
	

	

Uncertainty In
Artificial
Intelligence

Proceedings of the Thirty-‐‑First Conference (2015)

 Edited by

 Marina Meila

 Tom Heskes

Uncertainty in
Artificial
Intelligence
Proceedings of the Thirty-‐‑First Conference (2015)

July 12-‐‑16, 2015, Amsterdam, Netherlands

Edited by
Marina Meila, University of Washington, USA
Tom Heskes, Radboud University, Netherlands

General Chair
Jin Tian, Iowa State University, USA

Sponsored by
Artificial Intelligence Journal, Microsoft Research, Facebook Inc.,
Google Inc., Adobe Systems Inc., Baidu Research, Elsevier Labs

AUAI Press Corvallis, Oregon

Cover design © Alice Zheng.

Published by AUAI Press for
Association for Uncertainty in Artificial Intelligence
http://auai.org

Editorial Office:
P.O. Box 866
Corvallis, Oregon 97339
USA

Copyright © 2015 by AUAI Press
All rights reserved
Printed in the United States of America

No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means—electronic,
mechanical, photocopying, recording, or otherwise—without the
prior written permission of the publisher.

ISBN 978-‐‑0-‐‑9966431-‐‑0-‐‑8
	

Contents

Preface vii

Organizing Committee ix

Acknowledgments xi

Sponsors xix

Best Paper Awards xxi

1 Proceedings 1
Bayesian Optimal Control of Smoothly Parameterized Systems.

Yasin Abbasi-Yadkori, Csaba Szepesvári . 1
Optimal expert elicitation to reduce interval uncertainty.

Nadia Ben Abdallah, Sébastien Destercke . 12
Stochastic Integration via Error-Correcting Codes.

Dimitris Achlioptas, Pei Jiang . 22
Learning the Structure of Sum-Product Networks via an SVD-based Algorithm.

Tameem Adel, David Balduzzi, Ali Ghodsi . 32
Robust reconstruction of causal graphical models based on conditional 2-point and 3-point

information.
Séverine Affeldt, Hervé Isambert . 42

Are You Doing What I Think You Are Doing? Criticising Uncertain Agent Models.
Stefano V. Albrecht, Subramanian Ramamoorthy . 52

Disciplined Convex Stochastic Programming: A New Framework for Stochastic Optimization.
Alnur Ali, J. Zico Kolter, Steven Diamond, Stephen Boyd 62

Intelligent Affect: Rational Decision Making for Socially Aligned Agents.
Nabiha Asghar, Jesse Hoey . 72

Representation Learning for Clustering: A Statistical Framework.
Hassan Ashtiani, Shai Ben-David . 82

Adversarial Cost-Sensitive Classification.
Kaiser Asif, Wei Xing, Sima Behpour, Brian D. Ziebart 92

Geometric Network Comparisons.
Dena Marie Asta, Cosma Rohilla Shalizi . 102

Learning and Planning with Timing Information in Markov Decision Processes.
Pierre-Luc Bacon, Borja Balle, Doina Precup . 111

Parameterizing the Distance Distribution of Undirected Networks.
Christian Bauckhage, Kristian Kersting, Fabian Hadiji 121

New Limits for Knowledge Compilation and Applications to Exact Model Counting.
Paul Beame, Vincent Liew . 131

Hashing-Based Approximate Probabilistic Inference in Hybrid Domains.
Vaishak Belle, Guy Van den Broeck, Andrea Passerini . 141

Bayesian Network Learning with Discrete Case-Control Data.
Giorgos Borboudakis, Ioannis Tsamardinos . 151

i

Efficient Algorithms for Bayesian Network Parameter Learning from Incomplete Data.
Guy Van den Broeck, Karthika Mohan, Arthur Choi, Adnan Darwiche, Judea Pearl . . . 161

Bayes Optimal Feature Selection for Supervised Learning with General Performance Measures.
Saneem Ahmed C.G., Harikrishna Narasimhan, Shivani Agarwal 171

Visual Causal Feature Learning.
Krzysztof Chalupka, Pietro Perona, Frederick Eberhardt 181

Large-Margin Determinantal Point Processes.
Wei-Lun Chao, Boqing Gong, Kristen Grauman, Fei Sha 191

Fast Relative-Error Approximation Algorithm for Ridge Regression.
Shouyuan Chen, Yang Liu, Michael R. Lyu, Irwin King, Shengyu Zhang 201

Selective Greedy Equivalence Search: Finding Optimal Bayesian Networks Using a Polynomial
Number of Score Evaluations.
David Maxwell Chickering, Christopher Meek . 211

Stable Spectral Learning Based on Schur Decomposition.
Nicolò Colombo, Nikos Vlassis . 220

Semi-described and semi-supervised learning with Gaussian processes.
Andreas Damianou, Neil D. Lawrence . 228

Budget Constraints in Prediction Markets.
Nikhil Devanur, Miroslav Dud́ık, Zhiyi Huang, David Pennock 238

A Probabilistic Logic for Reasoning about Uncertain Temporal Information.
Dragan Doder, Zoran Ognjanović . 248

Training generative neural networks via Maximum Mean Discrepancy optimization.
Gintare Karolina Dziugaite, Daniel M. Roy, Zoubin Ghahramani 258

Incremental Region Selection for Mini-bucket Elimination Bounds.
Sholeh Forouzan, Alexander Ihler . 268

Estimating Mutual Information by Local Gaussian Approximation.
Shuyang Gao, Greg Ver Steeg, Aram Galstyan . 278

Psychophysical Detection Testing with Bayesian Active Learning.
Jacob R. Gardner, Xinyu Song, Kilian Q. Weinberger, Dennis Barbour, John P.
Cunningham . 286

Locally Conditioned Belief Propagation.
Thomas Geier, Felix Richter, Susanne Biundo . 296

Discriminative Switching Linear Dynamical Systems applied to Physiological Condition
Monitoring.
Konstantinos Georgatzis, Christopher K. I. Williams . 306

Revisiting Non-Progressive Influence Models: Scalable Influence Maximization in Social
Networks.
Golshan Golnari, Amir Asiaee T., Arindam Banerjee, Zhi-Li Zhang 316

Scalable Recommendation with Hierarchical Poisson Factorization.
Prem Gopalan, Jake M. Hofman, David M. Blei . 326

State Sequence Analysis in Hidden Markov Models.
Yuri Grinberg, Theodore J. Perkins . 336

Multitasking: Optimal Planning for Bandit Superprocesses.
Dylan Hadfield-Menell, Stuart Russell . 345

Importance Sampling over Sets: A New Probabilistic Inference Scheme.
Stefan Hadjis, Stefano Ermon . 355

Progressive Abstraction Refinement for Sparse Sampling.
Jesse Hostetler, Alan Fern, Thomas Dietterich . 365

Zero-Truncated Poisson Tensor Factorization for Massive Binary Tensors.
Changwei Hu, Piyush Rai, Lawrence Carin . 375

Computing Optimal Bayesian Decisions for Rank Aggregation via MCMC Sampling.
David Hughes, Kevin Hwang, Lirong Xia . 385

Do-calculus when the True Graph Is Unknown.
Antti Hyttinen, Frederick Eberhardt, Matti Järvisalo . 395

ii

Kernel-Based Just-In-Time Learning for Passing Expectation Propagation Messages.
Wittawat Jitkrittum, Arthur Gretton, Nicolas Heess, S. M. Ali Eslami, Balaji
Lakshminarayanan, Dino Sejdinovic, Zoltán Szabó . 405

Averaging of Decomposable Graphs by Dynamic Programming and Sampling.
Kustaa Kangas, Teppo Niinimäki, Mikko Koivisto . 415

Novel Bernstein-like Concentration Inequalities for the Missing Mass.
Bahman Yari Saeed Khanloo, Gholamreza Haffari . 425

Minimizing Expected Losses in Perturbation Models with Multidimensional Parametric Min-cuts.
Adrian Kim, Kyomin Jung, Yongsub Lim, Daniel Tarlow, Pushmeet Kohli 435

Population Empirical Bayes.
Alp Kucukelbir, David M. Blei . 444

Encoding Markov logic networks in Possibilistic Logic.
Ondřej Kuželka, Jesse Davis, Steven Schockaert . 454

On the Computability of AIXI.
Jan Leike, Marcus Hutter . 464

Tracking with ranked signals.
Tianyang Li, Harsh Pareek, Pradeep Ravikumar, Dhruv Balwada, Kevin Speer 474

Classification of Sparse and Irregularly Sampled Time Series with Mixtures of Expected Gaussian
Kernels and Random Features.
Steven Cheng-Xian Li, Benjamin Marlin . 484

Complexity of the Exact Solution to the Test Sequencing Problem.
Wenhao Liu, Ross D. Shachter . 494

Finite-Sample Analysis of Proximal Gradient TD Algorithms.
Bo Liu, Ji Liu, Mohammad Ghavamzadeh, Sridhar Mahadevan, Marek Petrik 504

Estimating the Partition Function by Discriminance Sampling.
Qiang Liu, Jian Peng, Alexander Ihler, John Fisher III 514

A Finite Population Likelihood Ratio Test of the Sharp Null Hypothesis for Compliers.
Wen Wei Loh, Thomas S. Richardson . 523

Structure Learning Constrained by Node-Specific Degree Distribution.
Jianzhu Ma, Feng Zhao, Jinbo Xu . 533

Active Search and Bandits on Graphs using Sigma-Optimality.
Yifei Ma, Tzu-Kuo Huang, Jeff Schneider . 542

Off-policy learning based on weighted importance sampling with linear computational complexity.
A. Rupam Mahmood, Richard S. Sutton . 552

Impact of Learning Strategies on the Quality of Bayesian Networks: An Empirical Evaluation.
Brandon Malone, Matti Järvisalo, Petri Myllymäki . 562

Learning the Structure of Causal Models with Relational and Temporal Dependence.
Katerina Marazopoulou, Marc Maier, David Jensen . 572

Hamiltonian ABC.
Edward Meeds, Robert Leenders, Max Welling . 582

(Nearly) Optimal Differentially Private Stochastic Multi-Arm Bandits.
Nikita Mishra, Abhradeep Thakurta . 592

Equitable Partitions of Concave Free Energies.
Martin Mladenov, Kristian Kersting . 602

Non-parametric Revenue Optimization for Generalized Second Price auctions..
Mehryar Mohri, Andrés Muñoz Medina . 612

Polynomial-time algorithm for learning optimal tree-augmented dynamic Bayesian networks.
José L. Monteiro, Susana Vinga, Alexandra M. Carvalho 622

Learning and Inference in Tractable Probabilistic Knowledge Bases.
Mathias Niepert, Pedro Domingos . 632

Multi-Context Models for Reasoning under Partial Knowledge: Generative Process and Inference
Grammar.
Ardavan S. Nobandegani, Ioannis N. Psaromiligkos . 642

Annealed Gradient Descent for Deep Learning.
Hengyue Pan, Hui Jiang . 652

iii

Max-Product Belief Propagation for Linear Programming: Applications to Combinatorial
Optimization.
Sejun Park, Jinwoo Shin . 662

Fast Algorithms for Learning with Long N -grams via Suffix Tree Based Matrix Multiplication.
Hristo S. Paskov, John C. Mitchell, Trevor J. Hastie . 672

A Complete Generalized Adjustment Criterion.
Emilija Perković, Johannes Textor, Markus Kalisch, Marloes H. Maathuis 682

Optimal Threshold Control for Energy Arbitrage with Degradable Battery Storage.
Marek Petrik, Xiaojian Wu . 692

Mesochronal Structure Learning.
Sergey Plis, David Danks, Jianyu Yang . 702

Budgeted Online Collective Inference.
Jay Pujara, Ben London, Lise Getoor . 712

Auxiliary Gibbs Sampling for Inference in Piecewise-Constant Conditional Intensity Models.
Zhen Qin, Christian R. Shelton . 722

Memory-Efficient Symbolic Online Planning for Factored MDPs.
Aswin Raghavan, Roni Khardon, Prasad Tadepalli, Alan Fern 732

The Survival Filter: Joint Survival Analysis with a Latent Time Series.
Rajesh Ranganath, Adler Perotte, Noémie Elhadad, David M. Blei 742

Communication Efficient Coresets for Empirical Loss Minimization.
Sashank J. Reddi, Barnabás Póczos, Alex Smola . 752

Large-scale randomized-coordinate descent methods with non-separable linear constraints.
Sashank J. Reddi, Ahmed Hefny, Carlton Downey, Avinava Dubey, Suvrit Sra 762

An Upper Bound on the Global Optimum in Parameter Estimation.
Khaled S. Refaat, Adnan Darwiche . 772

A Markov Game Model for Valuing Player Actions in Ice Hockey.
Kurt Routley, Oliver Schulte . 782

Learning Latent Variable Models by Improving Spectral Solutions with Exterior Point Method.
Amirreza Shaban, Mehrdad Farajtabar, Bo Xie, Le Song, Byron Boots 792

Missing Data as a Causal and Probabilistic Problem.
Ilya Shpitser, Karthika Mohan, Judea Pearl . 802

Improved Asymmetric Locality Sensitive Hashing (ALSH) for Maximum Inner Product Search
(MIPS).
Anshumali Shrivastava, Ping Li . 812

Learning Optimal Chain Graphs with Answer Set Programming.
Dag Sonntag, Matti Järvisalo, Jose Peña, Antti Hyttinen 822

How matroids occur in the context of learning Bayesian network structure.
Milan Studený . 832

The Long-Run Behavior of Continuous Time Bayesian Networks.
Liessman Sturlaugson, John W. Sheppard . 842

Online Bellman Residual Algorithms with Predictive Error Guarantees.
Wen Sun, J. Andrew Bagnell . 852

On the Error of Random Fourier Features.
Danica J. Sutherland, Jeff Schneider . 862

Bayesian Structure Learning for Stationary Time Series.
Alex Tank, Nicholas J. Foti, Emily B. Fox . 872

Learning from Pairwise Marginal Independencies.
Johannes Textor, Alexander Idelberger, Maciej Lískiewicz 882

Bethe Projections for Non-Local Inference.
Luke Vilnis, David Belanger, Daniel Sheldon, Andrew McCallum 892

A Smart-Dumb/Dumb-Smart Algorithm for Efficient Split-Merge MCMC.
Wei Wang, Stuart Russell . 902

Planning under Uncertainty with Weighted State Scenarios.
Erwin Walraven, Matthijs T. J. Spaan . 912

iv

Generalization Bounds for Transfer Learning under Model Shift.
Xuezhi Wang, Jeff Schneider . 922

Clustered Sparse Bayesian Learning.
Yu Wang, David Wipf, Jeong Min Yun, Wei Chen, Ian Wassell 932

Bethe and Related Pairwise Entropy Approximations.
Adrian Weller . 942

Efficient Transition Probability Computation for Continuous-Time Branching Processes via
Compressed Sensing.
Jason Xu, Vladimir N. Minin . 952

Extend Transferable Belief Models with Probabilistic Priors.
Chunlai Zhou, Yuan Feng . 962

Probabilistic Graphical Models Parameter Learning with Transferred Prior and Constraints.
Yun Zhou, Norman Fenton, Timothy M. Hospedales, Martin Neil 972

v

vi

Preface

The Conference on Uncertainty in Artificial Intelligence (UAI) is the premier international conference on research
related to representation, inference, learning and decision making in the presence of uncertainty within the field
of Artificial Intelligence. This volume contains the schedule and abstracts of all papers that were accepted for
the 31st UAI Conference, held in Amsterdam, The Netherlands, from July 12 to 16, 2015. Papers appearing in
this volume were subjected to a rigorous review process. 291 papers were submitted to the conference (excluding
papers that were withdrawn or rejected outright because of potential double submission) and each was peer-
reviewed by 3 or more reviewers with the supervision of one Senior Program Committee member. A total of 99
papers were accepted, 28 for oral presentation and 71 for poster presentation, for an acceptance rate of 34%. We
are very grateful to the program committee and senior program committee members for their diligent efforts.
We are confident that the proceedings, like past UAI conference proceedings, will become an important archival
reference for the field.

We are pleased to announce that the Microsoft Best Paper Award is awarded to Vaishak Belle, Guy Van
Den Broeck, and Andrea Passerini for their paper “Hashing-based approximate probabilistic inference in hybrid
domains”. The Facebook Best Student Paper Award is awarded to Bo Liu (co-authored with Ji Liu, Moham-
mad Ghavamzadeh, Sridhar Mahadevan, and Marek Petrik) for their paper “Finite-sample analysis of proximal
gradient TD algorithms”. The Google Best Student Paper Award is awarded to Wen Sun (co-authored with J.
Andrew Bagnell) for their paper “Online Bellman residual algorithms with predictive error guarantees”.

In addition to the presentation of technical papers, we are very pleased to have four distinguished invited
speakers at UAI 2015: Peter Bühlmann (ETH Zürich), David MacKay (Cambridge University), David Silver
(Google DeepMind), and, as Banquet Speaker, Raphael Slawinski (Mount Royal University). The UAI 2015
tutorials program, chaired by Silja Renooij, consists of four tutorials: “Optimal algorithms for learning Bayesian
network structures” by Changhe Yuan, James Cussens, and Brandon Malone, “Computational complexity of
Bayesian networks” by Johan Kwisthout and Cassio De Campos, “Belief functions for the working scientist”
by Thierry Denoeux and Fabio Cuzzolin, and “Non-parametric causal models” by Robin Evans and Thomas
Richardson.

UAI 2015 also hosts three workshops, coordinated by workshops chair Irina Rish: “12th Annual Bayesian
Applications Workshop” (John Mark Agosta and Rommel Novaes Carvalho), “StarAI – Statistical Relational
AI” (Mathias Niepert, Guy Van den Broeck, Siraam Natarajan, and David Poole) and “Advances in Causal
Inference” (Ricardo Silva, Tom Claassen, Robin Evans, Jonas Peters, and Ilya Shpitser).

Marina Meila and Tom Heskes (Program Co-Chairs)
Jin Tian (General Chair)

vii

viii

Organizing Committee

General Chair

Jin Tian, Iowa State University, USA

Program Chairs

Marina Meila, University of Washington, USA
Tom Heskes, Radboud University, Netherlands

Tutorials Chair

Silja Renooij, Universiteit Utrecht, Netherlands

Workshops Chair

Irina Rish, Watson Research Center, USA

Proceedings Chair

Daniel Lowd, University of Oregon, USA

Publicity Chair

Jonas Peters, ETH Zürich, Switzerland

Local Arrangements Chair

Joris Mooij, University of Amsterdam, Netherlands

ix

x

Acknowledgments

The success of a conference such as UAI depends greatly on the efforts of many individuals who volunteer their
time to provide expert and detailed reviews of submitted papers. In particular, the Program Committee and
Senior Program Committee for UAI 2015 were responsible for generating reviews and recommendations for the
291 submissions to the conference. Each submitted paper was reviewed by at least 3 members of the Program
Committee. The Senior Program Committee then assessed the individual reviews for each paper, moderated
discussion among Program Committee members if needed, and generated meta-reviews and recommendations
for the program chairs. We are extremely grateful for the efforts of all of the individuals listed below.

Senior Program Committee

Ayesha Ali University of Guelph
Nina Balcan Carnegie Mellon University
Jeff Bilmes University of Washington
Craig Boutilier University of Toronto
Emma Brunskill Carnegie Mellon University
Kamalika Chaudhuri University of California, San Diego
Max Chickering Microsoft Research
Fabio Cuzzolin Oxford Brookes University
Adnan Darwiche UCLA
Denver Dash Magic Leap
Cassio de Campos Queen’s University Belfast
Rina Dechter UC-Irvine
Francisco Diez UNED
Jennifer Dy Northeastern University
Gal Elidan The Hebrew University of Jerusalem
Helene Fargier Institut de Recherche en Informatique de Toulouse
Alexander Ihler UC Irvine
Tommi Jaakkola MIT
Dominik Janzing Max Planck Institute
Stefanie Jegelka University of California, Berkeley
Helge Langseth The Norwegian University of Science and Technology
Kathryn Laskey George Mason University
Tze- Yun Leong National University of Singapore
Marloes Maathuis ETH Zürich
Chris Meek Microsoft Research
Claire Monteleoni George Washington University
Remi Munos INRIA Lille
Petri Myllymaki Helsinki Institute for Information Technology
Ann Nicholson Monash University
Thomas Nielsen Aalborg University
David Poole University of British Columbia
Thomas Richardson University of Washington
Prakash Shenoy University of Kansas
Ricardo Silva University College London
Aarti Singh Carnegie Mellon University

xi

David Sontag New York University
Peter Spirtes Carnegie Mellon University
Claudia Tarantola University of Pavia
Raquel Urtasun University of Toronto
Yi Wang IHPC, A*STAR
Dit-Yan Yeung Hong Kong University of Science and Technology
Nevin Zhang Hong Kong University of Science and Technology
Jun Zhu Tsinghua University

Program Committee

Tameem Adel Radboud University Nijmegen
John Mark Agosta Toyota Information Technology Center
Russell Almond Florida State University
Christopher Amato MIT
Leila Amgoud IRIT - Universite Paul Sabatier
Eyal Amir University of Illinois at Urbana-Champaign
Animashree Anandkumar UC Irvine
Alessandro Antonucci IDSIA
Cedric Archambeau Amazon Berlin
Nimar Arora Oracle
Pranjal Awasthi Princeton University
Elias Bareinboim UCLA
Kim Bauters Queen’s University of Belfast
Nahla Ben Amor ISG Tunis
Carlo Berzuini University of Manchester
Debarun Bhattacharjya IBM Research
Bozhena Bidyuk Google
Guillaume Bouchard Xerox Research Centre Europe
Alexandre Bouchard-Cote UBC
Olivier Buffet LORIA-INRIA
Wray Buntine Monash University
Cory Butz University of Regina
Simon Byrne University College London
Robert Castelo Universitat Pompeu Fabra
Hong Chang Institute of Computing Technology, Chinese Academy of Sciences
Changyou Chen Duke University
Ning Chen Tsinghua University
Shang-Tse Chen Georgia Tech
William Cheung Hong Kong Baptist University
Arthur Choi UCLA
Jaesik Choi Ulsan National Institute of Science and Technology
Tianjiao Chu University of Pittsburgh
Tom Claassen Radboud University Nijmegen
Giorgio Corani IDSIA
Mark Crowley Oregon State University
James Cussens University of York
Sebastien Destercke CNRS
Nicolas Drougard ONERA - The French Aerospace Lab
Marek Druzdzel University of Pittsburgh
Frederick Eberhardt Caltech
Zied Eloudi ISG Tunis
Stefano Ermon Stanford University
Robin Evans University of Oxford
M. Julia Flores University of Castilla - La Mancha (UCLM)

xii

Aram Galstyan Information Sciences Institute
Roman Garnett University of Bonn
Minos Garofalakis Technical University of Crete
Phan Giang George Mason University
Bob Givan Purdue University ECE
Lluis Godo Artificial Intelligence Research Institute
Ali Ghodsi University of Waterloo
Vibhav Gogate University of Texas at Dallas
Vincenç Gomez Universitat Pompeu Fabra
Manuel Gomez-Olmedo Universidad de Granada
Christophe Gonzales LIP6-UPMC
Andrew Gordon Wilson Carnegie Mellon University
Perry Groot Radboud University Nijmegen
Roger Grosse University of Toronto
Amit Gruber Yahoo!
Aritanan Gruber University of Sao Paulo
Yuhong Guo Temple University
Yoni Halpern New York University
Steve Hanneke Princeton University
Tamir Hazan University of Haifa
Philipp Hennig Max Planck Institute
Jesse Hoey University of Waterloo
Arjen Hommersom University of Nijmegen
Antti Honkela University of Helsinki
Bert Huang Virginia Tech
Antti Hyttinen University of Helsinki
Rishabh Iyer University of Washington
David Jensen University of Massachusetts Amherst
Abhay Jha WalmartLabs
Alfredo Kalaitzis University College London
Roni Khardon Tufts University
Arto Klami University of Helsinki
Kevin Korb Monash University
Brian Kulis Ohio State University
Akshat Kumar IBM Research India
Balaji Lakshminarayanan Gatsby/University College London
Jerome Lang LAMSADE, CNRS & Universite Paris-Dauphine
Su-In Lee University of Washington
Jan Lemeire Vrije Universiteit Brussel
Philippe Leray University of Nantes
Lei Li Florida International University
Wu-Jun Li Nanjing University
Yujia Li University of Toronto
Yingyu Liang Princeton University
Qihang Lin University of Iowa
Qiang Liu UC Irvine
Weiru Liu Queen’s University Belfast
Yan Liu Southern California
Ying Liu MIT
Samuel Livingstone University College London
Dan Lizotte University of Western Ontario
Po-Ling Loh University of California, Berkeley
Daniel Lowd University of Oregon
Monia Lupparelli University of Bologna
Manuel Luque UNED

xiii

Michael Lyu Chinese University of Hong Kong
Anders Madsen Hugin Expert
Malik Magdon-Ismail Rensselear Polytechnic Institute
Brandon Malone Max Planck Institute
Radu Marinescu IBM Research
Maria Vanina Martinez University of Oxford
Denis Mauá University of Sao Paulo
Julian McAuley UC San Diego
Lukas Meier ETH Zürich
Ole Mengshoel Carnegie Mellon University
Ofer Meshi Toyota Technological Institute at Chicago
Taneli Mielikainen Nokia Research Center Palo Alto
Brian Milch Google
Thomas Minka Microsoft Research UK
Preetam Nandy ETH Zürich
Sriraam Natarajan Indiana University
Mathias Niepert University of Washington
William Noble University of Washington
Nuria Oliver Telefonica
Michael Osborne Oxford University
David Page UW Madison
John Paisley Columbia University
Xinghao Pan University of California, Berkeley
Jose Pena Linkoping University
Jonas Peters ETH Zürich
Marek Petrik IBM Research
Kim-Leng Poh National University of Singapore
Leonard Poon Hong Kong Institute of Education
Bob Price PARC
David Pynadath USC Institute for Creative Technologies
Erik Quaeghebeur Centrum Wiskunde & Informatica
Piyush Rai Duke University
Roland Ramsahai
Narges Razavian New York University
Mark Reid Australian National University
Teemu Roos Helsinki Institute for Information Technology
Rafael Rumi Almeria University
Brian Ruttenberg Charles River Analytics
Regis Sabbadin INRA
Antonio Salmeron Universidad de Almeria
Scott Sanner NICTA and the Australian National University
Oliver Schulte Simon Fraser University
Alexander Schwing University of Toronto
Bart Selman Department of Computer Science
Tomi Silander Xerox Research Centre Europe
Gerardo Simari Universidad Nacional del Sur in Bahia Blanca and CONICET
Tomas Singliar Amazon
Mathieu Sinn IBM Research - Ireland
Le Song Georgia Tech
Fabio Stella University of Milan
Hang Su Tsinghua University
L. Enrique Sucar INAOE, Mexico
Joe Suzuki Osaka University
Vincent Tan National University of Singapore
Danny Tarlow Microsoft Research

xiv

Graham Taylor University of Guelph
Florent Teichteil-Königsbuch ONERA - The French Aerospace Lab
Johannes Textor Utrecht University
Philip Thomas University of Massachusetts Amherst
Yuandong Tian Facebook
Ryota Tomioka Toyota Technological Institute at Chicago
Ioannis Tsamardinos University of Crete
Marco Valtorta University of South Carolina
Guy Van den Broeck KU Leuven
Twan van Laarhoven Radboud University Nijmegen
Greg Ver Steeg Information Sciences Institute
Jirka Vomlel Institute of Information Theory and Automation
Yevgeniy Vorobeychik Vanderbilt University
Vladimir Vovk Royal Holloway
Thomas Walsh MIT
Chong Wang Carnegie Mellon University
Shenlong Wang University of Toronto
Paul Weng Paris 6 University
Sinead Williamson University of Texas at Austin
David Wipf Microsoft Research Asia
Stefan Witwicki Ecole Polytechnique Federale de Lausanne
Lirong Xia Rensselaer Polytechnic Institute
Yang Xiang University of Guelph
Minjie Xu Tsinghua University
Nan Ye National University of Singapore
Junming Yin University of Arizona
Yaoliang Yu Carnegie Mellon University
Changhe Yuan City University of New York
Xiaotong Yuan Nanjing University of Information Science & Technology
Yifeng Zeng Teesside University
Chicheng Zhang UC San Diego
Jiji Zhang Lingnan University
Kun Zhang MPI for Intelligent Systems
Ping Zhang IBM Thomas J. Watson Research Center
Yu Zhang Hong Kong Baptist University
Yi Zhen Georgia Institute of Technology
Onno Zoeter Xerox Research Centre Europe

Additional Reviewers

Bram Arends Radboud University Nijmegen
Aniruddha Basak Carnegie Mellon University
Alan Carlin Aptima, Inc.
Bryan Chen UCLA
Hue Dang Radboud University Nijmegen
Yawen Fan Nangjing University of Posts and Telecommunications
José A. Gámez University of Castilla – La Mancha
Zhe Gan Duke University
Farhad Ghazvinianzanjani Radboud University Nijmegen
Codruta Girlea University of Illinois Urbana-Champaign
Nicolas Goix Telecom ParisTech
Tim Janssen Radboud University Nijmegen
Yacine Jernite New York University
Marcin Kozniewkski University of Pittsburgh
Matthijs Lavrijsen Radboud University Nijmegen

xv

Hoel Le Capitaine University of Nantes
Ritchie Lee Carnegie Mellon University
Miao Liu MIT
Pedro Meseguer Artificial Intelligence Research Institute
Steffen Michels Radboud University Nijmegen
Trung Nguyen Adobe
Gary Overett Carnegie Mellon University
Umut Oztok UCLA
Huang Phuong Ulsan National Institute of Science and Technology
Harmen Prins Radboud University Nijmegen
Wen Pu University of Illinois Urbana-Champaign
José M. Puerta University of Castilla – La Mancha
Deepak Ramachandran University of Illinois Urbana-Champaign
Steven Reitsma Radboud University Nijmegen
Yan Shu UC San Diego
Tom Sterkenburg CWI Amsterdam
Zhaonan Sun IBM
Priya Sundararajan Carnegie Mellon University
Balázs Szörényi University of Szeged
Liang Tang Florida International University
Bas Van Berkel Radboud University Nijmegen
Suzanne Van den Bosch Radboud University Nijmegen
Robbert Van der Gugten Radboud University Nijmegen
Fenno Vermeij Radboud University Nijmegen
Amanda Vidal Artificial Intelligence Research Institute
Sy Bor Wang Adobe
Niklas Weber Radboud University Nijmegen
Shuang Wu Shanghai Jiaotong University
Tong Yu Carnegie Mellon University
Ming Zeng Carnegie Mellon University
Qin Zhou Shanghai Jiaotong University
Xiaoyuan Zhu CUNY Queens College

xvi

Additional Acknowledgments

A number of other people have made significant contributions towards making UAI 2015 possible. We acknowl-
edge and thank:

• Laurent Charlin for running the Toronto Publication Matching System.

• Kasper Brink for helping out with CMT.

• Amin Jalali for setting up the conference website.

• Thomas Mensink for serving as the conference webmaster.

• Yali Wan and James McQueen for assisting with the workflow.

• Sara Magliacane, Elles Baaijens and Nicholas Cornia for helping with organizing local arrangements.

• Local volunteers Stephan Bongers, Nicholas Cornia, Hue Dang, Sara Magliacane and Philip Versteeg.

• Kilian Weinberger for setting up the automatic paper formatting checker.

• The following student scholarship volunteers:

Amir Asiaee Taheri University of Minnesota
Kaiser Asif University of Illinois at Chicago
Steven Cheng-Xian Li University of Massachusetts Amherst
Shuyang Gao University of Southern California
Jesse Hostetler Oregon State University
Adrian Kim Seoul National University
Jan Leike Australian National University
Tianyang Li University of Texas at Austin
Wen Wei Loh University of Washington
Ben London University of Maryland
Aikaterini Marazopoulou University of Massachusetts Amherst
Nikita Mishra University of Chicago
Aswin Nadamuni Raghavan Oregon State University
Jay Pujara University of Maryland
Wen Sun Carnegie Mellon University
Jason Xu University of Washington
Bahman Yari Saeed Khanloo Monash University
Yun Zhou Queen Mary University of London

xvii

xviii

Sponsors

We gratefully acknowledge the generous support provided by our sponsors, including support for best paper
awards and travel scholarships. Without our sponsors’ support it would not be feasible to organize a conference
such as UAI 2015 without charging much higher registration fees.

Gold Sponsors

Silver Sponsors

Bronze Sponsors

xix

xx

Best Paper Awards

Best Paper Award - sponsored by Microsoft
Hashing-based approximate probabilistic inference in hybrid domains
Vaishak Belle, Guy Van Den Broeck, Andrea Passerini

Facebook Best Student Paper
Finite-sample analysis of proximal gradient TD algorithms
Bo Liu, Ji Liu, Mohammad Ghavamzadeh, Sridhar Mahadevan, Marek Petrik

Google Best Student Paper
Online Bellman residual algorithms with predictive error guarantees
Wen Sun, J. Andrew Bagnell

xxi

xxii

Proceedings

1

Bayesian Optimal Control of Smoothly Parameterized Systems

Yasin Abbasi-Yadkori
Queensland University of Technology

Csaba Szepesvári
University of Alberta

Abstract

We study Bayesian optimal control of a general
class of smoothly parameterized Markov deci-
sion problems (MDPs). We propose a lazy ver-
sion of the so-called posterior sampling method,
a method that goes back to Thompson and Strens,
more recently studied by Osband, Russo and van
Roy. While Osband et al. derived a bound on
the (Bayesian) regret of this method for undis-
counted total cost episodic, finite state and ac-
tion problems, we consider the continuing, av-
erage cost setting with no cardinality restric-
tions on the state or action spaces. While in
the episodic setting, it is natural to switch to a
new policy at the episode-ends, in the continu-
ing average cost framework we must introduce
switching points explicitly and in a principled
fashion, or the regret could grow linearly. Our
lazy method introduces these switching points
based on monitoring the uncertainty left about
the unknown parameter. To develop a suitable
and easy-to-compute uncertainty measure, we in-
troduce a new “average local smoothness” con-
dition, which is shown to be satisfied in com-
mon examples. Under this, and some additional
mild conditions, we derive rate-optimal bounds
on the regret of our algorithm. Our general ap-
proach allows us to use a single algorithm and
a single analysis for a wide range of problems,
such as finite MDPs or linear quadratic regula-
tion, both being instances of smoothly parame-
terized MDPs. The effectiveness of our method
is illustrated by means of a simulated example.

1 INTRODUCTION

The topic of this paper is Bayesian optimal control, where
the problem is to design a policy that achieves optimal per-
formance on the average over control problem instances

that are randomly sampled from a given distribution. This
problem naturally arises when the goal is to design a con-
troller for mass-produced systems, where production is im-
perfect but the errors follow a regular pattern and the goal
is to maintain a good average performance over the con-
trolled systems, rather than to achieve good performance
even for the system with the largest errors.

In a Bayesian setting, the optimal policy (which exists
under appropriate regularity conditions) is history depen-
dent. Given the knowledge of the prior, the transition dy-
namics and costs, the problem in a Bayesian setting is to
find an efficient way to calculate the actions that the opti-
mal policy would take given some history. This problem
was studied for finite state and action spaces by Asmuth
et al. (2009) and Kolter and Ng (2009). Both works pro-
pose specific computationally efficient algorithms, which
are shown to be ✏-Bayes-optimal with probability 1 � �
with the exception of O(poly(1/✏)) many steps, where for
both algorithms ✏ and � are both part of the input. While
Kolter and Ng (2009) suggest to add an exploration bonus
to the rewards while using the mean estimates for the tran-
sition probabilities and considers a finite horizon setting,
Asmuth et al. (2009) consider discounted total rewards and
a variant of posterior sampling, originally due to Thompson
(1933) and first adapted to reinforcement learning by Strens
(2000). More recently, the algorithm of Strens (2000) was
revisited by Osband et al. (2013) in the context of episodic,
finite MDPs. An attractive feature of posterior sampling is
that it requires neither the target accuracy ✏, nor the failure
probability � as its inputs. Rather, the guarantee presented
by Osband et al. (2013) is that the algorithm’s (Bayesian)
regret, i.e., the excess cost due to not following the opti-
mal policy, is bounded by eO(

p
T)1 both with high proba-

bility and in expectation. The reader interested in further
algorithms for Bayesian reinforcement learning (including
algorithms for infinite state spaces) may consult the papers
of Araya-López et al. (2012), Vlassis et al. (2012) and Guez
et al. (2013), which together give an excellent overview of
the literature.

1 eO(·) hides poly-logarithmic factors.

2

The starting point of our paper is the work of Osband et al.
(2013). In particular, just like Osband et al. (2013), we
build on the posterior sampling algorithm of Strens (2000),
which itself was derived from an algorithm of Thompson
(1933) developed for the so-called bandit setting. Unlike
Osband et al. (2013) and Strens (2000), we allow the state-
action space to be infinite (subject to some regularity condi-
tions discussed later) and we consider the infinite horizon,
continuing, average-cost setting. As far as we known, ours
is the first work deriving (Bayesian) regret bounds for any
algorithms of this generality. The major assumption that
we make is that the Markov dynamics is smoothly param-
eterized in some unknown parameters with known (local)
“smoothness” map such that the posterior concentrates in
the metric derived from this map. It is shown that this as-
sumption is met in some common examples, such as finite
MDPs, and also in linearly parameterized systems, which
encompass, systems with linear dynamics.

Following a proposal of Strens (2000) who also considered
the non-episodic setting, the algorithm works in phases: At
the beginning of each phase, a policy is computed based
on solving the optimal control problem for a random pa-
rameter vector drawn from the posterior over the parameter
vectors. The algorithm keeps the policy until the param-
eter uncertainty is reduced by a substantial margin, when
a new phase begins and the process is repeated. The idea
of ending a phase when uncertainty is reduced by a signif-
icant margin goes back at least to the work of Jaksch et al.
(2010).

While in the case of episodic problems the issue of how
long a policy should be kept does not arise, in a contin-
uing problem with no episodic structure, if policies are
changed too often, performance will suffer (see, e.g., Ex-
ample 1 of Guez et al. (2014)). To address this challenge,
for non-episodic problems, Strens (2000) suggested that the
lengths of phases should be adjusted to the “planning hori-
zon” (Strens, 2000), which however, is ill-defined for the
average cost setting that we consider in this paper. A major
contribution of this work is that we show how the smooth-
ness map can be used to derive the length of the phases.

In a recent and independent work, Osband and Van Roy
(2014) propose and analyze a similar algorithm for episodic
problems. Also, Gopalan and Mannor (2015) show a fre-
quentist analysis of Thompson sampling for finite MDP
problems.

The continuing setting is very common in practice; this
setting is the most natural for controlled mechanical sys-
tems (e.g., CD/DVD drive control, control of manufactur-
ing robots), or for process optimization (e.g., controlling a
queuing system, resource management), where “resets” are
rare or unnatural.

Under some additional technical conditions, we show that
the expected (Bayesian) regret of our algorithm is Õ(

p
T +

⌃T), where T is the number of time steps and ⌃T is con-
trolled by the precision with which the optimal control
problems are solved, thus providing an explicit bound on
the cost of using imprecise calculations. In summary, the
main result of the paper shows that near-optimal Bayesian
optimal control is possible for a wide range of problems as
long as we can efficiently sample from the parameter pos-
teriors, the length of phases for how long the same policy
is followed is carefully controlled and if we can efficiently
solve the arising classical optimal control problems. Due
to the lack of space, the proofs of some of our claims are
given in the supplementary material.

We emphasize two contributions: (1) the invention of a
class of systems which unifies many previous approaches,
and permits an elegant proof. (2) the introduction of a Con-
centrating Posterior assumption which significantly short-
ens our proof compared to previous proofs and improves
the bound, as we avoid the use of measure concentration
arguments which were always used previously.

2 PROBLEM SETTING

We consider problems when the transition dynamics is pa-
rameterized with a matrix ⇥⇤ 2 Rm⇥n, which is randomly
chosen at time 0 (before the interaction with the learner
starts) from a known prior P0 with support S ⇢ Rm⇥n.
Let Pt denote the posterior of ⇥⇤ at time t based on
x1, a1, . . . , at�1, xt. Let X ⇢ Rn be the state space and
A ⇢ Rd be the action space, xt 2 X be the state at time t
and at 2 A be the action at time t, which is chosen based
on x1, at, . . . , at�1, xt. It is assumed that x1 is sampled
from a fixed distribution (although, it should become clear
later that this assumption is not necessary). For M ⌫ 0
positive semidefinite, define k⇥k2M =

��⇥>M⇥
��

2
, where

k·k2 denotes the spectral norm of matrices (later we will
drop the subindex 2). The set of positive semidefinite
m ⇥ m matrices will be denoted by S+(m). Our main
assumption concerning the transition law is as follows:

Assumption A1 (Smoothly Parameterized Dynamics)
The next state satisfies xt+1 = f(xt, at,⇥⇤, zt+1), where
zt+1 ⇠ U [0, 1] is independent of the past and ⇥⇤. Further,
there exists a (known) map M : X⇥A! S+(m) such that
for any ⇥,⇥0 2 S , if y = f(x, a,⇥, z), y0 = f(x, a,⇥0, z)
with z ⇠ U [0, 1], then E [ky � y0k] k⇥�⇥0kM(x,a).

The first part of the assumption just states that given ⇥⇤, the
dynamics is Markovian with state xt, while the second part
demands that small changes in the parameter lead to small
changes in the next state. The assumption that the map M
is “known” makes it possible to use M in the design of our
algorithms.

Our next assumption connects the concentration of the pos-
terior with M :

3

Assumption A2 (Concentrating Posterior) Let F̃t =
�(x1, a1, . . . , at�1, xt) be the �-algebra generated by ob-
servations up to time t, Vt = V +

Pt�1
s=1 M(xs, as), where

V is an m ⇥m positive definite matrix. Then, there exists
a positive constant C such that for any t � 1, for some F̃t-
measurable random variable b⇥t, letting ⇥0t ⇠ Pt it holds
that max

n
E
h
k⇥0t � b⇥tk2Vt

i
, E

h
k⇥⇤ � b⇥tk2Vt

io
 C.

The idea here is that b⇥t is an estimate of ⇥⇤ based on past
information available at time t, such as a maximum apos-
teriori (MAP) estimate (note that this estimate will not be
needed by our algorithm). Since Vt is increasing at a lin-
ear rate, the assumption requires that b⇥t converges to ⇥
at an O(1/

p
t) rate. When ⇥ = ⇥⇤, this means that b⇥t

should converge to ⇥⇤ at this rate, which is indeed what
we expect. When ⇥ = ⇥0t, again, we expect this to be true
since ⇥0t is expected to be in the O(1/

p
t) vicinity of ⇥⇤.

Note how this assumption connects M with the behavior
of the posterior. One novelty of our analysis, as compared
to that of Osband et al. (2013), is that while Osband et al.
relies on measure-concentration, we require only the above
(weaker) “variance concentration”. We will show explicit
examples where this variance term is easy to control using a
direct calculation. Since we avoid measure-concentration,
our analysis has the potential to give much tighter regret
bounds for the Bayesian setting than available previously,
though the study of this remains for future work. The ex-
amples we deal with include finite MDPs (where the state
is represented by unit vectors) and systems with linear dy-
namics (i.e., when xt+1 = Axt + Bat + wt+1, where
wt+1 ⇠ pw(·|xt, at)), amongst others. Explicit expres-
sions for the map M will be given in Section 6 for these
systems. In general, for systems with additive noise, find-
ing M essentially reduces to finding a suitable local lin-
earization of the system’s dynamics.

The problem we study is to design a controller (also known
as a policy) that at every time step t, based on past states
x1, . . . , xt and actions a1, . . . , at�1, selects an action at

so as to minimize the expected long-run average loss
E
⇥
lim supn!1

1
n

Pn
t=1 `(xt, at)

⇤
. We consider any noise

distribution and any loss function ` as long as a bounded-
ness assumption on the variance and a smoothness assump-
tion on the value function are satisfied (see Assumptions A2
and A3-ii below). It is important to note that we allow ` to
be a nonlinear function of the last state-action pair, i.e., the
framework allows one to go significantly beyond the scope
of linear quadratic control as many nonlinear control prob-
lems can be transformed into a linear form (but with a non-
linear loss function) using the so-called dynamic feedback
linearization techniques (Isidori, 1995).

To measure the performance of an algorithm,
we use the (expected) regret RT : RT =

E
hPT

t=1(`(xt, at)� J(⇥⇤))
i
. Here, (xt, at)

T
t=1 de-

notes the state-action trajectory and J(⇥⇤) is the average
loss of the optimal policy given (random) parameter
⇥⇤. The slower the regret grows, the closer is the per-
formance to that of an optimal policy. If the growth
rate of RT is sublinear (RT = o(T)), the average loss
per time step will converge to the optimal average loss
as T gets large and in this sense we can say that the
algorithm is asymptotically-optimal. Our main result
shows that, under some conditions, the construction of
such asymptotically-optimal policies can be reduced
to the ability of efficiently sampling from the posterior
of ⇥⇤ and being able to solve classical (non-Bayesian)
optimal-control problems. Furthermore, our main result
also implies that RT = eO(

p
T).

3 THE LAZY PSRL ALGORITHM

Our algorithm is an instance of the posterior sampling re-
inforcement learning (PSRL) (Osband et al., 2013). As ex-
plained beforehand, this algorithm is based on the work on
Thompson (1933) and was proposed by Strens (2000). To
emphasize that the algorithm keeps the current policy for a
while, we call it LAZY PSRL. Our contribution is to sug-
gest a specific schedule for updating the policy. The pseu-
docode of the algorithm is shown in Figure 1.

Recall that P0 denotes the prior distribution of the pa-
rameter matrix ⇥⇤. Let Pt denote the posterior of ⇥⇤ at
time t based on x1, a1, . . . , at�1, xt and ⌧t < t the last
round when the algorithm chose a new policy. Further, let
Vt = V +

Pt�1
s=1 M(xs, as), where V is some fixed, m⇥m

positive definite matrix. Let G be a constant that controls
the replanning frequency. Then, at time t, Lazy PSRL sets
e⇥t = e⇥t�1 unless det(Vt) > Gdet(V⌧t

) in which case it
chooses e⇥t from the posterior Pt: e⇥t ⇠ Pt. The action
taken at time step t is a near-optimal action for the system
whose transition dynamics is specified by e⇥t. We assume
that a subroutine, ⇡⇤, taking the current state xt and the
parameter e⇥t is available to calculate such an action. The
inexact nature of calculating a near-optimal action will also
be taken in our analysis.

4 RESULTS FOR BOUNDED STATE-
AND FEATURE-SPACES

In this section, we study problems with a bounded state
space. In particular, the number of states might be infinite,
but we assume that the norm of the state vector is bounded
by a constant. Before stating our main result, we state some
extra assumptions.

Our first extra assumption concerns the existence of “reg-
ular” solutions to the average cost optimality equations
(ACOEs), an assumption which is usually thought to be
mild in the context of average-cost problems:

4

Inputs: P0, the prior distribution of ⇥⇤, V , G.
Vlast V , V0 V .
for t 1, 2, . . . do

if det(Vt) > G det(Vlast) then
Sample e⇥t ⇠ Pt.
Vlast Vt.

else
e⇥t e⇥t�1.

end if
Calculate near-optimal action at ⇡⇤(xt, e⇥t).
Execute action at and observe the new state xt+1.
Update Pt with (xt, at, xt+1) to obtain Pt+1.
Update Vt+1 Vt + M(xt, at).

end for

Figure 1: Lazy PSRL for smoothly parameterized control
problems

Assumption A3 (Existence of Regular ACOE Solutions)
The following hold:

(i) There exists H > 0 such that for any ⇥ 2 S , there
exist a scalar J(⇥) and a function h(·,⇥) : X !
[0, H] that satisfy the average cost optimality equa-
tion (ACOE): for any x 2 X ,

J(⇥) + h(x,⇥) = (1)

min
a2A

⇢
`(x, a) +

Z
h(y,⇥)p(dy | x, a,⇥)

�
,

where p(·|x, a,⇥) is the next-state distribution given
state x, action a and parameter ⇥.

(ii) There exists B > 0 such that for all ⇥ 2 S , and for
all x, x0 2 X , |h(x,⇥)� h(x0,⇥)| B kx� x0k.

With a slight abuse of the concepts, we will call the quantity
J(⇥) the average loss of the optimal policy, while function
h(·,⇥) will be called the value function (for the system
with parameter ⇥). The review paper by Arapostathis et al.
(1993) gives a number of sufficient (and sometimes nec-
essary) conditions that guarantee that a solution to ACOE
exists. Lipschitz continuity usually follows from that of the
transition dynamics and the losses.

Let us now discuss the condition that h should have a
bounded range. A uniform lower bound on h follows, for
example if the immediate cost function ` is lower bounded.
Then, if the state space is bounded, uniform boundedness
of the functions h(·,⇥) follows from their uniform Lips-
chitzness:

Proposition 1. Assume that the value function h(·,⇥) is
bounded from below (infx h(x,⇥) > �1) and is B-
Lipschitz. Then, if the diameter of the state space is

bounded by X (i.e., supx,x02X kx� x0k X) then there
exists a solution h0(·,⇥) to (1) such that the range of h is
included in [0, BX].

Finally, we assume that the map M : X ⇥A ! S+(m) is
bounded:

Assumption A4 (Boundedness) There exist � > 0 such
that for all x 2 X and a 2 A, trace(M(x, a)) �2.

This assumption may be strong. In the next section we dis-
cuss an extension of the result of this section to the case
when this assumption is not met.

The main theorem of this section bounds the regret of Lazy
PSRL under the assumptions mentioned so far. In this re-
sult, we allow ⇡⇤ to return a �t-suboptimal action, where
�t > 0. By this, we mean that the action at satisfies

`(xt, at) +

Z
h(y, e⇥t)p(dy|xt, at, e⇥t) (2)

min
a2A

⇢
`(xt, a) +

Z
h(y, e⇥t)p(dy|xt, a, e⇥t)

�
+ �t .

One can control the suboptimality error in terms of the error
of an approximate solution to the Bellman equation and the
error of the subroutine that finds an action that minimizes
the obtained approximate action values.
Theorem 2. Assume that A1–A4 hold for some values of
C, B, X,� > 0. Consider Lazy PSRL where in time step
t, the action chosen is �t-suboptimal. Then, for any time
T , the regret of Lazy PSRL satisfies RT = eO

⇣p
T
⌘

+⌃T ,

where ⌃T =
PT

t=1 E [�t] and the constant hidden by eO(·)
depends on V, C, B, X, G and �.

In particular, the theorem implies that Lazy PSRL is
asymptotically optimal as long as

PT
t=1 E [�t] = o(T) and

it is O(✏)-optimal if E [�t] ✏. The fact that the regret
is bounded by the sum of suboptimality factors in solving
Bellman equation is not trivial. Indeed, as actions have long
term effects and we have a closed-loop system, one might
suspect that the regret could blow up as a function of these
errors. In this respect, the significance of our theorem is
that the learner need not worry too much about each plan-
ning subproblem as the overall effect is only additive.

Due to lack of space, the proof, which combines the proof
techniques of Osband et al. (2013) with that of Abbasi-
Yadkori and Szepesvári (2011) in a novel fashion, is pre-
sented in the appendix.

5 FORCEFULLY STABILIZED SYSTEMS

For some applications, such as robotics, where the state can
grow unbounded, the boundedness assumption (Assump-
tion A4) is rather problematic. For such systems, it is com-
mon to use a stabilizing controller ⇡stab that is automati-
cally turned on and is kept on as long as the state vector is

5

“large”. The stabilizing controller, however, is usually ex-
pensive (uses lots of energy), as it is designed to be robust
so that it is guaranteed to drive back the state to the safe
region for all possible systems under consideration. Hence
a good controller should avoid relying on the stabilizing
controller.

In this section, we will replace Assumption A4 with an as-
sumption that a stabilizing controller is available. We will
use this controller to override the actions coming from our
algorithm as soon as the state leaves the (bounded) safe
region R ⇢ Rn until it returns to it. The corresponding
pseudocodeis shown in Figure 2.

Inputs: P0, the prior distribution of ⇥⇤, V , the safe
region R ⇢ Rn.
Initialize Lazy PSRL with P0 and V , x1.
for t = 1, 2, . . . do

if xt 2 R then
Get action at from Lazy PSRL

else
Get action at from ⇡stab

end if
Execute action at and observe the new state xt+1.
Feed at and xt+1 to Lazy PSRL.

end for

Figure 2: Stabilized Lazy PSRL

We assume that the stabilizing controller is effective in the
following sense:

Assumption A5 (Effective Stabilizing Controller) There
exists � > 0 such that the following holds: Pick any
x 2 R, a 2 A and let x01, a

0
1, x
0
2, a
0
2, . . . be the sequence

of state-action pairs obtained when from time step two the
Markovian stabilizing controller ⇡stab is applied to the con-
trolled system whose dynamics is given by ⇥ 2 S: x01 = x,
a01 = a, x0t+1 ⇠ p(·|x0t, a0t,⇥), a0t+1 ⇠ ⇡stab(·|x0t).
Then, E [trace(M(x0t, a

0
t))] �2 for any t � 1, where

M : X ⇥ A ! S+(m) is the map of Assumption A1 un-
derlying {p(·|x, a,⇥)}.

The assumption is reasonable as it only requires that the
trace of M(x0t, a

0
t) is bounded in expectation. Thus, large

spikes, that no controller may prevent, can exist as long as
they happen with a sufficiently low probability.

The next theorem shows that Stabilized Lazy PSRL is near
Bayes-optimal for the system p0 obtained from p by over-
writing the action a by the action ⇡stab(x) if x is outside of
the safe region R ⇢ Rn:

p0(dy|x, a,⇥) =

(
p(dy|x, a,⇥), if x 2 R;

p(dy|x,⇡stab(x),⇥), otherwise .

Theorem 3. Consider a parameterized system with the
transition probability kernel family {p(·|x, a,⇥)}⇥2S and
let ⇡stab : X ! A be a deterministic Markovian controller.
Let the smooth parameterization Assumption A1 hold
for {p(·|x, a,⇥)}, the ACOE solution regularity Assump-
tion A3 hold for {p0(·|x, a,⇥)}. Consider running the Sta-
bilized Lazy PSRL algorithm of Figure 2 on p(·|x, a,⇥⇤)
and let the concentration Assumption A2 hold along the
trajectory obtained. Then, if in addition Assumption A5
holds then the regret of Stabilized Lazy PSRL against the
Bayesian optimal controller of {p0(·|x, a,⇥)}⇥ with prior

P0 and immediate cost ` satisfies RT = eO
⇣p

T
⌘

+ ⌃T ,

where ⌃T =
PT

t=1 E [1 {xt 2 R}�t] and �t is the subop-
timality of the action computed by Lazy PSRL at time step
t.

If the optimal controller ⇡⇤ for p does not excite the con-
dition that turns on the stabilizing controller, then this con-
troller is also optimal for p0. In this case, Stabilized Lazy
PSRL will have the same regret against ⇡⇤ than what it has
against the optimal controller of p0 and the theorem implies
that it will achieve sublinear regret in the original system,
as long as ⌃T is sublinear.

6 EXAMPLES

The purpose of this section is to illustrate the results ob-
tained. In particular, we will consider applying the results
to finite MDPs and linearly parameterized controlled sys-
tems and show that for these cases all the assumptions can
be satisfied and Lazy PSRL can achieve a low expected re-
gret. We believe that our results will be applicable to many
more settings, such as hybrid discrete-continuous systems
where the discrete states control which continuous dynam-
ics is used.

6.1 Finite MDPs

Consider an MDP problem with finite state and action
spaces. Let the state space be X = {1, 2, . . . , n} and
the action space be A = {1, 2, . . . , d}. We represent the
state variable by an n-dimensional binary vector xt that
has only one non-zero element at the current state and will
write the dynamics in the form xt+1 = ⇥⇤'(xt, at) + ⌘t,
where ⇥⇤ will collect the transition matrices into a single
big matrix and ⌘t is a “Markov noise”. The feature map,
' : X ⇥A! Rnd and the parameter matrix are defined as
follows: for 1 k nd,

'k(x, a) =

(
1, if k = (a� 1)n + x ;

0, otherwise ,
⇥⇤ =

0
BBBB@

⇥
(1)
⇤

⇥
(2)
⇤
...

⇥
(d)
⇤

1
CCCCA

.

6

Let s 2 [n] be a state and a 2 [d] be an action. The sth
row of matrix ⇥

(a)
⇤ is a distribution over the state space

that shows the transition probabilities when we take ac-
tion a in state s. Thus, any row of ⇥(a)

⇤ sums to one and
E [xt+1|xt, at] = ⇥>⇤ '(xt, at).

An appropriate prior for each row is a Dirichlet dis-
tribution. Let ↵1, . . . ,↵n be positive numbers and let
V 0 = diag(↵1, . . . ,↵n). Then V = diag(V 0, . . . , V 0) 2
Rnd⇥nd is our “smoother”. Let the prior for the sth
row of ⇥(a)

⇤ be the Dirichlet distribution with parameters
(↵1, . . . ,↵n): (P0)s,: = D(↵1, . . . ,↵n). At time t, the
posterior has the form

(Pt)s,: = D(↵1 + ct(s, a, 1), . . . ,↵n + ct(s, a, n)),

where ct(s, a, s0) is the number of observed transitions to
state s0 after taking action a in state s during the first t
time steps. Matrix Vt is a diagonal matrix with diagonal
elements depending only on the number of times a state-
action pair is observed. In particular,

(Vt)n(a�1)+s,n(a�1)+s =
X

s0

(↵s0 + ct(s, a, s0)).

Vector b⇥t,(:,s0) is an nd-dimensional vector and its ele-
ments show the empirical frequency of transition to state
s0 from different state-action pairs. The mean of distribu-
tion (Pt)s,: is the vector b⇥t,(n(a�1)+s,:) where

b⇥t,(n(a�1)+s,s0) =
↵s0 + ct(s, a, s0)P

s00(↵s00 + ct(s, a, s00))
.

We now show that matrix-valued map M can be chosen to
be M(x, a) = (

p
2/2)I:

Proposition 4. The above choice makes Assumptions A1
and A2 satisfied.

Proof. Let us first show that Assumption A1 holds. Be-
cause E [y|x, a] = ⇥>'(x, a), E [y0|x, a] = ⇥

0>'(x, a),
and y and y0 have only one non-zero element,

E [ky � y0k] =
p

2P (y 6= y0) =
p

2 (1� P (y = y0))

=
p

2
⇣
1�⇥>(x,a),:⇥

0
(x,a),:

⌘

=

p
2

2

���⇥(x,a),: �⇥0(x,a),:

���
2

,

where the last step holds because each row of ⇥ and ⇥0

sum to one.

Let us now prove that Assumption A2 holds: Let N =
(⇥⇤ � b⇥t)

>, ↵s,a,s0 = ↵s0 + ct(s, a, s0) and ↵s,a =P
s0 ↵s,a,s0 = Vt,(n(a�1)+s,n(a�1)+s). Let k.kF denote the

Frobenius norm. We have that

E
���NV

1/2
t

���
2
���� Ft

�
 E

���NV
1/2
t

���
2

F

���� Ft

�

= E

"X

s,a

Vt,(n(a�1)+s,n(a�1)+s)

X

s0

N2
s0,n(a�1)+s

����� Ft

#

=
X

s,a

↵s,a

X

s0

E
h
N2

s0,n(a�1)+s

��� Ft

i
.

Because each row of ⇥⇤ has a Dirichlet distribu-
tion and rows of b⇥t are means of these distributions,
E
h
N2

s0,n(a�1)+s

��� Ft

i
is simply the variance of the corre-

sponding Dirichlet variable. Thus,

E
���NV

1/2
t

���
2
���� Ft

�

X

s,a

X

s0

↵s,a↵s,a,s0(↵s,a � ↵s,a,s0)

↵2
s,a(1 + ↵s,a)

 n2d .

An immediate corollary of this is that Lazy PSRL will en-
joy low regret in finite MDPs:
Corollary 5. Consider Lazy PSRL applied to a finite MDP
with n states, d actions with M as above, and a Dirich-
let prior as specified above. Assume that the set S sys-
tem parameters under which Assumption A3 is satisfied is
a measurable set with positive Lebesgue measure. Sup-
pose that at time step t, the action chosen is �t-suboptimal.
Then, for any time T , the regret of Lazy PSRL satisfies
RT = eO

⇣p
T
⌘

+ ⌃T .

Proof. The boundedness condition (Assumption A4) triv-
ially holds, Assumption A3 holds by assumption, while
Proposition 4 shows that the remaining two assumptions
of Theorem 2 are satisfied.

6.2 Linearly Parametrized Problems with Gaussian
Noise

Next, we consider linearly parametrized problems with
Gaussian noise:

xt+1 = ⇥>⇤ '(xt, at) + wt+1 , (3)

where wt+1 is a zero-mean normal random variable. The
nonlinear dynamics shown in (3) shares similarities to,
but allows significantly greater generality than the Lin-
ear Quadratic (LQ) problem considered by Abbasi-Yadkori
and Szepesvári (2011). In particular, in the LQ problem,
⇥>⇤ =

�
A⇤ , B⇤

�
and '(xt, at)

> =
�
x>t , a>t

�
. (How-

ever, Abbasi-Yadkori and Szepesvári (2011) assume only
that the noise is subgaussian.)

Next, we describe a conjugate prior under the assump-
tion that the noise is Gaussian with a known covari-
ance matrix. Without loss of generality, we assume that

7

E
⇥
wt+1w

>
t+1 | Ft

⇤
= I . A conjugate prior is appealing as

the posterior has a compact representation that allows for
computationally efficient sampling methods. Assume that
the columns of matrix ⇥⇤ are independently sampled from
the following prior: for i = 1 . . . n,

P0

�
⇥⇤,(:,i)

�
/ exp

⇣
⇥>⇤,(:,i)V ⇥⇤,(:,i)

⌘
1
�
⇥⇤,(:,i) 2 S

and S is the set of system parameters under which Assump-
tion A3 is satisfied, which is assumed to be a measurable
set with positive Lebesgue measure. Then, by Bayes’ rule,
the posterior for column i of ⇥⇤, Pt

�
⇥⇤,(:,i)

�
, is propor-

tional to

e

⇣
�0.5(⇥⇤,(:,i)�b⇥t,(:,i))

>
Vt(⇥⇤,(:,i)�b⇥t,(:,i))

⌘
1
�
⇥⇤,(:,i) 2 S

.

We now show an appropriate choice for M (which should
not be surprising):

Proposition 6. With the choice M(x, a) =
'(x, a)'(x, a)>, Assumptions A1 and A2 are satis-
fied.

Note that this choice is essentially the same as in Proposi-
tion 4.

Proof. Let us first show that Assumption A1 holds. Be-
cause y = ⇥>'(x, a)+w, y0 = ⇥

0>'(x, a)+w, we have
ky � y0k2 = k⇥�⇥0k2'(x,a)'(x,a)> , which shows that this
assumption is indeed satisfied with the said choice of M .

Let us now prove that Assumption A2 holds: Let ⇤ be a
random variable with probability distribution function

P (�) / exp

✓
�1

2

⇣
�� b⇥t,(:,i)

⌘>
Vt

⇣
�� b⇥t,(:,i)

⌘◆
.

Notice that
⇣
⇤� b⇥t,(:,i)

⌘>
V

1/2
t = Z ⇠ N (0, I) has

the standard normal distribution. Hence P (|Zj | > ↵)
e�↵

2/2. Thus, since P (kZk > ↵) me�↵
2/(2m2), we

have

E

"����
⇣
⇥⇤,(:,i) � b⇥t,(:,i)

⌘>
V

1/2
t

����
2
����� Ft

#
= E

h
kZk2

��� Ft

i

=

Z 1

0

P
⇣
kZk2 > ✏

⌘
 2m3 .

Thus,

E
���(⇥⇤ � b⇥t)

>V
1/2
t

���
2
���� Ft

�

 E
���(⇥⇤ � b⇥t)

>V
1/2
t

���
2

F

���� Ft

�

=
nX

i=1

E

"����
⇣
⇥⇤,(:,i) � b⇥t,(:,i)

⌘>
V

1/2
t

����
2
����� Ft

#

 2nm3 .

This shows that Assumption A2 is satisfied, thus finishing
the proof.

An immediate corollary of this is that Lazy PSRL will en-
joy low regret when applied to linearly parametrized prob-
lems with Gaussian noise. We assume an effective stabiliz-
ing controller is available. This is necessary, as the noise
may make the state arbitrarily large.

Corollary 7. Consider Stabilized Lazy PSRL applied to a
linearly parametrized problem with Gaussian noise with M
as in Proposition 6. Let the underlying MDP satisfy As-
sumption A3. Suppose in time step t, the action chosen is
�t-suboptimal. Then, for any time T , the regret of Stabi-
lized Lazy PSRL satisfies RT = eO

⇣p
T
⌘

+ ⌃T .

Proof. The claim follows immediately from Proposition 6
and Theorem 3.

7 EXPERIMENTS

In this section we illustrate the behavior of LAZY PSRL on
a queueing and a web server control application.

7.1 Queuing Control Application

The queueing problem is described in (de Farias and Van
Roy, 2003). The queue has a buffer size of 99. For time
t, let xt 2 {0, 1, . . . , 99} be the state. The action at is the
departure probability or service rate and is chosen from the
set {0.1625, 0.325, 0.4875, 0.65}. Let p be the (unknown)
arrival rate. The dynamics is defined as follows

xt+1 =

8
><
>:

xt � 1 with probability at ;

xt + 1 with probability p ;

xt otherwise .

From state xt = 0, transitions to states 1 and 0 happen with
probabilities p and 1 � p. From state xt = 99, transitions
to states 98 and 99 happen with probabilities at and 1� at.
The loss function is `(xt, at) = x2

t + 500p2.

7.1.1 Numerical Results

The purpose of this experiment is to show how the LAZY
PSRL algorithm can take advantage of the problem struc-
ture to obtain better performance. We compare the LAZY
PSRL algorithm with UCRL (Jaksch et al., 2010). For
the LAZY PSRL algorithm, we use the Beta distribution
Beta(1, 1) as the prior for the unknown parameter p (the
conditions of our theorem can be seen to be satisfied along
the lines of the previous section with M(x, a) = const).
The constant G in Figure 1 is chosen to be G = 2. The
UCRL algorithm is an optimistic algorithm that maintains
a confidence interval around each transition probability

8

P (x0|x, a) and, in each round, finds the transition dynamics
and the corresponding policy that attains the smallest aver-
age loss. Specifically, the algorithm solves the optimization
problem eP = argminP J(P), where J(P) is the average
loss of the optimal policy when the system dynamics is P .
Then, the algorithm plays the optimal controller given the
parameter eP . As we show next, the LAZY PSRL algorithm
achieves lower average cost.

The time horizon in these experiments is T = 1, 000. We
repeat each experiment 10 times and report the mean and
the standard deviation of the observations. Figure 3 shows
average cost vs. number of rounds. Details of the imple-
mentation of the UCRL algorithm are in (Jaksch et al.,
2010).

Figure 3 show the average cost of the algorithms. The
LAZY PSRL algorithm outperforms the UCRL algorithm.
We explain this observation by noting that the UCRL al-
gorithm is learning components of the transition dynamics
independently (400 components in total), while the LAZY
PSRL algorithm takes advantage of the problem structure
to speed up the learning.

7.2 Web Server Control Application

In this section we illustrate the behavior of LAZY PSRL on
a simple LQR control problem. We choose an LQR control
problem because it is a continuous state-action problem.
Equally important is that this allowed us to compare the
performance of LAZY PSRL to a competing method, the
OFULQ algorithm of Abbasi-Yadkori (2012). The exper-
iments go beyond the scope of the theory, as we did not
use a stabilizing controller, though the control problem it-
self is such that the zero-dynamics (i.e., the dynamics under
zero control) is stable, making it less likely that a stabiliz-
ing controller would be necessary for the method to work.
In the next section we describe the control problem, which
will be followed by the description of our results.

The problem is taken from Section 7.8.1 of the book by
Hellerstein et al. (2004) (this example is also used in Sec-
tion 3.4 of the book by Aström and Murray (2008)). An
Apache HTTP web server processes the incoming connec-
tions that arrive on a queue. Each connection is assigned
to an available process. A process drops the connection if
no requests have been received in the last KEEPALIVE sec-
onds. At any given time, there are at most MAXCLIENTS
active processes. The values of the KEEPALIVE and MAX-
CLIENTS parameters, denoted by aka and amc respectively,
are chosen by a control algorithm. Increasing amc and aka

results in faster and longer services to the connections, but
also increases the CPU and memory usage of the server.
The state of the server is determined by the average pro-
cessor load xcpu and the relative memory usage xmem.
An operating point of interest of the system is given by
xcpu = 0.58 , aka = 11s , xmem = 0.55 , amc = 600. A

linear model around the operating point is assumed, result-
ing in a model of the form
✓

x�
cpu(t + 1)

x�
mem(t + 1)

◆
=

✓
A11 A12

A21 A21

◆ ✓
x�

cpu(t)
x�

mem(t)

◆

+

✓
B11 B12

B21 B21

◆ ✓
a�

ka(t)
a�

mc(t)

◆
+

✓
w1(t + 1)
w2(t + 1)

◆
,

where (w1(t+1), w2(t+1))t is an i.i.d. sequence of Gaus-
sian random variables, with a diagonal covariance matrix
E
⇥
w(t + 1)>w(t + 1)

⇤
= �2I . Note that these state and

action variables are in fact the deviations from the operat-
ing point. We test � = 0.1 and � = 1.0 in our experiments.
The matrices A, B, Q, R are included in the appendix.

7.2.1 Numerical Results

We compare the LAZY PSRL algorithm with
OFULQ (Abbasi-Yadkori, 2012). For the LAZY
PSRL algorithm, we use the standard normal distribution
as the prior. The OFULQ algorithm is an optimistic
algorithm that maintains a confidence ellipsoid D around
the unknown parameter and, in each round, finds the
parameter and the corresponding policy that attains the
smallest average loss. Specifically, the algorithm solves
the optimization problem

(eA, eB) = argmin
(A,B)2D

J(A, B) , (4)

where J(A, B) is the average loss of the optimal policy
when the system dynamics is (A, B). Then, the algorithm
plays the optimal controller given the parameter (eA, eB).
The objective function J is not convex and thus, solving the
optimistic optimization can be very time consuming. As
we show next, the LAZY PSRL algorithm can have lower
regret while avoiding the high computational costs of the
OFULQ algorithm.

The time horizon in these experiments is T = 1, 000. We
repeat each experiment 10 times and report the mean and
the standard deviation of the observations. Figure 4 shows
regret vs. computation time. The horizontal axis shows the
amount of time (in seconds) that the algorithm spends to
process T = 1, 000 rounds. We change the computation
time by changing constant G in Figure 1, i.e. by chang-
ing how frequent an algorithm updates its policy.2 De-
tails of the implementation of the OFULQ algorithm are
in (Abbasi-Yadkori, 2012).

The first two subfigures of Figure 4 show the regret of
the algorithms when the standard deviation of the noise
is � = 0.1. The regret of the LAZY PSRL algorithm
is slightly worse than what we get for the OFULQ algo-
rithm in this case. The LAZY PSRL algorithm outperforms

2For example, in Figure 4-(d), the average number of policy
changes are (33.4, 45.2, 88, 127.1). In Figure 4-(c) the average
number of policy changes are (5.6, 14.3, 30.8, 73.2, 140.2, 163).

9

� ��� ��� ��� ��� ����
��	
�� � �����

�

��

��

��

��

���

���

���

���

�
��

��
�
�
�
�
�

����

(a) Average cost of UCRL

� ��� ��� ��� ��� ����
��	
�� � �����

�

��

��

��

��

���

���

���

���

�
��

��
�
�
�

��

����

(b) Average cost of LAZY PSRL

Figure 3: Average cost for a queueing problem.

� � �� �� �� ��
����	
 �� �����	�

�

�

��

��

��

��

��

�
	
�

	
�

�����

(a) Regret of OFULQ, � = 0.1

� �� �� �� �� �� �� �� �� ��
��	
�� � ��������

�

�

��

��

��

��

��

�
��

��
�

���� ����

(b) Regret of LAZY PSRL, � = 0.1

� �� �� �� �� ��� ��� ��� ��� ���
��	
�� � ��������

�

���

����

����

����

����

�
�
�
��
�

�����

(c) Regret of OFULQ, � = 1.0

�� �� �� �� ��� ��� ���
��	
�� � ��������

�

���

���

���

���

����

�
�
�
��
�

���� ����

(d) Regret of LAZY PSRL, � = 1.0

� � �� �� �� �� �� �� ��
��	

�

���

����

����

����

����

�

�

�

�����

(e) Regret of OFULQ, � = 1.0

���� ���� ���� ���� ���� ���� ����
�	
�

�

���

���

���

���

����

�
�
��
�

���� ���

(f) Regret of LAZY PSRL, � = 1.0

� � �� ��
������	�
������

�

��

��

��

��

��

�
��

	�
�

���� ����

(g) Regret of LAZY PSRL with zero
mean Gaussians, changing standard de-
viation

Figure 4: Regret for a web server control problem.

the OFULQ algorithm when the noise variance is larger
(next two subfigures). We explain this observation by not-
ing that a larger noise variance implies larger confidence
ellipsoids, which results in more difficult optimistic opti-

mization problems (4). Finally, we performed experiments
with different prior distributions. Figure 4-(e) shows regret
of the LAZY PSRL algorithm when we change the prior.

10

References
Y. Abbasi-Yadkori. Online Learning for Linearly

Parametrized Control Problems. PhD thesis, University
of Alberta, 2012.

Y. Abbasi-Yadkori and Cs. Szepesvári. Regret bounds
for the adaptive control of linear quadratic systems. In
COLT, 2011.

A. Arapostathis, V.S. Borkar, E. Fernandez-Gaucherand,
M.K. Ghosh, and S.I. Marcus. Discrete-time controlled
Markov processes with average cost criterion: a sur-
vey. SIAM Journal on Control and Optimization, 31:
282–344, 1993.

M. Araya-López, V. Thomas, and O. Buffet. Near-optimal
BRL using optimistic local transitions. In ICML, 2012.

J. Asmuth, L. Li, M. L. Littman, A. Nouri, and D. Wingate.
A Bayesian sampling approach to exploration in rein-
forcement learning. In UAI, pages 19–26, 2009.

Karl J. Aström and Richard M. Murray. Feedback Systems:
An Introduction for Scientists and Engineers. Princeton
University Press, 2008.

D. P. de Farias and B. Van Roy. Approximate linear pro-
gramming for average-cost dynamic programming. In
NIPS, 2003.

A. Gopalan and S. Mannor. Thompson sampling for learn-
ing parameterized markov decision processes. In COLT,
2015.

A. Guez, D. Silver, and P. Dayan. Scalable and efficient
Bayes-adaptive reinforcement learning based on Monte-
Carlo tree search. Journal of Artificial Intelligence Re-
search, 48:841–883, 2013.

A. Guez, D. Silver, and P. Dayan. Better optimism by
Bayes: Adaptive planning with rich models. CoRR,
abs/1402.1958, 2014.

Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and
Dawn M. Tilbury. Feedback Control of Computing Sys-
tems. John Wiley & Sons, Inc., 2004.

A. Isidori. Nonlinear Control Systems. Springer Verlag,
London, 3 edition, 1995.

T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret
bounds for reinforcement learning. Journal of Machine
Learning Research, 11:1563—1600, 2010.

J. Z. Kolter and A. Y Ng. Near-Bayesian exploration in
polynomial time. In ICML, 2009.

I. Osband and B. Van Roy. Model-based reinforcement
learning and the eluder dimension. In NIPS, 2014.

I. Osband, D. Russo, and B. Van Roy. (More) efficient
reinforcement learning via posterior sampling. In NIPS,
2013.

M. Strens. A Bayesian framework for reinforcement learn-
ing. In ICML, 2000.

W. R. Thompson. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, 25:285–294, 1933.

N. Vlassis, M. Ghavamzadeh, S. Mannor, and P. Poupart.
Bayesian reinforcement learning. In Marco Wieiring and
Martijn van Otterlo, editors, Reinforcement Learning:
State-of-the-Art, chapter 11, pages 359–386. Springer,
2012.

11

Optimal expert elicitation to reduce interval uncertainty

Nadia Ben Abdallah
Heudiasyc laboratory

University of Technology of Compiègne
Compiègne, France

nadia.ben-abdallah@hds.utc.fr

Sébastien Destercke
Heudiasyc laboratory

University of Technology of Compiègne
Compiègne, France

sebastien.destercke@hds.utc.fr

Abstract

Reducing uncertainty is an important problem
in many applications such as risk and reliabi-
lity analysis, system design, etc. In this paper,
we study the problem of optimally querying ex-
perts to reduce interval uncertainty. Surprisingly,
this problem has received little attention in the
past, while similar issues in preference elicita-
tion or social choice theory have witnessed a ri-
sing interest. We propose and discuss some so-
lutions to determine optimal questions in a myo-
pic way (one-at-a-time), and study the computa-
tional aspects of these solutions both in general
and for some specific functions of practical in-
terest. Finally, we illustrate the application of the
approach in reliability analysis problems.

1 INTRODUCTION

When data on some quantity or model of interest is sparse
or non-existing, elicitation, i.e., the process of extracting
human judgement through questions, is often a valuable
and sometimes the unique source of additional knowledge.
There is a substantial literature dating back to the six-
ties on elicitation and is mainly related to probability en-
coding (Winkler, 1969; Spetzler and Stael von Holstein,
1975) and preference elicitation (Keeney et al., 1979). Eli-
citation is used in a broad range of fields including risk
assessment (Cooke, 1991), reliability analysis, preference
model elicitation (Viappiani and Kroer, 2013; Guerin et al.,
2013), etc. to support assessment and decision making.

A critical part of the elicitation is then how to choose the
questions to ask. Those need to be simple (i.e., do not re-
quire high cognitive effort) and in terms and format ex-
perts are familiar with. Furthermore, when the elicitation is
conducted to reach some objective, for instance bringing an
answer to a question, selecting the best alternative in a set,
or estimating some quantity with a desired level precision,
the process of information acquisition need to be optimal

for the elicitation to be effective and the least possible time
or effort consuming.

How to choose sequences of optimal questions, or even the
notion of optimal queries, has received surprisingly little
attention when the aim is to reduce our uncertainty over
some quantities. Indeed, the great majority of techniques
to do so prescribe generic questions, without considering
the consequences of answers on some final goal (Aspinall
and Cooke, 2013) (the work of Curtis and Wood (Curtis
and Wood, 2004), settled in a probabilistic context, is an
exception). This contrasts with other fields such as prefe-
rence elicitation of social choice theory, with works da-
ting back two decades ago (Boutilier et al., 1997; Wang
and Boutilier, 2003; Boutilier et al., 2006) and still thriving
today (Viappiani and Kroer, 2013; Benabbou et al., 2014;
Boutilier et al., 2013).

The goal of this paper is to explore similar ideas when the
goal is to reduce interval uncertainty by asking successive
simple questions to the experts. We want to develop que-
rying strategies that are adaptive and optimal, i.e., that se-
lect at each stage of the elicitation the best questions based
on the answers to the previous ones. In this paper, we focus
on so-called myopic (Wang and Boutilier, 2003; Chajewska
and Koller, 2000) strategies, where optimal questions are
selected one-at-a-time.

The remainder of the paper is organized as follows. In Sec-
tion 2, we formalize the sequential elicitation model for
the problem of interval uncertainty reduction in the general
case. Within this same section (Section 2.3), we describe
different query selection strategies, and analyse their com-
putational costs in the general case, which is an important
aspect to consider in adaptive procedures. Section 3 then
discusses the case of specific yet important (in practice)
type of functions, namely monotonic and multi linear func-
tions. In the last section, we illustrate how the approach can
be used in reliability analysis.

12

2 GENERAL FRAMEWORK

2.1 PROBLEM STATEMENT

Let Φ be a function mapping a set of n logically inde-
pendent inputs (x1, ..., xn), each of them being defined on
Xi, to an output y in Y :

Φ : X = ×i=1...nXi → Y

x = (x1, ..., xn) 7→ Φ(x) = y.

In this paper, we are interested in the situation where xi is
a precise but ill-known value, whose uncertainty is descri-
bed by an interval Xi =

[
Xi, Xi

]
⊂ R of the real line.

Such kind of uncertainty, where the true value is exact, is
sometimes called epistemic (by opposition to aleatory). A
natural way to quantify the amount of uncertainty in Xi is
by its width

UXi(xi) = UXi = Xi −Xi.

We also require the function Φ to be continuous, so that the
response y corresponding to the initial state of knowledge
on the inputs lies in the bounded interval :

Y = Φ(X) = [min
x∈X

Φ(x),max
x∈X

Φ(x)] = [Y , Y]. (1)

Example 1. Consider the function Φ(x1, x2, x3) = x1x2−
x2x3 with X1 = X2 = X3 = [0, 1], then we have

Y = Φ(X1, X2, X3) = −1;Y = Φ(X1, X2, X3) = 1.

The problem we are considering is the following : we want
to reduce our uncertainty UY = Y − Y by asking ques-
tion to experts, to attain some objectives. For instance, we
may want to reduce the uncertainty under some threshold
UY ≤ s0 or simply reduce the most UY in a given num-
ber of questions. As expert elicitation is time-consuming
and cognitively demanding for the expert, and economi-
cally expensive for the decision maker, we want to ask as
few questions as possible, or to be the most effective pos-
sible on those questions we ask. In other words, we want
the querying strategy to be optimal. This is what we deve-
lop in the next sections.

2.2 QUERIES AND ANSWERS

In expert elicitation in general, and when the elicitation is
made of many successive questions, it is important to use
simple questions that not require high cognitive effort (for
understanding and answering) for the expert to be efficient
throughout the interview. Possible simple queries formats
include local bound queries (“xi ≤ α ?”), pairwise compa-
rison judgements (“xi ≤ xj” ?), etc. (Braziunas and Bouti-
lier, 2007).

In our method, we use questions of the type
“xi ≤ α?”, with α ∈ Xi. We denote such
a query Qαi and the set of possible queries
Q = {Qαi , i ∈ N = {1, 2, ..., n} , α ∈ Xi}.
In the particular case of local bound queries, the set of pos-
sible answers A is binary : A = {Y es,No}. We recall
that, for simplicity and for conciseness, we assume that the
expert is an oracle, so the “I don’t know” answer is not
considered here 1. Note that the ideas presented in the paper
could easily be applied to other sets of questions/answers
Q,A, yet binary questions are the simplest and the most
natural to ask to experts.

When a question Qαi is asked and answer A ∈ A is given,
Xj remains unchanged for every j 6= i, whileXi is updated
to Xi(Q

α
i , A) as follows :

Xi(Q
α
i , A) =

Xi ∩ [−∞, α] if A = Y es

Xi ∩ [α,−∞] if A = No
(2)

which satisfies Xi(Q
α
i , A) ⊆ Xi and Xj(Q

α
i , A) = Xj

for every j 6= i. Consequently, the output uncertainty set is
updated from Y into Y (Qαi , A) :

Y (Qαi , A) = Φ (X−i ×Xi(Q
α
i , A)) , (3)

where X−i = ×j 6=iXj denotes the Cartesian product of
all unchanged intervals. As for any Q ∈ Q and A ∈ A
we have Y (Q,A) ⊆ Y by simple interval inclusion, the
following relation always holds :

UY ≥ UY (Q,A) (4)

therefore ensuring an uncertainty reduction.

Example 2. In Example 1, assume we ask the question
Q0.5

1 and receive the answer Y es, then

X1(Q0.5
1 , Y es) = [0, 0.5]

Y (Q0.5
1 , Y es) = Φ(X1, X2, X3) = 0.5.

2.3 QUERY SELECTION STRATEGIES

A query selection strategy corresponds to define and
choose optimal questions. There are two main ways to do
so : myopically, where questions are selected and asked one
at a time, successively, and sequentially, where the set of
successive questions is selected globally. Here, we retain
the myopic approach for the following reasons : it is often
simpler to solve, sometimes allowing for analytical exact
solutions, and does not require to specify the number of as-
ked questions in advance, a particularly interesting feature
in iterative and interactive querying process.

1. Should the expert return “I don’t know” to Qαi , then a
simple strategy is to remove Qαi (and possibly questions with si-
milar values of α) from the question set Q and then select the
optimal one among the remaining ones.

13

The selection process of the myopic approach consists in
solving the following optimization problem at each itera-
tion :

Q∗ = arg min
Q∈Q

UY (Q), (5)

where UY (Q) is the uncertainty reduction induced by query
Q. However, as the answer A that will be given to Q is
unknown, we face a typical problem of decision making
under uncertainty.

In our case, the decision is a couple (i, α) ∈ N × Xi, the
uncertain event is the answer to the question, and the out-
come we want to maximize is the uncertainty reduction in
the output Y . Re-writing the decision problem using nota-
tions of our query selection problem leads to the following
characterization of the optimal queries :

Q∗ = (i∗, α∗) = arg min
i∈N

min
α∈Xi

UY (Qαi)
, (6)

which is a two stage optimization problem. First, we deter-
mine the optimal local bound value for each input i, and
calculate the uncertainty reduction induced by that local
query. Then, we select the entity i∗ that leads to the highest
uncertainty reduction in y.

Algorithm : Iterative elicitation for uncertainty reduc-
tion
Inputs : Xi(i ∈ N), s0
while UY >= s0 do

for i in N do
Compute α∗ = arg minα∈Xi UY (Qαi)

Compute UY (Qα
∗
i)

end for
i∗ = arg mini∈N UY (Qα

∗
i)

Ask query : “xi∗ <= α∗?”
Obtain answer
Update Xi∗

Compute UY
end while

In the following, we describe the computations involved in
the first optimization step (the computation of UY (Qαi)

) for
a given i ∈ N for different decision criteria.

2.3.1 Maximin strategy

The maximin strategy corresponds to a pessimistic view,
where the value UY (Qαi)

corresponds to the answer that
yields the lowest uncertainty reduction :

UMm
Y (Qαi)

= maxA∈A UY (Qαi ,A)

α∗,Mm = arg minα∈Xi max(UY (Qαi ,No)
, UY (Qαi ,Y es)

)

We can show that solving the optimization problem to get
the optimizing α∗ is equivalent to finding the intersection

of the two functions UY (Qαi ,Y es)
, UY (Qαi ,No)

of α. The fol-
lowing propositions indicates that a general and efficient
method to find the solution is to use a dichotomy search on
the space [Xi, Xi]

Proposition 1. Functions UY (Qαi ,Y es)
and UY (Qαi ,No)

measuring the uncertainty level on Y induced by a positive
and a negative answer to Qαi and defined on Xi are
– increasing and decreasing in α, respectively, and
– intersect at least once at Mi ⊂ Xi (Mi is a single point

or an interval).
Proof. We have that

UY (Qαi ,Y es)
= max
X−i×[Xi,α]

Φ(x)− min
X−i×[Xi,α]

Φ(x) (7)

To show that UY (Qαi ,Y es)
is increasing in α, we need to

show that UY (Qαi ,Y es)
≤ UY (Qβi ,Y es)

for α ≤ β. This re-
sult follows from X−i × [Xi, α] ⊆ X−i × [Xi, β].

The same reasoning can be applied to

UY (Qαi ,No)
= max
X−i×[α,Xi]

Φ(x)− min
X−i×[α,Xi]

Φ(x) (8)

to show that UY (Qαi ,No)
is decreasing in α.

To demonstrate the second part of the proposition, simply
observe that :

max
α∈Xi

UY (Qαi ,Y es)
= U

Y (Q
Xi
i ,Y es)

= UY ,

max
α∈Xi

UY (Qαi ,No)
= U

Y (Q
Xi
i ,No)

= UY ,

where UY is the uncertainty before the question. As both
functions have the same maximum, are continuous (since
Φ is), and are respectively increasing and decreasing in α,
they have at least one point of intersection.

When Mi is an interval [M i,M i], we simply take the
middle point α∗,Mm = Mi+Mi/2. In some situations, it
may also happen that the intersection occurs on the bounds
ofXi for all i, which means that the proposed optimal ques-
tion is likely to be uninformative, unless the expert answer
reduces the interval [Xi, Xi] to a point, which is unlikely.
When such a scenario occurs, we use a different strategy
that defines optimality as the highest reduction of uncer-
tainty, no more on Y , but on Xi. This heuristic is equiva-
lent, whenXis are intervals, to choosing the largest interval
i∗ = arg maxi UXi and to pick the mid of this interval, i.e.,

α∗,Mm =
Xi∗+Xi∗

2 .

In Section 3, we will show that for specific functions, there
are more efficient ways than a naive dichotomic search to
determine α∗,Mm.

2.3.2 Maximax strategy

While the maximin strategy is pessimistic, the maximax
strategy is optimistic and takes as value UY (Qαi)

the ans-
wer that yields the highest uncertainty reduction :

14

UMM
Y (Qαi)

= minA∈A UY (Q,A)

α∗,MM = arg minα∈Xi min(UY (Qαi ,No)
, UY (Qαi ,Y es)

).

It is straightforward from Proposition 1 that the local bound
optimization step leads to an optimal value α∗,MM that
coincides either with the upper or lower bound of Xi. The
maximax strategy is therefore not interesting in our pro-
blem, as it will lead to questions that are most likely to
receive a useless answer. We will therefore not retain this
approach in this paper.

2.3.3 Hurwicz’ strategy

Hurwicz’s strategy evaluates the value of a question Q by
a convex combination between the maximin and maximax
strategies. It therefore allows to go from a pessimistic to an
optimistic point of view and reads :

U
H(p)
Y (Qαi)

= pUMM
Y (Q) + (1− p)UMm

Y (Q)

α∗,H(p) = arg minα∈Xi(pmin (UY (Qαi ,Y es)
, UY (Qαi ,No)

)+
(1− p) max (UY (Qαi ,Y es)

, UY (Qαi ,No)
)).

Here, p ∈ [0, 1] is an optimism coefficient, and we retrieve
the maximax and maximin strategies when p = 1 and p =
0, respectively. Note that we can use the fact that for any
α ≤ M i (α ≥ M i), we have UY (Qαi ,No)

>= UY (Qαi ,Y es)

(UY (Qαi ,No)
<= UY (Qαi ,Y es)

) to rewrite the above equa-
tions into :

L = minα∈[Xi,infMi](pUY (Qαi ,Y es)
+ (1− p)UY (Qαi ,No)

)
R = minα∈[supMi,Xi]

(pUY (Qαi ,No)
+ (1− p)UY (Qαi ,Y es)

)

α∗,H(p) = min(L,R).

2.3.4 Bayesian strategy

Up to now, we have not considered any a priori information
about the likelihood of answering Yes or No. However, this
can lead to consider very unlikely answers, such as answe-
ring Y es to QXii (as is the case in the maximax strategy).
One alternative is then the Bayesian strategy, where we as-
sume the existence of a probability distribution P over the
set of answers A, this probability modelling our subjec-
tive beliefs about the likelihood of getting the different ans-
wers. We then evaluate a queryQ by the expected reduction
EP (UY (Q,A)) of uncertainty on y induced by the possible
answers :

UBY (Qαi)
= EP (UY (Qαi ,A)) =

∑
A∈A P (A)UY (Qαi ,A)

α∗,B = arg minα∈Xi(P (Y es|Qαi)UY (Qαi ,Y es)
+

P (No|Qαi)UY (Qαi ,No
)).

When the available evidence suggests that a quantity xi lies
in an interval Xi, it is common to follow Laplace’s indif-
ference principle and quantify uncertainty by assuming a

uniform probability distribution over that set. Under this as-
sumption, the probability of the positive and negative ans-
wers to a question Qαi are proportional to the width of the
sub-interval of Xi they lead to :

P (Y es|Qαi) = P (Xi ≤ xi ≤ α) =
α−Xi

Xi −Xi

and

P (No|Qαi) = P (α ≤ xi ≤ Xi) =
Xi − α
Xi −Xi

.

These probabilities can then be modified according to the
information we have (for instance, if we have reasons to
think that the true value is closer to Xi).
Remark 1. Note that when UY (Qαi ,Y es)

= UY (Qαi ,No)
=

UY (Qαi)
, then EP (UY (Qαi ,A)) = UY (Qαi)

, whatever the va-
lues of P . This means, among other things, that the function
UBY (Qαi)

has value UB
Y (Qα

∗,Mm
i)

= UMm

Y (Qα
∗,Mm
i)

, since the

minimax is obtained at the intersection Mi of UY (Qαi ,Y es)

and UY (Qαi ,No)
.

This means that we have : minXi U
B
Y (Qαi)

= UB
Y (Qα

∗,B
i)

≤
UMm

Y (Qα
∗,Mm
i)

= minXi U
Mm
Y (Qαi)

, hence the expected uncer-

tainty reduction with a Bayesian strategy is at least as high
as the one obtained by the maximin strategy. However, in
contrast with this latter, the Bayesian strategy does not of-
fer guarantees about the uncertainty reduction, in the sense
that the actual reduction may be lower than the expected
one.

Also, while Proposition 1 means that α∗,Mm can be obtai-
ned by a dichotomic search, this cannot be done in general
for the Bayesian strategy, which therefore requires heavier
computations.
Example 3. Consider the function Φ(x1, x2, x3) = x1x2−
x2x3 + x2 with X1 = X3 = [0.1, 1] and X2 = [0, 1].
Figure 1 shows the various strategies for Qα2 . We can see
that the maximin, the Laplacian and Hurwicz’s strategies
recommend respectively α∗,Mm = 3/4, α∗,B = 1/2, and
α∗,H(1

2) = 0. Another remark is that UY (Qα2 ,Y es)
and

UY (Qα2 ,No)
are both linear. We will see in the next section

that this is true for multi linear functions in general.

3 QUERYING ON SPECIFIC
FUNCTIONS

Here, we study what becomes of the previous strategies
when applying them to specific functions. Indeed, fin-
ding an optimal strategy requires computing UY (Qαi ,Y es)

,
UY (Qαi ,No)

and their intersections, which comes down to
finding bounds of Φ over various domains (see Eqs. (7)-
(8)). It is therefore important to identify those sub-cases
for which computations can be simplified. More precisely,
we look at monotonic functions and multi linear functions,
that are both of practical interest.

15

α

UY

0

1
1.5

X2 = 0 X2 = 1

UY (Qα2 ,Y es)

UY (Qα2 ,No)

UBY (Qα2)

α∗,Mm

U
H(0.5)

Y (Qα2)

α∗,B

FIGURE 1 – Optimal recommendations of different query
selection strategies.

3.1 MONOTONIC FUNCTIONS

Several application in diverse areas use monotonic func-
tions, such as reliability analysis (Marichal, 2014), multi-
criteria decision making (Grabisch and Labreuche, 2008),
etc.

When considering such functions, either increasing or de-
creasing in each variable xi, computations are greatly faci-
litated, as

UY = Φ(XI , XI)− Φ(XI , XI),

where I denotes the set of variables in which Φ is increa-
sing, and I its complement.

Moreover, when Φ is locally monotonic 2 with respect to
each argument i, its upper and lower bounds are reached
on the vertices of the hypercube ×i=1...nXi. Again, this
may allow to reduce the computations involved in the cal-
culation of UY .

3.2 MULTI LINEAR FUNCTIONS

A Multi-linear function over variables x1, . . . , xn is a po-
lynomial form that can be written as

Φ(x1, ..., xn) =
∑

A⊆N
dA
∏

i∈A
xi (9)

with dA ∈ R some real-valued coefficients. Such func-
tions play an important role in many AI applications.
As any pseudo-Boolean function can be rewritten in this
form (Hammer and Rudeanu, 1968), they concern all
problems where pseudo-Boolean functions have a role,
such as cooperative game theory (Owen, 1972), multi-
criteria decision-making (Grabisch and Labreuche, 2003),
combinatorial optimization (Yannakakis, 1991), reliability
theory (Bhattacharjya and Deleris, 2012; Marichal, 2014),
etc. Multi linear functions also play an important role in

2. φ is locally monotone in xi if, all other variables being
fixed, it is either decreasing or increasing in xi. Function φ of
Example 1 is locally monotone in x2, as it is either increasing or
decreasing in x2 once x1 and x3 are fixed.

inferences of Bayesian networks or related models (Dar-
wiche, 2003; de Campos and Cozman, 2004).

From a computational point of view, having Φ multi-linear
presents different advantages. First, as φ is locally mono-
tonic in each variable (fixing every variable values but one
in Eq. (9) gives a linear function, which is either increasing
or decreasing), we know that its upper and lower bounds
are reached on vertices of ×i=1...nXi. Second, provided
0 6∈ Xi, the maximin strategy will lead to a unique value
α∗,Mm, due to the fact that UY (Qαi ,Y es)

, UY (Qαi ,No)
will

be strictly increasing and decreasing, respectively (since
bounds of Eq. (9) will be strictly monotone functions).

3.3 MULTI LINEAR MONOTONIC FUNCTIONS

Combining monotonicity and multi linear properties pro-
vide very interesting properties to compute our optimal
strategies, and are still useful in several applications, such
as reliability analysis that we use as a case study in the
next section. The first property relates to the shape of
UY (Qαi ,Y es)

and UY (Qαi ,No)

Proposition 2. If Φ is a multi linear function monotonic
in each variable, then for every i ∈ N , UY (Qαi ,Y es)

and
UY (Qαi ,No)

are linear in α.

Proof. If Φ is monotonic in each variable, then in the
first term of Eq. (7), the maximum is reached on the up-
per bounds of each Xi, i.e., on Xj for all j ∈ N−i and
Xi = α, while the lower bound is reached on Xj for
all j ∈ N (independent of α). The function Φ being li-
near in xi, max Φ(x) is therefore linear in α, and so is
UY (Qαi ,Y es)

. The same reasoning applies to Eq. (8).

This has several consequences on the computations of stra-
tegies :
– The maximin strategy recommends a unique query

bound Mi in Xi, as UY (Qαi ,Y es)
and UY (Qαi ,No)

inter-
section will be a unique point ;

– Computing UY (Qαi ,Y es)
and UY (Qαi ,No)

will require
only three computations, as they are linear (requiring
each two evaluations) and as they have the same maxi-
mal value. Computing Mi then comes down to evaluate
the intersection point of two lines ;

– Hurwicz’s solution will be reached either at the end-
points of the interval Xi or will coincide with the maxi-
min solution. The result follows from the fact that the
convex combination of linear functions (UY (Qαi ,Y es)

and
UY (Qαi ,No)

) is also linear, and is therefore monotonic in
α.

Furthermore, we have the following property regarding the
Bayesian strategy :

Proposition 3. If Φ is a multi linear function monotonic
in each variable, the Bayesian strategy adopting a uniform
distribution over Xi has a unique minimum α in the inter-
ior of Xi

16

Proof. (sketch) Function UBY (Qαi)
is convex since it is the

sum of the product of two linear functions of α, there-
fore it is quadratic and convex. ln addition, it satisfies :
UB
Y (Q

Xi
i)

= UB
Y (Q

Xi
i)

.

Since it can not be a constant function (the scenario
UY (Qαi ,Y es)

= UY (Qαi ,No)
for every α ∈ Xi does not oc-

cur for multi linear functions), its global minimum exists,
is unique, and is reached inside the interval Xi.

4 APPLICATION IN RELIABILITY
ANALYSIS

When systems are complex or newly designed, full system
dependability data are often too expensive and/or difficult
to obtain, making it impossible to directly estimate quanti-
ties of interest. The common approach to improve the esti-
mation of such quantities is to focus on enhancing the state
of knowledge at the component-level, where information
is more likely to be available either via measurements or
expert elicitation.

In this section, we illustrate how our elicitation model can
be used to refine the state of knowledge at the component
level in order to estimate the reliability of a system. We
begin by recalling some basic elements related to systems
reliability and briefly describe the mathematical proper-
ties of the system function. Then, we describe and discuss
the results of the proposed elicitation procedure on simple
yet common system architectures, to finish by a real-world
example involving railway safety systems.

4.1 PRELIMINARIES ON RELIABILITY
ESTIMATION

Consider a network S with n components indexed in N =
{1, 2, ..., n}. We describe a static problem, i.e., we do not
refer to time explicitly when describing the system beha-
vior. Every component i is either operating or failing and
its state is represented by a boolean variable ei that asso-
ciates 0 and 1 to the failed, working state, respectively. The
system state is completely determined by the joint state
of its components through the structure function ΦS – a
boolean function. For the majority of systems, forming the
class of semi-coherent systems, the structure function sa-
tisfies these three conditions :
– Φs non-decreasing in each ei
– Φs(0, 0, ..., 0) = 0
– Φs(1, 1, ..., 1) = 1.
In reality, the state of component can not be determined
exactly, and the usual framework is to assume that is a ran-
dom variable. The probability that the component is func-
tioning is called the elementary reliability :

pi = Pr(ei = 1).

When the components are independent, i.e., when their
state variables are stochastically independent, the reliabi-
lity of the system :

R = Pr(Φs(e1, ...en) = 1),

can be determined from the reliability of its components
via the reliability function Φ :

R = Φ(p1, ..., pn), (10)

which is the multi linear extension of Φs (Marichal, 2014)
and so writes :

Φ(p1, ..., pn) =
∑

A⊆N
dA
∏

i∈A
pi

where coefficients dA are the Mobius transform of the mass
function associated with the structure function 3. In prac-
tice, the exact expression of the reliability function can
be directly generated using the inclusion-exclusion for-
mula (Lin et al., 1976) based on determining the minimal
path set (i.e., the minimal set of components that must be
in working state that guarantees the functioning of the sys-
tem) and cut sets (the minimal set of components such that
if all of them fail, the system is guaranteed to fail whatever
the value of the others components).

Therefore, when facing a new system with ill-known pro-
babilities, we have a multi linear function φ with interval-
valued variables pi, to which we can apply our previous
findings.

4.2 CLASSICAL STRUCTURES

We first consider a bridge structure with 5 non redundant
components. The reliability block diagram – a graphical
depiction of the functional relationship between compo-
nents – of this structure is given below :

C2

C5

C3

C4

C1

FIGURE 2 – Reliability block diagram of a series parallel
system.

3. The Mobius transform of the mass function associated to
Φs is given by :

dA =
∑

B⊆A
(−1)|A|−|B|Φs(B).

17

The system reliability is given by :

R = p1p2 + p4p5 + p1p3p5 + p2p3p4

−p1p2p3p4 − p1p2p3p5 − p1p2p4p5 − p1p3p4p5

−p2p3p4p5 + p1p2p3p4p5.

We assume the initial state of knowledge to be the follo-
wing : p1 ∈ P1 = [0.5, 0.92], p2 ∈ P2 = [0.2, 0.9],
p3 ∈ P3 = [0.5, 0.9], p4 ∈ P4 = [0.4, 0.8], and p5 ∈
P5 = [0.4, 0.85]. The system reliability ranges in the inter-
val [0.3, 0.97], so its initial uncertainty is 0.67.

We use the elicitation procedure to refine the state of know-
ledge over pi (i ∈ {1, ..., 5}) via a sequence of queries on
the elemental reliabilities. The objective is to reduce the
system reliability uncertainty up to 0.05 (i.e., s0 = 0.05),
after which we stop asking questions.

To evaluate the efficiency of our procedure, we compare its
performance to two basic strategies :

1. a random strategy that compares at each stage the re-
liability of component i, selected at random inN , with
some random α ∈ Pi. For the results to be significant,
the performance of the strategy at each iteration is ave-
raged over a high number (herein 1000) of runs.

2. a baseline strategy that asks at each stage about the
most uncertain component, and the query bound is
the midpoint of the largest interval (this strategy was
referred to as the “halve largest Gap Strategy” in
the context of preference elicitation (Boutilier et al.,
2006)) :

Q∗Baseline =

(
i∗,

Xi∗ +Xi∗

2

)

where :
i∗ = arg max

i∈N
UXi .

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

query

U
R

Baseline

Bayesian

Random

Maximin

FIGURE 3 – UR reduction using different selection strate-
gies.

We implemented the elicitation procedure described in Sec-
tion 2.3 assuming the true values to be the following :

p∗1 = 0.6, p∗2 = 0.7, p∗3 = 0.65, p∗4 = 0.7, p∗5 = 0.78.
Figure 3 shows the performance in terms of uncertainty re-
duction in R of our four strategies. The Bayesian slightly
outperforms the baseline and the maximin strategies, but
remains comparable to them, while all of them do much
better than the random elicitation. In general, it takes twice
the number of queries to the random strategy to reach the
results of the other strategies (e.g., to divide uncertainty by
half, it requires 10 questions for the random strategy, and
about 5 for the others).

However, the performances of the Bayesian, maximin and
baseline strategies highly depend on the initial situations.
Figure 4 compares our previous experiment with another
situation where the initial state of knowledge is very poor,
i.e., a situation of near ignorance where Pi = [0.1, 0.9] for
all i ∈ N . Results for both scenarios differentiated by the
color and the line style (blue continuous lines and black
dashed lines for the first and the second scenarios, respec-
tively). The most notable difference between the two sce-
narios concerns the maximin strategy. Indeed, its perfor-
mance in the second scenario significantly departs from the
non-random strategies (to which it was very close in the
first scenario). The maximin strategy is in this case proba-
bly too cautious, missing potentially good opportunities to
reduce the uncertainty.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

query

U
R

Maxgap
Bayesian
Random
Maximin

FIGURE 4 – Sensitivity of the performance of the selection
strategies to the initial state of knowledge.

The good results of the baseline strategy for the bridge sys-
tem are mainly due to the fact that every component is im-
portant in the system, hence gaining knowledge on any one
of them reduces uncertainty in similar ways. This is not
always true : consider a simple series parallel system com-
posed of four independent and non-identical components
(Fig. 5). The system reliability is :

R = p1p2p3p4+p1p4+p2p4+p3p4−p1p3p4−p2p3p4−p1p2p4.

Let the initial state of knowledge on the elementary reliabi-
lities be the following : p1 ∈ [0.01, 0.99], p2 ∈ [0.01, 0.99],
p3 ∈ [0.97, 0.99], p4 ∈ [0.7, 0.9], and the true values be :
p1 = 0.6, p2 = 0.7, p3 = 0.98, p4 = 0.8.

18

c1

c2

c3

c4

FIGURE 5 – Reliability block diagram of a series parallel
system.

