Overdispersed Black-Box Variational Inference

Francisco J. R. Ruiz, Michalis K. Titsias, David M. Blei

Columbia University Athens University of Economics and Business

June 27th, 2016

Overdispersed Black-Box Variational Inference

- General variational inference for any probabilistic model
- Builds on black-box variational inference (BBVI)
- Reduces the variance of the estimator (\implies faster convergence)
- Requires a variational distribution in the exponential family
- Key idea: analyze the optimal importance sampling proposal

Notation

- Probabilistic model $p(\mathbf{x}, \mathbf{z})$
 - ▶ x: Data
 - z: Latent variables

• Assume the posterior $p(\mathbf{z} | \mathbf{x})$ is intractable:

$$p(\mathbf{z} \mid \mathbf{x}) = \frac{p(\mathbf{x}, \mathbf{z})}{\int p(\mathbf{x}, \mathbf{z}) d\mathbf{z}}$$

▶ We wish to *approximate* the posterior using **variational inference**

Variational Inference

- Approximate the posterior with a simpler distribution $q(\mathbf{z}; \boldsymbol{\lambda})$
- Minimize the KL divergence w.r.t. λ

$$egin{aligned} \lambda^{\star} &= rg\min_{oldsymbol{\lambda}} D_{ ext{KL}}(q(\mathbf{z};oldsymbol{\lambda})||p(\mathbf{z}\,|\,\mathbf{x})) \ & \lambda \end{aligned}$$

Evidence lower bound (ELBO):

$$\mathcal{L}(\boldsymbol{\lambda}) = \mathbb{E}_{q(\mathsf{z}; \boldsymbol{\lambda})} \left[\log p(\mathsf{x}, \mathsf{z}) - \log q(\mathsf{z}; \boldsymbol{\lambda}) \right]$$

Variational Inference

- Approximate the posterior with a simpler distribution $q(\mathbf{z}; \boldsymbol{\lambda})$
- Minimize the KL divergence w.r.t. λ

$$egin{aligned} \lambda^{\star} &= rg\min_{oldsymbol{\lambda}} D_{ ext{KL}}(q(\mathbf{z};oldsymbol{\lambda})||p(\mathbf{z}\,|\,\mathbf{x})) \ & \lambda \end{aligned}$$

Evidence lower bound (ELBO):

$$\mathcal{L}(\boldsymbol{\lambda}) = \mathbb{E}_{q(\mathsf{z}; \boldsymbol{\lambda})} \left[\log p(\mathsf{x}, \mathsf{z}) - \log q(\mathsf{z}; \boldsymbol{\lambda}) \right]$$

- Optimization problem:
 - Conditionally conjugate models: coordinate ascent
 - Non-conjugate models: one recent approach is BBVI

Examples of Conditionally Non-Conjugate Models

- Time series models
- Probabilistic matrix factorization
- Deep probabilistic models
- Correlated topic models
- ▶ ...

Black-Box Variational Inference¹

- Stochastic optimization
- Builds Monte Carlo estimates of the gradient $abla_{m{\lambda}}\mathcal{L}$
- Relies on the score function method:

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} = \mathbb{E}_{q(\mathbf{z};\boldsymbol{\lambda})} \left[f(\mathbf{z}) \right],$$

where

$$f(\mathbf{z}) \triangleq \nabla_{\boldsymbol{\lambda}} \log q(\mathbf{z}; \boldsymbol{\lambda}) \left(\log p(\mathbf{x}, \mathbf{z}) - \log q(\mathbf{z}; \boldsymbol{\lambda}) \right)$$

¹Ranganath et al. (2014)

Black-Box Variational Inference¹

- Stochastic optimization
- Builds Monte Carlo estimates of the gradient $abla_{\lambda}\mathcal{L}$
- Relies on the score function method:

$$\nabla_{\boldsymbol{\lambda}} \mathcal{L} = \mathbb{E}_{q(\mathbf{z};\boldsymbol{\lambda})} \left[f(\mathbf{z}) \right],$$

where

$$f(\mathbf{z}) \triangleq \nabla_{\boldsymbol{\lambda}} \log q(\mathbf{z}; \boldsymbol{\lambda}) \left(\log p(\mathbf{x}, \mathbf{z}) - \log q(\mathbf{z}; \boldsymbol{\lambda}) \right)$$

Algorithm:

- 1. Sample $\mathbf{z}^{(s)}$ iid from $q(\mathbf{z}; \boldsymbol{\lambda})$
- 2. Evaluate $f(\mathbf{z}^{(s)})$ for each sample s
- 3. Obtain a Monte Carlo estimate of the gradient
- 4. Take a gradient step for λ

¹Ranganath et al. (2014)

