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Overdispersed Black-Box Variational Inference

I General variational inference for any probabilistic model

I Builds on black-box variational inference (BBVI)

I Reduces the variance of the estimator ( =⇒ faster convergence)

I Requires a variational distribution in the exponential family

I Key idea: analyze the optimal importance sampling proposal
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Notation

I Probabilistic model p(x, z)
I x: Data
I z: Latent variables

I Assume the posterior p(z | x) is intractable:

p(z | x) =
p(x, z)∫
p(x, z)dz

I We wish to approximate the posterior using variational inference
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Variational Inference

I Approximate the posterior with a simpler distribution q(z;λ)

I Minimize the KL divergence w.r.t. λ

λ? = arg min
λ

DKL(q(z;λ)||p(z | x))

I Evidence lower bound (ELBO):

L(λ) = Eq(z;λ) [log p(x, z)− log q(z;λ)]

I Optimization problem:
I Conditionally conjugate models: coordinate ascent
I Non-conjugate models: one recent approach is BBVI
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Examples of Conditionally Non-Conjugate Models

I Time series models

I Probabilistic matrix factorization

I Deep probabilistic models

I Correlated topic models

I . . .
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Black-Box Variational Inference1

I Stochastic optimization

I Builds Monte Carlo estimates of the gradient ∇λL
I Relies on the score function method:

∇λL = Eq(z;λ) [f (z)] ,

where
f (z) , ∇λ log q(z;λ) (log p(x, z)− log q(z;λ))

I Algorithm:

1. Sample z(s) iid from q(z;λ)
2. Evaluate f (z(s)) for each sample s
3. Obtain a Monte Carlo estimate of the gradient
4. Take a gradient step for λ

1Ranganath et al. (2014)
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Controlling the Variance

I The estimator of the gradient may suffer from high variance

I This leads to slow convergence

I Methods to reduce the variance:
I Rao-Blackwellization2

I Control variates3

I Reparameterization trick4

I Local expectations5

I New method: Overdispersed BBVI

2Casella and Robert (1996); Ranganath et al. (2014)
3Ross (2002); Paisley et al. (2012); Ranganath et al. (2014); Gu et al. (2016)
4Price (1958); Bonnet (1964); Salimans and Knowles (2013); Kingma and Welling

(2014); Rezende et al. (2014); Kucukelbir et al. (2015)
5Titsias and Lázaro-Gredilla (2015)
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Overdispersed BBVI

I Builds on BBVI

I Samples from another distribution r(z) 6= q(z;λ)

∇λL = Eq(z;λ) [f (z)] = Er(z)

[
f (z)

q(z;λ)

r(z)

]
I The optimal importance sampling proposal6 is

r?n (z) ∝ q(z;λ)|fn(z)|

I The optimal proposal is intractable

I O-BBVI searches for another proposal r(z)

6Robert and Casella (2005); Owen (2013)
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Overdispersed BBVI

I Assume an exponential family variational distribution

q(z;λ) ∝ exp{λ>t(z)− A(λ)}

I Recall the optimal proposal:

r?n (z) ∝ q(z;λ)|fn(z)|
fn(z) = ∇λn log q(z;λ) (log p(x, z)− log q(z;λ))

I The optimal proposal assigns higher mass in the tails of q(z;λ)

I We use an overdispersed distribution7

r(z;λ, τ) ∝ exp

{
λ>t(z)− A(λ)

τ

}

7Jørgensen (1987)
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Heavier Tails

r?n (z) ∝ q(z;λ)|fn(z)|
fn(z) = ∇λn log q(z;λ) (log p(x, z)− log q(z;λ))

I Through the model p(x, z)

 

 
Posterior
q(z)

I Through the score function

∇λn log q(z;λ) = tn(z)− Eq(z;λ) [tn(z)]

µ−3σ µ−2σ µ−σ µ µ+σ µ+2σ µ+3σ
 

 
Score function x q(z)
q(z)
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Implementation

I Importance sampling fails in high dimensionality settings
→ We use local expectations8