The results of the sequential elicitation procedure using the
baseline strategy can be visualized in Figure 6 which plots
the uncertainty on each component at every stage. A jump
in the curve of component i at stage k + 1 indicates that
the kth optimal query inquired about that component, and
its magnitude corresponds to the uncertainty reduction af-
ter the question has been answered. Note that up to the 6th

question, the strategy inquired about the reliability of com-
ponents 1 and 2, being the most uncertain.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

query

U
p
1

C1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

query

U
p
2

C2

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

query

U
p
3

C3

0 2 4 6 8 10
0.05

0.1

0.15

0.2

0.25

query

U
p
4

C4

FIGURE 6 – Sequence of optimal components using the ba-
seline strategy.

However, reducing uncertainty on components 1 and 2 does
not reduce our global uncertainty, as shows Figure7. In this
case the baseline strategy performs actually very bad, not
only compared to the maximin strategy, but also to the ran-
dom up to the 6th query. This is due to the fact that the base-
line strategy does not consider the importance components
have on the overall system reliability.

4.3 REAL CASE SYSTEM

Up to now, we considered simple structures with distinct
(non-redundant) components. However, the majority of real
systems are complex and redundant, i.e., some of their
components are duplicated. Redundancy ensures a backup
in case of failure of one of the critical parts, and aims at
increasing the overall reliability of the system.

When a system has redundancies, its reliability function is
no longer multi linear, and depending on the redundancy
architecture (parallel, triple modular, etc.), it becomes po-

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

query

U
R

Baseline

Maximin

Random

FIGURE 7 – Maximin, random, and baseline strategies for
the case of series parallel system.

lynomial in the reliability of the redundant components,
while remaining linear in the others. We are concerned here
with the study of this type of systems/functions.

As a case study, we consider a real system used in the Euro-
pean railways traffic management system : the Radio Block
Center system (RBC), whose role is to collect data about
the position of trains and to provide movement authori-
sation (Flammini et al., 2006). Because of the relatively
recent exploitation of the system, sufficient data to estimate
the reliability of the RBC are lacking.

The RBC is composed of 5 different components, each of
them being redundant. The architecture of the RBC is pic-
tured in Figure 8, where the 2/3 symbol means that the
subsystem composed of components 5 works if and only if
at least 2 out of the three components work.

C1

C1

C1

C2

C2

C3

C3

C4

C4

2/3

C5

C5

C5

C6

C6

FIGURE 8 – Reliability block diagram of the RBC.

The reliability function can be written as :

R = (1−(1−p1)3)(1−(1−p2)2)(1−(1−p3)2)(1−(1−p4)2)ptmr;

with

ptmr = (3p25)− 2(p35))(1− (1− p6)2).

We consider the case where some initial evidence sug-
gests that the reliability of the RBC components ranges in
[0.5, 1], and that the true values are : p1 = 0.83, p2 = 0.77,
p3 = 0.8, p4 = 0.55, p5 = 0.72, p6 = 0.78. Results of the
query strategy are plotted in Figure 9. Here, the maximin
strategy outperfoms the Bayesian one, which is consistent
with Remark 1. The baseline does not do well and signifi-
cant uncertainty reduction only occurs when asking about
component 5, which is indeed the most important in this
architecture.

19

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

0.9

query

U
R

Maximin

Baseline

Bayesian

Random

FIGURE 9 – Performance of the query strategies for the
RBC system.

The computations involved in the elicitation procedure for
this systems, and more complex systems in general, remain
tractable as they only require optimization of polynomials
and can still take advantage of the increasingness of func-
tion Φ. This makes our procedure of practical use in real-
time elicitation involving real experts – this will be the ob-
ject of a forthcoming work concerned with the estimation
of the RBC reliability using expert elicitation.

5 CONCLUSION

In this paper, we addressed the problem of optimal expert
elicitation when the goal is to reduce interval uncertainty.
We described different optimal querying strategies to deter-
mine the best question to ask at each stage of the procedure,
studied their computational costs, and illustrated their use
in a common estimation problem in reliability analysis.

For the particular problem of interval uncertainty reduc-
tion using local bound queries, the optimal elicitation ap-
proach proves to be effective and computationally tractable,
especially for the maximin approach. We also discussed
some cases, such as monotonic and multi linear functions,
for which these computations are even easier. In future
works, we plan to consider (1) more general uncertainty
models, such as belief functions (Shafer, 1976) or probabi-
lity sets (Augustin et al., 2014) which are particularly ap-
pealing to model, e.g. non-completely reliable experts (al-
lowing for instance to relax the assumption that the expert
is an oracle) and (2) other types of queries formats and ans-
wers, such as comparative assessments.

The strategies we described in this paper are myopic. Such
strategies offer natural advantages (any-time stop, compu-
tational easiness), yet may select a sequence of questions
that are globally sub-optimal, despite being locally optimal.
A natural extension of this work is then to address the se-
quential approach for selecting the optimal set of queries to
ask, and compare it with the myopic method. Clearly, this
includes dealing with a computationally challenging pro-

blem, given the multistage nature of the optimization task,
as well as some potential difficulties when choosing the va-
lues of strategies (e.g., the over-cautious nature of maxi-
min could lead to strategies with very low average perfor-
mances).

Acknowledgments

This work was supported by the ANR (National Agency
for Research) RECIF project (Reference : ANR-13-JS03-
0007). It was carried out in the framework of the Labex
MS2T.

References

Aspinall, W., Cooke, R., 2013. Quantifying scientific un-
certainty from expert judgement elicitation. Risk and
Uncertainty Assessment for Natural Hazards, 64.

Augustin, T., Coolen, F., de Cooman, G., Troffaes, M.,
2014. Introduction to imprecise probabilities. John Wi-
ley & Sons.

Benabbou, N., Perny, P., Viappiani, P., 2014. Incremental
Elicitation of Choquet Capacities for Multicriteria Deci-
sion Making. In : Proceedings of ECAI’14. pp. 87–92.

Bhattacharjya, D., Deleris, L. A., 2012. From reliability
block diagrams to fault tree circuits. Decision Analysis
9 (2), 128–137.

Boutilier, C., Brafman, R., Geib, C., Poole, D., 1997. A
constraint-based approach to preference elicitation and
decision making. In : AAAI Spring Symposium on Qua-
litative Decision Theory. Citeseer, pp. 19–28.

Boutilier, C., Filmus, Y., Oren, J., 2013. Efficient vote eli-
citation under candidate uncertainty. IJCAI.

Boutilier, C., Patrascu, R., Poupart, P., Schuurmans, D.,
2006. Constraint-based optimization and utility elicita-
tion using the minimax decision criterion. Artificial In-
telligence 170 (8-9), 686–713.

Braziunas, D., Boutilier, C., 2007. Minimax regret based
elicitation of generalized additive utilities. In : UAI. pp.
25–32.

Chajewska, U., Koller, D.and Parr, R., 2000. Making ra-
tional decisions using adaptive utility elicitation. In :
AAAI/IAAI. pp. 363–369.

Cooke, R., 1991. Experts Uncertainty. Oxford University
Press.

Curtis, A., Wood, R., 2004. Optimal elicitation of probabi-
listic information from experts. Geological Society, Lon-
don, Special Publications 239 (1), 127–145.

Darwiche, A., 2003. A differential approach to inference in
bayesian networks. Journal of the ACM (JACM) 50 (3),
280–305.

20

de Campos, C., Cozman, F., 2004. Inference in credal net-
works using multilinear programming. In : Proceedings
of the Second Starting AI Researcher Symposium. pp.
50–61.

Flammini, F., Marrone, S., Mazzocca, N., Vittorini, V.,
2006. Modelling system reliability aspects of ertms/etcs
by fault trees and bayesian networks. In : Proc. European
Safety and Reliability Conference, ESREL. pp. 2675–
2683.

Grabisch, M., Labreuche, C., 2003. On the extension of
pseudo-boolean functions for the aggregation of interac-
ting criteria. European Journal of Operational Research.

Grabisch, M., Labreuche, C., 2008. A decade of applica-
tion of the choquet and sugeno integrals in multi-criteria
decision aid. 4OR 6 (1), 1–44.

Guerin, J., Allen, T. E., Goldsmith, J., 2013. Learning cp-
net preferences online from user queries. In : Algorith-
mic Decision Theory. Springer, pp. 208–220.

Hammer, P., Rudeanu, S., 1968. Boolean Methods in Ope-
rations Research and Related Areas. Springer, Berlin
Heidelberg, New York.

Keeney, R. L., Raiffa, H., Rajala, D., 1979. Decisions with
multiple objectives : Preferences and value trade-offs.
Systems, Man and Cybernetics, IEEE Transactions on
9 (7), 403–403.

Lin, P., Leon, B., Huang, T., 1976. A new algorithm for
symbolic system reliability analysis. Reliability, IEEE
Transactions on R-25 (1), 2–15.

Marichal, J.-L., 2014. Structure functions and minimal path
sets. arXiv preprint arXiv :1401.0803.

Owen, G., 1972. Multilinear extensions of games. Manage-
ment Sciences 18, 64–79.

Shafer, G., 1976. A Mathematical Theory of Evidence.
Princeton University Press, Princeton, N. J.

Spetzler, C., Stael von Holstein, C., 1975. Probability en-
coding in decision analysis. Management Science, 340–
358.

Viappiani, P., Kroer, C., 2013. Robuts optimization of re-
commendation sets with the maximin utility criterion.
Proceedings of the Third Algorithmic Decision Theory
International Conference, 411–424.

Wang, T., Boutilier, C., 2003. Incremental utility elicitation
with the minimax regret decision criterion. In : IJCAI.
pp. 309–318.

Winkler, R., 1969. Scoring rules and the evaluation of pro-
bability assessors. Journal of the American Statistical
Association 64 (327), 1073–1078.

Yannakakis, M., 1991. Expressing combinatorial optimiza-
tion problems by linear programs. Journal of Computer
and System Sciences 43 (3), 441 – 466.

21

Stochastic Integration via Error-Correcting Codes

Dimitris Achlioptas
Computer Science Department

University of California, Santa Cruz
Santa Cruz, CA 95064, USA

Pei Jiang
Computer Science Department

University of California, Santa Cruz
Santa Cruz, CA 95064, USA

Abstract

We consider the task of summing a non-negative
function f over a discrete set Ω, e.g., to com-
pute the partition function of a graphical model.
Ermon et al. have shown that in a probabilistic
approximate sense summation can be reduced to
maximizing f over random subsets of Ω defined
by parity (XOR) constraints. Unfortunately,
XORs with many variables are computationally
intractable, while XORs with few variables have
poor statistical performance. We introduce two
ideas to address this problem, both motivated by
the theory of error-correcting codes. The first is
to maximize f over explicitly generated random
affine subspaces of Ω, which is equivalent to un-
constrained maximization of f over an exponen-
tially smaller domain. The second idea, closer in
spirit to the original approach, is to use systems
of linear equations defining Low Density Par-
ity Check (LDPC) error-correcting codes. Even
though the equations in such systems only con-
tain O(1) variables each, their sets of solutions
(codewords) have excellent statistical properties.
By combining these ideas we achieve dramatic
speedup over the original approach and levels of
accuracy that were completely unattainable.

1 INTRODUCTION

The partition function of a graphical model with unnormal-
ized probability function f over a domain Ω is the integral
(sum) of f over Ω. The partition function is a central object
of Bayesian statistics. While some inference tasks, such as
MAP or MLE, can be completed without it, knowledge of
(an approximation of) the partition function is necessary for
marginalization, prediction, sampling, and model compar-
ison, as a proper distribution is required. In general, parti-
tion function estimation is intractable [1] and, in practice,
becomes problematic rapidly as |Ω| increases.

To overcome this problem approximation schemes, such as
MCMC [7], or variational methods [5] are commonly used.
However, variational methods, in general, do not provide
accuracy certificates/guarantees, while the mixing time of
MCMC is similarly unpenetratable in most applications. In
recent years, Ermon, Gomes, Sabharwal, and Selman have
pioneered an alternative approach [14, 13, 15]. The gen-
eral idea is to reduce the counting problem into a collec-
tion of random optimization problems, the final estimate
being a statistic over the optima found. Each random prob-
lem amounts to maximizing f over a random set R ⊆ Ω,
defined via a random system of parity constraints. Realiz-
ing this idea, the WISH algorithm [14] is shown to yield
a constant-factor approximation for the partition function
given access to an optimization oracle. Importantly, the
approximation guarantee requires the induced optimization
problems to be solved to optimality, an assumption that
clearly does not hold in general. Nevertheless, empirically,
the WISH algorithm achieves remarkable accuracy com-
pared to other established algorithms [14, 13, 15], leverag-
ing the practical advancements in optimization software.

The idea of adding parity constraints originates in the work
of Sipser [16] as a reduction technique. Most famously,
it was used by Valiant and Vazirani [19] to reduce SAT to
Unique SAT. A variant of the technique plays an impor-
tant role in the proof of Toda’s theorem [18]. The idea has
since been applied to various counting problems including
#SAT [11], #k-SAT [17], and#CSP [12]. WISH [14] can
be regarded as a natural generalization to weighted CSPs
(or, equivalently, Markov Random Fields (MRFs)).

To provably approximate the partition function of an MRF
with n variables, the parity constraints added must each
have n/2 variables on average. Unfortunately, the addition
of such long constraints makes the MAP problem dramat-
ically harder since each constraint (i) amounts to a clique
involving half the variables of the MRF, and (ii) collapses
the probability function whenever violated. In practice, this
additional hardness can cause a MAP solver to submit dra-
matically suboptimal solutions under any reasonable time
constraint, impairing the accuracy of estimation.

22

In all prior works the addition of random parity constraints
is framed as hashing and the statistical properties of the
resulting subsets of the domain is discussed in terms of
independence properties of the corresponding families of
hash functions. We break with this paradigm by taking a
step back and asking: “how can we define subsets of the
domain so that they are computation-friendly while having
good statistical properties?” We answer the question twice,
the two answers corresponding to two different notions of
“friendliness” under the same notion of “goodness”.

Regarding goodness we will see that the key statistical
property is pairwise negative correlation of membership,
i.e., that for any two distinct σ, σ′ ∈ Ω, it should be that
Pr[Both σ, σ′ ∈ R] ≤ Pr[σ ∈ R] Pr[σ′ ∈ R]. (Long parity
constraints achieve this with equality.) Equivalently, con-
ditioning on σ ∈ R should not make any σ′ 6= σ more
likely to be in R (but can make it less). Visualizing this
as σ ∈ R exerting a repulsive force suggests an error-
correcting code. Indeed, any linear error-correcting code
C ⊆ Ω = {0, 1}n with 2n−d elements can be specified as
C = {σ ∈ Ω : Aσ = b}, where A ∈ {0, 1}d×n is any rank
d matrix and operations are over GF(2), i.e., as the set of
solutions to parity constraints.

Equipped with this idea, our first notion of computation-
friendliness can be seen as “dimensionality reduction”.
That is, instead of operating over {0, 1}n and maximizing
f overR by setting f(σ) = 0 for σ ∈ Ω\R, we can operate
over R directly by taking G ∈ {0, 1}n×d to be a generator
of the subspace Aσ = b and maximizing f(Gx + v) over
x ∈ {0, 1}d. We thus get an unconstrained optimization
problem over a domain of size 2d instead of 2n. For any
optimizer treating f as a black box, as is typical in MAP
estimation, this makes optimizing f dramatically easier.

Our second notion of computation-friendliness can be seen
as endowing Ω \R with a “gradient” (pointing towards R),
so that satisfying Aσ = b does not impose significant com-
putational burden. Again drawing insights from the the-
ory of error-correcting codes, the idea is to desire the num-
ber of violated equations of Aσ = b to be a function that
has few local minima that are not global minima, i.e., not
codewords, thus making its global minima easily accessi-
ble by some naive local method such as gradient descent.
In other words, to make the optimizer’s life easy, we would
like C = R to be an “easily decodable” code. This is pre-
cisely what we will achieve by taking the random sets R to
correspond to the codewords of LDPC codes constructed
by the Progressive-Edge-Growth construction [3].

Finally we note that independently of how the optimiza-
tion problems are constructed, the number of instances that
need to be solved can be reduced significantly in practice
by using branch-and-bound. Combined with the two ideas
mentioned above, this gives a dramatic speedup over WISH
and entirely new levels of accuracy.

2 BACKGROUND

For the benefit of clarity, as in previous works, we will
restrict our exposition to Ω = {0, 1}n and only approxi-
mate the partition function, Z, within a fixed constant fac-
tor, e.g., 32 (recall that, typically, Z ∼ exp(n)). All ideas
presented generalize readily to Ω = Dn for any finite D.

2.1 BINARY MARKOV RANDOM FIELD

Given Ω = {0, 1}n and a collection of non-negative func-
tions, F = {ψα}, defined on subcubes of Ω, let

f(σ) =
∏

ψα∈F
ψα({σ}α) ,

where {σ}α is the subset of variables entailed by ψα. The
partition function is the sum of f over all configurations:

Z =
∑

σ∈Ω

f(σ) .

2.2 ESTIMATION BY STRATIFICATION

We start by briskly revisiting (and, to some extent, refor-
mulating) the groundbreaking work of Ermon et al. [14]
connecting partition function estimation to optimization.

The first key idea is to stratify f over Ω into quantiles and
estimate Z by bounding from above and below the contri-
bution of each quantile. Specifically, and w.l.o.g., assume
that the configurations are sorted in descending order ac-
cording to f , i.e., f(σ1) ≥ f(σ2) ≥ . . . ≥ f(σ2n). Let
bi = f(σ2i). Now, define the lower sum as

L := b0 +
n−1∑

i=0

bi+12i

and the upper sum as

U := b0 +

n−1∑

i=0

bi2
i .

Trivially, L ≤ Z ≤ U . Moreover,

2L = b0 +

(
b0 +

n−1∑

i=0

bi+12i+1

)

= b0 +
n∑

i=0

bi2
i ≥ U .

Hence, if we compute b0, b1, . . . , bn, taking any Ẑ ∈ [L,U]
yields a 2-approximation of Z.

More generally, if for some integer c ≥ 0 and all i ∈ [n] an
estimate b̂i ∈ [bi+c, bi−c] is available, then letting Û and
L̂ be the counterparts of U and L with bi replaced by b̂i
we see that L̂ ≤ L ≤ Z ≤ U ≤ Û and Û/L̂ ≤ 22c+1.
Thus, any Ẑ ∈ [L̂, Û] is a 22c+1-approximation of Z, e.g.,
yielding a 32-approximation for c = 2.

23

2.3 STRATIFICATION BY THINNING

The second key idea is to estimate each bi = f(σ2i) as
the maximum of f over a random set Ri ⊆ Ω of (ex-
pected) size 2n−i. As mentioned, the essential requirement
for this approach to work is pairwise negative correlation
of membership in Ri. Including each element of Ω in Ri
independently with probability 2−i achieves this trivially
but at the cost of an exponentially large, and thus inoper-
able, representation of Ri. The foundation of this entire
line of research has been that it is possible to achieve pair-
wise independence for membership in R in compact form
via hashing. We introduce a somewhat more general, and
ultimately more fruitful, point of view reflected in our def-
inition of Thinning Sets below.

Thinning Sets. A random variable Ri taking values in 2Ω

is an i-thinner if

• ∀σ, Pr[σ ∈ Ri] = 2−i (Uniform)

• ∀σ 6= σ′, Pr[σ ∈ Ri ∧ σ′ ∈ Ri] ≤ 2−2i (Universal)

Given an i-thinner Ri and a solver capable of maximizing
f over Ri, estimating bi is entirely straightforward. Theo-
rem 1 below is identical to the main result of [14], except
for thinning sets replacing hash functions (for complete-
ness we prove Theorem 1 in Section 5.)

Theorem 1 ([14]). Let Ri be any i-thinner random vari-
able. Let {mj}tj=1 be i.i.d. random variables distributed
as mj = maxσ∈Ri f(σ). If M = median(m1, . . . ,mt),
then for every c ≥ 2,

Pr[bi+c≤M≤bi−c] ≥ 1− 2 exp

(
− t

2
(1− 2−c+1)2

)
.

One way to create an i-thinner is to take the solutions of a
random system of linear equations over GF(2), i.e., mod-
ulo 2. Let A ∼ Ber(m × n) denote that A is an m × n
random matrix whose entries are independent random vari-
ables with Pr[aij = 1] = Pr[aij = 0] = 1/2, for all i, j.

Random Linear Code. The random set

Ri = {σ ∈ {0, 1}n : Aσ = b} (1)

is an i-thinner if A ∼ Ber(i× n) and b ∼ Ber(i× 1).

In coding theory the setRi in (1) is known as a random lin-
ear code, while the distribution A ∼ Ber(i × n) is known
as the Shannon ensemble. Note that the rows of A have,
on average, n/2 non-zero entries. We will refer to it as the
dense parity ensemble, to distinguish it from other distri-
butions on {0, 1}i×n which we will encounter shortly. By
Theorem 1, we can thus estimate bi given an oracle O for

max
σ∈{0,1}n
Aσ=b

f(σ) . (2)

The idea of adding long random parity constraints to
achieve unweighted counting, e.g., to count the number of
satisfying assignments of a CNF formula goes back to [11].
Ermon et al. in [14], after i-thinning Ω in the manner above,
solved the optimization problem (2) with ToulBar2 [2],
dedicated software for MAP estimation in graphical mod-
els (the parity constraints added as factors to f evaluating
to 0 when violated). In later work [13], the authors trans-
lated (2) to an Integer Linear Program, thus bringing to bear
CPLEX, a powerful commercial optimization software. Fi-
nally, for reasons to be discussed shortly, in [15], the dense
parity ensemble was replaced by the sparse parity ensem-
ble wherein the entries of A are i.i.d. Bernoulli random
variables where Pr[aij = 1] = p < 1/2.

3 OUR CONTRIBUTION

3.1 RANDOM AFFINE MAPS

Instead of starting with Ω = {0, 1}n and restricting it via
i random parity equations to a subset Ri of (expected) size
2n−i, we will start with {0, 1}n−i and generate Ri as the
image of {0, 1}n−i under a random affine transformation
g : {0, 1}n−i → {0, 1}n, where g(x) = Ax + b. Thus,
instead of solving the constrained optimization problem

max
σ∈{0,1}n
Aσ=b

f(σ) ,

we will solve the unconstrained optimization problem

max
x∈{0,1}n−i

(f ◦ g)(x) ,

over the exponentially smaller set {0, 1}n−i. The benefit of
such dimensionality reduction increases with i, i.e., smaller
Ri, in contrast to thinning by parity constraints which typ-
ically has worsening behavior as i is increased.

3.2 LOW DENSITY PARITY CHECK CODES

In certain settings, such as when performing “light” thin-
ning or when the function f can be optimized better than
black box, operating directly on the restriction of Ω induced
by parity constraints is preferable to operating through a
random affine map. In these settings, instead of forming the
constraint matrix A by having its entries be i.i.d. Bernoulli
random variables (either sparse or dense) we will take A to
be the parity check matrix of a Low Density Parity Check
(LDPC) code. As we demonstrate experimentally, this has
a stunning effect on the performance of CPLEX.

In the eyes of a solver operating on the variable represen-
tation of Ω (as opposed to a local search solver) a 3-XOR
is greatly preferable to an (n/2)-XOR, even though both
shrink the domain by half. This is because repairing a vi-
olated constraint of arity k represents a k-way choice, i.e.,

24

a branching factor of k. This motivated the introduction
of sparse i.i.d. Bernoulli parity check matrices in [11] and
later in [15]. While a step in the right direction, this does
not go far enough. To cover the remaining distance, we
exploit insights from the modern theory of LDPC codes.

Imagine a code C = {σ ∈ {0, 1}n : Aσ = b}, for some
fixed matrix A and vector b. Imagine further that σ ∈ C is
transmitted along a channel that erases a subset of the bits
of σ, so that the recipient receives τ ∈ {0, 1, ∗}n. Clearly,
equations (checks) with no ∗ variables offer no new infor-
mation regarding σ. On the other hand, equations with two
or more ∗ variables are ambiguous, as they can be satis-
fied in multiple ways. But any equation with exactly one ∗
variable is ideal: its erased bit can be recovered unambigu-
ously; moreover, this recovery may cause other equations
that had two ∗ variables to now only have one. Such a cas-
cade of “safe steps” will recover σ unless it encounters a
stopping set: a non-empty set V of erased bits, such that
no equation entails exactly 1 element of V . The amazing
performance of LDPC codes is, to first order, due to the ab-
sence of small stopping sets. Thus, if τ does not have too
many erased bits, safe steps will suffice to recover σ.

To readers familiar with satisfiability algorithms the par-
allel between “safe” decoding and unit-clause propagation
(UCP) will be immediate. The linear equations defining
code C can be thought of as a formula F very carefully
designed to have the following property: if one selects a
random subset of variables and assigns them random val-
ues (subject only to no empty clause being created), then
for the vast majority of random choices (corresponding to
the unerased bits in the communication setting) the residual
formula should be solvable by UCP alone. It is not hard to
imagine that adding such a formula F to a formula F ′ will
induce little “additional hardness” to any solver capable
of recognizing the presence of “safe” choices: as soon as
enough variables are instantiated to get within the “radius
of attraction” of a solution to F , the solver devolves to a
“safe choice decoder”, setting variables at a rapid pace with
minimal branching. We conjecture that this is precisely
what causes the stunning improvement we observe in the
performance of CPLEX when switching from dense/sparse
parity ensembles to LDPC codes. Unfortunately, verifying
this directly is non-trivial as CPLEX is commercial soft-
ware. As implicit evidence we offer the observed complete
insensitivity of stochastic local search to the structure of A
(we use LocalSolver [9] in our experiments).

3.3 BRANCH AND BOUND

Recall that to form our estimate Ẑ we multiply each b̂i =
f(σ2i) by 2i. As a result, in most cases, Ẑ is dominated
by the contribution of a set of quantiles I ⊆ [n], where
|I| � n. (Indeed, in physical terms, failure of this to be
true is the signature of criticality.) With this observation

in mind, rather than estimating all {b̂i}ni=1 in sequence, we
can save computation by starting with S = {b̂0, b̂n} and es-
timating more and more quantiles until sufficient accuracy
is achieved. In particular, simply enlarging S by the unesti-
mated quantile of greatest remaining potential contribution,
gives a speedup ranging from 2x to 10x in our experiments,
with 7x being the most common case.

4 RANDOM AFFINE MAPS

Throughout this section let d := n − i, where i ∈ [n]. Let
A ∈ {0, 1}n×d be a matrix of rank d and let b ∈ {0, 1}n.
If g(x) = Ax + b, then the image of {0, 1}d under g is an
affine subspace of {0, 1}n containing 2d distinct elements
(since A has full rank). Let {0, 1}n×dd denote the set of all
full rank, i.e., rank d, matrices in {0, 1}n×d.

Theorem 2. Let A be uniform over {0, 1}n×dd and let v
be uniform over {0, 1}n. The image of {0, 1}d under x 7→
Ax+ v is an (n− d)-thinner.

Theorem 1 immediately implies the following.

Corollary 1. Let A be uniform over {0, 1}n×dd and let v
be uniform over {0, 1}n. Let {mj}tj=1 be i.i.d. random
variables distributed as

max
x∈{0,1}d

f(Ax+ v) .

If M = median(m1, . . . ,mt), then for every c ≥ 2,

Pr[bi+c ≤M ≤ bi−c] ≥ 1−2 exp

(
− t

2
(1− 2−c+1)2

)
.

In other words, replacing long parity constraints with ran-
dom affine maps, retains all statistical guarantees while giv-
ing rise to optimization instances over {0, 1}n−i instead of
{0, 1}n. As in the estimation of the partition function, i
ranges from 1 to n, at some point it becomes much more
efficient to operate on f ◦ g in the reduced domain that to
operate on f on Ω. Moreover, because |Ri| = 2n−i de-
terministically, rather than in expectation, the variance of
each estimate mi is smaller than for a random linear code.

To sample uniformly from {0, 1}n×dd it is convenient and
efficient to employ rejection sampling: trivially generate
A ∼ Ber(n× d) and accept only if rank(A) = d. Unifor-
mity follows from the uniformity of A ∼ Ber(n× d) over
{0, 1}n×d. By Lemma 1, the number of trials needed is a
geometric random variable with mean less than 4.

Lemma 1.
∣∣{0, 1}n×dd

∣∣ > 2dn−2.

4.1 EVALUATION

In Figure 1 we compare parity constraints vs. affine maps
on the 10 × 10 Ising grid with F = 0.1 and C = 1.0,
a noted hard problem in [14]. For the exact definition of

25

0 20 40 60 80 100
Number of parity constraints (i)

−20

0

20

40

60

80

100

120

140
B

es
t

so
lu

ti
on

Affine Map
100-i
Dense Parity
Sparse Parity

Figure 1: 10 × 10 Ising grid with C = 1.0 and F = 0.1.
Experiment: for i ∈ [0, 100] generateRi via i random pari-
ty constraints, or as a random affine subspace of dimension
n − i; seek maxσ∈Ri f(σ) for 30 seconds (see legend).
Plot: for each i, repeat the experiment 10 times and report
the binary logarithm of the median value found. We also
plot the number 100− i as a visual aid.

f see (9) in Section 7. The parity constraints are gener-
ated from the dense parity ensemble and the sparse parity
ensemble adopted in [15] and we use the ILP formulation
proposed in [13], with CPLEX being the solver. To opti-
mize f ◦ g for random affine maps we use LocalSolver [9],
since CPLEX is an ILP solver and does not natively sup-
port affine transformations over GF(2). While not as strong
as CPLEX on constrained optimization problems, Local-
Solver is specialized in stochastic local search under black-
box evaluation, hence a suitable choice for our setting.

As can be seen in Figure 1, when there are more than,
roughly, 10 parity constraints, the performance of both ran-
dom parity ensembles deteriorates rapidly, in sharp con-
trast to the robust performance of LocalSolver under affine
maps. Note that since the y-axis is in log2-scale and each
bi contributes roughly bi2i to the partition function, the fact
that the solutions found by LocalSolver are nearly parallel
to the line 100−i imply that the under-performance of opti-
mization under parity constraints is highly relevant and will
have dramatic effect on the accuracy of estimation.

Moreover, as shown in Figure 2, the best solutions found
under parity constraints in 10 minutes are still inferior to
those found via random affine maps in 30 seconds. In par-
ticular, when there are 50 constraints, CPLEX cannot find
a solution better than the initial one under either parity en-
semble, suggesting that the hardness of optimization under
parity constraints overwhelms the solver. Notably, the orig-
inal MAP inference maxσ∈Ω f(σ) can be solved to prov-
able optimality in 0.1 second by CPLEX, highlighting that
the hardness is due to the parity constraints.

30 120 240 360 480 600

Timeout (seconds)

−20

0

20

40

60

80

100

120

B
es

t
so

lu
ti

on

Affine Map 30 sec (i=20)
Sparse Parity (i=20)
Dense Parity (i=20)

Affine Map 30 sec (i=50)
Sparse Parity (i=50)
Dense Parity (i=50)

Figure 2: 10 × 10 Ising grid with C = 1.0 and F = 0.1.
Experiment: for i ∈ {20, 50} generate Ri via i random
parity constraints; seek maxσ∈Ri f(σ) with a timeout of
t ∈ {30, 120, 240, 360, 480, 600} seconds (see legend).
Plot: for each pair (i, t) repeat the experiment 10 times
and report the binary logarithm of the values found.

4.2 PROOF OF THEOREM 2 AND LEMMA 1

We will refer to A as a generator matrix for the subspace,
which we will represent by the pair (A, v).
Lemma 2. If A is uniform over {0, 1}n×dd and v is uni-
form over {0, 1}n, then (A, v) is uniform over all affine
subspaces of dimension d. In particular, for any fixed v0,
the subspace (A, v0) is uniform over all affine subspaces of
dimension d that contain v0.

Proof. It suffices to prove the second statement as the in-
dependence of A and v implies the first.

We will prove that for any fixed v0 and any affine subspace
A of dimension d that contains v0, the number of matrices
A ∈ {0, 1}n×dd such that (A, v0) = A is independent ofA.

Clearly, (A, v0) = A iff the columns of A are linearly in-
dependent elements of A. For k ∈ [d], let ak be the k-
th column of A and let a0 = 0. Linear independence is
equivalent to ak /∈ span(a0, . . . , ak−1) for all k ∈ [d].
Since |span(a1, . . . , ak)| = 2k if the first k columns are
linearly independent, we see that for every k ∈ [d] there
are 2d − 2k−1 valid choices for the k-th column.

Proof of Theorem 2. By the first part of Lemma 2, (A, v)
is uniform over all affine subspaces of dimension d. There-
fore, by symmetry, Pr[σ ∈ (A, v)] is the same for all
σ ∈ {0, 1}n. Since (A, v) contains 2d elements, unifor-
mity follows. To prove universality we need to show that
Pr[σ′ ∈ (A, v) | σ ∈ (A, v)] ≤ Pr[σ′ ∈ (A, v)]. For this
we first observe that, by the second part of Lemma 2,

Pr[σ′ ∈ (A, v) | σ ∈ (A, v)] = Pr[σ′ ∈ (A, σ)] .

26

Since σ 6= σ′, this last probability equals the probability
that τ = σ′ − σ 6= 0 belongs in (A, 0). Let ak be the k-th
column of A and let Ak comprise the first k columns of A.
If we generate A column by column we see that this last
probability equals 1−∏d

k=1 Pr[ak /∈ span(Ak−1 ∪ {τ})]
which is the same for all τ 6= 0.

Proof of Lemma 1. If we construct A column by column
then, as shown in Lemma 2, there are 2n − 2k−1 choices
for the k-th column that lead toA being full rank. Induction
thus shows

∏d
k=1(2n − 2k−1) ≥ 1

4

(
2dn + 2

)
.

5 THINNING AS ERROR-CORRECTION

Let us start by deriving the statistical desiderata of thinning
sets from first principles. This will illuminate the suitabil-
ity of error-correcting codes for thinning and offer insight.
Recall that our goal is to estimate bi = f(σ2i), for i ∈ [n].
We start by observing that for this it suffices to construct
a random variable mi such that for some (small) integer c
and any ε > 0,

Pr[mi ≤ bi−c] ≥ 1/2 + ε (3)
Pr[mi ≥ bi+c] ≥ 1/2 + ε . (4)

This is because if we take b̂i to be the median of t indepen-
dent realizations of mi, by Hoeffding’s inequality,

Pr
[
bi+c ≤ b̂i ≤ bi−c

]
≥ 1− 2 exp(−2ε2t) .

Thus, in order for Pr[mi ∈ [bi+c, bi−c]] = 1−exp(−Θ(s))
it suffices to take O(s/ε2) samples.

Achieving (3) is trivial. Let Ωj = {σ1, σ2, . . . , σ2j}. If
Ri ⊆ Ω is any random set such that Pr[σ ∈ Ri] = 2−i for
all σ ∈ Ω and mi = maxσ∈Ri f(σ), then

Pr[mi > bi−c] < |Ωi−c|2−i = 2−c. (5)

In other words, for mi to be unlikely to be “too big” it suf-
fices for Ri to have the right (expected) size, without any
requirement of its geometry beyond uniformity. For exam-
ple,Ri could even be a random subcube of Ω, an extremely
computation-friendly constraint: pick i variables at random
and assign them random values.

Achieving (4) is far more subtle. This is because in or-
der for Pr[mi ≥ bi+c] to not vanish the random variable
Xi = |Ωi+c ∩Ri| must be well-behaved. In particular, ob-
serve that EXi = 2c and we aim for c to be small, e.g.,
c = 2, so the expectation of Xi is modest. If Xi realizes
its modest expectation via a lottery phenomenon, i.e., typi-
cally Xi = 0 but rarely Xi is very large we are in trouble.
To control for this possibility we use the Paley-Zygmund
inequality asserting that if X is any non-negative integer
random variable, then Pr[X > 0] ≥ (EX)2/EX2. Tak-
ing Ri to be a random cube is thus exposed as a bad idea:

if Ωi+c is also a cube, their potential alignment implies
EX2

i � (EXi)
2.

To minimize EX2
i we would like to find random sets Ri

that behave like “mists”, minimizing the probability of
having an atypically large intersection with any fixed set.
Error-correcting codes are ideal for this, with linear codes
particularly so, as they are specified via linear equations.
Motivated by these considerations, let

Ri = {σ ∈ {0, 1}n : Aσ = b} ,

where the vector b ∈ {0, 1}i is uniformly random, while
A ∈ {0, 1}i×n is arbitrary (even deterministic), for now.

It is easy to see that the uniformity of b over {0, 1}i alone
suffices to make Ri uniform over {0, 1}n, i.e., for all σ,

Pr[σ ∈ Ri] = 2−i . (6)

At the same time, for any S ⊆ Ω, if Xi = |S ∩Ri|, then

EX2
i = E

(∑

σ∈S
1σ∈Ri

)2

=
∑

σ,σ′∈S
E(1σ∈Ri 1σ′∈Ri)

= EXi +
∑

σ,σ′∈S
σ 6=σ′

Pr[Aσ = b = Aσ′] .

To deal with the sum above note that, trivially,

Pr[Aσ = b = Aσ′] = Pr[Aσ = b ∧A(σ − σ′) = 0] .

Fix any distinct pair σ, σ′. Choosing A first (to determine
if A(σ − σ′) = 0) and then choosing b (to determine if
Aσ = b) we see that Pr[Aσ = b = Aσ′] = 2−i Pr[A(σ −
σ′) = 0]. Therefore, without any assumptions on either the
set S or the distribution of A, we can conclude that

EX2
i = EXi + 2−i

∑

σ,σ′∈S
σ 6=σ′

Pr[A(σ − σ′) = 0] . (7)

To move beyond this point we must make some assump-
tions about (the distribution of) A. One such assumption,
of course, would be that for all σ − σ′ = τ 6= 0,

Pr[Aτ = 0] ≤ 2−i . (8)

It is not hard to see that if (8) holds then:

(a) Ri is an i-thinner.

(b) EX2
i ≤ EXi + (EXi)

2. Thus, by the Payley-Zigmund
inequality, Pr[mi ≥ bi+c] > 1− 2−c.

(c) Taking c = 2 and recalling (5) we see that (3), (4) are
satisfied with ε = 1/4 (and we have proven Theorem 1).

27

The above viewpoint exposes how extraordinarily strict is
the requirement of universality: it asks that an element
τ ∈ Ω that has a single 1 should be no more likely to solve
Aτ = 0 than τ = 1. Clearly, this can only be satisfied if
the rows of A have very large expected mass. In [15] the
universality requirement was dropped and the case where
the entries of A are i.i.d. Bernoulli taking the value 1 with
probability p ≤ 1/2 was analyzed. The bound derived for
the contribution of each σ ∈ S to the sum in (7) under
this scheme is dominated by its pairing with σ′ forming a
Hamming ball centered at σ. Note, though, that if Ri is an
error-correcting code and σ ∈ Ri, then it is extremely un-
likely that any σ′ near σ will also be inRi. Indeed, the most
basic metric of the quality of an error-correcting code is its
distance, i.e, the minimum distance of any two codewords.
This “self-repulsive” property of error-correcting codes is
our key insight in regards to their statistical properties.

5.1 LOW DENSITY PARITY CHECK CODES

In the basic LDPC construction, the (random) system of
linear equations is represented as a bipartite graph with
variables on the left and equations (checks) on the right,
with adjacency denoting entailment, i.e., that the variable
participates in the equation. To create a code with n vari-
ables, i.e., with codewords in {0, 1}n, one first specifies the
numbers {λj} and {φj} of variables and equations, respec-
tively, of each degree j. In the simplest case, λj = φk = 0
for all but one value of j and k, respectively, i.e., the graph
is (bi-)regular. In general, with the degree sequences thus
fixed, a random bipartite graph is chosen uniformly at ran-
dom subject to the degree constraints. This uniformity im-
plies that Pr[Aτ = 0] depends only on the weight of τ , i.e.,
its number of 1s, for every τ ∈ {0, 1}n.

An even better construction of LDPC codes than the above
is the Progressive Edge Growth (PEG) construction [3]. Its
main feature, relative to the standard LDPC construction,
is that it tries to maximize the length of the shortest cy-
cle (girth) of the resulting bipartite graph, as short cycles
contribute significantly to the formation of small stopping
sets. Motivated by these considerations we replaced the
dense and sparse parity ensembles with PEG constructed
LDPC codes. If N(w) is the number of codewords of
weight w for a given code, then the probability in (8) is
P (w) = N(w)/

(
n
w

)
. Ideally, P (w) would be constant for

all w > 0, i.e., (8) would be an equality, which is precisely
what happens when A ∼ Ber(i × n). More generally, the
flatter P (w) is, the better the statistical properties of Ri.

To demonstrate the superiority of PEG LDPC over the
sparse ensemble we plot in Figure 3 the empirical value
of logP (w) for parity matrices of size 20× 40, derived by
exhaustively enumerating each code’s, roughly, 240/2 ≈ 1
million codewords (exhaustive enumeration was chosen be-
cause the number of codewords can have non-trivial fluctu-

0.2 0.4 0.6 0.8 1.0
Normalized Hamming weight

−20

−15

−10

−5

0

L
og

pr
ob

ab
ili

ty

Sparse Parity
PEG LDPC
Dense Parity

Figure 3: Empirical logP (w) for w ∈ [1, 40] of dense par-
ity ensemble (average 20 vars/equation), sparse parity en-
semble (avg 8 vars/eq), and PEG LDPC (avg 8 vars/eq.)

ations for small n.) For the dense and sparse parity en-
sembles we generated 100 matrices each and report the
mean; the PEG construction for LDPC is deterministic. We
only considered codes with n = 40 variables, as exhaustive
enumeration rapidly becomes intractable with n. Already,
though, for n = 40 the behavior is very stable and it is easy
to prove that flatness increases as n grows.

As can be seen, for a wide range of w both the sparse parity
ensemble and the LDPC ensemble match P (w) perfectly
(the fact that dense parity itself is not flat for w 6∈ [3, 36]
is a finite-size effect). Crucially, though, for small w there
is a big difference, with the sparse parity ensemble con-
taining many more codewords (note that the vertical axis is
logarithmic). The over-representation of low-weight code-
words causes nearby pairs in S ⊆ Ω to contribute dispro-
portionately to the sum in (7), potentially causing the vari-
ance of Xi to blow up if S is clustered, e.g., if S is a cube.
No such blowup occurs for the PEG codes even for such
small n, witnessing their very good statistical properties.
As the study of the codeword weight distribution function
of LDPC codes greatly exceeds the scope of this work, we
leave a formal proof that thinning by LDPC codes give rise
to small-variance estimators as future work.

We claimed earlier that LDPC codes should be far prefer-
able to random parity matrices. To that end we plot the per-
formance of CPLEX on the Ising grid in Figure 4. The only
difference between the three plots is in the parity matrix A
used to define Ri = Aσ + b. The collapse of CPLEX be-
yond a certain number of constraints was already pointed
out in Figure 1. For LDPC PEG codes no such collapse
occurs and CPLEX remains competitive with LocalSolver
and random affine maps until i ≈ 40 even with a time-
out at small as 30 seconds. In contrast, as demonstrated
in Figure 5, LocalSolver, unaware of the variable/product

28

0 20 40 60 80 100
Number of parity constraints (i)

−20

0

20

40

60

80

100

120

140
B

es
t

so
lu

ti
on

Affine Map
PEG LDPC
Sparse Parity
Dense Parity

Figure 4: 10 × 10 Ising grid with C = 1.0 and F = 0.1.
Experiment: for i ∈ [0, 100], generateRi via an i×100 par-
ity matrix chosen from 3 different ensembles (see legend);
seek maxσ∈Ri f(σ) for 30 seconds using CPLEX. Plot: for
each i and each ensemble repeat the experiment 10 times
and report the binary logarithm of the median value found.
(As a yardstick, we also plot the values found by Local-
Solver when Ri is a random affine subspace.)

structure of Ω (and the factorization of f over {ψα}) does
not “feel” the difference between different parity check ma-
trices, consistent with our hypothesis that it is the presence
(and exploitation) of “safe” decoding moves that causes the
dramatic improvement in the performance of CPLEX.

6 BRANCH-AND-BOUND

Our last observation is that not all b̂i are equally impor-
tant (or even necessary) for an accurate estimate Ẑ. For
instance, if f(σ) ∈ {0, 1}, it suffices to find the boundary
k such that bi = 1 for i ≤ k and bi = 0 for i > k. Using
binary search we can do this by solving only log n, instead
of n, optimization problems as in (2).

To generalize let I = {i0, i1, i2, . . . , is} be the set of quan-
tiles estimated so far, where 0 = i0 < i1 < . . . < is = n.
Now define

UI = b0 +
s−1∑

j=0

bij

ij+1−1∑

i=ij

2i

LI = b0 +

s−1∑

j=0

bij+1

ij+1−1∑

i=ij

2i

 .

By construction, UI ≥ U ≥ Z ≥ L ≥ LI . Let ÛI
and L̂I be the estimated counterparts, of UI , LI , respec-
tively, with b̂i in place of bi. To identify the next quan-
tile to estimate we consider the successive pairs (i`, i`+1)
in I and for each such pair (i`, i`+1) = (i, j) we define

0 5 10 15 20 25 30 35 40
Number of parity constraints (i)

40

50

60

70

80

90

100

110

120

130

B
es

t
so

lu
ti

on

Affine Map
PEG LDPC
Sparse Parity
Dense Parity

Figure 5: 10 × 10 Ising grid with C = 1.0 and F = 0.1.
Experiment: for i ∈ [0, 40], generate Ri via an i×100 par-
ity matrix chosen from 3 different ensembles, or as a ran-
dom affine subspace (see legend); seek maxσ∈Ri f(σ) for
30 seconds using LocalSolver. Plot: for each i and method
repeat the experiment 10 times and report the binary loga-
rithm of the median value found.

Gap(i, j) =
(
b̂i − b̂j

)∑j
q=i 2q . At each iteration, we

chose the pair (i, j) with maximum gap and estimate bk,
where k = b i+j2 c. Once the ratio ÛI/L̂I drops below the
desired accuracy threshold, the process can stop early (see
Table 6 for some indicative results).

Algorithm 1 Branch-and-Bound

1: b̂0 ← ESTIMATE(b0)
2: b̂n ← ESTIMATE(bn)
3: I ← {0, n}
4: ÛI ← b̂02n

5: L̂I ← b̂n2n

6: while (ÛI > L̂I · Tolerance) do
7: Find successive i, j ∈ I maximizing Gap(i, j)
8: k ← b(i+ j)/2c
9: b̂k ← Estimate(bk)

10: I ← I ∪ {k}
11: Compute ÛI , L̂I
12: end while
13: Return (ÛI + L̂I)/2

The benefit of branch and bound is universal, i.e., indepen-
dent of the {bi} estimation method. For example, over 24
problems on Ising grids it yielded a 7x average speedup.

C (F = 0.1) 0.25 0.5 1.0 1.5 2 2.5 3
Speedup (x) 11 5 3 7 9 11 12

Table 1: Speedup by Branch and Bound

29

7 EXPERIMENTS

The ferromagnetic Ising grid is a canonical spin glass
model. Binary variables (spins) xi ∈ {±1} are placed on
the vertices of a

√
n × √n grid (V,E) and have nearest-

neighbor interactions and a local (to each spin) field. Thus,

f(x) =
∏

i∈V
ψi(xi)

∏

(i,j)∈E
ψi,j(xi, xj) , (9)

with ψi(xi) = exp(Fixi) and ψij(xi) = exp(Cijxixj),
where the local fields Fi are i.i.d. U [−F, F] and the cou-
pling strengths Cij are i.i.d. U [0, C]. (As Cij ≥ 0, config-
urations where neighboring spins align are favored.)

The model has been widely used as a test case for partition
function estimation [4][8][14][15] due to its flexibility: as
C is increased, the dominant contribution to the partition
function shifts from configurations with many unaligned
neighbors to configurations with few unaligned neighbors.
We focus on the particularly challenging setting C ≈ 1. A
side benefit of this choice (not unrelated to hardness) is that
a wide range of quantiles contribute significantly to Z, thus
exercising each method for a wide range of thinning.

7.1 THE ALGORITHMS

Given the complementary nature of thinning via parity ma-
trices and thinning via affine subspaces, it is natural to com-
bine our two ideas into one algorithm that uses LDPC par-
ity check matrices for small i (“light” thinning) and random
affine subspaces for large i (“heavy” thinning). To reduce
the confounding factors we simply used parity matrices for
i ∈ [1, 33] and affine subspaces for i ∈ [34, 100].

Besides the junction-tree algorithm used to compute Z ex-
actly, we also evaluated the Mean Field approximation, and
Tree-Reweighted Belief Propagation (TRWBP) [6], pro-
viding a lower and an upper bound for the partition func-
tion, respectively. We use the libDAI [10] implementations
of all three algorithms. The WISH algorithm is the CPLEX
implementation by the authors of [14].

7.2 THE RESULTS

WISH is not competitive with our algorithm in certain set-
tings, as indicated by Figure 6 (note that the vertical axis
is logarithmic). For example, our algorithm achieves bet-
ter accuracy with a 10-second timeout than WISH achieves
with 360 seconds. When this difference in accuracy is com-
bined with the Branch and Bound speedup, our algorithm
is over 100x faster than WISH.

In Figure 7 we compare all four algorithms for F = 0.1
and various values of C ∈ [0.25, 3.0]. Rather than com-
paring run times, which in order to be fair would require
adapting the timeout of each algorithm to the difficulty it

10 30 60 180 360

Timeout (seconds)

−14

−12

−10

−8

−6

−4

−2

0

2

L
og

er
ro

r

Exact
SECCO
WISH

Figure 6: 10 × 10 Ising grid with C = 1.0 and F = 0.1.
Experiment: run WISH and our algorithm with a timeout
of t ∈ {10, 30, 60, 180, 360} seconds per instance to get an
estimate Ẑ (see legend). Plot: report log2(Ẑ/Z).

experiences, we have chosen the more transparent experi-
ment of running each algorithm with the same timeout of
360 seconds across all instances and all i ∈ [n] and com-
paring the accuracy achieved in the final estimate of Ẑ.

The case of high coupling strengths is easy for both algo-
rithms as the dominant contribution to Z comes from few
configurations of high probability and, thus, only light thin-
ning is performed. For C ∈ {0.5, 0.75, 1.0}, though, our
algorithm outperforms WISH by a significant margin (the
vertical axis is logarithmic).

0.5 1.0 1.5 2.0 2.5 3.0
Coupling strength

−40

−30

−20

−10

0

10

20

L
og

er
ro

r

TRWBP
WISH
Exact
SECCO
Mean Field

Figure 7: 10×10 Ising grid with C ∈ [0.25, 3.0], F = 0.1.
Experiment: for C ∈ {0.25, 0.50, . . . , 3.0}, determine Z
and run four algorithms to get an estimate Ẑ (see legend).
Mean Field and TRWBP are run to termination. WISH and
our algorithm have a 360 second timeout for each instance.
Plot: For C ∈ {0.25, 0.50, . . . , 3.0} report log2(Ẑ/Z).

30

References

[1] A. Bulatov and M. Grohe. The complexity of parti-
tion functions. Theoretical Computer Science, 348(2-
3):148–186, 2005.

[2] D. Allouche, S. de Givry, and T. Schiex. Toulbar2, an
open source exact cost function network solver. Tech-
nical report, Technical report, INRIA, 2010.

[3] X. Hu, E. Eleftheriou, and D. Arnold. Regular and ir-
regular progressive edge-growth tanner graphs. IEEE
Transactions on Information Theory, 51(1):386–398,
2005.

[4] T. Hazan and T. Jaakkola. On the partition function
and random maximum a-posteriori perturbations. In
ICML. icml.cc / Omnipress, 2012.

[5] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul.
An introduction to variational methods for graphical
models. Machine Learning, 37(2):183–233, 1999.

[6] M. Wainwright, T. Jaakkola, and A. Willsky. Tree-
reweighted belief propagation algorithms and approx-
imate ml estimation by pseudo-moment matching.
In Workshop on Artificial Intelligence and Statistics,
volume 21, 2003.

[7] M. Jerrum and A. Sinclair. Approximation Algorithms
for NP-hard Problems, chapter The Markov Chain
Monte Carlo Method: An Approach to Approximate
Counting and Integration, pages 482–520. PWS Pub-
lishing Co., Boston, MA, USA, 1997.

[8] T. Hazan, S. Maji, and T. Jaakkola. On sampling
from the gibbs distribution with random maximum a-
posteriori perturbations. In NIPS, pages 1268–1276,
2013.

[9] T. Benoist, B. Estellon, F. Gardi, R. Megel, and
K. Nouioua. Localsolver 1.x: a black-box local-
search solver for 0-1 programming. 4OR, 9(3):299–
316, 2011.

[10] J. Mooij. libDAI: A free and open source C++ library
for discrete approximate inference in graphical mod-
els. Journal of Machine Learning Research, 11:2169–
2173, August 2010.

[11] C. Gomes, A. Sabharwal, and B. Selman. Model
counting: A new strategy for obtaining good bounds.
In AAAI, pages 54–61. AAAI Press, 2006.

[12] C. Gomes, W. Hoeve, A. Sabharwal, and B. Selman.
Counting CSP solutions using generalized XOR con-
straints. In AAAI, pages 204–209. AAAI Press, 2007.

[13] S. Ermon, C. Gomes, A. Sabharwal, and B. Selman.
Optimization with parity constraints: From binary
codes to discrete integration. In UAI. AUAI Press,
Corvallis, Oregon, 2013.

[14] S. Ermon, C. Gomes, A. Sabharwal, and B. Sel-
man. Taming the curse of dimensionality: Discrete
integration by hashing and optimization. In ICML,
volume 28 of JMLR Proceedings, pages 334–342.
JMLR.org, 2013.

[15] S. Ermon, C. Gomes, A. Sabharwal, and B. Selman.
Low-density parity constraints for hashing-based dis-
crete integration. In ICML, volume 32 of JMLR Pro-
ceedings, pages 271–279. JMLR.org, 2014.

[16] M. Sipser. A complexity theoretic approach to ran-
domness. In STOC, pages 330–335. ACM, 1983.

[17] M. Thurley. An approximation algorithm for #k-sat.
In STACS, volume 14 of LIPIcs, pages 78–87. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[18] S. Toda. PP is as hard as the polynomial-time hier-
archy. SIAM Journal on Computing, 20(5):865–877,
1991.

[19] L. Valiant and V. Vazirani. Np is as easy as detect-
ing unique solutions. Theoretical Computer Science,
47(3):85–93, 1986.

31

Learning the Structure of Sum-Product Networks
via an SVD-based Algorithm

Tameem Adel
Radboud University

David Balduzzi
Victoria University of Wellington

Ali Ghodsi
University of Waterloo

Abstract

Sum-product networks (SPNs) are a recently de-
veloped class of deep probabilistic models where
inference is tractable. We present two new struc-
ture learning algorithms for sum-product net-
works, in the generative and discriminative set-
tings, that are based on recursively extracting
rank-one submatrices from data. The proposed
algorithms find the subSPNs that are the most co-
herent jointly in the instances and variables – that
is, whose instances are most strongly correlated
over the given variables.

Experimental results show that SPNs learned us-
ing the proposed generative algorithm have bet-
ter likelihood and inference results – and also
much faster – than previous approaches. Finally,
we apply the discriminative SPN structure learn-
ing algorithm to handwritten digit recognition
tasks, where it achieves state-of-the-art perfor-
mance for an SPN.

1 INTRODUCTION

Sum-product networks (SPNs), introduced in Poon and
Domingos [2011], provide compact, tractable representa-
tions of probability distributions. Layers of hidden vari-
ables are added to the model so long as they maintain com-
pactness whilst keeping inference tractable.

In this work, we present a new SPN structure learning algo-
rithm that constructs an SPN by identifying coherent sub-
SPNs that are sought concurrently across both the instance
and variable dimensions. The subSPN search procedure
aims at compactly and tractably representing the data and
is capable of splitting the data matrix across both dimen-
sions at once, if this leads to a better data representation.

Contribution. We make two main contributions. The
first is SPN-SVD, a new SPN structure learning algorithm

based on rank-one (rank-1) submatrix extraction. The
problem of finding subSPNs is reformulated as a problem
of finding approximate rank-1 submatrices of the data ma-
trix. An important feature of the approach is that it splits
the data along two dimensions (variables and instances) si-
multaneously when doing so optimises the objective. In
contrast, previously developed approaches to learning the
structure of SPNs split the data across one dimension only,
at a time, without taking into consideration that such local
improvement might drift the overall resulting SPN away
from the optimal representation.

The second main contribution is an extension of our struc-
ture learning algorithm to the setting of discriminative
learning [Gens and Domingos, 2012]. The discrimina-
tive structure learning algorithm, DSPN-SVD, first extracts
the features that are the most dependent on the labels,
where dependence is measured via the Hilbert-Schmidt In-
dependence Criterion (HSIC), and then recursively applies
SPN-SVD. To the best of our knowledge, it is the first struc-
ture learning algorithm designed for discriminatively train-
ing SPNs.

The performance of both algorithms is extensively evalu-
ated. When evaluated on the Caltech-101 and Olivetti im-
age datasets, SPN-SVD outperforms other SPN algorithms,
with higher log-likelihood (LL) values and much faster per-
formance. The discriminative structure learning algorithm
achieves state-of-the-art performance on handwritten digit
classification when compared with other SPN algorithms.

2 SUM-PRODUCT NETWORKS

SPNs are built by composing tractable distributions. A
tractable distribution is a distribution whose partition func-
tion and mode can be computed in time O(1) [Gens and
Domingos, 2013]. A tractable univariate distribution, DX ,
is an SPN. SPNs provide a representation in which single
tractable distributions of the form DX are combined into
a richer and more complex distribution, provided that the
resulting distribution remains tractable.

32

An SPN is a rooted directed acyclic graph (DAG), Gr,
whose leaves are univariate distributions, and whose inter-
nal nodes are sum and product nodes. Edges from a sum
node to its children are assigned positive weights, W . Let
Br(S) denote the branches (children) of S. The scope, sc,
of a sum-product network, S(Gr,W), is the set of vari-
ables that appear in the leaf nodes of the SPN [Poon and
Domingos, 2011]. Sum nodes are denoted by Sumi(Br1 :
w1, Br2 : w2, . . .), where Br1, Br2, . . . are the branches
and w1 and w2 are their respective weights. Similarly,
product nodes are denoted by Prdi(Br1, Br2, . . .).

The two composition rules used in SPNs are defined as fol-
lows. Firstly, a product, Prd, of SPNs, sub1, . . . , subk,
over disjoint scopes, is an SPN, rooted by Prd:

∀subi, subj ∈ Br(Prd) : sc(subi) ∩ sc(subj) = φ (1)

A decomposable SPN is one in which each product node
satisfies Eq. (1).

Secondly, a positive weighted sum, Sum, of SPNs over the
same scope is an SPN rooted by Sum [Gens and Domin-
gos, 2013]:

∀subi, subj ∈ Br(Sum) : sc(subi) = sc(subj) (2)

A complete SPN is one in which each sum node satisfies
Eq. (2). A sum node, Sum, can be thought of as the result
of summing out a hidden variable. The sum of weights
of all the branches of a sum node is always equal to 1
(
∑
sub∈Br(Sum) wsub = 1).

2.1 Related Work on Structure Learning

The emphasis in the SPN literature has recently shifted
from learning parameters to learning the structure of mod-
els. Parameter learning algorithms assume a fixed struc-
ture and learn weights using either generative [Poon and
Domingos, 2011] or discriminative [Gens and Domingos,
2012] training. A hard EM algorithm is used by Poon and
Domingos [2011] to perform generative parameter learn-
ing on SPNs. Deep SPNs are learned successfully using
hard EM with a pre-defined network structure. A discrim-
inative parameter learning algorithm based on gradient de-
scent was introduced in Gens and Domingos [2012].

The first algorithm to learn the structure of an SPN from
data was proposed by Dennis and Ventura [2012]. The
algorithm first clusters data instances and creates a corre-
sponding sum node. Then, it clusters variables in a top-
down approach, creating product nodes. There are three
potential problems with the algorithm. The first is that
any context-specific independences that appear after the
first clustering are not taken into consideration because in-
stances are not clustered after the first step. Secondly, the
algorithm is based on a clustering method that ignores cor-
relation between variables. It will therefore tend to place

dissimilar, but strongly correlated, variables in different
clusters. Finally, the structure and weights are learned us-
ing two distinct methods.

A bottom-up approach, based on greedily merging small
image regions into larger regions, was introduced in Peharz
et al. [2013]. An online learning algorithm was proposed
by Lee et al. [2013], where the problem was cast as an on-
line clustering problem. They develop an incremental SPN
structure learning algorithm based on dynamically modify-
ing the number of clusters based on incoming data.

The most prominent general SPN structure learning algo-
rithm was proposed by Gens and Domingos [2013]. It ap-
plies a recursive top-down approach which, at each step,
checks whether variables can be split into approximately
independent subsets – in which case a product node is con-
structed. Otherwise, the current instances are clustered,
and a sum node is returned with weights proportional to
the number of instances in each cluster. The algorithm
greedily optimises the log-likelihood and overcomes sev-
eral limitations in Dennis and Ventura [2012]. However,
it only searches locally for the ideal splitting candidate at
each step, see discussion of Table 1 below.

To the best of our knowledge, the most recent algorithm for
general SPN structure learning was proposed in Rooshenas
and Lowd [2014]. The authors adapt a method based on
mixture modelling and arithmetic circuit learning. It does
not only apply local modifications in the search of an op-
timal model as arithmetic circuit learning could lead to
global changes. However, a global search over the data is
neither systemic nor guaranteed.

Peharz et al. [2014] learn the structure of a restricted class
of SPNs, where each sum node can have no more than one
branch with a non-zero output for a certain input. Nath
and Domingos [2014] develop an algorithm that learns the
structure of relational SPNs.

Our focus is on learning the structure of general SPNs in
both the generative and discriminative settings.

3 LEARNING THE STRUCTURE OF AN
SPN

Previous SPN structure learning algorithms cluster in-
stances without ensuring that the clustering respects
context-specific independences (independences that hold
only among instances of a specific context or cluster). In
contrast, our proposed algorithm (SPN-SVD) concurrently
checks the data matrix across both the instance and vari-
able dimensions, looking for coherent subSPNs in the form
of rank-1 submatrices.

Motivating Example. It is useful to consider a simple
example in detail, so as to understand how SPN-SVD dif-
fers from SPN-Gens. Tables 1 & 2 contrast the steps

33

taken by SPN-SVD and SPN-Gens [Gens and Domingos,
2013]. Table 1(A) shows the data matrix, which consists
of 6 instances with 4 variables each. SPN-Gens clusters
the data into 2 clusters, as shown in Table 1(B) and in Fig-
ure 1. In the example, the cluster of elements with value 18
is split.

Table 1: SPN-Gens on an Example Data Matrix. Rows
are instances and columns are variables.

40 40 40 40
40 40 40 40
40 18 18 40
20 18 18 20
20 20 20 20
20 20 20 20

A

40 40 40 40
40 40 40 40
40 18 18 40
20 18 18 20
20 20 20 20
20 20 20 20

B

Figure 1: The SPN Structure Learned from Table 1 by
SPN-Gens.

SPN-SVD deals with the same data quite differently, as
shown in Table 2. The algorithm simultaneously searches
over instances and variables and therefore immediately
identifies the submatrix with all entries equal to 18, chooses
it as a rank-1 submatrix. The algorithm then decomposes
the original matrix into three components and acts recur-
sively on each.

The crucial difference between the two algorithms is that
SPN-SVD identifies the submatrix of entries with value
18 as an “atom” in the data, resulting in a graph struc-
ture that captures an important feature of the data, whereas
SPN-Gens does not. Quantitatively, the final LL value for
SPN-Gens is −2 whereas for SPN-SVD it is −1.39.

Table 2: SPN-SVD Applied to the Matrix from Table 1.

40 40 40 40
40 40 40 40
40 18 18 40
20 18 18 20
20 20 20 20
20 20 20 20

A

40 40 40 40
40 40 40 40
40 18 18 40
20 18 18 20
20 20 20 20
20 20 20 20

B

Figure 2: The SPN Structure Learned from Table 1 by
SPN-SVD.

In essence, SPN-SVD and SPN-Gens are motivated by
two different extreme cases.

SPN-Gens is inspired by the observation that if variables
are independent, then they can be decomposed into separate
(branches or) leaves of an SPN product node.

In contrast, SPN-SVD is inspired by a complementary
observation: if a subset of variables is perfectly corre-
lated over a subset of data, then it forms a rank-1 sub-
matrix. These rank-1 submatrices are the “atoms” out
of which SPN-SVD builds an SPN. Whereas SPN-Gens
searches for independencies; SPN-SVD searches for corre-
lated components.

Searching for rank-1 submatrices instead of independent
variables has three potential advantages. Firstly, correla-
tions are easier to estimate than independence. Secondly,
the search for rank-1 submatrices occurs jointly over vari-
ables and instances, whereas clustering and identifying in-
dependencies are two unrelated procedures. Thirdly, ex-
tracting correlated submatrices reduces redundant compu-

34

tations, resulting in a faster algorithm, see Lemma 1 below.

3.1 Extracting a Rank-1 Submatrix

The main subroutine of SPN-SVD is a rank-1 extraction
algorithm based on singular value decomposition (SVD).
The approach derives from an algorithm for nonnega-
tive matrix factorization (NMF) developed in Biggs et al.
[2008a].

Let X ∈ Rm×n denote a data matrix containing m in-
stances and n variables. We denote by Xi• the ith row
of the matrix, corresponding to the ith instance of the data,
and by X•j the jth column of the matrix, corresponding to
the jth variable.

In the generative training case, assume the labels, if pro-
vided, are included in X . We introduce the notation
X(M,N) to refer to the submatrix of X consisting of rows
M ⊂ {1, . . . ,m} and columns N ⊂ {1, . . . , n}.
The algorithm extracts the submatrix of the data matrix X
that is closest to having rank-1, denoted by B1, by max-
imising

B1 := argmax
X(M,N)

‖X(M,N)‖2F −γ‖X(M,N) − σuvᵀ‖2F , (3)

where σ is the maximum singular value of the submatrix
X(M,N) and u ∈ Rm, v ∈ Rn are the dominant sin-
gular vectors of of X(M,N), and ‖ • ‖F is the Frobenius
norm. Recall that the Frobenius norm is the root sum of the
squared singular values.

The second term in Eq. (3) thus encourages the optimiza-
tion to find a submatrix that is close to rank-1. The first
term ensures the submatrix is biased towards having large
singular values; γ controls the penalty incurred as X(M,N)

deviates from being rank-1.

Algorithm 1 details the subroutine, extractR1, used to
extract approximate rank-1 submatrices. For fixed M and
N , extractR1 exactly coincides with the SVD power
method. However, instead of fixing M and N , the in-
ner loop searches for the submatrix with the closest rank-
1 approximation. Lines 6 and 8 show a heuristic used
to solve the NP-hard problem defined in Eq. (3) [Biggs
et al., 2008a]. The criterion in lines 6 and 8 of Algo-
rithm 1 decides whether or not to include one column or
row separately. This makes the subroutine parallelisable
and highly scalable in terms of memory and processing
power. extractR1 computes the dominant singular vec-
tors of a submatrix, which are less prone to perturbations
by noise than the full matrix [Biggs et al., 2008b].

3.2 Generative SPN Structure Learning Algorithm
(SPN-SVD)

SPN-SVD recursively extracts “atomic” submatrices from
the input matrix. Each extraction breaks the input ma-

Algorithm 1 Function extractR1(X)

Input: X ∈ Rm×n, γ > 1
Output: [M , N , Stop]

1: Select j0 ∈ {1, . . . , n} to maximise ‖X(:,j0)‖F
2: M = {1, 2, . . . ,m}, N = {j0}
3: u = X(:,j0)

4: repeat
5: v = X(M,:)ᵀ · u(M)

‖u(M)‖F
6: N = {j : γv(j)

2 − ‖X(M,j)‖F 2
> 0}

7: u = X(:,N) · v(N)
‖v(N)‖F

8: M = {i : γu(i)
2 − ‖X(i,N)‖F 2

> 0}
9: until M , N , u, v do not change

10: if X(M,N) = X or (|M | = 0 and |N | = 0) then
11: Stop = true
12: else
13: Stop = false
14: end if

trix into three pieces, which are glued together as sum and
product nodes.

Algorithm 2 details the main steps of SPN-SVD. Rows
are instances and columns are variables. Each variable is
divided by its standard deviation before extracting rank-1
submatrices. The normalised values are used in the sub-
routine extractR1 only, and are not returned or updated
in the matrix. Normalisation helps discover correlated sets
of variables.

Given an input matrix, subroutine extractR1 recursively
extracts an approximate rank-1 submatrix B1. The ma-
trix is then split into three components: the submatrix B1,
submatrix B2 consisting of other variables on the same in-
stances as B1, and finally submatrix B3 consisting of the
remaining instances.

The optimization in (3) ensures that variables in B1 are
maximally correlated and the remaining variables, captured
by B2, are largely uncorrelated with B1. The algorithm
therefore combines B1 and B2 via a product node

Prd(B1, B2).

Finally, the remaining instances, captured byB3, are added
via a sum node

Sum
(
B3 : w1, P rd(B1, B2) : w2

)
,

where w2 = |M |
m and w1 = 1− w2.

The algorithm proceeds recursively by feeding B1, B2 and
B3 back into the algorithm as input matrices until one of
three base cases is reached:

1. The input matrix contains a single variable:

The remaining vector represents a univariate distribu-
tion and a leaf node is created (line 2).

35

Algorithm 2 Function SPN-SVD(A)

Input: A ∈ Rm×n, γ > 1
Output: Sum-product network S representing A

1: if #columns(A) = 1 then
2: return univariate distribution on variable.
3: else if #rows(A) = 1 then
4: return return Prd(variables in A).
5: end if
6: [M , N , Stop] = extractR1(A, γ)
7: Set B1 = A(M,N), B2 = A(M,Nc) and B3 =
A(Mc,{1...n})

8: if Stop = true then
9: return multivariate distribution MVLN(A)

10: else
11: Construct Prd(B1, B2)
12: Call SPN-SVD(B1) and SPN-SVD(B2)
13: Construct

Sum

(
B3 :

m− |M |
m

,Prd(B1, B2) :
|M |
m

)

14: Call SPN-SVD(B3)
15: end if

2. The input matrix contains a single instance:

All variables are independent and a product node is
created (line 4). Its leaves are the relevant variables.

3. The entire input matrix is extracted:

The variables in A are highly correlated since A has
rank-1. The algorithm therefore constructs a sum node
with a branch per instance in A, followed by product
nodes over the variables. We refer to the node as a
multivariate leaf node or MV LN .

More precisely, if A ∈ RM×N and B1 ≡ A then for
each instance j form product node

rj := Prdj(Aj1, . . . , AjN).

Combine the product nodes by summing over in-
stances:

MVLN(A) := Sum(r1 : w, . . . , rM : w), (4)

where w = 1
|M | .

Variables in a rank-1 submatrix cannot be indepen-
dent. SPN-SVD achieves significant speedups by avoid-
ing redundant searches for independencies and returning
MVLNs. In contrast, when SPN-Gens encounters a rank-
1 submatrix, it recursively searches for independences and
clusters across its subsets, which leads to a slower imple-
mentation and also an SPN with a more complicated struc-
ture. The speedup from using MVLNs is reported in the
experimental results below.

A commonly used assumption is that data is clustered in
strongly correlated groups. For example, algorithms such
as the group Lasso seeks solutions where groups of vari-
ables are zero together [Bach, 2008]. The following simple
Lemma illustrates how large MVLNs arise in the more gen-
eral setting where groups of variables receive the same, or
even approximately the same, values.

Lemma 1. Let X ∈ Rm×n be a data matrix consisting of
m instances. Suppose that X contains a group of instances
G ⊂ {1, . . . ,m} with similarity pattern KG = {k|Xik =
Xjk for all i, j ∈ G}. Then SPN-SVD will find a multi-
variate leaf node satisfying

|MV LN | ≥ |KG| · |G|.

Proof. The result follows immediately since the algorithm
will either find the MVLN corresponding to the group, or a
larger MVLN.

An interesting question, deferred to future work, is to char-
acterise the collections of groups with similarity patterns
that are best suited to the SPN-SVD algorithm. It is also
worth investigating how robustly MVLNs are extracted in
the presence of noise.

3.3 Discriminative SPN Structure Learning
Algorithm (DSPN-SVD)

Finally, we consider the setting of discriminative learn-
ing, where the algorithm is provided with labeled data.
Discriminative learning models the conditional distribu-
tion P (Y |X), rather than the joint distribution P (X,Y).
Discriminative SPNs combine the flexibility of select-
ing/extracting relevant features, with the tractability and
representational prowess of SPNs. They can achieve high
classification or regression accuracy by selecting variables
that are dependent on Y . They were first introduced
by Gens and Domingos [2012], where parameters were
learned on a pre-defined structure.

We propose a new discriminative SPN structure learning
algorithm, referred to as DSPN-SVD. We assume the la-
bels are discrete, and belong to the set C = {1, . . . , l}.
The algorithm extracts features Z from the input matrix,
X , that are maximally correlated (in a suitable sense) with
the labels Y . The algorithm then applies SPN-SVD to
the learned features to construct a collection of generative
SPNs, one per conditional distribution P (Z|Y = j) for
j ∈ C, that are combined by a single sum-node.

Extracting Z requires a measure of dependence between
variables. We use the Hilbert-Schmidt independence crite-
rion (HSIC), which we briefly recall [Gretton et al., 2005].

Let k(x, x′) and l(y, y′) be kernels on the input space X
and the label space Y , with corresponding feature maps φ :

36

X → F and ψ : Y → G respectively. The Hilbert-Schmidt
Independence Criterion is

HSIC(k, l, PXY) := ‖Cxy‖F , where
Cxy := E

(x,y)∼P
[(φ(x)− µx)⊗ (ψ(y)− µy)]

is the cross-covariance operator [Fukumizu et al., 2004].
We apply the HSIC for supervised feature selection follow-
ing Song et al. [2007].

Let Π := {W ∈ Rn×d : 〈W•i,W•j〉 = δij} denote the set
of orthogonal projections from Rn = X to Rd. Given the
standard dot product 〈•, •〉 on Rd, each projection induces
a kernel KW (x, y) := 〈Wx,Wy〉 on X .

Let L(y, y) = δy,y′ be the Kronecker kernel, which is 1 if
y = y′ and 0 otherwise. The Kronecker kernel is suitable
for the categorical variable, Y ∈ C, because it expresses
precisely whether or not two labels are equal. It is easy
to extend to real-valued or structured labels by employing
more sophisticated kernels.

Let X ∈ Rm×n be a data matrix with labels Y ∈ Ym,
yielding empirical distribution P̂XY . Construct the center-
ing matrixH = (Idm−m−111ᵀ) and empirical Kronecker
kernel Lij = δyi=yj .

Lemma 2. Let V ∈ Rn×d be the top d eigenvectors of

χ := XᵀHLHX (5)

Then V maximizes the Hilbert-Schmidt dependence:

V = argmax
W∈Π

HSIC(KW , L, P̂XY).

Proof. The vectors V•j , j = 1, . . . , d, are the eigenvectors
of χ. They therefore maximize the trace

argmax
V

tr(V ᵀXᵀHLHXV)

Since tr(AB) = tr(BA), the objective can be rewritten
as:

argmax
V

tr(HXV V ᵀXᵀHL) (6)

Following Barshan et al. [2011], let K = XV V ᵀXᵀ. The
objective in Eq. (6) is then

tr(HKHL),

which is the HSIC [Gretton et al., 2005].

The higher the HSIC value, the stronger the dependence
between the projected representation of the data Z = XV
and Y , and thus the more useful the representation is for
discriminative learning.

Algorithm 3 Function DSPN-SVD

Input: X ∈ Rm×n, Y ∈ Ym, γ > 1, d > 1
Output: Sum-product network S representing Y |X

1: Construct kernel matrix Lij =
(
δyi=yj

)m
i,j=1

and cen-
tering matrix H = (Idm −m−111ᵀ).

2: Compute the d eigenvectors V ∈ Rn×d of χ =
XᵀHLHX with the largest eigenvalues.

3: Set feature matrix Zm×d ← Xm×n · Vn×d
4: Construct sum node Sum1(Brj : wj), where Brj

contains all instances with label j, and weight wj =
#instances labeled j

m .
5: for label j in Y do
6: SPN-SVD(Brj , γ)
7: end for

After extracting the features Z, there are two remaining
steps. The first step constructs the base node for the dis-
criminative SPN as a sum node that separates instances be-
longing to different labels. Nodes in the sum are weighted
by the number of instances. The resulting network is thus
automatically biased towards more common labels. The
second step applies the generative SPN-SVD algorithm to
each branch of the sum node using the extracted features in
Z.

The main steps of DSPN-SVD are shown in Algorithm 3.

Figure 3 shows an example with 2 labels and 3 variables.
As shown in the tables at the top of the figure, the X vari-
ables are replaced by a more suitable representation, Z.
The base sum node then places instances of each label on
separate branches, where each branch’s subSPN is in turn
learned by SPN-SVD. A simplified example of the feature
extraction process is shown in Figure 4. Since the first two
features convey no information about the labels, extracting
only the third feature, Z = X•3, maximises the HSIC.

4 EXPERIMENTS

4.1 Generatively Trained SPNs

Our main evaluation of SPN-SVD is based on comparing
its accuracy and speed to other SPN structure learning algo-
rithms. Following prior work on structure learning [Gens
and Domingos, 2013, Rooshenas and Lowd, 2014], we re-
port accuracy in terms of the test-set log-likelihood (LL)
and query conditional log-likelihood (CLL). These values
are obtained from experiments on the Caltech-101 dataset
[Fei-Fei et al., 2004], the Olivetti face dataset [Salakhutdi-
nov and Hinton, 2009], and 20 binary datasets. Caltech-
101 is one of the most commonly used image datasets. It
contains images divided into 101 categories, e.g. airplanes,
cameras and faces. Each object category contains from 40
to 800 images. Images in Caltech-101 are 64 × 64 pixels.
The Olivetti dataset contains 400 face images of 64 × 64

37

Figure 3: The Discriminative SPN Prior to Running SPN-
SVD on Each Sum Node Branch.

Figure 4: An Example of X , Y and Z where
m = 4, n = 3, d = 1. Z = XV = X[0 0 1]

ᵀ.

pixels. Importantly, these datasets are not binary, in con-
trast to previous datasets used for SPN structure learning.
The datasets are discrete-valued. Extending to the contin-
uous case is straightforward. 60% of the instances of each
object category are used for training, 10% for validation
(needed mainly for WinMine) and 30% for testing.

Accuracy. For Caltech-101, values of LL and inference
are displayed as average values across all object categories,
as well as averages for some of the individual object cat-
egories, while only the grand average is displayed for
Olivetti. By “average”, we mean that the LL values dis-
played represent their respective summation of LL values
divided by the number of test instances. Univariate leaf dis-
tributions are multinomials with Laplace smoothing (add
0.1).

We compared SPN-SVD with four algorithms: (1)
SPN-Gens [Gens and Domingos, 2013], with code avail-
able online; (2) ID-SPN [Rooshenas and Lowd, 2014]
by the Libra toolkit; (3) SPN-Dennis [Dennis and Ven-

tura, 2012], which was implemented via algorithms 1, 2
& 3 of Dennis and Ventura [2012]; (4) Bayesian network
structure learning with the WinMine toolkit [Chickering,
2002], which was chosen because it can express context-
specific independence.

Table 3 shows the test-set LL values obtained for 18
example object categories from Caltech-101, the whole
Caltech-101 dataset and the Olivetti face dataset using
the SPN-SVD, SPN-Gens, ID-SPN, SPN-Dennis al-
gorithms and WinMine. The greater the LL, the better.
The total number of instances (training + test + validation)
in each category or dataset is shown in Table 3. Bold red
signifies that an algorithm is significantly better than com-
petitors on a category, whereas bold black indicates that an
algorithm is better than competitors on a category. Signif-
icant results are identified using a paired t-test (performed
in the log scale) with p = 0.05. Out of the 101 Caltech-101
categories, SPN-Gens is significantly better than its com-
petitors in 5 categories, WinMine in 9 categories, ID-SPN
in 12 categories while SPN-SVD is significantly better in
42 categories, 9 of which are shown in Table 3.

Training time. An important advantage of SPN-SVD is
its rapid training time. SPN-SVD took 2.5 hours with 1
CPU to build the SPN and calculate the test-set LL values
for Caltech-101 and Olivetti. In contrast, SPN-Gens took
13.5 hours, ID-SPN took 12 hours, and SPN-Dennis
took 7.5 hours to perform the same task. WinMine took
2.5 hours to build the Bayesian network and calculate LL
values.

Per the discussion of Lemma 1, we expect that larger
MV LNs lead to larger reductions in run-time. Our experi-
ments show a 3-fold speedup when comparing SPN-SVD’s
performance with and without MV LNs. Returning
MVLNs thus accounts for most of the 4.5-fold speedup of
SPN-SVD compared to SPN-Gens.

Another major advantage of SPN-SVD is that is has few
tuning parameters. The generative algorithm has one pa-
rameter, γ, which controls the penalty for deviating from
rank-1, whereas DSPN-SVD has a 2nd parameter: d, the
number of extracted features. In comparison, ID-SPN, for
example, has: L1 prior parameters Cji, split penalty SP ji,
maximum edges MEji for each AC node, cluster penalty,
standard deviation of the Gaussian priors, and the number
of main iterations [Rooshenas and Lowd, 2014].

Queries. Next, we investigate the accuracy and speed of
queries. Queries are generated following Gens and Domin-
gos [2013]. Experiments are performed with a range of
query and evidence variables, see Table 4. A number of in-
stances are selected randomly from the test-set of each ob-
ject category or dataset, and then queries P (Q = q|E = e)
are created by randomly picking proportions of the vari-
ables. The average CLL logP (Q = q|E = e) is com-

38

Table 3: Test-set LL and Learning Time. Results are shown for 18 Caltech-101 Categories, Caltech-101 & Olivetti. Bold
red signifies that an algorithm significantly outperforms the rest.

Dataset # inst. SPN-SVD SPN-Gens SPN-Dennis ID-SPN WinMine
Faces 435 -1122.71 -1520.03 -1607.8 -1440.84 -1309.37

Faces-Easy 435 -1002.11 -1298.59 -1490.21 -1314.09 -1320.87
Accordion 55 -974.93 -1114.05 -1507.79 -1300 -1240
Airplanes 800 -587.4 -920.69 -1000.3 -898.7 -914.81
Anchor 42 -1315.71 -1420.1 -1392.28 -1404.12 -1239.8

Ant 42 -770.2 -1535.82 -1980.3 -1264.1 -1271.94
Background-Google 467 -1105.49 -1316.8 -2020.88 -1291.16 -1220

Barrel 47 -774.23 -1330.4 -1289.4 -1259.7 -1300.86
Bass 54 -1051.7 -1293.11 -1712.84 -1321.49 -1212.37

Beaver 46 -1167.33 -1570.26 -1487.79 -1290.1 -1012.03
Binocular 33 -907.48 -1390.3 -1600.3 -1400.44 -1309.4

Bonsai 128 -887.42 -1551.09 -1979.26 -1302.37 -1336.28
Brain 98 -1270.1 -1208.41 -1498 -1307.12 -1286.2

Brontosaurus 43 -837.02 -1288.13 -1600.26 -1393.9 -1410.61
Buddha 85 -1291.15 -1374.12 -1230.8 -1172.28 -1219
Butterfly 91 -1020.67 -1397.19 -1535.91 -1230.11 -1207.44
Camera 50 -1201.8 -1470.25 -1488.85 -1019.51 -1200.49
Cannon 43 -956.47 -1303.1 -1404.71 -1307.8 -1288.1

Caltech-101 (All) 9144 -892.93 -1492.12 -1780.5 -1250.6 -1269.29
Olivetti 400 -189.81 -294.36 -302.55 -295.81 -293.9

Learning Time 2.5 hours 13.5 hours 7.5 hours 12 hours 2.25 hours

puted and normalised by the number of query variables
following Gens and Domingos [2013]. Table 4 shows the
results, for varied proportions of evidence and query vari-
ables, in the form of the average CLL for both SPN-SVD
and SPN-Gens.

Both SPN-SVD and SPN-GENS achieve average dataset
CLL values that are significantly higher than the results
obtained by SPN-Dennis, ID-SPN and the conditional
marginal likelihood (CMLL) values of WinMine. The lat-
ter three results are therefore not reported to save space.
Similarly, we only show queries of 5 object categories,
rather than 18, along with the average CLL of the whole
Caltech-101 and Olivetti datasets.

Across all proportions of object categories, there are 84
categories in which SPN-SVD significantly outperforms
SPN-Gens, and 18 where the converse occurs. As in-
ference is linear in the number of edges of an SPN, there
is not a major difference between average query time for
SPN-SVD and SPN-Gens.

Image completion. To confirm that the LL values are vi-
sually meaningful, an image completion task was applied
to a select few images from Caltech-101. Two images are
shown in Figure 5, taken from one of the face categories of
Caltech-101, referred to as Faces-easy. The left half of each
test image is inferred after building an SPN using training
images from the same faces category. In each case, the
right half of the test image is given as evidence and the left
half is regarded as query variables, and inference is per-
formed by the SPN. The top part of Figure 5 displays the
original images and the bottom shows the images inferred

by SPN-SVD.

Binary datasets. In Table 5, we report the test-set LL
values of SPN-SVD, SPN-Gens and ID-SPN (LL val-
ues of SPN-Dennis are significantly lower) on 20 binary
datasets used in Gens and Domingos [2013], Rooshenas
and Lowd [2014]. The number of instances in a binary
dataset ranges from 2k to 388k, and the number of vari-
ables ranges from 16 to 1556 [Gens and Domingos, 2013].
Out of the 20 datasets, SPN-SVD outperforms the alterna-
tives in 7 datasets, whereas ID-SPN outperforms the rest in
6 datasets. Significant results are identified using a paired
t-test with p = 0.05.

The results on discrete and binary datasets indicate that
SPN-SVD achieves, by far, state-of-the-art performance
for an SPN on discrete datasets. This is where interpreting
correlations makes a huge difference. SPN-SVD is also at
par with SPN state-of-the-art on binary datasets.

4.2 Discriminatively Trained SPNs

We present results obtained by applying discriminative
SPNs on two handwritten digit recognition datasets, USPS
[Hull, 1994] and MNIST [LeCun et al., 1998]. USPS con-
sists of 1100 images per digit for each of the 10 digits. Each
image is 16×16. For each digit, 800 images are assigned to
the training set and 300 to the test set. MNIST consists of
6000 training images per digit, each of size 28× 28, and a
test set of 1000 images per digit. Discriminative SPN struc-
tures were learned by DSPN-SVD in both cases. The num-
ber of extracted features d was chosen by cross-validation.

39

Table 4: Average CLL & Query Time. Results are normalised by number of query variables. Results are shown for 5
Caltech-101 categories, Caltech-101 & Olivetti. SVD refers to SPN-SVD, and Gens to SPN-Gens.

30% Q., 50% Ev. 10% Q., 30% Ev. 30% Q., 30% Ev. 50% Q., 30% Ev.
Dataset SVD Gens SVD Gens SVD Gens SVD Gens
Faces -0.301 -0.318 -0.81 -0.96 -0.221 -0.319 -0.4 -0.53

Faces-Easy -0.118 -0.16 -0.86 -0.908 -0.238 -0.318 -0.511 -0.543
Accordion -0.314 -0.312 -0.88 -0.95 -0.284 -0.313 -0.47 -0.523
Airplanes -0.211 -0.221 -0.058 -0.074 -0.202 -0.222 -0.309 -0.371
Anchor -0.301 -0.419 -0.761 -0.944 -0.256 -0.331 -0.501 -0.569

Caltech-101 (All) -0.117 -0.24 -0.131 -0.204 -0.204 -0.34 -0.312 0.423
Olivetti -0.27 -0.289 -0.205 -0.234 -0.439 -0.472 -0.466 0.513

Avg. query time 31 ms 30 ms 29 ms 28 ms 30 ms 32 ms 26 ms 27 ms

Table 5: Test-set LL for 20 Binary Datasets. Bold red: an
algorithm significantly outperforms the rest.

Dataset SPN-SVD SPN-Gens ID-SPN
NLTCS -6 -6.11 -6.02
MSNBC -6.1 -6.11 -6.04

KDDCup 2k -2.2 -2.18 -2.13
Plants -11.99 -12.98 -12.54
Audio -41.02 -40.5 -39.79
Jester -41.11 -75.99 -52.86

Netflix -58.02 -57.33 -56.36
Accidents -24.87 -30.04 -26.98

Retail -10.6 -11.04 -10.85
Pumsb-star -23.7 -24.78 -22.4

DNA -80.07 -82.52 -81.21
Kosarak -10.57 -10.99 -10.6
MSWeb -9.22 -10.25 -9.73

Book -30.18 -35.89 -34.14
EachMovie -52.47 -52.49 -51.51

WebKB -153.5 -158.2 -151.84
Reuters-52 -82.1 -85.07 -83.35

20 Newsgrp. -152.39 -155.93 -151.47
BBC - 251 -250.69 -248.93
Ad -17.82 -19.73 -19

Table 6 shows the results for DSPN-SVD, SPN-SVD,
SPN-Gens and ID-SPN. Apart from boosting algorithms,
DSPN-SVD achieves higher accuracy than other algo-
rithms on USPS, including C4.5 as reported in Demiriz
et al. [2002]. As per MNIST, DSPN-SVD also achieves the
highest accuracy for an SPN, and 2.2% less than the cur-
rent overall state-of-the-art accuracy on MNIST (reported
as 99.79% by Wan et al. [2013] and 99.77% by Ciresan
et al. [2012]). The flexibility of extracting features and
building a discriminative SPN tailored for the respective
dataset makes DSPN-SVD superior to SPN-SVD, as well
as SPN-Gens and ID-SPN on both USPS and MNIST.

Table 6: Classification of Handwritten Digits.

Dataset DSPN-SVD SPN-SVD SPN-Gens ID-SPN
USPS 92.4% 90.2% 79% 77.1%

MNIST 97.6% 85% 81.8% 83.4%

Figure 5: Face Image Completions. The top row shows the
original images; the bottom row shows images with the left
half inferred using SPN-SVD.

5 CONCLUSION

State-of-the-art results when performing learning and in-
ference on image datasets and digit classification indicate
that the proposed SPN structure learning algorithms are ef-
fective.

Some important advantages of SPN-SVD over previously
developed approaches are that it: (i) does not depend on
local data splittings and instead globally splits the data
based on rank-1 submatrix extraction; (ii) is based on cor-
relations, which are easier to estimate than independences;
and (iii) achieves considerable speedups by detecting large
approximate rank-1 submatrices and avoiding redundant
computations.

Interesting directions for future research include extending
the discriminative setting to regression or structured-output
learning by plugging more sophisticated kernels into the
HSIC step, and enabling the SPN to model features opti-
mised for different labels.

References
F R Bach. Consistency of the Group Lasso and Multiple

Kernel Learning. JMLR, 2008.

E. Barshan, A. Ghodsi, Z. Azimifar, and M. Jahromi. Su-

40

pervised principal component analysis: visualization,
classification and regression on subspaces and submani-
folds. In Pattern Recognition, 44:1357–1371, 2011.

M. Biggs, A. Ghodsi, and S. Vavasis. Nonnegative matrix
factorization via rank-one downdate. In International
Conference on Machine Learning (ICML), 25, 2008a.

M. Biggs, A. Ghodsi, and S. Vavasis. Nonnega-
tive matrix factorization via rank-one downdate. In
http://www.arxiv.org/abs/0805.0120, 2008b.

D. M. Chickering. The winmine toolkit. Microsoft, Red-
mond, WA MSR-TR-2002-103, 2002.

D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column
deep neural networks for image classification. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3642–3649, 2012.

A. Demiriz, K. P. Bennett, and J. Shawe-Taylor. Linear pro-
gramming boosting via column generation. In Machine
Learning, 46:225–254, 2002.

A. Dennis and D. Ventura. Learning the architecture of
sum-product networks using clustering on variables. In
NIPS, 25, 2012.

L. Fei-Fei, R. Fergus, and P. Perona. Learning generative
visual models from few training examples. In proceed-
ings of CVPR Workshop on Generative Model-Based Vi-
sion, 2004.

K Fukumizu, F R Bach, and M I Jordan. Dimensionality re-
duction for supervised learning with reproducing kernel
Hilbert spaces. JMLR, 5:73–99, 2004.

R. Gens and P. Domingos. Discriminative learning of sum-
product networks. In NIPS, 25, 2012.

R. Gens and P. Domingos. Learning the structure of sum-
product networks. In International Conference on Ma-
chine Learning (ICML), 30, 2013.

A. Gretton, O. Bousquet, A. Smola, and B. Scholkopf. Sta-
tistical dependence with Hilbert-Schmidt norms. In Al-
gorithmic Learning Theory (ALT), 3734:63–77, 2005.

J. J. Hull. A database for handwritten text recognition re-
search. In IEEE Transactions on Pattern Analysis and
Machine Intelligence, 16(5):550–554, 1994.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. In Pro-
ceedings of the IEEE, 86(11):2278–2324, 1998.

S.-W. Lee, H. Min-Oh, and Z. Byoung-Tak. Online incre-
mental structure learning of sum–product networks. In
Neural Information Processing, 2013.

A. Nath and P. Domingos. Learning tractable statistical
relational models. In Workshop on Learning Tractable
Probabilistic Models (LTPM), 2014.

R. Peharz, B. C. Geiger, and F. Pernkopf. Greedy partwise
learning of sum-product networks. In Machine Learning

and Knowledge Discovery in Databases, 8189:612–627,
2013.

R. Peharz, R. Gens, and P. Domingos. Learning selec-
tive sum-product networks. In Workshop on Learning
Tractable Probabilistic Models (LTPM), 2014.

H. Poon and P. Domingos. Sum-product networks: A new
deep architecture. In UAI, 27, 2011.

A. Rooshenas and D. Lowd. Learning sum-product net-
works with direct and indirect variable interactions. In
International Conference on Machine Learning (ICML),
31, 2014.

R. Salakhutdinov and G. Hinton. Deep Boltzmann ma-
chines. In AISTATS, pages 448–455, 2009.

Le Song, Alex J. Smola, Arthur Gretton, Karsten Borg-
wardt, and Justin Bedo. Supervised Feature Selection
via Dependence Estimation. In ICML, 2007.

L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fer-
gus. Regularization of neural networks using DropCon-
nect. In International Conference on Machine Learning
(ICML), 30:1058–1066, 2013.

41

Robust reconstruction of causal graphical models based on
conditional 2-point and 3-point information

Séverine Affeldt, Hervé Isambert
Institut Curie, Research Center, CNRS, UMR168, 26 rue d’Ulm, 75005, Paris France;

and Université Pierre et Marie Curie, 4 Place Jussieu, 75005, Paris, France
herve.isambert@curie.fr

Abstract

We report a novel network reconstruction
method, which combines constraint-based and
Bayesian frameworks to reliably reconstruct
graphical models despite inherent sampling noise
in finite observational datasets. The approach
is based on an information theory result trac-
ing back the existence of colliders in graphi-
cal models to negative conditional 3-point in-
formation between observed variables. In turn,
this provides a confident assessment of structural
independencies in causal graphs, based on the
ranking of their most likely contributing nodes
with (significantly) positive conditional 3-point
information. Starting from a complete undi-
rected graph, dispensible edges are progressively
pruned by iteratively “taking off” the most likely
positive conditional 3-point information from the
2-point (mutual) information between each pair
of nodes. The resulting network skeleton is
then partially directed by orienting and propa-
gating edge directions, based on the sign and
magnitude of the conditional 3-point informa-
tion of unshielded triples. This “3off2” net-
work reconstruction approach is shown to out-
perform constraint-based, search-and-score and
earlier hybrid methods on a range of benchmark
networks.

1 INTRODUCTION

The prospect of learning the direction of causal de-
pendencies from mere correlations in observational data
has long defied practical implementations (Reichenbach,
1956). The fact that causal relationships can, to some ex-
tent, be inferred from nontemporal statistical data is now
known to hinge on the unique statistical imprint of colliders
in causal graphical models, provided that certain assump-
tions are made about the underlying process of data gen-
eration, such as its faithfulness to a tree structure (Rebane

and Pearl, 1988) or a directed acyclic graph model (Spirtes,
Glymour, and Scheines, 2000; Pearl, 2009).

These early findings led to the developments of two types
of network reconstruction approaches; on the one hand,
search and score methods (Cooper and Herskovits, 1992;
Heckerman, Geiger, and Chickering, 1995; Chickering,
2002) need heuristic strategies, such as hill-climbing al-
gorithms, to sample network space, on the other hand,
constraint-based methods, such as the PC (Spirtes and Gly-
mour, 1991) and IC (Pearl and Verma, 1991) algorithms,
rely on the identification of structural independencies, that
correspond to edges to be removed from the underlying net-
work (Spirtes, Glymour, and Scheines, 2000; Pearl, 2009).
Yet, early errors in removing edges from the complete
graph often lead to the accumulation of compensatory er-
rors later on in the pruning process. Hence, despite re-
cent, more stable implementations intending to overcome
order-dependency in the pruning process (Colombo and
Maathuis, 2014), constraint-based methods are not robust
to sampling noise in finite datasets.

In this paper, we present a more robust constrained-based
method and corresponding 3off2 algorithm. It is directly
inspired by the PC anc IC algorithms but relies on a quanti-
tative information theoretic framework to reliably uncover
conditional independencies in finite datasets and subse-
quently orient and propagate edge directions between con-
nected variables.

2 RESULTS

2.1 UNCOVERING CAUSALITY FROM A
STABLE / FAITHFUL DISTRIBUTION

Consider a network G = (V,E) and a stable (or faithful)
distribution P (X) over V , implying that each structural in-
dependency (i.e. missing edge XY in G) corresponds to a
vanishing conditional 2-point (mutual) information and re-
ciprocally as,

(X ⊥⊥ Y |{Ui})G ⇐⇒ (X ⊥⊥ Y |{Ui})P (1)
⇐⇒ I(X;Y |{Ui}) = 0 (2)

42

Eq. 1 assumes, in particular, that P (X) is a theoretical dis-
tribution, defined by a formal expression of its variables
X = {X,Y, U1, U2, . . .}. Note, however, that no such
expression is known a priori, in general, and P (X) must
typically be estimated from the available data. In princi-
ple, an infinite amount of data would be necessary to infer
an ‘exact’ stable distribution P (X) consistent with Eq. 1.
In the following, we will first assume that such an infinite
amount of data is available and distributed as a stable P (X)
to establish how causality can be inferred statistically from
conditional 2-point and 3-point information. We will then
consider the more realistic situation for which P (X) is not
known exactly and must be estimated from a finite amount
of data.

Let us first recall the generic decomposition of a condi-
tional 2-point (or mutual) information I(X;Y |{Ui}) by the
introduction of a third node Z and the conditional 3-point
information I(X;Y ;Z|{Ui}),
I(X;Y |{Ui})=I(X;Y;Z|{Ui}) + I(X;Y |{Ui}, Z) (3)

This relation can be taken as the definition of conditional
3-point information I(X;Y ;Z|{Ui}) which is in fact sym-
metric in X , Y and Z,

I(X;Y ;Z|{Ui}) = I(X;Y |{Ui})− I(X;Y |{Ui}, Z)
= I(X;Z|{Ui})− I(X;Z|{Ui}, Y)

= I(Y ;Z|{Ui})− I(Y ;Z|{Ui}, X)

Note that Eq. 3 is always valid, regardless of any assump-
tion on the underlying graphical model and of the amount
of data available to estimate conditional 2-point and 3-point
information terms. Eq. 3 will be used to prove the follow-
ing lemmas and propositions, which trace back the origin
of necessary causal relationships in a graphical model to
the existence of a negative conditional 3-point information
between three variables {X,Y, Z}, I(X;Y ;Z|{Ui}) < 0,
where {Ui} accounts for a structural independency be-
tween two of them, e.g. I(X;Y |{Ui})=0 (see Theorem 4).

Lemma 1. Given a stable distribution P (X) on V ,
∀X,Y ∈ V not adjacent in G, ∃{Ui} ⊆ V\{X,Y }
s.t. I(X;Y |{Ui}) = 0 and ∀Z 6= X,Y, {Ui},
I(X;Y ;Z|{Ui}) 6 0.

Proof. If X,Y ∈ V are not adjacent in G, this corre-
sponds to a structural independency, i.e. ∃{Ui} ⊆ V\{X,Y }
s.t. I(X;Y |{Ui}) = 0. Then ∀Z 6= X,Y, {Ui} Eq. 3 im-
plies I(X;Y ;Z|{Ui})=−I(X;Y |{Ui}, Z)60, as condi-
tional mutual information is always positive. �

Corollary 2 (3-point contribution). ∀X,Y, Z ∈ V and
∀{Ui} ⊆ V\{X,Y,Z} s.t. I(X;Y ;Z|{Ui}) > 0, then
I(X;Y |{Ui}) > 0 (as well as I(X;Z|{Ui}) > 0 and
I(Y ;Z|{Ui}) > 0 by symmetry of I(X;Y ;Z|{Ui})).
Corollary 2, which is a direct consequence of Eq. 3
and the positivity of mutual information, will be the ba-

sis of the 3off2 causal network reconstruction algorithm,
which iteratively “takes off” 3-point information from 2-
point information, as I(X;Y |{Ui})− I(X;Y ;Z|{Ui}) =
I(X;Y |{Ui}, Z), and update {Ui} ← {Ui} + Z as long
as there remains some Z ∈ V with (significantly) positive
conditional 3-point information I(X;Y ;Z|{Ui}) > 0.

Lemma 3 (vanishing conditional 2-point and 3-point
information in undirected networks). If G is an undi-
rected (Markov) network, ∀X,Y ∈ V and ∀{Ui} ⊆
V\{X,Y } s.t. I(X;Y |{Ui}) = 0, then ∀Z 6= X,Y, {Ui},
I(X;Y ;Z|{Ui})=0.

Proof. If G is a Markov network, ∀X,Y ∈ V and ∀{Ui} ⊆
V\{X,Y } s.t. I(X;Y |{Ui}) = 0, then ∀Z 6= X,Y, {Ui},
I(X;Y |{Ui}, Z) = 0 as conditioning observation can-
not induce correlations in Markov networks (Koller and
Friedman, 2009). This implies that I(X;Y ;Z|{Ui}) = 0
through Eq. 3. �

Note, however, that the converse of Lemma 3 is not
true. Namely, (partially) directed networks can also have
vanishing conditional 3-point information associated to
all their structural independencies. In particular, tree-
like bayesian networks without colliders (i.e. without v-
structures, X → Z ← Y) present only vanishing 3-
point information associated to their structural indepen-
dencies, i.e. I(X;Y ;Z|{Ui}) = 0, ∀X,Y, Z, {Ui} ∈ V
s.t. I(X;Y |{Ui}) = 0. However, such a directed network
must be Markov equivalent to an undirected network corre-
sponding to the same structural independencies but lacking
any trace of causal relationships (i.e. no directed edges).
The probability distributions faithful to such directed net-
works do not contain evidence of obligate causality; i.e. no
directed edges can be unambiguously oriented.

The following Theorem 4 establishes the existence of neg-
ative conditional 3-point information as statistical evidence
of obligate causality in graphical models. For the purpose
of generality in this section, we do not exclude the possi-
bility that unobserved ‘latent’ variables might mediate the
causal relationships among observed variables. However,
this requires dissociating the labelling of the two endpoints
of each edges. Let us first introduce three different end-
point marks associated to such edges in mixed graphs: they
are the tail (−), the head (>) and the unspecified (◦) end-
point marks. In addition, we will use the asterisk symbol
(∗) as a wild card denoting any of the three marks.

Theorem 4 (negative conditional 3-point information
as statistical evidence of causality). If ∃X,Y, Z ∈
V and {Ui} ⊆ V\{X,Y,Z} s.t. I(X;Y |{Ui}) = 0
and I(X;Y ;Z|{Ui}) < 0 then, G is (partially) directed,
i.e. some variables in G are causally linked, either directly
or indirectly through other variables, including possibly
unknown, ‘latent’ variables unobserved in G.

43

Proof. Theorem 4 is the contrapositive of Lemma 3, with
the additional use of Lemma 1. �

Proposition 5 (origin of causality at unshielded triples
with negative conditional 3-point information).
For all unshielded triple, X ∗−◦ Z ◦−∗ Y , ∃{Ui} ⊆
V\{X,Y } s.t. I(X;Y |{Ui}) = 0, if Z /∈ {Ui} then
I(X;Y ;Z|{Ui}) < 0 and the unshielded triple should be
oriented as X ∗→ Z ←∗ Y .

Proof. If I(X;Y |{Ui}) = 0 with Z /∈{Ui}, the unshiel-
ded triple has to be a collider and I(X;Y |{Ui}, Z)>0, by
faithfulness, hence, I(X;Y ;Z|{Ui})<0 by Eq. 3. �

Hence, the origin of causality manifests itself in the form of
colliders or v-structures in graphical models which reveal
‘genuine’ causations (X→ Z or Y→ Z) or, alternatively,
‘possible’ causations (X◦→ Z or Y ◦→ Z), provided that
the corresponding correlations are not due to unobserved
‘latent’ variables L or L′ as, X L99 L 99K Z or Y L99
L′ 99K Z.

Following the rationale of constraint-based approaches,
it is then possible to ‘propagate’ further the orientations
downstream of colliders, through positive (conditional) 3-
point information, if one assumes that the underlying dis-
tribution P (X) is faithful to an ancestral graph G on V .
An ancestral graph is a mixed graph, that is, with three
types of edges, undirected (−), directed (← or→) or bidi-
rectional (↔), but with i.) no directed cycle, ii.) no al-
most directed cycle (including one bidirectional edge) and
iii.) no undirected edge with incoming arrowhead (such
as X ∗→ Z−Y). In particular, Directed Acyclic Graphs
(DAG) are subclasses of ancestral graphs (i.e. without undi-
rected nor bidirectional edges).

Proposition 6 (‘propagation’ of causality at unshielded
triples with positive conditional 3-pt information).
Given a distribution P (X) faithful to an ancestral
graph G on V , for all unshielded triple with already
one converging orientation, X ∗→ Z ◦−∗ Y , ∃{Ui} ⊆
V\{X,Y } s.t. I(X;Y |{Ui}) = 0, if Z ∈ {Ui} then
I(X;Y ;Z|{Ui}\Z) > 0 and the first orientation should
be ‘propagated’ to the second edge as X ∗→ Z → Y .

