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Directed graphical models
A directed acyclic graph G = (V, E) whose nodes are random variables
Absent edges represent conditional independence assumptions

X

Z

Y

P(X, Y, Z) = P(X)P(Y|X)P(Z|X, Y)

= P(X)P(Y)P(Z|X, Y), due to model constraints
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Semi-Markovian models
A Markovian model with some nodes hidden
Hidden nodes have no parents

X Z Y

U

Observed distribution

P(X, Y, Z) ··=
∑
u

P(U = u)P(X|U = u)P(Z|X)P(Y|X,U = u)

= P(X)P(Z|X)P(Y|Z,X)
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Interventions without experiments [Pearl, 1995]

XSmoking

U

Genetic factors

Y Lung disease

Observational distribution
P(X, Y)∑

u

P(U = u)P(X|u)P(Y|X,u)

→
XSmoking

U

Genetic factors

Y Lung disease

Intervention distribution
P(Y | do(X = x))∑

u

P(U = u)P(Y|X = x, u)

Identification problem [Pearl, 1995]

When is P(Y = y| do(X = x)) computable given the observed distribution P?

Not always!
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Identifiable models

But sometimes it is. . .

X Z Y

U

Identification

P(Y | do(X = x)) =
∑
z

P(Z = z|X = x)

·
∑
x′

P(X = x ′)P(Y = y | Z = z, X = x ′).
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Deciding identifiability
A long line of work culminated in the following striking result

Complete Identification [Huang and Valtorta, 2008; Shpitser and Pearl, 2006, . . . ]

An efficient algorithm with the following characteristics exists:
Input: Semi-Markovian graph G = (V, E,U,D), disjoint subsets X, Y of V

Output: Either
A rational map

ID(G,X, Y) : P(V) 7→ P(Y | do(X)), or

A certificate of non-existence of such a map

Note
The observed distribution P is not an input to the algorithm
The output is not numerical, but a symbolic, exact description of the map
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An efficient algorithm with the following characteristics exists:
Input: Semi-Markovian graph G = (V, E,U,D), disjoint subsets X, Y of V

Output: Either
A rational map

ID(G,X, Y) : P(V) 7→ P(Y | do(X)), or

A certificate of non-existence of such a map

ID assumes. . .
Exact knowledge of observed distribution P
Exact knowledge of the model G (no “missing” edges)
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Stability of the identification map

G = (V, E,U,D) is a semi-Markovian graph
ID(G,X, Y) : P(V) 7→ P(Y | do(X))

Statistical stability
How sensitive is ID(G,X, Y) to small perturbations in the input P?

Model Stability
How sensitive is ID(G,X, Y) to extra assumptions (missing edges) in G?
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Perturbations in the input: Condition number

G = (V, E,U,D) is a semi-Markovian graph
ID(G,X, Y) : P(V) 7→ P(Y | do(X))

Suppose instead of P, we get P̃ as input to ID(G,X, Y), such that

(1− ε) 6
P̃(·)
P(·)

6 (1+ ε) ≡ RelP 6 ε, in ‖ · ‖∞ norm

Condition number

κID(G,X,Y) =

lim
ε↓0

sup

RelP6ε

RelP(Y| do(X))
RelP

How large is the relative error in the output compared to that in the input?

e.g., κ for computing conditional probabilities from P is at most 2.
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Perturbations in the input: Inaccurate models

G = (V, E,U,D) is a semi-Markovian graph
ID(G,X, Y) : P(V) 7→ P(Y | do(X))

Suppose instead of P, we get P̃ as input to ID(G,X, Y), such that

(1− ε) 6
P̃(·)
P(·)

6 (1+ ε) ≡ RelP 6 ε, in ‖ · ‖∞ norm

Ignoring “weak” edges
The same framework of perturbations to P can handle “model stability” as well!

[see paper for details]
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Results: Condition of causal identification

Theorem: There exist highly ill-conditioned examples!
There exists an infinite sequence of semi-Markovian graphs Gn with n observed
vertices and disjoint subsets Sn and Tn of the observed vertices such that

κID(Gn,Tn,Sn) = exp
(
Ω

(
n0.49

))
This is a property of the ID map itself, not of an algorithm computing it!

On these examples, any algorithm computing ID may lose
Ω

(
n0.49

)
bits of precision

Condition vs. Stability
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Results: Condition of causal identification

Theorem: An important class of well-conditioned examples
Let G be a semi-Markovian graph and let X be an observed node in G such that it is
not possible to reach a child of X from X using only the hidden edges. Then, for any
subset S of V not containing X.

κID(G,X,S) = O(|V |).