→ A proposal distribution per latent variable

∇λnL = Eq(zn;λn)

[
Eq(z¬n;λ¬n) [fn(z)]

]
= Er(zn;λn,τn)

[
q(zn;λn)

r(zn;λn, τn)
Eq(z¬n;λ¬n) [fn(z)]

]

I Algorithm:

1. Sample z(0) ∼ q(z;λ)
2. For each n, sample z sn ∼ r(zn;λn, τn), for s = 1, . . . , S
3. For each n, obtain a Monte Carlo estimate of ∇λnL
4. Take a gradient step for λ

8Titsias and Lázaro-Gredilla (2015)
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Implementation

I Need to choose the dispersion coefficients τn
→ Gradient steps for τn to minimize the variance
→ Monte Carlo estimator with little extra overhead

I High variance of the importance weights
→ Multiple importance sampling9

→ The proposal r(zn;λn, τn1, τn2) can be a mixture

9Veach and Guibas (1995)
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Full Algorithm

I Control variates

I Rao-Blackwellization

I O-BBVI with
I Local expectations
I Adaptation of the dispersion coefficients
I Multiple proposals
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Experiments: GN-TS Model

Gamma-Normal Time Series10 Model

zn1k zntk zn(t+1)k

xn1 xnt xn(t+1) xnT

znTk. . . . . .

. . . . . .

O, W

K

N

10Ranganath et al. (2014)
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Experiments: GN-TS Model

Dataset: Synthetic
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Experiments: DEF

Poisson Deep Exponential Family11

Rajesh Ranganath, Linpeng Tang, Laurent Charlin, David M. Blei
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Figure 1: A fraction of the three layer topic hierarchy on 166K The New York Times articles. The top words
are shown for each topic. The arrows represent hierarchical groupings.
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Figure 2: The deep exponential family with V obser-
vations.

variables in layer ` depends on all the variables of the
higher layer. This gives the model the flavor of a neural
network. The subscript ` on expfam indicates the
type of exponential family can change across layers.
This hierarchy of latent variables defines the DEF.

DEFs can also be understood as random e↵ects mod-
els [11] where the variables are controlled by the prod-
uct of a weight vector and a set of latent covariates.

Likelihood. The data are drawn conditioned on the
lowest layer of the DEF, p.xn;i j zn;1/. Separating the

likelihood from the DEF will allow us to compose and
embed DEFs in other models. Later, we provide an
example where we combine two DEFs to form a model
for pairwise data.

In this paper we focus on count data, thus we use the
Poisson distribution as the observation likelihood. The
Poisson distribution with mean � is

p.xn;i D x/ D e�� �x

xä
:

If we let xn;i be the count of type i associated with
observation n, then xn;i ’s distribution is

p.xn;i j z1;W0/ D Poisson.z>n;1w0;i /;

The observation weights W0 is matrix where each en-
try is gamma distributed. We will discuss gamma dis-
tribution further in the next section.

Returning to the example from the introduction of
modeling documents, the xn are a vector of term
counts. The observation weights W0 put positive mass
on groups of terms and thus form “topics.” Similarly,
the weights on the second layer represents “super top-
ics,” and the weights on the third layer represent “con-
cepts.” The distribution p.zn;1 j zn;2;W1/ represents
the distribution of “topics” given the “super topics”
of a document. Figure 1 depicts the compositional
and sharing semantics of DEFs.

The link function. Here we explore some of the
connections between neural networks and deep expo-
nential families. As we discussed, the latent variable
layers in deep exponential families are connected to-
gether via a link function, g`. This link function spec-
ifies the natural parameters for z`;k from z>

`C1w`;k .

Using properties of exponential families we can deter-
mine how the link function alters the distribution of
the `th layer. The moments of the su�cient statistics

11Ranganath et al. (2015)
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Experiments: DEF

Dataset: Papers in NIPS’11 conference
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Summary: O-BBVI

I Unconventional application of importance sampling to general VI

I Reduce the variance of the gradient estimator

I Lower variance than BBVI with 2× Monte Carlo samples

I Faster convergence
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Thank you for your attention!
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