Proof. If I(X;Y |{Ui}) = 0 with Z ∈ {Ui}, the un-
shielded triple cannot be a collider and, since G is assumed
to be an ancestral graph, the edge Z−Y cannot be an undi-
rected edge either. Hence, it has to be a directed edge,
Z→ Y and I(X;Y ;Z|{Ui}\Z) > 0 by faithfulness and
Eq. 3. �

Note that the propagation rule of Proposition 6 can be
applied iteratively to successive unshielded triples corre-
sponding to positive conditional 3-point information. Yet,
all arrowhead orientations can be ultimately traced back to
a negative conditional 3-point information, Theorem 4 and

Proposition 5.

2.2 ROBUST RECONSTRUCTION OF CAUSAL
GRAPHS FROM FINITE DATASETS

We now turn to the more practically relevant situation of
finite datasets consisting of N independent data points.
The associated sampling noise will instrinsically limit the
accuracy of causal network reconstruction. In particu-
lar, conditional independencies cannot be exactly achieved
(I(X;Y |{Ui}) = 0) but can be reliably established using
statistical criteria that depend on the number of data points
N .

Given N independent datapoints from the available data
D, let us introduce the maximum likelihood, LD|G , that
they might have been generated by the graphical model G
(Sanov, 1957),

LD|G =
e−NH(G,D)

Z(G,D) =
eN

∑
{xi} p({xi}) log(q({xi}))

Z(G,D) (4)

where H(G,D) = −∑{xi} p({xi}) log(q({xi})) is the
cross entropy between the “true” probability distribution
p({xi}) of the data D and the theoretical probability dis-
tribution q({xi}) of the model G and Z(G,D) is a data-
and model-dependent factor ensuring proper normalization
condition. The structural constraints of the model G can
be included a priori in the factorization form of the the-
oretical probability distribution, q({xi}). In particular, if
we assume a Bayesian network as underlying graphical
model, q({xi}) factorizes as q({xi}) =

∏
i p(xi|{paxi}),

where {paxi} denote the values of the parents of node Xi,
{PaXi}, and leads to the following maximum likelihood
expression,

LD|G =
e−N

∑
iH(Xi|{PaXi})

Z(G,D) (5)

The model G can then be compared to the alternative model
G\X→Y with one additional missing edge X → Y using
the maximum likelihood ratio,

LD|G\X→Y
LD|G

= e−NI(X;Y |{PaY }\X) Z(G,D)
Z(G\X→Y ,D)

(6)

where I(X;Y |{PaY }\X) = H(Y |{PaY }\X) −
H(Y |{PaY }). However, Eq. 6 cannot be used as
such to learn the underlying graphical model, as it assumes
that the order between the nodes and their parents is
already known (see however (de Campos, 2006)). Yet, fol-
lowing the rationale of constraint-based approaches, Eq. 6
can be reformulated by replacing the parent nodes with an
unknown separation set {Ui} to be learnt simultaneously
with the missing edge candidate XY ,

LG\XY |{Ui}
LG

= e−NI(X;Y |{Ui})+kX;Y |{Ui} (7)

kX;Y |{Ui} = log
(
Z(G,D)/Z(G\XY |{Ui},D)

)

44

where the factor kX;Y |{Ui} > 0 tends to limit the complex-
ity of the models by favoring fewer edges. Namely, the con-
dition, I(X;Y |{Ui}) < kX;Y |{Ui}/N , implies that sim-
pler models compatible with the structural independency,
X ⊥⊥ Y |{Ui}, are more likely than model G, given the
finite available dataset. This replaces the ‘perfect’ condi-
tional independency condition, I(X;Y |{Ui}) = 0, valid
in the limit of an infinite dataset, N → ∞. A common
complexity criteria in model selection is the Bayesian In-
formation Criteria (BIC) or Minimal Description Length
(MDL) criteria (Rissanen, 1978; Hansen and Yu, 2001),

k
MDL

X;Y |{Ui} =
1

2
(rx − 1)(ry − 1)

∏

i

rui logN (8)

where rx, ry and rui are the number of levels of the corre-
sponding variables. The MDL complexity, Eq. 8, is simply
related to the normalisation constant reached in the asymp-
totic limit of a large dataset N → ∞ (Laplace approxi-
mation). However, this limit distribution is only reached
for very large datasets in practice. Alternatively, the nor-
malisation of the maximum likelihood can also be done
over all possible datasets including the same number of
data points to yield a (universal) Normalized Maximum
Likelihood (NML) criteria (Shtarkov, 1987; Rissanen and
Tabus, 2005) and its decomposable (Kontkanen and Myl-
lymäki, 2007; Roos et al., 2008) and XY -symmetric ver-
sion, k

NML

X;Y |{Ui}, defined in the Supplementary Methods.

Then, instead of exploring the combinatorics of sepset
composition {Ui} for each missing edge candidate XY as
in traditional constraint-based approaches, we propose that
Eq. 7 can be used to iteratively extend a likely sepset us-
ing the maximum likelihood ratios between two successive
sepset candidates, i.e. between the already ascertained {Ui}
and the possible extended {Ui}+ Z, as,

LD|G\XY |{Ui},Z
LD|G\XY |{Ui}

= eNI(X;Y ;Z|{Ui})+kX;Y ;Z|{Ui} (9)

using Eq. 3 for I(X;Y ;Z|{Ui}) and introducing a similar
3-point complexity conditioned on {Ui} as,

kX;Y ;Z|{Ui} = kX;Y |{Ui},Z − kX;Y |{Ui} (10)

where kX;Y ;Z|{Ui} > 0, unlike 3-point information,
I(X;Y ;Z|{Ui}) which can be positive or negative.

Introducing also the shifted 2-point and 3-point informa-
tion for finite datasets as,

I ′(X;Y |{Ui}) = I(X;Y |{Ui})−
kX;Y |{Ui}

N

I ′(X;Y ;Z|{Ui}) = I(X;Y ;Z|{Ui}) +
kX;Y ;Z|{Ui}

N

leads to maximum likelihood ratios equivalent to Eq. 7 and

Eq. 9,

LD|G\XY |{Ui}
LD|G

= e−NI
′(X;Y |{Ui}) (11)

LD|G\XY |{Ui},Z
LD|G\XY |{Ui}

= eNI
′(X;Y ;Z|{Ui}) (12)

As will become apparent in the following discussion, learn-
ing, iteratively, the most likely edge to be removed XY
and its corresponding separation set {Ui} will imply to si-
multaneously minimize 2-point information (Eq. 11) while
maximizing 3-point information (Eq. 12).

We start the discussion with 3-point information, Eq. 12.
The sign and magnitude of shifted conditional 3-point in-
formation I ′(X;Y ;Z|{Ui}) determine the probability that
Z should be included in or excluded from the sepset candi-
date {Ui},
• If I ′(X;Y ;Z|{Ui}) > 0, Z is more likely to be included
in {Ui} with probability,

Pnv(X;Y ;Z|{Ui}) =
LD|G\XY |{Ui},Z

LD|G\XY |{Ui} + LD|G\XY |{Ui},Z
=

1

1 + e−NI′(X;Y ;Z|{Ui}) (13)

• If I ′(X;Y ;Z|{Ui}) < 0, Z is more likely to be excluded
from {Ui}, suggesting obligatory causal relationships in
the form of a v-structure or collider between X,Y, Z with
probability,

Pv(X;Y ;Z|{Ui}) = 1− Pnv(X;Y ;Z|{Ui})

=
1

1 + eNI′(X;Y ;Z|{Ui}) (14)

But, in the case I ′(X;Y ;Z|{Ui}) > 0, Eq. 12
can also be interpreted as quantifying the likeli-
hood increase that the edge XY should be removed
from the model by extending the candidate sepset
from {Ui} to {Ui} + Z, i.e. LD|G\XY |{Ui},Z =

LD|G\XY |{Ui} × exp(NI ′(X;Y ;Z|{Ui})), with
exp(NI ′(X;Y ;Z|{Ui})) > 1. Yet, as the 3-point
information, I ′(X;Y ;Z|{Ui}), is actually symmetric
with respect to the variables, X , Y and Z, the factor
exp(NI ′(X;Y ;Z|{Ui})) > 1 provides in fact the same
likelihood increase for the removal of the three edges XY ,
XZ and ZY , conditioned on the same initial set of nodes
{Ui}, namely,

LD|G\XY |{Ui},Z
LD|G\XY |{Ui}

=
LD|G\XZ|{Ui},y
LD|G\XZ|{Ui}

=
LD|G\ZY |{Ui},x
LD|G\ZY |{Ui}

= eNI
′(X;Y ;Z|{Ui})

45

However, despite this symmetry of 3-point information,
I ′(X;Y ;Z|{Ui}), the likelihoods that the edges XY , XZ
and ZY should be removed are not the same, as they
depend on different 2-point information, I ′(X;Y |{Ui}),
I ′(X;Z|{Ui}) and I ′(Z;Y |{Ui}), Eq. 11. In particular,
the likelihood ratio between the removals of the alternative
edges XY and XZ is given by,

LD|G\XY |{Ui},Z
LD|G\XZ|{Ui},Y

=
LD|G\XY |{Ui}
LD|G\XZ|{Ui}

=
e−NI

′(X;Y |{Ui})

e−NI′(X;Z|{Ui})

(15)

and similarly between edges XY and ZY .

Hence, for XY to be the most likely edge to be removed
conditioned on the sepset {Ui} + Z, not only Z should
contribute through I ′(X;Y ;Z|{Ui}) > 0 with probabil-
ity Pnv(X;Y ;Z|{Ui}) (Eq. 13), but XY must also cor-
respond to the ‘weakest’ edge of XY , XZ and ZY con-
ditioned on {Ui}, as given by the lowest conditioned 2-
point information, Eq. 15. Note that removing the edge
XY with the lowest conditional 2-point information is con-
sistent, as expected, with the Data Processing Inequality,
I(X;Y |{Ui}) 6 min(I(X;Z|{Ui}), I(Z;Y |{Ui})), in
the limit of large datasets. However, quite frequently, XZ
or ZY might also have low conditional 2-point informa-
tion, so that the edge removal associated with the symmet-
ric contribution I(X;Y ;Z|{Ui}) will only be consistent
with the Data Processing Inequality (DPI) with probability,

Pdpi(XY ;Z|{Ui}) =

=
LD|G\XY |{Ui}

LD|G\XY |{Ui} + LD|G\XZ|{Ui} + LD|G\ZY |{Ui}
=

1

1 + e−NI′(X;Z|{Ui})

e−NI′(X;Y |{Ui})
+ e−NI′(Z;Y |{Ui})

e−NI′(X;Y |{Ui})

(16)

In practice, taking into account this DPI-consistency prob-
ability Pdpi(XY ;Z|{Ui}), as detailed below, significantly
improves the results obtained by relying solely on the ‘non-
v-structure’ probability Pnv(X;Y ;Z|{Ui}). Conversely,
the DPI-consistency probability Pdpi(XY ;Z|{Ui}) is
not sufficient on its own to uncover causal relation-
ships between variables, which require to compute 3-
point information I(X;Y ;Z|{Ui}) and the probability
Pnv(X;Y ;Z|{Ui}) (see Proposition 7 and Proposition 8,
below).

To optimize the likelihood that the edge XY can be ac-
counted for by the additional contribution of Z conditioned
on previously selected {Ui}, we propose to combine the
maximum of 3-point information (Eq. 13) and the mini-
mum of 2-point information (Eq. 16) by defining the score
S lb(Z;XY |{Ui}) as the lower bound of Pnv(X;Y ;Z|{Ui})
and Pdpi(XY ;Z|{Ui}), since both conditions need to be
fulfilled to warrant that edgeXY is likely to be absent from

the model G,

S lb(Z;XY |{Ui}) =
= min

[
Pnv(X;Y ;Z|{Ui}), Pdpi(XY ;Z|{Ui})

]

Hence, the pair of nodes XY with the most likely con-
tribution from a third node Z and likely to be absent
from the model can be ordered according to their rank
R(XY ;Z|{Ui}) defined as,

R(XY ;Z|{Ui}) = max
Z

(
S lb(Z;XY |{Ui})

)
(17)

Then, Z can be iteratively added to the set of contributing
nodes (i.e. {Ui} ← {Ui} + Z) of the top edge XY =
argmaxXYR(XY ;Z|{Ui}) to progressively recover the
most significant indirect contributions to all pairwise mu-
tual information in a causal graph.

Implementing this local optimization scheme, the 3off2 al-
gorithm eventually learns the network skeleton by collect-
ing the nodes of the separation sets one-by-one, instead
of exploring the full combinatorics of sepset composition
without any likelihood guidance. Indeed, the 3off2 scheme
amounts to identify {Ui} by “taking off” iteratively the
“most likely” conditional 3-point information from each 2-
point information as,

I(X;Y |{Ui}n) = I(X;Y)− I(X;Y ;U1)

− I(X;Y ;U2|U1)− · · ·
− I(X;Y ;Un|{Ui}n−1)

or equivalently between the shifted 2-point and 3-point in-
formation terms,

I ′(X;Y |{Ui}n) = I ′(X;Y)− I ′(X;Y ;U1)

− I ′(X;Y ;U2|U1)− · · ·
− I ′(X;Y ;Un|{Ui}n−1)

This leads to the following Algorithm 1 for the reconstruc-
tion of the graph skeleton using the 3off2 scheme. Note,
in particular, that the 3off2 scheme to reconstruct graph
skeleton is solely based on identifying structural indepen-
dencies, which can also be applied to graphical models for
undirected Markov networks.

Then, given the skeleton obtained from Algorithm 1,
Eqs. 13 and 14 lead to the following Proposition 7 and
Proposition 8 for the orientation and propagation rules of
unshielded triples, which are equivalent to Proposition 5
and Proposition 6 but for underlying DAG models (assum-
ing no latent variables) and for finite datasets with the cor-
responding probabilities for the initiation/propagation of
orientations.

46

Algorithm 1: 3off2 Skeleton Reconstruction

In: observational data of finite size N
Out: skeleton of causal graph G

Initiation
Start with complete undirected graph
forall edges XY do

if I ′(X;Y)<0 then
XY edge is non-essential and removed
separation set of XY : SepXY = ∅

else
find the most contributing node Z neighbor of X
or Y and compute 3off2 rank, R(XY ;Z|∅)

end
end

Iteration
while ∃ XY edge with R(XY ;Z|{Ui}) > 1/2 do

for edge XY with highest rank R(XY ;Z|{Ui}) do

expand contributing set {Ui} ← {Ui}+ Z

if I ′(X;Y |{Ui})<0 then
XY edge is non-essential and removed
separation set of XY : SepXY = {Ui}

else
find next most contributing node Z neighbor
of X or Y and compute new 3off2 rank:
R(XY ;Z|{Ui})

end

sort the 3off2 rank list R(XY ;Z|{Ui})
end

end

Proposition 7 (Significantly negative conditional 3-point
information as robust statistical evidence of causality in
finite datasets).
Assuming that the underlying graphical model is a
DAG G on V , ∀X,Y, Z ∈ V and ∀{Ui} ⊆
V\{X,Y,Z} s.t. I ′(X;Y |{Ui}) < 0 (i.e. no XY edge)
and I ′(X;Y ;Z|{Ui}) < 0 then,

i. ifX,Y, Z form an unshielded triple, X ◦−◦ Z ◦−◦ Y ,
then it should be oriented as X → Z ← Y , with
probabilities,

P ◦X→Z = P ◦Y→Z =
1 + eNI

′(X;Y ;Z|{Ui})

1 + 3eNI′(X;Y ;Z|{Ui})

ii. similarly, if X,Y, Z form an unshielded triple,

with one already known converging arrow,
X → Z ◦−◦ Y , with probability PX→Z > P ◦X→Z ,
then the second edge should be oriented to form a
v-structure, X → Z ← Y , with probability,

PY→Z = PX→Z

(
1

1 + eNI′(X;Y ;Z|{Ui}) −
1

2

)
+

1

2

Proof. The implications (i.) and (ii.) rely on Eq. 14 to
estimate the probability that the two edges form a collider.
We start proving (ii.) using the probability decomposition
formula:

PY→Z = PX→Z
PX→Z←Y

PX→Z←Y + PX→Z→Y

+ (1− PX→Z)
PX←Z←Y

PX←Z←Y + PX←Z→Y

= PX→Z

(
1

1 + eNI′(X;Y ;Z|{Ui}) −
1

2

)
+

1

2

which also leads to (i.) if one assumes PX→Z = PY→Z by
symmetry in absence of prior information on these orienta-
tions. �

Following the rationale of constraint-based approaches,
it is then possible to ‘propagate’ further the orientations
downstream of colliders, using Eq. 13 for positive (condi-
tional) 3-point information. For simplicity and consistency,
we only implement the propagation of orientation based on
likelihood ratios, which can be quantified for finite datasets
as proposed in the following Proposition 8. In particular,
we do not extend the propagation rules (Meek, 1995) to in-
force acyclic constraints that are necessary to have a com-
plete reconstruction of the Markov equivalent class of the
underlying DAG model.

Proposition 8 (robust ‘propagation’ of causality at un-
shielded triples with significantly positive conditional 3-
pt information). Assuming that the underlying graphical
model is a DAG G on V , ∀X,Y, Z ∈ V and ∀{Ui} ⊆
V\{X,Y,Z} s.t. I ′(X;Y |{Ui}, Z) < 0 (i.e. no XY edge)
and I ′(X;Y ;Z|{Ui}) > 0, then if X,Y, Z form an un-
shielded triple with one already known converging orienta-
tion, X→ Z ◦−∗ Y , with probability PX→Z > 1/2, this
orientation should be ‘propagated’ to the second edge as
X→ Z→ Y , with probability,

PZ→Y = PX→Z

(
1

1 + e−NI′(X;Y ;Z|{Ui}) −
1

2

)
+

1

2

Proof. This results is shown using the probability decom-

47

position formula,

PZ→Y = PX→Z
PX→Z→Y

PX→Z←Y + PX→Z→Y

+ (1− PX→Z)
PX←Z→Y

PX←Z←Y + PX←Z→Y

= PX→Z

(
1

1 + e−NI′(X;Y ;Z|{Ui}) −
1

2

)
+

1

2

�

Proposition 7 and Proposition 8 lead to the following Algo-
rithm 2 for the orientation of unshielded triples of the graph
skeleton obtained from Algorithm 1.

Algorithm 2: 3off2 Orientation / Propagation Step

In: Graph skeleton from Algorithm 1 and corresponding
conditional 3-point information I ′(X;Y ;Z|{Ui}).

Out: Partially oriented causal graph G with edge
orientation probabilities.

3off2 Orientation / Propagation Step

sort list of unshielded triples, Lc = {〈X,Z, Y 〉X 6 Y }, in
decreasing order of their orientation/propagation
probability initialized at 1/2 and computed from:

- (i.) Proposition 7, if I ′(X;Y ;Z|{Ui})<0, or
- (ii.) Proposition 8, if I ′(X;Y ;Z|{Ui})>0

repeat

Take 〈X,Z, Y 〉X 6 Y ∈ Lc with highest orientation /
propagation probability > 1/2.

if I ′(X;Y ;Z|{Ui}) < 0 then
Orient/propagate edge direction(s) to form a
v-structure X→Z←Y with probabilities PX→Z
and PY→Z given by Proposition 7.

else
Propagate second edge direction to form a
non-v-structure X→Z→Y assigning
probability PZ→Y from Proposition 8.

end

Apply new orientation(s) and sort remaining list of
unshielded triples Lc ← Lc\〈X,Z, Y 〉X 6 Y after
updating propagation probabilities.

until no additional orient./propa. probability >1/2 ;

2.3 APPLICATIONS TO CAUSAL GRAPH
BENCHMARKS

We have tested the 3off2 method on a range of bench-
mark networks of 50 nodes with up to 160 edges
generated with the causal modeling tool Tetrad IV
(http://www.phil.cmu.edu/tetrad). The average connec-
tivity 〈k〉 of these benchmark networks ranges between
1.6 to 6.4, and the average maximal in/out-degree be-
tween 3.2 to 8.8 (see Table S1 for a detailed descrip-
tion). The evaluation metrics are the Precision, Prec =
TP/(TP + FP), the Recall, Rec = TP/(TP + FN)
and the F−score = 2Prec.Rec/(Prec+Rec). How-
ever, in order to take into account the orientation/non-
orientation of edges in the predicted networks and compare
them with the CPDAG of the benchmark graphs, we define
orientation-dependent counts as, TP ′ = TP −TPmisorient

and FP ′ = FP + TPmisorient, where TPmisorient corre-
sponds to all true positive edges of the skeleton with dif-
ferent orientation/non-orientation status as in the CPDAG
reference.

The first methods used for comparison with 3off2 are the
PC-stable algorithm (Colombo and Maathuis, 2014) with
conservative (Ramsey, Spirtes, and Zhang, 2006) or ma-
jority orientation rules, implemented in the pcalg pack-
age (Kalisch et al., 2012; Kalisch and Bühlmann, 2008)
and the hybrid method MMHC combining constraint-based
skeleton and Bayesian orientation (Tsamardinos, Brown,
and Aliferis, 2006), implemented in the bnlearn pack-
age (Scutari, 2010). Figs. 1-5 give the average CPDAG
comparison results over 100 dataset replicates from 5 dif-
ferent benchmark networks (Table S1). The causal graph-
ical models predicted by the 3off2 method are obtained
using either the MDL/BIC or the NML complexities (see
Supplementary Methods). Figs. S1-S6 provide additional
results on the prediction of the network skeletons and ex-
ecution times. The PC and MMHC results are shown,
Figs. 1-5, for an independence test parameter α = 0.1, as
reducing α tends to worsen the CPDAG F-score for bench-
mark networks with 〈k〉 > 2.4 (Figs. S7-S18). All in all,
we found that 3off2 outperforms PC-stable on all tested
datasets, Figs. 1-5, and to a lesser extent, MMHC espe-
cially on less sparse networks, 〈k〉 > 2.4, Figs. 2-5.

Additional comparisons were obtained with Bayesian in-
ference implemented in the bnlearn package (Scu-
tari, 2010), using AIC, BDe and BIC/MDL scores and
hill-climbing heuristics with 30 to 100 random restarts,
Figs. S19-S30. 3off2 reaches equivalent or significantly
better F-scores than Bayesian hill-climbing on relatively
sparse benchmark networks, 〈k〉 6 4.8 (Figs. S19 & S23).
In particular, 3off2 with MDL scores reaches one of
the best F-scores on sparse networks (Figs. S19 & S20)
and eventually better Fscores on large datasets for less
sparse networks when combined to NML complexity
(Figs. S21 & S22). For somewhat denser networks

48

(〈k〉 ' 5), the 3off2 F-score appears slightly lower than for
Bayesian inference methods, Fig. S23, although it eventu-
ally becomes equivalent for large datasets (N > 1000).

On denser networks (〈k〉 > 5 − 6), Bayesian inference
exhibits better F-scores than 3off2, in particular with AIC
score, Fig. S24. However, the good performance with AIC
strongly relies on its high Recall (but low Precision), due to
its very small penalty term on large datasets, which makes
it favor more complex networks (Figs. S24) but perform
very poorly on sparse graphs (Figs. S19-S21). By con-
trast, the reconstruction of dense networks is impeded with
the 3off2 scheme, as it is not always possible to uncover
structural independencies, I(X;Y |{Ui}n) ' 0, in dense
graphs through an ordered set {Ui}n with only positive con-
ditional 3-point information, I ′(X;Y ;Uk|{Ui}k−1) > 0.
Indeed in complex graphs, there are typically many indi-
rect paths X → Uj → Y between unconnected node pairs
(X,Y). At the beginning of the pruning process, this is
prone to suggest likely v-structures X → Y ← Uj , in-
stead of the correct non-v-structures, X → Uj → Y (for
instance if I(X;Uj) � I(X;Y), I(X;Uj) � I(Uj ;Y)
and I(X;Uj)−I(X;Uj |Y) = I(X;Y ;Uj)< 0, for all j).
Such elimination of FN edge X → Uj and conservation
of FP X → Y tend to decrease both Precision and Recall,
although 3off2 remains significantly more robust than PC
and MMHC, Fig. 5. Besides, for most practical applica-
tions on real life data, interpretable causal models should
remain relatively sparse and avoid to display multiple indi-
rected paths between unconnected nodes.

Finally, 3off2 running times on these benchmark networks
are similar to MMHC and Bayesian hill-climbing heuristic
methods (with 100 restarts) and 10 to 100 times faster than
PC for large datasets, Figs. S1-S30.

3 DISCUSSION

In this paper, we propose to combine constraint-based and
score-based frameworks to improve network reconstruc-
tion. Earlier hybrid methods, including MMHC, have also
attempted to exploit the best of these two types of infer-
ence approaches by combining the robustness of Bayesian
scores with the attractive conceptual features of constraint-
based approaches (Dash and Druzdzel, 1999; Tsamardi-
nos, Brown, and Aliferis, 2006; Cano, Gomez-Olmedo,
and Moral, 2008; Claassen and Heskes, 2012). In partic-
ular, (Dash and Druzdzel, 1999) have proposed to exploit
an intrinsic weakness of the PC algorithm, its sensitivity to
the order in which conditional independencies are tested on
finite data, to rank these different order-dependent PC pre-
dictions with Bayesian scores. More recently, (Claassen
and Heskes, 2012) have also combined constraint-based
and Bayesian approaches to improve the reliability of
causal inference. They proposed to use Bayesian scores
to directly assess the reliability of conditional independen-

100 1000 10000 50000
0.0

0.2

0.4

0.6

0.8

1.0

PC 1e-1 Maj. cpdag

PC 1e-1 Csv. cpdag

MMHC 1e-1 BDe cpdag

MMHC 1e-1 BIC cpdag

3off2 MDL cpdag

3off2 NML cpdag

50n. 40e. Precision TP/(TP+FP)

100 1000 10000 50000
0.0

0.2

0.4

0.6

0.8

1.0

Fscore 2.Prec.Rec./(Prec.+Rec.)

100 1000 10000 50000
0.0

0.2

0.4

0.6

0.8

1.0

50n. 40e. Recall TP/(TP+FN)

Figure 1: CPDAG comparison between 3off2, PC-stable and
MMHC. 50 node, 40 edge benchmark networks generated using
Tetrad. 〈k〉 = 1.6, 〈kinmax〉 = 3.2, 〈koutmax〉 = 3.6. PC-stable
benchmarks were tested up to N=10,000 due to their sharp in-
crease in execution time, see Figs. S7-S12.

100 1000 10000 50000
0.0

0.2

0.4

0.6

0.8

1.0

PC 1e-1 Maj. cpdag

PC 1e-1 Csv. cpdag

MMHC 1e-1 BDe cpdag

MMHC 1e-1 BIC cpdag

3off2 MDL cpdag

3off2 NML cpdag

50n. 60e. Precision TP/(TP+FP)

100 1000 10000 50000
0.0

0.2

0.4

0.6

0.8

1.0

Fscore 2.Prec.Rec./(Prec.+Rec.)

100 1000 10000 50000
0.0

0.2

0.4

0.6

0.8

1.0

50n. 60e. Recall TP/(TP+FN)

Figure 2: CPDAG comparison between 3off2, PC-stable and
MMHC. 50 node, 60 edge benchmark networks generated using
Tetrad. 〈k〉 = 2.4, 〈kinmax〉 = 4.6, 〈koutmax〉 = 3.6. PC-stable
benchmarks were tested up to N=10,000 due to their sharp in-
crease in execution time, see Figs. S7-S12.

49

100 1000 10000 50000
0.0

0.2

0.4

0.6

0.8

1.0

PC 1e-1 Maj. cpdag

PC 1e-1 Csv. cpdag

MMHC 1e-1 BDe cpdag

MMHC 1e-1 BIC cpdag

3off2 MDL cpdag

3off2 NML cpdag

50n. 80e. Precision TP/(TP+FP)

100 1000 10000 50000
0.0

0.2

0.4

0.6

0.8

1.0

Fscore 2.Prec.Rec./(Prec.+Rec.)

100 1000 10000 50000
0.0

0.2

0.4

0.6

0.8

1.0

50n. 80e. Recall TP/(TP+FN)

Figure 3: CPDAG comparison between 3off2, PC-stable and
MMHC. 50 node, 80 edge benchmark networks generated using
Tetrad. 〈k〉 = 3.2, 〈kinmax〉 = 4.8, 〈koutmax〉 = 5.6. PC-stable
benchmarks were tested up to N=10,000 due to their sharp in-
crease in execution time, see Figs. S7-S12.

100 1000 10000 50000
0.0

0.2

0.4

0.6

0.8

1.0

PC 1e-1 Maj. cpdag

PC 1e-1 Csv. cpdag

MMHC 1e-1 BDe cpdag

MMHC 1e-1 BIC cpdag

3off2 MDL cpdag

3off2 NML cpdag

50n. 120e. Precision TP/(TP+FP)

100 1000 10000 50000
0.0

0.2

0.4

0.6

0.8

1.0

Fscore 2.Prec.Rec./(Prec.+Rec.)

100 1000 10000 50000
0.0

0.2

0.4

0.6

0.8

1.0

50n. 120e. Recall TP/(TP+FN)

Figure 4: CPDAG comparison between 3off2, PC-stable and
MMHC. 50 node, 120 edge benchmark networks generated us-
ing Tetrad. 〈k〉 = 4.8, 〈kinmax〉 = 8.8, 〈koutmax〉 = 7.2. PC-stable
benchmarks were tested up to N=10,000 due to their sharp in-
crease in execution time, see Figs. S7-S12.

100 1000 10000 50000
0.0

0.2

0.4

0.6

0.8

1.0

PC 1e-1 Maj. cpdag

PC 1e-1 Csv. cpdag

MMHC 1e-1 BDe cpdag

MMHC 1e-1 BIC cpdag

3off2 MDL cpdag

3off2 NML cpdag

50n. 160e. Precision TP/(TP+FP)

100 1000 10000 50000
0.0

0.2

0.4

0.6

0.8

1.0

Fscore 2.Prec.Rec./(Prec.+Rec.)

100 1000 10000 50000
0.0

0.2

0.4

0.6

0.8

1.0

50n. 160e. Recall TP/(TP+FN)

Figure 5: CPDAG comparison between 3off2, PC-stable and
MMHC. 50 node, 160 edge benchmark networks generated us-
ing Tetrad. 〈k〉 = 6.4, 〈kinmax〉 = 8.6, 〈koutmax〉 = 8.6. PC-stable
benchmarks were tested up to N=10,000 due to their sharp in-
crease in execution time, see Figs. S7-S12.

cies by summing the likelihoods over compatible graphs.
By contrast, we propose to use Bayesian scores to progres-
sively uncover the best supported conditional independen-
cies, by iteratively “taking off” the most likely indirect con-
tributions of conditional 3-point information from every 2-
point (mutual) information of the causal graph. In addition,
using likelihood ratios (Eqs. 11 & 12) instead of likelihood
sums (Claassen and Heskes, 2012) circumvents the need
to score conditional independencies over a potentially in-
tractable number of compatible graphs.

All in all, we found that 3off2 outperforms constraint-
based, search-and-score and earlier hybrid methods on a
range of benchmark networks, while displaying similar
running times as hill-climbing heuristic methods.

Acknowledgements

S.A. acknowledges support from Ministry of of Higher Ed-
ucation and Research and Association pour la Recherche
contre le Cancer (ARC). H.I. acknowledges funding from
CNRS, Institut Curie and FPGG.

References
Cano, A.; Gomez-Olmedo, M.; and Moral, S. 2008. A

score based ranking of the edges for the pc algorithm. In
Proceedings of the European Workshop on Probabilistic
Graphical Models (PGM), 41–48.

50

Chickering, D. M. 2002. Learning equivalence classes of
bayesian-network structures. Journal of Machine Learn-
ing Research 2:445–498.

Claassen, T., and Heskes, T. 2012. A bayesian approach
to constraint based causal inference. In In Proc. of the
28th Conference on Uncertainty in Artificial Intelligence
(UAI), 207–216. Morgan Kaufmann.

Colombo, D., and Maathuis, M. H. 2014. Order-
independent constraint-based causal structure learning.
Journal of Machine Learning Research 15:3741–3782.

Cooper, G. F., and Herskovits, E. 1992. A bayesian method
for the induction of probabilistic networks from data.
Mach. Learn. 9(4):309–347.

Dash, D., and Druzdzel, M. J. 1999. A hybrid anytime
algorithm for the construction of causal models from
sparse data. In Proceedings of the Fifteenth Interna-
tional Conference on Uncertainty in Artificial Intelli-
gence, 142–149. Morgan Kaufmann.

de Campos, L. M. 2006. A scoring function for learning
bayesian networks based on mutual information and con-
ditional independence tests. Journal of Machine Learn-
ing Research 7:2149–2187.

Hansen, M. H., and Yu, B. 2001. Model selection and the
principle of minimum description length. Journal of the
American Statistical Association 96:746–774.

Heckerman, D.; Geiger, D.; and Chickering, D. M. 1995.
Learning Bayesian Networks: The Combination of
Knowledge and Statistical Data. Machine Learning
20(3):197–243. Available as Technical Report MSR-TR-
94-09.

Kalisch, M., and Bühlmann, P. 2008. Robustification of
the pc-algorithm for directed acyclic graphs. Journal Of
Computational And Graphical Statistics 17(4):773–789.

Kalisch, M.; Mächler, M.; Colombo, D.; Maathuis, M. H.;
and Bühlmann, P. 2012. Causal inference using graphi-
cal models with the r package pcalg. Journal of Statisti-
cal Software 47(11):1–26.

Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques. MIT Press.

Kontkanen, P., and Myllymäki, P. 2007. A linear-time al-
gorithm for computing the multinomial stochastic com-
plexity. Inf. Process. Lett. 103(6):227–233.

Meek, C. 1995. Causal inference and causal explana-
tion with background knowledge. In Proceedings of
Eleventh Conference on Uncertainty in Artificial Intel-
ligence, Montreal, QU. Morgan Kaufmann. 403–418.

Pearl, J., and Verma, T. 1991. A theory of inferred cau-
sation. In In Knowledge Representation and Reasoning:
Proc. of the Second Int. Conf. 441–452.

Pearl, J. 2009. Causality: models, reasoning and inference.
Cambridge University Press, 2nd edition.

Ramsey, J.; Spirtes, P.; and Zhang, J. 2006. Adjacency-
faithfulness and conservative causal inference. In Pro-
ceedings of the 22nd Conference on Uncertainty in Arti-
ficial Intelligence, UAI, 401–408. Oregon, USA: AUAI
Press.

Rebane, G., and Pearl, J. 1988. The recovery of causal
poly-trees from statistical data. Int. J. Approx. Reasoning
2(3):341.

Reichenbach, H. 1956. The Direction of Time. California
library reprint series. University of California Press.

Rissanen, J., and Tabus, I. 2005. Kolmogorovs struc-
ture function in mdl theory and lossy data compression.
In Adv. Min. Descrip. Length Theory Appl. MIT Press.
Chap. 10.

Rissanen, J. 1978. Modeling by shortest data description.
Automatica vol. 14:465–471.

Roos, T.; Silander, T.; Kontkanen, P.; and Myllymäki, P.
2008. Bayesian network structure learning using factor-
ized nml universal models. In Proc. 2008 Information
Theory and Applications Workshop (ITA-2008). IEEE
Press. invited paper.

Sanov, I. 1957. On the probability of large deviations of
random variables. Mat. Sbornik 42:11–44.

Scutari, M. 2010. Learning Bayesian Networks with
the bnlearn R Package. Journal of Statistical Software
35(3):1–22.

Shtarkov, Y. M. 1987. Universal sequential coding of sin-
gle messages. Problems of Information Transmission
(Translated from) 23(3):3–17.

Spirtes, P., and Glymour, C. 1991. An algorithm for fast re-
covery of sparse causal graphs. Social Science Computer
Review 9:62–72.

Spirtes, P.; Glymour, C.; and Scheines, R. 2000. Cau-
sation, Prediction, and Search. The MIT Press, Cam-
bridge, Massachusetts, 2nd edition.

Tsamardinos, I.; Brown, L. E.; and Aliferis, C. F. 2006.
The Max-Min Hill-Climbing Bayesian Network Struc-
ture Learning Algorithm. Machine Learning 65(1):31–
78.

51

Are You Doing What I Think You Are Doing?
Criticising Uncertain Agent Models

Stefano V. Albrecht
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, UK

s.v.albrecht@sms.ed.ac.uk

Subramanian Ramamoorthy
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, UK

s.ramamoorthy@ed.ac.uk

Abstract

The key for effective interaction in many multia-
gent applications is to reason explicitly about the
behaviour of other agents, in the form of a hypothe-
sised behaviour. While there exist several methods
for the construction of a behavioural hypothesis,
there is currently no universal theory which would
allow an agent to contemplate the correctness of
a hypothesis. In this work, we present a novel al-
gorithm which decides this question in the form
of a frequentist hypothesis test. The algorithm al-
lows for multiple metrics in the construction of the
test statistic and learns its distribution during the
interaction process, with asymptotic correctness
guarantees. We present results from a comprehen-
sive set of experiments, demonstrating that the
algorithm achieves high accuracy and scalability
at low computational costs.

1 INTRODUCTION

A common difficulty in many multiagent systems is the fact
that the behaviour of other agents may be initially unknown.
Important examples include adaptive user interfaces, robotic
elderly assistance, and electronic markets. Often, the key for
effective interaction in such systems is to reason explicitly
about the behaviour of other agents, typically in the form
of a hypothesised behaviour which makes predictions about
future actions based on a given interaction history.

A number of methods have been studied for the construction
of behavioural hypotheses. One method is to use opponent
modelling techniques to learn a behaviour from the inter-
action history. Two well-known examples include fictitious
play (Brown, 1951) and case-based reasoning (Gilboa and
Schmeidler, 2001), as well as their many variants. Another
method is to maintain a set of possible action policies, called
types, over which a posterior belief is computed based on
the interaction history (Albrecht and Ramamoorthy, 2014;
Gmytrasiewicz and Doshi, 2005). The hypothesis is then

obtained by using the posterior to mix the types. Related
methods have been studied in the plan recognition literature
(Carberry, 2001; Charniak and Goldman, 1993).

The learned behaviours (or models) of these methods can
be viewed as hypotheses because they are eventually either
true or false (subject to the various assumptions they are
based on), and because they are testable. Thus, the following
is a natural question: given an interaction history H and a
hypothesis π∗ for the behaviour of an agent, does the agent
indeed behave according to π∗? There are several ways
in which an answer to this question could be utilised. For
instance, if we persistently reject the hypothesis π∗, we may
construct an alternative hypothesis or resort to some default
plan of action (such as a “maximin” strategy).

Unfortunately, the above methods for hypothesis construc-
tion do not provide an answer to this question. Some oppo-
nent modelling methods use goodness-of-fit measures (e.g.
those that rely on maximum likelihood estimation), but these
measures describe how well the model fits the data (i.e. in-
teraction history) and not necessarily if the model is correct.
Similarly, the posterior belief in the type-based approach
quantifies the relative likelihood of types (relative to a set of
alternative types) but not the correctness of types.

To illustrate the source of difficulty, consider the below ex-
cerpt of an interaction process between two agents which
can choose from three actions. The columns show, respec-
tively, the current time t of the interaction, the actions chosen
by the agents at time t, and agent 1’s hypothesised probabil-
ities with which agent 2 would choose its actions at time t,
based on the prior interaction history.

t (at1, a
t
2) π∗2

1 (1, 2) 〈.3, .1, .6〉
2 (3, 1) 〈.2, .3, .5〉
3 (2, 3) 〈.7, .1, .2〉
4 (2, 3) 〈.0, .4, .6〉
5 (1, 2) 〈.4, .2, .4〉

Assuming that the process continues in this fashion, and
without any restrictions on the behaviour of agent 2, how

52

should agent 1 decide whether or not to reject its hypothesis
about the behaviour of agent 2?

A natural way to address this question is to compute some
kind of score from the information given in the above ta-
ble, and to compare this score with some manually chosen
rejecting threshold. A prominent example of such a score
is the empirical frequency distribution (Conitzer and Sand-
holm, 2007; Foster and Young, 2003). While the simplicity
of this method is appealing, there are two significant prob-
lems: (1) it is far from trivial to devise a scoring scheme that
reliably quantifies “correctness” of hypotheses (for instance,
an empirical frequency distribution taken over all past ac-
tions would be insufficient in the above example since the
hypothesised action distributions are changing), and (2) it is
unclear how one should choose the threshold parameter for
any given scoring scheme.

In this work, we present an efficient algorithm which decides
this question in the form of a frequentist hypothesis test. The
algorithm addresses (1) by allowing for multiple scoring cri-
teria in the construction of the test statistic, with the intent
of obtaining an overall more reliable scoring scheme. The
distribution of the test statistic is then learned during the
interaction process, and we show that the learning is asymp-
totically correct. Finally, analogous to standard frequentist
testing, the hypothesis is rejected at a given point in time
if the resulting p-value is below some “significance level”.
This eliminates (2) by providing a uniform semantic for re-
jection that is invariant to the employed scoring scheme. We
present a comprehensive set of experiments, demonstrating
that our algorithm achieves high accuracy and scalability at
low computational costs.

Of course, there is a long-standing debate on the role of
statistical hypothesis tests and quantities such as p-values
(e.g. Gelman and Shalizi, 2013; Berger and Sellke, 1987;
Cox, 1977). The usual consensus is that p-values should
be combined with other forms of evidence to reach a final
conclusion (Fisher, 1935), and this is the view we adopt as
well. In this sense, our method may be used as part of a
larger machinery to decide the truth of a hypothesis.

2 RELATED WORK

In addition to the related works mentioned in the previous
section, there are a number of other related research areas:

There exists a large body of literature on what is often re-
ferred to as model criticism (e.g. Bayarri and Berger, 2000;
Meng, 1994; Rubin, 1984; Box, 1980). Model criticism at-
tempts to answer the following question: given a data set D
and model M , could D have been generated by M? This
is analogous to our question, in which D is a sequence of
observed actions of some agent and M is a hypothesised
behaviour for that agent. However, in contrast to our work,
model criticism usually assumes that the data are indepen-

dent and identically distributed, which is not the case in the
interactive settings we consider.

A related problem, sometimes referred to as identity testing,
is to test if a given sequence of data was generated by some
given stochastic process (Ryabko and Ryabko, 2008; Ba-
sawa and Scott, 1977). Instead of independent and identi-
cal distributions, this line of work assumes other properties
such as stationarity and ergodicity. Unfortunately, these as-
sumptions are also unlikely in interaction processes, and the
proposed solutions are very costly.

Model criticism and identity testing are not to be confused
with model selection, in which two or more alternative mod-
els are under consideration (e.g. Vehtari and Ojanen, 2012).
Similarly, we do not consider alternative hypotheses. How-
ever, our method can be applied individually to multiple
hypotheses, or the hypotheses may be fused into a single
hypothesis using a posterior belief (Albrecht and Ramamoor-
thy, 2014; Gmytrasiewicz and Doshi, 2005).

Another related problem is that of model checking, which
attempts to verify that a given system (or model) satisfies
certain formal properties (Clarke et al., 1999). Recently,
Albrecht and Ramamoorthy (2014) applied the concept of
probabilistic bisimulation (Larsen and Skou, 1991) to the
question of “incorrect” hypotheses and showed that a cer-
tain form of optimality is preserved if a bisimulation relation
exists. However, their work is not concerned with establish-
ing whether or not a given behavioural hypothesis is correct,
and their analysis is performed before any interaction.

Our method can be viewed as passive in the sense that it does
not actively probe different aspects of the hypothesis, and
we show in Section 5 that this can be a drawback. This is in
contrast to methods such as (Carmel and Markovitch, 1999),
which promote active exploration. However, this exploration
comes at high computational costs and limits the structure
of hypotheses, such as deterministic finite state machines.
On the other hand, our method has low computational costs
and leaves the structure of the hypothesis open.

3 PRELIMINARIES

We consider a sequential interaction process with m agents.
The process begins at time t = 0. At each time t, each agent
i ∈ {1, ...,m} receives a signal sti and chooses an action ati
from a finite set of actionsAi. (Agents choose actions simul-
taneously.) The process continues in this fashion indefinitely
or until some termination criterion is satisfied.

The signal sti specifies information that agent i receives at
time t and may in general be the result of a random variable
over past actions and signals. For example, sti may be a
discrete system state and its dynamics may be described by
some stochastic transition function. Note that we allow for
asymmetric information (i.e. sti 6= stj). For example, sti may
include a private payoff for agent i. In this work, we leave

53

the precise structure and dynamics of sti open.

We assume that each agent i can choose actions ati based on
the entire interaction history Ht

i = (s0
i , a

0, s1
i , a

1, ..., sti),
where aτ = (aτ1 , ..., a

τ
m) is the tuple of actions taken by the

agents at time τ . Formally, each agent i has a behaviour
πi which assigns a probability distribution over actions Ai
given a history Ht

i , denoted πi(Ht
i). We use Πi to denote

the infinite and uncountable space of all such behaviours.
Note that a behaviour may implement any kind of logic, and
it is useful to think of it as a black-box programme.

Given two agents i and j, we use Πi
j to denote i’s hypothesis

space for j’s behaviours. The difference between Πi
j and Πj

is that π∗j ∈ Πi
j are defined over Ht

i while πj ∈ Πj are de-
fined over Ht

j . Since we allow for asymmetric information,
any information that is contained in stj but not in sti, denoted
stj−i, becomes part of the hypothesis space Πi

j . For exam-
ple, if stj−i contains a private payoff for j, i can hypothesise
a payoff as part of its hypothesis for j’s behaviour.

Defining a behavioural hypothesis π∗j ∈ Πi
j as a function

π∗j (Ht
i) has two implicit assumptions: firstly, it assumes

knowledge of Aj , and secondly, it assumes that the informa-
tion in stj−i is a (deterministic) function of Ht

i . If, on the
other hand, we allowed stj−i to be stochastic (i.e. a random
variable over the interaction history), we would in addition
have to hypothesise the random outcome of stj−i. In other
words, π∗j (Ht

i) would itself be a random variable, which is
outside the scope of this work.

4 A METHOD FOR BEHAVIOURAL
HYPOTHESIS TESTING

Let i denote our agent and let j denote another agent. More-
over, let π∗j ∈ Πi

j denote our hypothesis for j’s behaviour
and let πj ∈ Πj denote j’s true behaviour. The central ques-
tion we ask is if π∗j = πj?

Unfortunately, since we do not know πj , we cannot directly
answer this question. However, at each time t, we know j’s
past actions atj = (a0

j , ..., a
t−1
j) which were generated by πj .

If we use π∗j to generate a vector âtj = (â0
j , ..., â

t−1
j), where

âτj is sampled using π∗j (Hτ
i), we can formulate the related

two-sample problem of whether atj and âtj were generated
from the same behaviour, namely π∗j .

In this section, we propose a general and efficient algorithm
to decide this problem. At its core, the algorithm computes
a frequentist p-value

p = P
(
|T (ãtj , â

t
j)| ≥ |T (atj , â

t
j)|
)

(1)

where ãtj ∼ δt(π∗j) = (π∗j (H0
i), ..., π∗j (Ht−1

i)). The value
of p corresponds to the probability with which we expect
to observe a test statistic at least as extreme as T (atj , â

t
j),

under the null-hypothesis π∗j = πj . Thus, we reject π∗j if p
is below some “significance level” α.

Algorithm 1
1: Input: history Ht

i (including observed action at−1
j)

2: Output: p-value (reject π∗
j if p below some threshold α)

3: Parameters: hypothesis π∗
j ; score functions z1, ..., zK ;N>0

4: // Expand action vectors

5: Set at
j ← 〈at−1

j , at−1
j 〉

6: Sample ât−1
j ∼ π∗

j (H
t−1
i); set ât

j ← 〈ât−1
j , ât−1

j 〉
7: for n = 1, ..., N do
8: Sample ãt−1

j ∼ π∗
j (H

t−1
i); set ãt,n

j ← 〈ãt−1,n
j , ãt−1

j 〉
9: // Fit skew-normal distribution f

10: if update parameters? then
11: Compute D ←

{
T (ãt,n

j , ât
j) | n = 1, ..., N

}

12: Fit ξ, ω, β to D, e.g. using (12)

13: Find mode µ from ξ, ω, β

14: // Compute p-value

15: Compute q ← T (at
j , ât

j) using (2)/(5)

16: return p← f(q | ξ, ω, β) / f(µ | ξ, ω, β)

In the following subsections, we describe the test statistic T
and its asymptotic properties, and how our algorithm learns
the distribution of T (ãtj , â

t
j). A summary of the algorithm

is given in Algorithm 1.

4.1 TEST STATISTIC

We follow the general approach outlined in Section 1 by
which we compute a score from a vector of actions and their
hypothesised distributions. Formally, we define a score func-
tion as z : (Aj)

t×∆(Aj)
t → R, where ∆(Aj) is the set of

all probability distributions over Aj . Thus, z(atj , δt(π∗j)) is
the score for observed actions atj and hypothesised distribu-
tions δt(π∗j), and we sometimes abbreviate this to z(atj , π∗j).
We use Z to denote the space of all score functions.

Given a score function z, we define the test statistic T as

T (ãtj , â
t
j) =

1

t

t∑

τ=1

Tτ (ãτj , â
τ
j) (2)

Tτ (ãτj , â
τ
j) = z(ãτj , π

∗
j)− z(âτj , π

∗
j) (3)

where ãτj and âτj are the τ -prefixes of ãtj and âtj , respectively.

In this work, we assume that z is provided by the user. While
formally unnecessary (in the sense that our analysis does
not require it), we find it a useful design guideline to inter-
pret a score as a kind of likelihood, such that higher scores
suggest higher likelihood of π∗j being correct. Under this in-
terpretation, a minimum requirement for z should be that it
is consistent, such that, for any t > 0 and π∗j ∈ Πi

j ,

π∗j ∈ Πz = arg max
π′j∈Πij

Ea′j∼δt(π∗j)

[
z(a′j , π

′
j)
]

(4)

where Eη denotes the expectation under η. This ensures

54

that if the null-hypothesis π∗j = πj is true, then the score
z(atj , π∗j) is maximised on expectation.

Ideally, we would like a score function z which is perfect
in that it is consistent and |Πz| = 1. This means that π∗j can
maximise z(atj , π∗j) (where atj ∼ δt(πj)) only if π∗j = πj .
Unfortunately, it is unclear if such a score function exists for
the general case and how it should look. Even if we restrict
the behaviours agents may exhibit, it can still be difficult
to find a perfect score function. On the other hand, it is a
relatively simple task to specify a small set of score functions
z1, ..., zK which are consistent but imperfect. (Examples
are given in Section 5.) Given that these score functions are
consistent, we know that the cardinality | ∩k Πzk | can only
monotonically decrease. Therefore, it seems a reasonable
approach to combine multiple imperfect score functions in
an attempt to approximate a perfect score function.

Of course, we could simply define z as a linear (or otherwise)
combination of z1, ..., zK . However, this approach is at risk
of losing information from the individual scores, e.g. due
to commutativity and other properties of the combination.
Thus, we instead propose to compare the scores individually.
Given score functions z1, ..., zK ∈ Z which are all bounded
by the same interval [a, b] ⊂ R, we redefine Tτ to

Tτ (ãτj , â
τ
j) =

K∑

k=1

wk
(
zk(ãτj , π

∗
j)− zk(âτj , π

∗
j)
)

(5)

where wk ∈ R is a weight for score function zk. In this
work, we set wk = 1

K . (We also experiment with alternative
weighting schemes in Section 5.) However, we believe that
wk may serve as an interface for useful modifications of our
algorithm. For example, Yue et al. (2010) compute weights
to increase the power of their specific hypothesis tests.

4.2 ASYMPTOTIC PROPERTIES

The vectors atj and âtj are constructed iteratively. That is, at
time t, we observe agent j’s past action at−1

j , which was
generated from πj(H

t−1
j), and set atj = 〈at−1

j , at−1
j 〉. At

the same time, we sample an action ât−1
j using π∗j (Ht−1

i)

and set âtj = 〈ât−1
j , ât−1

j 〉. Assuming the null-hypothesis
π∗j = πj , will T (atj , â

t
j) converge in the process?

Unfortunately,T might not converge. This may seem surpris-
ing at first glance given that at−1

j , ât−1
j have the same distri-

bution πj(Ht−1
j) = π∗j (Ht−1

i), since Ex,y∼ψ [x− y] = 0
for any distribution ψ. However, there is a subtle but im-
portant difference: while at−1

j , ât−1
j have the same distri-

bution, zk(atj , π∗j) and zk(âtj , π∗j) may have arbitrarily dif-
ferent distributions. This is because these scores may de-
pend on the entire prefix vectors at−1

j and ât−1
j , respec-

tively, which means that their distributions may be different
if at−1

j 6= ât−1
j . Fortunately, our algorithm does not require

T to converge because it learns the distribution of T during
the interaction process, as we will discuss in Section 4.3.

Interestingly, while T may not converge, it can be shown
that the fluctuation of T is eventually normally distributed,
for any set of score functions z1, ..., zK with bound [a, b].
Formally, let E[Tτ (aτj , â

τ
j)] and Var[Tτ (aτj , â

τ
j)] denote the

finite expectation and variance of Tτ (aτj , â
τ
j), where it is

irrelevant if aτj , â
τ
j are sampled directly from δτ (π∗j) or

generated iteratively as prescribed above. Furthermore, let
σ2
t =

∑t
τ=1Var[Tτ (aτj , â

τ
j)] denote the cumulative variance.

Then, the standardised stochastic sum

1

σt

t∑

τ=1

Tτ (aτj , â
τ
j)− E[Tτ (aτj , â

τ
j)] (6)

will converge in distribution to the standard normal distribu-
tion as t→∞. Thus, T is normally distributed as well.

To see this, first recall that the standard central limit theorem
requires the random variables Tτ to be independent and
identically distributed. In our case, Tτ are independent in
that the random outcome of Tτ has no effect on the outcome
of Tτ ′ . However, Tτ and Tτ ′ depend on different action
sequences, and may therefore have different distributions.
Hence, we have to show an additional property, commonly
known as Lyapunov’s condition (e.g. Fischer, 2010), which
states that there exists a positive integer d such that

lim
t→∞

σ̂2+d
t

σ2+d
t

= 0, with (7)

σ̂2+d
t =

t∑

τ=1

E
[∣∣Tτ (aτj , â

τ
j)− E[Tτ (aτj , â

τ
j)]
∣∣2+d

]
. (8)

Since zk are bounded, we know that Tτ are bounded. Hence,
the summands in (8) are uniformly bounded, say by U for
brevity. Setting d = 1, we obtain

lim
t→∞

σ̂3
t

σ3
t

≤ Uσ̂2
t

σ3
t

=
U

σt
(9)

The last part goes to zero if σt →∞, and hence Lyapunov’s
condition holds. If, on the other hand, σt converges, then
this means that the variance of Tτ is zero from some point
onward (or that it has an appropriate convergence to zero).
In this case, π∗j will prescribe deterministic action choices
for agent j, and a statistical analysis is no longer necessary.

4.3 LEARNING THE TEST DISTRIBUTION

Given that T is eventually normal, it may seem reasonable to
compute (1) using a normal distribution whose parameters
are fitted during the interaction. However, this fails to recog-
nise that the distribution of T is shaped gradually over an
extended time period, and that the fluctuation around T can
be heavily skewed in either direction until convergence to
a normal distribution emerges. Thus, a normal distribution
may be a poor fit during this shaping period.

What is needed is a distribution which can represent any nor-
mal distribution, and which is flexible enough to faithfully

55

represent the gradual shaping. One distribution which has
these properties is the skew-normal distribution (Azzalini,
1985; O’Hagan and Leonard, 1976). Given the PDF φ and
CDF Φ of the standard normal distribution, the skew-normal
PDF is defined as

f(x | ξ, ω, β) =
2

ω
φ

(
x− ξ
ω

)
Φ

(
β

(
x− ξ
ω

))
(10)

where ξ ∈ R is the location parameter, ω ∈ R+ is the
scale parameter, and β ∈ R is the shape parameter. Note
that this reduces to the normal PDF for β = 0, in which
case ξ and ω correspond to the mean and standard deviation,
respectively. Hence, the normal distribution is a sub-class
of the skew-normal distribution.

Our algorithm learns the shifting parameters of f during the
interaction process, using a simple but effective sampling
procedure. Essentially, we use π∗j to iteratively generate N
additional action vectors ãt,1j , ..., ãt,Nj in the exact same way
as âtj . The vectors ãt,nj are then mapped into data points

D =
{
T (ãt,nj , âtj) | n = 1, ..., N

}
(11)

which are used to estimate the parameters ξ, ω, β by min-
imising the negative log-likelihood

N log(ω)−
∑

x∈D
log φ

(
x− ξ
ω

)
+ log Φ

(
β

(
x− ξ
ω

))

(12)
whilst ensuring that ω is positive. An alternative is the
method-of-moments estimator, which can also be used to
obtain initial values for (12). Note that it is usually unneces-
sary to estimate the parameters at every point in time. Rather,
it seems reasonable to update the parameters less frequently
as the amount of evidence (i.e. observed actions) grows.

Given the asymmetry of the skew-normal distribution, the se-
mantics of “as extreme as” in (1) may no longer be obvious
(e.g. is this with respect to the mean or mode?). In addition,
the usual tail-area calculation of the p-value requires the
CDF, but there is no closed form for the skew-normal CDF
and approximating it is rather cumbersome. To circumvent
these issues, we approximate the p-value as

p ≈
f(T (atj , â

t
j) | ξ, ω, β)

f(µ | ξ, ω, β)
(13)

where µ is the mode of the fitted skew-normal distribution.
This avoids the asymmetry issue and is easier to compute.

5 EXPERIMENTS

We conducted a comprehensive set of experiments to inves-
tigate the accuracy (correct and incorrect rejection), scala-
bility (with number of actions), and sampling complexity of

our algorithm. The following three score functions and their
combinations were used:

z1(atj , π
∗
j) =

1

t

t−1∑

τ=0

π∗j (Hτ
i)[aτj]

maxaj∈Aj π
∗
j (Hτ

i)[aj]

z2(atj , π
∗
j) =

1

t

t−1∑

τ=0

1−Eaj∼π∗j (Hτi)

∣∣π∗j (Hτ
i)[aτj]−π∗j (Hτ

i)[aj]
∣∣

z3(atj , π
∗
j) =

∑

aj∈Aj
min

[
1

t

t−1∑

τ=0

[aτj = aj]1,
1

t

t−1∑

τ=0

π∗j (Hτ
i)[aj]

]

where [b]1 = 1 if b is true and 0 otherwise. Note that z1, z3

are generally consistent (cf. Section 4.1), while z2 is consis-
tent for |Aj | = 2 but not necessarily for |Aj | > 2. Further-
more, z1, z2, z3 are all imperfect. The score function z3 is
based on the empirical frequency distribution (cf. Section 1).

The parameters of the test distribution (cf. Section 4.3) were
estimated less frequently as t increased. The first estimation
was performed at time t = 1 (i.e. after observing one action).
After estimating the parameters at time t, we waited

⌊√
t
⌋
−1

time steps until the parameters were re-fitted. Throughout
our experiments, we used a significance level of α = 0.01
(i.e. reject π∗j if the p-value is below 0.01).

5.1 RANDOM BEHAVIOURS

In the first set of experiments, the behaviour spaces Πi,Πj

and hypothesis space Πi
j were restricted to “random” be-

haviours. Each random behaviour is defined by a sequence
of random probability distributions over Aj . The distribu-
tions are created by drawing uniform random numbers from
(0, 1) for each action aj ∈ Aj , and subsequent normalisa-
tion so that the values sum up to 1.

Random behaviours are a good baseline for our experiments
because they are usually hard to distinguish. This is due to
the fact that the entire set Aj is always in the support of the
behaviours, and since they do not react to any past actions.
These properties mean that there is little structure in the
interaction that can be used to distinguish behaviours.

We simulated 1000 interaction processes, each lasting 10000
time steps. In each process, we randomly sampled be-
haviours πi ∈ Πi, πj ∈ Πj to control agents i and j,
respectively. In half of these processes, we used a correct
hypothesis π∗j = πj . In the other half, we sampled a ran-
dom hypothesis π∗j ∈ Πi

j with π∗j 6= πj . We repeated each
set of simulations for |Aj | = 2, 10, 20 (with |Ai| = |Aj |)
and N = 10, 50, 100 (cf. Section 4.3).

5.1.1 Accuracy & Scalability

Figure 1 shows the average accuracy of our algorithm (for
N = 50), by which we mean the average percentage of time
steps in which the algorithm made correct decisions (i.e.
no reject if π∗j = πj ; reject if π∗j 6= πj). The x-axis shows

56

1 2 3 [1 2] [2 3] [1 3] [1 2 3]
0

10
20
30
40
50
60
70
80
90

100
%

 C
or

re
ct

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

πj* = πj

πj* ≠ πj

|Aj| = 2

|Aj| = 10

|Aj| = 20

Figure 1: Average accuracy with random behaviours, for N = 50 and |Aj | = 2, 10, 20. Results averaged over 500 processes
with 10000 time steps, for π∗j = πj and π∗j 6= πj each. X-axis shows score functions zk used in test statistic.

100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Time

p−
va
lu
e

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

p−
va

lu
e

1
2
3
[1 2]
[2 3]
[1 3]
[1 2 3]

(a) |Aj | = 2

0.5 1 1.5 2
x 104

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Time

p−
va

lu
e

(b) |Aj | = 10

1 2 3 4 5
x 104

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Time

p−
va

lu
e

(c) |Aj | = 20

Figure 2: Average p-values with random behaviours, for N = 50 and π∗j 6= πj (i.e. hypothesis wrong). Results averaged
over 500 processes. Legend shows score functions zk used in test statistic.

the combination of score functions used to compute the test
statistic (e.g. [1 2] means that we combined z1, z2).

The results show that our algorithm achieved excellent accu-
racy, often bordering the 100% mark. They also show that
the algorithm scaled well with the number of actions, with
no degradation in accuracy. However, there were two excep-
tions to these observations: Firstly, using z3 resulted in very
poor accuracy for π∗j 6= πj . Secondly, the combination of
z2, z3 scaled badly for π∗j 6= πj .

The reason for both of these exceptions is that z3 is not a
good scoring scheme for random behaviours. The function
z3 quantifies a similarity between the empirical frequency
distribution and the averaged hypothesised distributions. For
random behaviours (as defined in this work), both of these
distributions will converge to the uniform distribution. Thus,
under z3, any two random behaviours will eventually be the
same, which explains the low accuracy for π∗j 6= πj .

As can be seen in Figure 1, the inadequacy of z3 is solved
when adding any of the other score functions z1, z2. These
functions add discriminative information to the test statis-
tic, which technically means that the cardinality |Πz| in (4)
is reduced. However, in the case of [z2, z3], the converge is
substantially slower for higher |Aj |, meaning that more ev-
idence is needed until π∗j can be rejected. Figure 2 shows
how a higher number of actions affects the average conver-
gence rate of p-values computed with z2, z3.

In addition to the score functions zk, a central aspect for
the convergence of p-values are the corresponding weights

wk (cf. (5)). As mentioned in Section 4.1, we use uniform
weights wk = 1

K . However, to show that the weighting is no
trivial matter, we repeated our experiments with four alterna-
tive weighting schemes: Let zτk = zk(ãτj , π∗j)− zk(âτj , π∗j)
denote the summands in (5). The weighting schemes
truemax /truemin assign wk = 1 for the first k that
maximises / minimises |zτk |, and 0 otherwise. Similarly, the
weighting schemes max /min assign wk = 1 for the first k
that maximises / minimises zτk , and 0 otherwise.

Figures 3 and 4 show the results for truemax and
truemin. As can be seen in the figures, truemax is very
similar to uniform weights while truemin improves the
convergence for [z2, z3] but compromises elsewhere. The re-
sults formax andmin are very similar to those oftruemin
and truemax, respectively, hence we omit them.

Finally, we recomputed all accuracies using a more lenient
significance level of α = 0.05. As could be expected, this
marginally decreased and increased (i.e. by a few percentage
points) the accuracy for π∗j = πj and π∗j 6= πj , respectively.
Overall, however, the results were very similar to those ob-
tained with α = 0.01.

5.1.2 Sampling Complexity

Recall thatN specifies the number of sampled action vectors
ãt,nj used to learn the distribution of the test statistic (cf.
Section 4.3). In the previous section, we reported results
for N = 50. In this section, we investigate differences in
accuracy for N = 10, 50, 100.

57

1 2 3 [1 2] [2 3] [1 3] [1 2 3]
0

10
20
30
40
50
60
70
80
90

100
%

 C
or

re
ct

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

πj* = πj

πj* ≠ πj

|Aj| = 2

|Aj| = 10

|Aj| = 20

Figure 3: Average accuracy with random behaviours, for N = 50 and |Aj | = 2, 10, 20. X-axis shows score functions zk
used in test statistic. Weights wk computed using truemax weighting.

1 2 3 [1 2] [2 3] [1 3] [1 2 3]
0

10
20
30
40
50
60
70
80
90

100

%
 C

or
re

ct

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

πj* = πj

πj* ≠ πj

|Aj| = 2

|Aj| = 10

|Aj| = 20

Figure 4: Average accuracy with random behaviours, for N = 50 and |Aj | = 2, 10, 20. X-axis shows score functions zk
used in test statistic. Weights wk computed using truemin weighting.

Figures 5 and 6 show the differences for |Aj | = 2, 20, re-
spectively. (The figure for |Aj | = 10 was virtually the same
as the one for |Aj | = 20, except with minor improvements
in accuracy for the [z2, z3] cluster. Hence, we omit it here.)
As can be seen, there were improvements of up to 10% from
N = 10 to N = 50, and no (or very marginal) improve-
ments from N = 50 to N = 100. This was observed for all
|Aj | = 2, 10, 20, and all constellations of score functions.
The fact that N = 50 was sufficient even for |Aj | = 20 is
remarkable, since, under random behaviours, there are 20t

possible action vectors to sample at any time t.

We also compared the learned skew-normal distributions
and found that they fitted the data very well. Figures 7 and
8 show the histograms and fitted skew-normal distributions
for two example processes after 1000 time steps. In Figure 8,
we deliberately chose an example in which the learned dis-
tribution was maximally skewed for N = 10, which is a
sign that N was too small. Nonetheless, in the majority of
the processes, the learned distribution was only moderately
skewed and our algorithm achieved an average accuracy of
90% even for N = 10. Moreover, if one wants to avoid
maximally skewed distributions, one can simply restrict the
parameter space when fitting the skew-normal (specifically,
the shape parameter β; cf. Section 4.3).

The flexibility of the skew-normal distribution was particu-
larly useful in the early stages of the interaction, in which
the test statistic typically does not follow a normal distri-
bution. Figure 9 shows the test distribution for an example
process after 10 time steps, using z2 for the test statistic and
N = 100 (the histogram was created using N = 10000).
The learned skew-normal approximated the true test distri-
bution very closely. Note that, in such examples, the normal

−0.035−0.03−0.025−0.02−0.015−0.01−0.005 0 0.005 0.01
0

200

400

Test statistic

Fr
eq

ue
nc

y

−0.035−0.03−0.025−0.02−0.015−0.01−0.005 0 0.005 0.01
0

50

100

D
en

si
ty

Figure 9: True test distribution for z2 (histogram) and
learned skew-normal distribution (red curve) after 10 time
steps, with |Aj | = 10 and N = 100.

and Student distributions do not produce good fits.

Our implementation of the algorithm performed all calcula-
tions as iterative updates (except for the skew-normal fitting).
Hence, it used little (fixed) memory and had very low com-
putation times. For example, using all three score functions
and |Aj | = 20, N = 100, one cycle in the algorithm (cf. Al-
gorithm 1) took on average less than 1 millisecond without
fitting the skew-normal parameters, and less than 10 mil-
liseconds when fitting the skew-normal parameters (using
an off-the-shelf Simplex-optimiser with default parameters).
The times were measured using Matlab R2014a on a Unix
machine with a 2.6 GHz Intel Core i5 processor.

5.2 ADAPTIVE BEHAVIOURS

We complemented the “structure-free” interaction of ran-
dom behaviours by conducting analogous experiments with

58

1 2 3 [1 2] [2 3] [1 3] [1 2 3]
0

10
20
30
40
50
60
70
80
90

100
%

 C
or

re
ct

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

πj* = πj

πj* ≠ πj

N = 10

N = 50

N = 100

Figure 5: Average accuracy with random behaviours, for |Aj | = 2 andN = 10, 50, 100. Results averaged over 500 processes
with 10000 time steps, for π∗j = πj and π∗j 6= πj each. X-axis shows score functions zk used in test statistic.

1 2 3 [1 2] [2 3] [1 3] [1 2 3]
0

10
20
30
40
50
60
70
80
90

100

%
 C

or
re

ct

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

πj* = πj

πj* ≠ πj

N = 10

N = 50

N = 100

Figure 6: Average accuracy with random behaviours, for |Aj | = 20 and N = 10, 50, 100. Results averaged over 500
processes with 10000 time steps, for π∗j = πj and π∗j 6= πj each. X-axis shows score functions zk used in test statistic.

three additional classes of behaviours. Specifically, we used
a benchmark framework specified by Albrecht et al. (2015)
which consists of 78 distinct 2×2 matrix games and three
methods to automatically generate sets of behaviours for
any given game. The three behaviour classes are Leader-
Follower-Trigger Agents (LFT), Co-Evolved Decision Trees
(CDT), and Co-Evolved Neural Networks (CNN). These
classes cover a broad spectrum of possible behaviours, in-
cluding fully deterministic (CDT), fully stochastic (CNN),
and hybrid (LFT) behaviours. Furthermore, all generated
behaviours are adaptive to varying degrees (i.e. they adapt
their action choices based on the other player’s choices). We
refer to Albrecht et al. (2015) for a more detailed description
of these classes (we used the same parameter settings).

The following experiments were performed for each be-
haviour class, using identical randomisation: For each of
the 78 games, we simulated 10 interaction processes, each
lasting 10000 time steps. For each process, we randomly
sampled behaviours πi ∈ Πi, πj ∈ Πj to control agents i
and j, respectively, where Πi, Πj (and Πi

j) were restricted
to the same behaviour class. In half of these processes, we
used a correct hypothesis π∗j = πj , and in the other half, we
sampled a random hypothesis π∗j ∈ Πi

j with π∗j 6= πj . As
before, we repeated each simulation for N = 10, 50, 100
and all constellations of score functions, but found that there
were virtually no differences. Hence, in the following, we
report results for N = 50 and the [z1, z2, z3] cluster.

Figure 10 shows the average accuracy achieved by our algo-
rithm for all three behaviour classes. While the accuracy for
π∗j = πj was generally good, the accuracy for π∗j 6= πj was
mixed. Note that this was not merely due to the fact that the
score functions were imperfect (cf. Section 4.1), since we

[1 2 3]
0

10
20
30
40
50
60
70
80
90

100

%
 C

or
re

ct

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

πj* = πj

πj* ≠ πj

LFT

CDT

CNN

Figure 10: Average accuracy for behaviour classes LFT,
CDT, CNN (N = 50). Πi and Πj restricted to same class.

[1 2 3]
0

10
20
30
40
50
60
70
80
90

100

%
 C

or
re

ct

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

πj* = πj

πj* ≠ πj

LFT

CDT

CNN

Figure 11: Average accuracy for behaviour classes LFT,
CDT, CNN (N = 50). Πi set to random behaviours.

obtained the same results for all combinations. Rather, this
reveals an inherent limitation of our approach, which is that
we do not actively probe aspects of the hypothesis π∗j . In
other words, our algorithm performs statistical hypothesis
tests based only on evidence that was generated by πi.

To illustrate this, it is useful to consider the tree structure
of behaviours in the CDT class. Each node in a tree πj
corresponds to a past action taken by πi. Depending on how
πi chooses actions, we may only ever see a subset of the

59

0.02 0.025 0.03 0.035 0.04 0.045
0

1

2

Test statistic

Fr
eq

ue
nc

y

0.02 0.025 0.03 0.035 0.04 0.045
0

50

100

D
en

si
ty

(a) N = 10

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
0

1

2

3

Test statistic

Fr
eq

ue
nc

y

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
0

20

40

60

D
en

si
ty

(b) N = 50

−0.02−0.015−0.01−0.005 0 0.005 0.01 0.015 0.02 0.025
0

5

Test statistic

Fr
eq

ue
nc

y

−0.02−0.015−0.01−0.005 0 0.005 0.01 0.015 0.02 0.025
0

50

D
en

si
ty

(c) N = 100

Figure 7: Example histograms and fitted skew-normal distributions (red curve) after 1000 time steps, for random behaviours
with |Aj | = 10 and N = 10, 50, 100. Using score function z1 in test statistic.

0.012 0.014 0.016 0.018 0.02
0

0.5

1

1.5

2

Test statistic

Fr
eq

ue
nc

y

0.012 0.014 0.016 0.018 0.02
0

50

100

150

200
D

en
si

ty

(a) N = 10

−5 0 5 10 15
x 10−3

0

1

2

Test statistic

Fr
eq

ue
nc

y

−5 0 5 10 15
x 10−3

0

50

100

D
en

si
ty

(b) N = 50

−5 0 5 10 15
x 10−3

0

1

2

3

4

5

Test statistic

Fr
eq

ue
nc

y

−5 0 5 10 15
x 10−3

0

20

40

60

80

100

D
en

si
ty

(c) N = 100

Figure 8: Example histograms and fitted skew-normal distributions (red curve) after 1000 time steps, for random behaviours
with |Aj | = 10 and N = 10, 50, 100. Using score functions z1, z2, z3 in test statistic.

entire tree that defines πj . However, if our hypothesis π∗j
differs from πj only in the unseen aspects of πj , then there is
no way for our algorithm to differentiate the two. Hence the
asymmetry in accuracy for π∗j = πj and π∗j 6= πj . Note that
this problem did not occur in random behaviours because,
there, all aspects are eventually visible.

Following this observation, we repeated the same experi-
ments but restricted Πi to random behaviours, with the goal
of exploring π∗j more thoroughly. As shown in Figure 11,
this led to significant improvements in accuracy, especially
for the CDT class. Nonetheless, choosing actions purely ran-
domly may not be a sufficient probing strategy, hence the
accuracy for CNN was still relatively low. For CNN, this
was further complicated by the fact that two neural networks
πj , π

′
j may formally be different (πj 6= π′j) but have essen-

tially the same action probabilities (with extremely small
differences). Hence, in such cases, we would require much
more evidence to distinguish the behaviours.

6 CONCLUSION

We hold the view that if an intelligent agent is to interact ef-
fectively with other agents whose behaviours are unknown,
it will have to hypothesise what these agents might be doing
and contemplate the truth of its hypotheses, such that appro-
priate measures can be taken if they are deemed false. In this
spirit, we presented a novel algorithm which decides this

question in the form of a frequentist hypothesis test. The
algorithm can incorporate multiple statistical criteria into
the test statistic and learns the test distribution during the in-
teraction process, with asymptotic correctness guarantees.
We presented results from a comprehensive set of experi-
ments, showing that our algorithm achieved high accuracy
and scalability at low computational costs.

There are several directions for future work: To bring some
structure into the space of score functions, we introduced
the concepts of consistency and perfection as minimal and
ideal properties. However, more research is needed to un-
derstand precisely what properties a useful score function
should satisfy, and whether the concept of perfection is fea-
sible or even necessary in the general case. Furthermore,
we used uniform weights to combine the computed scores
into a test statistic, and we also experimented with alterna-
tive weighting schemes to show that the weighting can have
a substantial effect on convergence rates. However, further
research is required to understand the effect of weights on
decision quality and convergence.

Finally, in this work, we assumed that the behaviour of the
other agent (j) could be described as a function of the infor-
mation available to our agent (i). An important extension
would be to also account for information that cannot be deter-
ministically derived from our observations, especially in the
context of robotics where observations are often described
as random variables.

60

References
S.V. Albrecht and S. Ramamoorthy. On convergence and

optimality of best-response learning with policy types
in multiagent systems. In Proceedings of the 30th Con-
ference on Uncertainty in Artificial Intelligence, pages
12–21, 2014.

S.V. Albrecht, J.W. Crandall, and S. Ramamoorthy. An em-
pirical study on the practical impact of prior beliefs over
policy types. In Proceedings of the 29th AAAI Conference
on Artificial Intelligence, pages 1988–1994, 2015.

A. Azzalini. A class of distributions which includes the
normal ones. Scandinavian Journal of Statistics, 12:171–
178, 1985.

I.V. Basawa and D.J. Scott. Efficient tests for stochastic
processes. Sankhyā: The Indian Journal of Statistics,
Series A, pages 21–31, 1977.

M.J. Bayarri and J.O. Berger. P values for composite null
models. Journal of the American Statistical Association,
95(452):1127–1142, 2000.

J.O. Berger and T. Sellke. Testing a point null hypothesis:
the irreconcilability of p values and evidence (with dis-
cussion). Journal of the American Statistical Association,
82:112–122, 1987.

G.E.P. Box. Sampling and Bayes’ inference in scientific
modelling and robustness. Journal of the Royal Statistical
Society. Series A (General), pages 383–430, 1980.

G.W. Brown. Iterative solution of games by fictitious play.
Activity Analysis of Production and Allocation, 13(1):374–
376, 1951.

S. Carberry. Techniques for plan recognition. User Model-
ing and User-Adapted Interaction, 11(1-2):31–48, 2001.

D. Carmel and S. Markovitch. Exploration strategies for
model-based learning in multi-agent systems: Exploration
strategies. Autonomous Agents and Multi-Agent Systems,
2(2):141–172, 1999.

E. Charniak and R.P. Goldman. A Bayesian model of plan
recognition. Artificial Intelligence, 64(1):53–79, 1993.

E.M. Clarke, O. Grumberg, and D.A. Peled. Model Check-
ing. MIT Press, 1999.

V. Conitzer and T. Sandholm. AWESOME: A general mul-
tiagent learning algorithm that converges in self-play and
learns a best response against stationary opponents. Ma-
chine Learning, 67(1-2):23–43, 2007.

D.R. Cox. The role of significance tests (with discussion).
Scandinavian Journal of Statistics, 4:49–70, 1977.

H. Fischer. A History of the Central Limit Theorem: From
Classical to Modern Probability Theory. Springer Sci-
ence & Business Media, 2010.

R.A. Fisher. The Design of Experiments. Oliver & Boyd,
1935.

D.P. Foster and H.P. Young. Learning, hypothesis testing,
and Nash equilibrium. Games and Economic Behavior,
45(1):73–96, 2003.

A. Gelman and C.R. Shalizi. Philosophy and the practice of
Bayesian statistics. British Journal of Mathematical and
Statistical Psychology, 66(1):8–38, 2013.

I. Gilboa and D. Schmeidler. A Theory of Case-Based Deci-
sions. Cambridge University Press, 2001.

P.J. Gmytrasiewicz and P. Doshi. A framework for sequen-
tial planning in multiagent settings. Journal of Artificial
Intelligence Research, 24(1):49–79, 2005.

K.G. Larsen and A. Skou. Bisimulation through probabilis-
tic testing. Information and Computation, 94(1):1–28,
1991.

X.-L. Meng. Posterior predictive p-values. The Annals of
Statistics, pages 1142–1160, 1994.

A. O’Hagan and T. Leonard. Bayes estimation subject to
uncertainty about parameter constraints. Biometrika, 63
(1):201–203, 1976.

D.B. Rubin. Bayesianly justifiable and relevant frequency
calculations for the applied statistician. The Annals of
Statistics, 12(4):1151–1172, 1984.

D. Ryabko and B. Ryabko. On hypotheses testing for er-
godic processes. In Proceedings of IEEE Information
Theory Workshop, pages 281–283, 2008.

A. Vehtari and J. Ojanen. A survey of Bayesian predictive
methods for model assessment, selection and comparison.
Statistics Surveys, 6:142–228, 2012.

Y. Yue, Y. Gao, O. Chapelle, Y. Zhang, and T. Joachims.
Learning more powerful test statistics for click-based re-
trieval evaluation. In Proceedings of the 33rd Interna-
tional ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 507–514, 2010.

61

Disciplined Convex Stochastic Programming:
A New Framework for Stochastic Optimization

Alnur Ali
Machine Learning Dept.

Carnegie Mellon University
alnurali@cmu.edu

J. Zico Kolter
School of Computer Science
Carnegie Mellon University
zkolter@cs.cmu.edu

Steven Diamond
Dept. of Computer Science

Stanford University
stevend2@stanford.edu

Stephen Boyd
Dept. of Electrical Engineering

Stanford University
boyd@stanford.edu

Abstract

We introduce disciplined convex stochastic pro-
gramming (DCSP), a modeling framework that
can significantly lower the barrier for modelers
to specify and solve convex stochastic optimiza-
tion problems, by allowing modelers to naturally
express a wide variety of convex stochastic pro-
grams in a manner that reflects their underly-
ing mathematical representation. DCSP allows
modelers to express expectations of arbitrary ex-
pressions, partial optimizations, and chance con-
straints across a wide variety of convex optimiza-
tion problem families (e.g., linear, quadratic, sec-
ond order cone, and semidefinite programs). We
illustrate DCSP’s expressivity through a number
of sample implementations of problems drawn
from the operations research, finance, and ma-
chine learning literatures.

1 INTRODUCTION

We introduce disciplined convex stochastic program-
ming (DCSP), a modeling framework for specifying and
solving convex stochastic programs: convex optimization
problems that include random variables. DCSP builds on
principles from stochastic optimization and convex analy-
sis to allow modelers to naturally express a wide variety of
stochastic programs in a manner that reflects their underly-
ing mathematical representation. At a high level, DCSP en-
ables modelers to specify — in a straightforward way —
and solve convex optimization problems that include (1)
expectations of arbitrary expressions, (2) partial optimiza-
tions, optimizations over (only) a subset of the optimization
variables, which additionally pave the way for the specifi-
cation of multi-stage stochastic programs (Sec. 2.1), and
(3) chance constraints, constraints that are required to hold
with high probability — these three building blocks can be
used to express a wide variety of stochastic optimization
problems.

Concurrently with this paper, we also make available an
open source Python implementation of DCSP, which we
refer to as cvxstoc1, that allows modelers to write and
solve stochastic programs — we present a variety of exam-
ples of using cvxstoc to model stochastic optimization
problems, drawn from the operations research, finance, and
machine learning literatures, in Sec. 4.

Related work Although other frameworks for stochastic
programming do exist ([24, 20, 11], and in Python mainly
[26]), they often require significant effort from the modeler
to manipulate the optimization problem into an amenable
form, support a limited number of stochastic programming
constructs (e.g., [11] only supports chance constraints with
uncertainty sets), and cannot express certain families of
convex optimization problems; indeed, checking the con-
vexity of and solving (convex) optimization problems in
general is challenging. DCSP builds on (and extends) dis-
ciplined convex programming (DCP) [10], a recently intro-
duced framework that makes it natural for modelers to ex-
press convex optimization problems, and additionally auto-
mates the tasks of verifying the convexity of these problems
and translating them into conic form (see, e.g., [8]). This
means that DCSP can be used to express and solve a wide
variety of stochastic convex optimization problems, includ-
ing linear, quadratic, second order cone, and semidefi-
nite programs. Probabilistic programming languages (e.g.,
[9, 16, 13]) offer an alternative approach, but tend to fo-
cus on inference problems, and may not contain the fea-
tures to capture traditional stochastic programming prob-
lem formulations; in contrast, convex modeling can be at-
tractive because local solutions are global solutions, effi-
cient solvers exist, and guarantees can often be obtained on
the optimality of a solution obtained by a solver.

This paper is structured as follows. In Sec. 2, we re-
view background on stochastic programming, DCP, and
cvxpy (an open source Python implementation of DCP).
In Sec. 3, we describe DCSP and cvxstoc’s syntax. In

1cvxstoc is available as an extension of the cvxpy Python
package [7]: see http://www.cvxpy.org.

62

Sec. 4, we present a number of examples that illustrate our
framework.

2 BACKGROUND

2.1 STOCHASTIC PROGRAMMING

A convex optimization problem has the form

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p,

where x ∈ Rn is the optimization variable, f0 : Rn → R is
a convex objective function, fi : Rn → R, i = 1, . . . ,m
are convex inequality constraint functions, and hi : Rn →
R, i = 1, . . . , p are affine equality constraint functions.

A convex stochastic program has the form

minimize
x

E f0(x, ω)

subject to E fi(x, ω) ≤ 0, i = 1, . . . ,m
hi(x) = 0, i = 1, . . . , p,

(1)

where fi : Rn × Rq → R, i = 0, . . . ,m are convex func-
tions in x for each value of a random variable ω ∈ Rq , and
hi : Rn → R, i = 1, . . . , p are (deterministic) affine func-
tions; since expectations preserve convexity, the objective
and inequality constraint functions in (1) are (also) convex
in x, making (1) a convex optimization problem.

Two-stage stochastic programs An important special
case of (1) is a so-called two-stage stochastic program (also
referred to as an optimization problem with recourse) [6]:

minimize
x

f0(x) + EQ(x, ω)

subject to fi(x) ≤ 0, i = 1, . . . ,m,
hi(x) = 0, i = 1, . . . , p,

(2)

where Q(x, ω) = infy{φ0(x, y, ω) : φi(x, y, ω) ≤ 0,
ψj(x, y) = 0, i = 1, . . . , s, j = 1, . . . , w}

is the second stage problem, y ∈ Rr is the second stage
optimization variable, φ0 : Rn × Rr × Rq → R is the
second stage objective function, and is convex in (x, y) for
each value of ω, φi : Rn × Rr × Rq → R, i = 1, . . . , s
are the second stage inequality constraint functions, also
convex in (x, y) for each value of ω, and ψi : Rn × Rr →
R, i = 1, . . . , w are the second stage equality constraint
functions, and are affine in (x, y). That is, Q is itself the
optimal value of another convex optimization problem, and
is convex in x for each value of ω.

Two-stage stochastic programs model the uncertain conse-
quences (in the second stage) of here-and-now decision-
making (in the first stage): e.g., in a finance application, we
may wish to decide which assets to purchase now, while
(also) factoring in how the asset prices might fluctate later.

Chance-constrained problems A chance constraint [5]
is a constraint on the variable x of the form

Prob (f(x, ω) ≤ 0) ≥ η,

where f is convex in x for each value of ω, and η is typi-
cally a large probability (e.g., 0.95); a chance-constrained
problem is an optimization problem with one or more
chance constraints. Chance constraints are typically non-
convex, although effective convex approximations exist
(see Sec. 3.3).

2.2 DISCIPLINED CONVEX PROGRAMMING

Disciplined convex programming (DCP) is a recently intro-
duced modeling framework for specifying and solving con-
vex optimization problems [10]. In a nutshell, DCP con-
sists of a library of convex atomic functions, and a convex
rule-set that prescribes how these atomic functions may be
composed to express (more complex) convex optimization
problems.

Convex rule-set Verifying the convexity of arbitrary ex-
pressions is challenging; DCP checks convexity using
Thm. 2.1, which is equivalent to enforcing a set of rules.

Theorem 2.1 ([10]). Suppose f = h(g1(x), . . . , gk(x)),
where h : Rk → R is convex and gi : Rn → R, i =
1, . . . , k, and one of the following holds for each i =
1, . . . , k:

• gi is convex and h is nondecreasing in argument i

• gi is concave and h is nonincreasing in argument i

• gi is affine.

Then f is convex2.

Thm. 2.1 permits a wide variety of convex expressions: for
example, the maximum eigenvalue of a symmetric matrix,
λmax(2X − 4I), where X ∈ Sn, is recognized as convex.
(On the other hand, as an example of a limitation of the
rule-set, the expression

(∑n
i=1 x

2
i

)1/2
, where x ∈ Rn, is

not recognized as convex, although it is recognized as con-
vex once reformulated as ‖x‖2.)

Library of atoms Atomic convex functions3 are speci-
fied in DCP in their epigraph form: for example, the (con-
vex) function f(x) = ‖x‖1 is specified as

minimize
t

1T t

subject to −t � x � t, (3)

2A similar result holds for concave functions.
3See http://www.cvxpy.org/en/latest/

tutorial/functions/index.html for a list of the
convex atoms available in cvxpy.

63

where x, t ∈ Rn. Thus, whenever a modeler writes the
atom f(x) = ‖x‖1, DCP internally replaces it with (3),
introduces the variable t, and can subsequently optimize
over (x, t).

Disciplined convex programming DCP certifies a prob-
lem’s convexity by constructing an abstract syntax tree for
the objective and constraint functions, with atoms as inter-
nal nodes, and variables and constants as leaves, and then
applying Thm. 2.1 recursively [10, 22].

2.3 cvxpy

cvxpy [7] is an open source Python DCP implementation;
we briefly describe its syntax next.

Variables are declared simply in cvxpy as follows:� �
x = Variable()
x = NonNegative()
X = Semidefinite(n)� �
The first line declares x to be a variable in R, the second
declares x to be a variable in the nonnegative orthant R+,
and the third declares X to be a (n × n matrix) variable in
the positive semidefinite cone Sn+.

Convex expressions are specified by composing con-
vex atoms; for example, the log loss

∑m
i=1 log(1 +

exp(−yi(wTxi + b))) can be specified by using the sim-
pler log sum exp atom as follows:� �
expr = [log_sum_exp(vstack(0, -y[i]*(w.T*x[i]+b)))

for i in range(m)]� �
An objective is specified by instantiating a sense (i.e.,
Minimize or Maximize) with an expression:� �
obj = x.T*c
Minimize(obj)� �
Constraints are specified by forming a list of expressions:� �
constrs = [x >= 0, x.T*numpy.ones((n,1)) == 1, ...]� �
A convex optimization problem, then, is specified by in-
stantiating a Problem with an objective and a list of con-
straints:� �
prob = Problem(Minimize(obj), constrs)
prob.solve()� �
The last line solves the optimization problem.

3 DISCIPLINED CONVEX STOCHASTIC
PROGRAMMING

In this section we present the chief methodological contri-
bution of the paper: the disciplined convex stochastic pro-
gramming (DCSP) framework, along with an overview of

its implementation in the cvxstoc Python package. In
a nutshell, DCSP consists of the addition of three opera-
tions to the disciplined convex programming (DCP) frame-
work, which can be used to express a wide variety of con-
vex stochastic programs: the ability to (1) compute (ap-
proximations to) expectations of arbitrary expressions, (2)
handle partial optimization, and (3) compute (approxima-
tions to) chance constraints.

3.1 RANDOM VARIABLES AND EXPECTATIONS

Random variables The most fundamental operations in
stochastic programs, and hence in DCSP, are the ability to
specify random variables, and compute (approximations to)
expectations of arbitrary expressions containing these ran-
dom variables. As in Sec. 2, DCSP assumes that all expres-
sions in a stochastic program are convex in the optimization
variable(s) for each value of the random variable(s) — thus,
from the point of view of DCSP, random variables do not
affect the convexity of their parent expressions and can be
regarded as equivalent to constants, thereby requiring no
additions to the DCP convex rule-set. (Practically speak-
ing, DCSP permits the specification of a variety of random
variables; see Sec. 3.4.)

Expectations DCSP computes (approximations to) ex-
pectations of arbitrary expressions using simple Monte
Carlo evaluation, i.e.,

E f(x, ω) ≈ (1/N)

N∑

i=1

f(x, ωi),

where f is (again) assumed to be convex in the optimiza-
tion variable x for each value of the random variable ω,
and ωi, i = 1, . . . , N are samples of ω; this approximation
is referred to as the sample average approximation (SAA)
in the stochastic programming literature, and methods that
use it are often referred to as scenario-based methods. By
the DCP rule-set, the nonnegative weighted sum of convex
functions is a convex function; thus, the expectation oper-
ator applied to an expression that is convex in x returns an
expression that is (also) convex in x.

The SAA is, of course, a very simple method for approx-
imating an expectation, and much more involved methods
for solving stochastic programs exist, but the clear advan-
tage of this method is its simplicity: any random variable
can be included in a stochastic program as long as we are
able to draw samples of it. If ω is a discrete random vari-
able, then DCSP calculates its expectation exactly; oth-
erwise, DCSP draws samples using Markov chain Monte
Carlo (MCMC) methods4 [15].

In the case of unconstrained stochastic programs, the SAA
objective value is (naturally) an unbiased estimator of the

4We implement MCMC by leveraging the PyMC Python pack-
age [15].

64

true objective value, E f0(x, ω), with variance ∝ 1/N ,
and an asymptotically normal distribution [21, chap. 5].
Thm. 3.1 additionally tells us that (roughly) both the opti-
mal value and optimal set of a SAA converge almost surely
to the optimal value and optimal set of the true problem.

Theorem 3.1 ([21, Thm. 5.3]). Define p̂∗N , ŜN and p∗, S as
the optimal value and optimal set of a SAA with N samples
and of the true problem, respectively, and let K ⊂ Rn be a
compact set. Suppose (a) S ⊆ K is nonempty, (b) ŜN ⊆ K
is nonempty a.s., (c) f0 is finite and continuous on K, and
(d) (1/N)

∑N
i=1 f0(x, ωi)

a.s.−−→ f(x) (uniformly) for x ∈
K. Then p̂∗N

a.s.−−→ p∗ and supx∈ŜN infy∈S ‖x−y‖2 a.s.−−→ 0.

p̂∗N is also a downward biased estimator of p∗, although
its bias decreases with N [21, Prop. 5.6]. In Sec. 3.4, we
empirically investigate the quality of the SAA.

3.2 PARTIAL OPTIMIZATION

DCSP adds a new partial optimization atom to the DCP
atom library, allowing modelers to express partial optimiza-
tions, i.e., optimizations over (only) a subset of the opti-
mization variables; this atom also forms the basis for spec-
ifying two-stage stochastic programs.

We start with the observation that partial optimization is a
convex operation (see, e.g., [4, page 87]): i.e., if f is convex
in (x, y) and C is a nonempty convex set, then

g(x) := inf
y
{f(x, y) : (x, y) ∈ C} ,

is convex in x.

Accordingly, DCSP specifies a new partial optimization
atom that takes as input a convex optimization problem and
returns (the epigraph form for) another convex atom, which
complies with the DCP prescription for specifying atoms
— this means that modelers can use partial optimizations
in stochastic programs as they would other atoms. In par-
ticular, two-stage stochastic programs, i.e., (2), can be nat-
urally expressed using this atom; furthermore, the second
stage optimization problem Q need not be in standard form
(as required by other frameworks).

3.3 CHANCE CONSTRAINTS

DCSP computes conservative approximations to chance
constraints, as they are typically nonconvex5; in particular,
DCSP replaces

Prob (f(x, ω) ≥ 0) ≤ 1− η, (4)

5One notable exception is chance constraints involving affine
functions of normal random variables, which can be expressed as
a second order cone constraint (see, e.g., [4, page 157]). How-
ever, we favor the approximate approach described in this section
because it is substantially more general, and applies to any class
of random variables.

with a convex upper bound derived as follows [3]. Suppose
φ : R → R+ is a nonnegative, increasing convex function
with φ(0) = 1; then φ(z) ≥ 1(z ≥ 0), where 1(z ≥ 0)
equals 1 if z ≥ 0 and 0 otherwise, and so φ(z/α) ≥ 1(z ≥
0), for some variable α ∈ R++. Thus

Eφ(f(x, ω)/α) ≥ Prob (f(x, ω) ≥ 0) ,

and so

αEφ(f(x, ω)/α) ≤ α(1− η) (5)
=⇒ Prob (f(x, ω) ≥ 0) ≤ 1− η,

i.e., (5) is a conservative approximation to (4). Note that (5)
is convex in (x, α): it is the perspective of the expectation
of a convex increasing function, φ, of a convex function,
f .6

In (5), α can be interpreted as modulating the “steepness”
of the approximation; several choices of φ are possible, and
are analogous, e.g., to different approximations to the zero-
one loss common in machine learning. DCSP uses φ(z) =
max{0, z + 1}, which roughly corresponds to a Markov-
inequality type bound7 on (4), and can also be interpreted
as the conditional value-at-risk of f(x, ω) [19]. Prop. 3.2
also tells us that this is the tightest possible choice of φ.

Practically speaking, DCSP approximates (5) with its SAA
(at which point all the benefits of DCP readily apply), then
optimizes over (x, α) to obtain the tightest possible bound;
in Sec. 4.3, we empirically investigate the quality of these
approximations.
Proposition 3.2 ([14]). Suppose φ : R → R+ is a non-
negative, increasing convex function and φ(z) ≥ 1(z ≥
0); then ∃α ∈ R+ such that E (f(x, ω)/α+ 1)+ ≤
Eφ(f(x, ω)).

3.4 cvxstoc

Next, we briefly detail the syntax of cvxstoc;
cvxstoc builds on cvxpy, and thus much of the usage
is similar.

Random variables are specified simply in cvxstoc as fol-
lows:� �
omega = RandomVariableFactory().create_normal_rv(0,1)� �
Here, omega is a standard normal random variable.
cvxstoc includes a RandomVariableFactory ob-
ject to simplify the specification of common random vari-
ables; see Sec. 4 for examples of the specification of other
random variables.

Expectations are specified by applying the expectation
atom:

6Alternatively, the modeler can fix α, in which case the bound
is convex in (x, η) if desired.

7Alternatively, one could take φ(z) = exp z, which would be
analogous to a Chernoff-type inequality.

65

� �
result = expectation(exp(omega*x), m)� �
Here, exp(omega*x) is the expression we wish to com-
pute the expectation of, and m is the number of Monte Carlo
samples to use when constructing the SAA.

Partial optimizations are specified by applying the
partial optimize atom:� �
atom = partial_optimize(prob, [y], [x])� �
The first argument here is a Problem, the second is a list
of variables to optimize over, and the third is a list of vari-
ables to not optimize over.

Two-stage stochastic programs can, in turn, be specified as
follows:� �
Q = partial_optimize(prob2, [y], [x])
prob1 = Problem(Minimize(f0 + expectation(Q(x),m)),

constrs)� �
Here, prob2 is the second stage problem, y is the second
stage variable, x is the first stage variable, and prob1 is
the first stage problem. Multi-stage stochastic programs
can be specified by iterating this construction:� �
Q2 = partial_optimize(prob3, [z], [x,y])
prob2 = Problem(Minimize(phi0 + expectation(Q2(y),m)),

↪→ constrs2)
Q1 = partial_optimize(prob2, [y], [x])
prob1 = Problem(Minimize(f0 + expectation(Q1(x),m)),

constrs1)� �
Chance constraints are specified by instantiating the prob
class and chaining it with an inequality:� �
prob(constr >= 0, m) <= 1-eta� �
Here, constr is a (stochastic) constraint, and m is the
number of Monte Carlo samples to use.

3.4.1 Quality of the sample average approximation

Here, we investigate the quality of the SAA employed by
cvxstoc in the special case of a (unconstrained) least
squares problem

minimize
x

E ‖Ax− b‖22, (6)

where the entries of A ∈ Rm×n ∼ Normal(µ1, σ
2
1), b ∈

Rm ∼ Normal(µ2, σ
2
2), and x ∈ Rn, in which case the

objective has the analytic form

xT EATAx− 2E bTAx+ E bT b,

assuming we know the second moments of (A, b). Fig. 1
plots the optimal value of the true problem (6) and a SAA
to (6): we see that the SAA obtains reasonable accuracy
after roughly 100 Monte Carlo samples.

Figure 1: The optimal values of the stochastic least squares prob-
lem (6) (red) and a SAA to (6) (blue) with 95% confidence inter-
vals (light blue) vs. the number of Monte Carlo samples; in this
case, m = 100, n = 50, although similar results hold across a
variety of problem sizes.

4 EXAMPLES

At this point, we switch gears slightly and present sev-
eral examples of stochastic programs along with their
corresponding cvxstoc implementations8; the majority
of these applications are well established or previously
known, though we also include some formulations that are
novel, to the best of our knowledge (namely, the precise
formulation of the stochastic optimal power flow problem
in Sec. 4.4, and the budgeted learning of a classifier in a
cascade problem in Sec. 4.6).

4.1 YIELD-CONSTRAINED COST
MINIMIZATION

We begin with a simple example from the operations re-
search literature (see, e.g., [4, page 107]). Consider the
(general) problem of choosing the parameters x ∈ Rn
governing a manufacturing process so that our cost cTx,
where c ∈ Rn, is minimized, while the parameters lie
in a set of allowable values S; we can model noise in
the manufacturing process by expressing this constraint as
Prob(x+ ω ∈ S) ≥ η, where ω ∈ Rn is a random vector
and η is a large probability (e.g., 0.95), which is referred
to as an η-yield constraint. Thus, we have the optimization
problem

minimize
x

cTx

subject to Prob(x+ ω ∈ S) ≥ η.

8Due to space constraints, we present one of these examples
in the supplementary material.

66

Note that if the distribution over ω is log-concave and S
is a convex set, then this constraint is convex in x. We
can directly express the yield-constrained cost minimiza-
tion problem using cvxstoc; an implementation is given
in Listing 1 (S is taken to be an ellipsoid).� �
Create problem data
n = 10
c = numpy.random.randn(n)
P, q, r = numpy.eye(n), numpy.random.randn(n), numpy.

↪→ random.randn()
mu, Sigma = numpy.zeros(n), 0.1*numpy.eye(n)
omega = RandomVariableFactory().create_normal_rv(mu,

↪→ Sigma)
m, eta = 100, 0.95

Create and solve optimization problem
x = Variable(n)
yield_constr = prob(quad_form(x+omega,P)

+ (x+omega).T*q + r >= 0, m) <= 1-eta
p = Problem(Minimize(x.T*c), [yield_constr])
p.solve()� �
Listing 1: A cvxstoc implementation of the yield-constrained
cost minimization problem.

4.2 THE NEWS VENDOR PROBLEM

The news vendor problem is a classic problem in the
stochastic programming literature (see, e.g., [2, page 15]);
in this problem, a vendor must decide how much newspa-
per to stock, so that profit is maximized while backorder
and return fees (due to excess or insufficient demand, re-
spectively) are minimized, in the face of uncertain demand.

Our optimization variables are the number of units of
stocked newspaper x ∈ R+, the number of units purchased
by customers y1 ∈ R+, and the number of unpurchased
(surplus) units that must be returned by the vendor y2 ∈
R+. Our problem data are b, s, r ∈ R+, which denote the
price to stock, sell, and return a unit of newspaper, respec-
tively. Lastly, we let the random variable d ∼ Categorical
model the uncertain (newspaper) demand.

We can pose the news vendor problem as the following
two-stage stochastic program:

minimize
x

bx+ EQ(x)

subject to 0 ≤ x ≤ u,

where Q(x) = min
y1,y2

−(sy1 + ry2)

s.t. y1 + y2 ≤ x
0 ≤ y1 ≤ d
y2 ≥ 0.

A cvxstoc implementation of the news vendor problem
is given in Listing 2; in contrast, a PySP [26] implemen-
tation (see the supplementary material) required 111 lines
spanning 6 files.� �
Create problem data
b, s, r, u = 10, 25, 5, 150
d_probs = [0.3, 0.6, 0.1]
d_vals = [55, 139, 141]

d = RandomVariableFactory().create_categorical_rv(
↪→ d_vals, d_probs)

Create optimization variables
x = NonNegative()
y1, y2 = NonNegative(), NonNegative()

Create second stage problem
obj = -s*y1 - r*y2
constrs = [y1+y2<=x, y1<=d]
p2 = Problem(Minimize(obj), constrs)
Q = partial_optimize(p2, [y1, y2], [x])

Create and solve first stage problem
p1 = Problem(Minimize(b*x + expectation(Q(x), want_de=

↪→ True)), [x<=u])
p1.solve()� �
Listing 2: A cvxstoc implementation of the news vendor
problem.

We can also represent a stochastic program by means of an
influence diagram, a directed acyclic graph, where circular
nodes correspond to random variables, square nodes corre-
spond to decision variables, diamond nodes correspond to
costs, and edges flow from node x to node y iff the value
of node y depends in some way on the value of node x;
Fig. 2 presents the influence diagram for the news vendor
problem.

−s

y1

d

−r

y2

b

x

Figure 2: The influence diagram for the news vendor problem.

4.3 PORTFOLIO OPTIMIZATION

In portfolio optimization, we wish to maximize wealth
while meeting certain restrictions on risk, in the face of
uncertain asset prices; we can pose a standard portfolio op-
timization problem [12], subject to two kinds of risk con-
straints, as a stochastic program.

The risk constraints we consider here are the value-at-risk
(VaR) (see, e.g., [25, chap. 29]) and conditional value-at-
risk (CVaR) (e.g., [19], [23, page 286]); intuitively, VaR
allows the modeler to control the probability of a loss (on
asset sales) beyond a (modeler-defined) threshold, and is
often nonconvex, while CVaR allows the modeler to control
the expected value of such a loss, and is convex.

Our optimization variables are the allocation vector (across
a set of n assets) x ∈ Rn, and the CVaR β ∈ R; the prob-

67

lem data is the loss threshold u ∈ R+, and the vector of
returns p ∼ Normal(p̄,Σ).

We can pose a CVaR-constrained portfolio optimization
problem as

minimize
x,β

E−pTx
subject to β + 1/(1− η)E(−pTx− β)+ ≤ u

1Tx = 1, x � 0,

(7)

where (z)+ := max{0, z}.
A cvxstoc implementation of the CVaR-constrained
portfolio optimization problem is given in Listing 3.� �
Create problem data
n = 10
pbar, Sigma = numpy.random.randn(n), numpy.eye(n)
p = RandomVariableFactory().create_normal_rv(pbar,

↪→ Sigma)
u, eta, m = numpy.random.rand(), 0.95, 100

Create optimization variables
x, beta = NonNegative(n), Variable()

Create and solve optimization problem
cvar = expectation(pos(-x.T*p - beta), m)
cvar = beta + 1/(1-eta)*cvar
prob = Problem(Minimize(expectation(-x.T*p,m)),

[x.T*numpy.ones((n,1)) == 1, cvar<=u])
prob.solve()� �
Listing 3: A cvxstoc implementation of the CVaR-constrained
portfolio optimization problem.

We can also pose a VaR-constrained portfolio optimization
problem as

minimize
x

E−pTx
subject to Prob(pTx ≤ 0) ≤ 1− η

1Tx = 1, x � 0.