Controlling the Variance

> The estimator of the gradient may suffer from high variance

- This leads to slow convergence
- Methods to reduce the variance:
 - Rao-Blackwellization²
 - Control variates³
 - Reparameterization trick⁴
 - Local expectations⁵

(2014); Rezende et al. (2014); Kucukelbir et al. (2015)

⁵Titsias and Lázaro-Gredilla (2015)

²Casella and Robert (1996); Ranganath et al. (2014)

³Ross (2002); Paisley et al. (2012); Ranganath et al. (2014); Gu et al. (2016)

⁴Price (1958); Bonnet (1964); Salimans and Knowles (2013); Kingma and Welling

Controlling the Variance

> The estimator of the gradient may suffer from high variance

- This leads to slow convergence
- Methods to reduce the variance:
 - Rao-Blackwellization²
 - Control variates³
 - Reparameterization trick⁴
 - Local expectations⁵
- New method: Overdispersed BBVI

(2014); Rezende et al. (2014); Kucukelbir et al. (2015)

⁵Titsias and Lázaro-Gredilla (2015)

²Casella and Robert (1996); Ranganath et al. (2014)

³Ross (2002); Paisley et al. (2012); Ranganath et al. (2014); Gu et al. (2016)

⁴Price (1958); Bonnet (1964); Salimans and Knowles (2013); Kingma and Welling

Builds on BBVI

Samples from another distribution $r(z) \neq q(z; \lambda)$

$$abla_{oldsymbol{\lambda}} \mathcal{L} = \mathbb{E}_{q(\mathbf{z};oldsymbol{\lambda})} \left[f(\mathbf{z})
ight] = \mathbb{E}_{r(\mathbf{z})} \left[f(\mathbf{z}) rac{q(\mathbf{z};oldsymbol{\lambda})}{r(\mathbf{z})}
ight]$$

▶ The optimal importance sampling proposal⁶ is

 $r_n^{\star}(\mathbf{z}) \propto q(\mathbf{z}; \boldsymbol{\lambda}) |f_n(\mathbf{z})|$

- The optimal proposal is intractable
- O-BBVI searches for another proposal r(z)

⁶Robert and Casella (2005); Owen (2013)

Assume an exponential family variational distribution

$$q(\mathsf{z}; \boldsymbol{\lambda}) \propto \exp\{\boldsymbol{\lambda}^{ op} t(\mathsf{z}) - A(\boldsymbol{\lambda})\}$$

Recall the optimal proposal:

$$r_n^{\star}(\mathbf{z}) \propto q(\mathbf{z}; \boldsymbol{\lambda}) |f_n(\mathbf{z})|$$

 $f_n(\mathbf{z}) =
abla_{\lambda_n} \log q(\mathbf{z}; \boldsymbol{\lambda}) (\log p(\mathbf{x}, \mathbf{z}) - \log q(\mathbf{z}; \boldsymbol{\lambda}))$

⁷Jørgensen (1987)

Assume an exponential family variational distribution

$$q(\mathsf{z}; \boldsymbol{\lambda}) \propto \exp\{\boldsymbol{\lambda}^{ op} t(\mathsf{z}) - \mathcal{A}(\boldsymbol{\lambda})\}$$

Recall the optimal proposal:

$$r_n^{\star}(\mathbf{z}) \propto q(\mathbf{z}; \boldsymbol{\lambda}) |f_n(\mathbf{z})|$$

 $f_n(\mathbf{z}) =
abla_n \log q(\mathbf{z}; \boldsymbol{\lambda}) (\log p(\mathbf{x}, \mathbf{z}) - \log q(\mathbf{z}; \boldsymbol{\lambda}))$

• The optimal proposal assigns higher mass in the *tails* of $q(\mathbf{z}; \boldsymbol{\lambda})$

⁷Jørgensen (1987)

Assume an exponential family variational distribution

$$q(\mathsf{z}; \boldsymbol{\lambda}) \propto \exp\{\boldsymbol{\lambda}^{ op} t(\mathsf{z}) - \mathcal{A}(\boldsymbol{\lambda})\}$$

Recall the optimal proposal:

$$egin{aligned} r_n^\star(\mathbf{z}) \propto q(\mathbf{z}; oldsymbol{\lambda}) | f_n(\mathbf{z}) | \ f_n(\mathbf{z}) =
abla_{\lambda_n} \log q(\mathbf{z}; oldsymbol{\lambda}) \left(\log p(\mathbf{x}, \mathbf{z}) - \log q(\mathbf{z}; oldsymbol{\lambda})
ight) \end{aligned}$$

- The optimal proposal assigns higher mass in the *tails* of $q(\mathbf{z}; \boldsymbol{\lambda})$
- ▶ We use an **overdispersed distribution**⁷

$$r(\mathbf{z}; \boldsymbol{\lambda}, \tau) \propto \exp\left\{\frac{\boldsymbol{\lambda}^{\top} t(\mathbf{z}) - A(\boldsymbol{\lambda})}{\tau}\right\}$$