Identifiability under the above condition was proved by Tian and Pearl [2002]

Ill-conditioned examples
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Primitives of identifiability
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Easy cases: no directed edges

X

U

Y

Identification
P(Y | do(X = x)) =

∑
x

P(Y, X = x) = P(Y)

In general, if X is not an ancestor of Y, it can be marginalized
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Easy cases: no hidden edges

X Z

U

Y

Identification
P(YZ | do(X = x)) = P(YZ|X)
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Easy cases: no hidden edges (slightly more complicated)

XZ

U

Y

Identification
P(YZ | do(X = x)) = P(Z)P(Y|Z,X)

A generalization of this is the crucial tool in the identification algorithms
described earlier

...and also, in connivance with the innocuous marginalization described above,
the main source of ill-conditioning!
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C-components

XZ

U

Y

C-components [Tian and Pearl, 2002]

{Y, Z} in the above graph is a C-component: a maximal connected component among
observed nodes induced by the hidden edges

C-components are identifiable [Tian and Pearl, 2002]

If S ⊆ V is a C-component in G = (V, E,U,D) then

P(S | do(V − S)) =
∏
A∈S

P(A | Vπ(<A)),

where π is a topological order on V according to E
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C-components and general identifiability

The hardest case
The “hardest” case for identifiability is P(S| do(X)), where

X is an ancestor set for S in G, and
S is a C-component in G− X

Case 1 S ∪ X is a C-component in G: ID(G, S, X) does not exist
Case 2 S is a C-component in G: Use C-component identifiability
Case 3 S ∪ X ′ is a C-component in G, for some X ′ ( X:

Recursion
Call ID(S ∪ X ′, X ′, S), but with P replaced by

P ′(S ∪ X ′) ··=
∏

A∈S∪X′
P(A | Vπ(<A)),

where π is a topological order on V according to E

Recursion will fail immediately unless some X ′ is no more an ancestor of S!
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The ill-conditioned examples
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A warm-up calculation: κ is at least Ω(n)

S1

Y1

S2

Y2

S3

Y3

S4

Y4

S5

P(·) 7→ P(S | do(Y )) = P(.) 7→
n∏
i=1

P(Si|S<iY<i)

When P is uniform, the output of the map is the uniform distribution

However, one can construct a P̃ that is ε-close to P and such that each
conditional probability above has a positive Ω(ε) relative error,

I for a total relative error of Ω(nε).

No recursion was used here!
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The final gadget (m = 6, k = 4): P(S | do(X,Y )

S1

Y1,1

S2

Y1,2

Y1,3

Y1,4

Y2,1

S3

Y2,2

Y2,3

Y2,4

Y3,1

S4

Y3,2

Y3,3

Y3,4

Y4,1

S5

Y4,2

Y4,3

Y4,4

Y5,1

S6

Y5,2

Y5,3

Y5,4

(
X[], S[m+1], Y[m],[]

) ··=

∑
x

P
(
Xk = x, X[k−1]

)
·
m∏
i=1

P
(
Si, Yi,[] | predi

)
· P

(
Sm+1 | predm+1

)
,

RelP = ε  RelP ′ ∼ m · ε

 Relπ(P)
?
∼ m · ε

Repeat k times to get Rel ID ∼ mk · ε?
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Comments
The marginalization operation can “eat up” the accumulated error if the
underlying distribution is uniform

Our proof
With appropriately chosen non-uniform distributions, the marginalization operation propagates
errors

To get a condition number of ∼ Ω(exp(
√
n)), choose m u k u

√
n

Details of analyzing this correctly are somewhat involved: please see paper
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Conclusion

Condition number of causality

Highly ill-conditioned examples exist
Very small uncertainties in the model or data

can introduce very large errors in causal
identification

But not all instances are ill-conditioned
A well studied class of examples indeed has

small condition number: so numerically
stable algorithms can be designed

Some future directions

Algorithmically classify condition numbers for any given model and intervention
I e.g., for comparing different models of the system being studied

Find ways to get around an ill-conditioned model by using more data
I e.g. some measured intervention distributions? error correction?

Condition number for other causal inference problems, e.g. SEMs

Thank you!
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Condition number and numerical stability

Condition number is a property of the function
Numerical stability is a property of a floating point algorithm

ADD : (x1, x2, . . . , xn) 7→ x1 + x2 . . . xn

Condition number
κ =

∑n
i=1 |xi|

|
∑n
i=1 xi|

= 1, for positive xi

Numerical stability: Naive linear summation

O(n · ε · κ)

Numerical stability: Kahan summation

O(ε · κ), to first order in ε

ε is the “machine epsilon”

•
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