(8)

As per Sec. 3.3, DCSP replaces the chance constraint in
(8) with a sample average approximation (SAA) to a (more
conservative) CVaR constraint (making (8) equivalent to
(7)). We investigate the quality of this approximation in the
special case where p ∼ Normal(p̄,Σ), in which case both
the VaR and CVaR constraints have analytic forms [18]: the
VaR constraint can be expressed as

p̄Tx ≥ Φ−1(η)‖Σ1/2x‖2, (9)

where Φ−1(·) is the inverse standard normal cumulative
distribution function, while the CVaR constraint can be ex-
pressed as

p̄Tx ≥ exp
(
−(Φ−1(η))2/2

)
/
(√

2π(1− η)‖Σ1/2x‖2
)
.

(10)
Fig. 3 plots the optimal value (i.e., wealth) of the VaR-
constrained portfolio optimization problem (8), the CVaR-
constrained portfolio optimization problem (7), and a SAA
to (7): we see that the wealth obtained by constraining VaR
is indeed less conservative than by constraining CVaR. The

SAA also obtains reasonable accuracy after roughly 100
Monte Carlo samples. Fig. 4 plots the probability of a SAA
to (7) vs. the number of Monte Carlo samples, and has a
similar interpretation.

Figure 3: The optimal values (higher means more wealth) of the
VaR-constrained portfolio optimization problem (8) (green), the
CVaR-constrained portfolio optimization problem (7) (red), and
a SAA to (7) (blue) with 95% confidence intervals (light blue)
vs. the number of Monte Carlo samples; the problem size n = 50,
although similar results hold across a variety of problem sizes.

4.4 OPTIMAL POWER FLOW

Consider a network G = (V, E), with a set of vertices V
and a set of edges E , that models an electrical grid: i.e., a
subset of the vertices G ⊆ V are generators, which produce
power, the remaining vertices L = V \ G are loads, which
consume power, and an edge is drawn between a generator
and a load if and only if there is a (physical) transmission
line between them.

In the standard optimal power flow problem, we wish to
minimize the total cost of generating power, while satis-
fying demand, subject to the topology of the network and
per-generator capacity constraints. We often do not have
complete control over all the generators in the grid, so we
denote the subset of generators that we do have control over
as G1, and also define G2 = G \G1; we also defineG = |G|,
G1 = |G1|, G2 = |G2|, and L = |L|. We write the per-
generator costs as cG1 ∈ RG1 and cG2 ∈ RG2 , and the
per-generator lower and upper (respectively) limits as l and
u ∈ RG.

The topology/demand constraints can be expressed as
Aplin = (pG1 , pG2 , pL), where A ∈ Rn×E is the incidence
matrix for the (directed) graph G, pG1 ∈ RG1 and pG2 ∈
RG2 are variables denoting (nonnegative) power genera-
tion, pL ∈ RL are constants denoting the (non-positive)
power consumption at the loads, and plin ∈ RE are vari-

68

Figure 4: The probability of a SAA to (7) (blue) with 95% con-
fidence intervals (light blue) and β (red) vs. the number of Monte
Carlo samples; the problem size n = 50, although similar results
hold across a variety of problem sizes.

ables denoting the power flowing through each edge.

Now, additionally consider the presence of a set of renew-
able generators (e.g., wind farms), which we denote W ,
whose (intermittent) generation an operator can either sell
on the spot market [17], or use to power loads. We let
W = |W|, and model this situation with a random vector
pW ∈ RW , (pW)i ∼ LogNormal(µi, σ

2
i), i = 1, . . . ,W .

We can cast this as the following optimization problem:

minimize
pG1

EQ(pG1)

where

Q(pG1) = min
pG2

,z,plin

[
cG1
cG2

]T [
pG1
pG2

]
+ cTWz

s.t. Aplin =

pG1
pG2
pL

pW − z

0 � z � pW
|plin| � ulin
lG �

[
pG1
pG2

]
� uG ,

cW is the (nonpositive) revenue obtained by selling renew-
able power, z ∈ RW is the decision vector for the renew-
able generators, and ulin are the limits on the power flowing
through each edge.

A cvxstoc implementation of the stochastic optimal
power flow problem is given in Listing 4. We solved this
problem on the IEEE 14 Bus Test Case, i.e., with n = 14,
G1 = 1, G2 = 1, W = 1, and L = 10: Fig. 5 presents the
results.

� �
Create optimization variables
p_g1, p_g2 = NonNegative(), NonNegative()
z = NonNegative(num_winds)
p_lines = Variable(E)
p_w = RandomVariable(pymc.Lognormal(name="p_w", mu=1,

tau=1, size=num_winds))

Create second stage problem
p_g = vstack(p_g1, p_g2)
p = vstack(p_g1,

p_g2,
p[load_idxes[:-1]],
p_w-z,
p[load_idxes[-1]])

p2 = Problem(Minimize(p_g.T*c_g + z.T*c_w),
[A*p_lines == p, p_g<=u_gens, z<=p_w,
abs(p_lines)<=u_lines])

Q = partial_optimize(p2, [p_g2, z, p_lines], [p_g1])

Create and solve first stage problem
p1 = Problem(Minimize(expectation(Q(p_g1), m)))
p1.solve()� �
Listing 4: A cvxstoc implementation of the optimal power
flow problem.

Figure 5: The electrical grid and (optimal) power generation for
the optimal power flow problem on the IEEE 14 Bus Test Case.
Red vertices are generators: a positive number indicates the opti-
mal power generation, while “sec. stg.” denotes an uncontrolled
generator. The blue vertex is a (stochastic) renewable generator:
its mean available (wind) power is shown above it. Other vertices
are loads: their (nonpositive) demanded powers are shown above
them.

4.5 ROBUST SUPPORT VECTOR MACHINE

Consider the problem of learning a support vector machine
(SVM) from a set of m data points {(xi, yi)}mi=1. Sup-
pose we would like to (additionally) model the fact that
our data collection process is noisy (in order to gain ro-
bustness in our solution), by incorporating the belief that
(say) xi ∼ Normal(µ1,Σ1) for all i where yi = 1 and
xi ∼ Normal(µ2,Σ2) for all i where yi = −1 into
the learning process. We can thereby pose the following
chance-constrained variant of the canonical (soft-margin)

69

SVM optimization problem [1]

minimize
w,b,ξi

‖w‖22 + C
∑m
i=1 ξi

subject to Prob
(
yi(w

Txi + b) ≥ 1− ξi
)
≥ η,

ξi ≥ 0, i = 1, . . . ,m,

where w ∈ Rn, b ∈ R, ξi ∈ R+ for i = 1, . . . ,m, C
is the regularization trade-off parameter, and η is a large
probability (e.g., 0.95)9.

A cvxstoc implementation of the robust SVM problem
is given in Listing 5.� �
w, b, xi = Variable(n), Variable(), NonNegative(m)

constr = []
Sigma = 0.1*numpy.eye(n)
for i in range(m):

mu = numpy.array(X[i])[0]
x = RandomVariableFactory().create_normal_rv(mu,
↪→ Sigma)
chance = prob(-y[i]*(w.T*x+b) >= (xi[i]-1), ns)
constr += [chance <= eta]

p = Problem(Minimize(norm(w,2) + C*sum_entries(xi)),
constr)

p.solve()� �
Listing 5: A cvxstoc implementation of the robust SVM
problem.

4.6 BUDGETED LEARNING OF A CLASSIFIER
IN A CASCADE

Suppose we are interested in learning a (single) classifier
that is part of a system (cascade) of classifiers; i.e., we are
interested in estimating the parameters a ∈ Rn and b ∈ R
of a first stage classifier, whose output is to be (somehow)
combined with the output of a second stage classifier, be-
fore presenting the combined output to a user10.

If we knew the second stage classifier’s parameters, then
our learning task would be trivial. Instead, we choose to
model our uncertainty as follows: we assume that we do
know the second stage classifier’s loss function, but remain
uncertain of its feature representation. We can pose this as
a two-stage stochastic program, where the expectation in
the second stage is taken over all possible feature represen-
tations for the second stage classifier; for instance, if the
cascade is being used for document classification, then we
might posit that each possible feature representation in the
second stage is a function of a sample of a word from a
generative model (e.g., latent Dirichlet allocation).

We additionally assume that there is some overall test time
budget on the cascade, which we express as an upper bound
u ∈ R+ on the quantity ‖a‖1 + ‖c‖1, where c ∈ Rq are the
parameters of the second stage classifier [27].

9We note that this formulation is quite fine-grained, in the
sense that per-data point noise models/distributions, as well as
mistake probabilities, may be specified.

10Such scenarios are common in web search: see, e.g., [27].

Concretely, we can write this optimization problem as

minimize
a,b

L1 (a, b; {xi, yi}mi=1) + EQ(a, b),

where Q(a, b) = min
c,d

L2 (c, d; {zi, wi}pi=1)

s.t. ‖a‖1 + ‖c‖1 ≤ u,
{(xi, yi)}mi=1 is the (fixed) training set of m points in
Rn for the first stage classifier, and {(zi, wi)}pi=1 is the
(stochastic) training set of p points in Rq for the second
stage classifier.

A cvxstoc implementation, where L1 and L2 are (both)
taken to be the `2-regularized log loss, is given in Listing
6.� �
Create optimization variables
a, b = Variable(n), Variable()
c, d = Variable(q), Variable()

Create second stage problem
obj2 = [log_sum_exp(vstack(0, -w[i]*(c.T*z[i]+d)))

for i in range(p)]
budget = norm1(a) + norm1(c)
p2 = Problem(Minimize(sum(obj2) + C*norm(c,2)),

[budget<=u])
Q = partial_optimize(p2, [c,d], [a,b])

Create and solve first stage problem
obj1 = [log_sum_exp(vstack(0, -y[i]*(x[i]*a+b)))

for i in range(m)]
p1 = Problem(Minimize(sum(obj1) + C*norm(a,2) +

expectation(Q(a,b), ns)), [])
p1.solve()� �
Listing 6: A cvxstoc implementation of the budgeted learning
of a classifier in a cascade problem.

5 CONCLUSION

We described disciplined convex stochastic program-
ming (DCSP), a modeling framework that can significantly
lower the barrier for modelers to specify and solve con-
vex stochastic programs. We presented a number of sam-
ple implementations of stochastic programs that illustrated
DCSP’s expressivity; in constrast, other frameworks often
require significantly more effort from the modeler to ex-
press the problem and/or manipulate it into standard form,
support a limited number of stochastic programming con-
structs, and cannot express certain families of convex opti-
mization problems.

Acknowledgements

We thank John Duchi and the reviewers for helpful dis-
cussions. This work was supported by a Dept. of Energy
Computational Science Graduate Fellowship under grant
number DE-FG02-97ER25308, and by the National Sci-
ence Foundation under grant number IIS-1320402.

70

References

[1] A. Ben-Tal, S. Bhadra, C. Bhattacharyya, and J. Nath.
Chance-constrained uncertain classification via ro-
bust optimization. Mathematical Programming,
127(1):145–173, 2011.

[2] J. Birge and F. Louveaux. Introduction to Stochas-
tic Programming. Springer Series in Operations Re-
search and Financial Engineering. Springer, 1997.

[3] S. Boyd. Chance-constrained optimization.
http://stanford.edu/class/ee364a/
lectures/chance_constr.pdf, January
2015.

[4] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[5] A. Charnes and W. Cooper. Chance-constrained pro-
gramming. Management Science, 6(1):73–79, 1959.

[6] G. Dantzig. Linear programming under uncertainty.
Management Science, 50(12 Supplement):1764–
1769, December 2004.

[7] S. Diamond, E. Chu, and S. Boyd. CVXPY: A
Python-embedded modeling language for convex op-
timization, version 0.2. http://www.cvxpy.
org, May 2014.

[8] A. Domahidi, E. Chu, and S. Boyd. ECOS: An SOCP
solver for embedded systems. In Proceedings of the
European Control Conference, 2013.

[9] N. Goodman, V. Mansinghka, D. Roy, K. Bonawitz,
and J. Tenenbaum. Church: A language for gener-
ative models with non-parametric memoization and
approximate inference. In Proceedings of the 24th
Conference on Uncertainty in Artificial Intelligence,
2008.

[10] M. Grant. Disciplined Convex Programming. PhD
thesis, Stanford University, 2004.

[11] J. Löfberg. YALMIP: A toolbox for modeling
and optimization in MATLAB. In Proceedings of
CCA/ISIC/CACSD, September 2004.

[12] H. Markowitz. Portfolio selection. The Journal of
Finance, 7(1):77–91, 1952.

[13] T. Minka, J. Winn, J. Guiver, S. Webster, Y. Za-
ykov, B. Yangel, A. Spengler, and J. Bronskill. In-
fer.NET 2.6, 2014. Microsoft Research Cambridge.
http://research.microsoft.com/infernet.

[14] A. Nemirovski and A. Shapiro. Convex approxima-
tions of chance-constrained programs. SIAM Journal
on Optimization, 17(4):969–996, 2006.

[15] A. Patil, D. Huard, and C. Fonnesbeck. PyMC:
Bayesian stochastic modelling in Python. Journal of
Statistical Software, 35(4):1–81, 7 2010.

[16] A. Pfeffer. Figaro: An object-oriented probabilis-
tic programming language. Charles River Analytics
Technical Report, page 137, 2009.

[17] D. Phan and S. Ghosh. Two-stage stochastic op-
timization for optimal power flow under renewable
generation uncertainty. ACM Transactions on Mod-
eling and Computer Simulation, 24(1):2:1–2:22, Jan-
uary 2014.

[18] A. Prékopa and R. Wets. Stochastic Programming,
volume 27. North-Holland, 1986.

[19] R. Rockafellar and S. Uryasev. Conditional value-at-
risk for general loss distributions. Journal of Banking
and Finance, pages 1443–1471, 2002.

[20] Richard E Rosenthal. GAMS — A user’s guide. 2004.

[21] A. Shapiro, D. Dentcheva, and A. Ruszczynski. Lec-
tures on Stochastic Programming: Modeling and
Theory. MOS-SIAM Series on Optimization. Soci-
ety for Industrial and Applied Mathematics, 2009.

[22] M. Udell, K. Mohan, D. Zeng, J. Hong, S. Diamond,
and S. Boyd. Convex optimization in Julia. In Pro-
ceedings of the 1st First Workshop for High Perfor-
mance Technical Computing in Dynamic Languages,
2014.

[23] S. Uryasev and P. Pardalos. Stochastic Optimization.
Applied Optimization. Springer, 2001.

[24] C. Valente, G. Mitra, M. Sadki, and R. Fourer. Ex-
tending algebraic modelling languages for stochas-
tic programming. INFORMS Journal on Computing,
21(1):107–122, 2009.

[25] S. Wallace and W. Ziemba. Applications of Stochas-
tic Programming. MPS-SIAM Series on Optimiza-
tion. Society for Industrial and Applied Mathematics,
2005.

[26] J. Watson, D. Woodruff, and W. Hart. PySP: Model-
ing and solving stochastic programs in Python. Math-
ematical Programming Computation, 4(2):109–149,
2012.

[27] Z. Wu, M. Kusner, K. Weinberger, M. Chen, and
O. Chapelle. Classifier cascades and trees for mini-
mizing feature evaluation cost. Journal of Machine
Learning Research, 15:2113–2144, 2014.

71

Intelligent Affect: Rational Decision Making for Socially Aligned Agents

Nabiha Asghar and Jesse Hoey
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario, CANADA

{nasghar,jhoey}@cs.uwaterloo.ca

Abstract

Affect Control Theory (ACT) is a mathematical
model that makes accurate predictions about hu-
man behaviour across a wide range of settings.
The predictions, which are derived from statistics
about human actions and identities in real and
laboratory environments, are shared prescriptive
and affective behaviours that are believed to lead
to solutions to everyday cooperative problems. A
generalisation of ACT, called BayesAct, allows
the principles of ACT to be used for human-
interactive agents by combining a probabilistic
version of the ACT dynamical model of affect
with a utility function encoding external goals.
Planning in BayesAct, which we address in this
paper, then allows one to go beyond the affective
prescription, and leads to the emergence of more
complex interactions between “cognitive” and
“affective” reasoning, such as deception leading
to manipulation and altercasting. We use a con-
tinuous variant of a successful Monte-Carlo tree
search planner (POMCP) that dynamically dis-
cretises the action and observation spaces while
planning. We give demonstrations on two classic
two-person social dilemmas.

1 INTRODUCTION

BayesAct [4, 20, 21, 22] is a partially-observable Markov
decision process (POMDP) model of affective interactions
between a human and an artificial agent. BayesAct is based
upon a sociological theory called “Affect Control The-
ory” (ACT) [16], but generalises this theory by modeling
affective states as probability distributions, and allowing
decision-theoretic reasoning about affect. BayesAct posits
that humans will strive to achieve consistency in shared af-
fective cultural sentiments about events, and will seek to
increase alignment (decrease deflection) with other agents
(including artificial ones). Importantly, this need to align

implicitly defines an affective heuristic (a prescription1) for
making decisions quickly within interactions. Agents with
sufficient resources can do further planning beyond this
prescription, possibly allowing them to manipulate other
agents to achieve individual profit in collaborative games.

BayesAct arises from the symbolic interactionist tradition
in sociology and proposes that humans learn and maintain
a set of shared cultural affective sentiments about people,
objects, behaviours, and about the dynamics of interper-
sonal events. Humans use a simple affective mapping to
appraise individuals, situations, and events as sentiments
in a three dimensional vector space of evaluation (good
vs. bad), potency (strong vs. weak) and activity (active
vs. inactive). These mappings can be measured, and the
culturally shared consistency has repeatedly been demon-
strated to be extremely robust in large cross-cultural stud-
ies [17, 29]. Many believe this consistency “gestalt” is a
keystone of human intelligence. Humans use it to make
predictions about what others will do, and to guide their
own behaviour. The shared sentiments, and the resulting
affective ecosystem of vector mappings, encodes a set of
social prescriptions that, if followed by all members of a
group, results in an equilibirium or social order [14] which
is optimal for the group as a whole, rather than for individ-
ual members. Humans living at the equilibrium “feel” good
and want to stay there. The evolutionary consequences of
this individual need are beneficial for the species.

Nevertheless, humans are also a curious, crafty and devi-
ous bunch, and often use their cortical processing power to
go beyond these prescriptions, finding individually bene-
ficial strategies that are still culturally acceptable, but that
are not perfectly normative. This delicate balance is main-
tained by evolution, as it is beneficial for the species to
avoid foundering within a rigid set of rules. In this pa-
per, starting from the principles of BayesAct, we investi-
gate how planning beyond cultural prescriptions can result
in deceptive or manipulative strategies in two-player social
dilemma games. To handle the continuous state, action and
observation spaces in BayesAct, we use a Monte-Carlo tree

1We prefer prescription, but also use norm, although the latter
must not be mis-interpreted as logical rules (see Section 5).

72

search (MCTS) algorithm that dynamically clusters obser-
vations and actions, and samples actions from the BayesAct
prescriptions as a distribution over the action space.

This paper makes two contributions. First, it describes how
to use MCTS planning in BayesAct, and gives arguments
for why this is an appropriate method. This idea was only
hinted at in [22]. Second, it shows how this planning can
lead to realistic and manipulative behaviours in the pris-
oner’s dilemma and battle of the sexes games.

2 BACKGROUND

2.1 Partially Observable Markov Decision Processes

A partially observable Markov decision process
(POMDP) [1] is a stochastic control model that con-
sists of a finite set S of states; a finite set A of actions;
a stochastic transition model Pr : S × A → ∆(S), with
Pr(s′|s, a) denoting the probability of moving from state s
to s′ when action a is taken, and ∆(S) is a distribution over
S; a finite observation set Ωs; a stochastic observation
model, Pr(ωs|s), denoting the probability of making
observation ωs ∈ Ωs while the system is in state s; and a
reward assigning R(a, s′) to a transition to s′ induced by
action a. A policy maps belief states (i.e., distributions
over S) into actions, such that the expected discounted
sum of rewards is (approximately) maximised. We use
factored POMDPs in which the state is represented by the
cross-product of a set of variables or features. POMDPs
have been used as models for many human-interactive
domains, including assistive technologies [19].

2.2 Affect Control Theory

Affect Control Theory (ACT) arises from work on the psy-
chology and sociology of human social interaction [16].
ACT proposes that social perceptions, behaviours, and
emotions are guided by a psychological need to minimize
the differences between culturally shared fundamental af-
fective sentiments about social situations and the transient
impressions resulting from the interactions between ele-
ments within those situations. Fundamental sentiments,
f , are representations of social objects, such as interac-
tants’ identities and behaviours, as vectors in a 3D affec-
tive space, hypothesised to be a universal organising prin-
ciple of human socio-emotional experience [29]. The ba-
sis vectors of affective space are called Evaluation/valence,
Potency/control, and Activity/arousal (EPA). EPA profiles
of concepts can be measured with the semantic differen-
tial, a survey technique where respondents rate affective
meanings of concepts on numerical scales with opposing
adjectives at each end (e.g., good, nice vs. bad, awful for
E, weak, little vs. strong, big for P, and calm, passive vs.
exciting, active for A). Affect control theorists have com-
piled lexicons of a few thousand words along with aver-
age EPA ratings obtained from survey participants who are
knowledgeable about their culture [17]. For example, most

English speakers agree that professors are about as nice as
students (E), more powerful (P) and less active (A). The
corresponding EPAs are [1.7, 1.8, 0.5] for professor and
[1.8, 0.7, 1.2] for student2. In Japan, professor has the same
P (1.8) but students are seen as less powerful (0.21).

The three dimensions were found by Osgood to be ex-
tremely robust across time and cultures. More recently
these three dimensions are also thought to be related di-
rectly to intrinsic reward [12]. That is, it seems that reward
is assessed by humans along the same three dimensions:
Evaluation roughly corresponds with expected value, Po-
tency with risk (e.g. powerful things are more risky to
deal with, because they do what they want and ignore
you), and Activity corresponds roughly with uncertainty,
increased risk, and decreased values (e.g. faster and more
excited things are more risky and less likely to result in
reward) [12]. Similarly, Scholl argues that the three dimen-
sions are in correspondence with the major factors govern-
ing choice in social dilemmas [33]. Evaluation is a measure
of affiliation or correspondence between outcomes: agents
with similar goals will rate each other more positively. Po-
tency is a measure of dependence: agents who can reach
their goals independently of other agents are more power-
ful. Activity is a measure of the magnitude of dependence:
agents with bigger payoffs will tend to be more active.

Social events can cause transient impressions, τ (also three
dimensional in EPA space) of identities and behaviours that
may deviate from their corresponding fundamental senti-
ments, f . ACT models this formation of impressions from
events with a grammar of the form actor-behaviour-object.
Consider for example a professor (actor) who yells (be-
haviour) at a student (object). Most would agree that this
professor appears considerably less nice (E), a bit less po-
tent (P), and certainly more aroused (A) than the cultural
average of a professor. Such transient shifts in affective
meaning caused by specific events are described with mod-
els of the form τ ′ = MG (f ′, τ), where M is a matrix
of statistically estimated prediction coefficients from em-
pirical impression-formation studies and G is a vector of
polynomial features in f ′ and τ . In ACT, the weighted sum
of squared Euclidean distances between fundamental senti-
ments and transient impressions is called deflection, and is
hypothesised to correspond to an aversive state of mind that
humans seek to avoid. This affect control principle allows
ACT to compute prescriptive actions for humans: those
that minimize the deflection. Emotions in ACT are com-
puted as a function of the difference between fundamentals
and transients [16], and are thought to be communicative
signals of vector deflection that help maintain alignment
between cooperative agents. ACT has been shown to be
highly accurate in explaining verbal behaviours of mock
leaders in a computer-simulated business [34], and group
dynamics [18], among others [27].

2 All EPA labels and values in the paper are taken from the
Indiana 2002-2004 ACT lexicon [17]. Values range by historical
convention from −4.3 to +4.3.

73

2.3 Bayesian Affect Control Theory

Recently, ACT was generalised and formulated as a
POMDP for human-interactive artificially intelligent sys-
tems [22]. This new model, called BayesAct, generalises
the original theory in three ways. First, sentiments and im-
pressions are viewed as probability distributions over latent
variables (e.g., f and τ) rather than points in the EPA space,
allowing for multimodal, uncertain and dynamic affective
states to be modeled and learned. Second, affective inter-
actions are augmented with propositional states and actions
(e.g. the usual state and action space considered in AI ap-
plications). Third, an explicit reward function allows for
goals that go beyond simple deflection minimization. We
give a simplified description here; see [21, 22] for details.

A BayesAct POMDP models an interaction between two
agents (human or machine) denoted agent and client. The
state, s, is the product of six 3-dimensional continuous
random variables corresponding to fundamental and tran-
sient sentiments about the agent’s identity (Fa,Ta), the
current (agent or client) behaviour (Fb,Tb) and the client’s
identity (Fc,Tc). We use F = {Fa,Fb,Fc} and T =
{Ta,Tb,Tc}. The state also contains an application-
specific set of random variables X that are interpreted as
propositional (i.e. not affective) elements of the domain
(e.g. whose turn it is, game states - see Section 4), and
we write s = {f , τ ,x}. Here the turn is deterministic
(agent and client take turns), although this is not necessary
in BayesAct. The BayesAct reward function is application-
specific over x. The state is not observable, but observa-
tions Ωx and Ωf are obtained for X and for the affective
behaviour Fb, and modeled with probabilistic observation
functions Pr(ωx|x) and Pr(ωf |fb), respectively.

Actions in the BayesAct POMDP are factored in two parts:
ba and a, denoting the affective and propositional compo-
nents, respectively. For example, if a tutor gives a hard
exercise to do, the manner in which it is presented, and
the difficulty of the exercise, combine to form an affective
impression ba that is communicated. The actual exercise
(content, difficulty level, etc) is the propositional part, a.

The state dynamics factors into three terms as Pr(s′|s,ba,a)=

Pr(τ ′|τ ,f ′,x)Pr(f ′|f ,τ ,x,ba)Pr(x
′|x,f ′,τ ′,a), and the funda-

mental behaviour, Fb, denotes either observed client or
taken agent affective action, depending on whose turn it is
(see below). That is, when agent acts, there is a determin-
istic mapping from the affective component of his action
(ba) to the agent’s behaviour Fb. When client acts, agent
observes Ωf (the affective action of the other agent). The
third term in the factorization of the state dynamics is the
Social Coordination Bias, and is described in Section 2.4.
Now we focus on the first two terms.

The transient impressions, T, evolve according to the
impression-formation operator in ACT (MG), so that
Pr(τ ′|...) is deterministic. Fundamental sentiments are ex-
pected to stay approximately constant over time, but are
subject to random drift (with noise Σf) and are expected

to also remain close to the transient impressions because of
the affect control principle. Thus, the dynamics of F is3:

Pr(f ′|f , τ) ∝ e−ψ(f ′,τ)−ξ(f ′,f) (1)

where ψ ≡ (f ′−MG (f ′, τ))TΣ−1(f ′−MG (f ′, τ)) com-
bines the affect control principle with the impression for-
mation equations, assuming Gaussian noise with covari-
ance Σ. The inertia of fundamental sentiments is ξ ≡
(f ′−f)TΣ−1f (f ′−f), where Σf is diagonal with elements
βa, βb, βc. The state dynamics are non-linear due to the
features in G . This means that the belief state will be
non-Gaussian in general, and BayesAct uses a bootstrap fil-
ter [11] to compute belief updates.

The distribution in (1) gives the prescribed (if agent turn),
or expected (if client turn), action as the component f ′b of
f ′. Thus, by integrating over f ′a and f ′c and the previous
state, we obtain a probability distribution, π†, over f ′b that
acts as a normative action bias: it tells the agent what to
expect from other agents, and what action is expected from
it in belief state b(s):

π†(f ′b) =

∫

f ′a,f
′
c

∫

s

Pr(f ′|f , τ ,x)b(s) (2)

2.4 BayesAct Instances

As affective identities (fa, fc) are latent (unobservable)
variables, they are learned (as inference) in the POMDP.
If behaving normatively (according to the normative ac-
tion bias), an agent will perform affective actions ba =
arg maxf ′b

π†(f ′b) that allow other agents to infer what his
(true) identity is. The normative action bias (NAB) de-
fines an affective signaling mechanism as a shared set of
prescriptions for translating information about identity into
messages. In BayesAct, the NAB is given by Equation (2).

The NAB is only prescriptive: all agents are free to select
individually what they really send, allowing for deception
(e.g. “faking” an identity by sending incorrect informa-
tion in the affective dimension of communication). Possi-
ble outcomes are manipulation (the other agent responds
correctly, as its own identity, to the “fake” identity), and al-
tercasting (the other agent assumes a complementary iden-
tity to the faked identity, and responds accordingly), both
possibly leading to gains for the deceptive agent.

The dynamics of X is given by Pr(x′|f ′, τ ′,x, a), that we
refer to as the social coordination bias (SCB): it defines
what agents are expected to do (how the state is expected to
change, including other agents’ propositional behaviours)
in a situation x when action a was taken that resulted in
sentiments f ′ and τ ′. For example, we may expect faster
student learning if deflection is low, as cognitive resources
do not need to be spent dealing with mis-alignment.

The SCB is a set of shared rules about how agents, when
acting normatively, will behave propositionally (action a,

3We leave out the dependence on x for clarity, and on ba

since this is replicated in f ′b.

74

as opposed to affectively with action ba). Assuming iden-
tities are correctly inferred (as insured by the shared nature
of the NAB), each agent can both recognize the type of
the other agent and can thereby uncover an optimistic pol-
icy4 that leads to the normative mean accumulated future
reward (as defined by the social coordination bias). How-
ever, with sufficient resources, an agent can use this pre-
scribed action as a heuristic only, searching for nearby ac-
tions that obtain higher individual reward. For example, a
teacher who seems very powerful and ruthless at the start of
a class, often may choose to do so (in a way that would be
inappropriate in another setting, e.g., the home, but is ap-
propriate within the classroom setting) in order to establish
a longer-term relationship with her students. The teacher’s
actions feel slightly awkward if looked at in the context of
the underlying social relationship with each student (e.g.
as would be enacted according to normative BayesAct), but
are leading to longer-term gains (e.g. the student passes).

Thus, the NAB (along with a communication mechanism)
allows the relaying of information about identity, while the
SCB allows agents to make predictions about other agents’
future actions given the identities. This combination al-
lows agents to assume cooperative roles in a joint task, and
is used as an emotional “fast thinking” heuristic (Kahne-
man’s “System 1” [23]). If agents are fully cooperative and
aligned, then no further planning is required to ensure goal
achievement. Agents do what is expected (which may in-
volve planning over X, but not F and T), and expect others
to as well. However, when alignment breaks down, or in
non-cooperative situations, then slower, more deliberative
(“System 2”) thinking arises. The Monte-Carlo method in
Section 3 naturally trades-off slow vs. fast thinking.

3 POMCP-C

POMCP [36] is a Monte-Carlo tree search algorithm for
POMDPs that progressively builds a search tree consisting
of nodes representing histories and branches representing
actions or observations. It does this by generating samples
from the belief state, and then propagating these samples
forward using a blackbox simulator (the known POMDP
dynamics). The nodes in the tree gather statistics on the
number of visits, states visited, values obtained, and action
choices during the simulation. Future simulations through
the same node then use these statistics to choose an action
according to the UCB1 formula, which adds an exploration
bonus to the value estimate based on statistics of state visits
(less well-visited states are made to look more salient or
promising). Leaves of the tree are evaluated using a set of
rollouts: forward simulations with random action selection.
The key idea is that fast and rough rollouts blaze the trail for
the building of the planning tree, which is more carefully
explored using the UCB1 heuristic. POMCP uses a timeout
(processor or clock time) providing an anytime solution.

4optimistic in the sense that it assumes all agents will also
follow the same normative policy.

In our algorithm, POMCP-C, we make use of an action
bias, πheur: a probability distribution over the action space
that guides action choices5. In BayesAct, we naturally have
such a bias: the normative action bias (for ba) and the
social coordination bias (for a). At each node encoun-
tered in a POMCP-C simulation (at history h), an action-
observation pair is randomly sampled as follows. First, a
random sample is drawn from the action bias, a ∼ πheur.
The action a is then compared to all existing branches at
the current history, and a new branch is only created if it is
significantly different, as measured by distance in the ac-
tion space (Euclidean for ba, binary for a) and a threshold
parameter δa (‘action resolution’), from any of these exist-
ing branches. If a new branch is created, the history ha is
added to the planning tree, and is evaluated with a rollout as
usual. If a new branch is not created, then a random sample
o is drawn from the observation distribution Pr(o|h, a)6.

The continuous observation space raises two significant
problems. First, the branching factor for the observations
is infinite, and no two observations will be sampled twice.
To counter this, we use a dynamic discretisation scheme
for the observations, in which we maintain o(h), a set
of sets of observations at each history (tree node). So
o(h) = {o1,o2, . . . ,oNo}, where No ∈ N. A new ob-
servation o is either added to an existing set oj if it is close
enough to the mean of that set (i.e. if |o − ōj| < δo where
δo is a constant, the ‘observation resolution’), or, if not, it
creates a new set oNo+1 = {o}. This simple scheme allows
us to dynamically learn the observation discretisation.

The second problem raised by continuous observations
stems from the fact that POMCP uses a black box simu-
lator that should draw samples from the same distribution
as the environment does. Thus, the simulated search tree
replicates actual trajectories of belief, and can be re-used
after each action and observation in the real world (after
each pruning of the search tree). This works for discrete
observations, but it may not work for continuous observa-
tions since the same observation will rarely be encountered
twice. Here, we prune the tree according to the closest ob-
servation set oj to the observation obtained (see also [4]).

4 EXPERIMENTS AND RESULTS

We present highlights of results on two social dilemmas.
Full results and other experiments are in [4].

4.1 Prisoner’s Dilemma (Repeated)

The prisoner’s dilemma is a classic two-person game in
which each person can either defect by taking $1 from a
(common) pile, or cooperate by giving $10 from the same
pile to the other person. There is one Nash equilibrium in
which both players defect, but when humans play the game

5The idea of using a heuristic to guide action selection in
POMCP was called preferred actions [36].

6POMCP-C also uses a cut-offNmax
A on the branching factor.

75

they often are able to achieve the optimal solution where
both cooperate. A rational agent would first compute the
strategy for the game as the Nash equilibrium (of “defect”),
and then look up the affective meaning of such an action
using e.g. a set of appraisal rules, and finally apply a set
of coping rules. For example, such an agent might figure
out that the goals of the other agent would be thwarted,
and so that he should feel ashamed or sorry for the other
agent. However, appraisal/coping theories do not specify
the probabilities of emotions, do not take into account the
affective identities of the agents, and do not give consistent
accounts of how coping rules should be formulated.

Instead, a BayesAct agent (called a pd-agent for brevity
here), computes what affective action is prescribed in the
situation (given his estimates of his and the other’s identi-
ties, and of the affective dynamics), and then seeks the best
propositional action (a ∈ {cooperate, defect}) to take that
is consistent with this prescribed affect. As the game is re-
peated, the pd-agent updates his estimates of identity (for
self and other), and adjusts his play accordingly. For ex-
ample, a player who defects will be seen as quite negative,
and appropriate affective responses will be to defect, or to
cooperate and give a nasty look.

The normative action bias (NAB) for pd-agents is the usual
deflection minimizing affective fb given distributions over
identities of agent and client (Equation 2). Thus, if agent
thought of himself as a friend (EPA:{2.75, 1.88, 1.38})
and knew the other agent to be a friend, the deflec-
tion minimizing action would likely be something good
(high E). Indeed, a simulation shows that one would
expect a behaviour with EPA= {1.98, 1.09, 0.96}, with
closest labels such as treat or toast. Intuitively, co-
operate seems like a more aligned propositional action
than defect. This intuition is confirmed by the dis-
tances from the predicted (affectively aligned) behaviour
to collaborate with (EPA:{1.44, 1.11, 0.61}) and abandon
(EPA:{ 2.28, 0.48, 0.84}) of 0.4 and 23.9, respectively.
Table 1 shows all combinations if each agent could also be
a scrooge (EPA:{ 2.15, 0.21, 0.54}). We see that a friend
would still collaborate with a scrooge (in an attempt to re-
form the scrooge), a scrooge would abandon a friend (look
away from in shame), and two scrooges would defect.

The agent will predict the client’s behavior using the same
principle: compute the deflection minimising affective ac-
tion, then deduce the propositional action based on that.
Thus, a friend would be able to predict that a scrooge would
defect. If a pd-agent has sufficient resources, he could
search for an affective action near to his optimal one, but
that would still allow him to defect. To get a rough idea of
this action, we find the point on the line between his opti-
mal action {0.46, 1.14, 0.27} and abandon that is equidis-
tant from abandon and collaborate with. This point, at
which he would change from cooperation to defection, is
{ 0.8, 0.6, 0.4} (glare at), which only has a slightly higher
deflection than reform (6.0 vs 4.6). Importantly, he is not
trading off costs in the game with costs of disobeying the

ag cli optimal closest dist. from
ent ent behaviour labels coll. ab.
F F 1.98, 1.09, 0.96 treat 0.4 23.9

toast
F S 0.46, 1.14, 0.27 reform 1.7 10.5

lend money to
S F 0.26, 0.81, 0.77 curry favor 8.5 4.2

look away
S S 0.91, 0.80, 0.01 borrow money 9.6 2.7

chastise

Table 1: Optimal (deflection minimising) behaviours for
two pd-agents with fixed identities. F=friend, S=scrooge,
coll.=collaborate with, ab.=abandon

social prescriptions: his resource bounds and action search
strategy are preventing him from finding the more optimal
(individual) strategy, implicitly favoring those actions that
benefit the group and solve the social dilemma.

PD-agents are dealing with a slightly more difficult situa-
tion, as they do not know the identity of the other agent.
However, the same principle applies, and the social coor-
dination bias (SCB) is that agents will take and predict the
propositional action that is most consistent with the affec-
tive action. Agents have culturally shared sentiments about
the propositional actions (defection and cooperation), and
the distance of the deflection minimizing action (agent, ba)
or behaviour (client, fb) to these sentiments is a measure of
how likely each propositional action is to be chosen (agent
turn), or predicted (client turn). That is, on agent turn, the
affective actions ba will be sampled and combined with a
propositional action a sample drawn proportionally to the
distance from ba to the shared sentiments for each a. On
client turn, affective behaviours fb will be predicted and
combined with a value for a variable representing client
play in X drawn proportionally to the distance from fb.

We model agent and client as having two (simultaneous)
identities: friend or scrooge with probabilities 0.8 and 0.2,
respectively. Each pd-agent starts with a mixture of two
Gaussians centered at these identities with weights 0.8/0.2
and variances of 0.1. The SCB interprets cooperation as
collaborate with (EPA:{1.44, 1.11, 0.61}) and defection as
abandon (EPA:{ 2.28, 0.48, 0.84}), and the probability
of the propositional actions using a Gibbs measure over
distance with a variance of 4.0. We use propositional state
X = {Turn,Ag play, Cl play} denoting whose turn it
is (∈ {agent, client}) and agent and client state of play
(∈ {not played, cooperate, defect}). The agents’ reward is
only over the game (e.g. 10, 1, or 0), so there is no intrinsic
reward for deflection minimization as in [22]. We use a two
time-step game in which both agent and client choose their
actions at the first time step, and then communicate this to
each other on the second step. The agents also communi-
cate affectively, so that each agent gets to see both what
action the other agent took (cooperate or defect), and also
how they took it (expressed in fb)7. If one were to imple-

7Agents may also relay emotions (see Sec. 2.2), but here we
only use emotional labels for explanatory purposes.

76

ment this game in real life, then fb would be relayed by e.g.
a facial expression. We use a Gaussian observation func-
tion Pr(ωf |fb) with mean at fb and std. dev. of σb = 0.1.
Our simulations consist of 10 trials of 20 games/trial, but
agents use an infinite horizon with a discount γ.

We simulate one pd-agent (pdA) with a POMCP-C (pro-
cessor time) timeout value of ta, and the other (pdC) ei-
ther: (1), a similar agent with the same timeout tc = ta, or
with a timeout of tc = 1s; or (2), a fixed strategy agent that
plays one of: (co) always cooperate; (de) always defect; (tt)
tit-for-tat; (to): two-out; (t2): tit-for-two-tat; (2t): two-tit-
for-tat. Except for (de), these fixed strategy agents always
cooperate on the first turn, and then: (tt) mirrors the other
agent; (to) cooperates twice, then always defects; (t2): de-
fects if the other agent defects twice in a row; (2t): coop-
erates if the other agent cooperates twice in a row8. Fixed
strategy agents always relay collaborate with and abandon
as fb when playing cooperate and defect, respectively.

First, we consider agents that use the same timeout. In
this case, if the discount factor is 0.99, both agents coop-
erate all the time, and end up feeling like warm, earnest
or introspective ladies, visitors or bridesmaids (EPA∼
{2, 0.5, 1.0}). This occurs regardless of the amount of
timeout given to both agents. Essentially, both agents are
following the norm. If they don’t have a long timeout, this
is all they can evaluate. With longer timeouts, they figure
out that there is no better option. However, if the discount
is 0.9 (more discounting, so they will find short-term solu-
tions), then again cooperation occurs if the timeout is short
(less than 10s), but then one agent starts trying to defect af-
ter a small number of games, and this number gets smaller
as the timeout gets longer (see Figure 1). With more dis-
counting, more time buys more breadth of search (the agent
gets to explore more short-term options), and finds more of
them that look appealing (it can get away with a defection
for a short while). With less discounting, more time buys
more depth, and results in better long-term decisions.

Table 2 shows the first five games with a client playing two-
out (to), who sends affective values of {1.44, 1.11, 0.61}
and cooperates on the first two moves. This affective ac-
tion makes the pd-agent feel much less good (E) and pow-
erful (P) than he normally would (as a failure), as he’d ex-
pect a more positive and powerful response (such as flat-
ter EPA={2.1, 1.45, 0.82}) if he was a friend, so this sup-
ports his scrooge identity more strongly9. He infers client is
friendly (a newlywed is like a girlfriend in EPA space). He
therefore cooperates on the second round, and feels some-
what better. Then, the client defects on the third round, to
which the agent responds by re-evaluating the client as less
good (an immoral purchaser). He still tries to cooperate,
but gives up after two more rounds, after which he thinks
of the client as nothing but a selfish hussy, and himself as a
disapproving divorcée. The agent consistently defects after
this point. Interactions with (tt), (2t) and (t2) generally fol-

8(t2) is more “generous”, and (2t) is more “wary” than (tt).
9Examples of more positive affective actions in [4].

γ (tt) (t2) (2t)
0.9 1.64± 2.24 3.98± 2.48 1.72± 2.35
0.99 7.33± 1.17 7.28± 1.68 7.63± 0.91

Table 3: Results (avg. rewards) against the tit-for strategies

low a similar pattern, because any defection rapidly leads to
both agents adopting long-term defection strategies. How-
ever, as shown in Table 3 (also see full results [4]), less dis-
counting leads to better solutions against these strategies,
as longer-term solutions are found.

When playing against (co), pd-agents gener-
ally start by cooperating, then defect, resulting
in a feeling of being a self-conscious divorcée
(EPA:{ 0.23, 0.62, 0.32}) playing against a consci-
entious stepsister (EPA:{0.12, 0.04, 0.35}). When
playing against (de), pd-agents generally start by coop-
erating, but then defect, feeling like a dependent klutz
(EPA:{ 0.76, 1.26, 0.37}) playing against an envious
ex-boyfriend (EPA:{ 1.30, 0.49, 0.13}).

4.2 Affective Cooperative Robots (CoRobots)

CoRobots is a multi-agent cooperative robot game based
on the classic “Battle of the Sexes” problem10. We are
specifically interested in asymmetrical situations wherein
one robot has more resources and can do planning in order
to manipulate the other robot, taking advantage of the so-
cial coordination bias. We start with a simplified version in
which the two robots maintain affective fundamental senti-
ments, but do not represent the transient impressions. The
normative action bias is a simple average instead of as the
result of more complex impression formation equations.

Concretely, two robots, Rob1 and Rob2, move in a 1D con-
tinuous state space. We denote their positions with vari-
ables X1 and X2. At each time step, Rob1, Rob2 take ac-
tions a1, a2 ∈ R respectively. This updates their respective
positions xi, i ∈ {1, 2} according to xi ← xi + ai + νi
and νi ∼ N (0, σ). There are two fixed locations L1 ∈ R+

and L2 ∈ R−. For each robot, one of these locations is the
major goal g (with associated high reward r) and the other
is the minor goal ḡ (with associated low reward r̄). A robot
is rewarded according to its distance from g and ḡ, but only
if the other robot is nearby. The reward for Robi is:

Ri(x1,x2)=I(|x1−x2|<∆x)[r·e−(xi−g)2/σ2
r+r̄·e−(xi−ḡ)2/σ2

r], (3)

where I(y) = 1 if y is true, and 0 otherwise, and where σr
is the reward variance, ∆x is a threshold parameter govern-
ing how “close” the robots need to be, and r, r̄ ∈ R, such
that r � r̄ > 0. Both σr and ∆x are fixed and known
by both robots. Each robot only knows the location of its
own major goal. Furthermore, at any time step, each robot

10A husband wants to go to a football game, and his wife wants
to go shopping, but neither wants to go alone. There are two pure
Nash equilibria, but the optimal strategy requires coordination.

77

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

R
ew

ar
d

timeout: 10

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

timeout: 30

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

timeout: 60

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

game

timeout: 120

Figure 1: PD with client strategy: (same) and discount γ = 0.9. Red=client; Blue=agent; dashed=std.dev.; solid (thin, with
markers): mean; solid (thick): median. As timeout increases, more defections give less reward for both agents.

game post-play sentiments (agent) defl- identities emotions actions
fa fc fb ection agent client agent client agent client
1 -1.36,-0.01,-0.35 2.32,1.61,1.27 2.62,1.58,1.73 4.44 failure newlywed easygoing idealistic coop. coop.
2 -0.66,0.04,-0.05 1.77,1.27,1.06 2.23,1.00,1.76 3.70 parolee husband easygoing self-conscious coop. coop.
3 -0.23,-0.08,0.20 1.02,0.93,0.84 2.49,0.97,1.87 7.19 stepmother purchaser female immoral coop. def.
4 -0.12,-0.33,0.33 0.27,0.62,0.62 2.37,0.48,1.34 4.99 stuffed shirt roommate dependent unfair coop. def.
5 -0.26,-0.47,0.32 -0.26,0.26,0.42 -0.59,0.41,-0.23 3.27 divorcée gun moll dependent selfish def. def.
6 -0.37,-0.66,0.26 -0.61,0.00,0.28 -0.10,-0.41,-0.27 2.29 divorcée hussy disapproving selfish def. def.

Table 2: Example games with client playing (to). Identities and emotions are agent interpretations.

can move in any direction, receives observations of the lo-
cations of both robots, and has a belief over X1 and X2.

In order to coordinate their actions, the robots must re-
lay their reward locations to each other, and must choose
a leader according to some social coordination bias. The
robots each have a 3D identity (as BayesAct), where the va-
lence, fae, describes their goal: if fae > 0, then g = L1.
If fae < 0, then g = L2. The power and activity dimen-
sions will be used for coordination (see below). Robots can
move (propositional action a) at any time step, but must co-
ordinate their communications. That is, only one robot can
communicate at a time (with affective action ba perceived
by the other robot as ωf), but this turn-taking behaviour is
fixed. The normative action bias (NAB) in the first (simpli-
fied) CoRobots problem is the mean of the two identities:

π† ∝ N ((fa + fc)/2,Σb). (4)

In BayesAct Corobots, the NAB is given by Equation (2).

The social coordination bias (that the leader will lead) de-
fines each robot’s action bias for ai, and action prediction
function (for client’s x) through a 2D sigmoid leader func-
tion, known to both agents. This sigmoid function is ≥ 0.5
if the agent estimates he is more powerful or more active
than the client ((fap > fcp) ∨ (faa > fca)) and is < 0.5
otherwise. If the agent is the leader, his action bias will be
a Gaussian with mean at +1.0 in the direction of his major
goal (as defined by fae), and in the direction of the client’s
major goal (as defined by his estimate of fce) otherwise.
Agent’s prediction of client’s motion in x is that the client
will stay put if client is the leader, and will follow the agent
otherwise, as given succinctly by:

Pr(x′c|f ′a,f ′c)=N (I(leader(f ′a,f
′
c)≥0.5)λa+xc,σp) (5)

where λa = 1 if f ′ae > 0, and −1 otherwise and σp = 1.0.

0 1 2 3 4 5 6
0

20

40

60

80

100

Environmental Noise

M
ea

n
(a

cr
os

s
5

se
ts

)
of

:
m

ea
n

#
of

su
c-

ce
ss

fu
l

co
or

di
na

tio
ns

in
10

0
tr

ia
ls

selfID = known
selfID = not known

Figure 2: BayesAct Corobots cannot coordinate properly
when the communication channel is bad or non-existent.

We first investigate whether corobots can coordinate when
they have identities drawn from the set of 500 human
(male) identities in the ACT lexicon (see footnote 2). In
the first experiment, the two identities are selected at ran-
dom on each trial. Each corobot knows his self-ID (N (self-
ID, 0.1)) but does not know the other’s ID (N ([0.0, 0.0,
0.0], 2.0)). Furthermore, each corobot has a stable self-
identity (βa = 0.1), but it believes that the other is less sta-
ble (βc = 2.0). Finally, both corobots have equal POMCP-
C planning resources (Σb = 0.5, Nmax

A = 3, δa =
2.0, δo = 6.0 and Timeout = 2.0 seconds). The other
CoRobots game parameters are r = 100, r̄ = 30, L1 =
10, L2 = −10, σr = 2.5,∆x = 1.0 and iterations = 30.
We run 5 sets of 100 simulated trials of the CoRobots Game
with varying environmental noise, i.e., we add a normally
distributed value, with standard deviation corresponding to
the noise level, to the computation and communication of
Ωx and Ωf (observations of x and f , resp.). Figure 2
(green line) shows the mean and standard error of mean
number of successful coordinations by the corobots.

78

The percentage of successful coordination falls from 91%
to 6% when the environmental noise is increased, and the
average total reward per trial falls from 1403 to 19.4. We
see that with no environmental noise, the corobots are able
to easily learn the other’s identity, and can coordinate based
on the social coordination bias. As the environmental noise
increases, corobots are unable to easily relay identities, and
require a much longer time to find cooperative solutions.

Figure 2 (orange line) shows results where the self-ID is
also unknown initially (N ([0.0, 0.0, 0.0], 2.0)), and is less
stable (βa = 2.0). We see that the general trend is the
same; however, the corobots have a higher percentage of
successful coordinations, and consequently gain a higher
average total reward, for the three lowest noise values. It
is surprising to see that the corobots perform better with
unknown self-IDs. This is because corobots quickly as-
sume contrasting identities (i.e. one assumes a less pow-
erful identity than the other) in order to coordinate. With
known self-IDs, however, the corobots show less flexibil-
ity and spend the initial few iterations trying to convince
and pull the other corobot towards themselves. Due to this
rigidity, these corobots suffer a lot when they have similar
power; this does not happen when the self-ID is unknown.

Next, we investigate whether one agent can manipulate the
other. A manipulation is said to occur when the weaker
and less active agent deceives the client into believing that
the agent is more powerful or active, thereby persuading
the client to converge to the agent’s major goal g (to within
±|0.2g|). In order to demonstrate manipulative behaviour,
we introduce asymmetry between the two agents by chang-
ing the parameters Σb, Nmax

A and Timeout for one agent
(unbeknownst to the other). In addition, we allow this agent
to start with a slightly better estimate of the other’s identity.
This agent will then sample actions that are farther from the
norm than expected by the other agent, and will allow such
an agent to “fake” his identity so as to manipulate the other
agent. The agent’s and client’s self-identities are noisy
(σ = 0.1) versions of [2.0,−1.0,−1.0] and [−2.0, 1.0, 1.0]
respectively, r = 100, r̄ = 30, L1 = 5, L2 = −5,∆x =
1, σr = 2.5, δa = 2.0, δo = 6.0, Nmax

A = 3,Σb = 0.5 and
Timeout = 2.0 for both robots. Each game is set to run for
40 iterations, and starts with the agent and client located at
0.0. Since ga = 5, gc = −5, both robots should converge
to gc = −5 (client is leader) if following normative actions.

When Nmax
A = 3, Σb = 0.5, and Timeout = 2.0 for the

agent, the agent displays manipulative behaviour in only
80/1000 games, as expected (both follow normative be-
haviour). If we allow the agent to start with a better esti-
mate of the client’s identity (agent’s initial belief about fc is
a Gaussian with mean [−2.0, 1.0, 1.0] and variance 1.0), we
see manipulative behaviour in almost twice as many games
(150). However, it is not a significant proportion, because
although it spends less time learning the other’s identity, it
cannot find much more than the normative behaviour.

Next, we also give the agent more planning resources by
setting Nmax

A = 6 and Σb = 2 for the agent, and we run

0 200 400 600

400

600

800

1,000

1,200

Agent timeout (in seconds)

M
ea

n
(a

cr
os

s
10

se
ts

)
of

:
m

ea
n

ag
en

t
re

w
ar

d
ob

ta
in

ed
in

on
e

tr
ia

l

CoRobots
BayesAct CoRobots

Figure 3: CoRobots: With higher Nmax
A , Σb and T imeout, a

weaker and less active agent becomes increasingly manipulative
by ‘faking’ his identity, and accumulates higher rewards.

10 sets of 100 simulated trials for each of the following
values of agent’s Timeout : 2, 30, 60, 120, 360, 600 sec-
onds11. Figure 3 (solid red line) shows means and standard
error of agent reward per trial (in each set of 100 trials).
As the model incorporates noise in movements as well as
observations, the robots spend about 20 initial iterations co-
ordinating with each other to choose a leader, during which
time they do not receive reward. Thus, a realistic upper
bound on the agent’s reward is 20 × 100 = 2000. Fig-
ure 3 shows that at Timeout = 600, the reward is about
61% of this realistic maximum, which makes sense given
the manipulation rate of about 48%. There is a diminishing
rate of return as timeout increases in Figure 3 that is ex-
plained by the exponential growth of the MCTS search tree
as Timeout increases linearly. The results are relatively
insensitive to the choice of parameters such as δa and δo.

Finally, we play the CoRobots Game with BayesAct
Robots. This means that the normative behaviour is the
deflection minimising action given by Affect Control The-
ory, instead of Equation (4), and the transient impressions
are used to compute the deflection. The game trials are set
up exactly as before, and the results are shown in Figure 3
(blue line). As expected, we see the same trends as those
obtained previously, but with correspondingly lower values
as the transient impressions are used and introduce further
complexity to the planning problem (18D state space rather
than 9D). Our results demonstrate that the POMCP-C algo-
rithm is able to find and exploit manipulative affective ac-
tions within the BayesAct POMDP, and gives some insight
into manipulative affective actions in BayesAct.

5 RELATED WORK

Damasio has convincingly argued, both from a functional
and neurological standpoint, for emotions playing a key
role in decision making and for human social action [7].
His Somatic Marker Hypothesis is contrasted against the

11We use a Python implementation that is unoptimized. An
optimised version will result in realistic timeouts.

79

Platonic “high-reason” view of intelligence, in which pure
rationality is used to make decisions. Damasio argues that,
because of the limited capacity of working memory and at-
tention, the Platonic view will not work. Instead, learned
neural markers focus attention on actions that are likely to
succeed, and act as a neural bias allowing humans to work
with fewer alternatives. These somatic markers are “cul-
tural prescriptions” for behaviours that are “rational rela-
tive to the social conventions and ethics” ([7], p200).

LeDoux [24] argues the same thing from an evolutionary
standpoint. He theorises that the subjective feeling of emo-
tion must take place at both unconscious and conscious lev-
els in the brain, and that consciousness is the ability to re-
late stimuli to a sense of identity, among other things.

With remarkably similar conclusions coming from a more
functional (economic) viewpoint, Kahneman has demon-
strated that human emotional reasoning often overshad-
ows, but is important as a guide for, cognitive delibera-
tion [23]. Kahneman presents a two-level model of intelli-
gence, with a fast/normative/reactive/affective mechanism
being the “first on the scene”, followed by a slow/cogni-
tive/deliberative mechanism that operates if sufficient re-
sources are available. Akerlof and Kranton attempt to for-
malise fast thinking by incorporating a general notion of
identity into an economic model (utility function) [2]. Ear-
lier work on social identity theory foreshadowed this eco-
nomic model by noting that simply assigning group mem-
bership increases individual cooperation [38].

The idea that unites Kahneman, LeDoux, and Damasio
(and others) is the tight connection between emotion and
action. These authors, from very different fields, propose
emotional reasoning as a “quick and dirty”, yet absolutely
necessary, guide for cognitive deliberation. ACT gives a
functional account of the quick pathway as sentiment en-
coding prescriptive behaviour, while BayesAct shows how
this account can be extended with a slow pathway that en-
ables exploration and planning away from the prescription.

Our work fits well into a wide body of work on affective
computing (AC) [30, 32], with a growing focus on socio-
cultural agents (e.g. [9]). In AC, emotions are usually
framed following the rationalistic view proposed by Si-
mon as “interrupts” to cognitive processing [37]. Emo-
tions are typically inferred based on cognitive appraisals
(e.g. a thwarted goal causes anger) that are used to guide
action through a set of “coping” mechanisms. Gratch and
Marsella [15] are possibly the first to propose a concrete
computational mechanism for coping. They propose a five
stage process wherein beliefs, desires, plans and intentions
are first formulated, and upon which emotional appraisals
are computed. Coping strategies then use a set of ad hoc
rules by modifying elements of the model such as proba-
bilities and utilities, or by modifying plans or intentions. Si
et al. [35] compute emotional appraisals from utility mea-
sures (including beliefs about other agent’s utilities, as in
an I-POMDP [13]), but they leave to future work “how
emotion affects the agents decision-making and belief up-

date processes” ([35] section 8). Goal prioritization using
emotional appraisals have been investigated [3, 25, 28], as
have normative multi-agent systems (NorMAS) [5]. There
has been recent work on facial expressions in PD games,
showing that they can significantly affect the outcomes [8].

Most approaches to emotional action guidance only give
broad action guides in extreme situations, leaving all else to
the cognitive faculties. BayesAct specifies one simple cop-
ing mechanism: minimizing inconsistency in continuous-
valued sentiment. This, when combined with mappings
describing how sentiments are appraised from events and
actions, can be used to prescribe actions that maximally re-
duce inconsistency. These prescriptions are then used as
guides for higher-level cognitive (including rational) pro-
cessing and deliberation. BayesAct therefore provides an
important step in the direction of building models that inte-
grate “cognitive” and “affective” reasoning.

BayesAct requires anytime techniques for solving large
continuous POMDPs with non-Gaussian beliefs. There has
been much recent effort in solving continuous POMDPs
with Gaussian beliefs (e.g. [10]), but these are usually in
robotics motion planning where such approximations are
reasonable. Point-based methods (e.g. [31]) require the
value function to be closed under the Bellman operator,
which is not possible for BayesAct.

Monte-Carlo tree search (MCTS) methods have seen more
scalability success [6], and are anytime. POMCP [36] uses
MCTS to efficiently solve POMDPs with continuous state
spaces. By design, POMCP is unable to handle models
with continuous action spaces, such as BayesAct. POM-
CoP uses POMCP to guide a sidekick’s actions during a
cooperative video game [26]. While this game has many
similarities to CoRobots, it does not have continuous ac-
tions and restricts agent types to a small and countable set.
MCTS methods are more appealing for BayesAct than other
solvers because: (1) MCTS does not require a computa-
tion of the value function over the continuous state space
and non-linear dynamics; (2) MCTS provides an anytime
“quick and dirty” solution that corresponds naturally to our
interpretation of the “fast thinking” heuristic.

6 CONCLUSION

We have studied decision-theoretic planning in a class of
POMDP models of affective interactions, BayesAct, in
which culturally shared sentiments are used to provide nor-
mative action guidance. BayesAct is an exciting new de-
velopment in artificial intelligence that combines affective
computing, sociological theory, and probabilistic model-
ing. We use a Monte-Carlo Tree Search (MCTS) method
to show how a simple and parsimonious model of human
affect in decision making can yield solutions to two classic
social dilemmas. We investigate how asymmetry between
agent’s resources can lead to manipulative or exploitative,
yet socially aligned, strategies.

80

References
[1] K. J. Åström. Optimal control of Markov decision pro-

cesses with incomplete state estimation. J. Math. Anal. App.,
10:174–205, 1965.

[2] George A. Akerlof and Rachel E. Kranton. Economics and
identity. Quar. J. Econ., CXV(3), August 2000.

[3] Dimitrios Antos and Avi Pfeffer. Using emotions to enhance
decision-making. In Proc. International Joint Conferences
on Artificial Intelligence, Barcelona, Spain, 2011.

[4] Nabiha Asghar and Jesse Hoey. Monte-Carlo planning for
socially aligned agents using Bayesian affect control theory.
TR CS-2014-21, Univ. of Waterloo Sch. of CS, 2014.

[5] Tina Balke, et al. Norms in MAS: Definitions and Related
Concepts. In Normative Multi-Agent Systems, volume 4 of
Dagstuhl Follow-Ups, Schloss Dagstuhl, 2013.

[6] C.B. Browne, et al. A survey of Monte Carlo tree search
methods. IEEE Transactions on Computational Intelligence
and AI in Games, 4(1):1–43, March 2012.

[7] Antonio R. Damasio. Descartes’ error: Emotion, reason,
and the human brain. Putnam’s sons, 1994.

[8] Celso M. de Melo, et al. Bayesian model of the social effects
of emotion in decision-making in multiagent systems. In
Proc. AAMAS, Valencia, Spain, 2012.

[9] Nick Degens, et al. Creating a world for socio-cultural
agents. In LNAI no. 8750. Springer, 2014.

[10] Marc Peter Deisenroth and Jan Peters. Solving nonlinear
continuous state-action-observation POMDPs for mechani-
cal systems with gaussian noise. In Proceedings of the Euro-
pean Workshop on Reinforcement Learning (EWRL), 2012.

[11] Arnaud Doucet, Nando de Freitas, and Neil Gordon, editors.
Sequential Monte Carlo in Practice. Springer-Verlag, 2001.

[12] John G. Fennell and Roland J. Baddeley. Reward is assessed
in three dimensions that correspond to the semantic differ-
ential. PLoS One, 8(2: e55588), 2013.

[13] Piotr Gmytrasiewicz and Prashant Doshi. A framework for
sequential planning in multi-agent settings. Journal of Arti-
ficial Intelligence Research, 24:49–79, 2005.

[14] Erving Goffman. Behavior in Public Places. The Free Press,
New York, 1963.

[15] Jonathan Gratch and Stacy Marsella. A domain-independent
framework for modeling emotion. Cognitive Systems Re-
search, 5(4):269 – 306, 2004.

[16] David R. Heise. Expressive Order: Confirming Sentiments
in Social Actions. Springer, 2007.

[17] David R. Heise. Surveying Cultures: Discovering Shared
Conceptions and Sentiments. Wiley, 2010.

[18] David R. Heise. Modeling interactions in small groups. So-
cial Psychology Quarterly, 76:52–72, 2013.

[19] Jesse Hoey, Craig Boutilier, Pascal Poupart, Patrick Olivier,
Andrew Monk, and Alex Mihailidis. People, sensors, de-
cisions: Customizable and adaptive technologies for as-
sistance in healthcare. ACM Trans. Interact. Intell. Syst.,
2(4):20:1–20:36, January 2012.

[20] Jesse Hoey and Tobias Schröder. Bayesian affect control
theory of self. In Proc. AAAI, 2015.

[21] Jesse Hoey, Tobias Schröder, and Areej Alhothali. Af-
fect control processes: Intelligent affective interaction
using a partially observable Markov decision process.
http://arxiv.org/abs/1306.5279, 2013.

[22] Jesse Hoey, Tobias Schröder, and Areej Alhothali. Bayesian
affect control theory. In Proc. ACII, 2013.

[23] Daniel Kahneman. Thinking, Fast and Slow. Doubleday,
2011.

[24] Joseph LeDoux. The emotional brain: the mysterious un-
derpinnings of emotional life. Simon and Schuster, New
York, 1996.

[25] Christine Laetitia Lisetti and Piotr Gmytrasiewicz. Can a
rational agent afford to be affectless? a formal approach.
Applied Artificial Intelligence, 16(7-8):577–609, 2002.

[26] Owen Macindoe, Leslie Pack Kaelbling, , and Tomás
Lozano-Pérez. Pomcop: Belief space planning for sidekicks
in cooperative games. In AIIDE 2012, 2012.

[27] Neil. J. MacKinnnon and Dawn T. Robinson. 25 years of
research in affect control theory. Advances in Group Pro-
cessing, 31, 2014.

[28] Robert P. Marinier III and John E. Laird. Emotion-driven
reinforcement learning. In Proc. Meeting of the Cognitive
Science Society, Washington, D.C., 2008.

[29] Charles E. Osgood, William H. May, and Murray S. Miron.
Cross-Cultural Universals of Affective Meaning. University
of Illinois Press, 1975.

[30] Rosalind W. Picard. Affective Computing. MIT Press, Cam-
bridge, MA, 1997.

[31] Josep M. Porta, Nikos Vlassis, Matthijs T.J. Spaan, and
Pascal Poupart. Point-based value iteration for continuous
POMDPs. JMLR, 7:2329–2367, 2006.

[32] Klaus R. Scherer, Tanja Banziger, and Etienne Roesch. A
Blueprint for Affective Computing. Oxford University Press,
2010.

[33] Wolfgang Scholl. The socio-emotional basis of human in-
teraction and communication: How we construct our social
world. Social Science Information, 52:3 – 33, 2013.

[34] Tobias Schröder and Wolfgang Scholl. Affective dynamics
of leadership: An experimental test of affect control theory.
Social Psychology Quarterly, 72:180–197, 2009.

[35] Mei Si, Stacy C. Marsella, and David V. Pynadath. Mod-
eling appraisal in theory of mind reasoning. Autonomous
Agents and Multi-Agent Systems, 20(1):14–31, 2010.

[36] David Silver and Joel Veness. Monte-Carlo planning in large
POMDPs. In Proc. NIPS, December 2010.

[37] Herbert A. Simon. Motivational and emotional controls of
cognition. Psychological Review, 74:29–39, 1967.

[38] Henri Tajfel and John C. Turner. An integrative theory
of intergroup conflict. In Stephen Worchel and William
Austin, editors, The social psychology of intergroup rela-
tions. Brooks/Cole, Monterey, CA, 1979.

81

Representation Learning for Clustering: A Statistical Framework

Hassan Ashtiani and Shai Ben-David
David R. Cheriton School of Computer Science

University of Waterloo,
Waterloo, Ontario, Canada

{mhzokaei,shai}@uwaterloo.ca

Abstract

We address the problem of communicating do-
main knowledge from a user to the designer of
a clustering algorithm. We propose a protocol
in which the user provides a clustering of a rel-
atively small random sample of a data set. The
algorithm designer then uses that sample to come
up with a data representation under which k-
means clustering results in a clustering (of the
full data set) that is aligned with the user’s clus-
tering. We provide a formal statistical model for
analyzing the sample complexity of learning a
clustering representation with this paradigm. We
then introduce a notion of capacity of a class of
possible representations, in the spirit of the VC-
dimension, showing that classes of representa-
tions that have finite such dimension can be suc-
cessfully learned with sample size error bounds,
and end our discussion with an analysis of that
dimension for classes of representations induced
by linear embeddings.

1 INTRODUCTION

Clustering can be thought as the task of automatically di-
viding a set of objects into “coherent” subsets. This defi-
nition is not concrete, but its vagueness allows it to serve
as an umbrella term for a wide diversity of algorithmic
paradigms. Clustering algorithms are being routinely ap-
plied in a huge variety of fields.

Given a dataset that needs to be clustered for some applica-
tion, one can choose among a variety of different clustering
algorithms, along with different pre-processing techniques,
that are likely to result in dramatically different answers.
It is therefore critical to incorporate prior knowledge about
the data and the intended semantics of the clustering into
the process of picking a clustering algorithm (or, clustering
model selection). Regretfully, there seem to be no system-

atic tool for incorporation of domain expertise for cluster-
ing model selection, and such decisions are usually being
made in embarrassingly ad hoc ways. This paper aims to
address that critical deficiency in a formal statistical frame-
work.

We approach the challenge by considering a scenario in
which the domain expert (i.e., the intended user of the clus-
tering) conveys her domain knowledge by providing a clus-
tering of a small random subset of her data set. For exam-
ple, consider a big customer service center that wishes to
cluster incoming requests into groups to streamline their
handling. Since the data base of requests is too large to
be organized manually, the service center wishes to em-
ploy a clustering program. As the clustering designer, we
would then ask the service center to pick a random sam-
ple of requests, manually cluster them, and show us the
resulting grouping of that sample. The clustering tool then
uses that sample clustering to pick a clustering method that,
when applied to the full data set, will result in a cluster-
ing that follows the patterns demonstrated by that sample
clustering. We address this paradigm from a statistical ma-
chine learning perspective. Aiming to achieve generaliza-
tion guaranties for such an approach, it is essential to intro-
duce some inductive bias. We do that by restricting the
clustering algorithm to a predetermined hypothesis class
(or a set of concrete clustering algorithms).

In a recent Dagstuhl workshop, Blum (2014) proposed to
do that by fixing a clustering algorithm, say k-means, and
searching for a metric over the data under which k-means
optimization yields a clustering that agrees with the train-
ing sample clustering. One should note that, given any do-
main set X , for any k-partitioning P of X , there exists
some distance function dP over X such that P is the op-
timal k-means clustering solution to the input (X, dP)1.
Consequently, to protect against potential overfitting, the
class of potential distance functions should be constrained.
In this paper, we provide (apparently the first) concrete for-
mal framework for such a paradigm, as well as a general-
ization analysis of this approach.

1This property is sometimes called k-Richness

82

In this work we focus on center based clustering - an im-
portant class of clustering algorithms. In these algorithms,
the goal is to find a set of “centers” (or prototypes), and
the clusters are the Voronoi cells induced by this set of
centers. The objective of such a clustering is to minimize
the expected value of some monotonically increasing func-
tion of the distances of points to their cluster centers. The
k–means clustering objective is arguably the most popular
clustering paradigm in this class. Currently, center-based
clustering tools lack a vehicle for incorporating domain ex-
pertise. Domain knowledge is usually taken into account
only through an ad hoc choice of input data representa-
tion. Regretfully, it might not be realistic to require the do-
main expert to translate sufficiently elaborate task-relevant
knowledge into hand-crafted features.

As a model for learning representations, we assume that the
user-desirable clustering can be approximated by first map-
ping the sample to some Euclidean (or Hilbert) space and
then performing k-means clustering in the mapped space
(or equivalently, replacing the input data metric by some
kernel and performing center-based clustering with respect
to that kernel). However, the clustering algorithm is sup-
posed to learn a suitable mapping based on the given sam-
ple clustering.

The main question addressed in this work is that of the sam-
ple complexity: what is the size of a sample, to be clustered
by the domain expert, that suffices for finding a close-to-
optimal mapping (i.e., a mapping that generalizes well on
the test data)? Intuitively, this sample complexity depends
on the richness of the class of potential mappings that the
algorithm is choosing from. In standard supervised learn-
ing, there are well established notions of capacity of hy-
pothesis classes (e.g., VC-dimension) that characterize the
sample complexity of learning. This paper aims to provide
such relevant notions of capacity for clustering.

1.1 Previous Work

In practice, there are methods that use some forms of super-
vision for clustering. These methods are sometimes called
“semi-supervised clustering” (Basu et al. (2002, 2004);
Kulis et al. (2009)). The most common method to convey
such supervision is through a set of pairwise must/cannot-
link constraints on the instances (Wagstaff et al. (2001)).
A common way of using such information is by chang-
ing the objective of clustering so that violations of these
constraints are penalized (Demiriz et al. (1999); Law et al.
(2005); Basu et al. (2008)). Another approach, which is
closer to ours, keeps the clustering optimization objective
fixed, and instead, searches for a metric that best fits given
constraints. The metric is learned based on some objective
function over metrics ((Xing et al., 2002; Alipanahi et al.,
2008)), so that pairs of instances marked must-link will be
close in the new metric space (and cannot-link pairs be con-

sidered as far apart). The two above approaches can also be
integrated (Bilenko et al. (2004)). However, these objective
functions are usually rather ad hoc. In particular, it is not
clear in what sense they are compatible with the adopted
clustering algorithm (such as k-means clustering).

A different approach to the problem of communicating user
expertise for the purpose of choosing a clustering tool is
discussed in Ackerman et al. (2010). They considered a set
of properties, or requirements, for clustering algorithms,
and investigated which of those properties hold for vari-
ous algorithms. The user can then pick the right algorithm
based on the requirements that she wants the algorithm to
meet. However, to turn such an approach into a practically
useful tool, one will need to come up with properties that
are relevant to the end user of clustering –a goal that is still
far from being reached.

Statistical convergence rates of sample clustering to the
optimal clustering, with respect to some data generating
probability distribution, play a central role in our analysis.
From that perspective, most relevant to our paper are re-
sults that provide generalization bounds for k-means clus-
tering. Ben-David (2007) proposed the first dimension-
independent generalization bound for k-means clustering
based on compression techniques. Biau et al. (2008) tight-
ened this result by an analysis of Rademacher complex-
ity. Maurer and Pontil (2010) investigated a more general
framework, in which generalization bounds for k-means as
well as other algorithms can be obtained. It should be noted
that these results are about the standard clustering setup
(without any supervised feedback), where the data repre-
sentation is fixed and known to the clustering algorithm.

1.2 Contributions

Our first contribution is to provide a statistical framework
to analyze the problem of learning representation for clus-
tering. We assume that the expert has some implicit target
clustering of the dataset in his mind. The learner however,
is unaware of it, and instead has to select a mapping among
a set of potential mappings, under which the result of k-
means clustering will be similar to the target partition. An
appropriate notion of loss function is introduced to quantify
the success of the learner. Then, we define the analogous
notion of PAC-learnability2 for the problem of learning rep-
resentation for clustering.

The second contribution of the paper is the introduction of
a combinatorial parameter, a specific notion of the capacity
of the class of mappings, that determines the sample com-
plexity of the clustering learning tasks. This combinatorial
notion is a multivariate version of pseudo-dimension of a
class of real-valued mappings. We show that there is uni-
form convergence of empirical losses to the true loss, over

2PAC stands for the well known notion of “probably approxi-
mately correct”, popularized by Valiant (1984).

83

any class of embeddings, F , at a rate that is determined
by the proposed dimension of that F . This implies that any
empirical risk minimization algorithm (ERM) will success-
fully learn such a class from sample sizes upper bounded by
those rates. Finally, we analyze a particular natural class –
the class of linear mappings from Rd2 to Rd1– and show
that a roughly speaking, sample size of O(d1d2ε2) is suffi-
cient to guarantee an ε-optimal representation.

The rest of this paper is organized as follows: Section 2
defines the problem setting. Then in Section 3, we inves-
tigate ERM-type algorithms and show that, “uniform con-
vergence” is sufficient for them to work. Furthermore, this
section presents the uniform convergence results and the
proof of an upper bound for the sample complexity. Finally,
we conclude in section 4 and provide some directions for
future work.

2 PROBLEM SETTING

2.1 Preliminaries

Let X be a finite domain set. A k-clustering of X is a
partition of X into k subsets. If C is a k-clustering, we
denote the subsets of the partition by C1, ..., Ck, therefore
we have C = {C1, .., Ck}. Let πk denote the set of all
permutations over [k] where [k] denotes {1, 2, ..., k}. The
clustering difference between two clusterings, C1 and C2,
with respect to X is defined by

∆X(C1, C2) = min
σ∈πk

1

|X|
k∑

i=1

|C1
i ∆C2

σ(i)| (1)

where |.| and ∆ denote the cardinality and the symmetric
difference of sets respectively. For a sample S ⊂ X , and
C1 (a partition of X), we define C1

∣∣∣
S

to be a partition of

S induced by C1, namely C1
∣∣∣
S

= {C1
1 ∩ S, . . . , C1

k ∩ S}.
Accordingly, the sample-based difference between two par-
titions is defined by

∆S(C1, C2) = ∆S(C1
∣∣∣
S
, C2

∣∣∣
S

) (2)

Let f be a mapping from X to Rd, and µ = (µ1, . . . µk) be
a vector of k centers in Rd. The clustering defined by (f, µ)
is the partition over X induced by the µ-Voronoi partition
in Rd. Namely,

Cf (µ) = (C1, . . . Ck), where for all i,

Ci = {x ∈ X : ‖f(x)−µi‖2 ≤ ‖f(x)−µj‖2 for all j 6= i}

The k-means cost of clustering X with a set of centers µ =
{µ1, . . . , µk} and with respect to a mapping f is defined by

COSTX(f, µ) =
1

|X|
∑

x∈X
min
µi∈µ
‖f(x)− µi‖22 (3)

The k-means clustering algorithm finds the set of centers
µfX that minimize this cost3. In other words,

µfX = arg min
µ

COSTX(f, µ) (4)

Also, for a partition C and mapping f , we can define the
cost of clustering as follows.

COSTX(f, C) =
1

|X|
∑

i∈[k]
min
µj

∑

x∈Ci
‖f(x)− µj‖22 (5)

For a mapping f as above, let CfX denote the k-means clus-
tering of X induced by f , namely

CfX = Cf (µfX) (6)

The difference between two mappings f1 and f2 with re-
spect to X is defined by the difference between the result
of k-means clustering using these mappings. Formally,

∆X(f1, f2) = ∆X(Cf1X , C
f2
X) (7)

The following proposition shows the “k-richness” property
of k-means objective.

Proposition 1. Let X be a domain set. For every k-
clustering of X , C, and every d ∈ N+, there exist a map-
ping g : X 7→ Rd such that CgX = C.

Proof. The mapping g can be picked such that it collapses
each cluster Ci into a single point in Rn (and so the image
of X under mapping g will be just k single points in Rn).
The result of k-means clustering under such mapping will
be C.

In this paper, we investigate the transductive setup, where
there is a given data set, known to the learner, that needs to
be clustered. Clustering often occurs as a task over some
data generating distribution (e.g., Von Luxburg and Ben-
David (2005)). The current work can be readily extended
to that setting. However, in that case, we assume that the
clustering algorithm gets, on top of the clustered sample, a
large unclustered sample drawn form that data generating
distribution.

3We assume that the solution to k-means clustering is unique.
We will elaborate about this issue in the next sections.

84

2.2 Formal Problem Statement

Let C∗ be the target k-clustering of X . A (supervised) rep-
resentation learner for clustering, takes as input a sample
S ⊂ X and its clustering, C∗

∣∣∣
S

, and outputs a mapping f
from a set of potential mappings F . In the following, PAC
stands for the notion of “probably approximately correct”.
Definition 1. PAC Supervised Representation Learner for
K-Means (PAC-SRLK)

Let F be a set of mappings from X to Rd. A represen-
tation learning algorithm A is a PAC-SRLK with sample
complexity mF : (0, 1)2 7→ N with respect to F , if for
every (ε, δ) ∈ (0, 1)2, every domain set X and every clus-
tering of X , C∗, the following holds:

if S is a randomly (uniformly) selected subset of X of size
at least mF (ε, δ), then with probability at least 1− δ

∆X(C∗, CfAX) ≤ inf
f∈F

∆X(C∗, CfX) + ε (8)

where fA = A(S,C∗
∣∣∣
S

), is the output of the algorithm.

This can be regarded as a formal PAC framework to an-
alyze the problem of learning representation for k-means
clustering. The learner is compared to the best mapping in
the class F .

A natural question is providing bounds on the sample com-
plexity of PAC-SRLK with respect to F . Intuitively, for
richer classes of mappings, we need larger clustered sam-
ples. Therefore, we need to introduce an appropriate no-
tion of “capacity” for F and bound the sample complexity
based on it. This is addressed in the next sections.

3 ANALYSIS AND RESULTS

3.1 Empirical Risk Minimization

In order to prove an upper bound for the sample complexity
of representation learning for clustering, we need to con-
sider an algorithm, and prove a sample complexity bound
for it. Here, we show that any ERM-type algorithm can be
used for this purpose. Therefore, we will be able to prove
an upper bound for the sample complexity of PAC-SRLK.

Let F be a class of mappings and X be the domain set. A
TERM4 learner for F takes as input a sample S ⊂ X and
its clustering Y and outputs:

ATERM (S, Y) = arg min
f∈F

∆S(CfX

∣∣∣
S
, Y) (9)

Note that we call it transductive, because it is implicitly
assumed that it has access to unlabeled dataset (i.e., X). A

4TERM stands for Transductive Empirical Risk Minimizer

TERM algorithm goes over all mappings in F and selects
the mapping which is the most consistent mapping with the
given clustering: the mapping under which if we perform
k-means clustering of X , the sample-based ∆-difference
between the result and Y is minimized.

Note that we are not studying this algorithm as a computa-
tional tool; we only use it to show an upper bound for the
sample complexity.

Intuitively, this algorithm will work well when the empiri-
cal ∆-difference and the true ∆-difference of the mappings
in the class are close to each other. In this case, by min-
imizing the empirical difference, the algorithm will auto-
matically minimize the true difference as well. In order to
formalize this idea, we define the notion of “representative-
ness” of a sample.

Definition 2. (ε-Representative Sample) Let F be a class
of mappings from X to Rd. A sample S is ε-representative
with respect to F , X and the clustering C∗, if for every
f ∈ F the following holds

|∆X(C∗, CfX)−∆S(C∗, CfX))| ≤ ε (10)

The following theorem shows that for the TERM algorithm
to work, it is sufficient to supply it with a representative
sample.

Theorem 1. (Sufficiency of Uniform Convergence) Let F
be a set of mappings from X to Rd. If S is an ε

2 -
representative sample with respect to X , F and C∗ then

∆X(C∗, C f̂X) ≤ ∆X(C∗, Cf
∗

X) + ε (11)

where f∗ = arg minf∈F ∆X(C∗, CfX) and f̂ =

ATERM (S,C∗
∣∣∣
S

).

Proof. Using ε
2 -representativeness of S and the fact that f̂

is the empirical minimizer of the loss function, we have

∆X(C∗, C f̂X) ≤ ∆S(C∗, C f̂X) +
ε

2
(12)

≤ ∆S(C∗, Cf
∗

X) +
ε

2
(13)

≤ ∆X(C∗, Cf
∗

X) +
ε

2
+
ε

2
(14)

≤ ∆X(C∗, Cf
∗

X) + ε (15)

85

Therefore, we just need to provide an upper bound for the
sample complexity of uniform convergence: “how many
instances do we need to make sure that with high probabil-
ity our sample is ε-representative?”

3.2 Classes of Mappings with a Uniqueness Property

In general, the solution to k-means clustering may not be
unique. Therefore, the learner may end up with finding a
mapping that corresponds to multiple different clusterings.
This is not desirable, because in this case, the output of the
learner will not be interpretable. Therefore, it is reason-
able to choose the class of potential mappings in a way that
it includes only the mappings under which the solution is
unique.

In order to make this idea concrete, we need to define an
appropriate notion of uniqueness. We use a notion similar
to the one introduced by Balcan et al. (2009) with a slight
modification5.

Definition 3. ((η, ε)-Uniqueness) We say that k-means
clustering for domain X under mapping f : X 7→ Rd has
a (η, ε)-unique solution, if every η-optimal solution of the
k-means cost is ε-close to the optimal solution. Formally,
the solution is (η, ε)-unique if for every partition P that
satisfies

COSTX(f, P) < COSTX(f, CfX) + η (16)

would also satisfy

∆X(CfX , P) < ε (17)

In the degenerate case where the optimal solution to k-
means is not unique itself (and so CfX is not well-defined),
we say that the solution is not (η, ε)-unique.

It can be noted that the definition of (η, ε)-uniqueness not
only requires the optimal solution to k-means clustering
to be unique, but also all the “near-optimal” minimizers
of the k-means clustering cost should be “similar”. This
is a natural strengthening of the uniqueness condition, to
guard against cases where there are η0-optimizers of the
cost function (for arbitrarily small η0) with totally different
solutions.

Now that we have a definition for uniqueness, we can de-
fine the set of mappings for X under which the solution
is unique. We say that a class of mappings F has (η, ε)-
uniqueness property with respect to X , if every mapping in
F has (η, ε)-uniqueness property over X .

Note that given an arbitrary class of mappings F , we can
find a subset of it that satisfies (η, ε)-uniqueness property

5Our notion is additive in both parameters rather than multi-
plicative

over X . Also, as argued above, this subset is the useful
subset to work with. Therefore, in the rest of the paper,
we investigate learning for classes with (η, ε)-uniqueness
property. In the next section, we prove uniform conver-
gence results for such classes.

3.3 Uniform Convergence Results

In Section 3.1, we defined the notion of ε-representative
samples. Also, we proved that if a TERM algorithm is fed
with such a representative sample, it will work satisfacto-
rily. The most technical part of the proof is then about the
question “how large should be the sample in order to make
sure that with high probability it is actually a representative
sample?”

In order to formalize this notion, let F be a set of mappings
from a domain X to (0, 1)n6. Define the sample complex-
ity of uniform convergence, mUC

F (ε, δ), as the minimum
number m such that for every fixed partition C∗, if S is
a randomly (uniformly) selected subset of X with size m,
then with probability at least 1− δ, for all f ∈ F we have

|∆X(C∗, CfX)−∆S(C∗, CfX)| ≤ ε (18)

The technical part of this paper is devoted to provide an
upper bound for this sample complexity.

3.3.1 Preliminaries

Definition 4. (ε-cover and covering number) Let F be a
set of mappings from X to (0, 1)n. A subset F̂ ⊂ F is
called an ε-cover for F with respect to the metric d(., .) if
for every f ∈ F there exists f̂ ∈ F̂ such that d(f, f̂) ≤ ε.
The covering number, N (F , d, ε) is the size of the smallest
ε-cover of F with respect to d.

In the above definition, we did not specify the metric d.
In our analysis, we are interested in the L1 distance with
respect to X , namely:

dXL1
(f1, f2) =

1

|X|
∑

x∈X
‖f1(x)− f2(x)‖2 (19)

Note that the mappings we consider are not real-valued
functions, but their output is an n-dimensional vector. This
is in contrast to the usual analysis used for learning real-
valued functions. If f1 and f2 are real-valued, then L1 dis-
tance is defined by

dXL1
(f1, f2) =

1

|X|
∑

x∈X
|f1(x)− f2(x)| (20)

6In the analysis, for simplicity, we will assume that the set
of mappings is a function to the bounded space (0, 1)n wherever
needed

86

We will prove sample complexity bounds for our prob-
lem based on the L1-covering number of the set of map-
pings. However, it will be beneficial to have a bound based
on some notion of capacity, similar to VC-dimension, as
well. This will help in better understanding and easier
analysis of sample complexity of different classes. While
VC-dimension is defined for binary valued functions, we
need a similar notion for functions with outputs in Rn. For
real-valued functions, we have such notion, called pseudo-
dimension (Pollard (1984)).

Definition 5. (Pseudo-Dimension) Let F be a set of func-
tions from X to R. Let S = {x1, x2, . . . , xm} be a subset
of X . Then S is pseudo-shattered by F if there are real
numbers r1, r2, . . . , rm such that for every b ∈ {0, 1}m,
there is a function fb ∈ F with sgn(fb(xi) − ri) = bi for
i ∈ [m]. Pseudo dimension of F , called Pdim(F), is the
size of the largest shattered set.

It can be shown (e.g., Theorem 18.4. in Anthony
and Bartlett (2009)) that for a real-valued class F , if
Pdim(F) ≤ q then logN (F, dXL1

, ε) = O(q) where O()

hides logarithmic factors of 1
ε . In the next sections, we will

generalize this notion to Rn-valued functions.

3.3.2 Reduction to Binary Hypothesis Classes

Let f1, f2 ∈ F be two mappings and σ be a permutation
over [k]. Define the binary-valued function hf1,f2σ (.) as fol-
lows

hf1,f2σ (x) =

{
1 x ∈ ∪ki=1(Cf1i ∆Cf2σ(i))

0 otherwise
(21)

Let HFσ be the set of all such functions with respect to F
and σ:

HFσ = {hf1,f2σ (.) : f1, f2 ∈ F} (22)

Finally, let HF be the union of all HFσ over all choices of
σ. Formally, if π is the set of all permutations over [k], then

HF = ∪σ∈πHFσ (23)

For a set S, and a binary function h(.), let h(S) =
1
|S|
∑
x∈S h(x). We now show that a uniform convergence

result with respect to HF is sufficient to have uniform con-
vergence for the ∆-difference function. Therefore, we will
be able to investigate conditions for uniform convergence
of HF rather than the ∆-difference function.

Theorem 2. Let X be a domain set, F be a set of map-
pings, and HF be defined as above. If S ⊂ X is such that

∀h ∈ HF , |h(S)− h(X)| ≤ ε (24)

then S will be ε-representative with respect to F , i.e., for
all f1, f2 ∈ F we will have

|∆X(Cf1X , C
f2
X)−∆S(Cf1X , C

f2
X)| ≤ ε (25)

Proof.

|∆S(Cf1X , C
f2
X)−∆X(Cf1X , C

f2
X)| (26)

=

∣∣∣∣∣

(
min
σ

1

|S|
∑

x∈S
hf1,f2σ

)
−
(

min
σ

1

|X|
∑

x∈X
hf1,f2σ

)∣∣∣∣∣
(27)

≤
∣∣∣∣∣max
σ

(
1

|S|
∑

x∈S
hf1,f2σ − 1

|X|
∑

x∈X
hf1,f2σ

)∣∣∣∣∣ (28)

≤
∣∣∣max
σ

(
hf1,f2σ (S)− hf1,f2σ (X)

)∣∣∣ ≤ ε (29)

The fact that HF is a class of binary-valued functions en-
ables us to provide sample complexity bounds based on
VC-dimension of this class. However, providing bounds
based on VC-Dim(HF) is not sufficient, in the sense that
it is not convenient to work with the class HF . Instead, it
will be nice if we can prove bounds directly based on the
capacity of the class of mappings, F . In the next section,
we address this issue.

3.3.3 L1-Covering Number and Uniform
Convergence

The classes introduced in the previous section, HF and
HFσ , are binary hypothesis classes. Also, we have shown
that proving a uniform convergence result for HF is suffi-
cient for our purpose. In this section, we show that a bound
on the L1 covering number of F is sufficient to prove uni-
form convergence for HF .

In Section 3.2, we argued that we only care about the
classes that have (η, ε)-uniqueness property. In the rest of
this section, assume that F is a class of mappings from X
to (0, 1)n that satisfies (η, ε)-uniqueness property.
Lemma 1. Let f1, f2 ∈ F . If dL1

(f1, f2) < η
12 then

∆X(f1, f2) < 2ε

We leave the proof of this lemma for the appendix, and
present the next lemma.
Lemma 2. Let HF be defined as in the previous section.
Then,

N (HF , dXL1
, 2ε) ≤ k!N (F , dXL1

,
η

12
) (30)

87

Proof. Let F̂ be the η
12 -cover corresponding to the cover-

ing number N (F , dXL1
, η12). Based on the previous lemma,

HF̂σ is a 2ε-cover for HFσ . But we have only k! permuta-
tions of [k], therefore, the covering number for HF̂ is at
most k! times larger than HF̂σ . This proves the result.

Basically, this means that if we have a small L1 covering
number for the mappings, we will have the uniform conver-
gence result we were looking for. The following theorem
proves this result.

Theorem 3. Let F be a set of mappings with (η, ε)-
uniqueness property. Then there for some constant α we
have

mUC
F (ε, δ) ≤ O(

log k! + logN (F , dXL1
, ηα) + log(1

δ)

ε2
)

(31)

Proof. Following the previous lemma, if we have a small
L1-covering number for F , we will also have a small cov-
ering number for HF as well. But based on standard uni-
form convergence theory, if a hypothesis class has small
covering number, then it has uniform convergence prop-
erty. More precisely, (e.g., Theorem 17.1 in Anthony and
Bartlett (2009)) we have:

mUC
HF (ε0, δ) ≤ O(

logN (HF , dXL1
, ε016) + log(1

δ)

ε20
) (32)

Applying Lemma 2 to the above proves the result.

3.4 Bounding L1-Covering Number

In the previous section, we proved if the L1 covering num-
ber of the class of mappings is bounded, then we will have
uniform convergence. However, it is desirable to have a
bound with respect to a combinatorial dimension of the
class (rather than the covering number). Therefore, we will
generalize the notion of pseudo-dimension for the class of
mappings that take value in Rn.

Let F be a set of mappings form X to Rn. For every map-
ping f ∈ F , define real-valued functions f1, . . . , fn such
that f(x) = (f1(x), . . . , fn(x)). Now let Fi = {fi : f ∈
F}. This means that F1, F2, . . . , Fn are classes of real-
valued functions. Now we define pseudo-dimension of F
as follow.

Pdim(F) = nmax
i∈[n]

Pdim(Fi) (33)

Proposition 2. Let F be a set of mappings form X to Rn.
If Pdim(F) ≤ q then logN (F, dXL1

, ε) = O(q) whereO()
hides logarithmic factors.

Proof. The result follows from the corresponding result for
bounding covering number of real-valued functions based
on pseudo-dimension mentioned in the preliminaries sec-
tion. The reason is that we can create a cover by com-
position of the ε

n -covers of all Fi. However, this will at
most introduce a factor of n in the logarithm of the cover-
ing number.

Therefore, we can rewrite the result of the previous section
in terms of pseudo-dimension.

Theorem 4. Let F be a class of mappings with (η, ε)-
uniqueness property. Then

mUC
F (ε, δ) ≤ O(

k + Pdim(F) + log(1
δ)

ε2
) (34)

where O() hides logarithmic factors of k and 1
η .

3.5 Sample Complexity of PAC-SRLK

In Section 3.1, we showed that uniform convergence is suf-
ficient for a TERM algorithm to work. Also, in the previous
section, we proved a bound for the sample complexity of
uniform convergence. The following theorem, which is the
main technical result of this paper, combines these two and
provides a sample complexity upper bound for PAC-SRLK
framework.

Theorem 5. Let F be a class of (η, ε)-unique mappings.
Then the sample complexity of learning representation for
k-means clustering with respect to F is upper bounded by

mF (ε, δ) ≤ O(
k + Pdim(F) + log(1

δ)

ε2
) (35)

where O hides logarithmic factors of k and 1
η .

The proof is done by combining Theorems 1 and 4.

The following result shows an upper bound for the sample
complexity of learning linear mappings (or equivalently,
Mahalanobis metrics).

Corollary 1. Let F be a set of (η, ε)-unique linear map-
pings from Rd1 to Rd2 . Then we have

mF (ε, δ) ≤ O(
k + d1d2 + log(1

δ)

ε2
) (36)

Proof. It is a standard result that the pseudo-dimension of
a vector space of real-valued functions is just the dimen-
sionality of the space (in our case d1) (e.g., Theorem 11.4
in Anthony and Bartlett (2009)). Also, based on our defini-
tion of Pdim for Rd2 -valued functions, it should scale by
a factor of d2.

88

4 CONCLUSIONS AND OPEN
PROBLEMS

In this paper we provided a formal statistical framework for
learning the representation (i.e., a mapping) for k-means
clustering based on supervised feedback. The learner, un-
aware of the target clustering of the domain, is given a clus-
tering of a sample set. The learner’s task is then finding
a mapping function f̂ (among a class of mappings) under
which the result of k-means clustering of the domain is as
close as possible to the true clustering. This framework was
called PAC-SRLK.

A notion of ε-representativeness was introduced, and it was
proved that any ERM-type algorithm that has access to
such a sample will work satisfactorily. Finally, a techni-
cal uniform convergence result was proved to make sure
that a large enough sample is (with high probability) ε-
representative. This was used to prove an upper bound for
the sample complexity of PAC-SRLK based on covering
numbers of the set of mappings. Furthermore, a notion of
pseudo-dimension for the class of mappings was defined,
and the sample complexity was upper bounded based on it.

Note that in the analysis, the notion of (η, ε)-uniqueness
(similar to that of Balcan et al. (2009)) was used and it was
argued that it is reasonable to require the learner to output
a mapping under which the solution is “unique” (because
otherwise the output of k-means clustering would not be
interpretable). Therefore, in the analysis, we assumed that
the class of potential mappings has the (η, ε)-uniqueness
property.

It can be noted that we did not analyze the computational
complexity of algorithms for PAC-SRLK framework. We
leave this analysis to the future work. We just note that
a similar notion of uniqueness proposed by Balcan et al.
(2009) resulted in being able to efficiently solve the k-
means clustering algorithm.

One other observation is that representation learning can be
regarded as a special case of metric learning; because for
every mapping, we can define a distance function that com-
putes the distance in the mapped space. In this light, we
can make the problem more general by making the learner
find a distance function rather than a mapping. This is
more challenging to analyze, because we do not even know
a generalization bound for center-based clustering under
general distance functions. An open question will be pro-
viding such general results.

Acknowledgments

5 APPENDIX

Proof of Lemma 1. Let F : X 7→ (0, 1)n be a set
of mappings that have (η, ε)-uniqueness property. Let

f1, f2 ∈ F and dL1
(f1, f2) < η

12 . We need to prove that
∆X(f1, f2) < 2ε. In order to prove this, note that due to
triangular inequality, we have

∆X(f1, f2) = ∆X(Cf1(µf1), Cf2(µf2))

≤ ∆X(Cf1(µf1), Cf1(µf2))+

∆X(Cf1(µf2), Cf2(µf2)) (37)

Therefore, it will be sufficient to show that each of the ∆-
terms above is smaller than ε. We start by proving a useful
lemma.

Lemma 3. Let f1, f2 ∈ F and dL1
(f1, f2) < η

6 . Let µ be
an arbitrary set of k centers in (0, 1)n. Then

|COSTX(f1, µ)− COSTX(f2, µ)| < η

2

Proof.

|COSTX(f1, µ)− COSTX(f2, µ)|

=

∣∣∣∣∣

(
1

|X|
∑

x∈X
min
µj∈µ

‖f1(x)− µj‖2
)

−
(

1

|X|
∑

x∈X
min
µj∈µ

‖f2(x)− µj‖2
)∣∣∣∣∣ (38)

≤ 1

|X|
∑

x∈X
max
µj∈µ

∣∣∣‖f1(x)− µj‖2 − ‖f2(x)− µj‖2
∣∣∣ (39)

=
1

|X|
∑

x∈X
max
µj∈µ

∣∣∣‖f1(x)‖2−‖f2(x)‖2−2 < µj , f1−f2 >
∣∣∣

(40)

=
1

|X|
∑

x∈X
max
µj∈µ

∣∣∣ < f1 − f2, f1 + f2 − 2µj >
∣∣∣ (41)

≤ 3

|X|
∑

x∈X
‖f1 − f2‖ ≤

3η

6
≤ η

2
(42)

Now we are ready to prove that the first ∆-term is smaller
than ε, i.e., ∆X(Cf1(µf1), Cf1(µf2)) < ε. But to
do so, we only need to show that COSTX(f1, µ

f2) −
COSTX(f1, µ

f1) < η; because in that case, due to (η, ε)-
uniqueness property of f1, the result will follow. Now, us-
ing Lemma 3, we have

89

COSTX(f1, µ
f2)− COSTX(f1, µ

f1) (43)

≤
(
COSTX(f2, µ

f2) +
η

2

)
− COSTX(f1, µ

f1) (44)

= min
µ

(COSTX(f2, µ))−min
µ

(COSTX(f1, µ)) +
η

2
(45)

≤ max
µ

(COSTX(f2, µ)− COSTX(f1, µ)) +
η

2
(46)

≤ η

2
+
η

2
≤ η (47)

where in the first and the last line we used Lemma 3.

Finally, we need to prove the second ∆-inequality, i.e.,
∆X(Cf1(µf2), Cf2(µf2)) ≤ ε. Assume contrary. But
based on (η, ε)-uniqueness property of f2, we conclude that
COSTX(f2, C

f1(µf2))−COSTX(f2, C
f2(µf2)) ≥ η. In

the following, we prove that this cannot be true, and hence
a contradiction.

Let mx = arg minµ0∈µf2 ‖f1(x) − µ0‖2. Then, based on
the boundedness of f1(x),f2(x) and we have:

COSTX(f2, C
f1(µf2))− COSTX(f2, C

f2(µf2)) (48)

=

(
1

|X|
∑

x∈X
‖f2(x)−mx‖2

)
− COSTX(f2, µ2) (49)

=

(
1

|X|
∑

x∈X
‖f2(x)− f1(x) + f1(x)−mx‖2

)

− COSTX(f2, µ2) (50)

=
1

|X|
∑

x∈X
‖f2(x)− f1(x)‖2

+
1

|X|
∑

x∈X
‖f1(x)−mx‖2

+
1

|X|
∑

x∈X
2 < f2(x)− f1(x), f1(x)−mx >

− COSTX(f2, µ2) (51)

≤ 2

|X|
∑

x∈X
‖f2(x)− f1(x)‖

+ COSTX(f1, µ1)

+
4

|X|
∑

x∈X
‖f2(x)− f1(x)‖

− COSTX(f2, µ2) (52)

≤ 6

|X|
∑

x∈X
‖f2(x)− f1(x)‖

+ (COSTX(f1, µ1)− COSTX(f2, µ2))

(53)

≤ 6η

12
+
η

2
≤ η (54)

References
Ackerman, M., Ben-David, S., and Loker, D. (2010).

Towards property-based classification of clustering
paradigms. In Advances in Neural Information Process-
ing Systems, pages 10–18.

Alipanahi, B., Biggs, M., Ghodsi, A., et al. (2008). Dis-
tance metric learning vs. fisher discriminant analysis. In
Proceedings of the 23rd national conference on Artificial
intelligence, pages 598–603.

Anthony, M. and Bartlett, P. L. (2009). Neural network
learning: Theoretical foundations. cambridge university
press.

Balcan, M.-F., Blum, A., and Gupta, A. (2009). Approxi-
mate clustering without the approximation. In Proceed-
ings of the twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1068–1077. Society for In-
dustrial and Applied Mathematics.

Basu, S., Banerjee, A., and Mooney, R. (2002). Semi-
supervised clustering by seeding. In In Proceedings
of 19th International Conference on Machine Learning
(ICML-2002.

Basu, S., Bilenko, M., and Mooney, R. J. (2004). A prob-
abilistic framework for semi-supervised clustering. In
Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 59–68. ACM.

Basu, S., Davidson, I., and Wagstaff, K. (2008). Con-
strained clustering: Advances in algorithms, theory, and
applications. CRC Press.

Ben-David, S. (2007). A framework for statistical clus-
tering with constant time approximation algorithms for

90

k-median and k-means clustering. Machine Learning,
66(2-3):243–257.

Biau, G., Devroye, L., and Lugosi, G. (2008). On the per-
formance of clustering in hilbert spaces. Information
Theory, IEEE Transactions on, 54(2):781–790.

Bilenko, M., Basu, S., and Mooney, R. J. (2004). Integrat-
ing constraints and metric learning in semi-supervised
clustering. In Proceedings of the twenty-first interna-
tional conference on Machine learning, page 11. ACM.

Blum, A. (2014). Approximation-stability and
perturbation-stability. In DAGSTUHL Workshop
on Analysis of Algorithms Beyond the Worst Case.

Demiriz, A., Bennett, K. P., and Embrechts, M. J. (1999).
Semi-supervised clustering using genetic algorithms.
Artificial neural networks in engineering (ANNIE-99),
pages 809–814.

Kulis, B., Basu, S., Dhillon, I., and Mooney, R. (2009).
Semi-supervised graph clustering: a kernel approach.
Machine learning, 74(1):1–22.

Law, M. H., Topchy, A. P., and Jain, A. K. (2005). Model-
based clustering with probabilistic constraints. In SDM.
SIAM.

Maurer, A. and Pontil, M. (2010). k-dimensional coding
schemes in hilbert spaces. Information Theory, IEEE
Transactions on, 56(11):5839–5846.

Pollard, D. (1984). Convergence of stochastic processes.
David Pollard.

Valiant, L. G. (1984). A theory of the learnable. Commu-
nications of the ACM, 27(11):1134–1142.

Von Luxburg, U. and Ben-David, S. (2005). Towards a
statistical theory of clustering. In Pascal workshop on
statistics and optimization of clustering, pages 20–26.

Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S., et al.
(2001). Constrained k-means clustering with back-
ground knowledge. In ICML, volume 1, pages 577–584.

Xing, E. P., Jordan, M. I., Russell, S., and Ng, A. Y. (2002).
Distance metric learning with application to clustering
with side-information. In Advances in neural informa-
tion processing systems, pages 505–512.

91

Adversarial Cost-Sensitive Classification

Kaiser Asif Wei Xing Sima Behpour Brian D. Ziebart
Department of Computer Science
University of Illinois at Chicago

{kasif2,wxing3,sbehpo2,bziebart}@uic.edu

Abstract

In many classification settings, mistakes incur
different application-dependent penalties based
on the predicted and actual class labels. Cost-
sensitive classifiers minimizing these penalties
are needed. We propose a robust minimax ap-
proach for producing classifiers that directly min-
imize the cost of mistakes as a convex opti-
mization problem. This is in contrast to previ-
ous methods that minimize the empirical risk us-
ing a convex surrogate for the cost of mistakes,
since minimizing the empirical risk of the ac-
tual cost-sensitive loss is generally intractable.
By treating properties of the training data as un-
certain, our approach avoids these computational
difficulties. We develop theory and algorithms
for our approach and demonstrate its benefits on
cost-sensitive classification tasks.

1 INTRODUCTION

In many applications of machine learning, the penalty or
cost for classification errors depends on both the predicted
label and the actual label. For example, an incorrect disease
diagnosis may lead to treatments that cause complications
of varying severity depending on the patient’s actual dis-
ease. These different incurred penalties for mistakes can
be represented as a confusion cost matrix that is indexed
by the predicted class (row) and actual class (column). As
shown in the following confusion cost matrix for a classifi-
cation task with four possible labels,

C =

0 1 2 0
3 0 1 3
4 2 0 1
1 1 2 0

 , (1)

the confusion costs need not be symmetric or possess any
other specific relationships. Here, correct predictions incur

zero cost (Ci,i = 0), but even this property is not required.
Additionally, other classification errors may incur zero cost
(C1,4 = 0) if, e.g., the same treatment cures two different
diseases. Note that the zero-one loss is a special case with
off-diagonal values of one and on-diagonal costs of zero.

