattern } h, \\ f(h_1) < f(h_3) \end{array}$
 - $oldsymbol{ au}$ Detection threshold

A point x is

τ $-outlier : If <math>\mathcal{H}[x]$ contains an h with f(h) ≤ τ**τ**-common : Otherwise

Learning Protocol

- Assumption: Input is generated from a distribution ${\mathcal P}$ i.e. $x \sim {\mathcal P}$
- Let, \mathcal{A} be an anomaly detection algorithm
- ${\mathcal A}$ can draw a training set ${\mathcal D}$ of any size ${\mathcal N}$ from ${\mathcal P}$
- Given a new point $x : \mathcal{A}$ has to either "detect" or "reject"
- Ideally, *A* is "correct":
 - if ${\cal A}$ "detects" all au-outliers and "rejects" all au-commons

Supervised PAC Learning Framework

- \bullet Consider a hypothesis space ${\mathcal H}$ i.e. set of linear separators
- Goal: Learn a hypothesis that will make small error with high probability

- Sample complexity is related to the complexity of \mathcal{H} : VC-dimension
- What is analogous for Anomaly Detection?

PAC-RPAD Framework

Definition 1. (**PAC-RPAD**) Detection algorithm \mathcal{A} is PAC-RPAD if for any \mathcal{P} and any τ , with probability at least $1 - \delta$ (over draws of \mathcal{D}), \mathcal{A} detects all τ -outliers and rejects all $(\tau + \epsilon)$ -commons.

Sample efficient : if \mathcal{A} draws polynomial (in $d, \frac{1}{\delta}$ and $\frac{1}{\epsilon}$) number of training examples from \mathcal{P}

RAREPATTERNDETECT Algorithm

Input:

- δ : Probability tolerance
- ϵ : Error tolerance
- τ : Detection threshold
- 1. Draw a training set \mathcal{D} of $\mathcal{N}(\delta, \epsilon)$ instances from \mathcal{P}
- 2. Decision Rule for any *x*:

"detect": If *x* has a *τ*-rare pattern **"reject"**: Otherwise

Is RAREPATTERNDETECT Sample efficient?

Sample Complexity of RAREPATTERNDETECT

• For finite pattern space \mathcal{H} :

$$\mathcal{N}(\delta,\epsilon) = O\left(\frac{1}{\epsilon^2}\left(\log|\mathcal{H}| + \log\frac{1}{\delta}\right)\right)$$

- For infinite pattern space \mathcal{H} , but bounded VC-dimension $\mathcal{V}_{\mathcal{H}}$: $\mathcal{N}(\delta,\epsilon) = O\left(\frac{1}{\epsilon^2}\left(\mathcal{V}_{\mathcal{H}}\log\frac{1}{\epsilon^2} + \log\frac{1}{\delta}\right)\right)$
- Polynomial in $\mathcal{V}_{\mathcal{H}}$, $\frac{1}{\delta}$ and $\frac{1}{\epsilon}$
- For the example spaces, $\mathcal{V}_{\mathcal{H}}$ are polynomial in data dimension d
- Hence, ${\mathcal H}$ can be learned efficiently

Pattern Spaces for Anomaly Detectors

• Half-spaces

✓The half-space mass algorithm [Chen et al. 2015]

Axis aligned hyper rectangle

✓ Isolation Forest [Liu et al. 2008] and RS-Forest [Wu et al. 2014]

• Stripes

✓ Light weight online detectors of anomaly (LODA) [Tomas Pevny 2016]

• Ellipsoids and shells

✓ Density based detectors, for example, multivariate Guassians

Axis Aligned Hyper Rectangles

- An axis aligned hyper rectangle (bounded or unbounded) is defined by k boundaries in d-dimensional space
- Isolation Forest [Liu et al. 2008] and RS-Forest [Wu et al. 2014]

• VC-dimension = O(d)

Stripes

- A stripe pattern is an intersection of two parallel half-spaces with opposite orientations
- Light weight online detectors of anomaly (LODA) [Tomas Pevny 2016]

Ellipsoidal Shells

- An Ellipsoidal shell is a subtraction between two ellipsoids with same center and shape but different volumes
- Density based detectors, for example, multivariate Gaussians

• VC-dimension = $O(d^2)$

Experiments

- What are the qualitative properties of the learning curves of RAREPATTERNDETECT?
- Is RAREPATTERNDETECT competitive?
 - ✓ State-of-the-art anomaly detector Isolation Forest (IF)
 - ✓ Pattern space: axis aligned hyper rectangles

Dataset	Dimension	# Instances	% Anomaly
Covertype	10	286K	0.9%
Particle	50	130K	5%
Shuttle	9	58K	5%

Pattern Space Generation

- Construct a forest of 250 random decision trees
- Each internal node is a threshold test on a feature
- Each tree node is a pattern i.e. an axis aligned hyper rectangle
- depth (k) of the node determines the complexity of the pattern
- \mathcal{H}_k : Set of patterns up to k threshold tests, for example, $\mathcal{H}_2 = \{h_1, h_2\}$

RAREPATTERNDETECT Learning Curve

Comparison

Summary

- We developed a PAC framework to better understand the sample complexity of modern anomaly detection
- To the best of our knowledge, this is the first study of empirical learning curves for anomaly detection
- A simple PAC-RPAD algorithm is competitive with a state-of-the-art algorithm

Questions?

Extra Slides

Prior Work

- Sample Complexity for Anomaly Detection:
 - ✓ One Class SVM (Scholkopf et al. 2001)
 - ✓ Learning Minimum Volume Sets (Scott & Nowak 2006)

- Find a region in the input space that capture the normal points
- NOT competitive with pattern based approaches (Emmott et al. 2013)

Rare Pattern Anomaly Detection (RPAD)

• A pattern simply can be a specific color or size

Size

• Identifies anomaly based on the characteristics of rare patterns

Half-spaces

• A half-space pattern is an oriented *d*-dimensional hyperplane

• The half-space mass algorithm [Chen et al. 2015] operates in this pattern space

• Anomaly score : Mean frequency estimates of random half-spaces containing the query point *x*

LODA

- Construct T sparse random projections in of \mathcal{R}^d
- Each time, Estimate 1D histogram density from projected input data
- Anomaly score: geometric average of the *T* densities corresponding a query point

- Each bin of the histograms corresponds to a stripe in \mathcal{R}^d
- The perpendicular direction of the projection defines the orientation of the stripe
- Bin width corresponds to the width of the stripe