⁷ Jørgensen (1987)

Heavier Tails

$$egin{aligned} &r_n^\star(\mathbf{z}) \propto q(\mathbf{z}; oldsymbol{\lambda}) |f_n(\mathbf{z})| \ &f_n(\mathbf{z}) =
abla_{\lambda_n} \log q(\mathbf{z}; oldsymbol{\lambda}) \left(\log p(\mathbf{x}, \mathbf{z}) - \log q(\mathbf{z}; oldsymbol{\lambda})
ight) \end{aligned}$$

• Through the model $p(\mathbf{x}, \mathbf{z})$

Through the score function

$$abla_{\lambda_n} \log q(\mathsf{z}; \boldsymbol{\lambda}) = t_n(\mathsf{z}) - \mathbb{E}_{q(\mathsf{z}; \boldsymbol{\lambda})} \left[t_n(\mathsf{z})
ight]$$

Implementation

 \blacktriangleright Importance sampling fails in high dimensionality settings \rightarrow We use local expectations 8

 \rightarrow A proposal distribution per latent variable

$$\begin{aligned} \nabla_{\lambda_n} \mathcal{L} &= \mathbb{E}_{q(z_n;\lambda_n)} \left[\mathbb{E}_{q(\mathbf{z}_n;\boldsymbol{\lambda}_n)} \left[f_n(\mathbf{z}) \right] \right] \\ &= \mathbb{E}_{r(z_n;\lambda_n,\tau_n)} \left[\frac{q(z_n;\lambda_n)}{r(z_n;\lambda_n,\tau_n)} \mathbb{E}_{q(\mathbf{z}_{\neg n};\boldsymbol{\lambda}_{\neg n})} \left[f_n(\mathbf{z}) \right] \right] \end{aligned}$$

⁸Titsias and Lázaro-Gredilla (2015)

Implementation

- \blacktriangleright Importance sampling fails in high dimensionality settings \rightarrow We use local expectations 8
 - \rightarrow A proposal distribution per latent variable

$$\begin{aligned} \nabla_{\lambda_n} \mathcal{L} &= \mathbb{E}_{q(z_n;\lambda_n)} \left[\mathbb{E}_{q(\mathbf{z}_{\neg n};\boldsymbol{\lambda}_{\neg n})} \left[f_n(\mathbf{z}) \right] \right] \\ &= \mathbb{E}_{r(z_n;\lambda_n,\tau_n)} \left[\frac{q(z_n;\lambda_n)}{r(z_n;\lambda_n,\tau_n)} \mathbb{E}_{q(\mathbf{z}_{\neg n};\boldsymbol{\lambda}_{\neg n})} \left[f_n(\mathbf{z}) \right] \right] \end{aligned}$$

Algorithm:

- 1. Sample $\mathbf{z}^{(0)} \sim q(\mathbf{z}; \boldsymbol{\lambda})$
- 2. For each *n*, sample $z_n^s \sim r(z_n; \lambda_n, \tau_n)$, for $s = 1, \ldots, S$
- 3. For each *n*, obtain a Monte Carlo estimate of $\nabla_{\lambda_n} \mathcal{L}$
- 4. Take a gradient step for λ

⁸Titsias and Lázaro-Gredilla (2015)

► Need to choose the dispersion coefficients τ_n → Gradient steps for τ_n to minimize the variance → Monte Carlo estimator with little extra overhead

⁹Veach and Guibas (1995)

Implementation

- ► Need to choose the dispersion coefficients τ_n → Gradient steps for τ_n to minimize the variance → Monte Carlo estimator with little extra overhead
- ► High variance of the importance weights
 - \rightarrow Multiple importance sampling^9
 - \rightarrow The proposal $r(z_n; \lambda_n, \tau_{n1}, \tau_{n2})$ can be a mixture

⁹Veach and Guibas (1995)

Full Algorithm

- Control variates
- Rao-Blackwellization
- O-BBVI with
 - Local expectations
 - Adaptation of the dispersion coefficients
 - Multiple proposals

Experiments: GN-TS Model

Gamma-Normal Time Series¹⁰ Model

¹⁰Ranganath et al. (2014)

Experiments: GN-TS Model

Dataset: Synthetic

Experiments: DEF

¹¹Ranganath et al. (2015)

Experiments: DEF

Dataset: Papers in NIPS'11 conference

Summary: O-BBVI

- Unconventional application of importance sampling to general VI
- Reduce the variance of the gradient estimator
- ▶ Lower variance than BBVI with 2× Monte Carlo samples
- Faster convergence

Thank you for your attention!