A natural goal for machine learning is to obtain a clas-
sifier that minimizes the expected cost incurred when
classifying an example. Previous research primarily takes
existing classification methods based on empirical risk
minimization and tries to adapt them in various ways to
be sensitive to these misclassification costs. Reweighting
methods artificially augment the training data with copies
of “high cost” examples to make the classifier more cost-
sensitive to them [Chan and Stolfo, 1998, Elkan, 2001,
Zadrozny et al., 2003, Zhou and Liu, 2010]. Other meth-
ods modify the criteria used to obtain a classifier that
incorporates mistake-specific losses [Knoll et al., 1994,
Turney, 1995, Elkan, 2001, Brefeld et al., 2003,
Ling et al., 2004, Lomax and Vadera, 2013]. However, in
both cases the non-convexity of the cost-sensitive loss
function makes empirical risk minimization impractical
[Hoffgen et al., 1995]. Surrogate loss functions that are
convex (e.g., the hinge loss) are instead minimized, but
this can introduce significant suboptimality.

Rather than integrating cost-sensitivity into existing ma-
chine learning techniques, we formulate a new machine
learning approach from first principles to robustly min-
imize the expected cost. Our approach treats classifier
construction as a game against an adversarial evaluator
[Topsøe, 1979, Grünwald and Dawid, 2004]. This enables
us to directly minimize the cost-sensitive loss on an ap-
proximation of the training data instead of using a convex
approximation of the cost-sensitive loss, as is done with
empirical risk minimization. Inference reduces to solving a
zero-sum game in our approach. This is efficiently accom-
plished using linear programming. We obtain parameter es-
timates by constructing game payoff parameters using con-
vex optimization methods. The key benefit of our approach
is that the exact confusion cost matrix is employed rather
than a convex surrogate. We provide important bounds

92

on the generalization error and demonstrate the conceptual
and empirical benefits of our approach in practice.

2 PRELIMINARIES & RELATED WORK

2.1 EMPIRICAL RISK MINIMIZATION

A standard approach to parametric classification is to as-
sume some functional form for the classifier (e.g., a lin-
ear discriminant function, fθ(x) = argmaxy θ

Tφ(x, y),
where φ(x, y) ∈ Rk is a feature function) and then select
model parameters θ that minimize the empirical risk,

argmin
θ

EP̃ (x,y) [loss (Y, fθ(X))] + λ||θ||, (2)

with a regularization penalty λ||θ|| often added to avoid
overfitting to available training data1. Unfortunately, many
combinations of classification functions, fθ(x), and loss
functions, loss(·, ·), do not lend themselves to efficient pa-
rameter optimization under the empirical risk minimiza-
tion (ERM) formulation. For example, the zero-one loss
measuring the misclassification rate will generally lead to
a non-convex empirical risk minimization problem that is
NP-hard to solve [Hoffgen et al., 1995].

Figure 1: Convex surrogates
for the zero-one loss.

To avoid these in-
tractabilities, convex
surrogate loss functions
(Figure 1) that serve
as upper bounds on the
desired loss function
are often used to create
tractable optimization
problems. The popular
support vector ma-
chine (SVM) classifier
[Cortes and Vapnik, 1995], for example, employs the
hinge-loss—an upper bound on the zero-one loss—to
avoid the often intractable empirical risk minimization
problem. Adaboost [Freund and Schapire, 1997] incre-
mentally minimizes the exponential loss. The difference
between the actual loss and its convex surrogate can intro-
duce a substantial mismatch between optimal parameter
estimation under the surrogate loss function and optimal
parameter estimates for the original performance objective.

2.2 COST-SENSITIVE LEARNING

Cost-sensitive learning considers more general loss func-
tions than the zero-one loss in which the loss depends
on the actual and the predicted class. One approach
is to estimate the conditional label distribution, P̂ (y|x),
and employ the Bayesian optimal classifier: f̂(x) =

1Lowercase non-bold, x, and bold, x, denote scalar and vector
values, and capitals, X or X, denote random variables.

argminy′∈Y EP̂ (y|x)[Cy′,Y], using, e.g., the cost matrix of
Eq. (1). However, accurately estimating the conditional la-
bel distribution will typically require much more data than
methods that directly learn the best class prediction for a
given loss function [Margineantu, 2002].

Early meta-learning methods for cost-sensitive learning at-
tempt to modify how a cost-insensitive learner is used
during training and/or prediction time so that the end re-
sult of its use is cost-sensitive. One approach for this
is to either stratify or reweight available training data
so that more costly mistakes will incur a larger overall
cost and therefore the resulting classifier will be more
sensitive to them [Chan and Stolfo, 1998, Elkan, 2001,
Zadrozny et al., 2003, Zhou and Liu, 2010]. However, the
validity of this approach is limited to a restricted class of
consistent cost matrices when applied to multi-class pre-
diction tasks [Domingos, 1999, Zhou and Liu, 2010]. A
method that reduces multi-class predictions to binary pre-
dictions using iterative reweighting, data space expan-
sion, and gradient boosting with stochastic ensembles
[Abe et al., 2004] has been proposed to overcome these
limitations. The Metacost algorithm [Domingos, 1999]
similarly wraps around any underlying classifier. It uses
bagging to produce label probability estimates, which it
then uses to modify training data labels to produce more
cost-sensitive predictions on the training set.

Direct cost-sensitive learning methods incorporate the
confusion costs directly into the formulation of the
classifier. Some classification methods are much more
amenable to cost-sensitive modifications than oth-
ers. In decision trees, for example, modified criteria
for greedily selecting decision nodes and/or pruning
the tree based on the confusion cost have been suc-
cessfully employed [Knoll et al., 1994, Turney, 1995,
Elkan, 2001, Ling et al., 2004, Davis et al., 2006,
Lomax and Vadera, 2013], while relatively little at-
tention has been given for developing cost-sensitive
nearest neighbor classifiers [Qin et al., 2013].

Boosting iteratively creates an ensemble of weak classi-
fiers that are then combined to create a much stronger
classifier [Freund and Schapire, 1997] that often performs
well in practice. Cost-sensitive boosting techniques em-
ploy cost-sensitive weak learners to produce a stronger
learner that is cost-sensitive as well [Fan et al., 1999,
Ting, 2000]. This is accomplished by minimizing the risk
over the training dataset, 1

n

∑n
i=1 loss′(C, yi, S(xi)), using

a generalized surrogate loss function, loss′(C, ỹ, Sm(x)),
for the cost matrix C, class label ỹ, and where Sy(x)
represents the classifier confidence in assigning class
y to data point x. Recently developed loss func-
tions are the Generalized Exponential Loss (GEL),∑
y′ Cy,y′e

Sy′ (x)−Sy(x) and the Generalized Logistic Loss
(GLL), log(1 +

∑
y′ Cy,y′e

Sy′ (x)−Sy(x)). These loss func-
tions are guess-averse and produce state-of-the-art perfor-

93

mance when used in boosting for cost-sensitive classifica-
tion [Beijbom et al., 2014].

Support vector machines [Cortes and Vapnik, 1995] have
been generalized in the binary classification setting by pe-
nalizing mistakes for one class more than for the other class
[Brefeld et al., 2003]. Multiclass problems are reduced to
binary classifiers using one-versus-all [Bottou et al., 1994]
and one-versus-one [Knerr et al., 1990] prediction tasks.
The Cost-Sensitive One-Versus-All (CSOVA) algorithm
[Lin, 2008] trains a separate binary SVM classifier for each
class. The Cost-Sensitive One-Versus-One (CSOVO) algo-
rithm [Lin, 2010] instead constructs a total of k(k − 1)/2
classifiers—one for each pair of classes (i, j). For both
CSOVA and CSOVO, binary classifiers are aggregated to
produce a multi-class prediction. Using structured SVM
methods [Tsochantaridis et al., 2005] to directly incorpo-
rate cost-sensitivity into the multiclass generalization of the
hinge loss [Lee et al., 2004],

min
θ, ε≥0

θ · θ + α
∑

i

εi such that: (3)

θ · φ(xi, yi)− θ · φ(xi, y
′) ≥ Cy′,yi − εi,∀i, y′ 6= yi,

creates a margin-based classifier that incorporates mistake
costs additively. We note that central to each of these SVM-
based methods is the hinge loss approximation of the cost-
sensitive loss function. Our approach avoids such approx-
imations of the loss function by instead approximating the
available training data.

2.3 ADVERSARIAL METHODS

The adversarial perspective that we leverage in our ap-
proach has played a formative role in statistical estima-
tion and decision making under uncertainty. These in-
clude Wald’s maximin model [Wald, 1949] of decision
making as a sequential adversarial game, Savage’s mini-
max optimization of the regret of decisions [Savage, 1951],
and statistical estimates under uncertainty that minimize
worst-case risk [Wolfowitz, 1950]. We follow a re-
laxation of this idea, which estimates complete prob-
ability distributions as solutions to a minimax game
[Topsøe, 1979, Grünwald and Dawid, 2004]. This formu-
lation is most commonly known as a means for deriving
the principle of maximum entropy using the logarithmic
loss. From this, many exponential family distributions
(e.g., Gaussian distribution, exponential) can be derived
[Wainwright and Jordan, 2008].

Our approach differs substantially from adversarial
machine learning formulations that are made robust
to adversarial shifts in the dataset [Dalvi et al., 2004,
Liu and Ziebart, 2014] or uncertainty in the loss function
[Wang and Tang, 2012]. We assume training and testing
data are IID and the cost-sensitive loss function is fully
known. We restrict our uncertainty to the conditional label

distribution P (y|x) and adversarially estimate it. In con-
trast with minimax approaches to classification that assume
parametric forms of the data [Lanckriet et al., 2003], our
approach allows the estimation of any conditional label dis-
tribution. Instead, only training data properties are incor-
porated in the form of constraints on the adversary’s condi-
tional label distribution [Grünwald and Dawid, 2004].

3 ADVERSARIAL COST-SENSITIVITY

3.1 FORMULATION

We begin to define our notation by considering an estima-
tor for the conditional label distribution, P̂ (y|x), the ac-
tual evaluation distribution P (y|x), and an adversarial dis-
tribtion P̌ (y|x). We compactly represent each as |Y|-sized
vectors p̂x = [P̂ (Ŷ = 1|x) P̂ (Ŷ = 2|x) . . .]T for each
input x ∈ X , and, similarly, px and p̌x. The expected loss
suffered from this estimator on input x for a confusion cost
matrix C is: p̂T

xCpx = EP̂ (ŷ|x)P (y|x)[CŶ ,Y].

Only samples from the true conditional label distribu-
tion P (y|x) are available. We denote these by distri-
bution P̃ (y|x) (compactly represented as p̃x) and also
input sample distribution P̃ (x). Minimizing the em-
pirical risk under this distribution, EP̃ (x)[p̂

T
θ,XCp̃X] =

1
n

∑n
i=1

∑
ŷ∈Y P̂ (ŷ|xi)Cŷ,yi , for some parametric form

of the estimation distribution, e.g., P̂θ(y|x) ∝ eθ·φ(x,y),
leads to a non-convex and generally intractable optimiza-
tion problem, assuming P 6= NP, as discussed in §2.1.

To avoid these non-convex optimization concerns, we
employ a robust minimax formulation [Topsøe, 1979,
Grünwald and Dawid, 2004] to construct our cost-sensitive
classifier (Definition 1). This formulation views the esti-
mation task as a two-player game between estimator and
adversary. The adversary is constrained to choose distribu-
tions that match a vector of moment statistics of the distri-
bution, EP (x)P (y|x)[φ(X, Y)]. We denote the set of condi-
tional distributions P (y|x) satisfying these statistics as Ξ.

Definition 1. In the constrained cost-sensitive minimax
game, the estimator player first selects a predictive distri-
bution, p̂x , P̂ (ŷ|x) ∈ ∆, for each input x, from the con-
ditional probability simplex ∆, and then the adversarial
player selects an evaluation distribution, p̌x , P̌ (y̌|x) ∈
∆, for each input x from the set Ξ of distributions consis-
tent with known statistics:

min
{p̂x}∈∆

max
{p̌x}∈Ξ∩∆

EP (x)[p̂
T
XCp̌X] (4)

where: Ξ : EP (x)P̌ (y̌|x)[φ(X, Y̌)] = φ̃.

We denote the set of conditional probabilities for each in-
put x as {p̂x} and {p̌x}. Here, φ̃ is a vector of provided
feature moments measured from sample training data, φ̃ =
EP̃ (x,y)[φ(X, Y)], for example.

94

Conceptually, the feature statistics φ(x, y) defining the set
Ξ should be chosen to restrict the adversary as much as
possible from maximizing the loss. However, defining the
set to be too restrictive leads to overfitting to the training
data. Indeed, the complexity of the estimator P̂ (ŷ|x) im-
plicitly grows with the dimensionality of the constraints in
Ξ. Thoughtfully specifying the feature function φ(·, ·) and
employing regularization can avoid this issue (§3.4).

3.2 INFERENCE AS ZERO-SUM GAME
EQUILIBRIA

We establish efficient inference algorithms for our ap-
proach in this section. Theorem 1 transforms the joint
adversary-constrained zero-sum games over many different
inputs x into a set of unconstrained zero-sum game that are
independent for each input x and connected by a parame-
terized cost matrix defining each player’s game outcomes.

Theorem 1. Determining the value of the constrained cost-
sensitive minimax game reduces to a minimization over the
expectation of many unconstrained minimax game:

min
{p̂x}∈∆

max
{p̌x}∈Ξ∩∆

EP (x)[p̂
T
XCp̌X] (5)

= max
{p̌x}∈Ξ∩∆

EP (x)

[
min

p̂X∈∆
p̂T

XCp̌X

]
(6)

= min
θ

EP (x)

[
max
p̌X∈∆

min
p̂X∈∆

p̂T
XC′X,θp̌X

]
, (7)

where θ parametrizes the new game characterized by ma-
trix C′x,θ : (C ′x,θ)ŷ,y̌ = Cŷ,y̌ + θT(φ(x, y̌)−φ(x, ỹ)), and
φ(·, ·) terms are from the definition of set Ξ.

Proof of Theorem 1.

min
{p̂x}∈∆

max
{p̌x}∈Ξ∩∆

EP (x)[p̂
T
XCp̌X]

(a)
= max
{p̌x}∈Ξ∩∆

min
{p̂x}∈∆

EP (x)[p̂
T
XCp̌X]

(b)
= max
{p̌x}∈Ξ∩∆

EP (x)

[
min

p̂X∈∆
p̂T

XCp̌X

]

(c)
= max
{p̌x}∈∆

min
θ

EP (x)

[
min

p̂X∈∆
p̂T

XCp̌X

]

+ θTEP (x)[ΦX (p̌X − p̃X)]

(d)
= min

θ
EP (x)

[
max
p̌X∈∆

min
p̂X∈∆

p̂T
XC′X,θp̌X

]

where Φ is the matrix defined by Φi,j = φi(x, yj) and C′x
is defined by elements:

(C ′x)ŷ,y̌ = Cŷ,y̌ + θT(φ(x, y̌)− φ(x, ỹ)). (8)

Step (a) follows from minimax duality in zero-sum
games [von Neumann and Morgenstern, 1947]. As an
affine function of terms each with individual p̌x term,

each minimization can be performed independently in
step (b). Step (c) expresses the primal Lagrangian.
For step (d), EP (x)[minp̂X∈∆ p̂T

XCp̌X + θTΦX(p̌X −
p̃X)]—a non-negative linear combination of minimums
of affine functions—is a concave function of p̌x terms.
Given a feasible solution on the relative interior of Ξ
[Boyd and Vandenberghe, 2004], strong Lagrangian dual-
ity holds. As in step (b), the maximizations can then be
independently applied.

Figure 2 shows the value of the game for a single x from
Eq. (6) as a function of the adversial distribution p̌x for
zero-one loss and a more general cost matrix. The adver-
sary is not free to independently maximize these functions
for each x, but must instead choose a structured prediction
that resides within the constraint set Ξ.

Figure 2: The portion of the adversary’s objective func-
tion (6) for a single example, minp̂x∈∆ p̂T

xCp̌x, in the
adversary-constrained game for zero-one loss (left) and a
more general cost-sensitive loss with cost matrix [0 2 3; 2
0 1; 1 3 0] (right) in a three-class prediction task.

After applying Theorem 1 and given model parameters, θ,
(obtaining these parameters is discussed in §3.3) the un-
constrained game, maxp̌x∈∆ minp̂x∈∆ p̂T

xC′x,θp̌x, can be
solved independently for each x. In this augmented game,
our original cost matrix from Eq. (1) is transformed into
the augmented cost matrix:

C′ =

0 + ψ1 1 + ψ2 2 + ψ3 0 + ψ4

3 + ψ1 0 + ψ2 1 + ψ3 3 + ψ4

4 + ψ1 2 + ψ2 0 + ψ3 1 + ψ4

1 + ψ1 1 + ψ2 2 + ψ3 0 + ψ4

 , (9)

where Lagrangian potentials are compactly denoted as
ψi = θT (φ(x, i)− φ(x, ỹ)) with ỹ representing the ex-
ample’s actual label. For parameter estimation, the second
feature function based on the actual label ỹ serves an im-
portant role. However, since it is constant with respect to y̌
and ŷ, and therefore does not influence the solution strate-
gies for the game, it can be ignored when making predic-
tions on data with unknown labels (or assigned an arbitrary
value from Y without affecting predictions).

Figure 3 shows the adversary’s objective function in the
unconstrained, cost-augmented game. Conceptually, the
adversary’s objective function from the constrained game

95

(Figure 2) is “placed” on top of a hyperplane shaped by the
Lagrangian potential terms, ψi. The difference in these po-
tential terms determines the adversary’s equilibrium strat-
egy. For the binary classification task, there are three pos-
sible equilibrium strategies for the adversary. With three
classes, there are seven possibilities: three pure strategies;
three strategies that are mixtures of two classes; and one
strategy that is a mixture of all three classes.

0

ψ1

ψ2ŷ = 2

ψ2

ψ1
1 10

ŷ = 2
ŷ = 1

ŷ = 1

P (y̌ = 2|x) P (y̌ = 2|x)

Figure 3: The adversary’s objective in the unconstrained
game for a binary classification task with a mixed (uncer-
tain) equilibrium solution (left) and a pure (certain) equilib-
rium solution (right). The third adversary strategy, P (y̌ =
2|x) = 0, is realized when ψ1 >> ψ2.

Unlike the logarithmic loss under this minimax formu-
lation, the cost-sensitive loss function does not provide
a closed-form parametric solution2. Instead, the in-
ner minimax game (inside the expectation of Eq. (7))
for each input x can be solved as a linear program
[von Neumann and Morgenstern, 1947]:

max
v,P̌ (y̌|x)

v (10)

subject to: v ≤
∑

y̌∈Y
P̌ (y̌|x)(C ′x,θ)ŷ,y̌ ∀ŷ ∈ Y

∑

y̌∈Y
P̌ (y̌|x) = 1 and P̌ (y̌|x) ≥ 0, ∀y̌ ∈ Y.

The resulting distribution, P̌ (y̌|x), gives the adversary’s
strategy p̌∗x. The other strategy of the Nash equilibrium
strategy pair, (p̌∗x, p̂

∗
x) can be obtained by solving the same

linear program with the cost matrix transposed and negated.

3.3 LEARNING VIA CONVEX OPTIMIZATION

Our key remaining task for employing the proposed ap-
proach is to obtain model parameters (Lagrangian multi-
pliers) θ that enforce the adversarial distribution to reside
within the constraint set Ξ.
Theorem 2. The subdifferential of the outer minimization
problem (Eq. (7)) includes the expected feature difference
as a subgradient:

EP (x)P̌∗
θ̂
(y̌|x)

[
φ(X, Y̌)

]
− EP (x)P (y|x) [φ(X, Y)] (11)

∈ ∂θEP (x)

[
min
p̂x∈∆

max
p̌x∈∆

p̂T
XC′X,θp̌X

] ∣∣∣∣∣
θ=θ̂

2Adversarial logarithmic loss minimization yields members of
the exponential family [Wainwright and Jordan, 2008].

where P̌ ∗(y̌|x) is the solution to Eq. (10).

Proof of Theorem 2. Taking the subdifferential, we have:

∂θkEP (x)

[
min
p̂x∈∆

max
p̌x∈∆

p̂T
XC′X,θp̌X

] ∣∣∣∣
θ=θ̂

(a)
= EP (x)

[
∂θk max

p̌x∈∆
min
p̂x∈∆

p̂T
XC′X,θp̌X

] ∣∣∣∣
θ=θ̂

(b)
3 EP (x)

[
∂θk (p̂∗X)

T
C′X,θp̌

∗
X

] ∣∣∣
θ=θ̂

(c)
= EP (x)

[
(p̂∗X)

T (
∂θkC

′
X,θ

)
p̌∗X
] ∣∣∣
θ=θ̂

(d)
3 EP (x)P̌∗

θ̂
(y̌|x)

[
φk(X, Y̌)

]
− EP (x)P (y|x) [φk(X, Y)] .

Step (a) follows from the rule for non-negative combi-
nations of subdifferentials. Step (b) follows from the
subdifferential of the function evaluated at the maximiz-
ing/minimizing values being a subset of the subdifferential
of the maximum/minimum functions. Step (c), like step (a),
follows from the rule for non-negative combinations of sub-
differentials by noting that (p̂∗X)

T
C′X,θp̌

∗
X = p̂∗X (p̌∗X)

T •
C′X,θ, where • represents the “matrix dot product” (i.e.,
A • B ,

∑
i,j Ai,jBi,j). In step (d), the subdifferential

terms for C′x include φk(x, y̌) − φk(x, ỹ) ∈ (∂θkC
′
x)ŷ,y̌

and do not depend on p̂x.

Leveraging the convexity of the formulation’s objective
function (discussed in the Proof of Theorem 1), and us-
ing the common substitution of the sample training data
distribution, P̃ (x), in place of the distribution P (x), we
employ standard subgradient-based optimization methods
for convex optimization problems to obtain parameters for
our cost-sensitive classifier (Algorithm 1).

Algorithm 1 Parameter estimation for the robust cost-
sensitive classifier
Input: Cost matrix C, training dataset D with pairs

(x̃i, ỹi) ∈ D, feature function φ : X × Y → Rk, time-
varying learning rate {γt}

Output: Model parameter estimate θ
t← 1
while θ not converged do

for all (x̃i, ỹi) ∈ D do
Construct cost matrix C′x̃i,θ using Eq. (8)
Solve for P̌ (y̌|x̃i) using the LP of Eq. (10)
∇θ = EP̌ (y̌|x̃i)[φ(x̃i, Y̌)]− φ(x̃i, ỹi)
θ = θ − γt∇θ
t← t+ 1

end for
end while

Though we describe a stochastic subgradient in our algo-
rithm, any convex optimization method for non-smooth ob-
jective functions can be employed.

96

3.4 PERFORMANCE GUARANTEES &
ILLUSTRATIVE EXAMPLES

We establish performance guarantees and illustrate the be-
havior of our approach in this portion of the paper. We fo-
cus specifically on the similarities to and differences from
support vector machines [Cortes and Vapnik, 1995] and
their structured extensions [Tsochantaridis et al., 2004].
Given ideal data (linearly separable), Theorem 3 estab-
lishes an equivalence to hard-margin SVMs.

Theorem 3. Given linearly separable training data, i.e.,

∃θ : ∀i, y′ 6= yi, θ · φ(xi, yi) > θ · φ(xi, y
′), (12)

and zero cost only for correct predictions Ci,i = 0, the
adversarial cost-sensitive learner with sufficiently smallL2

regularization is equivalent to a hard-margin cost-sensitive
support vector machine.

Proof. Eq. (12) implies ∃θ′ : ∀i, y′ 6= yi, θ
′ · φ(xi, yi) >

θ′ ·φ(xi, y
′) +Cy′,yi (the hard-margin cost-sensitive SVM

constraint set with ε = 0 in Eq. (3)) by multiplicatively
scaling θ. The Nash equilibrium is P̌ (y̌i|xi) = 1 and
P̂ (ŷi|xi) = 1 with a cost-sensitive loss of zero if and only
if this inequality is satisfied. Given this, the dual optimiza-
tion in Eq. (7) realizes its minima (zero loss) only when
these constraints are satisfied. The L2 regularization term
is a monotonic transformation of the objective of the hard-
margin SVM: θ · θ. Thus, having the same constraints and
objective functions with corresponding maxima, an equiv-
alent solution is produced.

As a result of this equivalence to hard-margin SVM, adver-
sarial classification inherits the convergence properties of
support vectors machines in the realizable case of Eq. (12).

The game strategies of each player are illustrated in Fig-
ure 4 for binary prediction using the zero-one loss in the
separable setting. Between perfectly classified datapoints,
our approach produces a region of uncertainty that is maxi-
mally uncertain for the adversary’s Nash equilibrium strat-
egy (P̌ (Y̌ = ‘o’|x) = 0.5), while the predictor’s Nash
equilibrium strategy smoothly transitions from one class to
the other in this region.

Given non-separable data, the adversarial approach sug-
gests choosing a set Ξ of constraints based on training sam-
ples P̃ (x, y) that will also contain the true label distribu-
tion, P (y|x). When this is accomplished, Theorem 4 pro-
vides performance guarantees for generalization.

Theorem 4. If P (y|x) ∈ Ξ, confusion costs from the ad-
versarial game upper bound the generalization error con-
fusion costs:

EP (x)P (y|x)P̂∗(ŷ|x)[CŶ ,Y] ≤ EP (x)P̌∗(y̌|x)P̂∗(ŷ|x)[CŶ ,Y̌].

Figure 4: Adversary (left) and predictor (right) distribu-
tions for separable data under zero-one loss

Proof. By definition, the adversarial conditional label dis-
tribution, P̌ ∗(y̌|x), is a Nash equilibrium and it provides
the worst possible loss for the estimator of all conditional
label distributions from set Ξ. So long as the true label
distribution used for evaluation, P (y|x), is similar to train-
ing data properties (i.e, a member of Ξ), then costs that are
no worse than P̌ ∗(y̌|x) can result without P (y|x) being a
better choice from Ξ than P (y|x) for maximizing the pre-
dictor’s loss, a contradiction.

Slack can be added to the constraint set Ξ or regulariza-
tion to the dual optimization problem of Eq. (6) to ad-
dress finite sample approximation error when using sample
data, EP̃ (x,y)[φ(X, Y)], as an estimate of the distribution’s
statistics, EP (x,y)[φ(X, Y)].

Figure 5: Adversary (left) and predictor (right) distribu-
tions for nonseparable data under zero-one loss

Figure 5 shows the two equilibria strategies for data that
is not linearly separable in the zero-one loss binary clas-
sification setting. The uncertainty region of our approach
depends on summary statistics rather than the specific data-
point labels that define margin boundaries of SVMs (Figure
5). Increased non-separability of the data and greater regu-
larization amounts expand this uncertainty region.

The equilibria under cost-sensitive losses, shown in Fig-
ure 6 shifts the region of uncertainty to better minimize
the expected cost compared to Figure 5, which is based on
the same data sample. Additionally, the adversary’s pre-
dictions shift (P̌ (Y = ‘o’|x) = .25) within the region of
uncertainty.

97

Figure 6: Adversary (left) and predictor (right) distribu-
tions for nonseparable data under [0 1; 3 0] cost matrix.

From the perspective of Theorem 3 and Theorem 4, adver-
sarial cost-sensitive classification provides an alternative to
hinge-loss “softening” of the hard-margin SVM. By pos-
ing cost-sensitive prediction as an adversarial game (Def.
1), our approach approximates aspects of the training data
while being able to employ non-convex loss functions with-
out the intractability encountered by empirical risk mini-
mization. Prediction under this approach reduces to the
well-studied problem of solving a zero-sum game, which
is easily addressed using linear programming via Eq. (10).
This is only a little more complicated than predictions for
SVM based on the label that maximizes a linear potential
function. Like SVMs, estimating model parameters can be
posed as a convex optimization problem and solved using
subgradient optimization methods (Alg. 1) under our ap-
proach.

4 EXPERIMENTS

Our adversarial approach provides the advantage of operat-
ing efficiently on non-convex cost-sensitive loss functions,
but only through approximating the training data label in-
formation rather than minimizing loss on the actual labeled
training data. We experimentally investigate the trade-off
our approach provides in this section.

4.1 DATASETS

We employ publicly available datasets for multiclass clas-
sification to evaluate our approach. The number of classes
and the number of examples (size) of each dataset are listed
in Table 1. We rescale the attributes to [0,1] and enumerate
the class labels.

4.2 METHODOLOGY

We conduct 10 cost-sensitive classification tasks for each
dataset. We generate confusion cost matrices, C, for each
task by: (1) assigning all correct classifications a cost of
zero (Ci,i = 0, ∀i); and (2) sampling the remaining el-
ements of the cost matrix from the uniform distribution
(Ci,j ∼ U [0, 1],∀i 6= j). For each classification task, we

Table 1: Evaluation datasets and dataset characteristics.

Name Classes Attributes Training Testing

Iris 3 4 120 30
Optical Digits 10 64 3823 1797
Satellite Image 6 36 4435 2000
Shuttle 7 9 43500 14500
Vehicle 4 18 658 188
Wine 3 4 142 36
Breast Tissue 6 9 85 21
Ecoli 8 7 269 67
Glass 6 9 171 43
Image Segment 7 19 210 2100
Libras 15 90 288 72
Pen Digits 10 16 7494 3498
Vertebral 3 6 248 62

split the data into training and testing sets as described in
Table 1. We measure the expected cost of each method av-
eraged over each of the 10 tasks.

4.3 COMPARISON METHODS

Our primary points of comparison for investigating this pa-
per’s central hypothesis—that adversarial data approxima-
tion produces better cost-sensitive classifiers than convex
loss approximation—are support vector methods. How-
ever, we also compare with recently reported state-of-the-
art cost-sensitive boosting methods. We implement and
compare our proposed approach against the following spe-
cific methods for cost-sensitive learning. The methodolog-
ical details for each approach are:

• Our approach: We train our method via Algorithm 1
using a quadratic expansion of the original attributes
and a “one-hot” encoding of the class label, φ(x, y) =
[vector(xxT)I(y = 1); vector(xxT)I(y = 2); . . .].
To produce deterministic predictions, we “round” the
estimator’s Nash equilibrium strategy, P̂ ∗(ŷ|x) to the
most probable label. This avoids the ambiguity of
other methods for making deterministic predictions
from mixed strategies (e.g., two or more actions may
be the best response to the adversary’s Nash equilib-
rium strategy).

• Guess Averse Cost-Sensitive Boosting: We employ
the guess averse cost-sensitive boosting method and
implementation [Beijbom et al., 2014] with GLL loss
described in §2.1. (We also investigated GEL, but
found it to be consistently and significantly outper-
formed by GLL.) We use a linear regression model
as the weak learner.

• Cost-Sensitive One-Versus-One (CSOVO): We em-
ploy the LIBSVM [Chang and Lin, 2011] implemen-
tation of the CSOVO SVM approach [Lin, 2010] de-
scribed in §2.1.Our experiments use quadratic kernels

98

Table 2: CSOVO and CSOVA kernel parameters chosen
using five-fold cross validation on the training set from
γ1 ∈ {0.125, 1, 2, 5, 10, 1/number of features} and γ0 ∈
{1, 2, 5, 10, 50, 100, 200, 300, ..., 900}.

CSOVO CSOVA
Name γ1 γ0 γ1 γ0

Iris 5 2 1 700
Optical Digits 1 2 5 2
Satellite Image 10 50 1 1
Shuttle 0.125 900 0.125 900
Vehicle 10 5 10 10
Wine 1 500 1 5
Breast Tissue 0.125 900 10 400
Ecoli 5 500 0.125 800
Glass 5 400 10 700
Image Segment 0.125 300 0.125 600
Libras 1 5 1 2
Pen Digits 0.125 700 5 5
Vertebral 0.125 600 0.125 500

[Chang and Lin, 2011], K(u, v) = (γ1u
′v + γ0)2 to

match the expressiveness of our approach. We run
five-fold cross validation on the training set of every
dataset to choose quadratic kernel parameters (shown
in Table 2), and then we use these best parameters
to train from the training set and construct the final
classifier model3 Finally, we evaluate the CSOVO per-
formance by measuring the prediction cost on the test
data.

• Cost-Sensitive One-Versus-All (CSOVA): We sim-
ilarly employ the LIBSVM implementation of the
CSOVA SVM approach described in §2.1. Our
methodology matches that of CSOVO for cross-
validation (parameters shown in Table 2), training,
and testing.

• Structured SVM (SVM-Struct): We employ the
Large Scale Structured SVM (SVM LS) software
package [Branson et al., 2013] to obtain a multiclass
cost-sensitive predictor based on the additive cost-
sensitive hinge loss of Eq. (3). SVM LS applies online
subgradient methods [Ratliff et al., 2007] and sequen-
tial order optimization [Shalev-Shwartz et al., 2011]
to improve efficiency. We evaluate the Online
Dual Ascent (ODA) algorithm [Branson et al., 2013]
as well as the Stochastic Gradient Descent (SGD)
method for the purpose of our cost-sensitive experi-
ments. We employ a trade-off parameter α of 100.

3We use the default tolerance of termination criterion, 0.001,
for most of the datasets except image segmentation and shuttle,
which required a less sensitive criterion to converge.

4.4 RESULTS

Figure 7 shows the average loss incurred by each ap-
proach on the 13 different datasets. Our method gener-
ally performs well on all of the datasets except wine and
libras datasets and has a similar performance with boost-
ing. SVM methods except SVM-CSOVO are strong on
some of the datasets (optdigits, pendigits, wine and libras).
For many datasets, the performance of the reduction-based
SVM approaches is significantly worse than our approach
and boosting and the multi-class structured SVM ap-
proach. The multi-class structured SVM approach specifi-
cally is significantly worse than our method on many of the
datasets (satimage, shuttle, vehicle, breast tissue, pendig-
its, and vertebral), while only significantly better on the
optdigits dataset.

iris optdigits satimage shuttle vehicle wine

A
ve

ra
ge

 L
os

s

0

0.05

0.1

0.15

breasttissue ecoli glass imgseg libras pendigits vertebral

A
ve

ra
ge

 L
os

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Our Method
Boosting
SVM-CSOVA
SVM-CSOVO
SVM-Struct-ODA
SVM-Struct-SGD

Figure 7: The average loss of predictions for the datasets
of Table 1.

The differences between the results of our method and
those of boosting are not as extreme. Indeed, for many of
the datasets (iris, wine, shuttle, optdigits, vertebral, ecoli,
breast tissue, and libras), the differences in average perfor-
mance are not significant. For one dataset (imgseg), boost-
ing is significantly better, while our method is significantly
better for the remaining four (satimage, shuttle, vehicle,
and pendigits).

99

Our
 M

et
ho

d

Boo
sti

ng

SVM
-C

SOVA

SVM
-C

SOVO

SVM
-S

tru
ct-

ODA

SVM
-S

tru
ct-

SGD

A
ve

ra
ge

 L
os

s

0

0.02

0.04

0.06

0.08

0.1

0.12

Figure 8: Average loss of pre-
dictions across all datasets of
Table 1.

We compare the av-
erage loss of the
prediction methods
aggregated over all of
the datasets in Figure
8, showing that on
average our method
provides lower cost
predictions. It is im-
portant to note that as
an ensemble method,
boosting is able to
implicitly consider
a much richer fea-
ture space than our
approach. For classifi-
cation, SVMs are often
only comparable when
incorporating kernels
that can also implicitly
consider richer feature
spaces. Thus, exceeding the performance of the state-of-
the-art boosting method using only quadratic features is a
significant demonstration of our method. The comparisons
with the structured SVM method, which considers an
identical feature space, illustrates the general benefit our
approach provides by adversarially approximating the
training data rather than convexly approximating the loss
function.

5 CONCLUSIONS

In this paper, we have developed an approach for min-
imizing the exact cost-sensitive loss using an adversar-
ial formulation. In stark contrast with existing methods,
which typically minimize a convex approximation of the
cost-sensitive loss evaluated on available training data, our
approach directly minimizes the actual cost-sensitive loss
evaluated on an approximation of the training data. This
perspective of placing uncertainty around the training data
and resolving it by considering an adversarial evaluator
leads to a zero-sum game formulation for inference and
convex optimization for estimating model parameters.

We demonstrated the benefits of the approach on a total
of 130 prediction tasks. Our approach performs competi-
tively with a state-of-the-art boosting method across many
of these tasks and better on average. This is despite the
fact that boosting, as an ensemble method, is able to im-
plicitly consider a richer feature space for the classifiers
that it ultimately produces. The performance of our ap-
proach is much more significantly better than structured
multi-class SVM methods and reduction-based SVM meth-
ods, which are more directly comparable as they employ
the same quadratic feature space.

Our future work will investigate avenues for improving and
expanding this adversarial approach to cost-sensitive learn-
ing. Foremost, we plan investigate the feasibility of incor-
porating kernel methods with our approach so that much
larger or infinite feature spaces can be tractably incorpo-
rated into our cost-sensitive classifier. Additionally, we
plan to investigate settings with cost functions that depend
on the input attributes in addition to the predicted and ac-
tual labels.

Acknowledgements

This material is based upon work supported by the National
Science Foundation under Grant No. #1227495, Purpose-
ful Prediction: Co-robot Interaction via Understanding In-
tent and Goals.

References
[Abe et al., 2004] Abe, N., Zadrozny, B., and Langford, J.

(2004). An iterative method for multi-class cost-sensitive
learning. In KDD, pages 3–11. ACM.

[Beijbom et al., 2014] Beijbom, O., Saberian, M., Kriegman, D.,
and Vasconcelos, N. (2014). Guess-averse loss functions for
cost-sensitive multiclass boosting. In Proc. International Con-
ference on Machine Learning, pages 586–594.

[Bottou et al., 1994] Bottou, L., Cortes, C., Denker, J. S.,
Drucker, H., Guyon, I., Jackel, L. D., LeCun, Y., Muller, U. A.,
Sackinger, E., Simard, P., and Vapnik, V. N. (1994). Compar-
ison of classifier methods: a case study in handwritten digit
recognition. In International Conference on Pattern Recogni-
tion, pages 77–82.

[Boyd and Vandenberghe, 2004] Boyd, S. and Vandenberghe, L.
(2004). Convex Optimization. Cambridge University Press.

[Branson et al., 2013] Branson, S., Beijbom, O., and Belongie,
S. (2013). Efficient large-scale structured learning. In Com-
puter Vision and Pattern Recognition, pages 1806–1813. IEEE.

[Brefeld et al., 2003] Brefeld, U., Geibel, P., and Wysotzki, F.
(2003). Support vector machines with example dependent
costs. In ECML, pages 23–34. Springer.

[Chan and Stolfo, 1998] Chan, P. K. and Stolfo, S. J. (1998). To-
ward scalable learning with non-uniform class and cost distri-
butions: A case study in credit card fraud detection. In KDD,
pages 164–168.

[Chang and Lin, 2011] Chang, C.-C. and Lin, C.-J. (2011). Lib-
svm: a library for support vector machines. ACM Transactions
on Intelligent Systems and Technology (TIST), 2(3):1–27.

[Cortes and Vapnik, 1995] Cortes, C. and Vapnik, V. (1995).
Support-vector networks. Machine learning, 20(3):273–297.

[Dalvi et al., 2004] Dalvi, N., Domingos, P., Sanghai, S., Verma,
D., et al. (2004). Adversarial classification. In KDD, pages
99–108. ACM.

[Davis et al., 2006] Davis, J. V., Ha, J., Rossbach, C. J., Ra-
madan, H. E., and Witchel, E. (2006). Cost-sensitive decision
tree learning for forensic classification. In ECML, pages 622–
629. Springer.

100

[Domingos, 1999] Domingos, P. (1999). Metacost: A general
method for making classifiers cost-sensitive. In KDD, pages
155–164. ACM.

[Elkan, 2001] Elkan, C. (2001). The foundations of cost-
sensitive learning. In IJCAI, pages 973–978.

[Fan et al., 1999] Fan, W., Stolfo, S. J., Zhang, J., and Chan, P. K.
(1999). Adacost: misclassification cost-sensitive boosting. In
ICML, pages 97–105.

[Freund and Schapire, 1997] Freund, Y. and Schapire, R. E.
(1997). A decision-theoretic generalization of on-line learn-
ing and an application to boosting. Journal of computer and
system sciences, 55(1):119–139.

[Grünwald and Dawid, 2004] Grünwald, P. D. and Dawid, A. P.
(2004). Game theory, maximum entropy, minimum discrep-
ancy, and robust Bayesian decision theory. Annals of Statistics,
32:1367–1433.

[Hoffgen et al., 1995] Hoffgen, K.-U., Simon, H.-U., and Van-
horn, K. S. (1995). Robust trainability of single neurons. Jour-
nal of Computer and System Sciences, 50(1):114–125.

[Knerr et al., 1990] Knerr, S., Personnaz, L., and Dreyfus, G.
(1990). Single-layer learning revisited: a stepwise procedure
for building and training a neural network. In Neurocomputing,
pages 41–50. Springer.

[Knoll et al., 1994] Knoll, U., Nakhaeizadeh, G., and Tausend,
B. (1994). Cost-sensitive pruning of decision trees. In ECML,
pages 383–386. Springer.

[Lanckriet et al., 2003] Lanckriet, G. R., Ghaoui, L. E., Bhat-
tacharyya, C., and Jordan, M. I. (2003). A robust minimax
approach to classification. JMLR, 3:555–582.

[Lee et al., 2004] Lee, Y., Lin, Y., and Wahba, G. (2004). Mul-
ticategory support vector machines: Theory and application to
the classification of microarray data and satellite radiance data.
Journal of the American Statistical Association, 99(465):67–
81.

[Lin, 2008] Lin, H.-T. (2008). From ordinal ranking to binary
classification. PhD thesis, California Institute of Technology.

[Lin, 2010] Lin, H.-T. (2010). A simple cost-sensitive multi-
class classification algorithm using one-versus-one compar-
isons. National Taiwan University, Tech. Rep.

[Ling et al., 2004] Ling, C. X., Yang, Q., Wang, J., and Zhang,
S. (2004). Decision trees with minimal costs. In ICML, pages
544–551. ACM.

[Liu and Ziebart, 2014] Liu, A. and Ziebart, B. D. (2014). Ro-
bust classification under sample selection bias. In Advances in
Neural Information Processing Systems, pages 37–45.

[Lomax and Vadera, 2013] Lomax, S. and Vadera, S. (2013). A
survey of cost-sensitive decision tree induction algorithms.
ACM Computing Surveys, 45(2):16.

[Margineantu, 2002] Margineantu, D. D. (2002). Class proba-
bility estimation and cost-sensitive classification decisions. In
ECML, pages 270–281. Springer.

[Qin et al., 2013] Qin, Z., Wang, A. T., Zhang, C., and Zhang, S.
(2013). Cost-sensitive classification with k-nearest neighbors.
In Knowledge Science, Engineering and Management, pages
112–131. Springer.

[Ratliff et al., 2007] Ratliff, N. D., Bagnell, J. A., and Zinkevich,
M. (2007). (approximate) subgradient methods for structured
prediction. In AISTATS, pages 380–387.

[Savage, 1951] Savage, L. J. (1951). The theory of statistical
decision. Journal of the American Statistical association,
46(253):55–67.

[Shalev-Shwartz et al., 2011] Shalev-Shwartz, S., Singer, Y.,
Srebro, N., and Cotter, A. (2011). Pegasos: Primal estimated
sub-gradient solver for SVM. Mathematical programming,
127(1):3–30.

[Ting, 2000] Ting, K. M. (2000). A comparative study of cost-
sensitive boosting algorithms. In ICML.

[Topsøe, 1979] Topsøe, F. (1979). Information theoretical opti-
mization techniques. Kybernetika, 15(1):8–27.

[Tsochantaridis et al., 2004] Tsochantaridis, I., Hofmann, T.,
Joachims, T., and Altun, Y. (2004). Support vector machine
learning for interdependent and structured output spaces. In
Proceedings of the twenty-first international conference on
Machine learning, page 104. ACM.

[Tsochantaridis et al., 2005] Tsochantaridis, I., Joachims, T.,
Hofmann, T., and Altun, Y. (2005). Large margin methods
for structured and interdependent output variables. In JMLR,
pages 1453–1484.

[Turney, 1995] Turney, P. D. (1995). Cost-sensitive classifica-
tion: Empirical evaluation of a hybrid genetic decision tree in-
duction algorithm. Journal of artificial intelligence research,
pages 369–409.

[von Neumann and Morgenstern, 1947] von Neumann, J. and
Morgenstern, O. (1947). Theory of Games and Economic Be-
havior. Princeton University Press.

[Wainwright and Jordan, 2008] Wainwright, M. J. and Jordan,
M. I. (2008). Graphical models, exponential families, and vari-
ational inference. Foundations and Trends in Machine Learn-
ing, 1(1-2):1–305.

[Wald, 1949] Wald, A. (1949). Statistical decision functions. The
Annals of Mathematical Statistics, 20(2):165–205.

[Wang and Tang, 2012] Wang, R. and Tang, K. (2012). Minimax
classifier for uncertain costs. arXiv preprint arXiv:1205.0406.

[Wolfowitz, 1950] Wolfowitz, J. (1950). Minimax estimates of
the mean of a normal distribution with known variance. The
Annals of Mathematical Statistics, pages 218–230.

[Zadrozny et al., 2003] Zadrozny, B., Langford, J., and Abe, N.
(2003). Cost-sensitive learning by cost-proportionate example
weighting. In ICDM, pages 435–442.

[Zhou and Liu, 2010] Zhou, Z.-H. and Liu, X.-Y. (2010). On
multi-class cost-sensitive learning. Computational Intelli-
gence, 26(3):232–257.

101

Geometric Network Comparisons

Dena Marie Asta
Department of Engineering & Public Policy

Department of Statistics
Carnegie Mellon University

Pittsburgh, PA 15213
dasta@andrew.cmu.edu

Cosma Rohilla Shalizi
Department of Statistics

Carnegie Mellon University
Pittsburgh, PA 15213

cshalizi@stat.cmu.edu

Abstract

Network analysis needs tools to compare net-
works and assess the significance of differences
between networks. We propose a principled sta-
tistical approach to network comparison that ap-
proximates networks as probability distributions
on negatively curved manifolds. We outline the
theory, as well as implement the approach on
simulated networks, where its accuracy can be
confirmed.

1 INTRODUCTION

Many scientific questions about networks amount to prob-
lems of network comparison: one wants to know whether
networks observed at different times, or in different lo-
cations, or under different environmental or experimental
conditions, actually differ in their structure. Such prob-
lems arise in neuroscience (e.g., comparing subjects with
disease conditions to healthy controls, or the same sub-
ject before and after learning), in biology (e.g., compar-
ing gene- or protein- interaction networks across species,
developmental stages or cell types), and in social science
(e.g., comparing different social relations within the same
group, or comparing social groups which differ in some
outcome). That the graphs being compared are not iden-
tical or even isomorphic is usually true, but scientifically
unhelpful. What we need is a way to say if the difference
between the graphs exceeds what we should expect from
mere population variability or stochastic fluctuations. Net-
work comparison, then, is a kind of two-sample testing,
where we want to know whether the two samples could
have come from the same source distribution. It is made
challenging by the fact that the samples being compared are
very structured, high-dimensional objects (networks), and
more challenging because we often have only one graph in
each sample.

We introduce a method for network comparison. The cru-
cial idea is to approximate networks by continuous geo-

metric objects, namely probability densities, and then do
two-sample bootstrap tests on those densities. Specifically,
we draw on recent work showing how many real-world
networks are naturally embedded in hyperbolic (negatively
curved) manifolds. Graphs then correspond to clouds of
points in hyperbolic space, and can be viewed as being
generated by sampling from an underlying density on that
space. We estimate a separate density for each of the two
networks being compared, calculate the distance between
those densities, and compare it to the distance expected un-
der sampling from a pooled density estimate.

Our method, while conceptually fairly straightforward, is
admittedly more complicated than the current practice in
the scientific literature, which is to compare networks by
taking differences in ad hoc descriptive statistics (e.g., av-
erage shortest path lengths, or degree distributions). It
is very hard to assess the statistical significance of these
differences, and counter-examples are known where the
usual summary statistics fail to distinguish graphs which
are qualitatively radically different (e.g., grid-like graphs
from highly clustered tree-like ones). Similarly, whole-
graph metrics and similarity measures are of little statistical
use, without probability models to gauge their fluctuations.
Below, we show through simulations that our method let
us do network comparisons where (i) we can assess signifi-
cance, (ii) power is high for qualitative differences, and (iii)
when we detect differences, we also get some idea how the
networks differ.

2 MOTIVATION AND BACKGROUND

A fundamental issue with network comparison, mentioned
in the introduction, is that we often have only two networks
to compare, and nonetheless need to make some assess-
ment of statistical significance. This can obviously only be
done by regarding the networks as being drawn from (one
or more) probability models, and restricting the form of the
model so that an observation of a single graph is informa-
tive about the underlying distribution. That is, we must
restrict ourselves to network models which obey some sort

102

of law of large numbers or ergodic theorem within a single
graph, or else we always have n = 1. As in any other test-
ing problem, the better the alignment between the model’s
restrictions and actual properties of the graphs, the more
efficiently the test will use the available information.

Salient properties of actual networks Over the last two
decades, it has become clear that many networks encoun-
tered in the real world, whether natural or human-made,
possess a number of mathematically striking properties
(Newman, 2010). They have highly right-skewed degree
distributions, they show the “small-world effect” of short
average path lengths (growing only logarithmically with
the number of nodes) but non-trivial transitivity of links,
and high clusterability, often with a hierarchical arrange-
ment of clusters. This is all a far cry from what is expected
of conventional random graphs. While a large literature of
parametric stochastic models has developed to try to ac-
count for these phenomena (Newman, 2010), there are few
situations where a data analyst can confidently assert that
one of these models is even approximately well-specified.

Current approaches to network comparison The typi-
cal approach in the literature is ad hoc comparison of com-
mon descriptive statistics on graphs (path lengths, clus-
tering coefficients, etc.). These statistics are often mis-
applied, as in the numerous incorrect claims to have found
“power law” or “scale-free” networks (Clauset et al., 2009),
but that is not the fundamental issue. Even the recent au-
thoritative review of, and advocacy for, the “connectomics”
approach to neuroscience by Sporns (2010) takes this ap-
proach. Disturbingly, Henderson and Robinson (2011)
show that, with commonly used choices of statistics and
criteria, this approach cannot distinguish between com-
plex, hierarchically-structured networks, and simple two-
dimensional grids (such as a grid over the surface of the
cortex).

More formally, Pao et al. (2011) study the power of tests
based on such summaries to detect departures from the null
hypothesis of completely independent and homogeneous
edges (Erdos-Renyi graphs) in the direction of independent
but heterogeneous edges. Their results were inconclusive,
and neither their null nor the alternative models are plau-
sible for real-world networks. Apart from this, essentially
nothing is known about either the significance of such com-
parisons or their power, how to combine comparisons of
different descriptive statistics, which statistics to use, or if
significant differences are found, how to infer changes in
structure from them. The issue of statistical significance
also afflicts graph metrics and similarity measures, even
those with plausible rationales in graph theory (e.g., that
of Koutra et al. 2013).

Hunter et al. (2008) show one way to check goodness-of-
fit for a model of a single network, using simulations to

check whether the observed values of various graph statis-
tics are plausible under the model’s sampling distribution.
But they are unable to combine checks with different statis-
tics, cannot find the power of such tests, and do not touch
on differences across networks.

More relevantly to comparisons, Middendorf et al. (2005)
use machine-learning techniques to classify networks as
coming from one or another of various generative models,
taking features of the network (such as the counts of small
sub-graphs, or “motifs”) as the inputs to the classifier. They
demonstrate good operating characteristics in simulations,
but rely on having a good set of generative models to start
with.

The approach to network comparison most similar to ours
is Tang et al. (2014), which, like our proposed methods,
models the nodes as drawn from densities on a latent space
and attaches edges based on the geometric relationship be-
tween node coordinates. The primary difference between
both approaches is the choice of latent space. Tang et al.
(2014) use a Euclidean inner product space, allowing for
an algebraic method of network inference. Our choice is
motivated by the desire to pick a latent space that matches
geometric properties of the real-world networks we aim to
study.

A final related approach to network comparison is Ros-
vall and Bergstrom (2010), which like our proposed meth-
ods, uses bootstrap resampling from models fit to the orig-
inal networks to assess significance of changes. The goal
there however is not to detect global changes in the net-
work structure, but local changes in which nodes are most
closely tied to one another.

Hyperbolic geometry of networks While waiting for
scientifically-grounded parametric models, we seek a class
of non-parametric models which can accommodate the
stylized facts of complex networks. Here we draw on
the more recent observation that for many real-world net-
works, if we view them as metric spaces with distance
given by shortest path lengths, the resulting geometry is
hyperbolic (Albert et al., 2014, Kennedy et al., 2013, Kri-
oukov et al., 2010), rather than Euclidean. Said another
way, many real-world networks can be naturally embed-
ded into negatively-curved continuous spaces. Indeed, Kri-
oukov et al. (2010) show that if one draws points repre-
senting nodes according to a “quasi-uniform” distribution
on the hyperbolic plane (see (2) below), and then connects
nodes with a probability that decays according to the hyper-
bolic distance between the representative points, one nat-
urally obtains graphs showing right-skewed degree distri-
butions, short average path lengths, and high, hierarchical
clusterability.

Continuous latent space models The model of (Kri-
oukov et al., 2010) is an example of a continuous latent

103

space model, characterized by a metric space (M, ⇢), a link
probability function W , and a probability density f on M ,
the node density. Points representing nodes are drawn iidly
from f , and edges form independently between nodes at x
and y with probability W (x, y) = W (⇢(x, y)) decreasing
in the distance. As a hierarchical model,

Zi ⇠iid f (1)
Aij |Z1, . . . Zn ⇠ind W (⇢(Zi, Zj))

where Aij is the indicator variable for an edge between
nodes i and j. Holding M, ⇢, W fixed, but allowing f to
vary, we obtain different distributions over graphs. Two
densities f, g on M determine the same distribution over
graphs if f is the image of g under some isometry of
(M, ⇢). Note that node densities can be compared regard-
less of the number of nodes in the observed graphs.

The best-known continuous latent space model for social
networks is that of Hoff et al. (2002), where the metric
space is taken to be Euclidean and the density f is as-
sumed to be Gaussian. Our general methodology for net-
work comparison could certainly be used with such models.
However, the striking properties of large real-world graphs,
such as their highly-skewed degree distributions, lead us
to favor the sort of hyperbolic model used by Krioukov
et al. (2010), but without their restrictive assumptions on
f . Rather, we will show how to non-parametrically esti-
mate the node density from a single observed graph, and
then reduce network comparison to a comparison of these
probability densities.

Continuous latent space models are themselves special
cases of models called graphons, lifting the restriction that
M be a metric space, and requiring of the edge probability
function W (x, y) only that it be measurable and symmet-
ric in its arguments1. Any distribution over infinite graphs
which is invariant under permuting the order of the nodes
turns out to be a mixture of such graphons (Kallenberg,
2005, ch. 7). Moreover, as one considers larger and larger
graphs, the properties of the observed graph uniquely iden-
tify the generating graphon (Diaconis and Janson, 2008);
what almost comes to the same thing, the limit of a se-
quence of growing graphs is a graphon (Borgs et al., 2006,
Lovász, 2012, Borgs et al., 2014). One might, then, try
to use our approach to compare graphons with estimated
f and W . While graphon estimation is known to be possi-
ble in principle (Bickel et al., 2011, Choi and Wolfe, 2014),
there are no published, computationally feasible methods to
do it. Moreover, we expect to gain power by tailoring our
models to enforce salient network properties, as described
above. Accordingly, we turn to some of the important as-

1Graphons are often defined to have M = [0, 1] and f
Lebesgue measure. One can show that any graphon over another
measure space or with another node density is equivalent to one of
this form, i.e., generates the same distribution over infinite graphs
(Kallenberg, 2005, ch. 7).

FIGURE 1: Models of H2 A connected component of the hyper-
boloid x2

3 = 1 + x2
1 + x2

2 (left), with the metric given by the
shortest possible Minkowski length of a path between points along
the surface, is isometric to the Poincaré half-plane (right) under a
suitable non-Euclidean metric. The half-plane is tiled into regions
of equal area with respect to the metric. (Images from Rocchini
(2007), under a Creative Commons license.)

pects of hyperbolic geometry.

2.1 HYPERBOLIC SPACES

Hyperbolic spaces are metric spaces which are negatively
curved — the angles in a triangle of geodesics sum to less
than 180 degrees. The oldest example of such a space is
the surface of (one sheet of) the hyperboloid, the surface of
points (x1, x2, x3) 2 R3 such that

x2
1 + x2

2 � x2
3 = �1,

with the distance between points taken to be the smallest
possible Minkowski length of a path between them along
the surface. Another, and perhaps even more basic, exam-
ple of a hyperbolic space is a tree, again with the shortest-
path metric. Our starting data will be observed networks,
which are typically at least locally tree-like, and so also
possess a hyperbolic geometry (Jonckheere et al., 2008).

As explained above, we aim to represent this discrete hy-
perbolic geometry with a density over a continuous hyper-
bolic space. For concreteness, we will focus on the hyper-
bolic plane H2, whose most basic geometric model is just
the surface of the hyperboloid. It will be more convenient
to work with another model of H2: the Poincaré half-plane
of C,

H2 = {x + iy | x 2 R, y 2 (0,1)}
equipped with the metric d⇢2 = (dx2 + dy2)/y2.

As mentioned above, (Krioukov et al., 2010) showed that
if the density of nodes on the Poincaré half-plane is one of
the quasi-uniform densities,

q�,R(rei✓) =
� sinh �r

2⇡(sinh r) cosh (�R� 1)
, � > 0 (2)

one obtains graphs which reproduce the stylized facts of
right-skewed degree distributions, clusterability, etc., for

104

FIGURE 2: Densities on H2 1000 points drawn iidly from quasi-
uniform densities, Eq. 2 (top; � = 1, 10, 30 from left to right,
R = 1 throughout), and from hyperbolic Gaussian densities, Eq.
8 (bottom, � = 0.05, 0.1, 0.3 from left to right).

FIGURE 3: Hyperbolic latent-space graphs Graphs formed by
drawing 30 node locations as in Fig. 2, and applying the link
probability function W (x, y) = ⇥(⇢(x, y) � 1.5). Note how
the graphs in the bottom row become more clustered as the � pa-
rameter increases from left to right.

a wide range of link probability functions W , including
Heaviside step functions ⇥(⇢� c). Note that the mode of q
is always at 0 + i, with the parameter � > 0 controlling the
dispersion around the mode, and R > 0 being an over-all
scale factor. As � grows, the resulting graphs become more
clustered.

We will introduce another family of densities on H2, the
hyperbolic Gaussians, in the next section.

Fig. 2 shows samples from quasi-uniform distributions on
H2, and Fig. 3 the resulting graphs. While we will use
such networks as test cases, we emphasize that we will go
beyond (2) to a fully nonparametric estimation of the node
density.

3 METHOD

Our goal is to compare networks by comparing node den-
sities. Our procedure for estimating node densities has in

FIGURE 4: Schematic of network inference

turn two steps (Figure 4): we embed the nodes of an ob-
served network into H2 (§3.1), and then estimate a density
from the embedded points (§3.2). We may then compare
the observed difference between estimated node densities
from two graphs to what would be expected if we observed
two graphs drawn from a common node density (§3.3).

3.1 GRAPH EMBEDDING

An embedding of a graph G is a mapping of its nodes VG

to points into a continuous metric space (M, ⇢) which pre-
serves the structure of the graph, or tries to. Specifically,
the distances between the representative points should
match the shortest-path distances between the nodes, as
nearly as possible. This is a multidimensional scaling prob-
lem, where typically one seeks the embedding � : VG 7!
M minimizing

X

(v,w)2V 2
G

(⇢G(v, w)� ⇢(�(v),�(w)))2, (3)

where ⇢G is the shortest-path-length metric on VG. Clas-
sically, when M = Rn and ⇢ is the Euclidean metric, the
arg-min of (3) can be found by spectral decomposition of
the matrix of ⇢G(v, w) values (Hand et al., 2001, ch. 3).

Spectral decomposition does not however give the arg-min
of (3) when M = H2 with the appropriate non-Euclidean
metric. While the solution could be approximated by gra-
dient descent (Cvetkovski and Crovella, 2011), we fol-
low Begelfor and Werman (2005) in changing the problem
slightly. They propose minimizing

X

(v,w)2V 2
G

(cosh ⇢G(v, w)� cosh ⇢(�(v),�(w)))2 (4)

which can be done exactly via a spectral decomposition.
Specifically, let Rij = cosh ⇢G(i, j), whose leading eigen-
vector is u1 and whose trailing eigenvectors are u2 and u3.
Then the ith row of the matrix (u1u2u3) gives the H2 coor-
dinates for node i. If R has one positive eigenvalue, exactly

105

2 negative eigenvalues, and all remaining eigenvalues van-
ish, this defines an exact isometric embedding (Begelfor
and Werman, 2005).

We have not found a way of estimating the node density
which avoids the initial step of embedding. Our method is,
however, fairly indifferent as to how the nodes are embed-
ded, so long as this is done well, and in a way which does
not pre-judge the form of the node density.

FIGURE 5: Re-embedded Generated Graphs Results of embed-
ding simulated graphs, formed as in Fig. 3, back into H2. Com-
parison with Fig. 2 illustrates the fidelity of the embedding pro-
cess.

3.2 DENSITY ESTIMATION

Having embedded the graph into H2, we estimate the node
density. Our procedure for doing so is more easily grasped
by first reviewing the connections between kernel den-
sity estimation, convolution, and Fourier transforms in Eu-
clidean space.

Kernel density estimation in Euclidean space as con-
volution In Euclidean space, kernel density estimation
smooths out the empirical distribution by adding a little
bit of noise around each observation. Given observations
z1, z2, . . . zn 2 Rp, and a normalized kernel function Kh,
the ordinary kernel density estimator bfn,h at a point z 2 Rp

is

bfn,h(z) =
1

n

nX

i=1

Kh(z � zi)

=

Z

Rp

Kh(z � z0)

1

n

nX

i=1

�(z0 � zi)

!
dz0

=

Z

Rp

Kh(z � z0) bPn(dz0)

= (Kh ⇤ bPn)(z)

where the third line defines the empirical measure bPn, and
⇤ denotes convolution. In words, the kernel density esti-
mate is the convolution of the empirical measure with the

kernel. Here the role of the kernel Kh is not so much to be a
distribution over the Euclidean space, as a distribution over
translations of the space: Kh(z�zi) is really the density at
the translation mapping the data point zi into the operating
point z. As it happens, the group of translations of Rp is
also Rp, but when we adapt to non-Euclidean spaces, this
simplifying coincidence goes away.

Since, in Euclidean space, the Fourier transform F converts
convolutions into products (Stein and Weiss, 1971),

F
h
bfn,h

i
(s) = F [Kh] (s)F

h
bPn

i
(s)

This relation often greatly simplifies computing bfn,h. It
also lets us define the bandwidth h, through the relation
F [Kh] (s) = F [K] (hs).

It is well known that kernel density estimators on Rp, with
h ! 0 at the appropriate rate in n, are minimax-optimal
in their L2 risk (van der Vaart, 1998). With suitable mod-
ifications, this still holds for compact manifolds (Pelletier,
2005), but the hyperbolic plane H2 is not compact.

3.2.1 H2-Kernel Density Estimator

Our method for density estimation on H2 is a generaliza-
tion of Euclidean kernel density estimation. In Rp, the
kernel is a density on translations of Rp. For H2, the ap-
propriate set of isometric transformations are not transla-
tions, but rather the class of “Möbius transformations” rep-
resented by the Lie group SL2 (Terras, 1985, Huckemann
et al., 2010). An H2 kernel, then, is a probability density
on SL2. We may write Kh(z, zi) to abbreviate the density
the kernel Kh assigns to the Möbius transform taking zi to
z. The generalized kernel density estimator on H2 takes the
form

bfn,h(z) =
1

n

nX

i=1

Kh(z, zi) (5)

= (Kh ⇤ bPn)(z) (6)

In Euclidean space, the Fourier transform analyzes func-
tions (or generalized functions, like bPn) into linear com-
binations of the eigenfunctions of the Laplacian opera-
tor. The corresponding operation for H2 is the Helga-
son, or Helgason-Fourier, transform H (Terras, 1985). The
Fourier basis functions are indexed by Rp, which is the
group of translations; for analogous reasons, the Helgason
basis functions are indexed by C⇥SO2. Many of the formal
properties of the Fourier transform carry over to the Helga-
son transform. (See App. A.) In particular, convolution still
turns into multiplication:

H
h
bfn,h

i
= H [Kh] H

h
bPn

i
, (7)

where H[Kh] denotes the Helgason-Fourier transform of
the well-defined density on H2 induced by the density Kh

106

on SL2, and we define the bandwidth h through

H [Kh] (s, M) = H [K] (hs, M).

As in Euclidean density estimation, h may be set through
cross-validation.

In a separate manuscript (Asta, 2014), we show that the
L2 risk of (5) goes to zero at the minimax-optimal rate,
under mild assumptions on the smoothness of the true den-
sity, and of the kernel K. (This is a special case of broader
results about generalized kernel density estimation on sym-
metric spaces.) The assumptions on the kernel are satisfied
by what Huckemann et al. (2010) calls “hyperbolic Gaus-
sians”, densities on H2 with parameter ⇢ defined through
their Helgason transforms,

H [K] (s, M) / e⇢s(s�1) . (8)

Just as the ordinary Gaussian density is the unique solution
to the heat equation with a point source in Euclidean space,
the hyperbolic Gaussian is the unique (SO2-invariant) so-
lution to the heat equation on H2 (Terras, 1985).

3.3 NETWORK COMPARISON

Combining embedding with kernel density estimation in
H2 gives us a method of estimating node densities, and so
of estimating a hyperbolic latent space model for a given
network. We now turn to comparing networks, by compar-
ing these estimated node densities.

Our method follows the general strategy advocated in Gen-
ovese et al. (2013). Given two graphs G1 and G2, we may
estimate two separate network models

bP1 = bP(G1), bP2 = bP (G2).

We may also pool the data from the two graphs to estimate
a common model

bP12 = bP(G1, G2).

We calculate a distance d⇤ = d(bP1, bP2) using any suit-
able divergence. We then compare d⇤ to the distribution of
distances which may be expected under the pooled model
bP12. To do so, we independently generate G01, G

0
2 ⇠ bP12,

and calculate
d(bP(G01), bP(G02)).

That is, we bootstrap two independent graphs out of the
pooled model, fit a model to each bootstrapped graph, and
calculate the distance between them. Repeated over many
bootstrap replicates, we obtain the sampling distribution of
d under the null hypothesis that G1 and G2 are drawn from
the same source, and any differences between them are due
to population variability or stochastic fluctuations.2

2This method extends easily to comparing sets of graphs,
G11, G12, . . . G1n vs. G21, G22, . . . G2m, but the notation grows
cumbersome.

In our case, we have already explained how to find bP1 and
bP2. Since we hold the latent space M fixed at H2, and the
link probability function W fixed, we can label our mod-
els by their node densities, bfn,h

1 and bfn,h
2 . To obtain the

pooled model bP12, we first embed G1 and G2 separately
using generalized multidimensional scaling, and then do
kernel density estimation on the union of their embedded
points.

The generalized multidimensional scaling technique we
use depends only on the eigendecomposition of matrices
determined by shortest path lengths. Therefore the L2 dif-
ference

k bfn,h
1 � bfn,h

2 k2 (9)

between two estimated node densities bfn,h
1 , bfn,h

2 is 0 if
and only if the original sets of vertices from the different
samples are isometric and hence (9) approximates a well-
defined metric d on our continuous latent space models.
Moreover, since the Plancherel identity carries over to the
Helgason-Fourier transform (Terras, 1985),

d2(f1, f2) = kH [f1]�H [f2] k2, (10)

and, for our estimated node densities, H [f] is given by (7).
Appendix B gives full details on our procedure for comput-
ing the test statistic (10).

3.4 THEORETICAL CONSIDERATIONS

Let us sum up our method, before turning to theoretical
considerations. (0) We observe two graphs, G1 and G2. (1)
Through multi-dimensional scaling, we embed them sepa-
rately in H2 (§3.1), getting two point clouds, say Z1 and
Z2. (2) From each cloud, we estimate a probability density
on H2, using hyperbolic Gaussian kernels, getting bfn1,h1

and bfn2,h2 (§3.2). We calculate k bfn1,h1 � bfn2,h2k2 using
(10). We also form a third density estimate, bfn1+n2,h12 ,
from Z1 [Z2. (3) We generate two independent graphs
G⇤1, G

⇤
2 from bfn1+n2,h12 according to (1), and subject these

graphs to re-embedding and density estimation, obtaining
bfn1,h1⇤ and bfn2,h2⇤ and so k bfn1,h1⇤ � bfn2,h2⇤k2. Finally,
(4) repeating step (3) many times gives us the sampling dis-
tribution of the test statistic under the null hypothesis that
G1 and G2 came from the same source, and the p-value is
the quantile of k bfn1,h1 � bfn2,h2k2 in this distribution.

The final step of computing the p-value is a fairly unprob-
lematic bootstrap test. The previous step of generating new
graphs from the pooled model is also an unproblematic ex-
ample of a model-based bootstrap. The kernel density es-
timates themselves are consistent, and indeed converge at
the minimax rate (Asta, 2014), given the point clouds on
the hyperbolic plane. This makes it seem that the key step
is the initial embedding. Certainly, it would be convenient
if the graphs G1 and G2 were generated by a hyperbolic

107

FIGURE 6: Comparing Quasi-Uniforms Power of our test, at
size ↵ = 0.1, for detecting the difference between a 100-node
graph generated from the quasi-uniform density q1,1 and a 100-
node graph generated from q�,1, as a function of the dispersion
parameter �.

latent space model, and the embedding was a consistent es-
timator of the latent node locations. However, such strong
conditions are not necessary. Suppose that if G1 ⇠ P1

and G2 ⇠ P2 6= P1, then bfn,h
1 ! f1 and bfn,h

2 ! f2,
with kf1 � f2k2 > 0. Then at any nominal size (signifi-
cance level) ↵ > 0, the power of the test will go to 1. For
the nominal size of the test to match the actual size (prob-
ability of incorrectly rejecting the null hypothesis), how-
ever, will presumably require a closer alignment between
the hyperbolic latent space model and the actual generating
distribution.

4 SIMULATIONS

Comparison of Graphs with Quasi-Uniform Node Den-
sities In our first set of simulation studies, we generated
graphs which exactly conformed to the hyperbolic latent
space model, and in fact ones where the node density was
quasi-uniform (as in Fig. 3). One graph had 100 nodes,
with latent locations drawn from a q1,1 distribution; the
other, also of 100 nodes, followed a q�,1 distribution, with
varying �. We used 50 bootstrap replicates (pairs of resam-
pled networks) in each test, kept the nominal size ↵ = 0.1,
and calculated power by averaging over 25 independent
graph pairs (the number of power tests). Despite the graphs
having only 100 nodes, Fig. 6 shows that our test has quite
respectable power.

Comparison of Watts-Strogatz Graphs We have ex-
plained above, §2, why we expect hyperbolic latent space
models to be reasonable ways of summarizing the structure
of complex networks. However, they will also be more or
less mis-specified for many networks of interest. We thus
applied our methods to a class of graph distributions which
do not follow a hyperbolic latent space model, namely
Watts-Strogatz networks (Watts and Strogatz, 1998). Our

simulations used 100 node networks, with the base topol-
ogy being a 1D ring with a branching factor of 40, and vari-
able re-wiring probabilities. These graphs show the small-
world property and high transitivity, but light-tailed degree
distributions. Even in these cases, where the hyperbolic
model is not the true generator, our comparison method had
almost perfect power (Fig. 7).

FIGURE 7: Comparing Watts-Strogatz models Above, Watts-
Strogatz graphs formed by re-wiring 1D ring lattices (85 nodes,
branching factor 40) with probability p per edge; from left to right
p = 0.1, 0.2, 0.3. Below, embeddings of the graphs into H2. At
nominal ↵ = 0.1, the power to detect these differences in p was
1.0 to within Monte Carlo error.

5 CONCLUSIONS

We have shown how nonparametric hyperbolic latent space
models let us compare the global structures of networks.
Our approach has its limits, and it may work poorly
when the networks being compared are very far from hy-
perbolic. However, our experiments with Watts-Strogatz
graphs show that it can detect differences among graph dis-
tributions from outside our model class. When we do detect
a change in structure, we have a model for each network,
namely their node densities, and the difference in node den-
sities is an interpretable summary of how the networks dif-
fer. Many important directions for future work are now
open. One important direction is a better handling of sparse
networks, network growth, and the comparison of networks
of different sizes — perhaps through some size-dependent
modification of the link-probability function W , as in Kri-
oukov et al. (2010), or the sort of scaling of graphons intro-
duced in Borgs et al. (2014). But this should only extend
our method’s scope.

Acknowledgements

Our work was supported by NSF grant DMS-1418124,
NIH grant R01 NS047493, and an NSF Graduate Research
Fellowship under grant DGE-1252522. We are grate-
ful for valuable discussions with Carl Bergstrom, Eliza-
beth Casman, David Choi, Aaron Clauset, Steve Fienberg,

108

Christopher Genovese, Dmitri Krioukov, Alessandro Ri-
naldo, Mitch Small, Andrew Thomas, Larry Wasserman,
and Chris Wiggins, and for feedback from seminar audi-
ences at UCLA’s Institute for Pure and Applied Mathemat-
ics and CMU’s machine learning and social science semi-
nar.

References
Réka Albert, Bhaskar DasGupta, and Nasim Mobasheri.

Topological implications of negative curvature for bi-
ological and social networks. Physical Review E, 89:
032811, 2014. doi: 10.1103/PhysRevE.89.032811. URL
http://arxiv.org/abs/1403.1228.

Dena Asta. Kernel density estimation on symmetric spaces.
arxiv:1411.4040, 2014. URL http://arxiv.org/
abs/1411.4040.

Evgeni Begelfor and Michael Werman. The world is not
always flat, or, learning curved manifolds. Techni-
cal Report HUJI-CSE-LTR-2006-191, School of Engi-
neering and Computer Science, Hebrew University of
Jerusalem, 2005. URL http://www.cs.huji.ac.
il/˜werman/Papers/cmds.pdf.

Peter J. Bickel, Aiyou Chen, and Elizaveta Levina. The
method of moments and degree distributions for network
models. Annals of Statistics, 39:38–59, 2011. URL
http://arxiv.org/abs/1202.5101.

Christian Borgs, Jennifer T. Chayes, László Lovász,
Vera T. Sós, Balázs Szegedy, and Katalin Veszter-
gombi. Graph limits and parameter testing. In
Proceedings of the 38th Annual ACM Sympo-
sium on the Theory of Computing [STOC 2006],
pages 261–270, New York, 2006. ACM. URL
http://research.microsoft.com/en-us/
um/people/jchayes/Papers/TestStoc.pdf.

Christian Borgs, Jennifer T. Chayes, Henry Cohn, and
Yufei Zhao. An Lp theory of sparse graph convergence
I: Limits, sparse random graph models, and power law
distributions. arxiv:1401.2906, 2014. URL http:
//arxiv.org/abs/1401.2906.

David S. Choi and Patrick J. Wolfe. Co-clustering sep-
arately exchangeable network data. Annals of Statis-
tics, 42:29–63, 2014. doi: 10.1214/13-AOS1173. URL
http://arxiv.org/abs/1212.4093.

Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. New-
man. Power-law distributions in empirical data. SIAM
Review, 51:661–703, 2009. URL http://arxiv.
org/abs/0706.1062.

Andrej Cvetkovski and Mark Crovella. Multidimensional
scaling in the Poincaré disk. E-print, 2011. URL http:
//arxiv.org/abs/1105.5332.

Persi Diaconis and Svante Janson. Graph limits and ex-
changeable random graphs. Rendiconti di Matematica

e delle sue Applicazioni, 28:33–61, 2008. URL http:
//arxiv.org/abs/0712.2749.

Christopher Genovese, Cosma Rohilla Shalizi, and An-
drew C. Thomas. Network comparisons. Manuscript
in preparation, 2013.

David Hand, Heikki Mannila, and Padhraic Smyth. Prin-
ciples of Data Mining. MIT Press, Cambridge, Mas-
sachusetts, 2001.

J. A. Henderson and P. A. Robinson. Geometric effects
on complex network structure in the cortex. Physi-
cal Review Letters, 107:018102, 2011. doi: 10.1103/
PhysRevLett.107.018102.

Peter D. Hoff, Adrian E. Raftery, and Mark S.
Handcock. Latent space approaches to social
network analysis. Journal of the American Sta-
tistical Association, 97:1090–1098, 2002. URL
http://www.stat.washington.edu/
research/reports/2001/tr399.pdf.

Stephan F. Huckemann, Peter T. Kim, Ja-Yong Koo, and
Axel Munk. Möbius deconvolution on the hyperbolic
plane with application to impedance density estima-
tion. Annals of Statistics, 38:2465–2498, 2010. doi:
10.1214/09-AOS783. URL http://arxiv.org/
abs/1010.4202.

David R. Hunter, Steven M. Goodreau, and Mark S.
Handcock. Goodness of fit of social network
models. Journal of the American Statistical As-
sociation, 103:248–258, 2008. doi: 10.1198/
016214507000000446. URL http://www.csss.
washington.edu/Papers/wp47.pdf.

Edmond Jonckheere, Poonsuk Lohsoonthorn, and Francis
Bonahon. Scaled Gromov hyperbolic graphs. Jour-
nal of Graph Theory, pages 157–180, 2008. doi:
10.1002/jgt.20275. URL http://eudoxus2.usc.
edu/jgt6396_final.pdf.

Olav Kallenberg. Probabilistic Symmetries and Invariance
Principles. Springer-Verlag, New York, 2005.

W. Sean Kennedy, Onuttom Narayan, and Iraj
Saniee. On the hyperbolicity of large-scale
networks. arxiv:1307.0031, 2013. URL
http://arxiv.org/abs/1307.0031.

Danai Koutra, Joshua T. Vogelstein, and Christos Falout-
sos. DELTACON: A principled massive-graph similar-
ity function. In Joydeep Ghosh, Zoran Obradovic, Jen-
nifer Dy, Zhi-Hua Zhou, Chandrika Kamath, and Srini-
vasan Parthasarathy, editors, SIAM International Con-
ference in Data Mining [SDM 2013], pages 162–170,
Philadelphia, 2013. Society for Industrial and Applied
Mathematics. doi: 10.1137/1.9781611972832.18. URL
http://arxiv.org/abs/1304.4657.

Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kit-
sak, Amin Vahdat, and Marián Boguñá. Hyperbolic ge-
ometry of complex networks. Physical Review E, 82:

109

036106, 2010. doi: 10.1103/PhysRevE.82.036106. URL
http://arxiv.org/abs/1006.5169.

László Lovász. Large Networks and Graph Limits. Amer-
ican Mathematical Society, Providence, Rhode Island,
2012.

Manuel Middendorf, Etay Ziv, and Chris Wiggins. Infer-
ring network mechanisms: The drosophila melanogaster
protein interaction network. Proceedings of the Na-
tional Academy of Sciences (USA), 102:3192–3197,
2005. URL http://arxiv.org/abs/q-bio/
0408010.

Mark E. J. Newman. Networks: An Introduction. Oxford
University Press, Oxford, England, 2010.

Henry Pao, Glen A. Coppersmith, and Carey E. Priebe.
Statistical inference on random graphs: Comparative
power analyses via Monte Carlo. Journal of Computa-
tional and Graphical Statistics, 20:395–416, 2011. doi:
10.1198/jcgs.2010.09004.

Bruno Pelletier. Kernel density estimation on Riemannian
manifolds. Statistics and Probability Letters, 73:297–
304, 2005. doi: 10.1016/j.spl.2005.04.004.

Claudio Rocchini. Poincare halfplane eptagonal hb,
2007. URL http://commons.wikimedia.
org/wiki/File:Poincare_halfplane_
eptagonal_hb.svg. Retrieved 20 October 2014.

Martin Rosvall and Carl T. Bergstrom. Mapping change in
large networks. PLoS ONE, 5:e8694, 2010. doi: 10.
1371/journal.pone.0008694. URL http://arxiv.
org/abs/0812.1242.

Olaf Sporns. Networks of the Brain. MIT Press, Cam-
bridge, Massachusetts, 2010.

Elias M Stein and Guido L Weiss. Introduction to Fourier
analysis on Euclidean spaces, volume 1. Princeton uni-
versity press, 1971.

Minh Tang, Avanti Athreya, Daniel L. Sussman, Vince
Lyzinski, and Carey E. Priebe. A nonparametric two-
sample hypothesis testing problem for random dot prod-
uct graphs. E-print, arxiv.org, 2014. URL http:
//arxiv.org/abs/1409.2344.

Audrey Terras. Harmonic analysis on symmetric spaces
and applications, volume 1. Springer-Verlag, New York,
1985.

A. W. van der Vaart. Asymptotic Statistics. Cambridge
University Press, Cambridge, England, 1998.

Duncan J. Watts and Steven H. Strogatz. Collective dynam-
ics of “small-world” networks. Nature, 393:440–442,
1998. doi: 10.1038/30918.

110

Learning and Planning with Timing Information in Markov Decision Processes

Pierre-Luc Bacon, Borja Balle, and Doina Precup
Reasoning and Learning Lab,

School of Computer Science, McGill University
{pbacon,bballe,dprecup}@cs.mcgill.ca

Abstract

We consider the problem of learning and plan-
ning in Markov decision processes with tempo-
rally extended actions represented in the options
framework. We propose to use predictions about
the duration of extended actions to represent the
state and show that this leads to a compact pre-
dictive state representation model independent of
the set of primitive actions. Then we develop
a consistent and efficient spectral learning algo-
rithm for such models. Using just the timing in-
formation to represent states allows for faster im-
provement in the planning performance. We il-
lustrate our approach with experiments in both
synthetic and robot navigation domains.

1 INTRODUCTION

Modelling the dynamics of an agent embedded in a large,
complex environment is key to building good planning al-
gorithms for such agents. In most practical applications,
models are carefully designed by hand, and the agent’s
“state” is given by measurements which are understandable
by the designer of the system (such as spatial location and
velocity, in the case of a robot). However, learning dy-
namical models for such states from data, as well as plan-
ning with them can be quite tricky. An alternative idea is
to use models that are “subjective”, centered on the agent’s
own perception and action capabilities. For example, affor-
dances [Gibson, 1977] describe “state” through the courses
of action that are enabled. Similarly, in robotics, subjec-
tive representations have been used to model dynamics,
e.g. [Bowling et al., 2005; Stober et al., 2011]. Such mod-
els are appealing from a psychological point of view, but
run into computational problems in very large observation
spaces.

In this paper, we focus on a special class of subjective mod-
els, timing models, which arise from restricting the obser-
vations available to the agent to just information about the

duration of certain courses of action. Timing of events is
understood to be crucial to animal learning [Machado et
al., 2009]. The goal of this paper, however, is not learn-
ing of the timing of external events, but rather to learn the
duration of courses of action that an agent might take. The
ensemble of such durations will constitute the agent’s state,
which will be maintained as new data is received. We use
the framework of options [Sutton et al., 1999] to model ex-
tended courses of actions, and we present an approach for
learning a predictive model of option durations.

Our models over durations can be viewed as affordances
if we consider an option to be available when its pre-
dicted duration is within some reasonable bounds. Note
that these models are much simpler than full option mod-
els, which provide joint information on the timing as well
as the state or observation in which the option will termi-
nate, e.g. [Wolfe and Singh, 2006]. We emphasize that tim-
ing information is very cheap to measure and process, even
with simple hardware. Hence, a major area of application
for this type of approach is on devices in which process-
ing can be costly, such as simple, Roomba-like robots (as
in our experiments) or cellphones (on which using a lot of
sensors or computation drains the battery).

Our approach can also be interpreted as a computation-
ally and statistically efficient way of exploiting prior in-
formation about useful courses of action provided in the
form of options. The size of our models is independent of
the number of possible primitive actions in the underlying
system, which is very useful in large or continuous action
spaces. Moreover, because we are able to learn feature rep-
resentations for states using timing information only, our
method can be applied to observable settings with high-
dimensional, complex observations, as well as to partially
observable settings, where building a full model for plan-
ning would be too data and computation-hungry. Examples
include investment problems (where the best strategy may
include information about past performance, past trades,
news etc, which is too hard to process) or robotics (where
sensors may produce a lot of data, but this may not be easy
to process in real-time).

111

Of course, the utility of timing models depends on the na-
ture of the task to be solved by the agent, as well as on the
“quality” of the options available to the agent. The sim-
plest example in which option duration models are bene-
ficial is that of minimum time to goal problems, in which
an agent receives a fixed penalty per time step until its task
is completed. In this case, knowing the duration of an op-
tion immediately provides the reward model, so the option
duration model has direct value for a planner. More gen-
erally, option duration models are beneficial as a form of
localization. If you imagine a robot that has models for
options that move radially out from the current position,
this would allow localizing with respect to all neighbor-
ing walls. Finally, consider a problem in which a financial
agent is holding stocks, and options which hold a particu-
lar stock while it is above a certain value, and sell under
that value. In this case, timing models tell us exactly when
stocks would be crossing certain barriers. It is clear in this
case that, even though we are estimating only durations, the
model encodes important state information (because of the
way in which the options are defined).

In this paper, we analyze the capacity of option dura-
tion models to represent states in a Markov Decision
Process (MDP). We propose a spectral algorithm for
learning option duration models which builds on existing
work for learning transformed predictive state representa-
tions [Rosencrantz et al., 2004]. Finally we evaluate the
quality of learning and planning with this type of models in
experiments with discrete and continuous MDPs.

2 PRELIMINARIES AND NOTATION

We use bold letters to denote vectors v ∈ Rd and matrices
M ∈ Rd1×d2 . For matrix M, M+ denotes its Moore–
Penrose pseudo-inverse. Sometimes we name the columns
and rows of a matrix using ordered index sets I and J , so
M ∈ RI×J denotes a matrix of size |I| × |J | with rows
and columns indexed by I and J respectively.

Let Σ be a finite set of symbols. We use Σ? to denote the set
of all finite strings over Σ and λ for the empty string. Given
two strings u, v ∈ Σ?, w = uv is their concatenation, in
which case u is called a prefix of w, and v is a suffix of
w. Given two sets of strings P,S ⊆ Σ?, PS is the set
obtained by taking every string of the form uv with u ∈ P
and v ∈ S.

Given a predicate µ(x) we denote by I[µ(x)] the indicator
function which is one when µ(x) is true and zero otherwise.

2.1 Markov Decision Processes and Temporally
Extended Actions

A Markov decision process (MDP) is a tuple M =
〈S,A, P,R〉 where S is the state set, A is the action set,
P : S × A → (S → [0, 1]) defines a probability distribu-

tion over next states, and R : S × A → R is the expected
reward function (see [Puterman, 1994] for a review). We
refer to probability distributions on S by α, but sometimes
use α to stress that we view them as vectors in RS . Sup-
pose α is a distribution over S and π : S × A→ [0, 1] is a
stochastic action policy which, given state s, chooses action
a with probability π(s, a). The environment then returns a
state sampled from P ; and the resulting state distribution
α′ is given by:

α′(s′) =
∑

s∈S
α(s)

∑

a∈A
π(s, a)P (s, a)(s′) .

Temporal abstraction in MDPs has been used as a tool to
speed up learning and planning algorithms. We adopt the
framework of options [Sutton et al., 1999], with the goal of
learning state representations based on option timing mod-
els. An option is a tuple ω = 〈Iω, πω, βω〉 where Iω ⊆ S
is the set of initial states, πω : S × A → [0, 1] is the op-
tion’s stochastic action policy, and βω : S → [0, 1] is the
option termination probability for each state. We will drop
the option’s subscript and write ω = 〈I, π, β〉 when there
is no risk of confusion.

We say that an agent interacts with an MDP via a set of
options Ω if at all times the actions performed by the agent
follow the policy specified by some option ω ∈ Ω, which
is executed until termination.

Each option has an associated reward model R(s, ω) and
an associated transition model P (s, ω)(s′), which can be
computed using the MDP model and the definition of the
options (see [Sutton et al., 1999] for details). Given a set
of options Ω, the optimal option-value function satisfies the
following Bellman equation:

Q∗Ω(s, ω) = R(s, ω) +
∑

s′∈S
P (s, ω)(s′) max

ω′∈Ω
Q∗Ω(s′, ω′)

Planning with options aims to find the optimal policy over
options π∗Ω, which is achieved most often by estimating
Q∗Ω. This does not require a model to be known; instead,
it can be done using samples, in similar fashion as Q-
learning. If the state space is large or continuous, function
approximation can used to represent states. The option du-
ration model that we develop in this paper will be used as
a form of state representation in order to learn an approxi-
mation to Q∗Ω.

2.2 Predictive State Representations

A predictive state representation is a model of a dynam-
ical system in which the current state is represented as
a set of predictions about the future behavior of the sys-
tem [Littman et al., 2002; Singh et al., 2004]. We use a
particular instantiation of this general idea, the so-called
transformed linear predictive state representation [Rosen-
crantz et al., 2004], abbreviated as PSR.

112

Let Σ be a finite set of symbols. A PSR over Σ is a tuple
A = 〈αλ,α∞, {Aσ}σ∈Σ〉 where αλ,α∞ ∈ Rn are the
initial and final weights respectively, and Aσ ∈ Rn×n are
the transition weights. The dimension n of these vectors
and matrices is the number of states of the PSR. Though
PSR is the usual name for this type of model in the rein-
forcement learning literature, they are also called weighted
finite automaton (WFA) [Droste and Vogler, 2009] or ob-
servable operator models (OOM) [Jaeger, 2000]. This dis-
tinction reflects the fact that this same parametrization can
be used to define models with different semantics, depend-
ing on the meaning associated with the values computed by
the model.

A PSR A computes a function fA : Σ? → R that assigns a
number to each string x = x1x2 · · ·xt ∈ Σ? as follows:

fA(x) = α>λAx1Ax2 · · ·Axtα∞ = α>λAxα∞ .

In a PSR, a string x ∈ Σ? represents a sequence of events
produced by a dynamical system, and fA(x) is the proba-
bility that the system produces x. In many cases of interest,
Σ = A×O, where A is a set of actions and O a set of ob-
servations, so any x ∈ Σ? represents a sequence of action-
observation pairs. The vectorαλ represents the initial state
of the system.

If a history u ∈ Σ? has already been observed, the condi-
tional probability of observing a sequence of events v ∈ Σ?

after u is:

fA,u(v) =
fA(uv)

fA(u)
=
α>λAuAvα∞
α>λAuα∞

=
α>uAvα∞
α>uα∞

.

Hence, given some history u, the initial state αλ can be
updated to a new state αu/(α>uα∞), which allows com-
puting probabilities of future observations conditioned on
the current history. Because the partition of a sequence of
observations x into a history u and a future v (also called
test) yields x = uv, we sometimes call histories prefixes
and futures suffixes.

2.3 Hankel and System Dynamics Matrices

The behavior of a stochastic dynamical system producing
observations in a finite set Σ can be entirely characterized
by the function f : Σ? → R giving the probability f(x)
of observing each possible sequence of observations x. A
convenient algebraic way to summarize all the information
conveyed by f is with its Hankel matrix, a bi-infinite matrix
Hf ∈ RΣ?×Σ? with rows and columns indexed by strings
in Σ?. Strings indexing rows and columns are interpreted
as prefixes and suffixes respectively. The entries in Hf are
given by Hf (u, v) = f(u, v) for every u, v ∈ Σ?.

Although Hf is an infinite matrix, in some cases it can have
finite rank. In particular, a well-known result states that
Hf has rank at most n if and only if there exists a PSR A

with n states satisfying fA = f [Carlyle and Paz, 1971;
Fliess, 1974]. This result is the basis of recently developed
spectral learning algorithms for PSRs [Boots et al., 2011],
which we review in Sec. 4.

Instead of looking at the full Hankel matrix, algorithms
usually work with finite sub-blocks of this matrix. A con-
venient way to specify such blocks is to give the “names”
to the rows and columns. Specifically, given a finite set
of prefixes P ⊂ Σ? and a finite set of suffixes S ⊂
Σ?, the pair B = (P,S) is a basis defining the sub-
block HB ∈ RP×S of Hf , whose entries are given by
HB(u, v) = Hf (u, v). Note that every sub-block built in
this way satisfies rank(HB) ≤ rank(Hf); when equality
is attained, the basis B is complete.

Sometimes it is also convenient to look at one-step shifts of
the finite Hankel matrices. Let H ∈ RP×S be a finite sub-
block of Hf specified by a basis B = (P,S). Then, for
every symbol σ ∈ Σ, we define the sub-block Hσ ∈ RP×S
whose entries are given by Hσ(u, v) = Hf (u, σv). For
a fixed basis, we also consider the vectors hS ∈ RS with
entries given by hS(v) = Hf (λ, v) for every v ∈ S , and
hP ∈ RP with hP(u) = Hf (u, λ).

The Hankel matrix Hf is tightly related to the system dy-
namics matrix (SDM) of the stochastic process described
by f [Singh et al., 2004], but while the entries of the Han-
kel matrix represent joint probabilities over prefixes and
suffixes, the corresponding entry in the SDM is the condi-
tional probability of observing a suffix given the prefix. In
particular, the SDM of f is the matrix H̄f ∈ RΣ?×Σ? given
by Hf with the rows scaled by the probability of prefixes.
The SDM of f shares a lot of properties with its Hankel
counterpart. In particular, spectral learning algorithms for
f can be derived in terms of sub-blocks of both Hf and
H̄f . We will work with the Hankel matrices of f , but all
our algorithms can easily be adapted to work with the SDM
instead.

3 OPTION DURATION MODELS

We are interested in the dynamics of an agent interacting
with an MDP M via a set of options Ω. Recall that in this
setting the agent is not allowed to perform primitive ac-
tions, and options must be executed until termination. We
are interested in situations in which the duration of an op-
tion is an informative statistic about the state of the MDP.
That is, we would like to identify a state in M with the
distribution over the durations of a sequence of options ex-
ecuted starting from that state. This section introduces a
special PSR for this purpose that we call the option dura-
tion model (ODM). This is basically a dynamical model of
an MDP viewed through the lens of a fixed set of options,
in which the state is represented by a vector of parameters
sufficient for predicting the duration of future options. In
the following sections we present a spectral algorithm for

113

learning ODM from just information about the duration of
options in an MDP, and explore the possibilities the state
representation given by this ODM in order to plan with op-
tions in the original MDP.

The goal of this section is to understand what form the
probability distributions over option durations take, and
how to write these compactly in order to allow efficient
learning from just duration information. To begin, assume
we can reset the MDP M to a fixed state s0 and explore
the environment from there by performing a sequence of t
options ω1, . . . , ωt, e.g. chosen uniformly at random. From
the point of view of the MDP dynamics, this process will
generate a sequence of of state-action trajectories like the
following:
ω1 : (s0, πω1(s0), s1, πω1(s1), . . . , sT1−1, πω1(sT1−1), sT1)

ω2 : (sT1 , πω2(sT1), sT1+1, πω2(sT1+1), . . . , πω2(sT2−1), sT2)

. . . : . . .

ωt : (sTt−1 , πωt(sTt−1), . . . , πωt(sTt−1), sTt) ,

where πω(s) denotes an action chosen according to the dis-
tribution given by ω’s stochastic policy. Note that in this
trace, the sequence of visited states, the actions executed,
and the option stopping times form a stochastic dynami-
cal process whose distribution can be computed in terms of
the parameters of the MDP M , the parameters defining the
options in Ω, and the sequence of options ω1, . . . , ωt.

If one is only interested in the duration of the options ex-
ecuted in the above trace, then the interaction can be sum-
marized in terms of termination and continuation events for
the options being executed. That is, at each time step, we
can ignore the current observed state and the action being
chosen, and just focus on whether the current option termi-
nates in the current state. We will use the symbol] (sharp)
to denote continuation, and ⊥ (bottom) to denote termina-
tion. Thus, at a given time step, we use (ω,]) to denote op-
tion ω is being executed and does not terminate, and (ω,⊥)
if it terminates. Using this notation, the “duration informa-
tion” in the previous trajectory can be expressed as:
(ω1,])

d1−1(ω1,⊥)(ω2,])
d2−1(ω2,⊥) . . . (ωt,])

dt−1(ωt,⊥) ,

where the durations are given by di = Ti − Ti−1, T0 = 0.
In more compact form, we can write the duration infor-
mation in a trace as a sequence of option-duration pairs:
(ω1, d1)(ω2, d2) · · · (ωt, dt), with ωi ∈ Ω and di ∈ N =
{1, 2, . . .}. Both notations will be convenient in our deriva-
tions.

Broadly speaking, an option duration model for an MDP
M and a set of options Ω is a mapping that associates with
every state s in M a conditional probability distribution

Ps[d̄ | ω̄] = Ps[d1, . . . , dt | ω1, . . . , ωt]

that represents the stochastic process of stopping events
induced by executing the options ω̄ = ω1, . . . , ωt in M
starting from s. More formally, let Dt denote the set of

all1probability distributions over Nt, and for every state s
and ω̄ ∈ Ωt let Ds

ω̄ ∈ Dt denote the distribution Ps[· | ω̄].
Now, by letting ω̄ run over all possible sequence of op-
tions in Ω+ we can associate with every s a mapping
Ds
• : Ω+ → ∪t>0Dt. We say that the set of options Ω is

rich for MDP M if the maps Ds
• are different for all s, that

is, if the functional ∆(s) = Ds
• is injective, so for every

s, s′ ∈ S there exists some sequence of options ω̄ ∈ Ω+

such that Ds
ω̄ 6= Ds′

ω̄ . Clearly, in this case, ∆(s) uniquely
identifies the state s, indicating that the duration over op-
tions provides a unique representation for each state.

If ∆ is not injective, such models can still be sufficient for
planning in special circumstances. For example, consider
minimum-time-to-goal problems, in which fixed negative
rewards are attributed per time step, and suppose the agent
intends to plan using only options. In this case, states for
which ∆(s) = ∆(s′) will also have the same optimal value
function V ∗Ω (a result that follows directly from the way in
which option models are defined [Sutton et al., 1999]).

In next section we give a concrete realization of this ab-
stract ODM by showing how to encode the collection of
distributions ∆(s) using a PSR.

3.1 Representing Option Duration Models with PSR

We now show that the probability distributions of the tim-
ing of options can be compactly represented in the form of
a PSR. Given s ∈ S and an option ω ∈ Ω, we denote by
δ(s, ω) the random variable counting the number of steps
until termination when following ω from s. Note that s
might be an initial state for ω, but also a state traversed
during the execution of ω, in which case δ(s, ω) is the re-
maining number of steps until termination. Let s0 ∈ S,
ω = 〈I, π, β〉, and d > 0 be an integer. We start by consid-
ering the probability P[δ(s0, ω) = d], which is given by:

∑

s̄∈Sd

∑

ā∈Ad
P[s0, a0, s1, a1, · · · , ad−1, sd,⊥] ,

where s̄ = s1 · · · sd is the sequence of states traversed by
ω, ā = a0 · · · ad−1 is a sequence of actions chosen by πω ,
and⊥ denotes the option termination. Note the appearance
of ⊥ at the end explicitly requires the option to last for
exactly d steps; state trajectories which stop earlier are not

1We could be more precise and restrict ourselves to discrete
phase-type distributions because these are enough to model the
duration until absorption events in Markov chains; but this does
not simplify our arguments at this point. The class of distributions
we consider will become clear in Section 3.1

114

considered. By the Markov property,

P[s0, a0, · · · , sd−1, ad−1, sd,⊥]

=

(
d−1∏

i=0

P[ai, si+1|si] · P[]|si+1]

)
· P[⊥|sd]
P[]|sd]

=

(
d−1∏

i=0

π(si, ai)P(si, ai, si+1)(1− β(si+1))

)
· β(sd)

1− β(sd)
.

With some algebra, it can be shown that summing this ex-
pression over s̄ and ā yields:

P[δ(s0, ω) = d] = e>s0A
d−1
ω,] Aω,⊥1 , (1)

where es0 ∈ RS is an indicator vector with es0(s) =
I[s = s0], Aω,] ∈ RS×S is a matrix with Aω,](s, s

′) =∑
a∈A π(s, a)P (s, a, s′)(1 − β(s′)), Aω,⊥ ∈ RS×S is a

matrix with Aω,⊥(s, s′) =
∑
a∈A π(s, a)P (s, a, s′)β(s′),

and 1 ∈ RS is a vector of ones.

Using the ODM notation introduced in the previous sec-
tion, Equation (1) can be written as

Ps0 [d | ω] = e>s0A
d−1
ω,] Aω,⊥1 .

Now we would like to extend this expression to sequences
containing more than one option. Using a similar deriva-
tion, for any t > 0, d̄ ∈ Nt, and ω̄ ∈ Ωt, we can compute
Ps0 [d̄ | ω̄] as follows:

e>s0A
d1−1
ω1,]

Aω1,⊥A
d2−1
ω2,]

Aω2,⊥ · · ·Adt−1
ωt,]

Aωt,⊥1 .

Note that the same reasoning applies if we consider distri-
butions over states. That is, instead of a fixed initial state
s0, we consider a state sampled according to some distribu-
tion α0 over S. In that case, we define the random variable
δ(α0, ω) representing the duration of option ω when started
from s0 ∼ α0. By the same argument as above,

Pα0 [d | ω] = P[δ(α0, ω) = d] = α>0 A
d−1
ω,] Aω,⊥1 ,

where α0 ∈ RS is the vector representation of α0. Again,
this can be extended in the same way to sequences with
more than one option. Therefore, we have proved the fol-
lowing result.

Theorem 1. LetM be an MDP with n states, Ω a set of op-
tions, and Σ = Ω× {],⊥}. For every distribution α0 over
the states of M , there exists a PSR A = 〈α0,1, {Aσ}〉
with at most n states that computes the distributions over
durations of options executed from a state sampled accord-
ing to α0.

Note that the MDP transition kernel and the options’
stochastic policies are coupled inside the transition matri-
ces of PSR A representing the ODM. This coupling is the
reason why we can model the timing of options in an MDP
via a process with observation on the set Ω×{],⊥} whose

size is independent of the set of primitive actions A, and
whose transitions operators have size at most |S|. Note
that this can be particularly interesting in settings where the
number of possible actions is very large but a small num-
ber of options is enough to specify the “useful” modes of
operation of an agent.

3.2 ODM for Explorable Trajectories

Note that the ODM representation A given by Theorem 1
can be used to query the probability of observing any tra-
jectory in (Ω×{],⊥})? starting from a state sampled from
α. In principle, this includes trajectories which are not
valid for an agent interacting with an MDP via options –
e.g. we can query the probability of trajectories of the form
(ω1,])

d1(ω2,])
d2 . . ., where ω1 was interrupted before ter-

mination. Note that this type of trajectories will never be
observed by an agent that explores an environment by inter-
acting with it only via options executed in call-and-return
fashion. In particular, an agent does not need to learn about
these trajectories if the goal is to plan via options only, and
cannot hope to learn about these trajectories if it only ex-
plores the environment via options. We now show that a
PSR representation for an ODM can be restricted to pro-
duce non-zero probabilities for legal trajectories only, with-
out increasing the size of the model too much.

Recall that Σ = Ω× {],⊥}. When options are always ex-
ecuted to termination, valid trajectories belong to a subset
of Σ?:

V =

(⋃

ω∈Ω

{(ω,])?(ω,⊥)}
)?

.

That is, each sequence of option-continuation events must
end with an option-termination event before a new option
can be started.

Now we want to modify the model in Theorem 1 so that it
only assigns non-zero probabilities to trajectories in V . Let
f be the function computed by A. Then we want another
PSR computing the function given by f̃(x) = f(x) for x ∈
V and 0 otherwise. We now show that f̃ can also be com-
puted by a PSR with size close to that of A.

Theorem 2. If A has n states, then there exists a PSR Ã
with at most (|Ω|+ 1)n states computing f̃ .

Proof. By the Carlyle–Paz–Fliess theorem, it suffices to
show that rank(H̃) ≤ (|Ω| + 1)n, where H̃ ∈ RΣ?×Σ?

is the bi-infinite Hankel matrix associated with f̃ . Let
χV : Σ? → R be the characteristic function of the regu-
lar language V , which is given by χV (x) = 1 if x ∈ V
and χV (x) = 0 otherwise. Note that it is easy to construct
a DFA with |Ω| + 1 states recognizing V . Such a DFA
can also be written as a PSR with |Ω|+ 1 states computing
the function χV . Thus, the rank of the Hankel matrix HV

associated with χV is at most |Ω| + 1. Now note that we

115

can write H̃ = H ◦HV , where H is the Hankel matrix of
f and ◦ denotes entry-wise multiplication (also known as
Hadamard matrix product). Finally, we use an elementary
bound on the rank of Hadamard products to conclude that

rank(H̃) ≤ rank(H) · rank(HV) = (|Ω|+ 1)n .

Note that the bound on the number of states of Ã is in gen-
eral not tight. For example, in our experiments with a grid-
like environment, we observed that starting with an MDP
with n states the true rank of H̃ is on the order of O(

√
n).

So the PSR representation of ODM can lead to more com-
pact models than the underlying MDP, and can potentially
lead to faster learning and planning algorithms. This issue
should be investigated further in future work.

4 SPECTRAL LEARNING OF ODM

The PSR representation of ODM given by the theorems in
previous section can be computed explicitly if the under-
lying MDP is known exactly. In this section we explore
the possibility of learning such a representation from data
about option durations, without exploiting any knowledge
about the underlying MDP. The rationale behind this ap-
proach is that it can lead to more compact representations
that do not depend on the set of primitive actions, and learn
only the parts of the MDP’s state space which are reachable
via options.

Because an option duration model over valid trajectories
can be represented with a PSR of moderate size, we can
use the spectral learning algorithm in [Boots et al., 2011]
to estimate an ODM from a set of trajectories in Σ? pro-
duced by the agent exploring the MDP using a fixed policy
over options. For each trajectory, the initial state is sam-
pled according to a fixed distribution α. We assume that
the options executed by the agent are selected according to
some fixed open-loop policy. This is important if we want
to use the sampled trajectories to learn a model of the envi-
ronment which is independent of the exploration policy.

The algorithm takes as input Σ and a basis B in Σ?, uses
them to estimate the corresponding Hankel matrices, and
then recovers a PSR by performing singular value decom-
position and linear algebra operations on these matrices.
Although the method works almost out-of-the-box, in prac-
tice the results tend to be sensitive to the choice of basis.
Thus, after briefly recapitulating how the spectral learning
algorithm proceeds, we will devote the rest of the section to
describe a procedure for building a basis which is tailored
for the case of learning option duration models.

Suppose the basis B is fixed and the desired number of
states n is given. Suppose that a set of sampled trajectories
was used to estimate the Hankel matrices H,Hσ ∈ RP×S
and vectors hP ∈ RP , hS ∈ RS defined in Sec. 2.3. The
algorithm starts by taking the truncated SVD UnDnV

>
n

of H, where Dn ∈ Rn×n contains the first n singular
values of H, and Un ∈ RP×n and Vn ∈ RS×n con-
tain the first left and right singular vectors respectively.
Finally, we compute the transition operators of a PSR as
Aσ = D−1

n U>nHσVn, and the initial and final weights as
α>λ = h>SVn and α∞ = D−1

n U>nhP . This yields a PSR
with n states. It was proved in [Boots et al., 2011] this
algorithm is statistically consistent: if the population Han-
kel matrices are known and the basis B is complete, then
the learned PSR is equivalent to the one that generated the
data.

4.1 Basis Selection

Finding a complete basis for a given function f : Σ? → R
is in general a hard combinatorial problem: although if Hf

has rank n, there exists a complete basis with n prefixes
and suffixes, the search space where these lie is doubly-
exponential in n. To overcome this problem, randomized
and greedy basis selection heuristics have been proposed
in the past [Wiewiora, 2005; Balle et al., 2012]. Greedy
selection is in general computationally expensive because
it requires re-learning the model every time a new element
is added to the basis. Randomized search does not work in
our case because it cannot take into account the fact that we
have syntactic constraints on the valid trajectories. There-
fore, we designed a procedure that takes the structure of our
problem into account.

Our procedure is parametrized by various quantities de-
pending on the environment and the observed trajectories:
the maximum possible duration Tω of each option ω ∈ Ω
in our training dataset, and T = maxω Tω; an upper bound
Kr ≥ 1 on the number of option executions needed to
reach every possible state in M when initial states are sam-
pled from α; and, an upper boundKd ≥ 1 on the number of
option executions needed to distinguish/disambiguate ev-
ery pair of states in M in terms of option duration informa-
tion.

We assume these quantities are given, either because they
can be derived from prior knowledge of the application do-
main, or because they are cross-validated. The definitions
imply that T and Kr are a function of the geometry of the
environment and how this relates to the available options.
On the other hand, Kd measures the statistical similarity
between states in M when seen through the lens of Ω. The
intuition is simple: we want to ensure that we have enough
prefixes in the Hankel matrix to get to all reachable states
inM , and enough suffixes to make sure each of these states
can be distinguished from each other. The following con-
struction formalizes this intuition.

We obtain the set P of prefixes in the basis as the union of

116

two disjoint sets. The first set is:

P⊥ =
{
x1x2 · · ·xt

∣∣ 1 ≤ t ≤ Kr, xi = (ωi,])
di(ωi,⊥),

ωi ∈ Ω, 0 ≤ di ≤ Tωi} .

These are trajectories with at most Kr option executions,
containing all possible sequences of options, and all possi-
ble option durations allowed by the model. A simple cal-
culation shows that |P⊥| = O(KrT

Kr |Ω|Kr). Note that
each trajectory in P⊥ terminates with a symbol (ω,⊥).
If we remove this last symbol for each trajectory, we ob-
tain a disjoint set of prefixes P] = {x | x(ω,⊥) ∈ P⊥}.
Then we take P = P⊥ ∪ P]. Note that again we have
|P| = O(KrT

Kr |Ω|Kr).

Similarly, the set of suffixes will be obtained as the union
of two sets. These are defined as follows:

S] =
{
x1x2 · · ·xt

∣∣ 1 ≤ t ≤ Ks, xi = (ωi,])
di(ωi,⊥),

ωi ∈ Ω, 0 ≤ di ≤ Tωi} ,

S⊥ = {(ω,⊥)x | x ∈ S], ω ∈ Ω} .

The suffixes in S] are obtained like the prefixes in P⊥,
with the only difference that the number of option execu-
tions is now upper bounded by Ks instead of Kr. Suf-
fixes in S⊥ are obtained by prefixing each string in S]
with each possible option termination symbol (ω,⊥). The
whole set of suffixes is S = S⊥ ∪ S], and we have
|S| = O(KsT

Ks |Ω|Ks+1).

Note that not every string in PS defines a valid trajectory.
This is required for the Hankel matrices Hσ to be different
from zero; otherwise the operators Aσ cannot be correctly
recovered. To see why this is the case, consider the ba-
sis B′ = (P⊥,S]). By construction we have P⊥S] ⊂ V .
However, if we consider a system where some ω never lasts
for just one step, then every trajectory in P⊥{(ω,⊥)}S]
has probability zero. In particular, in such a system the ma-
trix Hσ over the basis B′ is exactly zero. To work around
this problem, it is necessary to introduce non-valid trajec-
tories in the basis, to ensure that H will contain some sub-
blocks filled with zeros, but the Hσ will contain some non-
zero sub-blocks.

4.2 Scalability

Though at first glance the exponential dependence on Kr

and Ks in the size of the basis may seem prohibitive, in
practice the situation is much better. On one hand, these
are worst-case bounds that assume all possible sequences
of options and durations need to be considered. However,
in practice some of those might never be observed — e.g.
because the duration of certain options has little variance,
or because some options are not available in many configu-
rations. On the other hand, as already mentioned, we have
prior knowledge indicating that a significant fraction of
the entries appearing in the resulting Hankel matrices will

be zero because they correspond to non-valid trajectories.
This will lead to highly sparse matrices which can benefit
from sparse representations, sparse singular value decom-
positions, and sparse numerical linear algebra in general. In
those cases, the complexity of the operations involved will
not depend on the size of these matrices, but instead on the
number of non-zero entries. This quantity will in practice
be much smaller that the size of the Hankel matrices given
by our choice of basis, and we have observed such benefits
in our experiments.

5 PLANNING WITH ODM

In this section we want to briefly investigate the potential
utility of ODM representations for planning with options.
Specifically, we want to show how to use ODMs as a form
of state representation for value function learning. In a nut-
shell, our main result states that nothing is lost by planning
with options using a PSR representation of an ODM instead
of the original MDP representation.

The first important observation is that the construction in
Theorem 1 (and in consequence, the construction in The-
orem 2) leads to a PSR with identical transition operators
{Aσ} regardless of which initial distribution over the states
of M is chosen. That is, the only thing that needs to be
modified when we change the initial distribution over the
states is the initial state in the PSR. Thus, given an MDP
M and a set of options Ω, we can fix the transition struc-
ture of a PSR representation for the corresponding ODM
– either over all trajectories or only valid trajectories (the
distinction is not important for the purpose of this section).
These will be given by {Aσ} for σ ∈ Σ = Ω×{],⊥}, and
the corresponding final weights α∞. We denote by n′ the
dimension of this PSR. Then we can map each possible dis-
tribution α over the states of M to a PSR state θα ∈ Rn′ .
Note that although this mapping is straightforward for the
construction in Theorem 1, this is not the case for the con-
struction in Theorem 2, and even less for the PSR recov-
ered by the learning algorithm in Section 4 because such a
PSR is only equivalent to the original up to conjugation of
the transition weights by an invertible matrix [Boots et al.,
2011]. In addition to distributions over initial states, we
can also consider PSR states obtained by the state-update
procedure. That is, if we are given a valid trajectory u ∈ V
representing a history of options and associated continua-
tion and termination events, then we can obtain the updated
state

θ>α,u =
θ>αAu

θ>αAuα∞
.

This represents another probability distribution over the
states ofM . Note that by construction we have θα,λ = θα.
With this notation we can show that the state-option value
function of any policy over options is linear in the PSR
state.

117

Theorem 3. Let πΩ : S × Ω → [0, 1] be a stochastic
stationary policy over options on the MDP M . For every
ω ∈ Ω there exists a vector ρω ∈ Rn′ so that for every
distribution α over states in M and every history u ∈ V ,
we have Es[QπΩ(s, ω)] = θ>α,uρω , where the expectation
is over states s sampled from the distribution induced by
observing u after starting in a state drawn from α.

The above theorem includes as a special case the situation
in which the agent is at a fixed state in M ; i.e. no uncer-
tainty. The proof follows along the lines of a similar result
known for PSRs with reward structure induced by a corre-
sponding POMD [James et al., 2004]. The key difference
is that we need to take into account the semi-Markov na-
ture of option termination events, which make the compu-
tations involved in the discount factors and extended tran-
sition kernels more involved. Though the details are not
complicated, the algebra is too lengthy to be included in
this version and will be presented in full in an extended
version.

Although planning with PSRs has been studied using meth-
ods akin to POMDP planning [James et al., 2004; Izadi
and Precup, 2008; Boots et al., 2011], we chose a more
efficient alternative, the Fitted-Q Iteration (FQI) algorithm
of Ernst et al. [2005]. Similar uses of FQI with PSR states
have been proposed in Ong et al. [2012]; Hamilton et al.
[2013]. FQI learns a policy through an iterative re-fitting
process over batches of sampled transitions of the form:
〈s, a, r, s′〉. At every iteration, an ensemble of extremely
randomized trees (ExtraTrees) [Geurts et al., 2006] is fit
toQ(s, a)t = r+γmaxa′ Qt−1(s′, a′) over all quadruples
s, a, r, s′. In order to ensure convergence, the tree structure
must be kept fixed across iterations. Hence, we fit the re-
gressor in the first iteration and only refreshed the values
and not the structure on subsequent iterations. We plan di-
rectly over the ODM state vector updated at each step with
the corresponding operator (continuation or termination).
So, in the first step, we compute θ0 = α>λAσ0

, then update
θt = θ>t−1Aσt . The ODM state vector is then normalized
in order to prevent difficulties with the regressor. This ap-
proach is leveraging a well-known planning approach, so it
is straightforward. It is possible that the structure of ODM
can be exploited further to design more efficient planning
algorithms. We leave this topic for future work.

6 EXPERIMENTS

We first assess the performance of the spectral learning al-
gorithm with our data-driven basis construction method for
Kr = 2 and Ks = 1. We use a 4-connected grid with four
actions representing the cardinal directions (NEWS). Un-
less the current state is a “wall” each action moves the agent
one step in the specified direction with probability 0.9, and
maintains the current state with probability 0.1. We also de-
fine one option for each cardinal direction. These options

take as many steps as possible in the specified direction un-
til they hit a wall, at which point the option terminates. A
uniformly random exploration policy is used for sampling
10000 episodes in which five options are executed to ter-
mination. We also collected a test set consisting of 10000
trajectories of 8 options sequences. We evaluate the pre-
diction accuracy by computing the relative error over the
estimated remaining number of steps in the currently exe-
cuting option. For each test trajectory, we picked a time in-
dex uniformly at random and conditioned the learned ODM
on the history up to this point. These random split points
were then kept fixed throughout all evaluations. Figure 1b
shows that the prediction accuracy increases with the di-
mension of the ODM. More samples also allow for better
predictions. Since the prediction task is inherently stochas-
tic, even the true ODM cannot achieve 0 relative error.

6.1 Planning in a grid world

We formulating the grid-world problem by giving a reward
of +100 for entering the bottom-right state and -10 per col-
lision, with discount factor 0.9. A dataset of 1000 trajecto-
ries of 8 options each was collected with a uniformly ran-
dom policy over options. For each curve in figure 1, we
use our dataset to simultaneously learn an ODM and plan
over it. We evaluate the performance of the greedy policy
by taking 100 Monte-Carlo estimates in the simulated en-
vironment. Given the true underlying MDP and a set of
options, we compute the resulting Semi-Markov Decision
Process (SMDP) (see p. 26 of Sutton et al. [1999]) and
solve it using value iteration, to obtain the baseline (op-
timal achievable return) for our evaluation. We extended
the ExtraTrees implementation of Pedregosa et al. [2011]
with the freezing mechanism required for FQI. We used all
available features for splitting internal nodes and fitted an
ensemble of 10 trees with maximum depth of 5. Figure 1c
shows that an optimal policy can be obtained using 1000
trajectories and one planning step.

6.2 Planning with a simulated robot

Using the same methodology, we experimented with the
proposed ODM learning and planning approach in a simu-
lated robot environment with continuous state space, non-
linear dynamics, and actions that correspond to real actua-
tors of the robot. We leverage the simulation capabilities of
the 2D physics engine Box2D 2 to obtain realistic acceler-
ations, collisions and friction effects.

We set the density of a circular differential wheeled robot
to 3.0 and its radius to 0.17 cm. A primitive action in
this domain consists in the application of force vector of
(0.1, 0.1) on both wheels every 1/10 of a simulated sec-
ond. At the beginning of every episode, the robot is ini-
tialized at position (0.5, 0.5) of a 2x2 meters environment.

2http://box2d.org

118

0 2 4 6 8 10

0

2

4

6

8

S

G

(a)

0 50 100 150
0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

R
el

at
iv

e
er

ro
r

1 0 0
1000
10000
True ODM

Hankel rank

(b)

0 1 5 10 15 20 25
Fitted-Q Iteration

0

2

4

6

8

10

12

D
is

co
un

te
d

R
et

ur
n

SMDP Exact
FQI-ODM Approx 10
FQI-ODM Approx 100
FQI-ODM Approx 1000

(c)

0 .0 0 .5 1 .0 1 .5 2 .0
0 .0

0 .5

1 .0

1 .5

2 .0

G

S

(d)

0 1 2 3 4
Fitted-Q Iteration

0

200

400

600

800

1000

D
is

co
un

te
d

R
et

ur
n

Optimal de te rm inis tic

FQI-ODM Approx 1000

FQI-ODM Approx 500

FQI-ODM Approx 100

Random

(e)

0 1 2 3 4
Fitted-Q Iteration

45000

50000

55000

60000

65000

70000

B
el

lm
an

 R
es

id
ua

l

1 0 0
500
1000

(f)
Figure 1: Gridworld environment: (a) grid layout and optimal policy over options (b) relative error vs rank (c) average discounted
cumulative return. Simulated robot environment: (c) trajectory of an optimal policy (d) average discounted cumulative reward (f) mean
square Bellman residual

A 10cm thick wall separates the robot from the goal loca-
tion at (0.25, 0.75). The episode finishes when the robot is
within 25cm of the target.

As in the grid-world problem, we define a set of options
over four radial directions. The termination condition trig-
gers when the front-facing distance sensor detects an ob-
stacle 6cm ahead. Because of the nonlinear dynamics, the
hand-defined options controller does not always stop ex-
actly within this distance. Given enough acceleration, the
robot might sometimes touch the walls. This additional
source of noise due to an imperfect controller is interesting
from an experimental point of view. A stochastic compo-
nent also makes the forward action ineffective 5% of the
time. The rewards are 1000 for reaching the goal region
and -10 by collision. Taking a primitive action incurs no
cost but there is a discount factor γ = 0.999.

We collected 2000 trajectories of at most 10 options with
a uniformly random policy over options. Due to the size
of the environment, we found that trajectories of at most
5 options were insufficient to consistently learn good poli-
cies. We used Kr = 2,Ks = 1 for the basis, considered
all features for node splitting and used 10 trees of max-
imum depth 8. The results presented in Figure 1e were
obtained by resampling 10 times the original dataset with-
out replacement, to characterize the stability of the learn-
ing algorithm. The greedy policy derived from FQI was
then evaluated with 10 Monte-Carlo rollouts. Since the
underlying MDP is unknown, we could not compute the
exact optimal policy, so we upper-bounded the achievable
return through the policy in Figure 1d under 100% success
rate for the forward command. We used the average re-
turn of a uniform random policy as baseline. As expected,

the mean square Bellman residual [Ernst et al., 2005] de-
creases for larger sample sizes and over longer planning
horizon (Fig. 1f). While 100 episodes yield ODM policies
slightly better than random, 1000 episodes are sufficient to
recover a close-to-optimal solution (Fig. 1e).

7 DISCUSSION

The approach we presented learns a predictive model for
option durations, and we illustrates its use in robot navi-
gation tasks. As discussed, timing models are simple, yet
in many problems they are sufficient for good quality plan-
ning. To see why having simpler models might be use-
ful, consider the prevalence of bandit problems in ad place-
ment; the task could be done better with full MDPs, data
efficiency is more important for the application. Similarly,
we believe that being able to exploit simple yet efficient
timing models is interesting and important. The use of
this type of model in planning algorithms should be in-
vestigated further. Models of states in terms of what hap-
pens after executing certain actions are known to be useful,
e.g. Dayan [1993]. But our models are simplified, hence
different both from action-respecting embeddings Bowling
et al. [2005, 2007] and predictive state representations with
options Wolfe and Singh [2006], which aim to learn full ob-
servation models conditioned on extended actions, in order
to characterize the current state. Timing models get around
the problem of both large action spaces (by using a finite set
of options) and the problem of large observation spaces (by
focusing only on continuation and termination). A theoret-
ical analysis of the error of planning with timing models
instead of true transition models is left for future work. We
also aim to study the sample efficiency of this approach.

119

References

B. Balle, A. Quattoni, and X. Carreras. Local loss opti-
mization in operator models: A new insight into spectral
learning. International Conference on Machine Learn-
ing (ICML), 2012.

B. Boots, S. Siddiqi, and G. Gordon. Closing the learn-
ing planning loop with predictive state representations.
International Journal of Robotic Research, 2011.

M. Bowling, A. Ghodsi, and D. Wilkinson. Action respect-
ing embedding. International Conference on Machine
Learning (ICML), 2005.

M. Bowling, D. Wilkinson, A. Ghodsi, and A Milstein.
Subjective localization with action respecting embed-
ding. Robotics Research, 2007.

J. W. Carlyle and A. Paz. Realizations by stochastic finite
automata. Journal of Computer Systems Science, 1971.

P. Dayan. Improving generalisation for temporal difference
learning: The successor representation. Neural Compu-
tation, 1993.

W. Droste, M. Kuich and H. Vogler. Handbook of weighted
automata. Springer, 2009.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-
based batch mode reinforcement learning. J. Mach.
Learn. Res., 6:503–556, December 2005.

M. Fliess. Matrices de Hankel. Journal de Mathématiques
Pures et Appliquées, 1974.

Pierre Geurts, Damien Ernst, and Louis Wehenkel. Ex-
tremely randomized trees. Mach. Learn., 63(1):3–42,
April 2006.

J. J. Gibson. The theory of affordances. In R. Shaw and
J. Bransford, editors, Perceiving, Acting, and Knowing,
1977.

William L. Hamilton, Mahdi M. Fard, and Joelle Pineau.
Modelling sparse dynamical systems with compressed
predictive state representations. In Proceedings of the
30th International Conference on Machine Learning
(ICML-13), volume 28, pages 178–186, 2013.

Masoumeh T. Izadi and Doina Precup. Point-based plan-
ning for predictive state representations. In Advances in
Artificial Intelligence, volume 5032 of Lecture Notes in
Computer Science, pages 126–137. Springer Berlin Hei-
delberg, 2008.

H. Jaeger. Observable operator models for discrete stochas-
tic time series. Neural Computation, 2000.

Michael R James, Satinder Singh, and Michael L Littman.
Planning with predictive state representations. In Ma-
chine Learning and Applications, 2004. Proceedings.
2004 International Conference on, pages 304–311.
IEEE, 2004.

M.L. Littman, R.S. Sutton, and S. Singh. Predictive repre-
sentations of state. Neural Information Processing Sys-
tems (NIPS), 2002.

A. Machado, M. T. Malheiro, and W. Erlhagen. Learning to
time: A perspective. Journal of the Experimental Analy-
sis of Behavior, 2009.

Sylvie C.W. Ong, Yuri Grinberg, and Joelle Pineau. Goal-
directed online learning of predictive models. In Scott
Sanner and Marcus Hutter, editors, Recent Advances in
Reinforcement Learning, volume 7188 of Lecture Notes
in Computer Science, pages 18–29. Springer Berlin Hei-
delberg, 2012.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

M. L. Puterman. Markov Decision Processes - Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
Inc., 1994.

M. Rosencrantz, G. Gordon, and S. Thrun. Learning low
dimensional predictive representations. International
Conference on Machine Learning (ICML), 2004.

S. Singh, M. R. James, and M. R. Rudary. Predictive state
representations: A new theory for modeling dynamical
systems. Uncertainty in Artificial Intelligence (UAI),
2004.

J. Stober, R. Miikkulainen, and B. Kuipers. Learning ge-
ometry from sensorimotor experience. Joint Conference
on Development and Learning and Epigenetic Robotics,
2011.

R. S Sutton, D. Precup, and S. Singh. Between MDPs and
semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial Intelligence, 1999.

E. Wiewiora. Learning predictive representations from a
history. International Conference on Machine Learning
(ICML), 2005.

B. Wolfe and S. Singh. Predictive state representations with
options. International Conference on Machine Learning
(ICML), 2006.

120

Parameterizing the Distance Distribution of Undirected Networks

Christian Bauckhage
Fraunhofer IAIS and University of Bonn, Germany

{fn.ln}@iais.fraunhofer.de

Kristian Kersting and Fabian Hadiji
TU Dortmund University, Germany
{fn.ln}@cs.tu-dortmund.de

Abstract

Network statistics such as node degree distribu-
tions, average path lengths, diameters, or clus-
tering coefficients are widely used to character-
ize networks. One statistic that received consid-
erable attention is the distance distribution — the
number of pairs of nodes for each shortest-path
distance — in undirected networks. It captures
important properties of the network, reflecting
on the dynamics of network spreading processes,
and incorporates parameters such as node cen-
trality and (effective) diameter. So far, however,
no parameterization of the distance distribution is
known that applies to a large class of networks.
Here we develop such a closed-form distribu-
tion by applying maximum entropy arguments to
derive a general, physically plausible model of
path length histograms. Based on the model, we
then establish the generalized Gamma as a three-
parameter distribution for shortest-path distance
in strongly-connected, undirected networks. Ex-
tensive experiments corroborate our theoretical
results, which thus provide new approaches to
network analysis.

1 INTRODUCTION

As networks are combinatorial structures, network analysis
typically relies on statistics such as node degree distribu-
tions, average path lengths, clustering coefficients, or mea-
sures of assortativity [11]. One statistic that received con-
siderable attention is the distance distribution — the num-
ber of pairs of nodes for each shortest-path distance — in
undirected networks. First of all, features such as average
path lengths or network diameters can be determined there-
from. Second of all, path length statistics are closely related
to velocities or durations of network spreading processes.
Analytically tractable models of shortest path distributions
would thus allow for inferring network properties as well

I

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

d = 0

(a) t “ 0

R

I

I

I

I

I

S

S

S

S

S

S

S

S

S

S

S

S

d = 0

d = 1

(b) t “ 1

R

R

R

R

R

R

I

I

I

I

I

I

I

I

S

S

S

S

d = 0

d = 1

d = 2

(c) t “ 2

R

R

R

R

R

R

R

R

R

R

R

R

R

R

I

I

I

I

d = 0

d = 1

d = 2

d = 3

(d) t “ 3

Figure 1: A highly infectious SIR cascade on a network
realizes a node discovery process. (a) at onset time t “ 0,
most nodes are susceptible and only a single node is in-
fected. (b)–(d) infected nodes immediately recover but al-
ways infect their susceptible neighbors. This way, the num-
ber of newly infected nodes nt at time t corresponds to the
number nd of nodes that are at distance d “ t from the
source node of the epidemic.

as for reasoning about diffusion dynamics. Yet, analytic
models and in particular parameterizing the distance dis-
tribution prove difficult to achieve and related reports are
curiously scarce [7, 9, 14, 34, 35]. Here, we contribute to
these efforts and derive a novel, principled general model
of shortest path length distributions in strongly connected
networks. Considering a duality between network spread-
ing processes and shortest path lengths, we then show that
maximum entropy arguments as to diffusion dynamics lead
to the generalized Gamma distribution as a three-parameter
distribution in closed form.

The work presented here was motivated by questions as
to the dynamics of network spreading processes. Models
of such processes play an important role in various dis-
ciplines. They model the dynamics of epidemic diseases
[20, 27, 22], explain the diffusion of innovations or vi-
ral messages [1, 24], and, in the wake of social media, a

121

1 2 3 4

distance d

0.0

2.0

4.0

6.0

8.0

#
no

de
s
n
d

GenGamma
empirical data

Figure 2: Shortest path histogram resulting from the net-
work spreading process in Fig. 1 and a corresponding max-
imum likelihood fit of the generalized Gamma distribution.

quickly growing body of research develops graph diffu-
sion models to study patterns of information dissemination
in Web-based social networks [2, 10, 16, 25, 36]. Each
of these examples concerns an instance of a rather gen-
eral phenomenon: An agent (a virus, a rumor, an urge to
buy a product, etc.) spreads in form of a contact process
and thus cascades through a network of interlinked enti-
ties (people, computers, blogs, etc.). At the onset of the
agent’s activity, many networked entities are susceptible to
its effects but only few are actually infected (see Fig. 1(a)).
As time progresses, susceptible entities related to infected
ones may become infected whereas infected entities may
remain infected, recover, become susceptible again, or even
be removed from the population (see Fig. 1(b)–(d)). Crucial
properties of such a process are its infection rate, its recov-
ery rate, or the number of infected entities per unit of time.
If an (information) epidemic is observed to rage through a
community, these features help assessing its progression or
final outbreak size and thus inform contagion or dissemina-
tion strategies. For instance, while public health authorities
need to devise immunization protocols to curtail epidemic
diseases, viral marketers typically aim at maximizing the
effects of their campaigns. In any case, knowledge as to
the structure of a community through which an epidemic
spreads would be beneficial. Alas, in practice, community
structures are hardly ever known but available information
only consists of outbreak data as shown in Fig. 2.

Relating such outbreak data to network structures is the key
idea underyling our contribution and is orthogonal to re-
lated approaches such as [2, 21, 26, 15, 36], which assume
outbreak data and information about network members to
be available and apply machine learning to identify hubs,
link structures, or infection routes. Instead, we follow the
paradigm in [4, 7, 16, 28, 29, 35] which asks for physi-
cal explanations of the noticeably skewed appearance of
outbreak histograms and attempts to relate corresponding
physical models to network properties.

More precisely, we make two technical contributions. First,
we relate outbreak data to network structures via a novel
maximum entropy model. Then, based on the model, we es-
tablish the generalized Gamma distribution as a physically-

plausible, continuous parameterization of the distance dis-
tribution of networks of arbitrary topology. Considering the
fact that temporal distributions of infection counts in highly
infectious spreading processes and distributions of shortest
path lengths are dual phenomena allows us to invoke max-
imum entropy arguments from which we derive physical
characterizations of path lengths- and outbreak statistics. In
other words, our model results from first principles rather
than from data mining. It also generalizes previous theoret-
ical results [7, 35] and provides an explanation for a recent
empirical observation as to path length distributions in so-
cial networks [8].

We proceed as follows. We start off by briefly reviewing ex-
isting analytical models of shortest path- and outbreak dis-
tributions in Section 2. Afterwards, we show that the gen-
eralized Gamma distribution naturally generalizes these,
and discuss its properties and characteristics in Section 3.
In particular, we demonstrate how the generalized Gamma
emerges as a maximum entropy model of path length- and
outbreak data. Before concluding, we support our theoreti-
cal results by exhaustive experiments on both synthetic and
real-world graphs in Section 4.

2 KNOWN RESULTS

Analytically tractable models of shortest path length dis-
tributions and outbreak data are of considerable interest in
the study of epidemic processes on networks. However, as
networks are combinatorial structures, corresponding re-
sults are necessarily statistical [4, 7, 16, 28, 29, 35]. In
a landmark paper [35], Vazquez studied the dynamics of
epidemic processes in power law networks. Arguing based
on branching process models, he showed that for networks
whose node degree distribution has a power law exponent
2 ă γ ă 3, the number of infected nodes at time t follows
a Gamma distribution.

fGApt; θ, ηq “ 1

θη
1

Γpηq t
η´1e´t{θ (1)

where Γp¨q is the gamma function and θ ą 0 and η ą 0
are scale and shape parameters, respectively. Curiously, for
power law exponents γ ě 3, this result does not apply.
Concerned with Erdős-Rényi graphs, Bauckhage et al. [7]
derived a different result. Based on models of the expected
number of paths of length t between arbitrary nodes [9, 14],
they resorted to extreme value theory [13] to show that in-
fection counts can be characterized by the Weibull distribu-
tion.

fWBpt;λ, κq “ κ

λκ
tκ´1e´pt{λq

κ

(2)

where λ ą 0 and κ ą 0 are scale and shape parameters.
Neither model was obtained from mere empirical observa-
tions. Both follow from basic principles, provide physically
and hence socially plausible and comprehensible charac-
terizations of shortest path length distributions and diffu-
sion dynamics, and were verified empirically.

122

0 2 4 6 8

path length
0.0

0.2

0.4

0.6

0.8

1.0
fr

eq
ue

nc
y

Weibull
Gamma
LogNormal
GenGamma
data

100 101 102 103

node degree

10−4

10−3

10−2

10−1

100

fr
eq

ue
nc

y

data
fit

(a) p “ 0.005

0 2 4 6

path length
0.0

0.2

0.4

0.6

0.8

1.0

fr
eq

ue
nc

y

Weibull
Gamma
LogNormal
GenGamma
data

100 101 102 103

node degree

10−4

10−3

10−2

10−1

100

fr
eq

ue
nc

y

data
fit

(b) p “ 0.0075

Figure 3: Qualitative examples of shortest path distribution
in Erdős-Rényi graphs. Confirming [7], Weibull fits well.
Yet, generalized Gamma provides better fits.

0 2 4 6 8 10 12

path length
0.0

0.2

0.4

0.6

0.8

1.0

fr
eq

ue
nc

y

Weibull
Gamma
LogNormal
GenGamma
data

100 101 102 103

node degree

10−4

10−3

10−2

10−1

100

fr
eq

ue
nc

y

data
fit

(a) µ “ 1, ξ “ 0.75

0 2 4 6 8

path length
0.0

0.2

0.4

0.6

0.8

1.0

fr
eq

ue
nc

y

Weibull
Gamma
LogNormal
GenGamma
data

100 101 102 103

node degree

10−4

10−3

10−2

10−1

100
fr

eq
ue

nc
y

data
fit

(b) µ “ 2, ξ “ 0.75

Figure 4: Qualitative examples of shortest path distribu-
tion in LogNormal graphs. For different node degree dis-
tributions, the models considered here provide more or less
accurate fits. The generalized Gamma, however, always fits
best (cf. Tab. 1).

Finally, Bild et al. [8] recently investigated information
cascades and retweet networks on twitter and found that
they could accurately fit their data using the LogNormal
distribution

fLN pt;µ, ξq “ 1?
2π ξ t

e
´ plog t´µq2

2ξ2 (3)

where µ and ξ are location and scale parameters. Regarding
our approach in this paper, we emphasize that (3) was not
found theoretically but emerged empirically. At the same
time, we note that the Gamma, Weibull, and LogNormal
distribution may easily confused for one another [31]. Our
discussion so far therefore begs the question if the above
results are contradictory or if they can be unified within a
more general framework? In the following, we will show
that the latter is indeed the case.

3 A THREE-PARAMETER DISTANCE
DISTRIBUTION

We will now establish the generalized Gamma distribution
as a comprehensive model of the shortest path distribu-
tions and outbreak data in connected networks of arbitrary
topology. Different versions of the generalized Gamma dis-

tribution can be traced back to 1920s [12]. Here, we are
concerned with the three-parameter version that was intro-
duced by Stacy [33]. Its probability density function is de-
fined for t P r0,8q and given by

fGGpt | σ, α, βq “ β

σα
1

Γpα{βq t
α´1e´pt{σq

β

(4)

where σ ą 0 determines scale and α ą 0 and β ą 0 are
shape parameters. The probability density function in (4)
is unimodal but may be skewed to the left or to the right.
It also contains several other distributions as special cases
[5, 12]. Most notably, we point out that setting β “ 1 yields
the Gamma distribution in (1), equating α “ β yields the
Weibull distribution in (2), letting α{β Ñ 8, the general-
ized Gamma distribution approaches the LogNormal distri-
bution in (3).

These properties immediately suggest that the above results
might be specific instances of a more general model. We
will now prove that this is indeed the case:
Theorem 1. The generalized Gamma distribution provides
a physically plausible model of distance distributions and
outbreak data in strongly-connected, undirected networks.

Before proving this in the following subsections, we would
like to stress that, in contrast to Vazquez [35] and Bauck-
hage et al. [7], our maximum entropy model does not make
any assumption on the topology of the network — next to
being strongly connected — through which a viral agent is
spreading. Rather, it considers general properties of highly
infectious processes as discussed in the introduction and
resorts to the maximum entropy principle together with
likelihood maximization techniques. Any aspects related to
topological properties (e.g. degree distribution or cluster-
ing patterns) of individual networks are absorbed into the
parameters of (4), which, as we shall see in the experimen-
tal section, is flexible enough to represent a wide range of
different path length and spreading statistics.

3.1 A MAXIMUM ENTROPY APPROACH

Let us now demonstrate that the generalized Gamma dis-
tribution provides a principled model of shortest path- and
outbreak statistics in networks. We argue based on Jaynes’
maximum entropy principle [17]. It states that, subject
to observations and contextual knowledge, the probability
distribution that best represents the available information
is the one of highest entropy. In particular, we resort to an
approach by Wallis, cf. [18, chapter 11], which does not
assume entropy as an a priori measure of uncertainty but
uncovers it in the course of the argument.

To derive our analytical model of path length histograms of
arbitrary networks, we consider the network spreading pro-
cess in Fig. 1. Borrowing terminology from epidemiology,
we note that, at onset time t “ 0, most nodes in the net-
work are susceptible and one node is infected. At time t`1,

123

(a) constant qk (b) decreasing qk (c) increasing qk

Figure 5: The probability of fining a path of length k may
be constant or decrease or increase with k.

nodes that were infected at t have recovered yet did infect
their susceptible neighbors. Highly infectious SIR cascades
like this now realize a node discovery process: the num-
ber nt of newly infected nodes at time t corresponds to the
number of nodes that are at topological distance d “ t from
the source.

Given these considerations, we observe that the discrete
shortest path distribution of the entire network is nothing
but the sum of all node count histograms hsrts taken over
all possible source nodes. Let K denote the length of the
longest shortest path starting at a source vs and use nk to
indicate the number of nodes that are k steps away from
vs. Then, n “ řK

k“0 nk where n denotes the total num-
ber of nodes. The probability of observing a node at dis-
tance k can thus be expressed as pk “ nk{n and we have
1 “ řK

k“0 pk . Moreover, we let qk denote the proba-
bility that there exists a shortest path of length k so that
1 “ řK

k“0 qk and we emphasize that pk and qk will gen-
erally differ (see the didactic examples in Fig. 5). With
these definitions at hand, the joint probability of observing
counts nk of infected nodes corresponds to the multinomial

P pn1, . . . , nKq “ n!
źK

k“1

qnkk
nk!

whose log-likelihood is given by

L “ log n!`
ÿK

k“0
nk log qk ´ log nk! (5)

Assuming that nk " 1, we may apply Stirling’s formula
log nk! « nk log nk ´ nk to simplify (5)

L « n log n´ n`
ÿK

k“0
nk

`
log qk ´ log nk ` 1

˘

“ n log n` n
ÿK

k“0
pk
`
log qk ´ plog pk ` log nq˘

“ ´n
ÿK

k“0
pk log

pk
qk
. (6)

As the expression in (6) is a Kullback-Leibler divergence,
our considerations so far led indeed to an entropy that needs
to be maximized in order to determine the most likely val-
ues n˚k of the nk.

However, up until now, the quantities qk are not defined
precisely enough to allow for a solution. Also, (6) accounts

only indirectly for temporal aspects of network spreading
processes as any dependency on time is hidden in the index
of summation k. We address both these issues by choosing
the ansatz

qk “ A tα´1
k (7)

whereA is a normalization constant and α ą 0. This choice
and its significance will be justified in detail below. For
now, we continue with our main argument.

Another underspecified quantity so far is the length K of
the supposed longest shortest path. However, dealing with
networks of finite size, we can bypass the need of having to
specifyK by means of introducing the following constraint

ÿ8
k“0

nk “ n (8)

into the problem of maximizing (6). Finally, to prevent de-
generate solutions (e.g. instantaneous or infinite spread),
we impose a constraint on the times tk and require their
moments ÿ8

k“0

nk
n
tβk “ c (9)

to be finite for some β ą 0. Using differential forms,
we now express the log-likelihood in (6) and the two con-
straints in (8) and (9) as

dL “
ÿ8

k“0

BL
Bnk dnk “

ÿ8
k“0

`
logAtα´1

k ´ log nk
˘
dnk ,

dn “ ř8
k“0 dnk, and dc “ ř8

k“0 t
β
kdnk, and consider the

Lagrangian with multipliers ρ and γ

L “
ÿ8

k“0

„
log

A tα´1
k

nk
´ ρ´ γtβk

dnk “ 0

in order to determine most likely infection counts n˚k for the
spreading process described above. Since at the solution the
bracketed terms r¨s must vanish identically for every dnk,
we immediately obtain

n˚k “ Ae´ρ tα´1
k e´γt

β
k .

Plugging this result back into pk “ nk{n yields a dis-
crete probability mass function in the now exp-transformed
space

n˚k
n
“ tα´1

k e´γt
β
k

ř8
j“0 t

α´1
j e´γt

β
j

(10)

which explicitly relates infection counts nk to time steps tk.
However, (10) still depends on the Lagrangian multiplier γ
(now in exp-space), which is not immediately related to
any available data. In order to determine γ, we assume the
duration ∆t “ tk`1 ´ tk of time steps to be small. This
permits the following approximation

ÿ8
k“0

tα´1
k e´γt

β
k∆t «

ż 8

0

tα´1 e´γt
β

dt “ γ´
α
β

Γpα{βq
β

124

so that
n˚k
n
“ ∆t

γ
α
β β

Γpα{βq t
α´1
k e´γt

β
k .

Plugging this into (9), tedious but straightforward algebra
yields γ “ α

βc which is to say that

n˚k
n
“ ∆t

„
β

Γpα{βq
´ α
βc

¯α
β

tα´1
k e´

α
βc t

β
k . (11)

In order to establish the final result, we now let ∆t Ñ 0
which leads to

n˚k
n
«

ż

∆t

fpτq dτ « ∆t fptq (12)

where tk ´ ∆t
2 ď t ď tk ` ∆t

2 . Direct comparison of (11)

and (12) together with the substitution σ “ `
βc
α

˘1{β
finally

establishes that

fptq “ β

σα
1

Γpα{βq t
α´1e´pt{σq

β

which is indeed the generalized Gamma distribution that
was introduced in (4).

3.2 EXTENSIONS TO DIFFERENT TIME SCALES

So far, our derivation above was based on properties of net-
worked SIR cascades for which the infection rate i as well
as the recovery rate r were both assumed to be 100%. Yet,
the empirical result in Section 4 indicate that the general-
ized Gamma distribution also accounts for the dynamics
of less infectious spreading processes where i and r are
smaller. Such epidemics usually last longer as it takes more
time to reach all susceptible nodes and infected nodes may
remain so over extended periods. In other words, such pro-
cesses can be thought of as taking place on a different time
scale. Here, we briefly show that the generalized Gamma
distribution can also explain spreading processes on lin-
early or polynomially transformed time scales.

Recall that if a random variable X is distributed accord-
ing to fpxq, the monotonously transformed random vari-
able Y “ hpXq has a probability function that is given by

gpyq “ f
`
h´1pyq˘ ¨

∣∣∣∣
d

dy
h´1pyq

∣∣∣∣ .

Now, if t is generalized Gamma distributed and τ “ ct is a
linearly transformed version of t, then

t “ τ

c
and

dt

dτ
“ 1

c

so that τ is distributed according to

gpτq “ β

σα
1

Γpα{βq
´τ
c

¯α´1

e´pτ{cσq
β ¨ 1

c

“ β

σ1α
1

Γpα{βqτ
α´1e´pτ{σ

1qβ

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Figure 6: Causal graph of the process in Fig. 1. The ad-
jacency matrix of a directed acyclic graph with a single
source node can be brought into strictly upper triangular
form and is thus nilpotent.

which is a generalized Gamma distribution with scale pa-
rameter σ1 “ cσ.

By the same token, if t is generalized Gamma distributed
and τ “ tc is a polynomially transformed version of t, then

t “ τ
1
c and

dt

dτ
“ 1

c
τ

1
c´1

so that τ is distributed according to

gpτq “ β

σα
1

Γpα{βq
´
τ

1
c

¯α´1

e´pτ
1{c{σqβ ¨ 1

c
τ

1
c´1

“ β1c
σ1α1

1

Γpα1{β1qτ
α1´1e´pτ

β1 {σ1β1 q

which is a generalized Gamma distribution with parameters
σ1 “ σc, α1 “ α

c , and β1 “ β
c .

3.3 JUSTIFYING THE POLYNOMIAL ANSATZ (7)

While the constraints in (8) and (9) are arguably intuitive,
the ansatz in (7) merits further elaboration. Note that causal
graphs as in Fig. 6 indicate possible transmission pathways
of an epidemic. In general they may be arbitrarily complex
but, for the type of spreading process studied here, they are
necessarily directed and acyclic. Now, in a directed, acyclic
graph, the number Nk of shortest paths of lengths k start-
ing from a source node vs may indeed grow exponentially
for a while (for instance in a tree) but the finite size of the
graph causes Nk to drop to zero once k exceeds the length
K of the longest shortest path; there are no shortest paths
longer than K. Because of this finite size effect, a polyno-
mial upper bound always exists for Nk, k ď K.

More formally, consider a network of n nodes. If vs is the
source node of an epidemic on this network and A is the
adjacency matrix1 of the corresponding causal graph then`
Ak

˘
sj

denotes number of ways the epidemic agent can

reach vj from vs in k steps and qk9ř
jpAkqsj . For causal

1Aij “ 1 if nodes vi infects vj , and Aij “ 0 otherwise.

125

graphs, A is strictly upper triangular and therefore nilpo-
tent. That is, DK ď n : Ak “ 0 @ k ą K. Hence,
ρpAq ă 1 which is to say Du ą 0 : ‖Ak‖F ă u @ k
and therefore 0 ď pAkqsj ď ‖Ak‖F ă u . Accordingly,ř
jpAkqsj P Opkα´1q for some α ě 1. Setting tk “ εk

where ε ď 1 yields qk P Optα´1
k q which justifies (7).

Put in simple terms, it is sufficient to model the probability
qk of observing an epidemic path of length k as a polyno-
mial in t rather than, say, an exponential function.

The fact that the parameter α reflects aspects of network
topology is easily seen from the examples in Fig. 5. As-
suming the central node to be the source node of an epi-
demic the figure shows that qk may be constant (α “ 1),
decreasing (α ă 1), or increasing (α ą 1) with k.

4 EMPIRICAL SUPPORT

We now support our theoretical results with empirical ev-
idence. First, we present results on distance distributions
of synthesized networks. Then, we report on experiments
with a large number of spreading processes on synthetic
graphs and, finally, we discuss results obtained for large,
real-world networks.

Throughout, we fit continuous distributions to discrete his-
tograms. That is, we apply functions fpt;θq to repre-
sent counts n0, . . . , nK which are grouped into K dis-
tinct intervals pt0, t1s, pt1, t2s, . . ., ptK´1, t8q. For this
setting, it is advantageous to use multinomial likelihood
estimation based on reweighted least squares in order to
determine optimal model parameters θ˚ [19]. For a re-
cent detailed exposition of this robust technique, we re-
fer to [6]. For the fitted models, we report quantitative
goodness-of-fit results in terms of the Hellinger distance

H
`
hrts, f rts˘ “ 1

2

c
ř
t

´a
hrts ´a

f rts
¯2

between dis-

crete empirical data hrts and a discretized model f rts
where

f rts “

$
’&
’%

F pt` 1
2 q if t “ 0

F pt` 1
2 q ´ F pt´ 1

2 q if 0 ă t ă K

1´ F pt` 1
2 q if t “ K

and F p¨q is the corresponding cumulative density function.
We note that the Hellinger distance is bound as 0 ď H ď 1.

Synthetic Networks. We created different Erdős-Rényi
(ER), Barabási-Albert (BA), power law (PL), and Log-
Normal (LN) graphs of n P t5, 000, 10, 000u nodes. ER
graphs are a staple of graph theory and merit investiga-
tion. To create ER graphs, we used edge probability pa-
rameters π P t0.005, 0.0075, 0.01u. BA and PL graphs
represent networks that result from preferential attachment
processes and are frequently observed in biological, social,
and technical contexts. To create BA graphs, we consid-
ered attachment parameters m P t1, 2, 3u and exponents

Table 1: Goodness of Fit (avg. Hellinger distances) for
shortest path histograms of synthetic networks

network parameters fWB fGA fLN fGG

ER π “ 0.0050 0.058 0.170 0.227 0.051
π “ 0.0075 0.046 0.164 0.205 0.041

BA m “ 1 0.039 0.066 0.135 0.011
m “ 2 0.017 0.125 0.170 0.015
m “ 3 0.015 0.128 0.171 0.015

PL γ “ 2.1 0.154 0.042 0.040 0.030
γ “ 2.3 0.132 0.032 0.046 0.024
γ “ 2.5 0.123 0.037 0.064 0.028
γ “ 2.7 0.101 0.044 0.089 0.028
γ “ 2.9 0.081 0.050 0.108 0.026
γ “ 3.1 0.070 0.093 0.137 0.051

LN µ “ 1, ξ “ 0.75 0.075 0.093 0.149 0.037
µ “ 1, ξ “ 1.25 0.082 0.067 0.113 0.029
µ “ 2, ξ “ 0.75 0.073 0.092 0.145 0.036
µ “ 2, ξ “ 1.25 0.079 0.062 0.102 0.026

of the vertex degree distributions of the PL graphs were
drawn from γ P t2.1, 2.2, . . . , 3.2u. LN graphs show log-
normally distributed vertex degrees and reportedly charac-
terize link structures within sub-communities on the web
[30]. To synthesize LN graphs, parameters were chosen
from µ P t1, 1.5, . . . , 3u and ξ P t0.25, 0.5, 0.75, 1u. For
each parametrization, we created 100 instances.

Table 1 summarizes average goodness of fit results for
graphs of n “ 10, 000 nodes and different topologies (for
lack of space, we omit results for some of the parametriza-
tions considered in our experiments). We observe that (i) in
agreement with Bauckhage et al. [7], the Weibull distribu-
tion provides a well fitting model for the distance distribu-
tionin ER graphs; it outperforms the Gamma and the Log-
Normal distribution; (ii) in agreement with Vazquez [35],
the Gamma distribution provides a well fitting model for
PL graphs where 2 ă γ ă 3; (iii) for PL graphs where
γ À 2.2, the LogNormal fits well, too; (iv) for PL graphs
where γ ě 3, the Weibull fits better than the Gamma or
the LogNormal; in this context, we note that BA graphs are
power law graphs for which γ “ 3 [3]; (v) in any case, the
generalized Gamma distribution provides the best fits in all
cases while still being physically plausible.

Indeed, the latter is not surprising as the densities in (1)-(3)
are functions of two parameters whereas the generalized
gamma in (4) depends on three parameters and therefore of-
fers greater flexibility in statistical model fitting. However,
as proven above, the generalized gamma also follows from
first prcinple and provides accurate fits across a wide va-
riety of underlying network topologies, while the Gamma
and the Weibull distribution apply to particular types of net-
works only. In turn and probably most important, the tradi-
tional reliance of investigating several distributions can be
eliminated. Moreover, as we will demonstrate below, even
without reguarlization, which is an interesting avenue for

126

future work, the parameters of the generalized Gamma in-
deed allow one to distinguish different graph classes.

Spreading Processes. Given the synthetic networks cre-
ated above, we simulated SIR spreading processes where
the infection rate varied in i P t0.5, 0.6, . . . , 0.9u and the
recovery rate was chosen from r P t0.5, 0.6, . . . , 0.9u. For
each network and each choice of i and r, we created 10 epi-
demics starting at randomly selected source nodes vs and
fitted the generalized Gamma to the resulting outbreak data.

Table 2 shows exemplary results obtained for PL graphs of
10, 000 nodes; rows correspond to different power law ex-
ponents γ and columns indicate different choices of pairs
pi, rq. Each panel plots the outbreak data of all the cor-
responding epidemics (grey dots), the corresponding em-
pirical average taken over the individual outbreak distribu-
tions (black dots), as well as a generalized Gamma fit to
these averages (blue curves). Visual inspection of these re-
sults suggests that the generalized Gamma distribution ac-
counts very well for average outbreak dynamics in power
law graphs. Though not shown in the table, this behavior
was also observed for individual epidemics as well as for
epidemics on other networks, hence, supporting our theo-
retical justification provided in Sec. 3.2.

Real-World Networks. The KONECT network collection
[23] provides a comprehensive set of large scale, real-world
network data freely available for research. Networks con-
tained in this collection comprise (online) social networks
where edges indicate social contacts or friendship relations,
natural networks such as power grids or connections be-
tween airports, and bipartite networks such as typically
found in the context of recommender systems. The sizes of
these networks vary between Op10, 000q to Op1, 000, 000q
nodes and they show different node degree distributions
and clustering coefficients. For further details, we refer to
http://konect.uni-koblenz.de/.

Tables 3 through 5 summarize goodness-of-fit results ob-
tained from fitting the models in (1), (2), (3), and (4) to
hop count distributions of social, natural, and bipartite net-
works respectively. Again in agreement with the theoreti-
cal prediction in [35], we observe that the Gamma distri-
bution provides accurate fits to path length distributions in
social networks which are often reported to be power law
networks with power law exponents 2 ă γ ă 3. For the
case of natural and bipartite networks, we find the LogNor-
mal distribution to provide better fits than the Gamma or
the Weibull distribution. We emphasize that this is an em-
pirical finding which, to our knowledge, has not yet been
justified theoretically. In this sense, the work presented in
this paper can be seen as the first such justification because
the LogNormal is obtained a limiting case of the general-
ized Gamma distribution which, as shown in Sec. 3.1, pro-
vides a physically plausible model of distance distributions
in networks. In fact, just as in the previous subsections, the

Table 3: Goodness of Fit (Hellinger distances) for shortest
path histograms of social networks

network fWB fGA fLN fGG

advogato 0.110 0.014 0.056 0.012
arenas email 0.044 0.036 0.074 0.008
arenas pgp 0.100 0.022 0.057 0.013
ca AstroPh 0.157 0.021 0.047 0.021
ca cit HepPh 0.133 0.023 0.065 0.015
ca cit HepTh 0.089 0.016 0.026 0.010
catster 0.101 0.023 0.032 0.016
cfinder google 0.076 0.021 0.023 0.032
cit HepPh 0.178 0.037 0.065 0.032
cit HepTh 0.135 0.018 0.051 0.016
dblp cite 0.078 0.042 0.077 0.012
dogster 0.215 0.036 0.048 0.026
elec 0.046 0.057 0.096 0.020
email EuAll 0.363 0.331 0.116 0.232
enron 0.122 0.046 0.075 0.023
facebook wosn links 0.186 0.022 0.037 0.018
facebook wosn wall 0.172 0.025 0.048 0.021
filmtipset friend 0.140 0.024 0.052 0.017
gottron net all 0.075 0.038 0.070 0.029
gottron net core 0.049 0.024 0.060 0.006
hep th citations 0.122 0.011 0.036 0.009
loc brightkite edges 0.193 0.027 0.035 0.059
munmun digg reply 0.170 0.028 0.054 0.023
munmun twitter social 0.132 0.089 0.079 0.071
collaboration 0.137 0.097 0.074 0.045
ucsocial 0.084 0.012 0.056 0.008
petster carnivore 0.120 0.116 0.119 0.117
petster friendships cat 0.109 0.023 0.032 0.027
petster friendships dog 0.206 0.036 0.048 0.026
petster friendships hamster 0.167 0.083 0.049 0.060
petster hamster 0.081 0.011 0.033 0.007
sap 0.142 0.063 0.090 0.052
slashdot threads 0.267 0.082 0.055 0.102
slashdot zoo 0.192 0.026 0.052 0.032
wikiconflict 0.134 0.014 0.055 0.014
wikisigned k2 0.268 0.166 0.070 0.136
wikisigned nontext 0.291 0.086 0.058 0.066

avg. 0.146 0.050 0.059 0.039

Table 4: Goodness of Fit (Hellinger distances) for shortest
path histograms of natural networks

network fWB fGA fLN fGG

arenas meta 0.090 0.036 0.025 0.029
as caida20071105 0.277 0.160 0.050 0.113
as20000102 0.065 0.016 0.054 0.005
dbpedia similar 0.685 0.686 0.082 0.018
eat 0.012 0.075 0.115 0.003
lasagne frenchbook 0.017 0.001 0.058 0.003
openflights 0.139 0.025 0.040 0.022
powergrid 0.745 0.745 0.150 0.016
usairport 0.053 0.010 0.040 0.007
sociopatterns infectious 0.030 0.026 0.053 0.012
topology 0.130 0.021 0.055 0.019
wordnet words 0.192 0.031 0.054 0.022
wordnet 0.133 0.188 0.214 0.131

avg. 0.198 0.155 0.076 0.031

127

Table 2: Outbreak data obtained from spreading processes in power law networks of 10, 000 nodes

.

i “ 0.5, r “ 0.5 i “ 0.5, r “ 0.7 i “ 0.5, r “ 0.9 i “ 0.9, r “ 0.5 i “ 0.9, r “ 0.7 i “ 0.9, r “ 0.9

γ “ 2.2

γ “ 2.6

γ “ 3.0

Table 5: Goodness of Fit (Hellinger distances) for shortest
path histograms of bipartite networks

network fWB fGA fLN fGG

adjnoun 0.028 0.037 0.065 0.012
bx 0.264 0.096 0.090 0.130
dbpedia occupation 0.165 0.103 0.113 0.101
dbpedia producer 0.734 0.734 0.152 0.156
dbpedia starring 0.721 0.721 0.034 0.032
dbpedia writer 0.754 0.754 0.096 0.072
epinions 0.209 0.036 0.041 0.026
escorts 0.097 0.048 0.076 0.031
filmtipset comment 0.060 0.049 0.089 0.007
github 0.186 0.078 0.082 0.078
gottron reuters 0.128 0.112 0.137 0.106
movielens 10m ti 0.187 0.082 0.101 0.074
movielens 10m ui 0.036 0.083 0.116 0.031
movielens 10m ut 0.199 0.146 0.159 0.144
movielens 1m 0.043 0.005 0.040 0.007
ucforum 0.047 0.050 0.080 0.030
pics ut 0.268 0.164 0.166 0.183
prosper support 0.230 0.259 0.232 0.208
youtube groupmemberships 0.192 0.115 0.119 0.115

avg. 0.239 0.193 0.105 0.081

generalized Gamma distribution is again found to provide
the best overall fits to the data considered here. Qualitative
examples of this behavior are shown in Fig. 7.

We also evaluated how the different distributions perform
in predicting the average shortest path length and compared
empirical means to the means of fitted models. For the
Weibull, the mean is given by λΓp1`1{κq, the mean of the
Gamma is ηθ, that of the LogNormal is exppµ´ξ2{2q, and
for the generalized Gamma we have Ettu “ σ Γppα`1q{βq

Γpα{βq .

Using these formulas, we investigated predicted average
shortest path lengths versus empirically determined ones
for the networks in the KONECT collection. The results are
summarized in Tab. 6, which lists mean squared square er-
rors for the data in the figure. They suggests that w.r.t. pre-
dicting average path lengths, the Weibull performs worse

Table 6: Mean squared errors for predicted average short-
est path lengths versus empirically determined ones for the
networks in the KONECT collection.

fWB fGA fLN fGG

bipartite 1.665 1.382 0.731 0.414
natural 0.216 0.479 0.862 0.093
social 0.474 0.219 0.648 0.220

overall 1.745 1.479 1.303 0.478

than the Gamma which performs worse than the LogNor-
mal which is outperformed by the generalized Gamma.

Distinguishing between Different Graph Classes. An in-
teresting consequence of fitting the distance distribution us-
ing the three-parameter generalized Gamma is that it pro-
vides a non-linear mapping of path length data into three di-
mensions. This allows for visual analytics of the behavior
of different graph topologies w.r.t. distance distributions.
Fig. 8 shows exemplary distance distributions in terms 3D
coordinates pσ, α, βq that result from fitting generalized
Gamma distributions. Looking at the Figure, it appears
that distiance distributions obtained from different network
topologies cluster together or are confined to certain re-
gions in this parameter space. These preliminary observa-
tions are arguably the most interesting finding in this paper
as they suggest that the idea of characterizing networks in
terms of continuous models of shortest path distributions
can inform approaches to the problem of network inference
from outbreak data. Investigating these results more deeply
provides an interesting avenue for future work.

5 CONCLUSIONS

We considered the problem of parameterizing the dis-
tance distribution and epidemic outbreak data of strongly-
connected, undirected networks. Invoking the maxi-

128

2 4 6 8 10 12 14 16 18

path length
0.0

0.2

0.4

0.6

0.8

1.0
fr

eq
ue

nc
y

Weibull
Gamma
LogNormal
GenGamma
empirical data

(a) facebook wall post network

2 4 6 8 10 12 14

path length
0.0

0.2

0.4

0.6

0.8

1.0

fr
eq

ue
nc

y

Weibull
Gamma
LogNormal
GenGamma
empirical data

(b) openflights

2 4 6 8 10

path length
0.0

0.2

0.4

0.6

0.8

1.0

fr
eq

ue
nc

y

Weibull
Gamma
LogNormal
GenGamma
empirical data

(c) movielens usr mov

Figure 7: Qualitative examples of shortest path distributions on real-world networks. Path length distributions of social
and natural networks are well accounted for by the Gamma distribution (a+b) whereas the Weibull provides better fits for
bipartite networks that occur in recommender settings (c). In each case, however, the generalized Gamma fits best.

mum entropy principle, we showed that the generalized
Gamma distribution provides a physically plausible, three-
parameter distribution for these data, independent of the
topology of the underlying networks. This result general-
izes earlier models [7, 35] and explains recent empirical
observations made w.r.t. twitter retweet networks [8]. Em-
pirical tests confirmed our theoretical prediction and re-
vealed that the generalized Gamma distribution accounts
well for distance distributions of synthesized Erdős-Rényi,
Barabási-Albert, power law, and LogNormal graphs as well
as for real-world network in the KONECT collection [23].
Finally, we illustrated that the parameteres of the generl-
ized Gamma provide striking structural regularities in the
resulting low-dimensional network representations.

Our results suggest several attractive avenues for future re-
search. First of all, one should relate the shape and scale pa-
rameters of the generalized Gamma distribution to physical
properties or well established features of networks. Second,
one should use our theoretical results to devised informed
sampling schemes for the problem of computing shortest
paths (and their histograms) for large real-world networks.
Finally, the results in Fig. 8 suggest a nearest-neighbour
approach to network inference from outbreak data. Newly
observed epidemic processes are matched to a large data
base of 3D representations of outbreak data, for which the
network is known; at least this provides helpful prior infor-
mation for network inference approaches such as [32, 22].

Acknowledgments. The authors would like to thank the
anonymous reviewers for their feedback. The work was
partly supported by the DFG Collaborative Research Cen-
ter SFB 876 project A6.

References
[1] D. Acemoglu, A. Ozdaglar, and M.E. Yildiz. Diffu-

sion of Innovations in Social Networks. In Proc. Int.
Conf. on Decision and Control. IEEE, 2011.

[2] E. Adar and A. Adamic. Tracking Information Epi-
demics in Blogspace. In Proc. Int. Conf. on Web In-
telligence. IEEE/WIC/ACM, 2005.

[3] A.L. Barabasi and R. Albert. Emergence of Scaling

β

0

1

2

3

4

5

6

7

8
σ

0
5

10
15

20
25

α

0

10

20

30

40

50

60

70

80

ER graphs
PL graphs
BA graphs
LN graphs

(a) synthetic networks

β

0

1

2

3

4

5

6

7

8
σ

0
5

10
15

20
25

α

0

10

20

30

40

50

60

70

80

social networks
natural networks
bipartite networks

(b) real-world networks

Figure 8: 3D embedding of shortest path histograms from
different networks. Each point pσ, α, βq represents a path
length distribution in terms of the parameters of the best fit-
ting generalized Gamma model. Different classes of graphs
appear to be confined to specific regions.

in Random Networks. Science, 286(5439):509–512,
1999.

[4] M. Barthelemy, A. Barrat, R. Pastor-Satorras, and
A. Vespignani. Velocity and Hierarchical Spread of

129

Epidemic Outbreaks in Scale-free Networks. Physi-
cal Review Letters, 92(17):178701, 2004.

[5] C. Bauckhage. Computing the Kullback-Leibler Di-
vergence between two Generalized Gamma Distribu-
tions. arXiv:1401.6853 [cs.IT], 2014.

[6] C. Bauckhage and K. Kersting. Strong Regularities
in Growth and Decline of Popularity of Social Media
Services. arXiv:1406.6529 [cs.SI], 2014.

[7] C. Bauckhage, K. Kersting, and B. Rastegarpanah.
The Weibull as a Model of Shortest Path Distributions
in Random Networks. In Proc. Int. Workshop on Min-
ing and Learning with Graphs, 2013.

[8] D.R. Bild, Y. Liu, R.P. Dick, Z. Morley Mao, and
D.S. Wallach. Aggregate Characterization of User
Behavior in Twitter and Analysis of the Retweet
Graph. ACM Trans. on Internet Technology, 15(1):1–
24, 2015.

[9] V.D. Blondel, J.L. Guillaume, J.M. Hendrickx, and
R.M. Jungers. Distance Distribution in Random
Graphs and Application to Network Exploration.
Physical Review E, 76(6):066101, 2007.

[10] C. Budak, D. Agrawal, and A. El Abbadi. Limiting
the Spread of Misinformation in Social Networks. In
Proc. WWW. ACM, 2010.

[11] R. Cohen and S. Havlin. Complex Networks. Cam-
bridge University Press, 2010.

[12] G.E. Crooks. The Amoroso Distribution.
arXiv:1005.3274 [math.ST], 2010.

[13] L. de Haan and A. Ferreira. Extreme Value Theory.
Springer, 2006.

[14] A. Fronczak, P. Fronczak, and J.A. Holyst. Average
Path Length in Random Networks. Physical Review
E, 70(5):056110, 2004.

[15] M. Gomez-Rodriguez, J. Leskovec, and B. Schölkopf.
Structure and Dynamics of Information Pathways in
Online Media. In Proc. WSDM. ACM, 2013.

[16] J.L. Iribarren and E. Moro. Impact of Human Activity
Patterns on the Dynamics of Information Diffusion.
Physical Review Letters, 103(3):038702, 2009.

[17] E.T. Jaynes. Information Theory and Statistical Me-
chanics. Physical Review, 106:620–630, 1957.

[18] E.T. Jaynes. Probability Theory: The Logic of Sci-
ence. Cambridge University Press, 2003.

[19] R.I. Jennrich and R.H. Moore. Maximum Likelihood
Estimation by Means of Nonlinear Least Squares. In
Proc. of the Statistical Computing Section. American
Statistical Association, 1975.

[20] M.J. Keeling and K.T.D. Eames. Networks and Epi-
demic Models. J. Royal Society Interface, 2(4):295–
307, 2005.

[21] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing
the Spread of Influence through A Social Network. In
Proc. KDD. ACM, 2003.

[22] A. Kumar, D. Sheldon, and B. Srivastava. Collective
diffusion over networks: Models and inference. In
Proc. UAI, 2013.

[23] J. Kunegis. KONECT: the Koblenz Network Collec-
tion. In Proc. WWW. ACM, 2013.

[24] J. Leskovec, L.A. Adamic, and B.A. Huberman. The
Dynamics of Viral Marketing. ACM Tans. Web,
1(1):5, 2007.

[25] J. Leskovec, L. Backstrom, and J. Kleinberg. Meme-
tracking and the Dynamics of the News Cycle. In
Proc. KDD. ACM, 2009.

[26] J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance,
and M. Hurst. Patterns of Cascading Behavior in
Large Blog Graphs. In Proc. Int. Conf on Data Min-
ing. SIAM, 2007.

[27] A.L. Lloyd and R.M. May. How Viruses
Spread Among Computers and People. Science,
292(5520):1316–1317, 2001.

[28] M.E.J. Newman. The Spread of Epidemic Diseases
on Networks. Physical Review E, 66(1):016128,
2002.

[29] R. Pastor-Satorras and A. Vespignani. Epidemic
Spreading in Scale-Free Networks. Physical Review
Letters, 86(14):3200–3203, 2001.

[30] D.M. Pennock, G.W. Flake, S. Lawrence, E.J. Glover,
and C.L. Gilles. Winners Don’t Take All: Character-
izing the Competition for Links on the Web. PNAS,
99(8):5207–5211, 2002.

[31] H. Rinne. The Weibull Distribution. Chapman & Hall
/ CRC, 2008.

[32] D. Sheldon, B.N. Dilkina, A.N. Elmachtoub,
R.Finseth, A. Sabharwal, J. Conrad, C.P. Gomes,
D.B. Shmoys, W. Allen, O. Amundsen, and
W. Vaughan. Maximizing the spread of cascades
using network design. In In Proc. UAI, pages
517–526, 2010.

[33] E.W. Stacy. A Generalization of the Gamma Dis-
tribution. The Annals of Mathematical Statistics,
33(3):1187–1192, 1962.

[34] A. Ukkonen. Indirect Estimation of Shortest Path Dis-
tributions with Small-World Experiments. In Proc.
Advances in Intelligent Data Analysis, 2014.

[35] A. Vazquez. Polynomial Growth in Branching Pro-
cesses with Diverging Reproduction Number. Physi-
cal Review Letters, 96(3):038702, 2006.

[36] J. Yang and J. Leskovec. Patterns of Temporal Varia-
tion in Online Media. In Proc. WSDM. ACM, 2011.

130

New Limits for Knowledge Compilation and Applications to Exact Model
Counting

Paul Beame∗
Computer Science and Engineering

University of Washington
Seattle, WA 98195

beame@cs.washington.edu

Vincent Liew∗
Computer Science and Engineering

University of Washington
Seattle, WA 98195

vliew@cs.washington.edu

Abstract

We show new limits on the efficiency of us-
ing current techniques to make exact probabilis-
tic inference for large classes of natural prob-
lems. In particular we show new lower bounds
on knowledge compilation to SDD and DNNF
forms. We give strong lower bounds on the com-
plexity of SDD representations by relating SDD
size to best-partition communication complex-
ity. We use this relationship to prove exponen-
tial lower bounds on the SDD size for represent-
ing a large class of problems that occur natu-
rally as queries over probabilistic databases. A
consequence is that for representing unions of
conjunctive queries, SDDs are not qualitatively
more concise than OBDDs. We also derive sim-
ple examples for which SDDs must be exponen-
tially less concise than FBDDs. Finally, we de-
rive exponential lower bounds on the sizes of
DNNF representations using a new quasipolyno-
mial simulation of DNNFs by nondeterministic
FBDDs.

1 Introduction

Weighted model counting is a fundamental problem in
probabilistic inference that captures the computation of
probabilities of complex predicates over independent ran-
dom events (Boolean variables). Although the problem is
#P-hard in general, there are a number of practical al-
gorithms for model counting based on DPLL algorithms
and on knowledge compilation techniques. The knowl-
edge compilation approach, though more space intensive,
can be much more convenient since it builds a represen-
tation for an input predicate independent of its weights
that allows the count to evaluated easily given a particu-
lar choice of weights; that representation also can be re-
used to analyze more complicated predicates. Moreover,

∗Research supported by NSF grant CCF-1217099.

with only a constant-factor increase in time, the methods
using DPLL algorithms can be easily extended to be knowl-
edge compilation algorithms [Huang and Darwiche, 2007].
(See [Gomes et al., 2009] for a survey.)

The representation to be used for knowledge compilation
is an important key to the utility of these methods in prac-
tice; the best methods are based on restricted classes of cir-
cuits and on decision diagrams. All of the ones consid-
ered to date can be seen as natural sub-classes of the class
of Decomposable Negation Normal Form (DNNF) formu-
las/circuits introduced in [Darwiche, 2001], though it is not
known how to do model counting efficiently for the full
class of DNNF formulas/circuits. One sub-class for which
model counting is efficient given the representation is that
of d-DNNF formulas, though there is no efficient algorithm
known to recognize whether a DNNF formula is d-DNNF.

A special case of d-DNNF formulas (with a minor change
of syntax) that is easy to recognize is that of decision-
DNNF formulas. This class of representations cap-
tures all of the practical model counting algorithms dis-
cussed in [Gomes et al., 2009] including those based on
DPLL algorithms. Decision-DNNFs include Ordered Bi-
nary Decision Diagrams (OBDDs), which are canonical
and have been highly effective representations for veri-
fication, and also Free BDDs (FBDDs), which are also
known as read-once branching programs. Using a quasi-
polynomial simulation of decision-DNNFs by FBDDs,
[Beame et al., 2013, Beame et al., 2014] showed that the
best decision-DNNF representations must be exponential
even for many very simple 2-DNF predicates that arise in
probabilistic databases.

Recently, [Darwiche, 2011] introduced another subclass of
d-DNNF formulas called Sentential Decision Diagrams
(SDDs). This class is strictly more general than OBDDs
and (in its basic form) is similarly canonical. (OBDDs
use a fixed ordering of variables, while SDDs use a fixed
binary tree of variables, known as a vtree.) There has
been substantial development and growing application of
SDDs to knowledge representation problems, including a
recently released SDD software package [SDD, 2014]. In-

131

deed, SDDs hold potential to be more concise than OB-
DDs. [Van den Broeck and Darwiche, 2015] showed that
compressing an SDD with a fixed vtree so that it is canon-
ical can lead to an exponential blow-up in size, but much
regarding the complexity of SDD representations has re-
mained open.

In this paper we show the limitations both of gen-
eral DNNFs and especially of SDDs. We show
that the simulation of decision-DNNFs by FBDDs
from [Beame et al., 2013] can be extended to yield a simu-
lation of general DNNFs by OR-FBDDs, the nondetermin-
istic extension of FBDDs, from which we can derive ex-
ponential lower bounds for DNNF representations of some
simple functions.

For SDDs we obtain much stronger results. In particu-
lar, we relate the SDD size required to represent predi-
cate f to the ”best-case partition” communication complex-
ity [Kushilevitz and Nisan, 1997] of f . Using this, together
with reductions to the communication complexity of dis-
jointness (set intersection), we derive the following results:
(1) There are simple predicates given by 2-DNF formulas
for which FBDD size is polynomial but for which SDD size
must be exponential.
(2) For a natural, widely-studied class of database queries
known as Unions of Conjunctive Queries (UCQ), the SDD
size is linear iff the OBDD size is linear and is exponential
otherwise (which corresponds to a query that contains an
inversion [Jha and Suciu, 2013]).
(3) Similar lower bounds apply to the dual of UCQ, which
consists of universal, positive queries.

To prove our SDD results, we show that for any predi-
cate f given by an SDD of size S, using its associated
vtree we can partition the variables of f between two play-
ers, Alice and Bob, in a nearly balanced way so that they
only need to send log2 S bits of communication to com-
pute f . The characterization goes through an interme-
diate step involving unambiguous communication proto-
cols and a clever deterministic simulation of such protocols
from [Yannakakis, 1991].

Related work: Beyond the lower bounds for decision-
DNNFs in [Beame et al., 2013, Beame et al., 2014]
which give related analyses for decision-DNNFs, the
work of [Pipatsrisawat and Darwiche, 2010] on struc-
tured DNNFs is particularly relevant to this paper1.
[Pipatsrisawat and Darwiche, 2010] show how sizes of
what they term (deterministic) X-decompositions can
yield lower bounds on the sizes of structured (determin-
istic) DNNFs, which include SDDs as a special case.
[Pipatsrisawat, 2010] contains the full details of how
this can be applied to prove lower bounds for specific
predicates. These bounds are actually equivalent to lower

1We thank the conference reviewers for bringing this work to
our attention.

bounds exponential in the best-partition nondeterministic
(respectively, unambiguous) communication complexity of
the given predicates. Our paper derives this lower bound
for SDDs directly but, more importantly, provides the
connection to best-partition deterministic communication
complexity, which allows us to have a much wider range
of application; this strengthening is necessary for our
applications.

Roadmap: We give the background and some formal def-
initions including some generalization required for this
work in Section 2. We prove our characterization of SDDs
in terms of best-partition communication complexity in
Section 3 and derive the resulting bounds for SDDs for nat-
ural predicates in Section 4. We describe the simulation of
DNNFs by OR-FBDDs, and its consequences, in Section 5.

2 Background and Definitions

We first give some basic definitions of DNNFs and decision
diagrams.

Definition 2.1. A Negation Normal Form (NNF) circuit is
a Boolean circuit with ¬ gates, which may only be applied
to inputs, and ∨ and ∧ gates. Further, it is Decompos-
able (DNNF) iff the children of each ∧ gate are reachable
from disjoint sets of input variables. (Following conven-
tion, we call this circuit a “DNNF formula”, though it is
not a Boolean formula in the usual sense of circuit com-
plexity.) A DNNF formula is deterministic (d-DNNF) iff
the functions computed at the children of each ∨ gate are
not simultaneously satisfiable.

Definition 2.2. A Free Binary Decision Diagram (FBDD)
is a directed acyclic graph with a single source (the root)
and two specified sink nodes, one labeled 0 and the other 1.
Every non-sink node is labeled by a Boolean variable and
has two out-edges, one labeled 0 and the other 1. No path
from the root to either sink is labeled by the same variable
more than once. It is an OBDD if the order of variable
labels is the same on every path. The Boolean function
computed by an FBDD is 1 on input a iff there is a path
from the root to the sink labeled 1 so that for every node
label Xi on the path, ai is the label of the out-edge taken
by the path. An OR-FBDD is an FBDD augmented with
additional nodes of arbitrary fan-out labeled ∨. The func-
tion value for the OR-FBDD follows the same definition as
for FBDDs; the ∨-nodes simply make more than one path
possible for a given input. (See [Wegener, 2000].)

We now define sentential decision diagrams as well as a
small generalization that we will find useful.

Definition 2.3. For a set X, let > : {0, 1}X → {0, 1} and
⊥ : {0, 1}X → {0, 1} denote the constant 1 function and
constant 0 function, respectively.

Definition 2.4. We say that a set of Boolean functions
{p1, p2, . . . , p`}, where each pi has domain {0, 1}X, is dis-

132

joint if for each i 6= j, pi∧pj = ⊥. We call {p1, p2, . . . , p`}
a partition if it is disjoint and

∨`
i=1 pi = >.

Definition 2.5. A vtree for variables X is a full binary tree
whose leaves are in one-to-one correspondence with the
variables in X.

We define Sentential Decision Diagrams (SDDs) together
with the Boolean functions they represent and use 〈.〉 to
denote the mapping from SDDs into Boolean functions.
(This notation is extended to sets of SDDs yielding sets
of Boolean functions.) At the same time, we also define a
directed acyclic graph (DAG) representation of the SDD.

Definition 2.6. α is an SDD that respects vtree v rooted at
v iff:

• α = > or α = ⊥.
Semantics: 〈>〉 = > and 〈⊥〉 = ⊥.
G(α) consists of a single leaf node labeled with 〈α〉.

• α = X or α = ¬X and v is a leaf with variable X .
Semantics: 〈X〉 = X and 〈¬X〉 = ¬X
G(α) consists of a single leaf node labeled with 〈α〉.

• α = {(p1, s1), . . . , (p`, s`)}, v is an internal ver-
tex with children vL and vR, p1, . . . , p` are SDDs
that respect the subtree rooted at vL, s1, . . . , s` are
SDDs that respect the subtree rooted at vR, and
〈p1〉, . . . , 〈p`〉 is a partition.
Semantics: 〈α〉 =

∨n
i=1

(
〈pi〉 ∧ 〈si〉

)

G(α) has a circle node for α labeled v with ` child
box nodes labeled by the pairs (pi, si). A box node
labeled (pi, si) has a left child that is the root of
G(pi) and and a right child that is the root of G(si).
The rest of G(α) is the (non-disjoint) union of graphs
G(p1), . . . , G(p`) and G(s1), . . . , G(s`) with com-
mon sub-DAGs merged. (See Figure 1.)

Each circle node α′ in G(α) itself represents an SDD that
respects a subtree of v rooted at some vertex v′ of v; We say
that α′ is in α and use Sdds(v′, α) to denote the collection
of α′ in α that respect the subtree rooted at v′. The size of
an SDD α is the number of nodes in G(α).

Circle nodes in G(α) may be interpreted as OR gates and
paired box nodes may be interpreted as AND gates. In the
rest of this paper, we will view SDDs as a class of Boolean
circuit. The vtree property and partition property of SDDs
together ensure that this resulting circuit is a d-DNNF.

We define a small generalization of vtrees which will be
useful for describing SDDs with respect to a partial assign-
ment of variables.

Definition 2.7. A pruned vtree for variables X is a full
binary tree whose leaves are either marked stub or by a
variable in X, and whose leaves marked by variables are
in one-to-one correspondence with the variables in X.

Figure 1: An SDD with its associated vtree that computes
the formula (A ∧B ∧ C) ∨ (¬C ∧D)

We generalize SDDs so that they can respect pruned vtrees.
The definition is almost identical to that for regular SDDs
so we only point out the differences.

Definition 2.8. The definition of a pruned SDD α respect-
ing a pruned vtree v, its semantics, and its graph G(α),
are identical to those of an SDD except that
• if the root vertex v of v is a stub then 〈α〉 must be ⊥

or >, and

• if the root vertex v of v is internal then we only require
that 〈p1〉, . . . , 〈p`〉 are disjoint but not necessarily that
they form a partition.

We now sketch a very brief overview of the communica-
tion complexity we will need. Many more details may be
found in [Kushilevitz and Nisan, 1997]. Given a Boolean
function f on {0, 1}X × {0, 1}Y, one can define two-
party protocols in which two players, Alice, who receives
x ∈ {0, 1}X and Bob, who receives y ∈ {0, 1}Y exchange
a sequence of messages m1, . . . ,mC = f(x, y) ∈ {0, 1}
to compute f . (After each bit, the player to send the next bit
must be determined from previous messages.) The (deter-
ministic) communication complexity of f , CC(f(X,Y)),
is the minimum value C over all protocols computing f
such that all message sequences are of length at most C.
The one-way deterministic communication complexity of
f , CCX→Y(f(X,Y)) is the minimum value of C over all
protocols where Alice may send messages to Bob, but Bob
cannot send messages to Alice.

For nondeterministic protocols, Alice simply guesses a
string based on her input x and sends the resulting message
m to Bob, who uses m together with y to verify whether
or not f(x, y) = 1. The communication complexity in
this case is the minimum |m| over all protocols. Such a
protocol is unambiguous iff for each (x, y) pair such that
f(x, y) = 1 there is precisely one message m that will
cause Bob to output 1. A set of the form A × B for
A ⊆ {0, 1}X, B ⊆ {0, 1}Y is called a rectangle. The
minimum of |m| over all unambiguous protocols is the un-
ambiguous communication complexity of f ; it is known to
be the logarithm base 2 of the minimum number of rectan-
gles into which one can partition the set of inputs on which
f is 1.

A canonical hard problem for communication complex-
ity is the two-party disjointness (set intersection) problem,

133

∨n
i=1 xi ∧ yi where x and y are indicator vectors of sets in

[n]. It has deterministic communication complexity n + 1
(and requires Ω(n) bits be sent even with randomness, but
that is beyond what we need). We will need a variant of
the “best partition” version of communication complexity
in which the protocol includes a choice of the best split of
input indices X and Y between Alice and Bob.

A typical method for proving lower bounds on OBDD size
for a Boolean function f begins by observing that a size
s OBDD may be simulated by a log s-bit one-way com-
munication protocol where Alice holds the first half of the
variables read by the OBDD and Bob holds the second half.
In this protocol, Alice starts at the root of the OBDD and
follows the (unique) OBDD path determined by her half
of the input until she reaches a node v querying a variable
held by Bob. She then sends the identity of the node v to
Bob, who can finish the computation starting from v. Thus,
if we show that f has one-way communication complexity
CCX→Y(f(X,Y)) at least C in the best split {X,Y} of
its input variables, then any OBDD computing f must have
at least 2C nodes.

Our lower bound for SDDs uses related ideas but in a more
sophisticated way, and instead of providing a one-way de-
terministic protocol, we give an unambiguous protocol that
simulates the SDD computation. In particular, the conver-
sion to deterministic protocols requires two-way communi-
cation.

3 SDDs and Best-Partition Communication
Complexity

In this section, we show how we can use any small SDD
representing a function f to build an efficient communica-
tion protocol for f given an approximately balanced parti-
tion of input variables that is determined by its associated
vtree. As a consequence, any function requiring large com-
munication complexity under all such partitions requires
large SDDs. To begin this analysis, we consider how an
SDD simplifies under a partial assignment to its input vari-
ables.

3.1 Pruning SDDs Using Restrictions

Definition 3.1. Suppose that v is a pruned vtree for a set
of variables X, and that v is a vertex in v. Let Vars(v)
denote the set of variables that are descendants of v in v
and Shell(v) = X \ Vars(v). Also let Parent(v) denote
the (unique) vertex in v that has v as a child.

We define a construction to capture what happens to an
SDD under a partial assignment of its variables.

Definition 3.2. Let α be an SDD that respects v, a vtree for
the variables X, and suppose that α computes the function
f . Let B ⊆ X and A = X \B and let ρ : A→ {0, 1} be

an assignment to the variables in A. Let α|ρ be Boolean
circuit remaining after plugging the partial assignment ρ
into the SDD α and making the following simplifications:

1. If a gate computes a constant c ∈ {>,⊥} under the
partial assignment ρ, we can replace that gate and its
outgoing edges with c.

2. Remove any children of OR-gates that compute ⊥.

3. Remove any nodes disconnected from the root.

For each vtree vertex v ∈ v that was not removed in this
process, we denote its counterpart in the pruned vtree v|A
by v|A.

Construct the pruned vtree v|A from v as follows: for each
vertex v, if Vars(v) ⊆ A and Vars(Parent(v)) 6⊆ A, re-
place v and its subtree by a stub. We say that we have
pruned the subtree rooted at v.

For A ⊆ X, we call {A,X \A} a shell partition for X if
there is a vtree vertex v ∈ v such that Shell(v) = A. We
call A the shell. If, for a restriction ρ : A → {0, 1}, there
exists a vtree vertex v ∈ v such that Shell(v) = A, we call
ρ a shell restriction.

Proposition 3.3. Let α be an SDD that respects v, a vtree
for the variables X, and suppose that α computes the func-
tion f . Let A ⊆ X and ρ : A → {0, 1} be a partial
assignment of the variables in A. The pruned SDD α|ρ has
the following properties:
(a) 〈α|ρ〉 = f |ρ.
(b) α|ρ is a pruned SDD respecting v|A.
(c) G(α|ρ) is a subgraph of G(α).

Proof. (a): An SDD may be equivalently described as a
Boolean circuit of alternating OR and AND gates. For any
Boolean circuit in the variables X that computes f , plug-
ging in the values for the restriction ρ yields a circuit com-

Figure 2: An SDD and its vtree, as well as the pruned pair
after setting B to 0 and A,E, F to 1.

134

puting f |ρ. Furthermore, the simplification steps do not
change the function computed.

(b): For each v such that Vars(v) ⊆ A and
Vars(Parent(v)) 6⊆ A, we have replaced the subtree
rooted at v by a stub and replaced the SDDs in α respecting
v by either > or ⊥. Thus α|ρ respects v|A.

We now check that α|ρ is a pruned SDD. In par-
ticular we need to ensure that for each SDD α′ =
{(p1, s1), . . . , (p`, s`)} in α, the corresponding pruned
SDDs that remain from p1, . . . , p` in its pruned counterpart
α′|ρ represent a collection of disjoint functions. From the
first part of this proposition, these are 〈pi1〉|ρ, . . . , 〈pik〉|ρ
for some k ≤ n, where we have only included those
SDDs that are consistent under ρ. Since the original set of
SDDs was a partition and thus disjoint, this set of restricted
(pruned) SDDs is also disjoint.

(c): The process in Definition 3.2 only removes nodes from
G(α) to construct G(α|ρ). Further, it does not change the
label of any SDD that was not removed.

3.2 Unambiguous Communication Protocol for SDDs

The way that we will partition the input variables to an
SDD between the parties Alice and Bob in the communi-
cation protocol will respect the structure of its associated
vtree. The restrictions will correspond to assignments that
reflect Alice’s knowledge of the input and will similarly re-
spect that structure.

Notice that a vtree cut along an edge (u, v) (where u is the
parent of v) induces a shell partition for X consisting of the
set B = Vars(v), and the shell A = X \B.

Proposition 3.4. Let α be an SDD of size s computing a
function f : {0, 1}X → {0, 1} that respects a vtree v.
Suppose that {A,B} is a shell partition for X and that A
is its shell. Let b be the vertex in v for which Vars(b) = B
and Vars(Parent(b)) 6⊆ B.

For any shell restriction ρ : A → {0, 1}, the set
〈Sddsα|ρ(b|A)〉 is a disjoint collection of functions.

Proof. For non-shell restrictions ρ′, the collection of func-
tions 〈Sddsα|ρ′ (v)〉 for a vtree node v is not disjoint; we
need to use the specific properties of A and b. Since ρ
was a shell restriction, the pruned vtree v|A takes the form
of a path v1|A, . . . , vk|A of internal vertices, where v1 is
the root of v, and vk|A = b|A, with the other child of
each of v1|A, . . . , vk−1|A being a stub, together with a
vtree for the variables B rooted at b. We will show that if
〈Sddsα|ρ(vi|A)〉 is disjoint then so is 〈Sddsα|ρ(vi+1|A)〉.
This will prove the proposition since 〈Sddsα|ρ(v1|A)〉 only
contains the function 〈α|ρ〉 and is therefore trivially dis-
joint.

We will use the fact that every pruned-SDD from

Sddsα|ρ(vi+1|A) is contained in some SDD from
Sddsα|ρ(vi|A). We have two cases to check: vi+1|A is
either a left child or a right child of vi|A.

If vi+1|A was a right child then each pruned-SDD η|ρ con-
tained in Sddsα|ρ(vi|A) takes the form η|ρ = {(>, s|ρ)}.
Then 〈Sddsα|ρ(vi+1|A)〉 = 〈Sddsα|ρ(vi|A)〉 and is there-
fore disjoint by assumption.

Otherwise suppose that vi+1|A is the left child of
vi|A. Let η|ρ ∈ Sddsα|ρ(vi|A). Let η|ρ =

{(η1|ρ,>), . . . , (ηk|ρ),>)} where
∨k
i=1〈ηi|ρ〉 = 〈η|ρ〉 and

{〈η1|ρ〉, . . . , 〈ηk|ρ〉} , being a collection of primes for η|ρ,
is disjoint. By assumption 〈Sddsα|ρ(vi|A)〉 is disjoint,
so for any other η′|ρ = {(η′1|ρ,>), . . . , (η′k′ |ρ,>)} ∈
Sddsα|ρ(vi|A)} distinct from η|ρ, we have 〈η|ρ〉∧〈η′|ρ〉 =
⊥. Then for any i ∈ [k] and j ∈ [k′], we have 〈ηi|ρ〉 ∧
〈η′j |ρ〉 = ⊥. Thus 〈Sddsα|ρ(vi+1|A)〉 is disjoint.

Theorem 3.5. Let α be an SDD of size s that respects
a vtree v and suppose that it computes the function f :
{0, 1}X → {0, 1}. Suppose that {A,B} is a shell parti-
tion for X and that A is the shell. Let b be the vertex in v
for which Vars(b) = B and Vars(Parent(b)) 6⊆ B.

Consider the communication game where Alice has the
variables A, Bob has the variables B, and they are try-
ing to compute f(A,B). There is a log s-bit unambiguous
communication protocol computing f .

Proof. Suppose that Alice and Bob both know the SDD α.
Let ρ : A → {0, 1} be the partial assignment correspond-
ing to Alice’s input. This is a shell restriction. Alice may
then privately construct the pruned SDD α|ρ, which com-
putes f |ρ by Proposition 3.3. Further, α|ρ evaluates to 1
under Bob’s input φ : B→ {0, 1} if and only if there exists
a pruned-SDD η|ρ ∈ Sddsα|ρ(b|A) such that 〈η|ρ〉(φ) = 1.

By Proposition 3.4, 〈Sddsα|ρ(b|A)〉 is disjoint. Also, since
ρ is a shell restriction with shell A, and Vars(b) = B =
X\A, every SDD in Sddsα|ρ(b|A) was unchanged by ρ. In
particular, this means that Sddsα|ρ(b|A) ⊆ Sddsα(b) and
any pruned-SDD η|ρ can be viewed as some η ∈ Sddsα(b)
that is also in Sddsα|ρ(b|A).

For the protocol Alice nondeterministically selects an η
from Sddsα|ρ(b|A) and then sends its identity as a member
of Sddsα(b) to Bob. This requires at most log s bits. Bob
will output 1 on his input φ if and only if 〈η〉(φ) = 1, which
he can test since he knows α and b. This protocol is unam-
biguous since the fact that 〈Sddsα|ρ(b|A)〉 is disjoint means
means that for any input φ to Bob there is at most one
η ∈ Sddsα|ρ(b|A) such that 〈η〉(φ) = 1. Since Bob knows
α, he also knows η and can therefore compute 〈η〉(φ).
Since α computes f , if 〈η〉(φ) = 1 then f(φ, ρ) = 1. Oth-
erwise all of the functions in 〈Sddsα|ρ(b|A)〉 evaluate to 0
on input φ so f(φ, ρ) = 0.

135

We can relate the deterministic and unambiguous commu-
nication complexities of a function using the following re-
sult from [Yannakakis, 1991].
Theorem 3.6 (Yannakakis). If there is an g-bit unambigu-
ous communication protocol for a function f : {0, 1}A ×
{0, 1}B → {0, 1}, then there is a (g+1)2-bit deterministic
protocol for f .

The following 1/3-2/3 lemma is standard.
Lemma 3.7. For a vtree v for L variables, if a vertex b
satisfies 1

3L ≤ |Vars(b)| ≤ 2
3L, we call it a (1/3, 2/3)

vertex. Every vtree contains a (1/3, 2/3) vertex.
Definition 3.8. Let X be a set of variables and (A,B) a
partition of X. We call the partition (A,B) a (δ, 1 − δ)-
partition for δ ∈ [0, 1/2] if min(|A|, |B|) ≥ δ|X|. That is,
the minimum size of one side of the partition is at least a
δ-fraction of the total number of variables.

The best (δ, 1 − δ)-partition communication complex-
ity of a Boolean function f : {0, 1}X → {0, 1} is
min(CC(f(A,B))) where the minimum is taken over all
(δ, 1− δ)-partitions (A,B).
Theorem 3.9. If the best (1/3, 2/3)-partition communi-
cation complexity of a Boolean function f : {0, 1}X →
{0, 1} is C, then an SDD computing f has size at least
2
√
C−1.

Proof. Suppose that α is an SDD of size s respecting the
vtree v for variables X, and that α computes f . From
Lemma 3.7 the vtree v contains a (1/3, 2/3) vertex b. This
(1/3, 2/3) vertex b induces a (1/3, 2/3)-partition of the
variables {A,B} where B = Vars(b) and A = Shell(b).
Further, this partition {A,B} is a shell partition. By The-
orem 3.5, there exists a log s-bit unambiguous commu-
nication protocol for f(A,B). Then by Theorem 3.6,
there exists a (log(s) + 1)2-bit deterministic communi-
cation protocol for f(A,B). Since the best (1/3, 2/3)-
partition communication complexity of f is C, we have
that C ≤ (log(s) + 1)2 which implies that s ≥ 2

√
C−1

as stated.

4 Lower Bounds for SDDs

There are a large number of predicates f : {0, 1}n →
{0, 1} for which the (1/3, 2/3)-partition communication
complexity is Ω(n) and by Theorem 3.9 each of these re-
quires SDD size 2Ω(

√
n). The usual best-partition com-

munication complexity is (1/2, 1/2)-partition communi-
cation complexity. For example, the function SHIFT-
EDEQ which takes as inputs x, y ∈ {0, 1}n and z ∈
{0, 1}dlog2 ne and tests whether or not y = SHIFT (x, z)
where SHIFT (x, z) is the cyclic shift of x by (z)2 posi-
tions. However, as is typical of these functions, the same
proof which shows that the (1/2, 1/2)-partition commu-
nication complexity of SHIFTEDEQ is Ω(n) also shows

that its (1/3, 2/3)-partition communication complexity is
Ω(n). However, most of these functions are not typical
of predicates to which one might want to apply weighted
model counting. Instead we analyze SDDs for formulas
derived from a natural class of database queries. We are
able to characterize SDD size for these queries, proving
exponential lower bounds for every such query that cannot
already be represented in linear size by an OBDD. This in-
cludes an example of a query called QV for which FBDDs
are polynomial size but the best SDD requires exponential
size.

4.1 SDD Knowledge Compilation for Database Query
Lineages

We analyze SDDs for a natural class of database queries
called the union of conjunctive queries (UCQ). This in-
cludes all queries given by the grammar

q ::= R(x) | ∃xq | q ∧ q | q ∨ q

where R(x) is an elementary relation and x is a vari-
able. For each such query q, given an input database
D, the query’s lineage, ΦDq , is a Boolean expression
for q over Boolean variables that correspond to tuples
in D. In general, one thinks of the query size as
fixed and considers the complexity of query evaluation
as a function of the size of the database. The fol-
lowing formulas are lineages (or parts thereof) of well-
known queries that that are fundamental for probabilis-
tic databases [Dalvi and Suciu, 2012, Jha and Suciu, 2013]
over a particular databaseD0 (called the complete bipartite
graph of size m in [Jha and Suciu, 2013]):

H0 =
∨

i,j∈[m]

RiSijTj

QV =
∨

i,j∈[m]

RiSij ∨ SijTj ∨RiTj

H1 =
∨

i,j∈[m]

RiSij ∨ SijTj

Hk0 =
∨

i∈[m]

RiS
1
ij for k ≥ 1

Hk` =
∨

i,j∈[m]

S`ijS
`+1
ij for 0 < ` < k

Hkk =
∨

i∈[m]

SkijTj for k ≥ 1.

(The corresponding queries are represented using lower
case letters h0, qV , h1, hk0, . . . , hkk and involve unary re-
lations R and T , as well as binary relations S and Sk. For
example, h0 = ∃x0∃y0R(x0)S(x0, y0)T (y0).) The fol-
lowing lemma will be useful in identifying subformulas of
the above query lineages that can be used to compute the
set disjointness function.

136

Proposition 4.1. Let the elements of [m] × [m] be parti-
tioned into two sets A and B, each of size at least δm2.
Let Row(i) denote {i}× [m] and Col(j) denote [m]×{j}.
Define WRow = {i ∈ [m] | ∅ 6= Row(i) ∩ A and ∅ 6=
Row(i) ∩ B}. That is, Row(i) for i ∈ WRow is split
into two nonempty pieces by the partition. Similarly, define
WCol = {i ∈ [m] | ∅ 6= Col(j) ∩A and ∅ 6= Col(j) ∩B}.
Then

max(|WRow|, |WCol|) ≥
√
δ ·m.

Proof. Suppose that both |WRow| < m and |WCol| < m.
By definition, if i /∈ WRow then one of A or B contains
an entire row, Row(i), say A without loss of generality.
This implies that no column Col(j) is entirely contained in
B. Since |WCol| < m, there is some column Col(j) that is
entirely contained inA. This in turn implies thatB does not
contain any full row. In particular, we have that A contains
all rows in [m] \WRow and all columns in [m] \WCol and
thusB ⊆WRow×WCol and so |B| ≤ |WRow| · |WCol|. By
assumption, |B| ≥ δm2. Hence |WRow| · |WCol| ≥ δm2

and so max{|wRow|, |wCol|} ≥
√
δ ·m.

Theorem 4.2. For m ≥ 6, the best (1/3, 2/3)-partition
communication complexity ofQV ,H0, and ofH1 is at least
m/3.

Proof. Let X be the set of variables appearing in QV (or
H1) and let (A,B) be a (1/3, 2/3)-partition of X. Let
(A,B) be the partition of [m] × [m] induced by (A,B)
and define WRow and WCol as in Proposition 4.1. Since
|X| = m2+2m and only elements of [m]×[m] are relevant,
|A|, |B| ≥ (m2+2m)/3−2m = (1−4/m)m2/3 ≥ m2/9
for m ≥ 6 and hence max(|WRow|, |WCol|) ≥ m/3. We
complete the proof by showing that computing QV (A,B)
and H1(A,B) each require at least max(|WRow|, |WCol|)
bits of communication between Alice and Bob. We will
do this by showing that for a particular subset of in-
puts, QV is equivalent to the disjointness function for a
max(|WRow|, |WCol|) size set.

Suppose without loss of generality that |WRow| ≥ |WCol|.
Set all Tj = 0 and for each i /∈ WRow set Ri = 0. For
each i ∈ WRow for which Ri ∈ A, set all Sij ∈ A
to 0, let ji be minimal such that Siji ∈ B, and set
Sij ∈ B to 0 for all j > ji. (Such an index ji must
exist since i ∈ WRow.) Similarly, For each i ∈ WRow

for which Ri ∈ B, set all Sij ∈ B to 0, let ji be
minimal such that Siji ∈ A, and set Sij ∈ A to 0 for all
j > ji. In particular, under this partial assignment, we have

QV = H1 =
∨

i∈WRow

RiSiji

and for each i ∈ WRow, Alice holds one of Ri or Siji and
Bob holds the other. We can reduceH0 to the same quantity
by setting all Tj = 1. This is precisely the set disjointness
problem on two sets of size |WRow|where membership of i
in each player’s set is determined by the value of the unset
bit indexed by i that player holds. Therefore, computing

QV or H1 requires at least |WRow| bits of communication,
as desired.

Combining this with Theorem 3.9, we immediately obtain
the following:
Theorem 4.3. For m ≥ 6, any SDD representing QV or
H1 requires size at least 2

√
m/3−1.

As [Jha and Suciu, 2013] has shown that QV has FBDD
size O(m2), we obtain the following separation.
Corollary 4.4. FBDDs can be exponentially more succinct
than SDDs. In particular, QV has FBDD size O(m2) but

every SDD for QV requires size 2
√
m/3−1 for m ≥ 6.

We now consider the formulas Hki above. Though they
seem somewhat specialized, these formulas are fundamen-
tal to UCQ queries: [Jha and Suciu, 2013] define the notion
of an inversion in a UCQ query and use it to characterize
the OBDD size of UCQ queries. In particular they show
that if a query q is inversion-free then the OBDD size of
its lineage Q is linear and if q has an minimum inversion
length k ≥ 1 then it requires OBDD size 2Ω(n/k) where n
is the domain size of all attributes. Jha and Suciu obtain this
lower bound by analyzing the Hki we defined above. (We
will not define the notion of inversions, or their lengths,
and instead use the definition as a black box. However, as
an example, the query associated with H1 has an inversion
of length 1 so its OBDD size is 2Ω(m).)
Proposition 4.5. [Jha and Suciu, 2013] Let q be a query
with a length k ≥ 1 inversion. Let D0 be the complete
bipartite graph of size m. There exists a database D for q,
along with variable restrictions ρi for all i ∈ [0, k], such
that |D| = O(|D0|) and ΦDq |ρi = ΦD0

hki
= Hki

Theorem 4.6. Let k ≥ 2 and assume that m ≥ 6. Let q
be a query with a length k ≥ 2 inversion. Then there exists
a database D for which any SDD for Q = ΦDq has size at

least 2
√
m/k/3−1.

Proof. Given a query q, let D be the database for q con-
structed in Proposition 4.5. Fix the vtree v over Xk re-
spected by an SDD α for ΦDq . By Lemma 3.7, there exists
a (1/3, 2/3) node b in the vtree v that gives a (1/3, 2/3)
partition {A,B} of Xk. By Proposition 4.5, there are re-
strictions ρ0, . . . , ρk such that ΦDq |ρi = Hki for all i. Thus
α|ρi is a (pruned) SDD, of size ≤ that of α, respecting v|ρi
and computingHki. Observe that the restriction of {A,B}
to the variables of Xki is also shell partition of v|ρi at node
b.

We will show that there must exist an Hki for which
CC(Hki(A,B)) ≥ m/(9k) and therefore by Theorem 3.6,
this implies that the unambiguous communication com-
plexity ofHki is at least 1

3

√
m/k−1 Then by Theorem 3.5,

any SDD respecting v that computes Hki has size at least
2

1
3

√
m/k−1.

137

Let WChain contain all pairs (i, j) for which both A ∩⋃k
`=1{S`ij} 6= ∅ and B∩⋃k`=1{S`ij} 6= ∅ and Let γ = 1/9.

We will consider two cases: either |WChain| ≥ γ · m or
|WChain| < γ ·m.

In the first case, since |WChain| ≥ γ ·m, there must exist
at least γ ·m tuples (i, j, `) for which either S`ij ∈ A and
S`+1
ij ∈ B or vice-versa. Call the set of these tuples T.

Then, since there are k − 1 choices of ` < k, there exists
some `∗ such that the set T`∗ := T∩ [m]× [m]×{`∗} con-
tains at least γ ·m/(k − 1) > m/(9k) elements. If we set
all variables of Xk`∗ outside of T`∗ to 0, the functionHk`∗

corresponds to solving a disjointness problem between Al-
ice and Bob on the elements of T`∗ . Thus the communi-
cation complexity of Hk`∗ under the partition {A,B} is at
least m/(9k).

In the second case, consider the largest square submatrix
M of [m] × [m] that does not contain any member
of WChain. We mimic the argument of Theorem 4.2
on this submatrix M . By definition, M has side
m′ ≥ (1 − γ)m. For every (i, j) in M , either A or B
contains all S`ij ; let A be those (i, j) such that these are
in A and B be those (i, j) for which they are in B. Since
|A|, |B| ≥ |Xk|/3 = (km2 + 2m)/3 and there are at most
2m+ (γ2 + 2γ)km2 variables not in M ,

|A|, |B| ≥ [(km2 + 2m)/3− 2m+ (γ2 + 2γ)km2]/k

= [(1− γ)2 − 2/3− 4/(3km)]m2 > (m/18)2)

since k ≥ 2. Applying Proposition 4.1, we see that
max(|WRow|, |WCol|) ≥ m/18 ≥ m/(9k). By the same
argument presented in the proof of Theorem 4.2, we have
both CC(Hk0(A,B)) ≥ |WRow| and CC(Hkk(A,B)) ≥
|WCol| so at least one of these is at least m/(9k) and the
theorem follows.

It follows that for inversion-free UCQ queries, both SDD
and OBDD sizes of any lineage are linear, while UCQ
queries with inversions (of length k) have worse-case lin-
eage size that is exponential (2Ω(m/k) for OBDDs and
2Ω(
√
m/k) for SDDs). Note that the same SDD size lower

bound for UCQ query lineage Q = ΦDq applies to its dual
Q∗ = ΦDq∗ as follows: Flipping the signs on the variables
in Q∗ yields a function equivalent to ¬Q. So flipping the
variable signs at the leaves of an SDD for Q∗ we obtain
an SDD of the same size for ¬Q and hence a deteministic
protocol that also can compute Q.

5 Simulating DNNFs by OR-FBDDs

In this section, we extend the simulation of decision-
DNNFs by FBDDs from [Beame et al., 2013] to obtain
a simulation of general DNNFs by OR-FBDDs with at
most a quasipolynomial increase in size. This simulation
yields lower bounds on DNNF size from OR-FBDD lower
bounds.

Definition 5.1. For each AND node u in a DNNF D, let
Mu be the number of AND nodes in the subgraph Du. We
call u’s left child ul and its right child ur. We will assume
Mul ≤Mur (otherwise we swap ul and ur).

For each AND node u, we classify the edge (u, ul) as a
light edge and the edge (u, ur) a heavy edge. We classify
every other edge in D as a neutral edge.

For a DNNFD or an OR-FBDDF , we denote the functions
that D and F compute as ΦD and ΦF .

Constructing the OR-FBDD

For a DNNF D, we will treat a leaf labeled by the variable
X as a decision node that points to a 0-sink node if X =
0 and a 1-sink node if X = 1, and vice-versa for a leaf
labeled by ¬X . We also assume that each AND node has
just two children, which only affects the DNNF size by at
most polynomially.

Definition 5.2. Fix a DNNF D. For a node u in D
and a path P from the root to u, let S(P) be the
set of light edges along P and S(u) = {S(P) |
P is a path from the root to u}.
We will construct an OR-FBDD F that computes the same
boolean function as D. Its nodes are pairs (u, s) where u
is a node in D and the set of light edges s belongs to S(u).
Its root is (root(D), ∅). The edges in F are of three types:

Type 1: For each light edge e = (u, v) in D and s ∈ S(u),
add the edge ((u, s), (v, s ∪ {e})) to F .

Type 2: For each neutral edge e = (u, v) in D and s ∈
S(u), add the edge ((u, s), (v, s)) to F .

Type 3: For each heavy edge (u, vr), let e = (u, vl) be its
sibling light edge. For each s ∈ S(u) and 1-sink node w in
Dvl , add the edge ((w, s ∪ {e}), (vr, s)) to F .

We label the nodes u′ = (u, s) as follows: (1) if u is a
decision node in D for the variable X then u′ is a decision
node in F testing the same variable X , (2) if u is an AND-
node, then u′ is a no-op node, (3) if u is an OR node it
remains an OR node. (4) if u is a 0-sink node, then u′ is a
0-sink node, (5) if u is a 1-sink node, then: if s = ∅ then u′

is a 1-sink node, otherwise it is a no-op node.

We show an example of this construction in Figure 3.

Size and Correctness

Lemma 5.3. For the DNNF D let L denote the maximum
number of light edges from the root to a leaf,M the number
of AND nodes and N the total number of nodes. ThenF has
at most NML nodes. Further, this is N · 2log2N .

Proof. The nodes in F are labeled (u, s). There are N
possible nodes u and at most ML choices for the set s, as

138

Figure 3: A DNNF and our construction of an equivalent
OR-FBDD.

each path to u has at most L light edges.

Consider a root to leaf path with L light edges. As we
traverse this path, every time we cross a light edge, we de-
crease the number of descendant AND nodes by more than
half. Thus we must have begun with more than 2L descen-
dant AND nodes at the root so that N ≥ M > 2L. This
implies that NML is quasipolynomial in N ,

This upper bound is quasipolynomial in N , we will show
that M > 2L. Then, since N ≥M , NML ≤ N2log2M ≤
N2log2N .

The proof of the following lemma is in the full paper.

Lemma 5.4. F is a correct OR-FBDD with no-op nodes
that computes the same function as D.

Using the quasipolynomial simulation of DNNFs by OR-
FBDDs, we obtain DNNF lower bounds from OR-FBDD
lower bounds.

Definition 5.5. Function PERMn takes an n× n boolean
matrix M as input and outputs 1 if and only if M is a per-
mutation matrix. The function ROW-COLn takes an n×n
boolean matrix M as input and outputs 1 if and only if M
has an all-0 row or an all-0 column.

Theorem 5.6. Any OR-FBDD computing PERMn or
ROW-COL, must have size 2Ω(n) [Wegener, 2000].

Corollary 5.7. Any DNNF computing PERMn or
ROW-COL has size at least 2Ω(

√
n)

6 Discussion

We have made the first significant progress in understand-
ing the complexity of general DNNF representations. We
have also provided a new connection between SDD rep-
resentations and best-partition communication complex-
ity. Best-partition communication complexity is a stan-
dard technique used to derive lower bounds on OBDD size,
where it often yields asymptotically tight results. For com-
munication lower bound C, the lower bound for OBDD
size is 2C and the lower bound we have shown for SDD size
is 2
√
C−1. This is a quasipolynomial difference. Are SDDs

that much more efficient than OBDDs? Is there always a

quasipolynomial simulation of SDDs by OBDDs in gen-
eral, matching the quasipolynomial simulation of decision-
DNNFs by FBDDs? Our separation result shows an exam-
ple for which SDDs are sometimes exponentially less con-
cise than FBDDs, and hence decision-DNNFs also. Are
SDDs ever more concise than decision-DNNFs?

By plugging in the arguments of
[Pipatsrisawat and Darwiche, 2010, Pipatsrisawat, 2010]
in place of Theorem 3.5, all of our lower bounds im-
mediately extend to size lower bounds for structured
deterministic DNNFs (d-DNNFs), of which SDDs
are a special case. It remains open whether struc-
tured d-DNNFs are strictly more concise than SDDs.
[Pipatsrisawat and Darwiche, 2008, Pipatsrisawat, 2010]
have proved an exponential separation between structured
d-DNNFs and OBDDs using the Indirect Storage Access
(ISA) function [Breitbart et al., 1995], but the small struc-
tured d-DNNF for this function is very far from an SDD. It
is immediate that, under any variable partition, the ISAn
function has an O(log n)-bit two-round deterministic
communication protocol. On the other hand, efficient
one-round (i.e., one-way) communication protocols yield
small OBDDs so there are two possibilities if SDDs and
structured d-DNNFs have different power. Either (1)
communication complexity considerations on their own
are not enough to derive a separation between SDDs and
structured d-DNNFs, or (2) every SDD can be simulated
by an efficient one-way communication protocol, in which
case SDDs can be simulated efficiently by OBDDs (though
the ordering cannot be the same as the natural traversal of
the associated vtree, as shown by [Xue et al., 2012]).

References

[Beame et al., 2013] Beame, P., Li, J., Roy, S., and Suciu,
D. (2013). Lower bounds for exact model counting and
applications in probabilistic databases. In UAI, pages
157–162.

[Beame et al., 2014] Beame, P., Li, J., Roy, S., and Suciu,
D. (2014). Counting of query expressions: Limitations
of propositional methods. In ICDT, pages 177–188.

[Breitbart et al., 1995] Breitbart, Y., Hunt III, H. B., and
Rosenkrantz, D. J. (1995). On the size of binary de-
cision diagrams representing boolean functions. Theor.
Comput. Sci., 145(1&2):45–69.

[Dalvi and Suciu, 2012] Dalvi, N. N. and Suciu, D.
(2012). The dichotomy of probabilistic inference for
unions of conjunctive queries. J. ACM, 59(6):30.

[Darwiche, 2001] Darwiche, A. (2001). Decomposable
negation normal form. J. ACM, 48(4):608–647.

139

[Darwiche, 2011] Darwiche, A. (2011). SDD: A new
canonical representation of propositional knowledge
bases. In IJCAI 2011, pages 819–826.

[Gomes et al., 2009] Gomes, C. P., Sabharwal, A., and
Selman, B. (2009). Model counting. In Handbook of
Satisfiability, pages 633–654. IOS Press.

[Huang and Darwiche, 2007] Huang, J. and Darwiche, A.
(2007). The language of search. JAIR, 29:191–219.

[Jha and Suciu, 2013] Jha, A. K. and Suciu, D. (2013).
Knowledge compilation meets database theory: Com-
piling queries to decision diagrams. Theory Comput.
Syst., 52(3):403–440.

[Kushilevitz and Nisan, 1997] Kushilevitz, E. and Nisan,
N. (1997). Communication Complexity. Cambridge
University Press, Cambridge, England ; New York.

[Pipatsrisawat and Darwiche, 2008] Pipatsrisawat, K. and
Darwiche, A. (2008). New compilation languages based
on structured decomposability. In AAAI, pages 517–522.

[Pipatsrisawat and Darwiche, 2010] Pipatsrisawat, K. and
Darwiche, A. (2010). A lower bound on the size of
Decomposable Negation Normal Form. In AAAI, pages
345–350.

[Pipatsrisawat, 2010] Pipatsrisawat, T. (2010). Reason-
ing with Propositional Knowledge: Frameworks for
Boolean Satisfiability and Knowledge Compilation.
PhD thesis, UCLA.

[SDD, 2014] SDD (2014). The SDD Package: Ver-
sion 1.1.1. http://reasoning.cs.ucla.edu/
sdd/.

[Van den Broeck and Darwiche, 2015] Van den Broeck,
G. and Darwiche, A. (2015). On the role of canonicity
in knowledge compilation. In AAAI, pages 1641–1648.

[Wegener, 2000] Wegener, I. (2000). Branching programs
and binary decision diagrams: theory and applications.
SIAM, Philadelphia, PA, USA.

[Xue et al., 2012] Xue, Y., Choi, A., and Darwiche, A.
(2012). Basing decisions on sentences in decision di-
agrams. In AAAI, pages 842–849.

[Yannakakis, 1991] Yannakakis, M. (1991). Express-
ing combinatorial optimization problems by linear pro-
grams. Journal of Computer and System Sciences,
43(3):441–466.

140

Hashing-Based Approximate Probabilistic Inference in Hybrid Domains

Vaishak Belle
Dept. of Computer Science

KU Leuven
Belgium

vaishak@cs.kuleuven.be

Guy Van den Broeck
Dept. of Computer Science

KU Leuven
Belgium

guy.vandenbroeck@cs.kuleuven.be

Andrea Passerini
DISI

University of Trento
Italy

passerini@disi.unitn.it

Abstract

In recent years, there has been considerable
progress on fast randomized algorithms that ap-
proximate probabilistic inference with tight toler-
ance and confidence guarantees. The idea here is
to formulate inference as a counting task over an
annotated propositional theory, called weighted
model counting (WMC), which can be parti-
tioned into smaller tasks using universal hashing.
An inherent limitation of this approach, how-
ever, is that it only admits the inference of dis-
crete probability distributions. In this work, we
consider the problem of approximating inference
tasks for a probability distribution defined over
discrete and continuous random variables. Build-
ing on a notion called weighted model integra-
tion, which is a strict generalization of WMC and
is based on annotating Boolean and arithmetic
constraints, we show how probabilistic inference
in hybrid domains can be put within reach of
hashing-based WMC solvers. Empirical evalu-
ations demonstrate the applicability and promise
of the proposal.

1 INTRODUCTION

Weighted model counting (WMC) on a propositional
knowledge base is an effective and general approach to
probabilistic inference in a variety of formalisms, includ-
ing Bayesian and Markov Networks. It extends the model
counting task, or #SAT, which is to count the number of as-
signments (that is, models) that satisfy a given logical sen-
tence (Gomes et al., 2009). In WMC, one accords a weight
to every model, and computes the sum of the weights of
all models. The WMC formulation has recently emerged
as an assembly language for probabilistic reasoning, offer-
ing a basic formalism for encoding various inference prob-
lems. State-of-the-art reasoning algorithms for Bayesian
networks (Chavira and Darwiche, 2008), their relational

extensions (Chavira et al., 2006), factor graphs (Choi et al.,
2013), probabilistic programs (Fierens et al., 2013), and
probabilistic databases (Suciu et al., 2011) reduce their in-
ference problem to a WMC computation. The task has been
generalized to first-order knowledge bases as well (Van den
Broeck et al., 2011; Gogate and Domingos, 2011). Exact
WMC solvers are based on knowledge compilation (Dar-
wiche, 2004; Muise et al., 2012) or DPLL search with com-
ponent caching (Sang et al., 2005).

However, exact inference is #P-hard (Valiant, 1979), and
so, there is a growing interest in approximate model coun-
ters. Beginning with Stockmeyer (1983), who showed
that approximating model counting with a tolerance fac-
tor can be achieved in deterministic polynomial time us-
ing a ΣP

2 -oracle, a number of more recent results show how
random polynomial-time realizations are possible using an
NP-oracle (e.g., a SAT solver) (Jerrum et al., 1986; Karp et
al., 1989; Bellare et al., 2000; Gomes et al., 2006; Ermon
et al., 2013b, 2014; Chakraborty et al., 2013a,b). The cen-
tral idea here is the use of random parity constraints, in the
form of universal hash functions (Sipser, 1983), that par-
tition the model counting solution space in an inexpensive
manner. Most of the recent work in the area, moreover,
come with strong tolerance-confidence guarantees (intro-
duced later), and scale well by leveraging SAT technology.

The popularity of WMC can be explained as follows. Its
formulation elegantly decouples the logical or symbolic
representation from the statistical or numeric one, which
is encapsulated in the weight function. When building
solvers, this allows us to reason about logical equivalence
and reuse SAT solving technology (such as constraint prop-
agation and clause learning). WMC also makes it more
natural to reason about deterministic, hard constraints in
a probabilistic context. Nevertheless, WMC has a funda-
mental limitation: it is purely Boolean. This means that the
advantages mentioned above only apply to discrete proba-
bility distributions.

To counter this, in a companion paper (Belle et al., 2015),
we proposed the notion of weighted model integration
(WMI). It is based on satisfiability modulo theories (SMT),

141

which enable us to, for example, reason about the satisfi-
ability of linear constraints over the rationals. The WMI
task is defined on the models of an SMT theory ∆, con-
taining mixtures of Boolean and continuous variables. For
every assignment to the Boolean and continuous variables,
the WMI problem defines a weight. The total WMI is com-
puted by integrating these weights over the domain of so-
lutions of ∆, which is a mixed discrete-continuous space.
Consider, for example, the special case when ∆ has no
Boolean variables, and the weight of every model is 1.
Then, the WMI simplifies to computing the volume of the
polytope encoded in ∆. Overall, weighted SMT theories
admit a natural encoding of hybrid Markov and Bayesian
networks, analogous to the encodings of discrete graphical
networks using weighted propositional theories.

In this work, we consider the problem of approximating
inference tasks for a probability distribution defined over
discrete and continuous random variables. Formulated as
a WMI task, we address the question as to whether fast
hashing-based approximate WMC solvers can be leveraged
for hybrid domains. What we show is that an NP-oracle
can indeed effectively partition the model counting solu-
tion space of the more intricate mixed discrete-continuous
case using universal hashing. (Of course, volume compu-
tation is still necessary, but often over very small spaces.)
In this sense, hybrid domains can now be put within reach
of approximate WMC solvers. In particular, the hashing
approach that we consider here builds on the recent work
of Chakraborty et al. (2014) on approximate WMC, and
inherits their tolerance-confidence guarantees. In our em-
pirical evaluations, the approximate technique is shown
to be significantly faster than an exact WMI solver. We
then demonstrate the practical efficacy of the system on a
complex real-world dataset where we compute conditional
queries over intricate arithmetic constraints that would be
difficult (or impossible) to realize in existing formalisms.

Let us finally mention that current inference algorithms
for hybrid graphical models often make strong assump-
tions on the form of the potentials, such as Gaussian dis-
tributions (Lauritzen and Jensen, 2001), or approximate
using variational methods (Murphy, 1999; Lunn et al.,
2000), for which quality guarantees are difficult to obtain.
There is also a recent focus on piecewise-polynomial po-
tentials (Shenoy and West, 2011; Sanner and Abbasnejad,
2012; Wang et al., 2014), which are based on generaliza-
tions of techniques such as the join-tree algorithm. Such
piecewise-polynomials can also be represented in the WMI
context, but in a general framework allowing arbitrary
Boolean connectives and deterministic hard constraints.

2 PRELIMINARIES

We begin with probabilistic models, and then turn to the
necessary logical background, WMC and WMI.

2.1 PROBABILISTIC MODELS

Let B and X denote sets of Boolean and real-valued ran-
dom variables, that is, b ∈ B is assumed to take val-
ues from {0, 1} and x ∈ X takes values from R. We let
(b, x) = (b1, . . . , bm, x1, . . . , xn) be an element of the prob-
ability space {0, 1}m × Rn, which denotes a particular as-
signment to the random variables from their respective do-
mains. We let the joint probability density function be de-
noted by Pr. So Pr(b, x) determines the probability of the
assignment vector. When these random variables are de-
fined by a set of dependencies, as can be represented using
an undirected graphical model (that is, Markov network),
the density function is compactly factorized. See Koller
and Friedman (2009) for details.

2.2 LOGICAL BACKGROUND

Propositional satisfiability (SAT) is the problem of decid-
ing whether a logical formula over Boolean variables and
logical connectives can be satisfied by some truth value as-
signment of the Boolean variables. Given a formula φ and
assignment (or model or world) M, we write M |= φ to
denote satisfaction. We write l ∈ M to denote the literals
(that is, propositions or their negations) that are satisfied at
M. We often writeM(φ) to mean the set of models of φ.

A generalization to this decision problem is that of Satisfi-
ability Modulo Theories (SMT). In SMT, we are interested
in deciding the satisfiability of a (typically quantifier-free)
first-order formula with respect to some decidable back-
ground theory T , such as linear arithmetic over the ratio-
nals (LRA). Standard first-order models can be used to
formulate SMT; see Barrett et al. (2009) for details. More-
over various background theories, like LRA and linear
arithmetic over the integers (LIA), can be combined. In
this paper we are interested in a combination of LRA and
propositional logic, for which satisfaction is defined in an
obvious way.

Our formulation will also use the concepts of formula ab-
straction and refinement (Barrett et al., 2009). Here, first, a
bijection is established between ground first-order atoms
and a propositional vocabulary; abstraction proceeds by
replacing the atoms by propositions, and refinement re-
places the propositions with the atoms. In the sequel, we
refer to the propositional abstraction of an SMT formula
φ as φ− and the refinement of φ as φ+. For example, if
∆ = (x ≤ 4) ∧ (x ≤ 5), then ∆− = p ∧ q where (say) p
denotes x ≤ 4 and q denotes x ≤ 5; also, q+ = x ≤ 5.

2.3 WEIGHTED MODEL COUNTING

Weighted model counting (Chavira and Darwiche, 2008) is
an extension of model counting (Gomes et al., 2009). In
model counting, also known as #SAT, one counts the num-
ber of satisfying assignments of a propositional sentence.

142

In WMC, each assignment has an associated weight and
the task is to compute the sum of the weights of all satis-
fying assignments. WMC has applications in probabilistic
inference in discrete graphical models.

Definition 1: Given a formula ∆ in propositional logic
over literals L, and a weight function w : L → R, the
weighted model count (WMC) is defined as:

WMC(∆,w) =
∑

M|=∆

w(M)

where, w(M) is shorthand for
∏

l∈M w(l).

Intuitively, the weight of a formula is given in terms of the
total weight of its models; the weight of a model is defined
in terms of the literals true in that model.

We are often interested in computing the probability of a
query q given evidence e in a Boolean Markov network N,
for which we use:

PrN(q | e) =
WMC(q ∧ e ∧ ∆,w)

WMC(e ∧ ∆,w)

where ∆ encodes N and w encodes the potentials; see, for
example, Chavira and Darwiche (2008).

2.4 WEIGHTED MODEL INTEGRATION

As noted before, an inherent limitation of WMC is that it
only admits the inference of discrete probability distribu-
tions. To remedy this, in a companion paper (Belle et al.,
2015), we introduced the notion of weighted model inte-
gration as a strict generalization of WMC. The main idea
here is to take a logical theory with rational and Boolean
variables, that is, from a combination ofLRA and proposi-
tional logic, and annotate it with weights. As before, propo-
sitional assignments are denoted using M.

Definition 2: Suppose ∆ is an SMT theory over Boolean
and rational variables B and X, and literals L. Suppose w :
L → EXPR(X), where EXPR(X) are expressions over X.
Then the weighted model integral (WMI) is defined as:

WMI(∆,w) =
∑

M|=∆−
VOL(M,w)

where, VOL(M,w) =

∫

{l+:l∈M}
w(M) dX.

The main feature of the definition is how it casts the
weighted model counting problem over SMT in standard
propositional logic. The intuition is as follows. The WMI
of an SMT theory ∆ is defined in terms of the models of
its propositional abstraction ∆−. For each such model, we
compute its volume, that is, we integrate the weight values
of the literals that are true at the model. The interval of

the integral is obtained from the refinement of each literal.1

The mathematical expression for conditional probabilities
is as before.

The general idea with EXPR(X) is that the weight function
maps an expression e to its density function, which is usu-
ally another expression mentioning the variables in e. We
note that the input language for a WMI task is easily seen to
capture constraints involving discrete and continuous ran-
dom variables over arbitrary Boolean connectives.

To see WMI in action, consider a simple example:

Example 3: Suppose ∆ is the following formula:

p ∨ (0 ≤ x ≤ 10)

For weights, let w(p) = .1, w(¬p) = 2x, w(q) = 1 and
w(¬q) = 0, where q is the propositional abstraction of (0 ≤
x ≤ 10). Roughly, this can be seen to say that x is uniformly
distributed when p holds and otherwise it is characterized
by a triangular distribution in the interval [0, 10]. There are
three models of ∆−, for which we calculate VOL(·,w):

1. VOL({p,¬q} ,w) = 0 because w(¬q) = 0;

2. VOL({¬p, q} ,w) =
∫

0≤x≤10 2x dx =
[
x2

]10

0
= 100.

3. VOL({p, q} ,w) =
∫

0≤x≤10 .1 dx = [.1 · x]10
0 = 1.

Thus, WMI(∆,w) = 100 + 1 = 101.

Suppose that we are interested in the probability of the
query x ≤ 3 given that ¬p is observed. Suppose r is the
abstraction of x ≤ 3. First, WMI(∆∧¬p,w) corresponds to
the weight of a single interpretation, that of item 2, yielding
a value of 100. Next, WMI(∆ ∧ ¬p ∧ x ≤ 3,w) also corre-
sponds to the weight of a single interpretation {¬p, q, r}, an
extension to that in item 2. In this case:

VOL({¬p, q, r} ,w) =

∫

(0≤x≤10)∧(x≤3)
2x dx =

[
x2

]3

0
= 9.

Therefore, the conditional probability is 9/100 = .09. �

1Although the interval is defined in terms of SMT literals, this
is meant to denote standard integrals in an obvious fashion:

∫

x≤6
φdx �

∫ 6

−∞
φdx;

∫

x≥6
φdx �

∫ ∞

6
φdx;

∫

5≤x≤6
φdx �

∫ 6

5
φdx

Likewise, over connectives:

∫

x≤6∧y≥5
φdxdy �

∫

x≤6

∫

y≥5
φdxdy.

When propositions appear as intervals, they are simply ignored.
See Belle et al. (2015) for the general definition.

143

The correctness of WMI and that it is a strict generalization
of WMC are argued elsewhere (Belle et al., 2015).2

Let us conclude this section by remarking that although
the definition of WMI is very general, for most practical
purposes, we restrict densities to piecewise polynomials,
where w maps L to polynomials over X. Such piecewise
polynomials can approximate a wide variety of continu-
ous distributions, including Gaussians (Shenoy and West,
2011; Sanner and Abbasnejad, 2012). Moreover, Baldoni
et al. (2011) show that for a fixed number of variables, the
integration is efficient, even for polynomials of increasing
degree. Thus, smooth function approximations are possible
in practice, and come at a reasonable cost.

3 APPROXIMATING WMI

In this section, we identify how to approximate WMI(∆,w)
for an arbitrary ∆ and non-degenerate (see below) w with
strong theoretical guarantees by appealing to a SAT-oracle.

3.1 PROBLEM STATEMENT FOR WMC

To better understand the problem statement, let us begin
with the case of WMC:

Definition 4: Given a propositional formula ∆ and a
weight function w, an exact algorithm for WMC returns
WMC(∆,w). An approximate algorithm for WMC given
tolerance ε ∈ (0, 1] and confidence 1 − δ ∈ (0, 1], simply
called an (ε, δ)-algorithm, returns a value v such that

Pr
[
WMC(∆,w)

1 + ε
≤ v ≤ (1 + ε)WMC(∆,w)

]
≥ 1 − δ

Intuitively, when the weight of every model is 1, an exact
algorithm returns the size of the setM(∆) = {M | M |= ∆}
while an approximate one samples from that solution
space. Exact algorithms are #P-hard (Valiant, 1979) but for
the approximate case random polynomial time realizations
are known (Jerrum et al., 1986; Karp et al., 1989).3

2In an independent and recent effort, Chistikov et al. (2015)
also introduce the notion of approximate model counting for SMT
theories. The most significant difference between the proposals is
that they focus only on unweighted model counting. Moreover,
they define model counting as a measure on first-order models.
Our approach is a simpler one based on propositional abstractions,
which (as we will see) allows us to cast statements for WMI as
WMC in a direct way.

3The class of (ε, δ)-algorithms that we are after follows the ter-
minology of Karp et al. (1989). These can be contrasted to bound-
ing counters only parameterized by confidence probabilities, such
as (Kroc et al., 2011).

3.2 PROBLEM STATEMENT FOR WMI

To see how the above notions apply to our task, consider an
SMT theory ∆ and weight function w. We observe that

WMI(∆,w) = WMC(∆−, u)

where, for any model M of ∆−, u is a weight function such
that u(M) = VOL(M,w). More precisely, u is to be seen as
a weight function that does not factorize over literals and
directly maps interpretations to R. (This is without any loss
of generality.) Thus, our problem statement becomes:

Definition 5: An (ε, δ)-algorithm for a WMI problem
over ∆ and w is an (ε, δ)-algorithm for WMC over ∆−

and weight function u, where for any model M of ∆−,
u(M) = VOL(M,w).

The idea is that by treating the volumes of models as
weights over propositional interpretations, we can view
WMI simply in terms of WMC. Theoretical results can
then be imported for our purposes.

Given an (ε, δ)-algorithm for WMC, there are two caveats,
however. First, weights of interpretations need to be actu-
ally computed using integration during inference, but (usu-
ally) over a small number of literals and their polynomial
potentials true in a model. Second, such an algorithm sam-
ples feasible satisfying assignments for ∆−, but these need
not be T -consistent. For example, if p denotes x ≤ 3 and
q denotes x ≤ 5, then the interpretation {p,¬q} is not a
model in LRA on refinement. In the formal machinery,
the weight of this model is easily seen to be 0 (that is, the
interval of the integral will be an empty set), and so these
models can freely appear in the problem statement. In prac-
tice, these theory inconsistency models are rejected in the
WMC calculation, and once found, the algorithm can be
made to refine its search of feasible solutions by incorpo-
rating these models as blocked clauses.

3.3 APPROACH

In sum, what we are after is an (ε, δ)-algorithm for
WMC(∆,w) for a propositional theory ∆ and weight func-
tion w. Consider classical model counting, that is, where
the weight of every model is 1, which is #P-hard. Bellare et
al. (2000) were the first to show that satisfying assignments
can be generated uniformly in random polynomial-time us-
ing only an NP-oracle (e.g., a SAT solver), improving and
complementing earlier results (Jerrum et al., 1986; Karp et
al., 1989; Stockmeyer, 1983). Adapting these techniques
further, Chakraborty et al. (2013a,b) introduce a scalable
approximate model counter. See Gomes et al. (2006) and
Ermon et al. (2013b) for closely related proposals.

144

3.3.1 Counting by Hashing

The central idea in Bellare et al. (2000) and Chakraborty et
al. (2013b) is the use of universal hash functions (Sipser,
1983):

Definition 6 : A family of functions H =

{h | {0, 1}n → {0, 1}m} is called uniform, written h
R←− H ,

if it holds that for any y ∈ {0, 1}n, the random variable h(y)
is uniformly distributed in {0, 1}m .

Definition 7 : A family of functions H =

{h | {0, 1}n → {0, 1}m} is called t-wise independent if it
holds that for any x1, . . . , xt ∈ {0, 1}m, any y1, . . . , yt ∈
{0, 1}n , and any h

R←− H , we have:

Pr
[
h(y1) = x1 ∧ . . . ∧ h(yt) = xt

]
= 2−m·t

For the sake of clarity, we denote this family asH(n,m, t).

Now, suppose x ∈ {0, 1}m and h
R←− H(n,m, t). Let h−1(x) =

{y ∈ {0, 1}n | h(y) = x} . Then, the idea is that for any propo-
sitional language over n variables, M(∆) ⊆ {0, 1}n and
x ∈ {0, 1}m , the set M(∆) ∩ h−1(x) partitions M(∆) into
a set of well-balanced cells, each one induced by a particu-
lar choice of h. Thus, by iterating over different samples of

h
R←− H(n,m, t), we can perform a small number of compu-

tations on the cells and leverage that as an estimate for the
solution space as a whole.

The work of Chakraborty et al. (2013b) uses an effi-
cient family of hash functions, denotedHxor(n,m, 3) below.

Given h
R←− H(n,m, 3) and y ∈ {0, 1}n , let h(y)[k] denote

the kth component of the vector obtained by applying h to
y, and y[k] denote the kth component of the string y. The
family of hash functions of interest is defined as

Hxor(n,m, 3) = {h | h(y)[i] = ai,0 ⊕ (
⊕n

l=1 ai,l · y[l]),
ai, j ∈ {0, 1}, 1 ≤ i ≤ m, 0 ≤ j ≤ n}

where ⊕ denotes the XOR operation. By choosing val-
ues of ai, j randomly and independently, we can effectively
choose a random hash function from the family. Gomes et
al. (2006) show that this family of hash functions is 3-wise
independent.

3.3.2 WMC by Hashing

As argued by Ermon et al. (2013a), the one major limitation
when applying approximate model counters for probabilis-
tic inference is that weights play an important role in deem-
ing which samples are interesting. Therefore, uniformly
sampling from M(φ) is not appealing, and would lead to
poor estimates of conditional probabilities. The approach
taken in Ermon et al. (2013a) is to reformulate the inference
task by an embedding for which uniform sampling suffices.

While this is an attractive option, it requires a factored rep-
resentation of the probability distribution and appeals to so-
lutions of optimization problems from a MPE query (that
is, finding the most likely state). In our setting, these re-
quirements are problematic. For one thing, note that even
if the original input problem uses a factored representation,
we only possess a WMC problem with a weight function
for interpretations that (possibly) lacks any structure. For
another, MPE queries will involve computing integrals (re-
call that weights are computed during inference) for a large
number of states, a task we would like to avoid unless nec-
essary.

Nonetheless, extending earlier results (Bellare et al., 2000;
Chakraborty et al., 2013b), Chakraborty et al. (2014)
(CFMSV henceforth) show how approximate model coun-
ters can be applied to weighted model counting problems
by means of a parameter called tilt.

Definition 8: Suppose ∆ is a propositional theory and w is
a weight function mappingM(∆) to strictly positive num-
bers. Let wmax = maxMw(M) and let wmin = minMw(M).
We define the tilt θ to be the ratio wmax/wmin.

For our purposes, we adapt the notion as follows:

Definition 9: Suppose ∆ is a SMT theory over literals
L and continuous variables X and w is a weight function
mappingL to EXPR(X). Let wmax = maxM VOL(M,w) and
let wmin = minM VOL(M,w). We define the tilt θ to be the
ratio wmax/wmin.

The idea is that in approximate model counting, the num-
ber of hash functions to sample (and thus, the number of
cells to construct ofM(∆)) is guided by the confidence pa-
rameter δ. In the approach of Chakraborty et al. (2014), the
tilt of a problem is used to additionally ensure that an ap-
propriate number of cells are constructed in the weighted
case. While the approach requires the modeler to provide
an upper bound on the tilt, the parameter is agnostic about
the form of the weight function, which is desirable in our
setting. Nonetheless, when the tilt is large (i.e., when the
weight of an interpretation is small relative to others), it
would mean that a large number of cells are constructed,
which may be inefficient, and alleviating this is an inter-
esting avenue for the future. In practice, the problems we
encountered had small tilts. (In our experimental evalua-
tions, an upper bound of 5-10 was provided for the tilt.)

3.4 ALGORITHM

Putting it all together, we present the pseudecode for WMI
computation. It can be seen as a simple reworking of
CFMSV to solve WMI.4 For the sake of completeness, we

4In that sentiment, we believe an important feature of our for-
mulation is that other WMC approaches can be adapted for WMI
along the same lines.

145

Algorithm 1 WeightMC(φ, u, ε, δ, θ)
1: wmax ← 1
2: pivot← 2 × de3/2

(
1 + 1

ε

)2e
3: iter← ⌈

35 log2(3/δ)
⌉

4: for i : 1, . . . , iter do
5: (M, c,wmax)←WeightMCCore(φ, u, pivot, θ,wmax)
6: store (c,wmax) if M , ∅
7: end for
8: return the median of c × wmax for stored tuples

Algorithm 2 WeightMCCore(φ, u, pivot, θ,wmax)
1: i← 0; vol← 0; n← number of variables in φ
2: repeat
3: i← i + 1
4: Choose h

R←− Hxor(n, i, 3)
5: Choose x

R←− {0, 1}i
6: (M, vol,wmax)← BoundedWeightSAT(φ, (h(b1, . . . , bn) =

x), u, pivot, θ,wmax)
7: until (0 < vol/wmax ≤ pivot or i = n)
8: if (vol/wmax > pivot orM = ∅) then return (∅, vol,wmax)
9: else return (M, vol · 2i−1/wmax,wmax)

10: end if

present the essential components of the CFMSV algorithm,
called WeightMC. Interested readers are referred to that
work for full details. First, given an SMT theory ∆, weight
function w, tolerance ε, confidence δ and an upper bound
on the tilt θ, we compute:5

WMI(∆,w, ε, δ, θ) = WeightMC(∆−, u, ε, δ, θ)

where u is the weight function mapping interpretations to
numbers and is calculated using:

u(M) = VOL(M,w).

The WeightMC procedure is given in Algorithm 1. Basi-
cally, the given parameters δ and ε are used to determine the
number of times WeightMCCore is invoked and the num-
ber of cells to induce on M(∆−), respectively. What the
procedure returns is the median of the volume estimates,
obtained from WeightMCCore over these iterations. For
any given iteration, if no model is found, then the estimates
from WeightMCCore are ignored.

The procedure WeightMCCore applied to a propositional
formula φ, detailed in Algorithm 2, partitions models of
φ into cells. This is achieved by choosing 3-wise inde-
pendent hash functions, and adding random parity con-
straints. The resulting logical formula is conjoined with

5CFMSV’s WeightMC procedure also includes a parameter
called the independent support of a propositional theory φ over
variables B. The support of φ is B, and the independent sup-
port I ⊆ B uniquely determine the truth values of variables from
B − I. By choosing hash functions only on the independent sup-
port, rather than the full set of variables in B, significant perfor-
mance improvements can be gained. But since this is inessential
to understanding the conceptual ideas of the algorithm, we omit
further discussion on this matter.

Algorithm 3 BoundedWeightSAT(φ, χ, u, pivot, θ,wmax)
1: wmin ← wmax/θ; vol← 0;M = ∅; γ = φ ∧ χ
2: repeat
3: M ← SolveSAT(γ)
4: if M = UNSAT then
5: break
6: end if
7: cons← Consistent(T , {l+ | l ∈ M})
8: if cons = INCONSISTENT then
9: φ← AddBlockClause(φ,M)

10: else
11: M←M∪ M
12: γ ← AddBlockClause(γ,M)
13: Cache[M]← u(M) if Cache[M] = {}
14: vol← vol + Cache[M]
15: wmin ← min(wmin,Cache[M])
16: end if
17: until vol/(wmin · θ) > pivot
18: return (M, vol,wmin · θ)

φ, for which BoundedWeightSAT is invoked. The num-
ber of iterations of BoundedWeightSAT is bound by the
number of propositional variables in φ, or when the cur-
rent tilt exceeds an ε-based parameter. Among other
things, BoundedWeightSAT returns the models of φ con-
joined with a random parity constraint, and unless this is
empty, volume estimates in WeightMCCore are returned
to WeightMC. Both WeightMCCore and WeightMC are
minor adaptations of the procedures from CFMSV in the
following sense: in the CFMSV modules, the weights are
directly used; for example, line 7 in Algorithm 2 would ex-
plicitly refer to u(M) =

∑
M∈M u(M). In our setting, com-

puting u(M) involves integration which we would not want
to repeat for every iteration. Thus, weights of (sets of) mod-
els are themselves returned when required. It is easy to see
that the analysis of these procedures is unaffected by this
adaptation.

Finally, we turn to BoundedWeightSAT in Algorithm 3,
where a more significant adaptation of the CFMSV scheme
occurs. First, one would observe that, different from
CFMSV, the parity constraint χ is provided separate from
the input formula (for reasons justified below). Nonethe-
less, the procedure essentially performs a bounded version
of model counting on γ = φ∧ξ, as would CFMSV, where a
(θ, ε)-derived parameter determines this bound. As soon as
no model is found, the procedure exits with the current es-
timates. If a model M is found, however, unlike CFMSV,
we need to additionally ensure the refinement of this as-
signment is consistent w.r.t. the background theory T . If it
is not T -consistent, then we can prevent this model from
being considered for all iterations by adding it as a block
clause to our input propositional formula φ. (Recall also
that such a model would have zero volume, leading to an
infinite tilt if it were to be considered.) On the other hand, if
it is theory consistent, we compute its volume and then add
it as a block clause to γ. (This achieves the model counting
of γ.) In particular, we calculate u(M) = VOL(M,w) where

146

w is the actual weight function from the WMI problem, and
cache this result. So, integration is performed only once for
the model M. The procedure then returns the total volume
of the set of modelsM identified.

What is perhaps interesting to realize of this adaptation of
CFMSV is that it also does not affect the analysis of the
procedures. Note that, if the problem instance is a propo-
sitional theory, then ∆− = ∆, and line 7 of Algorithm 3
is trivially true because T is propositional logic. Conse-
quently, the test in line 8 is trivially false. More formally:

Proposition 10: Suppose φ is a propositional formula, u is
a weight function, ε, δ ∈ (0, 1], and θ is an upper bound on
the tilt. Then WeightMC(φ, u, ε, δ, θ) from CFMSV’s origi-
nal formulation returns c iff the current adaptation does.

This allows us, very easily, to leverage the strong guaran-
tees of CFMSV (our rewording):

Theorem 11: [CFMSV] Suppose φ, u, ε, δ, θ are as above.
Then WeightMC(φ, u, ε, δ, θ) is an (ε, δ)-algorithm for
WMC(φ, u).Given a SAT-oracle, it runs in time polynomial
in log2(1/δ), θ, |φ| and 1/ε relative to the oracle.

From which we obtain:

Corollary 12: Suppose ∆ is an SMT theory, w is a weight
function, and ε, δ, θ are as above. Suppose u is the derived
weight function for ∆−. Then, WeightMC(∆−, u, ε, δ, θ) is
an (ε, δ)-algorithm for WMI(∆,w). Suppose we are given
an oracle to the weight function u and a SAT-oracle.
Then, WeightMC(∆−, u, ε, δ, θ) runs in time polynomial in
log2(1/δ), θ, |∆−| and 1/ε relative to the oracles.

Thus, we can inherit existing results for this WMC solver
(and perhaps others). The oracle to u computes the vol-
umes ofT -consistent models. Each instance of VOL(M,w)
involves the following (Belle et al., 2015):

Proposition 13: Suppose ∆ is an SMT theory over continu-
ous variables X, M a model of ∆−, and w is as above. Let k
be the maximum degree of the polynomials in {w(l) | l ∈ M}.
Then VOL(M,w) integrates polynomials of degree k · |M|.
Basically, for any model M of ∆−, VOL(M,w) is formu-
lated as the integration of the polynomial potentials of the
literals true at M, which would be a product of |M| polyno-
mials, each of degree k. As mentioned earlier, Baldoni et
al. (2011) show that when the number of variables is fixed
(as determined by |X|), integration is efficient. In prac-
tice, moreover, when encoding factored representations and
piecewise polynomials, it is often the case that negated
atoms are assigned constant weights and so we encounter
polynomials of degree k · n where n � |M|. In essence,
what we usually encounter are a small number of polyno-
mial potentials corresponding to atoms that are true in the
model.

4 EMPIRICAL EVALUATIONS

In this section, we discuss results on an implementation of
the approximate inference system. The inference system
builds on an implementation of WeightMC from CFMSV,
which uses CryptoMiniSAT v2 to handle XOR clauses ef-
ficiently.6 The BoundedWeightSAT module appeals to the
Z3 SMT solver v4.3.2 for testing theory consistency,7 and
the LattE software v1.6 for computing integrals.8 All ex-
periments were run using a system with 1.7 GHz Intel Core
i7 and 8GB RAM. Moreover, to maintain consistency with
CFMSV and their parameterization, experiments were run
for ε = .8, δ = .2 and θ was assumed to be 5.

100 101 102 103 104 105 106 107 108 109 1010 1011

Model count

10-1

100

101

102

103

T
im

e
 (

se
co

n
d
s)

Approx WMC
Exact WMC
Approx WMI
Exact WMI

Figure 1: scaling behavior

4.1 SCALING BEHAVIOR

In large domains over arbitrary polynomial potentials, ap-
proximate inference can be assumed to offer significant
savings. To test this, we used a benchmark from our prior
work (Belle et al., 2015). In that work, we randomly gen-
erated SMT theories and weight functions, involving in-
tricate dependencies and hard constraints. These included
weighted sentences of the form:

x3 f1 ⇔ [x + 3y ≤ 3]

.001y2 − .11y + 2.5 f2 ⇔ [p ∨ (x ≥ 0 ∧ y ≥ 0)]
.1 f3 ⇔ (¬p ∨ ¬q)

(that is, the LHS is the weight function for the expression
in the RHS) with additional hard constraints of the sort:

(f1 ∧ f2)⇒ ¬ f3.

In our prior work, an exact WMI solver was implemented
using a block-clause strategy: in each iteration, if a theory-
consistent model is found, a clause over the negations of

6
http://www.msoos.org/cryptominisat2/

7
http://z3.codeplex.com

8
https://www.math.ucdavis.edu/∼latte

147

(a) at most 2 junctions

(b) at most 3 junctions

Figure 2: Strategic Road Network portions surrounding
motorway A6.

the literals in the assignment is added as an additional con-
straint, and in this way, all models are enumerated. Using
the above benchmark weighted SMT theories, we plot the
approximate WMI system against the exact WMI imple-
mentation. To further contrast this to the simpler setting
of classical propositional logic, we also ran experiments
for an exact WMC and the approximate WMC of CFMSV
for the input problem ∆− (that is, the propositional abstrac-
tion). Figure 1 illustrates that for small problems, exact
computations are usually faster, both in the propositional
and SMT setting, the former observation already reported
in CFMSV. In large domains, however, exact WMC al-
ready fares poorly against the approximate version, and in
the WMI setting, exact computations become infeasible,
and cannot compete with the approximate module for in-
creasing problem sizes.

4.2 REAL-WORLD DATASET

To demonstrate the expressivity and usefulness of the ap-
proach in a complex real-world scenario, we consider the
following novel application involving conditional queries
over arithmetic constraints. It uses a data series released
by the UK government that provides average journey time,

speed and traffic flow information on all motorways, known
as the Strategic Road Network, in England.9 Motorways
are split into junctions, and each information record refers
to a specific junction, day and time period. In the follow-
ing we consider the 2012 dataset, with over 7 million en-
tries, and focus on the surroundings of the A6 motorway.
Figures 2a and 2b show the portion of the network with at
most two and three junctions respectively from A6. We ex-
tract statistics on journey time across each junction. For
the sake of simplicity, we model a junction’s journey time
as a uniform distribution between the observed minimum
and maximum travel time.

Consider a planning problem for a supply system for mo-
torway service stations. The operations center (located,
say, somewhere along A6) receives supply requests from
a number of stations, and needs to predict whether the de-
livery vehicle will be able to reach all stations and return
within a certain amount of time. Travel time between ev-
ery pair of stations, and between stations and the opera-
tions center, is computed in terms of shortest paths across
the network. We compute shortest paths for both minimum
and maximum travel times, so as to get a distribution for
the shortest path duration w.r.t. every pair of relevant points
(stations and operations center), which, as noted, is uni-
form between these two extremes. Given a certain route
between stations, the probability of completing it within
the desired time can be computed by integrating over travel
time distributions between consecutive stops. However, the
optimal route can not be fixed a-priori (as in standard TSP
problems), as the vehicle also performs deliveries between
stations and to the center, depending on the current needs.
These deliveries enforce various constraints on the allowed
routes. The overall probability is thus obtained by sum-
ming over all valid routes, given the known constraints.

Consider, for example, the case in which stations at A14,
A1304, A43, and A5199 need to be visited before returning
to the operations center. Figure 2a depicts this case, show-
ing the portion of the network with at most two junctions
away from A6. (The nodes to be visited are colored green.)
The probability of beginning from the operations center at
8 a.m. and completing the route by 9 a.m., considering all
possible paths, is:

Pr(T < 3600) = 0.765,

computed using the approximate WMI module, where T is
the overall time measured in seconds. Now suppose a con-
straint says that station A14 should be reached only after
visiting A1304 (owing to a delivery request between these
two stations). The probability then needs to be updated
according to this evidence, which rules out part of the pos-
sible routes. Nonetheless, the probability of completing the
task is almost unchanged:

Pr(T < 3600 | tA14 > tA1304) = 0.770,
9
http://data.gov.uk/dataset/dft-eng-srn-routes-journey-times

148

0
100
200
300
400
500
600

0
100
200
300
400
500
600

0 1 2 3 4 5 6
Constraints

0
100
200
300
400
500
600

T
im

e
 (

se
co

n
d
s)

(a) time

50

100

150

200

250

50

100

150

200

250

0 1 2 3 4 5 6
Constraints

50

100

150

200

250

P
ro

b
le

m
 s

iz
e

(b) problem size

0
10
20
30
40
50
60
70
80

0
10
20
30
40
50
60
70
80

0 1 2 3 4 5 6
Constraints

0
10
20
30
40
50
60
70
80

V
o
lu

m
e
 c

a
lls

(c) volume computations

Figure 3: Probabilistic reasoning about the Strategic Road Network surrounding motorway A6. Figures 3a-3c plot cycle
lengths of 5 (dotted red), 6 (finely dotted blue) and 7 (solid green), relating constraints to time, problem size and volume
computations respectively.

where the minor increase is due to some slightly subopti-
mal routes being disallowed. Suppose further an additional
constraint specifies that station A1304 should not be visited
before 8:30 a.m. (say, because the package to deliver will
not be available until then). This additional evidence brings
success probability down to:

Pr(T < 3600 | tA14 > tA1304 ∧ tA1304 ≥ 1800) = 0.557.

Finally, suppose a last constraint were to require the station
A5199 to be also visited after 8:30 a.m. (say, when a pack-
age to be delivered to the operations center will be made
available). This additional constraint makes it infeasible to
complete the route in the required time:

Pr(T < 3600 | tA14 > tA1304 ∧
tA1304 ≥ 1800 ∧ tA5199 ≥ 1800) = 0.

Note that for such carefully constructed small-size prob-
lems in the 2-neighborhood case, exact and approximate
procedures return the very same results in about the same
time. (The exact procedure, however, quickly becomes in-
feasible for increasing cycle lengths.)

Using this example, which is to be seen as a cycle of
length 5: A6−A14−A1304−A43−A5199−A6, as a tem-
plate we randomly generated a number of test problems on
the more complex 3-neighborhood setting, and plot an ex-
cerpt on extensive results on the dataset. These test prob-
lems are diverse in their modeling power: ranging from
inequality constraints (e.g., tA5199 ≥ 1800) to ordering con-
straints (e.g., A5199 after A1304), and Boolean combina-
tions thereof, often leading to more than 300 complex SMT
formulas. (Intuitively, if a SMT formula has n SMT lit-
erals, these can possibly denote joint piecewise potentials
of n continuous random variables.) The figures depict the
behaviors for cycles of length 5, 6 and 7, ordered by con-
straints against the time taken, the problem size (which is
the number of complex SMT formulas in the theory), and
the number of calls of VOL(·, ·). Besides demonstrating the

scalability of approximate WMI in such a setting, one also
observes that while additional constraints increases the size
of the theory, and thus, the number of random variables
and volume computations, the time taken for conditional
queries does not necessarily increase because suboptimal
paths are eliminated (and so, marginalization is easier). To
the best of our knowledge, a probabilistic inference system
for hybrid specifications against intricate Boolean combi-
nations of propositional and arithmetic constraints has not
been deployed on such a scale previously.

5 CONCLUSIONS

We introduced a novel way to leverage a fast hashing-based
approximate WMC methodology for inference with dis-
crete and continuous random variables. On the one hand,
SAT technology can now be exploited in challenging infer-
ence and learning tasks in hybrid domains. On the other,
strong tolerance-confidence guarantees can be inherited in
this more complex setting. WMI and weighted SMT theo-
ries allow a natural encoding of hybrid graphical networks
while also admitting the specification of arithmetic con-
straints in conditional queries, all of which are difficult to
realize in traditional representations. We demonstrated its
practical efficacy in a complex novel application, and we
believe, in general, the ideas of our approach would put
hybrid domains within the reach of other WMC solvers.

Acknowledgements

The authors thank Kuldeep Meel for helpful discus-
sions. Vaishak Belle is partially funded by the Research
Foundation-Flanders (FWO-Vlaanderen) project on Data
Cleaning and the KU Leuven GOA on Declarative Mod-
eling for Mining and Learning. Guy Van den Broeck is
supported by the Research Foundation-Flanders.

149

References

Velleda Baldoni, Nicole Berline, Jesus De Loera, Matthias
Köppe, and Michèle Vergne. How to integrate a polynomial
over a simplex. Mathematics of Computation, 80(273):297–
325, 2011.

Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare
Tinelli. Satisfiability modulo theories. In Armin Biere, Marijn
J. H. Heule, Hans van Maaren, and Toby Walsh, editors, Hand-
book of Satisfiability, chapter 26, pages 825–885. IOS Press,
2009.

Mihir Bellare, Oded Goldreich, and Erez Petrank. Uniform gen-
eration of NP-witnesses using an NP-oracle. Information and
Computation, 163(2):510 – 526, 2000.

Vaishak Belle, Andrea Passerini, and Guy Van den Broeck. Prob-
abilistic inference in hybrid domains by weighted model inte-
gration. In IJCAI, 2015.

Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. A
scalable and nearly uniform generator of SAT witnesses. In
CAV, pages 608–623, 2013.

Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. A
scalable approximate model counter. In CP, pages 200–216,
2013.

Supratik Chakraborty, Daniel J Fremont, Kuldeep S Meel, San-
jit A Seshia, and Moshe Y Vardi. Distribution-aware sampling
and weighted model counting for SAT. AAAI, 2014.

Mark Chavira and Adnan Darwiche. On probabilistic inference
by weighted model counting. Artificial Intelligence, 172(6-
7):772–799, April 2008.

Mark Chavira, Adnan Darwiche, and Manfred Jaeger. Compiling
relational Bayesian networks for exact inference. International
Journal of Approximate Reasoning, 42(1-2):4–20, May 2006.

Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar. Ap-
proximate counting in SMT and value estimation for proba-
bilistic programs. In TACAS, volume 9035 of LNCS, pages
320–334. Springer Berlin Heidelberg, 2015.

Arthur Choi, Doga Kisa, and Adnan Darwiche. Compiling prob-
abilistic graphical models using sentential decision diagrams.
In Symbolic and Quantitative Approaches to Reasoning with
Uncertainty, pages 121–132. Springer, 2013.

Adnan Darwiche. New advances in compiling CNF to decom-
posable negation normal form. In Proceedings of ECAI, pages
328–332, 2004.

Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, and Bart Sel-
man. Embed and project: Discrete sampling with universal
hashing. In NIPS, pages 2085–2093, 2013.

Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, and Bart Sel-
man. Taming the curse of dimensionality: Discrete integration
by hashing and optimization. In ICML, pages 334–342, 2013.

Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, and Bart Sel-
man. Low-density parity constraints for hashing-based discrete
integration. In ICML, pages 271–279, 2014.

Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shte-
rionov, Bernd Gutmann, Ingo Thon, Gerda Janssens, and Luc
De Raedt. Inference and learning in probabilistic logic pro-
grams using weighted Boolean formulas. Theory and Practice
of Logic Programming, 2013.

Vibhav Gogate and Pedro Domingos. Probabilistic theorem prov-
ing. In UAI, pages 256–265, 2011.

Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Near-
uniform sampling of combinatorial spaces using XOR con-
straints. In NIPS, pages 481–488, 2006.

Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Model
counting. In Armin Biere, Marijn J. H. Heule, Hans van
Maaren, and Toby Walsh, editors, Handbook of Satisfiability,
chapter 20. IOS Press, 2009.

Mark R Jerrum, Leslie G Valiant, and Vijay V Vazirani. Random
generation of combinatorial structures from a uniform distribu-
tion. Theor. Comput. Sci., 43(2-3):169–188, 1986.

Richard M. Karp, Michael Luby, and Neal Madras. Monte-carlo
approximation algorithms for enumeration problems. J. Algo-
rithms, 10(3):429–448, 1989.

D. Koller and N. Friedman. Probabilistic graphical models: prin-
ciples and techniques. MIT press, 2009.

Lukas Kroc, Ashish Sabharwal, and Bart Selman. Leveraging
belief propagation, backtrack search, and statistics for model
counting. Annals OR, 184(1):209–231, 2011.

Steffen L Lauritzen and Frank Jensen. Stable local computation
with conditional gaussian distributions. Statistics and Comput-
ing, 11(2):191–203, 2001.

David J Lunn, Andrew Thomas, Nicky Best, and David Spiegel-
halter. Winbugs – a Bayesian modelling framework: con-
cepts, structure, and extensibility. Statistics and computing,
10(4):325–337, 2000.

Christian Muise, Sheila A McIlraith, J Christopher Beck, and
Eric I Hsu. Dsharp: fast d-DNNF compilation with sharpSAT.
In Advances in Artificial Intelligence, pages 356–361. Springer,
2012.

Kevin P Murphy. A variational approximation for Bayesian net-
works with discrete and continuous latent variables. In UAI,
pages 457–466, 1999.

Tian Sang, Paul Beame, and Henry A Kautz. Performing
Bayesian inference by weighted model counting. In AAAI, vol-
ume 5, pages 475–481, 2005.

Scott Sanner and Ehsan Abbasnejad. Symbolic variable elimina-
tion for discrete and continuous graphical models. In AAAI,
2012.

Prakash P Shenoy and James C West. Inference in hybrid
Bayesian networks using mixtures of polynomials. Inter-
national Journal of Approximate Reasoning, 52(5):641–657,
2011.

Michael Sipser. A complexity theoretic approach to randomness.
In STOC, pages 330–335. ACM, 1983.

Larry Stockmeyer. The complexity of approximate counting. In
STOC, pages 118–126, New York, NY, USA, 1983. ACM.

Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch.
Probabilistic databases. Synthesis Lectures on Data Manage-
ment, 3(2):1–180, 2011.

Leslie G Valiant. The complexity of enumeration and reliability
problems. SIAM Journal on Computing, 8(3):410–421, 1979.

Guy Van den Broeck, Nima Taghipour, Wannes Meert, Jesse
Davis, and Luc De Raedt. Lifted probabilistic inference by
first-order knowledge compilation. In IJCAI, pages 2178–
2185, 2011.

Shenlong Wang, Alexander G. Schwing, and Raquel Urtasun.
Efficient inference of continuous Markov random fields with
polynomial potentials. In NIPS, pages 936–944, 2014.

150

Bayesian Network Learning with Discrete Case-Control Data

Giorgos Borboudakis
Comp. Sci. Dept., University of Crete
Institute of Computer Science, FORTH

Ioannis Tsamardinos
Comp. Sci. Dept., University of Crete
Institute of Computer Science, FORTH

Abstract

We address the problem of learning Bayesian
networks from discrete, unmatched case-control
data using specialized conditional independence
tests. Those tests can also be used for learn-
ing other types of graphical models or for fea-
ture selection. We also propose a post-processing
method that can be applied in conjunction with
any Bayesian network learning algorithm. In
simulations we show that our methods are able to
deal with selection bias from case-control data.

1 INTRODUCTION

Most Bayesian network learning algorithms assume i.i.d.
data. In many studies, such as case-control studies, this
not the case. In case-control studies data are selected
based on one or multiple variables, usually using a com-
parable number of samples from different values of those
variables, leading to non i.i.d. data. Such data are also
called artificially balanced in the machine learning liter-
ature. Case-control sampling is often used in epidemio-
logical or biomedical studies [Breslow, 1996], particularly
when studying a disease that is relatively rare. Their goal
is usually to identify differences between patients (cases)
and healthy individuals (controls), such as identifying dif-
ferentially expressed genes between the two groups from
gene expression data. Case-control sampling is especially
important when cases are very rare, as much fewer samples
have to be collected compared to cross-sectional studies,
significantly reducing the time and cost for obtaining the
data.

We address the problem of learning Bayesian networks
from discrete case-control data. This is challenging be-
cause case-control data do not necessarily represent a sam-
ple from the general population. In general, non i.i.d.
sampling may lead to selection bias, which could alter
the (conditional) independence relations in the data; case-

control sampling is a special case of such sampling. Be-
cause of that, one cannot usually use methods designed for
i.i.d. data.

To the best of our knowledge, there has been only one
previous approach to learn Bayesian networks from case-
control data by Cooper [2000]. The idea is to use a
Bayesian method to integrate over all possible values for
all non-sampled cases and controls, assuming that those
numbers are known a priori. This method is very imprac-
tical, mainly due to its high computational cost. There is a
vast literature on methods for case-control data ([Rothman
et al., 2008] contains a review of many methods, as well
as relevant references) but they are mostly concerned with
modeling the outcome (on which selection is based on),
and thus are not applicable for modeling other measured
variables or for Bayesian network learning.

Learning from case-control data is important for the fol-
lowing reasons. First, a lot of case-control datasets have ac-
cumulated over the years and such methods could be used
to identify novel associations or possibly even causal re-
lations. For instance, the NCBI GEO database contains
thousands of biological datasets [Edgar et al., 2002, Barrett
et al., 2013], many of which stem from case-control studies.
In addition, this would allow co-analysis of data collected
under different experimental designs. Currently, there exist
several methods for learning causal networks from multi-
ple heterogeneous datasets [Cooper and Yoo, 1999, Tillman
and Spirtes, 2011, Hyttinen et al., 2013, Triantafillou and
Tsamardinos, 2014]. Those methods are able to use obser-
vational and experimental i.i.d. data. Extending them for
other types of data, such as case-control data, is a natural
next step.

In this paper we define the problem and show the implica-
tions of case-control sampling on the observed independen-
cies. We propose different conditional independence tests
for discrete data, as well as a post-processing method that
can be used with any Bayesian network learning algorithm.
Finally, we investigate the behavior of our methods in var-
ious, simulated experiments and show that they are able to
handle selection bias from case-control data.

151

2 PRELIMINARIES

We will briefly introduce the basic theory and notation used
throughout the paper. Interested readers may refer to Pearl
[2000] or Spirtes et al. [2000].

We use upper-case and lower-case letters to refer to ran-
dom variables (e.g. X) and values of those variables (e.g.
x), and bold letters to refer to sets of variables or values.
Let V be a set of random variables. A Bayesian Network
(BN) over V is a pair B = ⟨G,P⟩, where G is a Directed
Acyclic Graph (DAG) representing conditional indepen-
dencies between variables V, and P is the joint probability
distribution of V. We will use the terms variable and node
interchangeably. The graph and distribution are connected
through the Markov Condition: a variable is condition-
ally independent of all its non-descendants given its par-
ents. The skeleton GS of a BN G is the undirected graph
which can be constructed by ignoring the orientations of
G. A triple of nodes ⟨X, Y, Z⟩ is called a collider in G,
if X → Y ← Z is in G. Two variables X and Y are d-
separated given a (possibly empty) set of variables Z if
and only if for all paths between X and Y one of the fol-
lowing is true: (a) there is a collider U → V ← W on that
path and neither V nor any of its descendants is in Z, or (b)
there is a consecutive triple ⟨U, V, W ⟩ that is not a collider
and V is in Z. If X and Y are not d-separated given Z
they are d-connected. We assume the Faithfulness Con-
dition that (together with the Markov Condition) implies
that there is a d-connecting path between X and Y given
Z, if and only if X and Y are statistically dependent given
Z. We denote conditional dependence and independence
of two variables X and Y given Z as Dep(X; Y |Z) and
Ind(X;Y |Z) respectively.

3 PROBLEM DEFINITION

In this work we consider discrete data from unmatched
case-control studies. In unmatched studies samples are as-
sumed to be sampled in an i.i.d. fashion from the respec-
tive subpopulations. We assume that the data have been
selected based on a set of measured variables T; we will
call those variables selection variables. In case T contains
only a single variable, we will refer to it as T . We denote
with S a binary variable that indicates whether a sample
has been selected or not. In our case, we assume that S
only depends on T; their relation can be modeled by nodes
with directed edges from each T to S.
Assumption 1. S depends only on T and all variables in
T have been measured.

Case-control sampling induces a type of selection bias.
Selection bias arises if samples are less probably to be
sampled based on some criteria. When analyzing such
data it may happen that spurious dependencies are iden-
tified which do not exist in the general population, but are

Figure 1: Conditioning on S = 1 introduces a spurious
dependence between X and Y .

due to the selection process. The reason for that is that
the data D are collected from the conditional distribution
P (D|S = 1). Consider the example shown in Figure 1. Al-
though X and Y are independent in the general population,
a naive analysis that does not account for the sampling pro-
cess would identify a spurious dependence between them.
This happens because the data are selected conditional on
S = 1, d-connecting X and Y through T , as S is a descen-
dant of T and T is a collider on the path X → T ← Y .

The question is if and when it is possible to estimate the
joint probability distribution of a set of variables X in the
general population, P (X), from data collected with case-
control sampling, that is following P (X|S = 1). Barein-
boim et al. [2014] address the general problem of recover-
ability of conditional distributions when data are collected
under selection. They show that the conditional distribu-
tion P (Y |X) is not recoverable when data are collected
with case-control sampling. This result can be trivially ex-
tended to the case of estimating the joint distribution of a
set of variables. Fortunately, they show that it is possible to
recover the population distribution if the joint distribution
of T is known. Then, P (X) can be estimated as follows.

P (X) =
∑

t

P (X|T = t)P (T = t)

=
∑

t

P (X|T = t, S = 1)P (T = t)
(1)

The second equality follows by Assumption 1. The con-
ditional probability P (X|T = t, S = 1) can be directly
estimated fromD. Thus, in order to estimate P (X) for any
set of variables we only need the joint probability distribu-
tion of T in the general population. This could either be
provided as prior knowledge by a domain expert or from
the literature, or estimated from an external data source.

Assumption 2. The joint probability distribution of T in
the general population is known.

Notice that there are cases where the equality P (X) =
P (X|S = 1) holds. For example, if none of the variables
in X is dependent with T, P (X) can be directly estimated
from D. We will further investigate the conditions under
which this holds in the next section.

152

We conclude with some comments on our assumptions.
Assumption 1 is reasonable and probably holds for most
case-control studies. In case it is violated additional spuri-
ous dependencies may be introduced. Regarding Assump-
tion 2: although it may be restrictive in some cases, prior
information about the joint distribution is often available.
In fact, many methods for analyzing case-control data re-
quire such prior information. For example, in logistic re-
gression models for an outcome that has been selected on
(e.g. disease), such knowledge is necessary in order to es-
timate the intercept of the model, although it is not needed
in order to estimate the remaining parameters [Breslow and
Day, 1980].

4 IMPLICATIONS OF CONDITIONING
ON S

In the previous section we saw an example where condi-
tioning on S = 1 introduces a spurious dependence. Next,
we will further investigate how the dependencies and inde-
pendencies are affected after conditioning on S = 1. Most
of those results are based on previous results by Spirtes
et al. [2000] (see Section 9.3). Those results are general,
allowing for S do be in any position in the graph. We
will show their consequences for the special case of case-
control sampling.

First we investigate whether conditioning on S = 1 re-
moves any dependencies that exist in the general popula-
tion. Spirtes et al. [2000] have characterized all situations
where this happens.

Corollary 1 (Adapted from [Spirtes et al., 2000]). If
Dep(X;Y |Z), then Ind(X;Y |Z, S = 1) holds if and only
if there exists a path U between X and Y such that (a)
every collider on U has a descendant in Z, (b) no non-
collider in U is in Z, and (c) S is a non-collider on every
such path.

In our case there is no such path because the third condition
can never be satisfied, as S does not have any outgoing
edges. Because of that, S can only be a collider on all such
paths. Therefore, conditioning on S = 1 does not remove
any dependencies.

The next corollary characterizes the cases where a condi-
tional independence may turn into a dependence.

Corollary 2 (Adapted from [Spirtes et al., 2000]). If
Ind(X;Y |Z), then Dep(X;Y |Z, S = 1) holds if and only
if there exists a path U between X and Y such that (a) no
non-collider on U is in Z ∪ {S}, (b) every collider on U
has a descendant in Z ∪ {S}, and (c) some collider on U
does not have a descendant in Z.

Based on this result, we will characterize all cases where a
spurious dependence will appear in the graph after condi-
tioning on S = 1 that cannot be removed by conditioning

on any set of variables. We proceed by stating and proving
the result.

Theorem 1. Let X,Y be two variables. If
∃Z Ind(X; Y |Z), then ∀Z′ Dep(X; Y |Z′, S = 1)
holds if and only if there is a node W such that (a)
X →W ← Y , and (b) W = S or W is an ancestor of S.

Proof.
Sufficiency: Follows trivially, as conditioning on S d-
connects X and Y through W .

Necessity: We will show this by contradiction. Assume
that there is no W satisfying both conditions. From
Corollary 2 we know that for some Z satisfying both
Ind(X;Y |Z) and Dep(X; Y |Z, S = 1), there is a path
U between X and Y with at least one collider V on U that
is also an ancestor of S. The only case were this holds is if
there is at least one node between X and V or Y and V on
U . But then at least one of those nodes has to be a noncol-
lider and we could d-separate X and Y by conditioning on
any such noncollider, contradicting our assumptions.

In words, this theorem characterizes all cases where two
variables X and Y can be d-separated in the population
graph, but cannot d-separated by any set after conditioning
on S. We will later use this to learn Bayesian networks
from case-control data.

5 CONDITIONAL INDEPENDENCE
TESTING

As we saw in the previous section, conditioning on S may
introduce spurious dependencies in the data. Because of
that, one cannot use independence tests designed for i.i.d.
data. In this section we will describe various conditional
independence tests for case-control data.

5.1 TEST STATISTIC

As a test statistic we consider the conditional mutual infor-
mation (CMI) I(X; Y |Z), which is defined as:

I(X; Y |Z) =
∑

x,y,z

P (x, y, z) log
P (x, y, z)P (z)

P (x, z)P (y, z) (2)

Assuming that we know the distribution of T, we can use
Equation 1 to compute I(X; Y |Z) for any variables X , Y
and Z. For the case of i.i.d. data the CMI is closely related
to the G-statistic used by the G-test:

G(X; Y |Z) = 2 ·N · I(X; Y |Z) (3)

153

where N is the sample size. Under the null hypothesis
this statistic is asymptotically χ2 distributed with (|X| −
1)(|Y | − 1)|Z| degrees of freedom.

Unfortunately, the G-test cannot be trivially applied to
case-control data. Intuitively, the reason is that N case-
control samples are not always equivalent to N samples
from an i.i.d. dataset. We will show the intuition behind
this with an example 1.

Example 1. Assume that T contains a single binary vari-
able T and we sample N = 1000 samples, 500 for each
value of T , and that P (T = 0) = 0.2. The proba-
bility of X given by Equation 1 is P (X) = P (X|T =
0) ·0.2+P (X|T = 1) ·0.8. If we use N as our sample size,
we essentially assume that we have estimated P (X|T = 0)
and P (X|T = 1) using 200 and 800 samples respectively
even though we used 500 for each of them. As a result, we
overestimate and underestimate the variance in the esti-
mation of P (X|T = 1) and P (X|T = 0) respectively,
which can lead to false results.

Next we consider various strategies to deal with this.

5.2 UNDERSAMPLING

The trivial approach is to use a subset of the samples such
that the proportion of values of T in the resulting dataset
coincides with the distribution of T. For Example 1 we
could use 125 samples with T = 0 and 500 samples with
T = 1, as 125/625 = 0.2 and 500/625 = 0.8, and perform
a standard independence test. In general, one can use at
most N = min

t
N(T = t)/P (T = t) samples, where

N(T = t) is the number of samples with T = t (proof
omitted).

There are several downsides to this approach. First, un-
dersampling often ignores a significant amount of samples
(375 in the previous example), possibly reducing the power
of the test. Second, the result may vary a lot, depending on
the selected samples. One possibility to reduce this vari-
ance is to create multiple datasets by undersampling, per-
form a test on each such dataset and combine the results
somehow (e.g. taking the median p-value). Finally, under-
sampling may be problematic if the marginal distribution
of T contains extreme values. In the previous example, if
P (X|T = 0) was 0.01, only 5 samples with T = 0 could
be used to (approximately) satisfy the marginals. In prac-
tice, those values will often be even more extreme.

5.3 A PERMUTATION TEST

Permutation tests are non-parametric procedures for statis-
tical significance testing. The basic idea is that, under the

1We have also conducted several, anecdotal simulations which
confirm this problem.

null hypothesis, one can permute the data in an appropri-
ate way to generate another, permuted dataset. Specifically,
for a permutation test to be exact, the permutation has to
be performed in a way that preserves the distribution of
the observations under the null hypothesis [Good, 2004].
Then, the test statistic computed on that dataset is a sample
from its null distribution. Because the number of all permu-
tations is usually astronomically large, making complete
enumeration infeasible, one usually resorts to Monte Carlo
approximations that sample a relatively small number of
permutations (usually between 1000 and 10000). The p-
value is computed as the proportion of permutation statis-
tics that are at least as extreme as the statistic on the original
data.

Permutation Testing for Discrete Data. For conditional
independence testing the null hypothesis is that X and Y
are conditionally independent given Z. This means that
conditional independence holds for any value z of Z. A
permuted dataset can be created by randomly permuting the
columns of X and Y for each value z of Z [Tsamardinos
and Borboudakis, 2010]. For example, if Z is a binary vari-
able, a permuted dataset is created by splitting the original
dataset D into two datasets, DZ=0 and DZ=1, randomly
permuting the columns of X and Y on each of them and
then combining the resulting datasets. This results in an
exact test, as the conditional distribution of X and Y for
each value of Z remains fixed.

We use the same procedure for discrete case-control data
using the CMI as our test statistic. It is important to
note that this permutation approach does not always pre-
serve the distribution of X and Y under the null when
applied to case-control data. We show this with the fol-
lowing example. Let X be a discrete variable, T a bi-
nary variable and P (T = 0) = 0.2. Now, assume that
for some value x of X we have 100 samples with T = 0
and 50 samples with T = 1 in the original dataset, and
50 and 100 respectively for some permuted dataset. Then,
P (x) = 100/500·0.2+50/500·0.8 = 0.12 for the original
dataset but P (x) = 50/500 · 0.2 + 100/500 · 0.8 = 0.18
for the permuted dataset. Let Y be another discrete variable
with the same marginals as X . Then, the joint distribution
of X and Y under the null is P (x, y) = 0.12 · 0.12 in the
original dataset and P (x, y) = 0.18 · 0.18 in the permuted
dataset. Thus, their joint distribution under the null is not
invariant for this type of permutations.

We conducted various simulations to investigate the behav-
ior of this test and, although this approach does not result
in an exact test, they suggest that it works reasonably well
in practice; the results are presented in Section 7.

5.4 AN ASYMPTOTIC TEST

An interesting observation that we made is that, under
the null hypothesis, the permutation distribution of the G-

154

Algorithm 1 Estimate Effective Sample Size
Input: P (T), N(T), N , K
Output: NESS

1: for i← 1 : K do
2: X ← Random(Uniform, Binary, N)
3: Y ← Random(Uniform, Binary, N)
4: Statsi ←MutualInformation(X, Y, N(T), P (T))
5: end for
6: Stats← Sort(Stats, Ascending)
7: Stats′ ← Inverse-χ2-Cdf(0:1/(K-1):1, DoF = 1)
8: NESS ←Median(1/2 · Stats′/Stats)
9: NESS ←Min(NESS , N)

statistic computed on the case-control data, for some un-
known number of samples N , seems to also follow a χ2

distribution with (|X|−1)(|Y |−1)|Z| degrees of freedom.
We observed this behavior for a large number of different:
(i) conditional and unconditional tests, (ii) probability dis-
tributions of T, and (iii) types of discrete variables X , Y
and Z. We conjecture that this is always the case.

Conjecture 1. The G-statistic G(X; Y |Z) as defined by
Equation 3 and computed for case-control data using
Equations 1 and 2 is asymptotically distributed as a χ2 ran-
dom variable with (|X|−1)(|Y |−1)|Z| degrees of freedom
for some unknown number of samples N .

We will call this unknown number of samples the effective
sample size and denote it as NESS . Based on this conjec-
ture, we will devise a simple procedure to estimate NESS .

Let D be a dataset obtained from case-control sampling,
P (T) be the joint distribution of T, N(T) be the number
of samples in D for each value of T, and N be the to-
tal number of samples in D. Suppose that we generate a
large number K of independent random variables X and
Y , each of N samples, assuming that the first N(T = t0)
samples correspond to T = t0, the next N(T = t1) to
T = t1 and so on, and then compute their mutual informa-
tion. Let Stats contain all statistics in ascending order. If
K is large enough we would expect the i-th value in Stats,
Statsi, to correspond to a p-value of i/(K − 1). Accord-
ing to Conjecture 1 the G-statistic for some NESS of any
two independent random variables follows a χ2 distribu-
tion. Thus, for each such p-value, we can use the inverse
χ2 cumulative distribution to compute its corresponding
statistic Stats′. We know that Statsi = I(Xi; Yi) and
that Stats′

i ≃ 2 ·NESS · I(Xi;Yi). Thus, we can estimate
NESS as NESS ≃ 1/2 · Stats′

i/Statsi. Because the pro-
cedure is not exact, we suggest to compute this value for
each pair of Stats and Stats′ values, and use the median
value as an estimate for NESS . Naturally, this value cannot
be larger than N , so we use the minimum of those values.
The procedure is shown in Algorithm 1.

The method only needs to be applied once before analyzing

a dataset, adding only a constant computational overhead.
As a result, the cost of analyzing a case-control dataset is
essentially identical to analyzing any other dataset, up to a
constant additive factor.

6 BAYESIAN NETWORK LEARNING

We propose two different strategies for learning Bayesian
networks from case-control data.

One is to use a test suited for case-control data with any
existing constraint-based method. This strategy also al-
lows one to learn other graphs such as Maximal Ances-
tral Graphs [Richardson and Spirtes, 2002], or to perform
feature selection using a conditional independence based
method [Tsamardinos et al., 2006].

Another approach is to learn a network using an inde-
pendence test suited for i.i.d. data and perform a post-
processing step to correct the graph by identifying and re-
moving spurious dependencies using an independence test
for case-control data. Theorem 1 characterizes all cases
where a spurious dependence will be identified. Of course,
we cannot directly apply Theorem 1 as we do not know the
real DAG. Instead, we will use the skeleton of the DAG
without any orientations. The next corollary characterizes
all potentially spurious edges in a skeleton.
Corollary 3. Let GS be the skeleton of a DAG G. An edge
between variables X and Y is potentially spurious, if and
only if there is a node W such that (a) X, Y and W are
adjacent and form a triangle, and (b) W = S or there is a
potentially directed path from W to S (the path cannot go
through X or Y). As S will not be in G we have to check if
W ∈ T or if W is a potential ancestor of any variable in
T.

This result follows from Theorem 1 and is stated without
proof. This directly suggests how to use it with existing
learning algorithms. After identifying G, take its skele-
ton GS , check for triples X,Y, W that satisfy those crite-
ria, and finally try to remove potentially spurious edges by
performing a series of independence tests with an appro-
priate method. Note that W never has to be conditioned on
in those tests as it either is a collider and would d-connect
X and Y or, if not, the edge between X and Y can not be
spurious and should not be removed. The second condi-
tion can be checked by removing all edges at X and Y and
checking whether W and T are connected by a path.

We have to point out that this approach may not be opti-
mal. Instead of the skeleton, there may be a way to partially
orient the graph and further narrow down the cases where
Corollary 3 applies. For example, if the edge from W to
X is oriented towards X , then the edge between X and
Y cannot be due to a spurious dependence, but applying
Corollary 3 on the skeleton will try to remove it. However,
this is not trivial; a naive application of the PC rules may

155

Figure 2: (a) Graphical representation of noisy model. (b)
Collider model for the first set of experiments.

result in false orientations due to the presence of spurious
edges. We did not further investigate this possibility.

7 EXPERIMENTAL EVALUATION

We performed simulations to investigate the behavior of
the proposed independence tests in different situations. We
consider only a single selection variable T . When we gen-
erate data, we select an equal number of samples for each
value of T (that is, T is uniformly distributed in the case-
control data). For a given Bayesian network we compute
the marginal distribution of T using an exact inference al-
gorithm implemented in the Bayes Net toolbox [Murphy,
2001]. We used K = 100000 to estimate the effective sam-
ple size.

First, we evaluate the tests in simple Noisy-MAX and
Noisy-SUM scenarios. Then, we investigate the sensitiv-
ity of the tests with respect to the prior distribution of
T . Finally, we compare the proposed Bayesian network
learning strategies on the INSURANCE network [Binder
et al., 1997]. We used MATLAB to conduct the sim-
ulations and create the figures (the code is available at
http://www.mensxmachina.org/).

7.1 NOISY-MAX AND NOISY-SUM

We use the model proposed by [Srinivas, 1993], a gen-
eralization of the Noisy-OR model [Pearl, 1988], to gen-
erate data from a Noisy-MAX or Noisy-SUM distribu-
tion. Those models are members of the family of indepen-
dence of causal influences (ICI) models [Heckerman and
Breese, 1994]. A graphical representation of noisy models
is shown in Figure 2. The nodes X ′

i are called inhibitor
nodes and are used to introduce noise in the model. Noisy-
MAX distributions in particular are interesting as they have
been shown to be very common in practice [Zagorecki and
Druzdzel, 2006].

7.1.1 Setup

In all our experiments the inhibitor nodes take the same
number of values as their parents and their distribution is:
P (X ′

i = 0|Xi = 0) = 1, P (X ′
i = k|Xi = k) = 1− e and

P (X ′
i = k|Xi ̸= k) = e/(|Xi| − 1), where e is the noise

parameter. The value of W is a deterministic function of
its parent values (MAX or SUM).

We use two different cases for our evaluation. The first is
a simple collider graph (see Figure 2 (b)). Here we test
whether X and Y are unconditionally independent. We
use this to evaluate the ability of the tests to handle the
case of spurious dependencies. The second is a chain graph
(X → X ′ → T → T ′ → Y), with two additional nodes
– inhibitor node pairs, one into T and one into Y . For this
case we test whether X and Y are unconditionally and con-
ditionally independent given T . This is done to investigate
the behavior of the tests in case no spurious dependencies
are present.

For the collider case we generated data from the Noisy-
MAX and Noisy-SUM distributions, and for the chain
graph we generated data from the Noisy-MAX distribution.
The parameters we used are: noise e ∈ {0, 0.3, 0.7}, sam-
ple size N ∈ {250, 1000}, range of values r ∈ {2, 4} for X
and Y . We used 6 independence tests: G2 test, Permutation
G2 test, G2

cc test for case-control data, Permutation G2
cc test

for case-control data, Undersampling G2
u test, Bootstrap-

ping and Undersampling G2
u test using the median p-value.

For the permutation tests we used 1000 permutations, and
for the bootstrapping test we used 500 samples.

7.1.2 Results

The results for the collider and chain graphs are shown
in Figures 3 and 4. In each figure we show the empiri-
cal CDF function of the p-values. In case independence
holds, the p-values should be uniformly distributed and the
CDF should be on the diagonal. In case of dependence, we
would ideally have low p-values only. We use Test(X; Y)
and Test(X; Y |T) to refer to the unconditional and condi-
tional tests of X and Y . The first and last two columns of
each group of figures correspond to data with r = 2 and
r = 4 respectively.

G2 and Permutation G2. For the collider graph both tests
identify a spurious dependence, as expected, unless the
noise is too high or the sample size is too low. For the chain
graph, where case-control sampling does not affect the in-
dependencies, both tests perform well. The asymptotic test
does not always produce calibrated p-values for the test
Test(X; Y |T), agreeing with previous results [Tsamardi-
nos and Borboudakis, 2010]. The simulations confirm that
tests designed for i.i.d. data should not be applied on case-
control data.

G2
cc and Permutation G2

cc For the collider graph, both
tests produce p-values close to the ideal uniform distribu-
tion (black diagonal line), or overestimate the p-value; this
can be seen especially in the noiseless Noisy-SUM case.
Although this is not ideal, it is still useful, as the signifi-
cance level upper bounds the actual type I error. Unfortu-

156

p-value

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1

e
=

0.
7

0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1

e
=

0.
3

E

m
pi

ric
al

 C
D

F

0

0.5

1

0 0.5 1
0

0.5

1
N = 1000

0 0.5 1
0

0.5

1
N = 250

0 0.5 1
0

0.5

1
N = 1000

Noisy-MAX - Collider Graph - Test(X;Y)

0 0.5 1

e
=

0.
0

0

0.5

1
N = 250

p-value

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1

e
=

0.
7

0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1

e
=

0.
3

E

m
pi

ric
al

 C
D

F

0

0.5

1

0 0.5 1
0

0.5

1
N = 1000

0 0.5 1
0

0.5

1
N = 250

0 0.5 1
0

0.5

1
N = 1000

Noisy-SUM - Collider Graph - Test(X;Y)

0 0.5 1

e
=

0.
0

0

0.5

1
N = 250

Figure 3: Results for the collider graph.

nately, we were not able to identify the circumstances un-
der which this happens. For the chain graph, both tests
perform reasonably well. In comparison to the G2 and Per-
mutation G2 tests, the specialized tests have less power.
Nevertheless, they will still be useful for network learning
using the post-processing method, as it combines the best
of both worlds. Again, the permutation test produces cali-
brated p-values for Test(X; Y |T), whereas the asymptotic
one does not.

G2
u and Bootstrapping G2

u. Again, both tests perform sim-
ilarly to the other specialized tests. However, undersam-
pling exhibits a large variance, as it highly depends on the
selected samples. The bootstrapping version reduces this
variance, but its distribution has a heavy tail close to one.
This bias may be the result of taking the median p-value.
We discourage the use of the bootstrapping method, but
there may be other similar approaches that do not exhibit
this behavior.

Comparison of G2
cc and Permutation G2

cc Figure 5 (a,b)
shows that the G2

cc and Permutation G2
cc produce almost

identical p-values on the unconditional tests. In Figure 5

p-value

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1

e
=

0.
7

0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1

e
=

0.
3

E

m
pi

ric
al

 C
D

F

0

0.5

1

0 0.5 1
0

0.5

1
N = 1000

0 0.5 1
0

0.5

1
N = 250

0 0.5 1
0

0.5

1
N = 1000

Noisy-MAX - Chain Graph - Test(X;Y)

0 0.5 1

e
=

0.
0

0

0.5

1
N = 250

p-value

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1

e
=

0.
7

0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1

e
=

0.
3

E

m
pi

ric
al

 C
D

F

0

0.5

1

0 0.5 1
0

0.5

1
N = 1000

0 0.5 1
0

0.5

1
N = 250

0 0.5 1
0

0.5

1
N = 1000

Noisy-MAX - Chain Graph - Test(X;Y|T)

0 0.5 1

e
=

0.
0

0

0.5

1
N = 250

Figure 4: Results for the chain graph.

(c,d) we compare the asymptotic and permutation tests for
the conditional case with noisy data and r = 4 (Figure 4,
bottom right). We see that in this case the G2

cc does not pro-
duce the same p-values as the permutation G2

cc test. How-
ever, the same behavior can be observed for the standard
G2 test and the permutation G2 test. Also, for both cases,
the p-values of the asymptotic tests are highly correlated
with the ones of the permutation tests. The results suggest
that the G2

cc test is a reasonable approximation to the per-
mutation version.

7.2 SENSITIVITY TO P (T)

We conducted a small experiment to investigate the sensi-
tivity of the tests to the distribution of T . We simulated
1000 datasets from a Noisy-MAX collider graph with bi-
nary variables X and Y , with e = 0 and N ∈ {250, 1000}.
The distribution of T is P (T = 0) = 0.25 and P (T =
1) = 0.75 and we selected 500 samples for each value of
T . In order to measure the sensitivity of the methods to the
specified marginal distribution we computed the area un-
der the empirical CDF of the p-values. Values close to 0.5

157

(a) (b)

(c) (d)

Figure 5: Comparison of the p-values from the G2
cc and

Permutation G2
cc tests (a) on all tests for the collider graph

(b) on the unconditional tests for the chain graph. Compar-
ison on noisy data with r = 4 of (c) G2

cc vs Permutation
G2

cc (d) G2 vs Permutation G2.

Marginal probability P(T = 0)
0 0.1 0.2 0.3 0.4 0.5

A
re

a
un

de
r

th
e

C
D

F
 c

ur
ve

0.4

0.5

0.6

0.7

0.8

0.9

1
Sensitivity for different priors (N = 250)

G2
cc

Perm. G2
cc

G2
u

Boot. G2
U

Marginal probability P(T = 0)
0 0.1 0.2 0.3 0.4 0.5

A
re

a
un

de
r

th
e

C
D

F
 c

ur
ve

0.4

0.5

0.6

0.7

0.8

0.9

1
Sensitivity for different priors (N = 1000)

G2
cc

Perm. G2
cc

G2
u

Boot. G2
U

Figure 6: Sensitivity of methods to prior distribution.

indicate that the p-values are uniformly distributed (this is
not always true, but should be reasonable in our case due
to the convexity/concavity and monotonicity of the CDF;
see Figure 3 for e = 0 and N = 1000). The results
are summarized in Figure 6. We only show results from
P (T = 0) = 0 to 0.5. We see that the methods are sen-
sitive to the correct specification of the prior distribution,
and that their sensitivity highly depends on the sample size.
For N = 250, small deviations are acceptable, whereas
for N = 1000 even deviations of 0.05 significantly reduce
the ability of the tests to detect spurious dependencies. Of
course, this can not be generalized and it may highly vary
for different distributions, but it indicates that those meth-
ods have to be used with care.

7.3 INSURANCE NETWORK

We evaluated our methods on the INSURANCE network
[Binder et al., 1997]. It contains 27 nodes and 52 edges.
This network is appropriate for our purposes as it has many
nodes for introducing spurious dependencies that also have

Table 1: Characteristics of the selection variables. The sec-
ond row shows the number of spurious dependencies in-
duced by selecting on those variables. The last four rows
show their marginal distribution.

Node 18 19 20 21 25 26
Spurious 6 13 6 14 9 5
P(T = 0) 0.001 0.788 0.844 0.541 0.888 0.965
P(T = 1) 0.999 0.09 0.08 0.286 0.054 0.018
P(T = 2) - 0.09 0.077 0.12 0.036 0.011
P(T = 3) - 0.032 1.2e-05 0.052 0.023 0.007

relatively extreme distributions.

7.3.1 Setup

We selected 6 nodes from the INSURANCE network as
selection variables. The selection variables as well as their
characteristics are shown in Table 1.

Algorithms. For Bayesian network learning we used the
PC algorithm with Heuristic 3, as described in [Spirtes
et al., 2000] (Section 5.4.2), except with an additional mod-
ification that sets an upper limit on the size of the condition-
ing set for each test. This is necessary especially for lower
sample sizes, as conditioning on many variables tends to
give very high p-values. In our simulations we set that pa-
rameter to 3 (maximum in-degree in the network). The sig-
nificance level was set to 0.05 for all tests. We used 5 dif-
ferent methods to learn the network from case-control data:
(a) G2 test, (b) G2

cc test for case-control data, (c) Under-
sampling G2

u test, (d) G2 test + post-processing with G2
cc

and (e) G2 test + post-processing with G2
u. Methods (a-c)

did not apply the post-processing step. Whenever the G2
u

test was used, undersampling was performed only once for
each dataset. In addition, we also ran the PC algorithm with
the G2 test on i.i.d. data to compare our methods against
(Reference). The reference results should be close to the
best achievable performance for a given sample size.

Data. Again, we generated data with equal proportions of
each value of T . For each selection variable, as well as for
the reference case, we generated 100 datasets for each of
three different sample sizes N ∈ {1000, 10000, 100000}.

7.3.2 Results

The results are summarized in Table 2. For each method
we report the extra edges (“+”) and missing edges (“-”),
averaged over all 100 runs.

PC with G2 test. We observe that ignoring the sampling
and using PC with the standard G2 test performs very well
for N = 1000 and does not identify many spurious edges.
However, as expected, it identifies a significant amount of
extra edges with larger sample sizes.

PC with G2
cc and G2

u tests. The case-control tests with-

158

Table 2: Results on the INSURANCE network. Extra edges are denoted with “+” and missing edges with “-”.

Method T = 18 T = 19 T = 20 T = 21 T = 25 T = 26 Reference
+ - + - + - + - + - + - + -

N
=

1K
G2 1.00 26.83 0.10 29.10 0.22 28.81 0.15 29.54 0.49 28.59 0.10 28.91 0.14 28.73
G2

cc 0.35 32.19 0.28 33.51 0.23 34.20 0.36 30.97 0.21 34.44 0.31 35.11
G2

u 0.33 32.15 0.28 34.15 0.23 34.41 0.21 32.51 0.32 34.82 0.30 34.94
G2 + G2

cc 1.00 26.84 0.09 29.10 0.22 28.88 0.15 29.54 0.49 28.65 0.10 28.94
G2 + G2

u 1.00 26.84 0.09 29.14 0.22 28.92 0.15 29.54 0.49 28.66 0.10 28.94

N
=

10
K

G2 6.44 11.24 3.04 14.33 1.84 14.15 0.85 14.54 3.70 14.70 1.61 13.65 0.23 14.35
G2

cc 0.00 16.96 0.00 18.89 0.00 19.81 0.00 16.38 0.00 20.82 0.01 21.90
G2

u 0.00 16.93 0.00 20.20 0.02 20.66 0.00 17.19 0.10 21.18 0.00 22.08
G2 + G2

cc 0.50 13.07 0.18 16.51 0.00 16.72 0.00 16.32 1.09 16.72 0.07 16.13
G2 + G2

u 0.50 13.07 0.18 17.06 0.02 17.42 0.00 16.44 1.09 16.79 0.06 16.17

N
=

10
0K

G2 7.00 5.00 5.21 7.09 3.97 6.17 4.84 7.66 4.67 8.10 2.74 7.75 0.01 8.65
G2

cc 0.01 10.96 0.01 11.01 0.00 11.03 0.01 10.97 0.02 11.14 0.02 11.43
G2

u 0.01 10.96 0.01 11.08 0.00 11.10 0.00 10.99 0.00 11.26 0.01 11.44
G2 + G2

cc 0.00 5.00 0.16 8.89 0.15 8.78 0.00 7.66 0.44 9.09 0.49 8.76
G2 + G2

u 0.00 5.00 0.16 9.31 0.15 8.94 0.00 7.73 0.43 9.15 0.49 8.76

out post-processing identify fewer extra edges at the cost of
missing some edges. This happens both, because they are
conservative and because of lower power than their i.i.d.
counterparts, as we saw in previous experiments. Again,
this improves with more samples but they do not seem to
significantly outperform the G2 test, at least in those exper-
iments. Increasing the significance level may improve the
situation.

PC with G2 test + post-processing with G2
cc and G2

u

tests. The best results, in terms of total number of er-
rors, are achieved when post-processing is applied. For
N = 1000 they perform similarly to the G2 method with-
out post-processing. This is expected, as the first step does
not identify many extra edges and thus, post-processing is
rarely applied. For larger sample sizes almost no spurious
edges are identified, but a few more edges than G2 without
post-processing are missed. This happens because the post-
processing rule is erroneously applied to edges that are not
due to spurious dependencies and removes them.

Compared to the previous two methods without post-
processing, slightly more edges are found but fewer edges
are missed. This agrees with the simulations on the simple
collider and chain graphs, which showed that the G2 test is
more powerful and therefore misses fewer edges than the
G2

u and G2
cc tests.

Finally, the results are similar to the reference results,
demonstrating the effectiveness of the proposed methods.

Comparison of G2
u and G2

cc. In all simulations the G2
u test

performs very similar to the G2
cc test, with the latter being

marginally better on average. Note however that averaging
may hide the variance of the G2

u test. In any case, under-
sampling is an alternative that can be generalized to other
types of data, and should be further investigated.

8 CONCLUSION

We proposed methods to learn Bayesian networks from dis-
crete, unmatched case-control data. We showed that one
can first learn a network by ignoring the case-control sam-
pling and then apply a post-processing step to remove spu-
rious edges using a specialized test for case-control data.
To do this the joint distribution of the selection variables
must be available. In case it is not correctly specified the
tests may fail to remove spurious edges. Finally, the trivial
approach of undersampling seems to be a reasonable alter-
native, with the advantage that it easily generalizes to other
types of data, such as continuous data with discrete selec-
tion variables. A drawback however is that it exhibits a
large variance as it highly depends on the selected samples.

There is a lot of room for improvement and extensions.
First, the proposed post-processing method could be im-
proved to reduce the number of false removals of edges.
Second, it is important to investigate additional case-
control samplings, such as those from matched or nested
studies. Finally, devising methods for other types of data,
such as continuous data, would further broaden the scope.
One possible approach would be to use or extend the ideas
by Kuroki and Cai [2006] for recovering the population co-
variance matrix. Another possibility is to find a way to
perform undersampling multiple times and combine the re-
sults appropriately.

Acknowledgements

We would like to thank Greg Cooper, Sofia Triantafillou
and the anonymous reviewers for their comments. This
work was partially funded by the ERC Consolidator Grant
No 617393 CAUSALPATH and the Greek GSRT ARIS-
TEIA II No 3446 Epilogeas.

159

References

E. Bareinboim, J. Tian, and J. Pearl. Recovering from Se-
lection Bias in Causal and Statistical Inference. In Pro-
ceedings of the 28th AAAI Conference on Artificial Intel-
ligence (AAAI-14), 2014.

T. Barrett, S. Wilhite, P. Ledoux, C. Evangelista, I. Kim,
M. Tomashevsky, K. Marshall, K. Phillippy, P. Sherman,
M. Holko, A. Yefanov, H. Lee, N. Zhang, C. Robert-
son, N. Serova, S. Davis, and A. Soboleva. NCBI GEO:
archive for functional genomics data sets–update. Nu-
cleic Acids Res., 41(Database issue):D991–5, January
2013.

J. Binder, D. Koller, S. Russell, and K. Kanazawa. Adap-
tive probabilistic networks with hidden variables. Ma-
chine Learning, 29(2-3):213–244, Nov. 1997.

N. Breslow. Statistics in epidemiology: The case-control
study. Journal of the American Statistical Association,
91:14–28, March 1996.

N. Breslow and N. Day. Statistical Methods in Cancer
Research. Vol. 1 The Analysis of Case-Control Studies.
IARC, Lyon, 1980.

G. F. Cooper. A Bayesian Method for Causal Modeling and
Discovery Under Selection. In Proceedings of the 16th
International Conference on Uncertainty in Artificial In-
telligence (UAI 2000), 2000.

G. F. Cooper and C. Yoo. Causal discovery from a mixture
of experimental and observational data. In Proceedings
of the 15th International Conference on Uncertainty in
Artificial Intelligence (UAI 1999), 1999.

R. Edgar, M. Domrachev, and A. E. Lash. Gene Expres-
sion Omnibus: NCBI gene expression and hybridization
array data repository. Nucleic Acids Res., 30(1):207–10,
January 2002.

P. Good. Permutation, Parametric, and Bootstrap Tests of
Hypotheses. Springer Series in Statistics. Springer, 3rd
edition, 2004.

D. Heckerman and J. S. Breese. A new look at causal inde-
pendence. In Proceedings of the 10th International Con-
ference on Uncertainty in Artificial Intelligence (UAI
1994), 1994.

A. Hyttinen, P. O. Hoyer, F. Eberhardt, and M. Jrvisalo.
Discovering cyclic causal models with latent variables:
A general sat-based procedure. In Proceedings of the
29th International Conference on Uncertainty in Artifi-
cial Intelligence (UAI 2013), 2013.

M. Kuroki and Z. Cai. On recovering a population covari-
ance matrix in the presence of selection bias. Biometrika,
93(3):601–611, 2006.

K. Murphy. The Bayes Net Toolbox for MATLAB. Com-
puting science and statistics, 2001.

J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1988.

J. Pearl. Causality, Models, Reasoning, and Inference.
Cambridge University Press, New York, NY, USA, 2000.

T. Richardson and P. Spirtes. Ancestral graph Markov mod-
els. Annals of Statistics, 30(4):962–1030, 2002.

K. J. Rothman, S. Greendland, and T. L. Lash. Modern
Epidemiology. Williams & Wilkins, Philadelphia, PA:
Lippincott, 3rd edition, 2008.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Pre-
diction, and Search. MIT Press, Cambridge, MA, 2nd
edition, 2000.

S. Srinivas. A generalization of the noisy-or model. In Pro-
ceedings of the Ninth International Conference on Un-
certainty in Artificial Intelligence (UAI 1993), 1993.

R. E. Tillman and P. Spirtes. Learning equivalence classes
of acyclic models with latent and selection variables
from multiple datasets with overlapping variables. In
Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics (AISTATS 2011),
2011.

S. Triantafillou and I. Tsamardinos. Constraint-based
causal discovery from multiple interventions over over-
lapping variable sets. CoRR, abs/1403.2150, 2014.

I. Tsamardinos and G. Borboudakis. Permutation Testing
Improves Bayesian Network Learning. In Proceedings
of the 2010 European Conference on Machine Learning
and Knowledge Discovery in Databases (ECML PKDD
2010), 2010.

I. Tsamardinos, L. Brown, and C. Aliferis. The max-min
hill-climbing Bayesian network structure learning algo-
rithm. Machine Learning, 65(1):31–78, 2006.

A. Zagorecki and M. Druzdzel. Knowledge engineering for
Bayesian networks: How common are noisy-max distri-
butions in practice? In Proceedings of 17th European
Conference on Artificial Intelligence (ECAI 2006), 2006.

160

Efficient Algorithms for Bayesian Network
Parameter Learning from Incomplete Data

Guy Van den Broeck∗ and Karthika Mohan∗ and Arthur Choi and Adnan Darwiche and Judea Pearl
Computer Science Department

University of California, Los Angeles
{guyvdb,karthika,aychoi,darwiche,judea}@cs.ucla.edu

Abstract

We propose a family of efficient algorithms for
learning the parameters of a Bayesian network
from incomplete data. Our approach is based
on recent theoretical analyses of missing data
problems, which utilize a graphical representa-
tion, called the missingness graph. In the case
of MCAR and MAR data, this graph need not
be explicit, and yet we can still obtain closed-
form, asymptotically consistent parameter esti-
mates, without the need for inference. When this
missingness graph is explicated (based on back-
ground knowledge), even partially, we can obtain
even more accurate estimates with less data. Em-
pirically, we illustrate how we can learn the pa-
rameters of large networks from large datasets,
which are beyond the scope of algorithms like
EM (which require inference).

1 INTRODUCTION

When learning the parameters of a Bayesian network from
data with missing values, the conventional wisdom among
machine learning practitioners is that there are two options:
use expectation maximization (EM) or gradient methods (to
optimize the likelihood); see, e.g., Darwiche (2009), Koller
and Friedman (2009), Murphy (2012), Barber (2012). Both
of these approaches, however, suffer from the following
disadvantages, which prevent them from scaling to large
networks and datasets; see also Thiesson, Meek, and Heck-
erman (2001). First, they are iterative, and hence may need
many passes over a potentially large dataset. Next, these al-
gorithms may get stuck in local optima, which means that,
in practice, one must run these algorithms multiple times
with different initial seeds, and hope that one of them leads
to a good optimum. Last, but not least, these methods re-
quire inference in the network, which places a hard limit

∗Both authors contributed equally to this work. GVdB is also
affiliated with KU Leuven, Belgium.

on the networks where EM and gradient methods can even
be applied, namely for networks where exact inference is
tractable, i.e., they have small enough treewidth, or suffi-
cient local structure (Chavira & Darwiche, 2006, 2007).

Recently, Mohan, Pearl, and Tian (2013) showed that the
joint distribution of a Bayesian network is recoverable from
incomplete data, including data that falls under the clas-
sical missing at random assumption (MAR), but also for
a broad class of data that is not MAR. Their analysis is
based on a graphical representation for missing data prob-
lems, called the missingness graph, where one explicates
the causal mechanisms that are responsible for the miss-
ingness in an incomplete dataset. Using this representation,
they provide a way to decide whether a given query (e.g.,
a joint marginal) is recoverable, and if so, they provide a
closed-form expression (in terms of the observables) for an
asymptotically consistent estimate.

Building on the theoretical foundations set by Mohan et al.
(2013), we propose a family of practical and efficient al-
gorithms for estimating the parameters of a Bayesian net-
work from incomplete data. For the cases of both MCAR
and MAR data, where the missingness graph need not be
explicit, we start by deriving the closed-form parameter
estimates, as implied by Mohan et al. (2013). We next
show how to obtain better estimates, by exploiting a factor-
ized representation that allows us to aggregate distinct, yet
asymptotically equivalent estimates, hence utilizing more
of the data. We also show how to obtain improved es-
timates, when the missingness graph is only partially ex-
plicated (based on domain or expert knowledge). As in
Mohan et al. (2013), all of our estimation algorithms are
asymptotically consistent, i.e., they converge to the true pa-
rameters of a network, in the limit of infinite data.

As we show empirically, our parameter estimation algo-
rithms make learning from incomplete data viable for larger
Bayesian networks and larger datasets, that would other-
wise be beyond the scope of algorithms such as EM and
gradient methods. In particular, our algorithms (1) are non-
iterative, requiring only a single pass over the data, (2) pro-
vide estimates in closed-form, and hence do not suffer from

161

X Y

x̄ y

x ?
x ȳ

x̄ ?
. . .

X Y

(a) Dataset D and DAG

X Y Y � RY

x̄ y y ob

x ? mi unob

x ȳ ȳ ob

x̄ ? mi unob

.

X Y

Y �RY

(b) Missingness Dataset D and DAG

Figure 1: Datasets and DAGs.

local optima, and (3) require no inference, which is the pri-
mary limiting factor for the scalability of algorithms such
as EM. We note that these advantages are also available
when learning Bayesian networks from complete data.

2 TECHNICAL PRELIMINARIES

In this paper, we use upper case letters (X) to denote vari-
ables and lower case letters (x) to denote their values. Vari-
able sets are denoted by bold-face upper case letters (X)
and their instantiations by bold-face lower case letters (x).
Generally, we will use X to denote a variable in a Bayesian
network and U to denote its parents. A network parameter
will therefore have the general form θx|u, representing the
probability Pr(X=x|U=u).

Given an incomplete dataset D, we want to learn the pa-
rameters of the Bayesian network N that the dataset orig-
inated from. This network induces a distribution Pr(X),
which is in general unknown; instead, we only have access
to the dataset D.

2.1 MISSING DATA: AN EXAMPLE

As an illustrative example, consider Figure 1(a), depicting
a dataset D, and the directed acyclic graph (DAG) G of a
Bayesian network, both over variables X and Y . Here, the
value for variable X is always observed in the data, while
the value for variable Y can be missing. In the graph, we
denote a variable that is always observed with a double-
circle. Now, if we happen to know the mechanism that
causes the value of Y to become missing in the data, we
can include it in our model, as in Figure 1(b). Here, we
use a variable RY to represent the mechanism that controls
whether the value of variable Y is missing or observed.
Further, we witness the value of Y , or its missingness,
through a proxy variable Y �, as an observation. Such a
graph, which explicates the missing data process, is called
a missingness graph.

In our example, we augmented the dataset and graph with
new variables RY , representing the causal mechanism that
dictates the missingness of the value of Y . This mechanism
can be active (Y is unobserved), denoted by RY =unob.
Otherwise, the mechanism is passive (Y is observed), de-

noted by RY =ob. Variable Y � acts as a proxy on the value
of Y , which may be an observed value y, or a special value
(mi) when the value of Y is missing. The value of Y � thus
depends functionally on variables RY and Y :

Y � = f(RY , Y) =

�
mi if RY = unob

Y if RY = ob

That is, when RY =unob, then Y �=mi; otherwise RY =ob
and the proxy Y � assumes the observed value of Y .

X Y

Y �RXX� RY

Figure 2: An MNAR missingness graph.

Figure 2 highlights a more complex example of a missing-
ness graph, with causal mechanisms RX and RY that de-
pend on other variables. In Section 2.3, we highlight how
different missing data problems (such as MCAR and MAR)
lead to different types of missingness graphs.

2.2 LEARNING WITH MISSINGNESS GRAPHS

Given a Bayesian network with DAG G, and an incomplete
dataset D, we can partition the variables X into two sets:
the fully-observed variables Xo, and the partially-observed
variables Xm that have missing values in D. As in our ex-
ample above, one can take into account knowledge about
the processes responsible for the missingness in D. More
specifically, we can incorporate the causal mechanisms that
cause the variables Xm to have missing values, by intro-
ducing (1) variables R representing the causal mechanisms
that are responsible for missingness in the data, and (2)
variables X�

m that act as proxies to the variables Xm. This
augmented Bayesian network, which we refer to as the
missingness graph N �, has variables Xo,X

�
m,R that are

fully-observed, and variables Xm that are only partially-
observed. The missingness graph N � thus induces a distri-
bution Pr(Xo,Xm,X�

m,R). Using the missingness graph,
we want to draw conclusions about the partially-observed
variables, by reasoning about the fully-observed ones.

Missingness graphs can serve as a powerful tool for analyz-
ing missing data problems; see, e.g., Thoemmes and Mo-
han (2015), Francois and Leray (2007), Darwiche (2009),
Koller and Friedman (2009). As Mohan et al. (2013) show,
one can exploit the conditional independencies that miss-
ingness graphs encode, in order to extract asymptotically
consistent estimates for missing data problems, including
MNAR ones, whose underlying assumptions would put it
out of the scope of existing techniques.1 Mohan et al.

1Note that maximum-likelihood estimation is asymptotically
consistent, although a consistent estimator is not necessarily a
maximum-likelihood estimator; see, e.g., Wasserman (2011).

162

(2013) identify conditions on N � that allow the original,
partially-observed distribution Pr(Xo,Xm) to be identi-
fied from the fully-observed distribution Pr(Xo,X

�
m,R).

However, in practice, we only have access to a dataset D,
and the corresponding data distribution that it induces:

PrD(xo,x
�
m, r) = 1

N D#(xo,x
�
m, r),

where N is the number of instances in dataset D, and
where D#(x) is the number of instances where instanti-
ation x appears in the data.2 However, the data distribu-
tion PrD tends to the true distribution Pr (over the fully-
observed variables), as N tends to infinity.

Building on the theoretical foundations set by Mohan et al.
(2013), we shall propose a family of efficient and scalable
parameter estimation algorithms from incomplete data. In
essence, we will show how to query the observed data
distribution PrD, in order to make inferences about the
true, underlying distribution Pr(Xo,Xm) (in particular,
we want the conditional probabilities that parameterize the
given Bayesian network). As we shall discuss, in many
cases the missingness graph need not be explicit. In other
cases, when there is knowledge about the missingness
graph, even just partial knowledge, we can exploit it, in
order to obtain more accurate parameter estimates.

2.3 CATEGORIES OF MISSINGNESS

An incomplete dataset is categorized as Missing Com-
pletely At Random (MCAR) if all mechanisms R that cause
the values of variables Xm to go missing, are marginally
independent of X, i.e., where (Xm,Xo)⊥⊥R. This cor-
responds to a missingness graph where no variable in
Xm ∪ Xo is a parent of any variable in R. For example,
if all mechanisms R are root nodes, then the problem is
MCAR. Note that the missingness graph of Figure 1(b) im-
plies an MCAR dataset.

An incomplete dataset is categorized as Missing At Ran-
dom (MAR) if missingness mechanisms are conditionally
independent of the partially-observed variables given the
fully-observed variables, i.e., if Xm⊥⊥R | Xo. This cor-
responds to a missingness graph where variables R are al-
lowed to have parents, as long as none of them are partially-
observed. In the example missingness graph of Figure 1(b),
adding an edge X → RY results in a graph that yields
MAR data. This is a stronger, variable-level definition
of MAR, which has previously been used in the machine
learning literature (Darwiche, 2009; Koller & Friedman,
2009), in contrast to the event-level definition of MAR that
is prevalent in the statistics literature (Rubin, 1976).

2Note that the data distribution is well-defined over the vari-
ables Xo,X

�
m and R, as they are fully-observed in the augmented

dataset, and that PrD can be represented compactly in space lin-
ear in N , as we need not explicitly represent those instantiations
x that were not observed in the data.

Table 1: Summary of Estimation Algorithms

Algorithm Description (Section Number)

D-MCAR Direct Deletion for MCAR data (3.1)
D-MAR Direct Deletion for MAR data (3.2)

F-MCAR Factored Deletion for MCAR data (3.3)
F-MAR Factored Deletion for MAR data (3.3)
I-MAR Informed Deletion for MAR data (5.1)

IF-MAR Informed Factored Deletion for MAR data (5.1)

An incomplete dataset is categorized as Missing Not At
Random (MNAR) if it is not MAR (and thus not MCAR).
For example, the DAG in Figure 2 corresponds to an
MNAR missingness graph. This is because the mechanism
RX has a partially-observed variable as a parent; further,
mechanism RY has a partially-observed parent X .

3 CLOSED-FORM LEARNING

We now present algorithms to learn the parameters of a
Bayesian network N from data D. We first consider the
classical missing data assumptions, with no further knowl-
edge about the missingness graph that generated the data.

To estimate the conditional probabilities θx|u that parame-
terize a Bayesian network, we estimate the joint distribu-
tions Pr(X,U), which are subsequently normalized, as a
conditional probability table. Hence, it suffices, for our
discussion, to estimate marginal distributions Pr(Y) for
families Y = {X} ∪ U. We let Yo = Y ∩ Xo de-
note the observed variables in Y, and Ym = Y ∩ Xm

denote the partially-observed variables. Further, we let
RZ ⊆ R denote the missingness mechanisms for the
partially-observed variables Z. Through D, we have access
to the data distribution PrD over the variables in the miss-
ingness dataset. Appendix D illustrates our learning algo-
rithms on a concrete dataset and Table 1 gives an overview
of the different estimation algorithms in this paper.

3.1 DIRECT DELETION FOR MCAR

The statistical technique of listwise deletion is perhaps the
simplest technique for performing estimation with MCAR
data: we simply delete all instances in the dataset that
contain missing values, and estimate our parameters from
the remaining dataset, which is now complete. Of course,
with this technique, we potentially ignore large parts of
the dataset. The next simplest technique is perhaps pair-
wise deletion, or available-case analysis: when estimating
a quantity over a pair of variables X and Y , we delete just
those instances where variable X or variable Y is missing.

Consider now the following, more general, deletion tech-
nique, which is expressed in the terms of causal missing-
ness mechanisms. In particular, to estimate the marginals
Pr(Y) of a set of (family) variables Y, from the data dis-

163

tribution PrD, we can use the estimate:

Pr(Y) = Pr(Yo,Ym|RYm
=ob) by Xo ,Xm ⊥⊥R

= Pr(Yo,Y
�
m|RYm

=ob) by Xm=X�
m when R=ob

≈ PrD(Yo,Y
�
m|RYm

=ob)

That is, we can estimate Pr(Y) by using the subset of the
data where every variable in Y is observed (which follows
from the assumptions implied by MCAR data). Since the
data distribution PrD tends to the true distribution Pr, this
implies a consistent estimate for the marginals Pr(Y). In
contrast, the technique of listwise deletion corresponds to
the estimate Pr(Y) ≈ PrD(Yo,Y

�
m|RXm

=ob), and the
technique of pairwise deletion corresponds to the above,
when Y contains two variables. To facilitate comparisons
with more interesting estimation algorithms that we shall
subsequently consider, we refer to the more general esti-
mation approach above as direct deletion.

3.2 DIRECT DELETION FOR MAR

In the case of MAR data, we cannot use the simple dele-
tion techniques that we just described for MCAR data—
the resulting estimates would not be consistent. However,
we show next that it is possible to obtain consistent esti-
mates from MAR data, using a technique that is as simple
and efficient as direct deletion. Roughly, we can view this
technique as deleting certain instances from the dataset, but
then re-weighting the remaining ones, so that a consistent
estimate is obtained. We shall subsequently show how to
obtain even better estimates by factorization.

Again, to estimate network parameters θx|u, it suffices to
show how to estimate family marginals Pr(Y), now under
the MAR assumption. Let X�o = Xo \Yo denote the fully-
observed variables outside of the family variables Y (i.e.,
Xo = Yo ∪X�o). We have

Pr(Y) =
�

X�
o

Pr(Yo,Ym,X�o)

=
�

X�
o

Pr(Ym|Yo,X
�
o) Pr(Yo,X

�
o)

Hence, we reduced the problem to estimating two sets of
probabilities. Estimating the probabilities Pr(Yo,X

�
o) is

straightforward, as variables Yo and X�o are fully observed
in the data. The conditional probabilities Pr(Ym|Yo,X

�
o)

contain partially observed variables Ym, but they are con-
ditioned on all fully observed variables Xo = Yo ∪ X�o.
The MAR definition implies that each subset of the data
that fixes a value for Xo is locally MCAR. Like the MCAR
case, we can estimate each conditional probability as

Pr(Ym|Yo,X
�
o) = Pr(Y�

m|Yo,X
�
o,RYm

=ob).

This leads to the following estimation algorithm,

Pr(Y) ≈
�

X�
o

PrD(Y�
m|Yo,X

�
o,RYm

=ob) PrD(Yo,X
�
o)

Algorithm 1 F-MCAR(y, D)

Input:
y: A state of query variables Y

D: An incomplete dataset with data distribution PrD

Auxiliary:
CACHE: A global cache of estimated probabilities

Function:
1: if y = ∅ then return 1
2: if CACHE[y] �= nil then return CACHE[y]
3: E ← ∅ // Initialize set of estimates
4: for each y ∈ y do
5: u← y \ {y} // Factorize with parents u
6: add PrD(y|u,Ry=ob) · F-MCAR(u, D) to E
7: CACHE[y]←Aggregate estimates in E // E.g., mean
8: return CACHE[y]

Pr(X, Y, Z)

Pr(X, Y) Pr(X, Z) Pr(Y, Z)

Pr(X) Pr(Y) Pr(Z)

1

Pr(X) P
r(

Y
)

Pr(Z
)

P
r(

Y
|X

)
Pr(Z

|X) Pr(X|Y) Pr(Z
|Y) Pr(X|Z)

P
r(

Y
|Z

)

Pr(Z
|X, Y

)

P
r(

Y
|X

,
Z

)

Pr(X|Y, Z)

Figure 3: Factorization Lattice of Pr(X, Y, Z)

which uses only the fully-observed variables of the data
distribution PrD. Note that the summation requires only a
single pass through the data, i.e., for only those instantia-
tions of X�o that appear in it. Again, PrD tends to the true
distribution Pr, as the dataset size tends to infinity, imply-
ing a consistent estimate of Pr(Y).

3.3 FACTORED DELETION

We now propose a class of deletion algorithms that exploit
more data than direct deletion. In the first step, we generate
multiple but consistent estimates for the query so that each
estimates utilizes different parts of a dataset to estimate the
query. In the second step, we aggregate these estimates to
compute the final estimate and thus put to use almost all
tuples in the dataset. Since this method exploits more data
than direct deletion, it obtains a better estimate of the query.

Factored Deletion for MCAR Algorithm 1 implements
factored deletion for MCAR. Let the query of interest be
Pr(Y), and let Y 1, Y 2, . . . , Y n be any ordering of the n

164

variables in Y. Each ordering yields a unique factorization:

Pr(Y) =
n�

i=1

Pr
�
Y i | Y i+1, . . . , Y n

�

We can estimate each of these factors independently, on
the subset of the data in which all of its variables are fully
observed (as in direct deletion), i.e.,

Pr(Y i|Y i+1, . . . , Y n
m) = Pr(Y i|Y i+1, . . . , Y n

m,RZi=ob)

where Zi is the set of partially-observed variables in the
factor. When |Ym| > 1, we can utilize much more data
than direct deletion. See Appendix D, for an example.

So far, we have discussed how a consistent estimate of
Pr(Y) may be computed given a factorization. Now we
shall detail how estimates from each factorization can be
aggregated to compute more accurate estimates of Pr(Y).
Let k be the number of variables in a family Y. The num-
ber of possible factorizations is k!. However, different fac-
torizations share the same sub-factors, which we can es-
timate once, and reuse across factorizations. We can or-
ganize these computations using a lattice, as in Figure 3,
which has only 2k nodes and k2k−1 edges. Our algorithm
will compute as many estimates as there are edges in this
lattice, which is only on the order of O(n log n), where n
is the number of parameters being estimated for a family
Y (which is also exponential in the number of variables k).
To emphasize the distinction with direct deletion, which
uses only those instances in the data where all variables in
Y are observed, factored deletion uses any instance in the
data where at least one variable in Y is observed.

More specifically, our factored deletion algorithm first esti-
mates the conditional probabilities on the edges of the lat-
tice, each estimate using the subset of the data where its
variables are observed. Second, it propagate the estimates,
bottom-up. For each node, there are several alternative es-
timates available, on its incoming edges. There are various
ways of aggregating these estimates, such as mean, median,
and propagating the lowest-variance estimate.3

Factored Deletion for MAR Algorithm 2 implements
factored deletion for MAR. Let Y 1

m, Y 2
m, . . . , Y n

m be any or-
dering of the n partially observed variables Ym ⊆ Y and
let X�o = Xo \ Yo denote the fully-observed variables out-
side of Y. Given an ordering, we have the factorization:

Pr(Y) =
�

X�
o

Pr(Yo,X
�
o)

n�

i=1

Pr
�
Y i

m | Zi+1
m ,Xo

�

where Zi
m =

�
Y j

m

��i ≤ j ≤ n
�

. We then proceed in a man-
ner similar to factored deletion for MCAR to estimate indi-
vidual factors and aggregate estimates to compute Pr(Y).
For equations and derivations, please see Appendix A.

3In initial experiments, all aggregations performed similarly.
Reported results use an inverse-variance weighting heuristic.

Algorithm 2 F-MAR(y, D)

Input:
y: A state of query variables Y, consisting of yo and ym

D: An incomplete dataset with data distribution PrD

Function:
1: e← 0 // Estimated probability
2: for each xo appearing in D that agrees with yo do
3: Dxo

← subset of D where xo holds
4: e← e + PrD(xo) · F-MCAR(ym, Dxo)
5: return e

4 EMPIRICAL EVALUATION

To evaluate the learning algorithms we proposed, we sim-
ulate partially observed datasets from Bayesian networks,
and re-learn their parameters from the data.4

In our first sets of experiments, we compare our parame-
ter estimation algorithms with EM, on relatively small net-
works for MCAR and MAR data. These experiments are
intended to observe general trends in our algorithms, in
terms of their computational efficiency, but also in terms of
the quality of the parameter estimates obtained. Our main
empirical contributions are presented in Section 4.3, where
we demonstrate the scalability of our proposed estimation
algorithms, to larger networks and datasets, compared to
EM (even when using approximate inference algorithms).

We consider the following algorithms:

D-MCAR & F-MCAR: direct deletion and factored dele-
tion for MCAR data.

D-MAR & F-MAR: direct deletion and factored deletion
for MAR data.

EM-k-JT: EM with k random restarts, jointree inference.

F-MAR + EM-JT: EM seeded with F-MAR estimates,
jointree inference.

Remember that D-MCAR and F-MCAR are consistent for
MCAR data only, while D-MAR and F-MAR are consis-
tent for general MAR data. EM is consistent for MAR data,
but only if it converges to maximum-likelihood estimates.

We evaluate the learned parameters in terms of their like-
lihood on independently generated, fully-observed test
data, and the Kullback–Leibler divergence (KLD) between
the original and learned Bayesian networks. We report
per-instance log-likelihoods (which are divided by dataset
size). We evaluate the learned models on unseen data, so
all learning algorithms assume a symmetric Dirichlet prior

4An implementation of our system is available at http://
reasoning.cs.ucla.edu/deletion.

165

 0.001

 0.01

 0.1

 1

 10

 100 1000 10000 100000 1e+06

K
L
 D

iv
e
rg

e
n
c
e

Dataset Size

D-MCAR
F-MCAR

D-MAR
F-MAR

EM-1-JT
EM-10-JT

(a) KL Divergence vs. Dataset Size

 0.001

 0.01

 0.1

 1

 10

 1 10 100 1000 10000 100000

K
L
 D

iv
e
rg

e
n
c
e

Time [ms]

(b) KL Divergence vs. Time

Figure 4: Learning the alarm network from MCAR data.

on the network parameters with a concentration parameter
of 2 (which corresponds to Laplace smoothing).

4.1 MCAR DATA

First, we consider learning from MCAR data, evaluating
the quality of the parameters learned by each algorithm.
We simulate training sets of increasing size, from a given
Bayesian network, selecting 30% of the variables to be par-
tially observed, and removing 70% of their values com-
pletely at random. All reported numbers are averaged over
32 repetitions with different learning problems. When no
number is reported, a 5 minute time limit was exceeded.

To illustrate the trade-off between data and computational
resources, Figure 4 plots the KLDs as a function of dataset
size and time; further results are provided in Table 5 of
Appendix B. First, we note that in terms of the final esti-
mates obtained, there is no advantage in running EM with
restarts: EM-1-JT and EM-10-JT learn almost identical
models. This indicates that the likelihood landscape for
MCAR data has few local optima, and is easy to optimize.
Hence, EM may be obtaining maximum-likelihood esti-
mates in these cases. In general, maximum-likelihood esti-
mators are more statistically efficient (asymptotically) than
other estimators, i.e., they require fewer samples. However,
other estimators (such as method-of-moments) can be more
computationally efficient; see, e.g., Wasserman (2011). We
also observe this trend here. EM obtains better estimates
with smaller datasets, with smaller KLDs. However, direct
and factored deletion (D-MCAR and F-MCAR) are both
orders-of-magnitude faster, and can scale to much larger

datasets, than EM (which requires inference). Further, F-
MCAR needs only a modest amount of additional data to
obtain comparable estimates.

To compare our direct and factored methods, we see that
F-MCAR is slower than D-MCAR, as it estimates more
quantities (one for each lattice edge). F-MCAR learns bet-
ter models, however, as it uses a larger part of the available
data. Finally, D-MAR performs worse than F-MCAR and
D-MCAR, as it assumes the weaker MAR assumption. All
learners are consistent, as all KLDs converge to zero.

4.2 MAR DATA

Next, we consider the more challenging problem of learn-
ing from MAR data, which we generate as follows: (1) se-
lect an m-fraction of the variables to be partially observed,
(2) add a missingness mechanism variable RX for each
partially-observed variable X , (3) assign p parents to each
RX , randomly selected from the set of observed variables,
giving preference to neighbors of X in the network, (4)
sample parameters for the missingness mechanism CPTs
from a Beta distribution, (5) sample a complete dataset with
RX values, and (6) hide values of X accordingly.

For our first MAR experiment, we use a small network that
is tractable enough for EM to scale to large dataset sizes,
so that we can observe trends in this regime. Figure 5(a)
shows KLD for the fire alarm network, which has
only 6 variables (and hence, the complexity of inference is
negligible). The missing data mechanisms were generated
with m = 0.3, p = 2, and a Beta distribution with shape
parameters 1.0 and 0.5. All numbers are averaged over 64
repetitions with different random learning problems.5

There is a significant difference between EM, with and
without restarts, indicating that the likelihood landscape
is challenging to optimize (compared to MCAR, which
we just evaluated). EM-10-JT performs well for small
dataset sizes, but stops converging after around 1,000 in-
stances. This could be due to all restarts getting stuck in
local optima. The KLD of F-MAR starts off between EM-
1-JT and EM-10-JT for small sizes, but quickly outper-
forms EM. For the largest dataset sizes, it learns networks
whose KLD is two orders of magnitude smaller than EM-
10-JT. The KLD improves further when we use F-MAR
estimates to seed EM. This approach is on par with EM-10
for small datasets, while still converging for large dataset
sizes. However, note that using F-MAR to seed EM will not
be practical for larger networks, where inference becomes a

5On our chosen parameters: (1) the number of repetitions was
chosen to produce smooth learning curves; (2) a Beta distribution
with shape parameter 1 is uniform, and with parameter 0.5, it is
slightly biased (so that it acts more like an MAR, and less like an
MCAR, mechanism); (3) m = 0.3 corresponds to a low amount
of missing data, and later m = 0.9 corresponds to high amount;
and (4) p = 2 encourages sparsity and keeps the CPTs small,
although setting p to 1 or 3 does not change the results.

166

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 100 1000 10000 100000 1e+06 1e+07

K
L
 D

iv
e
rg

e
n
c
e

Dataset Size

(a) KL Divergence - Fire Alarm

-16

-15

-14

-13

-12

-11

-10

 100 1000 10000 100000 1e+06

L
o

g
lik

e
lih

o
o

d

Dataset Size

D-MCAR
F-MCAR

D-MAR
F-MAR

EM-1-JT
EM-10-JT

F-MAR + EM-JT

(b) Likelihood vs. Size - Alarm

-16

-15

-14

-13

-12

-11

-10

 10 100 1000 10000 100000

L
o

g
lik

e
lih

o
o

d

Time [ms]

(c) Likelihood vs. Time - Alarm

Figure 5: Learning small, tractable Bayesian networks from MAR data. The legend is given in sub-figure (b).

bottleneck. D-MCAR and F-MCAR are not consistent for
MAR data, and indeed converge to a biased estimate with
a KLD around 0.1. Finally, we observe that the factorized
algorithms generally outperform their direct counterparts.

For our second MAR experiment, we work with the classi-
cal alarm network, which has 37 variables. The missing
data mechanisms were generated with m = 0.9, p = 2, and
a Beta distribution with shape parameters 0.5. All reported
numbers are averaged over 32 repetitions, and when no
number is reported, a 10 minute time limit was exceeded.

Figures 5(b) and 5(c) show test set likelihood as a function
of dataset size and learning time. EM-10-JT performs well
for very small dataset sizes, and again outperforms EM-
1-JT. However, inference time is non-negligible and EM-
10-JT fails to scale beyond 1,000 instances, whereas EM-
1-JT scales to 10,000 (as one would expect). The closed-
form learners dominate all versions of EM as a function
of time, and scale to dataset sizes that are two orders of
magnitude larger. EM seeded by F-MAR achieves sim-
ilar quality to EM-10-JT, while being significantly faster
than EM learners with random seeds. D-MAR and F-MAR
are more computationally efficient, and can scale to much
larger dataset sizes. Further, as seen in Figure 5(c), they
can obtain good likelihoods even before the EM methods
report their first likelihoods.

4.3 SCALING TO LARGER NETWORKS

In our last set of experiments of this section, we evaluate
our algorithms on their ability to scale to larger networks,
with higher treewidths, where exact inference is more chal-
lenging.6 Again, inference is the main factor that limits the
scalability of algorithms such as EM, to larger networks
and datasets (EM invokes inference as a sub-routine, once
per data instance, per iteration). Tables 2 & 3 report results
on four networks, where we simulated MAR datasets, as
in the previous set of experiments. Each method is given a
time limit of 5 or 25 minutes. Appendix C provides results
on additional settings. We consider the following methods:

6The grid network has 400 variables, munin1 has 189 vari-
ables, water has 32 variables, and barley has 48 variables.

EM-JT The EM-10-JT algorithm used in anytime fashion,
which returns, given a time limit, the best parameters
found in any restart, even if EM did not converge.

EM-BP A variant of EM-JT that uses (loopy) belief prop-
agation for (approximate) inference (in the E-step).

We see that EM-JT, which performs exact inference, does
not scale well to these networks. This problem is mitigated
by EM-BP, which performs approximate inference, yet we
find that it also has difficulties scaling (dashed entries in-
dicate that EM-JT and EM-BP did not finish 1 iteration of
EM). In contrast, F-MAR, and particularly D-MAR, can
scale to much larger datasets. This efficiency is due to the
relative simplicity of the D-MAR and F-MAR estimation
algorithms: they are not iterative and require only a single
pass over the data. In contrast, with EM-BP, the EM algo-
rithm is not only iterative, but the BP algorithm that EM-BP
invokes as a sub-routine, is itself an iterative algorithm. As
for accuracy, F-MAR typically obtains the best likelihoods
(in bold) for larger datasets, while EM-BP can perform bet-
ter on smaller datasets. We also evaluated D-MCAR and
F-MCAR, although they are not in general consistent for
MAR data. We find that they scale even further, and can
also produce good estimates in terms of likelihood.

5 EXPLOITING MISSINGNESS GRAPHS

We have so far made very general assumptions about the
structure of the missingness graph, capturing the MCAR
and MAR assumptions. In this section, we show how to
exploit additional knowledge about the missingness graph
to further improve the quality of our estimates. Having
deeper knowledge of the nature of the missingness mech-
anisms will even enable us to obtain consistent estimators
for datasets that are not MAR (in some cases).

5.1 INFORMED DELETION FOR MAR

Consider any MAR dataset, and a missingness graph where
each R ∈ R depends every observed variable in Xo.
This would be an MAR missingness graph that assumes

167

Table 2: Log-likelihoods of large networks, with higher treewidths, learned from MAR data (5 min. time limit).

Size EM-JT EM-BP D-MCAR F-MCAR D-MAR F-MAR EM-JT EM-BP D-MCAR F-MCAR D-MAR F-MAR
102

G
ri

d
90

-2
0-

1 - -57.14 -80.92 -57.01 -80.80 -56.53

W
at

er

-19.10 -18.76 -25.31 -21.76 -25.29 -21.81
103 - -65.41 -38.54 -30.07 -38.27 -29.86 - -14.73 -19.13 -16.45 -18.93 -16.36
104 - - -25.95 -23.30 -25.36 -22.88 - -20.70 -16.66 -14.90 -16.33 -14.67
105 - - -22.74 -22.01 -21.60 - - - -15.49 - -14.90 -
102

M
un

in
1 - -103.72 -115.50 -105.81 -115.41 -104.87

B
ar

le
y

- -89.22 -89.54 -89.26 -89.60 -89.14
103 - -69.03 -71.01 -65.91 -70.61 -65.51 - -74.26 -71.67 -70.46 -71.68 -70.18
104 - -157.23 -56.07 -54.24 -55.46 - - - -56.44 -55.12 -56.40 -
105 - - -52.00 - - - - - - - - -

Table 3: Log-likelihoods of large networks, with higher treewidths, learned from MAR data (25 min. time limit).

Size EM-JT EM-BP D-MCAR F-MCAR D-MAR F-MAR EM-JT EM-BP D-MCAR F-MCAR D-MAR F-MAR
102

G
ri

d
90

-2
0-

1 - -49.15 -80.00 -56.45 -79.81 -55.94

W
at

er

-18.88 -18.73 -25.84 -22.11 -25.87 -22.25
103 - -53.64 -38.14 -29.32 -37.75 -29.09 -17.63 -14.41 -18.39 -15.95 -18.27 -15.79
104 - -85.65 -26.21 -23.05 -25.45 -22.62 - -14.52 -15.57 -14.07 -15.24 -13.92
105 - - -22.78 -21.54 -21.60 -20.79 - -24.99 -14.17 -13.46 -13.71 -13.19
106 - - - - - - - - -13.73 - - -
102

M
un

in
1 - -99.15 -114.76 -106.07 -114.66 -105.12

B
ar

le
y

-89.05 -89.15 -89.57 -89.17 -89.62 -89.03
103 - -67.85 -74.18 -67.81 -73.82 -67.39 - -70.38 -71.86 -70.54 -71.87 -70.27
104 - -66.62 -57.50 -54.94 -56.96 -54.64 - -76.48 -56.37 -55.13 -56.33 -
105 - - -53.07 -51.66 -52.27 - - - -51.31 - -51.19 -

the least, in terms of conditional independencies, about the
causal mechanisms R. If we know more about the nature of
the missingness (i.e., the variables that the R depend on),
we can exploit this to obtain more accurate estimates. Note
that knowing the parents of an R is effectively equivalent to
knowing the Markov blanket of R (Pearl, 1987), which can
be learned from data (Tsamardinos, Aliferis, Statnikov, &
Statnikov, 2003; Yaramakala & Margaritis, 2005). With
sufficient domain knowledge, an expert may be able to
specify the parents of the R. It suffices even to identify
a set of variables that just contains the Markov blanket.

Suppose that we have such knowledge of the missing data
mechanisms of an MAR problem, namely that we know
the subset Wo of the observed variables Xo that suffice to
separate the missing values from their causal mechanisms,
i.e., where Xm⊥⊥R | Wo. We can exploit this knowl-
edge in our direct deletion algorithm, to obtain improved
parameter estimates. In particular, we can reduce the scope
of the summation in our direct deletion algorithm from the
variables X�o (the set of variables in Xo that lie outside the
family Y), to the variables W�

o (the set of variables in Wo

that lie outside the family Y), yielding the algorithm:

Pr(Y)

≈
�

W�
o

PrD(Y�
m|Yo,W

�
o,RYm

=ob) PrD(Yo,W
�
o)

Again, we need only consider, in the summation, the in-
stantiations of W�

o that appear in the dataset.

Table 4: alarm network with Informed MAR data

Size F-MCAR D-MAR F-MAR ID-MAR IF-MAR
Kullback-Leibler Divergence

102 1.921 2.365 2.364 2.021 2.011
103 0.380 0.454 0.452 0.399 0.375
104 0.073 0.071 0.072 0.059 0.053
105 0.041 0.021 0.022 0.011 0.010
106 0.040 0.006 0.008 0.001 0.001

Test Set Log-Likelihood (Fully Observed)
102 -11.67 -12.13 -12.13 -11.77 -11.76
103 -10.40 -10.47 -10.47 -10.42 -10.40
104 -10.04 -10.04 -10.04 -10.02 -10.02
105 -10.00 -9.98 -9.98 -9.97 -9.97
106 -10.00 -9.97 -9.97 -9.96 -9.96

We refer to this algorithm as informed direct deletion. By
reducing the scope of the summation, we need to estimate
fewer sub-terms PrD(Y�

m|Yo,W
�
o,RYm=ob). This re-

sults in a more efficient computation, but further, each in-
dividual sub-expression can be estimated on more data.
Moreover, our estimates remain consistent. We can simi-
larly replace Xo by Wo in the factored deletion algorithm,
to obtain an informed factored deletion algorithm.

Empirical Evaluation Here, we evaluate the benefits of
informed deletion. In addition to the MAR assumption,
with this setting, we assume that we know the set of par-
ents Wo of the missingness mechanism variables. To gen-

168

erate data for such a mechanism, we select a random set
of s variables to form Wo. We further employ the sam-
pling algorithm previously used for MAR data, but now
insist that the parents of R variables come from Wo. Ta-
ble 4 shows likelihoods and KLDs on the alarm network,
for s = 3, and other settings as in the MAR experiments.
Informed D-MAR (ID-MAR) and F-MAR (IF-MAR) con-
sistently outperform their non-informed counterparts.

5.2 LEARNING FROM MNAR DATA

A missing data problem that is not MAR is classified as
MNAR. Here, the parameters of a Bayesian network may
not even be identifiable. Further, maximum-likelihood es-
timation is in general not consistent, so EM and gradient
methods can yield biased estimates. However, if one knows
the mechanisms that dictate missingness (in the form of
a missingness graph), it becomes possible again to obtain
consistent estimates, in some cases (Mohan et al., 2013).

For example, consider the missingness graph of Figure 2,
which is an MNAR problem, where both variables X and Y
are partially observed, and the missingness of each variable
depends on the value of the other. Here, it is still possible
to obtain consistent parameter estimates, as Pr(X, Y) =

Pr(RX=ob, RY =ob) Pr(X�, Y �|RX=ob, RY =ob)

Pr(RX=ob|Y �, RY =ob) Pr(RY =ob|X�, RX=ob)

For a derivation, see Mohan et al. (2013). Such derivations
for recovering queries under MNAR are extremely sensi-
tive to the structure of the missingness graph. Indeed, the
class of missingness graphs that admit consistent estima-
tion has not yet been fully characterized.

6 RELATED WORK

When estimating the parameters of a Bayesian network,
maximum-likelihood (ML) estimation is the typical ap-
proach, where for incomplete data, the common wisdom
among machine learning practitioners is that one needs
to use Expectation-Maximization (EM) or gradient meth-
ods (Dempster, Laird, & Rubin, 1977; Lauritzen, 1995);
see also, e.g., Darwiche (2009), Koller and Friedman
(2009), Murphy (2012), Barber (2012). Again, such meth-
ods do not scale to large datasets or large networks as (1)
they are iterative, (2) they suffer from local optima, and
most notably, (3) they require inference in a Bayesian net-
work. Considerable effort has been expended in improving
on EM across these dimensions, in order to, for example,
(1) accelerate the convergence of EM, and to intelligently
sample subsets of a dataset, e.g., Thiesson et al. (2001),
(2) escape local optima, e.g., (Elidan, Ninio, Friedman, &
Shuurmans, 2002), and (3) use approximate inference algo-
rithms in lieu of exact ones when inference is intractable,
e.g., Ghahramani and Jordan (1997), Caffo, Jank, and Jones

(2005). Further, while EM is suitable for data that is MAR
(the typical assumption in practice), there are some excep-
tions, such as work on recommender systems that explicitly
incorporate missing data mechanisms (Marlin & Zemel,
2009; Marlin, Zemel, Roweis, & Slaney, 2007, 2011).

In the case of complete data, the parameter estimation task
simplifies considerably, in the case of Bayesian networks:
maximum-likelihood estimates can be obtained inference-
free and in closed-form, using just a single pass over the
data: θx|u = PrD(x|u). In fact, the estimation algorithms
that we proposed in this paper also obtain the same param-
eter estimates in the case of complete data, although we are
not concerned with maximum-likelihood estimation here—
we simply want to obtain estimates that are consistent (as
in estimation by the method of moments).

Other inference-free estimators have been proposed for
other classes of graphical models. Abbeel, Koller, and
Ng (2006) identified a method for closed-form, inference-
free parameter estimation in factor graphs of bounded de-
gree from complete data. More recently, Halpern and Son-
tag (2013) proposed an efficient, inference-free method
for consistently estimating the parameters of noisy-or net-
works with latent variables, under certain structural as-
sumptions. From the perspective of maximum-likelihood
learning, where evaluating the likelihood (requiring infer-
ence) seems to be unavoidable, the ability to consistently
estimate parameters—without the need for inference—
greatly extends the accessibility and utility of such mod-
els. For example, it opens the door to practical structure
learning algorithms, under incomplete data, which is a no-
toriously difficult problem in practice (Abbeel et al., 2006;
Jernite, Halpern, & Sontag, 2013).

7 CONCLUSIONS

In summary, we proposed a family of efficient and scal-
able algorithms for learning the parameters of Bayesian
networks, from MCAR and MAR datasets, and sometimes
MNAR datasets. Our parameter estimates are asymptoti-
cally consistent, and further, they are obtained inference-
free and in closed-form. We further introduced and dis-
cussed some improved approaches for parameter estima-
tion, when given additional knowledge of the missingness
mechanisms underlying an incomplete dataset. Empiri-
cally, we demonstrate the practicality of our method, show-
ing that it can scale to much larger datasets, and much
larger Bayesian networks, than EM.

Acknowledgments

This work was supported in part by ONR grants #N00014-
10-1-0933, #N00014-12-1-0423 and #N00014-13-1-0153,
by NSF grants #IIS-1118122 and #IIS-1302448, and the
Research Foundation-Flanders (FWO-Vlaanderen).

169

References

Abbeel, P., Koller, D., & Ng, A. Y. (2006). Learning factor
graphs in polynomial time and sample complexity. Journal
of Machine Learning Research, 7, 1743–1788.

Barber, D. (2012). Bayesian Reasoning and Machine
Learning. Cambridge University Press.

Caffo, B. S., Jank, W., & Jones, G. L. (2005). Ascent-
based monte carlo expectation-maximization. Journal of
the Royal Statistical Society. Series B (Statistical Method-
ology), 67(2), pp. 235–251.

Chavira, M., & Darwiche, A. (2006). Encoding CNFs to
empower component analysis. In SAT, pp. 61–74.

Chavira, M., & Darwiche, A. (2007). Compiling Bayesian
networks using variable elimination. In Proceedings of IJ-
CAI, pp. 2443–2449.

Darwiche, A. (2009). Modeling and Reasoning with
Bayesian Networks. Cambridge University Press.

Dempster, A., Laird, N., & Rubin, D. (1977). Maximum
likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society B, 39, 1–38.

Elidan, G., Ninio, M., Friedman, N., & Shuurmans, D.
(2002). Data perturbation for escaping local maxima in
learning. In Proceedings of AAAI, pp. 132–139.

Francois, O., & Leray, P. (2007). Generation of incomplete
test-data using Bayesian networks. In IJCNN, pp. 2391–
2396.

Ghahramani, Z., & Jordan, M. I. (1997). Factorial hidden
markov models. Machine Learning, 29(2-3), 245–273.

Halpern, Y., & Sontag, D. (2013). Unsupervised learning
of noisy-or Bayesian networks. In Proceedings of UAI.

Jernite, Y., Halpern, Y., & Sontag, D. (2013). Discovering
hidden variables in noisy-or networks using quartet tests.
In NIPS, pp. 2355–2363.

Koller, D., & Friedman, N. (2009). Probabilistic Graphical
Models: Principles and Techniques. MIT Press.

Lauritzen, S. (1995). The EM algorithm for graphical asso-
ciation models with missing data. Computational Statistics
and Data Analysis, 19, 191–201.

Marlin, B., & Zemel, R. (2009). Collaborative prediction
and ranking with non-random missing data. In Proceedings
of the third ACM conference on Recommender systems, pp.
5–12. ACM.

Marlin, B., Zemel, R., Roweis, S., & Slaney, M. (2007).
Collaborative filtering and the missing at random assump-
tion. In UAI.

Marlin, B., Zemel, R., Roweis, S., & Slaney, M. (2011).
Recommender systems: missing data and statistical model
estimation. In IJCAI.

Mohan, K., Pearl, J., & Tian, J. (2013). Graphical models
for inference with missing data. In Proceedings of NIPS.

Murphy, K. P. (2012). Machine Learning: A Probabilistic
Perspective. MIT Press.

Pearl, J. (1987). Evidential reasoning using stochastic sim-
ulation of causal models. AIJ, 32(2), 245–257.

Rubin, D. B. (1976). Inference and missing data. Bio-
metrika, 63(3), 581–592.

Thiesson, B., Meek, C., & Heckerman, D. (2001). Accel-
erating EM for large databases. Machine Learning, 45(3),
279–299.

Thoemmes, F., & Mohan, K. (2015). Graphical representa-
tion of missing data problems. Structural Equation Model-
ing: A Multidisciplinary Journal. To appear.

Tsamardinos, I., Aliferis, C. F., Statnikov, A. R., & Stat-
nikov, E. (2003). Algorithms for large scale Markov blan-
ket discovery.. In Proceedings of FLAIRS, Vol. 2003, pp.
376–381.

Wasserman, L. (2011). All of Statistics. Springer Science
& Business Media.

Yaramakala, S., & Margaritis, D. (2005). Speculative
markov blanket discovery for optimal feature selection. In
Proceedings of ICDM.

170

Bayes Optimal Feature Selection for Supervised Learning
with General Performance Measures

Saneem Ahmed C.G.†
IBM Research

Bangalore 560045, India

Harikrishna Narasimhan
Indian Institute of Science
Bangalore 560012, India

Shivani Agarwal
Indian Institute of Science
Bangalore 560012, India

Abstract

The problem of feature selection is critical in sev-
eral areas of machine learning and data analy-
sis. Here we consider feature selection for super-
vised learning problems, where one wishes to se-
lect a small set of features that facilitate learning
a good prediction model in the reduced feature
space. Our interest is primarily in filter methods
that select features independently of the learning
algorithm to be used and are generally faster to
implement than wrapper methods. Many com-
mon filter methods for feature selection make
use of mutual information based criteria to guide
their search process. However, even in simple bi-
nary classification problems, mutual information
based methods do not always select the best set
of features in terms of the Bayes error. In this pa-
per, we develop a filter method that directly aims
to select the optimal set of features for a general
performance measure of interest. Our approach
uses the Bayes error with respect to the given
performance measure as the criterion for feature
selection and applies a greedy algorithm to opti-
mize this criterion. We demonstrate application
of this method to a variety of learning problems
involving different performance measures. Ex-
periments suggest the proposed approach is com-
petitive with several state-of-the-art methods.

1 INTRODUCTION
The problem of feature selection is critical in several ar-
eas of machine learning and data analysis, particularly for
learning prediction models with good generalization abil-
ity and for reducing the running time of learning algo-
rithms [1–3]. In this paper, we consider feature selection
for supervised learning problems, where one wishes to se-
lect a small set of features that facilitate learning a good

†Work done while at Indian Institute of Science, Bangalore.

prediction model in the reduced feature space. Our focus
is primarily on filter methods that select features indepen-
dently of the learning algorithm to be used, typically by
greedily maximizing some suitable feature selection crite-
rion. These methods are generally faster in practice and
easier to implement than other approaches to feature selec-
tion such as wrapper or embedded methods.

Over the years, there has been much work on designing fil-
ter methods for feature selection, many of which make use
of mutual information based criteria to guide their search
process [4–7]. However, these methods do not explicitly
consider the performance measure used to evaluate a model
in the learning problem. In fact, even in the case of simple
binary classification, one can construct settings where the
popular mutual information criterion does not yield the best
set of features in terms of the Bayes 0-1 classification er-
ror (as we shall shortly see with an example) [8]. Clearly,
there is a need for filter methods that are tailored to directly
optimize a given performance measure of interest.

In this paper, we develop a Bayes optimal filter method
for a general performance measure. Our approach directly
aims to find the optimal set of features in terms of the Bayes
error for the given loss or performance measure, thus allow-
ing for the possibility of learning a good model in the re-
duced feature space. We show that the mutual information
criterion mentioned above is a special case of our setting
when the loss function of interest is the logarithmic loss for
class probability estimation. We use a greedy forward se-
lection algorithm for approximately optimizing the Bayes
criterion for the given performance measure, and demon-
strate application of this method to various learning prob-
lems involving different performance measures. Experi-
ments on several learning tasks suggest that the proposed
approach is competitive with the state-of-the-art methods.

Indeed in the simpler setting of classification with the
0-1 error, there have been some works that have sug-
gested the use of Bayes error as a criterion for feature se-
lection/transformation [8–13]. Of these, only Yang and
Hu (2012) provide an experimental evaluation of a filter
method for optimizing the Bayes 0-1 error [13]; however,

171

even here, the objective eventually optimized is different
from the Bayes optimal criterion for the 0-1 error (we elab-
orate on this in Section 3.1). On the other hand, we provide
in this paper the first systematic study of Bayes optimal fil-
ter methods for general performance measures, going well
beyond the simple setting of 0-1 classification, and han-
dling a variety of learning settings, including those with
complex performance measures such as the F-measure.

1.1 RELATED WORK

Filter methods have received much attention from the ma-
chine learning/data mining/artificial intelligence commu-
nities, resulting in various hand-crafted filter criteria and
heuristic techniques for optimizing the proposed objectives
[4–7, 14–21]. Predominant among these are methods that
use the mutual information (MI) between a given feature
subset and the output label as a measure of relevance of
the feature subset to the given learning task, often with ad-
ditional information theoretic terms to account for redun-
dancy among the features in the given subset [4–7, 16–21].
While there have been arguments made to justify the use
of MI as a criterion for binary classification by establish-
ing lower/upper bounds on MI in terms of the 0-1 Bayes
error [21–24], these bounds are tight only for certain set-
tings; in general, the optimal feature subset for the MI cri-
terion need not be the same as that for the 0-1 Bayes error.

There has also been some work on designing filter methods
for specific learning tasks, such as text retrieval [25], class
imbalanced classification [26], and ranking [27]. However,
the feature selection criteria proposed therein are either
based on heuristics and do not explicitly promote feature
subsets that are Bayes optimal for the given problem, or as
in the case of [25], require a certain (binary) representation
of the features and do not apply to general settings.

Apart from filter methods, other popular families of feature
selection techniques include wrapper methods, where the
quality of a subset of features is determined by explicitly
learning a model on the feature subset and evaluating its
accuracy on a held-out sample [2, 28, 29]; and embedded
methods, which combine model learning and feature selec-
tion into a single step, such as using sparse regularization
in the learning problem [30]. While both these approaches
allow us to incorporate different loss functions during fea-
ture selection, filter methods are computationally cheaper
as they decouple feature selection from model learning, and
are typically simpler to implement in practice.

Organization. Section 2 gives preliminaries, together with
an example illustrating that the MI feature selection crite-
rion can be suboptimal for binary classification. Section 3
describes the proposed Bayes feature selection method, fol-
lowed by examples of how it can be applied to different
learning problems and performance measures. Section 4
gives results of experiments on several learning tasks.

2 PRELIMINARIES AND BACKGROUND

Notation. For n ∈ Z+, we denote [n] = {1, . . . , n}.
For a vector x = (x1, . . . , xn) ∈ Rn and set J =
{j1, . . . , jk} ⊆ [n] with j1 < . . . < jk, we denote
xJ = (xj1 , . . . , xjk) ∈ Rk. For random variables X and
Y , we denote by H(X) the entropy of X , by H(Y |X) the
conditional entropy of Y givenX , and by I(X;Y) the mu-
tual information between X and Y . For a predicate φ, we
denote by 1(φ) the indicator of φ, which takes the value 1
if φ is true and 0 otherwise. For any z ∈ R, sign(z) = 1 if
z > 0 and −1 otherwise.

Problem Setup. Let X ⊆ Rn be an n-dimensional in-
stance space. We will be interested in feature selection for
supervised learning problems, where there is some label
space Y and prediction space Ŷ; one receives a training
sample S = ((x1, y1), · · · , (xm, ym)) ∈ (X × Y)m, and
the goal is to learn a prediction model h : X→Ŷ .1 Typ-
ically, one assumes all examples (both training examples
and future test examples) are drawn i.i.d. from some prob-
ability distribution D on X × Y , and the goal is to learn
a prediction model with good prediction performance (ac-
cording to a suitable performance measure) on future ex-
amples from D. We will denote by (X,Y) a random vari-
able drawn from D. Often, performance is measured via a
loss function ` : Y × Ŷ→R+; the goal then is to learn a
model h minimizing the expected loss on a new example
from D, which we refer to as the `-error of h w.r.t. D:
er`D[h] = E(X,Y)∼D[`(Y, h(X))]. The smallest achiev-
able `-error over all possible prediction models is called
the Bayes `-error for D: er`,∗D = infh:X→Ŷ er`D[h]. For ex-
ample, in binary classification, one has Y = Ŷ = {±1},
and the loss function of interest is often the 0-1 loss `0-1 :
{±1} × {±1}→R+ defined as `0-1(y, ŷ) = 1(ŷ 6= y). For
problems with binary labels Y = {±1}, we will denote by
p = P(Y = 1) the overall probability of label +1 under
D, and by η : X→[0, 1] the associated class probability
function: η(x) = P(Y = 1 |X = x). Here the Bayes 0-1
error has the form er0-1,∗

D = EX [min(η(X), 1− η(X))].

The feature selection problem we are interested in is to
select a subset of features J ⊆ [n] of some speci-
fied size k ∈ [n] (usually k � n), such that one can
then learn a good prediction model in the reduced k-
dimensional feature space XJ = {xJ |x ∈ X} ⊆
Rk.2Specifically, given a training sample S ∈ (X × Y)m
as above, one works with the reduced training sample
SJ = ((x1

J , y
1), · · · , (xmJ , ym)) ∈ (XJ × Y)m, and

learns a prediction model hJ : XJ→Ŷ in the reduced
space XJ . We will denote by DJ the marginal distri-
bution of D on XJ × Y; for problems with binary la-

1Often Ŷ = Y , but this is not always the case.
2In this paper, we assume for simplicity that the target fea-

ture subset size k is given as part of the problem. However, the
methods developed easily extend to settings where k is unknown.

172

bels Y = {±1}, we will also denote by ηJ : XJ→[0, 1]
the class probability function on the reduced feature space
XJ : ηJ (z) = P(Y = 1 |XJ = z), where XJ contains
components of the random vector X corresponding to in-
dices in J . Clearly, if the examples in S are drawn i.i.d.
from D, then the examples in SJ can be viewed as be-
ing drawn i.i.d. from DJ . In the loss function setting, the
performance of a model hJ learned in the reduced feature
space is measured via its `-error w.r.t. DJ : er`DJ [hJ] =
E(Z,Y)∼DJ [`(Y, hJ (Z))] = E(X,Y)∼D[`(Y, hJ (XJ))].

Feature Selection as (Approximate) Optimization. We
will view feature selection methods as (approximately) op-
timizing some objective or criterion CD : 2[n]→R, which
typically depends on distribution D. Given such a criterion
CD and a target feature subset size k, one aims to select

J ∗ ∈ argmax
J ⊆ [n]
|J |= k

CD(J) . (1)

Of course, in practice, one does not know the distribution
D, and so instead uses an approximate version of the cri-
terion CD based on the training sample S, which we shall
denote as ĈS : 2[n]→R. Moreover, the combinatorial opti-
mization problem (over

(
n
k

)
subsets) is generally computa-

tionally hard, and so one settles for an approximate search
strategy, such as a greedy approach. We shall elaborate fur-
ther on both these approximations below.

Filter Methods and Mutual Information (MI) Criterion.
In a filter method for feature selection, the choice of the
feature subset does not depend on the particular learning
algorithm to be used in the reduced feature space, i.e. the
criterion CD is independent of the particular learning algo-
rithm to be used. A popular filter criterion that is widely
used in feature selection for supervised learning is the mu-
tual information (MI) criterion, defined as the mutual in-
formation between the selected features and the labels:

CMI
D (J) = I(XJ ;Y) , (2)

where (X,Y) denotes a random variable distributed ac-
cording to D.The motivation for using the MI criterion is
that it is expected to preserve the information necessary
for learning a good prediction model. Indeed, in the case
of binary classification, monotonic functions of the mutual
information I(X;Y) are known to both upper and lower
bound the Bayes error er0-1,∗

D [21–24]. However, as seen
below, even in the case of binary classification, there are
situations where the MI criterion does not select an opti-
mal set of features:

Example 1 (Suboptimality of MI criterion for binary clas-
sification with 0-1 error). Consider a binary classification
problem on a 2-dimensional instance space with binary
features: X = {0, 1}2, Y = {±1}. Let D be a probability
distribution on (X × Y) under which P(Y = 1) = 0.3,
the random variables X1, X2 (components of the random

vector X) are conditionally independent given the label Y ,
and the class-conditional distributions are given by

P(X1 = 1 |Y = 1) = 0.4 ; P(X1 = 1 |Y = −1) = 0.1 ;
P(X2 = 1 |Y = 1) = 0.9 ; P(X2 = 1 |Y = −1) = 0.4.

Clearly, P(X1 = 1) = 0.19, P(X2 = 1) = 0.55,
η{1}(0) = 0.22, η{1}(1) = 0.63, η{2}(0) = 0.07 and
η{2}(1) = 0.49. Now consider selecting a single feature
for use in learning a binary classifier (thus here n = 2,
k = 1). It can be verified that under the above distribution,

CMI
D ({1}) = I(X1;Y) = 0.08

CMI
D ({2}) = I(X2;Y) = 0.17.

Therefore the MI criterion would select feature 2 and learn
a classifier in the feature space X{2}. One can also com-
pute the Bayes 0-1 errors in X{1} and X{2}; these can be
verified to be

er0-1,∗
D{1}

= 0.25 ; er0-1,∗
D{2}

= 0.30 .

Thus even if one uses the best possible learning algorithm
in the feature space X{2} selected by the MI criterion, the
best classifier one can learn will have 0-1 error 0.30. On
the other hand, if we had selected feature 1, we could po-
tentially have learned a classifier with 0-1 error 0.25!

The above example suggests looking directly for a feature
subset that yields low Bayes error with respect to a given
performance measure of interest.

3 BAYES OPTIMAL FEATURE
SELECTION

Motivated by the above discussion, we now develop a fil-
ter method for feature selection that is tailored to optimize
a general performance measure of interest. In particular,
rather than selecting a feature subset by maximizing the
mutual information with the labels, our approach optimizes
the information most relevant to the supervised learning
task at hand, with the aim of learning as good a prediction
model in the reduced feature space as possible in terms of
the given loss or performance measure. More formally, for
a supervised learning problem with label space Y , predic-
tion space Ŷ , and with loss function ` : Y × Ŷ→R+, we
will be interested in selecting a feature subset that mini-
mizes the Bayes `-error in the reduced feature space, or
equivalently, maximizes the following criterion:

CBayes,`
D (J) = −er`,∗DJ . (3)

Note that this is different from a wrapper method, which
looks for a feature subset that maximizes prediction perfor-
mance of a model learned by a particular algorithm; here,
we are instead interested in finding the best feature subset
for a given performance measure of interest, without being
tied to any particular learning algorithm.

173

3.1 EXAMPLES OF BAYES CRITERION FOR
VARIOUS LEARNING PROBLEMS AND
PERFORMANCE MEASURES

Here we give several examples of the above Bayes criterion
for specific learning problems/performance measures. We
shall see that for the case of binary class probability esti-
mation with the logarithmic loss, the Bayes criterion effec-
tively reduces to the MI criterion (Example 5); thus the MI
criterion can be viewed as finding a good feature space for
class probability estimation. Similarly, for regression with
squared error, the Bayes criterion is exactly the criterion
optimized in the forward regression feature selection algo-
rithm for sparse linear regression (Example 6). We begin
with the simple case of binary classification with 0-1 error.

Example 2 (Bayes criterion for binary classification with
0-1 error). Let Y = Ŷ = {±1}, with `0-1 : {±1} ×
{±1}→R+ defined as `0-1(y, ŷ) = 1(ŷ 6= y). Then

CBayes,0-1
D (J) = −EX

[
min

(
ηJ (XJ), 1− ηJ (XJ)

)]
.

As noted earlier, the filter method provided by Yang and Hu
(2012) [13] for optimizing the Bayes 0-1 error eventually
optimizes an objective different from the above one; while
the authors initially discuss a feature selection criterion of
the above form, they end up prescribing and analyzing a
variant −EX,Y

[
(1 − Y)ηJ (XJ) + Y

(
1 − ηJ (XJ)

)]
=

−EX
[
2ηJ (XJ)

(
1− ηJ (XJ)

)]
, which is not necessarily

optimal for the 0-1 error (see Eq. (7) in their paper). In this
work, we go well beyond the simple setting of 0-1 classi-
fication, and present a systematic study of Bayes optimal
criteria for general performance measures, as seen below.

Example 3 (Bayes criterion for binary classification with
cost-sensitive error). Let Y = Ŷ = {±1}. Let c ∈ (0, 1)
denote the cost of a false positive and (1 − c) the cost of
a false negative; the corresponding cost-sensitive loss `c :
{±1} × {±1}→R+ is defined as

`c(y, ŷ) =

c if y = −1, ŷ = 1

1− c if y = 1, ŷ = −1
0 otherwise.

Then

CBayes,c
D (J)
= −EX

[
min

(
(1− c)ηJ (XJ), c(1− ηJ (XJ))

)]
.

Example 4 (Bayes criterion for binary classification with
balanced 0-1 error). Let Y = Ŷ = {±1}. The balanced
loss `bal : {±1} × {±1}→R+ seeks to balance predic-
tion errors on positive and negative examples by weighting
them according to their inverse class probabilities, and is
frequently used to measure classification performance in
class imbalance settings [31]; it depends on the underly-
ing distribution D via the probability p = P(Y = 1), and

is defined as

`bal(y, ŷ) =

1
1−p if y = −1, ŷ = 1
1
p if y = 1, ŷ = −1
0 otherwise.

Here the Bayes criterion becomes

CBayes,bal
D (J) = −EX

[
min

(ηJ (XJ)
p

,
1− ηJ (XJ)

1− p
)]
.

Example 5 (Bayes criterion for binary class probability
estimation with logarithmic loss). Let Y = {±1} and
Ŷ = [0, 1], with logarithmic loss `log : {±1} × [0, 1]→R+

defined as

`log(y, ŷ) = −1(y = 1) ln(ŷ)− 1(y = −1) ln(1− ŷ) .
Then

CBayes,log
D (J)
= −EX

[
− ηJ (XJ) ln(ηJ (XJ))

−(1− ηJ (XJ)) ln(1− ηJ (XJ))
]

= −H(Y |XJ) = I(XJ ;Y)−H(Y)

= CMI
D (J)−H(Y) .

This is equivalent to using the MI criterion! Thus, in the bi-
nary setting, the MI criterion effectively selects a feature set
that minimizes Bayes log-error, i.e. that allows for a good
class probability estimator (in terms of logarithmic loss) in
the resulting feature space! (Note that this is not the same
as selecting good features for binary classification with 0-1
error or other performance measures; e.g. see Example 1.
This is also demonstrated in our experiments in Section 4.)

Example 6 (Bayes criterion for regression with squared er-
ror). Let Y = Ŷ = R, with squared loss `sq : R× R→R+

defined as `sq(y, ŷ) = (ŷ − y)2. Then

CBayes,sq
D (J) = −EX

[
Var(Y |XJ)

]
.

This is exactly the criterion used in the well-known forward
regression feature selection algorithm for sparse linear re-
gression (where one assumes E[Y |X = x] = β>x for
some sparse β ∈ Rn) [32].

While all examples seen so far have involved performance
measures that can be expressed as an expected value of a
loss function, we shall next consider examples of learn-
ing problems where the performance measure of interest
is complex and non-additive.

Example 7 (Bayes criterion for binary classifica-
tion/retrieval with Fβ-measure). Let Y = Ŷ = {±1},
and consider a classification or retrieval problem where the
goal is to learn a classifier h : X→{±1} with performance
measured by the Fβ-measure (higher values are better):

Fβ,D[h] =
1 + β2

β2

PrecD[h] +
1

RecD[h]

,

174

Algorithm 1 `-BayesGreedy

1: Inputs: S = (x1, y1), . . . , (xm, ym)) ∈ (Rn × Y)m
k ∈ [n]

2: Initialize: J ← ∅
3: for t = 1 . . . k do
4: jt ← argmax

j∈[n]\J
ĈBayes,`
S (J ∪ {j})

5: J ← J ∪ {jt}
6: end for
7: Output: J

where PrecD[h] = P
(
Y = 1 |h(X) = 1

)
and RecD[h] =

P
(
h(X) = 1 |Y = 1

)
are the precision and recall of h, re-

spectively, and β > 0 trades off the relative importance of
these two quantities. In this case, the performance measure
cannot be expressed as the expected value of a loss func-
tion over individual data points. Nevertheless, it is known
that the Bayes optimal classifier for the Fβ-measure is ob-
tained by thresholding the class probability function η for
the given distribution at an optimal point [24, 33]. One
can therefore compute the Bayes optimal value of the Fβ-
measure for a given distribution, and use this as the crite-
rion to be optimized in feature selection:

C
Bayes,Fβ
D (J) = sup

hJ :XJ→{±1}
Fβ,DJ [hJ]

= sup
t∈[0,1]

Fβ,DJ [sign ◦(ηJ − t)].

Example 8 (Bayes criterion for bipartite ranking with
AUC). Let Y = {±1}, and consider a bipartite rank-
ing problem where the goal is to learn a scoring function
f : X→R, with performance measured by the area under
the ROC curve (AUC) (higher values are better):

AUCD[f] = E
[
1
(
(Y − Y ′)(f(X)− f(X ′)) > 0

)

+ 1
2 1
(
f(X) = f(X ′)

) ∣∣ Y 6= Y ′
]
,

where (X,Y), (X ′, Y ′) are drawn i.i.d. from D. While
here again, the performance measure cannot be expressed
as an expectation of loss function, one can indeed compute
the Bayes optimal value of the performance measure for a
given distribution (e.g. see [34]); we use this as the crite-
rion to be optimized in feature selection:

CBayes,AUC
D (J)
= sup

fJ :XJ→R
AUCDJ [fJ]

= 1− E
[
min

(
αJ (XJ , X ′J), αJ (X

′
J , XJ)

)]

2p(1− p) ,

where αJ (Z,Z ′) = ηJ (Z)(1− ηJ (Z ′)).

3.2 GREEDY ALGORITHM FOR OPTIMIZING
BAYES CRITERION

As noted earlier, in practice, one does not have access to the
true distributionD, and therefore must optimize an approx-
imate version of the Bayes criterion based on the training

sample S = ((x1, y1), . . . , (xm, ym)). In particular, for a
label space Y , prediction space Ŷ , and loss ` : Y×Ŷ→R+,
note that the Bayes `-error w.r.t. D can be written as

er`,∗D = EX

[
inf
ŷ∈Ŷ

EY |X
[
`(Y, ŷ)

]]
.

To obtain a sample-based estimate of er`,∗D , one can replace
the outer expectation over X by an average over the train-
ing instances xi in S, and use an empirical estimate of the
conditional distribution of Y given X in computing the in-
ner expectation:

êr`,∗S =
1

m

m∑

i=1

inf
ŷ∈Ŷ

ÊY |X=xi
[
`(Y, ŷ)

]
,

where ÊY |X denotes expectation with respect to an approx-
imate conditional distribution P̂(Y |X) estimated from the
sample S. This gives the approximate Bayes criterion

ĈBayes,`
S (J) = −êr`,∗SJ

= − 1

m

m∑

i=1

inf
ŷ∈Ŷ

ÊY |XJ=xiJ

[
`(Y, ŷ)

]
,

where again ÊY |XJ denotes expectation with respect to an
approximate conditional distribution P̂(Y |XJ) estimated
from the sample SJ . For example, for binary classification
with 0-1 error, one gets the approximate criterion:

ĈBayes,0-1
S (J) = − 1

m

m∑

i=1

min
(
η̂J (x

i
J) , 1− η̂J (xiJ)

)
,

where η̂J : XJ→[0, 1] is a suitable estimate of ηJ based on
SJ . An ideal algorithm would then select the best subset
of k features according to the above approximate criterion:

ĴS ∈ argmax
J ⊆ [n]
|J |= k

ĈBayes,`
S (J) .

However, this optimization problem (over
(
n
k

)
subsets) is

typically still hard due to its combinatorial nature. As is
often done in other feature selection approaches, one pos-
sibility is to use an algorithm that selects features to maxi-
mize the above criterion in a greedy fashion. For example,
one can use a forward selection algorithm which starts with
an empty feature set, and at each iteration, adds the feature
with the highest marginal value of the objective ĈBayes,`

S to
the current set of features (see Algorithm 1).3

Conditional probability estimation for large k using s-
variate approximations. Applying the above algorithm

3We note that the proposed greedy method easily extends to
settings where the value of k is not available to us; for example,
one can terminate this method based on an appropriate stopping
criterion (such as when the difference in feature criterion across
two successive iterations falls below a certain value) and use the
features chosen up to that point to learn a suitable predictor.

175

Table 1: Data sets used in our experiments.
Data set No. of features No. of instances Feature type p = P(Y = 1)
Mushroom 116 8124 Binary 0.482
Adult 123 48824 Binary 0.239
Splice 240 3190 Binary 0.519
Semeion 256 1593 Binary 0.102
KDDCup01 139351 1909 Binary 0.022
Pcmac 3289 1943 Integer 0.495
Basehock 4862 1993 Integer 0.501
Gisette 5000 6000 Integer 0.500
Waveform 40 5000 Real 0.331

as shown requires computing conditional probability esti-
mates P̂(Y |XJ) for feature sets J of size up to k. For
small k, this is easy to do; for example, for problems with
binary labels, one computes:

η̂J (z) = P̂(Y = 1 |XJ = z) =

∑m
i=1 1(x

i
J = z, yi = 1)∑m

i=1 1(x
i
J = z)

if
∑m
i=1 1(x

i
J = z) > 0

1
2 otherwise.

When k is large, one runs into difficulties in later iterations
of the algorithm. Specifically, consider the t-th iteration,
when (t − 1) < k features j1, . . . , jt−1 have been added
to J and the t-th feature is to be selected. For large t, it
is likely that most configurations of xiJ appear only once
in the training sample, and therefore for all potential fea-
tures jt ∈ [n] \ J , one gets (in a setting with binary labels)
that η̂J∪{jt}(x

i
J∪{jt}) is either 0, 1 or 1

2 , thus giving many
ties and no useful basis for selecting the next feature. This
is an inherent difficulty that arises when estimating high-
dimensional multivariate distributions from limited data. A
common approach to overcome this problem, often used
in the context of optimizing the MI criterion (e.g. see [5]),
is to use approximate calculations that require estimating
conditional distributions on only smaller subsets of the fea-
tures; one such approach is a s-variate approximation (for
some small s < k), where the given filter criterion on a set
of k features J is approximated by the average value of the
criterion on all subsets of J of size s [20]:

ĈBayes
S (J) ≈ 1(

k
s

)
∑

A⊂J ,|A|=s
ĈBayes
S (A).

With such approximations, one can use algorithms based
on both forward selection and backward elimination to
greedily maximize the Bayes criterion. In our experiments
with large feature subsets, we use the standard bivariate ap-
proximation with s = 2.

4 EXPERIMENTS

We now report results of experiments designed to evalu-
ate the proposed Bayes optimal feature selection method in

a variety of settings with different performance measures.
These include binary classification with both the standard
0-1 and cost-sensitive losses, binary class probability es-
timation (CPE) with the logarithmic loss (under which our
Bayes criterion reduces to MI criterion), and learning under
class imbalance with the balanced 0-1 loss and F-measure.
The data sets used in our experiments are shown in Ta-
ble 1; these include varying numbers of features/examples,
feature types, and class probabilities.4 Each data set was
split into train-test sets, with the feature selection methods
and learning algorithms applied on the training set, and the
learned model evaluated on the test set; the average per-
formance over 5 random train-test splits is then reported.
All tunable parameters in the learning algorithms used were
chosen using a held-out portion of the training set.5,6

Baselines. Our main method, which optimizes the Bayes
criterion corresponding to the loss or performance mea-
sure of interest in a greedy manner (possibly with some
approximations in estimating high-dimensional conditional
distributions), is termed BayesGreedy. We also include a
score-based variant of our method (BayesScore) that scores
each feature independently using the Bayes criterion eval-
uated on the corresponding one-dimensional feature space,
and selects the top k features according to this score. As
baselines, we consider a number of standard filter meth-
ods popular in practice. These include a method that opti-
mizes the MI criterion in a greedy manner (again with some
approximations in estimating high-dimensional conditional
distributions), termed MIGreedy [5, 7]; a score-based vari-

4We obtained Pcmac and Basehock from the
ASU repository (http://featureselection.asu.edu), KD-
DCup01 from the KDD Cup Challenge 2001
(http://pages.cs.wisc.edu/dpage/∼kddcup2001/) and the rest
from the UCI ML repository (http://www.ics.uci.edu/∼mlearn/
MLRepository.html). Of these, Semeion and Waveform are
multi-class data sets, where one of the class was taken as positive,
and the remaining were combined into the negative class.

5In the case of the larger Adult data set, 20% of the data was
used for training and the remaining for testing. On all other data
sets, 70% was used for training. In each case, a held-out 20% of
the training set was used for parameter tuning.

6For data sets with integer/real valued features, we discretized
each feature into three categories based on intervals: (−∞, µ −
σ), [µ− σ, µ+ σ), and [µ+ σ,∞), where µ is the mean feature
value and σ is the standard deviation.

176

5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

No. of features

T
es

t 0
−

1
er

ro
r

0−1−BayesGreedy
MIGreedy
0−1−BayesScore
MIScore
mRMR
FScore

(a) Mushroom (0-1)

5 10 15 20 25
0.16

0.18

0.2

0.22

0.24

No. of features

T
es

t 0
−

1
er

ro
r

0−1−BayesGreedy
MIGreedy
0−1−BayesScore
MIScore
mRMR
FScore

(b) Adult (0-1)

5 10 15 20 25
0

0.05

0.1

0.15

0.2

No. of features

T
es

t 0
−

1
er

ro
r

0−1−BayesGreedy
MIGreedy
0−1−BayesScore
MIScore
mRMR
FScore

(c) Splice (0-1)

5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

No. of features

T
es

t 0
−

1
er

ro
r

 0−1−BayesGreedy
MIGreedy
0−1−BayesScore
MIScore
mRMR
FScore

(d) Semeion (0-1)

5 10 15 20 25

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

No. of features

T
es

t 0
−

1
er

ro
r

 0−1−BayesGreedy
MIGreedy
0−1−BayesScore
MIScore
mRMR
FScore

(e) Pcmac (0-1)

5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

No. of features

T
es

t 0
−

1
er

ro
r

 0−1−BayesGreedy
MIGreedy
0−1−BayesScore
MIScore
mRMR
FScore

(f) Basehock (0-1)

5 10 15 20 25

0.05

0.1

0.15

0.2

No. of features

T
es

t 0
−

1
er

ro
r

0−1−BayesGreedy
MIGreedy
0−1−BayesScore
MIScore
mRMR
FScore

(g) Gisette (0-1)

2 4 6 8 10
0.1

0.12

0.14

0.16

0.18

0.2

0.22

No. of features

T
es

t 0
−

1
er

ro
r

0−1−BayesGreedy
MIGreedy
0−1−BayesScore
MIScore
FScore
mRMR

(h) Waveform (0-1)

Figure 1: Feature selection for binary 0-1 classification. Plots show test 0-1 error vs. number of features for different
feature selection methods, with SVM (RBF kernel) as the classification algorithm.

5 10 15 20 25
0

0.01

0.02

0.03

0.04

No. of features

T
es

t c
−

er
ro

r

 c−BayesGreedy
MIGreedy
c−BayesScore
MIScore
mRMR
FScore

(a) Mushroom (c = 0.25)

5 10 15 20 25
0

0.005

0.01

0.015

0.02

0.025

No. of features

T
es

t c
−

er
ro

r

 c−BayesGreedy
MIGreedy
c−BayesScore
MIScore
mRMR
FScore

(b) Mushroom (c = 0.1)

5 10 15 20 25

0.075

0.08

0.085

0.09

0.095

No. of features

T
es

t c
−

er
ro

r

 c−BayesGreedy
MIGreedy
c−BayesScore
MIScore
mRMR
FScore

(c) Adult (c = 0.25)

5 10 15 20 25
0.04

0.045

0.05

0.055

0.06

No. of features

T
es

t c
−

er
ro

r

 c−BayesGreedy
MIGreedy
c−BayesScore
MIScore
mRMR
FScore

(d) Adult (c = 0.1)

Figure 2: Feature selection for cost-sensitive binary classification with different costs c. Plots show test cost-sensitive error
vs. number of features for various filter methods, with cost-sensitive SVM (RBF kernel) as the classification algorithm.

ant of this method for optimizing the MI criterion (MIS-
core) [21]; and a score-based method that optimizes an-
other popular feature selection criterion, namely the Fis-
cher score (F-score) [35]. Apart from the above methods,
there are other filter methods based on MI that in addition
to optimizing for relevant feature subsets, also seek to pro-
mote some form of ‘diversity’ among the chosen features.
Popular among these is the minimal-redundancy-maximal-
relevance (mRMR) method [6], which we include as a rep-
resentative baseline from this category.

The above baselines are indeed representative of the vari-
ous filter methods used in practice, with most other meth-
ods based on MI being variants of the MIGreedy or mRMR
methods. Since the focus of this paper is entirely on filter
methods, we do not compare our approach against wrap-
per or embedded methods, which unlike filter methods are
closely tied to the learning algorithm used.

In experiments below, unless otherwise specified, the
BayesGreedy and MIGreedy methods shall use exact es-
timates of class-conditional distributions.

4.1 BINARY CLASSIFICATION (0-1 ERROR AND
COST-SENSITIVE ERROR)

The first task that we consider is binary classification with
the standard 0-1 error (see Example 2 for the Bayes crite-
rion for this performance measure). We used kernel SVM
(with RBF kernel) as the learning algorithm for this task.
Figure 1 contains the test 0-1-error for the different feature
selection methods as a function of the number of features
chosen. As seen, on all data sets except Semeion and for
most feature subset sizes, the features chosen by the pro-
posed BayesGreedy method (that explicitly optimizes the
0-1 error) perform comparable to or better than the base-
line methods. The poor performance of BayesGreedy on
the Semeion data set was due to the inexact/greedy search
technique used by the method (when the Bayes criterion
was optimized exactly on this data set using an exhaus-
tive search over feature subsets, we did obtain better per-
formance than the MI criterion).

We also consider the task of binary classification with cost-
sensitive error (see Example 3 for the Bayes criterion).

177

5 10 15 20 25
0

0.1

0.2

0.3

0.4

No. of features

T
es

t l
og

ar
ith

m
ic

 e
rr

or

0−1−BayesGreedy
MIGreedy
0−1−BayesScore
MIScore
mRMR
FScore

(a) Mushroom (CPE)

5 10 15 20 25

0.35

0.4

0.45

0.5

0.55

No. of features

T
es

t l
og

ar
ith

m
ic

 e
rr

or

 0−1−BayesGreedy
MIGreedy
0−1−BayesScore
MIScore
mRMR
FScore

(b) Adult (CPE)

5 10 15 20 25
0.1

0.2

0.3

0.4

0.5

No. of features

T
es

t l
og

ar
ith

m
ic

 e
rr

or

0−1−BayesGreedy
MIGreedy
0−1−BayesScore
MIScore
mRMR
FScore

(c) Splice (CPE)

5 10 15 20 25

0.1

0.15

0.2

0.25

0.3

0.35

No. of features

T
es

t l
og

ar
ith

m
ic

 e
rr

or

 0−1−BayesGreedy
MIGreedy
0−1−BayesScore
MIScore
mRMR
FScore

(d) Semeion (CPE)

5 10 15 20 25

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

No. of features

T
es

t l
og

ar
ith

m
ic

 e
rr

or

 0−1−BayesGreedy
MIGreedy
0−1−BayesScore
MIScore
mRMR
FScore

(e) Pcmac (CPE)

5 10 15 20 25
0.2

0.3

0.4

0.5

0.6

0.7

No. of features

T
es

t l
og

ar
ith

m
ic

 e
rr

or

 0−1−BayesGreedy
MIGreedy
0−1−BayesScore
MIScore
mRMR
FScore

(f) Basehock (CPE)

5 10 15 20 25
0.1

0.2

0.3

0.4

0.5

No. of features

T
es

t l
og

ar
ith

m
ic

 E
rr

or

0−1−BayesGreedy
MIGreedy
0−1−BayesScore
MIScore
mRMR
FScore

(g) Gisette (CPE)

2 4 6 8 10
0.25

0.3

0.35

0.4

0.45

No. of features

T
es

t l
og

ar
ith

m
ic

 e
rr

or

0−1−BayesGreedy
MIGreedy
0−1−BayesScore
MIScore
mRMR
FScore

(h) Waveform (CPE)

Figure 3: Feature selection for binary CPE. Plots show test logarithmic error vs. number of features for different feature
selection methods, with logistic regression (RBF kernel) as the CPE algorithm. Here, MI is the Bayes optimal criterion for
the logarithmic error; one can see that MIGreedy performs the best in most cases.

5 10 15 20 25
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

No. of features

T
es

t b
al

an
ce

d
er

ro
r

bal−BayesGreedy
MIGreedy
bal−BayesScore
MIScore
mRMR
FScore

(a) Semeion (Balanced 0-1)

5 10 15 20 25
0.2

0.3

0.4

0.5

0.6

0.7

0.8

No. of features

T
es

t F
−

m
ea

su
re

F1−BayesGreedy
MIGreedy
F1−BayesScore
MIScore
mRMR
FScore

(b) Semeion (F1-measure)

10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

No. of features

T
es

t b
al

an
ce

d
er

ro
r

bal−BayesGreedy
MIGreedy
bal−BayesScore
MIScore
mRMR
FScore

(c) KDDCup01 (Balanced 0-1)

Figure 4: Feature selection for learning under class imbalance. (a), (c) Test balanced 0-1 error vs. number of features, with
balanced SVM (RBF kernel) used as the learning algorithm. (b) Test F1-measure vs. number of features, with a plug-in
method that uses logistic regression (RBF kernel) followed by empirical thresholding as the learning algorithm. Bivariate
approximations were used in estimating class-conditionals for KDDCup01. Higher values are better for F1-measure.

We used cost-sensitive kernel SVM as the learning algo-
rithm here. Figure 2 contains results on the Adult and
Mushroom data sets with different costs. In three of four
cases, BayesGreedy yields lower cost-sensitive error than
the baselines for smaller feature subset sizes and compara-
ble values for larger feature subset sizes.

On most data sets, the score-based methods do not perform
as well as the other methods; this is due to their naive search
strategy where the features are scored independently.

4.2 BINARY CLASS PROBABILITY ESTIMATION
(LOGARITHMIC ERROR)

The next task that we consider is class probability estima-
tion with the logarithmic error. As mentioned earlier, the
Bayes criterion here effectively reduces to the MI criterion
(see Example 5). We used regularized kernel logistic re-
gression (with RBF kernel) as the class probability estima-

tion algorithm here. Figure 3 contains plots of the test loga-
rithmic error vs. the number of features chosen for different
feature selection methods; we also include for comparison
methods that optimize the Bayes criterion for the 0-1 loss.
MIGreedy, which optimizes the Bayes criterion for the log-
arithmic error, performs comparable to or better than the
other methods for most feature subset sizes.

4.3 LEARNING UNDER CLASS IMBALANCE
(BALANCED 0-1 ERROR AND F-MEASURE)

We now move to the task of binary classification under
class imbalance. Commonly used performance measures in
this setting include the balanced 0-1-error and F1-measure,
both of which aim to balance errors on either classes (see
Examples 4 and 7 for the Bayes criterion for these mea-
sures). We used a balanced version of SVM (where the
positive and negative points were weighted with costs 1/p
and 1/(1 − p) respectively) as the learning algorithm for

178

50 100 150 200

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

No. of features

T
es

t 0
−

1
er

ro
r

0−1−BayesGreedy
MIGreedy
0−1−BayesScore
MIScore
mRMR
FScore

(a) Gisette (0-1) – large k

20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

No. of features

T
es

t b
al

an
ce

d
er

ro
r

bal−BayesGreedy
MIGreedy
bal−BayesScore
MIScore
mRMR
FScore

(b) Semeion (Balanced 0-1)
– large k

Figure 5: Selecting larger numbers of features. The settings
here are similar to previous plots, except that bivariate ap-
proximations were used in estimating class-conditionals.

the balanced 0-1-error; and a plug-in method using logistic
regression followed by thresholding of the resulting class
probability estimate at a sample-based optimal point as the
learning algorithm for the F1-measure [33, 36, 37]. Fig-
ure 4 contains results on the class-imbalanced Semeion
(p = 0.102) and KDDCup01 (p = 0.022) data sets. In the
case of Semeion, the BayesGreedy methods perform the
best over all. With KDDCup01, where we include results
for the balanced 0-1 error (the performance measure used
in the KDD Cup 2001 challenge), there is no clear win-
ner; here, BayesScore performs the best for smaller feature
subsets, and MIGreedy performs better for larger subsets.

4.4 SELECTING LARGER NUMBER OF
FEATURES

We also evaluated the proposed filter methods on large fea-
ture subset sizes k. As noted earlier, an exact implementa-
tion of the prescribed greedy algorithm is difficult in this
case as estimation of high-dimensional class-conditional
distributions from limited data is prone to errors and is also
computationally expensive. We therefore resorted to the
bivariate approximation technique described in Section 3.2
for estimating the class-conditional distributions; the MI-
Greedy method also used the same estimation procedure,
while the search technique in mRMR inherently used a sim-
ilar approximation [6]. Figure 5 contains results on the
Gisette (binary classification with 0-1 loss) and Semeion
(binary classification with balanced 0-1 loss) data sets. In
the case of Semeion, the BayesGreedy method consistently
performs as well as (if not better than) the baselines; in the
case of Gisette, BayesGreedy is the second best over all.

4.5 RUN-TIME COMPARISONS

We now present run-time comparisons of the various fil-
ter methods for different values of k. Table 2 contains the
run-times (in seconds) for cost-sensitive classification on
Adult data, and 0-1 binary classification with large k on
Gisette data (with approximations used to estimate condi-
tional distributions). All methods here were implemented
in MATLAB. As expected, the score-based methods, re-
quiring only a single sort operation, offer the least run-

Adult (c = 0.25)
k = 5 k = 10 k = 15

c-BayesGreedy 1.75 12.78 71.14
MIGreedy 1.95 15.63 94.06
c-BayesScore 0.10 0.10 0.10

MIScore 0.17 0.19 0.17
mRMR 1.32 5.27 11.71
FScore 0.06 0.08 0.08

Gisette (0-1) – large k
k = 25 k = 50 k = 75

0-1-BayesGreedy 954 3784 8475
MIGreedy 2123 8330 18475

0-1-BayesScore 2.62 2.65 2.71
MIScore 2.67 2.73 2.76
mRMR 1242 5046 11384
FScore 1.01 1.08 1.04

Table 2: Run-time comparison of various filter methods for
different values of k. All values are in seconds. The set-
tings here are same as before. For Gisette, bivariate approx-
imations were used to estimate conditional distributions.

times; however, as seen earlier, these methods often per-
form poorly in terms of accuracy. Among the other meth-
ods, BayesGreedy is significantly faster than MIGreedy,
despite both methods using the same search procedure (this
is because the Bayes criteria for the 0-1 and cost-sensitive
losses involve simple ‘max’ operations that can be imple-
mented efficiently). On the Adult data, where BayesGreedy
computes exact estimates of conditional distributions, it
is slower than mRMR; however, when BayesGreedy uses
computationally cheaper bivariate approximations to esti-
mate probabilities, it yields lower run-times than mRMR
even for larger values of k, as seen with the Gisette data.

5 CONCLUSION

We have developed a Bayes optimal filter method for fea-
ture selection with supervised learning considering general
performance measures, and provided instantiations of our
method for a variety of learning problems and performance
measures. Experiments demonstrate that our approach is
competitive with many state-of-the-art methods. While our
focus has been on problems with binary labels, our ap-
proach easily generalizes to multiclass settings.

A possible direction of work in the future is to investigate
approximation guarantees for the greedy algorithm used to
optimize a given Bayes optimal criteria. Indeed (under spe-
cific assumptions) such guarantees have been established
for the MI criterion and the criterion for regression with
squared loss, by leveraging tools from submodular opti-
mization [38,39]. It would be interesting to explore similar
results for the other filter criteria developed in this work.

Acknowledgements. HN acknowledges support from a
Google India PhD fellowship. SA thanks DST for support
under a Ramanujan Fellowship.

179

References

[1] I. Guyon and A. Elisseeff. An introduction to variable and
feature selection. Journal of Machine Learning Research,
3:1157–1182, 2003.

[2] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selec-
tion for cancer classification using support vector machines.
Machine Learning, 46(1-3):389–422, 2002.

[3] Y. Yang and J.O. Pedersen. A comparative study on feature
selection in text categorization. In ICML, 1997.

[4] R. Battiti. Using mutual information for selecting features in
supervised neural net learning. IEEE Transactions on Neu-
ral Networks, 5(4):537–550, 1994.

[5] D. Koller and M. Sahami. Toward optimal feature selection.
In ICML, 1996.

[6] H. Peng, F. Long, and C. Ding. Feature selection based
on mutual information: Criteria of max-dependency, max-
relevance, and min-redundancy. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 27:1226–1238,
2005.

[7] G. Brown, A. Pocock, M-J. Zhao, and M. Luján. Condi-
tional likelihood maximisation: A unifying framework for
information theoretic feature selection. Journal of Machine
Learning Research, 13:27–66, 2012.

[8] W. Duch. Filter methods. In Isabelle Guyon, Steve Gunn,
Masoud Nikravesh, and Lofti Zadeh, editors, Feature Ex-
traction: Foundations and Applications. Springer, 2006.

[9] G. Saon and M. Padmanabhan. Minimum Bayes error fea-
ture selection for continuous speech recognition. In NIPS,
2000.

[10] L.C. Molina, L. Belanche, and À. Nebot. Feature selec-
tion algorithms: A survey and experimental evaluation. In
ICDM, 2002.

[11] G. Carneiro and N. Vasconcelos. Minimum Bayes error fea-
tures for visual recognition by sequential feature selection
and extraction. In CRV, 2005.

[12] S-H. Yang, H. Zha, S.K. Zhou, and B-G. Hu. Variational
graph embedding for globally and locally consistent feature
extraction. In ECML PKDD. 2009.

[13] S-H. Yang and B-G. Hu. Discriminative feature selection
by nonparametric Bayes error minimization. IEEE Trans-
actions on Knowledge and Data Engineering, 24(8):1422–
1434, 2012.

[14] M. Robnik-Šikonja and I. Kononenko. Theoretical and em-
pirical analysis of relieff and rrelieff. Machine learning,
53(1-2):23–69, 2003.

[15] Q. Gu, Z. Li, and J. Han. Generalized fisher score for feature
selection. In UAI, 2011.

[16] D.A. Bell and H. Wang. A formalism for relevance and its
application in feature subset selection. Machine learning,
41(2):175–195, 2000.

[17] N. Kwak and C-H. Choi. Input feature selection for classi-
fication problems. IEEE Transactions on Neural Networks,
13(1):143–159, 2002.

[18] F. Fleuret. Fast binary feature selection with conditional mu-
tual information. Journal of Machine Learning Research,
5:1531–1555, 2004.

[19] L. Yu and H. Liu. Efficient feature selection via analysis
of relevance and redundancy. Journal of Machine Learning
Research, 5:1205–1224, 2004.

[20] P.E. Meyer, C. Schretter, and G. Bontempi. Information-
theoretic feature selection in microarray data using variable
complementarity. Journal of Selected Topics in Signal Pro-
cessing, 2(3):261–274, 2008.

[21] N. Vasconcelos. Feature selection by maximum marginal
diversity. In NIPS, 2002.

[22] R.M. Fano. Transmission of information: A statistical the-
ory of communications. M.I.T. Press, 1961.

[23] L. Devroye, L. Gyorfi, and G. Lugosi. A Probabilistic The-
ory of Pattern Recognition. Springer, 1996.

[24] M-J. Zhao, N. Edakunni, A. Pocock, and G. Brown. Beyond
Fano’s inequality: Bounds on the optimal F-score, BER, and
cost-sensitive risk and their implications. Journal of Ma-
chine Learning Research, 14(1):1033–1090, 2013.

[25] G. Forman. An extensive empirical study of feature se-
lection metrics for text classification. Journal of Machine
Learning Research, 3:1289–1305, 2003.

[26] Z. Zheng, X. Wu, and R. Srihari. Feature selection for text
categorization on imbalanced data. ACM SIGKDD Explo-
rations Newsletter, 6(1):80–89, 2004.

[27] X. Geng, T-Y. Liu, T. Qin, and H. Li. Feature selection for
ranking. In SIGIR, 2007.

[28] R. Kohavi and G.H. John. Wrappers for feature subset se-
lection. Artificial Intelligence, 97(1):273—324, 1997.

[29] I. Tsamardinos and C.F. Aliferis. Towards principled fea-
ture selection: Relevancy, filters and wrappers. In AISTATS,
2003.

[30] R. Tibshirani. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society. Series B
(Methodological), pages 267–288, 1996.

[31] A.K. Menon, H. Narasimhan, S. Agarwal, and S. Chawla.
On the Statistical Consistency of Algorithms for Binary
Classification under Class Imbalance. In ICML, 2013.

[32] A. Miller. Subset Selection in Regression. Chapman and
Hall, 2002.

[33] N. Ye, K.M.A. Chai, W.S. Lee, and H.L. Chieu. Optimizing
F-measures: A tale of two approaches. In ICML, 2012.

[34] S. Clémençon, G. Lugosi, and N. Vayatis. Ranking and
empirical minimization of U-statistics. Annals of Statistics,
36:844–874, 2008.

[35] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classifica-
tion. Wiley-Interscience, 2000.

[36] H. Narasimhan, R. Vaish, and S. Agarwal. On the statisti-
cal consistency of plug-in classifiers for non-decomposable
performance measures. In NIPS, 2014.

[37] O. Koyejo, N. Natarajan, P. Ravikumar, and I.S. Dhillon.
Consistent binary classification with generalized perfor-
mance metrics. In NIPS, 2014.

[38] A. Krause and C.E. Guestrin. Near-optimal nonmyopic
value of information in graphical models. 2005.

[39] A. Das and D. Kempe. Submodular meets spectral: Greedy
algorithms for subset selection, sparse approximation and
dictionary selection. In ICML, 2011.

180

Visual Causal Feature Learning

Krzysztof Chalupka
Computation and Neural Systems
California Institute of Technology

Pasadena, CA, USA

Pietro Perona
Electrical Engineering

California Institute of Technology
Pasadena, CA, USA

Frederick Eberhardt
Humanities and Social Sciences

California Institute of Technology
Pasadena, CA, USA

Abstract

We provide a rigorous definition of the visual
cause of a behavior that is broadly applicable
to the visually driven behavior in humans, ani-
mals, neurons, robots and other perceiving sys-
tems. Our framework generalizes standard ac-
counts of causal learning to settings in which
the causal variables need to be constructed from
micro-variables. We prove the Causal Coars-
ening Theorem, which allows us to gain causal
knowledge from observational data with minimal
experimental effort. The theorem provides a con-
nection to standard inference techniques in ma-
chine learning that identify features of an image
that correlate with, but may not cause, the target
behavior. Finally, we propose an active learning
scheme to learn a manipulator function that per-
forms optimal manipulations on the image to au-
tomatically identify the visual cause of a target
behavior. We illustrate our inference and learn-
ing algorithms in experiments based on both syn-
thetic and real data.

1 INTRODUCTION
Visual perception is an important trigger of human and an-
imal behavior. The visual cause of a behavior can be easy
to define, say, when a traffic light turns green, or quite
subtle: apparently it is the increased symmetry of features
that leads people to judge faces more attractive than oth-
ers (Grammer and Thornhill, 1994). Significant scientific
and economic effort is focused on visual causes in adver-
tising, entertainment, communication, design, medicine,
robotics and the study of human and animal cognition. Vi-
sual causes profoundly influence our daily activity, yet our
understanding of what constitutes a visual cause lacks a
theoretical basis. In practice, it is well-known that images
are composed of millions of variables (the pixels) but it is
functions of the pixels (often called ‘features’) that have
meaning, rather than the pixels themselves.

We present a theoretical framework and inference algo-
rithms for visual causes in images. A visual cause is de-
fined (more formally below) as a function (or feature) of
raw image pixels that has a causal effect on the target be-
havior of a perceiving system of interest. We present three
advances:

• We provide a definition of the visual cause of a target
behavior as a macro-variable that is constructed from
the micro-variables (pixels) that make up the image
space. The visual cause is distinguished from other
macro-variables in that it contains all the causal infor-
mation about the target behavior that is available in the
image. We place the visual cause within the standard
framework of causal graphical models (Spirtes et al.,
2000; Pearl, 2009), thereby contributing to an account
of how to construct causal variables.
• We prove the Causal Coarsening Theorem (CCT),

which shows how observational data can be used to
learn the visual cause with minimal experimental ef-
fort. It connects the present results to standard classi-
fication tasks in machine learning.
• We describe a method to learn the manipulator func-

tion, which automatically performs perceptually opti-
mal manipulations on the visual causes.

We illustrate our ideas using synthetic and real-data ex-
periments. Python code that implements our algorithms,
as well as reproduces some of the experimental results, is
available online at http://vision.caltech.edu/
˜kchalupk/code.html.

We chose to develop the theory within the context of vi-
sual causes as this setting makes the definitions most in-
tuitive and is itself of significant practical interest. How-
ever, the framework and results can be equally well applied
to extract causal information from any aggregate of micro-
variables on which manipulations are possible. Examples
include auditory, olfactory and other sensory stimuli; high-
dimensional neural recordings; market data in finance; con-
sumer data in marketing. There, causal feature learning is
both of theoretical (“What is the cause?”) and practical
(“Can we automatically manipulate it?”) importance.

181

1.1 PREVIOUS WORK

Our framework extends the theory of causal graphical
models (Spirtes et al., 2000; Pearl, 2009) to a setting in
which the input data consists of raw pixel (or other micro-
variable) data. In contrast to the standard setting, in which
the macro-variables in the statistical dataset already specify
the candidate causal relata, the causal variables in our set-
ting have to be constructed from the micro-variables they
supervene on, before any causal relations can be estab-
lished. We emphasize the difference between our method
of causal feature learning and methods for causal feature
selection (Guyon et al., 2007; Pellet and Elisseeff, 2008).
The latter choose the best (under some causal criterion)
features from a restricted set of plausible macro-variable
candidates. In contrast, our framework efficiently searches
the whole space of all the possible macro-variables that can
be constructed from an image.

Our approach derives its theoretical underpinnings from the
theory of computational mechanics (Shalizi and Crutch-
field, 2001; Shalizi, 2001), but supports a more explic-
itly causal interpretation by incorporating the possibility of
confounding and interventions. We take the distinction be-
tween interventional and observational distributions to be
one of the key features of a causal analysis. Since we allow
for unmeasured common causes of the features in the im-
age and the target behavior, we have to distinguish between
the plain conditional probability distribution of the target
behavior (T) given the (observed) image (I) and the dis-
tribution of the target behavior given that the observed im-
age was manipulated (i.e. P (T |I) vs. P (T |do(I))). Hoel
et al. (2013), who develop a similar model to investigate the
relationship between causal micro- and macro-variables,
avoid this distinction by assuming that all their data was
generated from what in our setting would be the manip-
ulated distribution P (T |do(I)). The extant literature on
causal learning from image or video data does not gen-
erally consider the aggregation from pixel variables into
causal macro-variables, but instead starts from annotated
or pre-defined features of the image (see e.g. Fire and Zhu
(2013a,b)).

1.2 CAUSAL FEATURE LEARNING: AN
EXAMPLE

Fig. 1 presents a paradigmatic case study in visual causal
feature learning, which we will use as a running example.
The contents of an image I are caused by external, non-
visual binary hidden variablesH1 andH2 such that ifH1 is
on, I contains a vertical bar (v-bar1) at a random position,
and if H2 is on, I contains a horizontal bar (h-bar) at a
random position. A target behavior T ∈ {0, 1} is caused
by H1 and I , such that T = 1 is more likely whenever
H1 = 1 and whenever the image contains an h-bar.

1We take a v-bar (h-bar) to consist of a complete column (row)
of black pixels.

We deliberately constructed this example such that the vi-
sual cause is clearly identifiable: manipulating the presence
of an h-bar in the image will influence the distribution of T .
Thus, we can call the following function C : I → {0, 1}
the causal feature of I or the visual cause of T :

C(I) =

{
1 if I contains an h-bar
0 otherwise.

The presence of a v-bar, on the other hand, is not a causal
feature. Manipulating the presence of a v-bar in the image
has no effect on H1 or T . Still, the presence of a v-bar is
as strongly correlated with the value of T (via the common
cause H1) as the presence of an h-bar is. We will call the
following function S : I → {0, 1} the spurious correlate
of T in I:

S(I) =

{
1 if I contains a v-bar
0 otherwise.

Both the presence of h-bars and the presence of v-bars are
good individual (and even better joint) predictors of the tar-
get variable, but only one of them is a cause. Identifying the
visual cause from the image thus requires the ability to dis-
tinguish among the correlates of the target variables those
that are actually causal, even if the non-causal correlates
are (possibly more strongly) correlated with the target.

While the values of S and C in our example stand in a
bijective correspondence to the values of H1 and H2, re-
spectively, this is only to keep the illustration simple. In
general, the visual cause and the spurious correlate can be
probabilistic functions of any number of (not necessarily
independent) hidden variables, and can share the same hid-
den causes.

2 A THEORY OF VISUAL CAUSAL
FEATURES

In our example the identification of the visual cause with
the presence of an h-bar is intuitively obvious, as the model
is constructed to have an easily describable visual cause.
But the example does not provide a theoretical account of
what it takes to be a visual cause in the general case when
we do not know what the causally relevant pixel configura-
tions are. In this section, we provide a general account of
how the visual cause is related to the pixel data.

2.1 VISUAL CAUSES AS MACRO-VARIABLES

A visual cause is a high-level random variable that is a
function (or feature) of the image, which in turn is defined
by the random micro-variables that determine the pixel val-
ues. The functional relation between the image and the vi-
sual cause is, in general, surjective, though in principle it
could be bijective. While we are interested in identifying

182

H1

H2 I T

P(H2=0) = 0.5

P(H1=0) = 0.5
P(I | H1=0, H2=0) = U()

P(I | H1=0, H2=1) = U()

P(I | H1=1, H2=0) = U()

P(I | H1=1, H2=1) = U()

P(T=0 | I (,), H1=0) = .33

P(T=0 | I (,), H1=1) = .66

P(T=0 | I (, ,), H1=1) = 0

P(T=0 | I (,), H1=0) = 1

Figure 1: Our case study generative model. Two binary
hidden (non-visual) variables H1 and H2 toss unbiased
coins. The content of the image I depends on these vari-
ables as follows. If H1 = H2 = 0, I is chosen uniformly
at random from all the images containing no v-bars and no
h-bars. If H1 = 0 and H2 = 1, I is chosen uniformly at
random from all images containing at least one h-bar but
no v-bars. If H1 = 1 and H2 = 0, I is chosen uniformly
at random from all the images containing at least one v-bar
but no h-bars. Finally, if H1 = H2 = 1, I is chosen from
images containing at least one v-bar and at least one h-bar.
The distribution of the binary behavior T depends only on
the presence of an h-bar in I and the value of H1. In obser-
vational studies, H1 = 1 iff I contains a v-bar. However,
a manipulation of any specific image I = i that introduces
a v-bar (without changing H1) will in general not change
the probability of T occurring. Thus, T does not depend
causally on the presence of v-bars in I .

the visual causes of a target behavior, the functional rela-
tion between the image pixels and the visual cause should
not itself be interpreted as causal. Pixels do not cause the
features of an image, they constitute them, just as the atoms
of a table constitute the table (and its features). The differ-
ence between the causal and the constitutive relation is that
the former requires the possibility of independent manipu-
lation (at least to some extent), whereas by definition one
cannot manipulate the visual cause without manipulating
the image pixels.

The probability distribution over the visual cause is induced
by the probability distribution over the pixels in the image
and the functional mapping from the image to the visual
cause. But since a visual cause stands in a constitutive rela-
tion with the image, we cannot without further explanation
describe interventions on the visual cause in terms of the
standard do-operation (Pearl, 2009). Our goal will be to
define a macro-variable C, which contains all the causal

information available in an image about a given behavior
T , and define its manipulation. To make the problem ap-
proachable, we introduce two (natural) assumptions about
the causal relation between the image and the behavior:
(i) The value of the target behavior T is determined sub-
sequently to the image in time, and (ii) the variable T is
in no way represented in the image. These assumptions
exclude the possibility that T is a cause of features in the
image or that T can be seen as causing itself.

2.2 GENERATIVE MODELS: FROM MICRO- TO
MACRO-VARIABLES

Let T ∈ {0, 1} represent a target behavior.2 Let I be a
discrete space of all the images that can influence the target
behavior (in our experiments in Section 4, I is the space of
n-dimensional black-and-white images). We use the fol-
lowing generative model to describe the relation between
the images and the target behavior: An image is generated
by a finite set of unobserved discrete variablesH1, . . . ,Hm

(we write H for short). The target behavior is then de-
termined by the image and possibly a subset of variables
Hc ⊆ H that are confounders of the image and the target
behavior:

P (T, I) =
∑

H

P (T | I,H)P (I | H)P (H)

=
∑

H

P (T | I,Hc)P (I | H)P (H). (1)

Independent noise that may contribute to the target behav-
ior is marginalized and omitted for the sake of simplicity in
the above equation. The noise term incorporates any hid-
den variables which influence the behavior but stand in no
causal relation to the image. Such variables are not directly
relevant to the problem. Fig. 2 shows this generative model.

Under this model, we can define an observational partition
of the space of images I that groups images into classes
that have the same conditional probability P (T | I):

Definition 1 (Observational Partition, Observational
Class). The observational partition Πo(T, I) of the set I
w.r.t. behavior T is the partition induced by the equiva-
lence relation ∼ such that i ∼ j if and only if P (T | I =
i) = P (T | I = j). We will denote it as Πo when the con-
text is clear. A cell of an observational partition is called
an observational class.

In standard classification tasks in machine learning, the ob-
servational partition is associated with class labels. In our
case, two images that belong to the same cell of the ob-
servational partition assign equal predictive probability to
the target behavior. Thus, knowing the observational class

2An extension of the framework to non-binary, discrete T is
easy but complicates the notation significantly. An extension to
the continuous case is beyond the scope of this article.

183

H1 H2

I T

HN

H = (H1, ... , HN)

HC = (H2, HN)

Figure 2: A general model of visual causation. In our
model each image I is caused by a number of hidden non-
visual variables Hi, which need not be independent. The
image itself is the only observed cause of a target behavior
T . In addition, a (not necessarily proper) subset of the hid-
den variables can be a cause of the target behavior. These
confounders create visual “spurious correlates” of the be-
havior in I .

of an image allows us to predict the value of T . However,
the predictive probability assigned to an image does not
tell us the causal effect of the image on T . For example,
a barometer is widely taken to be an excellent predictor of
the weather. But changing the barometer needle does not
cause an improvement of the weather. It is not a (visual
or otherwise) cause of the weather. In contrast, seeing a
particular barometer reading may well be a visual cause of
whether we pack an umbrella.

Our notion of a visual cause depends on the ability to ma-
nipulate the image.

Definition 2 (Visual Manipulation). A visual manipulation
is the operationman(I = i) that changes (the pixels of) the
image to image i ∈ I, while not affecting any other vari-
ables (such as H or T). That is, the manipulated probabil-
ity distribution of the generative model in Eq. (1) is given
by P (T | man(I = i)) =

∑
Hc
P (T | I = i,Hc)P (Hc).

The manipulation changes the values of the image pixels,
but does not change the underlying “world”, represented in
our model by the Hi that generated the image. Formally,
the manipulation is similar to the do-operator for standard
causal models. However, we here reserve the do-operation
for interventions on causal macro-variables, such as the vi-
sual cause of T . We discuss the distinction in more detail
below.

We can now define the causal partition of the image space
(with respect to the target behavior T) as:

Definition 3 (Causal Partition, Causal Class). The causal
partition Πc(T, I) of the set I w.r.t. behavior T is the par-
tition induced by the equivalence relation ∼ defined on I
such that i ∼ j if and only if P (T | man(I = i)) = P (T |
man(I = j)) for i, j ∈ I. When the image space and the
target behavior are clear from the context, we will indicate
the causal partition by Πc. A cell of a causal partition is

called a causal class.

The underlying idea is that images are considered causally
equivalent with respect to T if they have the same causal
effect on T . Given the causal partition of the image space,
we can now define the visual cause of T :

Definition 4 (Visual Cause). The visual causeC of a target
behavior T is a random variable whose value stands in a
bijective relation to the causal class of I .

The visual cause is thus a function over I, whose values
correspond to the post-manipulation distributions C(i) =
P (T | man(I = i)). We will write C(i) = c to indicate
that the causal class of image i ∈ I is c, or in other words,
that in image i, the visual cause C takes value c. Know-
ing C allows us to predict the effects of a visual manipu-
lation P (T | man(I = i)), as long as we have estimated
P (T | man(I = i∗k)) for one representative i∗k of each
causal class k.

2.3 THE CAUSAL COARSENING THEOREM

Our main theorem relates the causal and observational par-
titions for a given I and T . It turns out that in general the
causal partition is a coarsening of the observational parti-
tion. That is, the causal partition aligns with the observa-
tional partition, but the observational partition may subdi-
vide some of the causal classes.

Theorem 5 (Causal Coarsening). Among all the genera-
tive distributions of the form shown in Fig. 2 which in-
duce a given observational partition Πo, almost all induce
a causal partition Πc that is a coarsening of the Πo.

Throughout this article, we use “almost all” to mean “all
except for a subset of Lebesgue measure zero”. Fig. 3
illustrates the relation between the causal and the obser-
vational partition implied by the theorem. We prove the
CCT in Supplementary Material A using a technique that
extends that of Meek (1995): We show that (1) restricting
the space of all the possible P (T,H, I) to only the distri-
butions compatible with a fixed observational partition puts
a linear constraint on the distribution space; (2) requiring
that the CCT be false puts a non-trivial polynomial con-
straint on this subspace, and finally, (3) it follows that the
theorem holds for almost all distributions that agree with
the given observational partition. The proof strategy indi-
cates a close connection between the CCT and the faith-
fulness assumption (Spirtes et al., 2000). We note that the
measure-zero subset where ΠC does not coarsen ΠO can
indeed be non-empty. We provide such counter-examples
in Supplementary Material B.

Two points are worth noting here: First, the CCT is in-
teresting inasmuch as the visual causes of a behavior do
not contain all the information in the image that predict the
behavior. Such information, though not itself a cause of

184

P(T=0 | do{ }) = .17

P(T=0 | do{ }) = .83

P(T=0 |) = .33

P(T=0 |) = .66

P(T=0 |) = 0

P(T=0 |) = 1

Figure 3: The Causal Coarsening Theorem. The observa-
tional probabilities of T given I (gray frame) induce an
observational partition on the space of all the images (left,
observational partition in gray). The causal probabilities
(red frame) induce a causal partition, indicated on the left
in red. The CCT allows us to expect that the causal partition
is a coarsening of the observational partition. The observa-
tional and causal probabilities correspond to the generative
model shown in Fig. 1.

the behavior, can be informative about the state of other
non-visual causes of the target behavior. Second, the CCT
allows us to take any classification problem in which the
data is divided into observational classes, and assume that
the causal labels do not change within each observational
class. This will help us develop efficient causal inference
algorithms in Section 3.

2.4 VISUAL CAUSES IN A CAUSAL MODEL
CONSISTING OF MACRO-VARIABLES

We can now simplify our generative model by omitting
all the information in I unrelated to behavior T . Assume
that the observational partition ΠT

o refines the causal parti-
tion ΠT

c . Each of the causal classes c1, · · · , cK delineates
a region in the image space I such that all the images be-
longing to that region induce the same P (T | man(I)).
Each of those regions—say, the k-th one—can be further
partitioned into sub-regions sk1 , · · · , skMk

such that all the
images in the m-th sub-region of the k-th causal region in-
duce the same observational probability P (T | I). By as-
sumption, the observational partition has a finite number
of classes, and we can arbitrarily order the observational
classes within each causal class. Once such an ordering
is fixed, we can assign an integer m ∈ {1, 2, · · · ,Mk} to
each image i belonging to the k-th causal class such that i
belongs to the m-th observational class among the Mk ob-
servational classes contained in ck. By construction, this
integer explains all the variation of the observational class
within a given causal class. This suggests the following
definition:

Definition 6 (Spurious Correlate). The spurious correlate
S is a discrete random variable whose value differentiates
between the observational classes contained in any causal

Figure 4: A macro-variable model of visual causation. Us-
ing our theory of visual causation we can aggregate the in-
formation present in visual micro-variables (image pixels)
into the visual causeC and spurious correlate S. According
to Theorem 7, C and S contain all the information about T
available in I .

class.

The spurious correlate is a well-defined function on I,
whose value ranges between 1 and maxkMk. Like C, the
spurious correlate S is a macro-variable constructed from
the pixels that make up the image. C and S together con-
tain all and only the visual information in I relevant to T ,
but only C contains the causal information:

Theorem 7 (Complete Macro-variable Description). The
following two statements hold for C and S as defined
above:

1. P (T | I) = P (T | C, S).

2. Any other variableX such that P (T | I) = P (T | X)
has Shannon entropy H(X) ≥ H(C, S).

We prove the theorem in Supplementary Material C. It
guarantees that C and S constitute the smallest-entropy
macro-variables that encompass all the information about
the relationship between T and I . Fig. 4 shows the rela-
tionship between C, S and T , the image space I and the
observational and causal partitions schematically. C is now
a cause of T , S correlates with T due to the unobserved
common causes HC , and any information irrelevant to T
is pushed into the independent noise variables (commonly
not shown in graphical representations of structural equa-
tion models).3

The macro-variable model lends itself to the standard
treatment of causal graphical models described in Pearl

3We note that C may retain predictive information about T
that is not causal, i.e. it is not the case that all spurious correlations
can be accounted for in S. See Supplementary Material D for an
example.

185

(2009). We can define interventions on the causal vari-
ables {C, S, T} using the standard do-operation. The do-
operator only sets the value of the intervened variable to
the desired value, making it independent of its causes, but
it does not (directly) affect the other variables in the sys-
tem or the relationships between them (see the modularity
assumption in Pearl (2009)). However, unlike the standard
case where causal variables are separated in location (e.g.
smoking and lung cancer), the causal variables in an image
may involve the same pixels: C may be the average bright-
ness of the image, whereas S may indicate the presence or
absence of particular shapes in the image. An intervention
on a causal variable using the do-operator thus requires that
the underlying manipulation of the image respects the state
of the other causal variables:

Definition 8 (Causal Intervention on Macro-variables).
Given the set of macro-variables {C, S} that take on values
{c, s} for an image i ∈ I, an intervention do(C = c′) on
the macro-variable C is given by the manipulation of the
image man(I = i′) such that C(i′) = c′ and S(i′) = s.
The intervention do(S = s′) is defined analogously as the
change of the underlying image that keeps the value of C
constant.

In some cases it can be impossible to manipulate C to a de-
sired value without changing S. We do not take this to be a
problem special to our case. In fact, in the standard macro-
variable setting of causal analysis we would expect inter-
ventions to be much more restricted by physical constraints
than we are with our interventions in the image space.

3 CAUSAL FEATURE LEARNING:
INFERENCE ALGORITHMS

Given the theoretical specification of the concepts of in-
terest in the previous section, we can now develop algo-
rithms to learn C, the visual cause of a behavior. In addi-
tion, knowledge of C will allow us to specify a manipula-
tor function: a function that, given any image, can return a
maximally similar image with the desired causal effect.

Definition 9 (Manipulator Function). Let C be the causal
variable of T and d a metric on I. The manipulator
function of C is a function MC : I × C → I such that
MC(i, k) = arg minı̂∈C−1(k) d(i, ı̂) for any i ∈ I, k ∈ C.
In case d(i, .) has multiple minima, we group them together
into one equivalence class and leave the choice of the rep-
resentative to the manipulator function.

The manipulator searches for an image closest to I among
all the images with the desired causal effect k. The mean-
ing of “closest” depends on the metric d and is discussed
further in Section 3.2 below. Note that the manipulator
function can find candidates for the image manipulation
underlying the desired causal manipulation do(C = c), but
it does not check whether other variables in the system (in

particular, the spurious correlate) remain in fact unchanged.
Using the closest possible image with the desired causal ef-
fect is a heuristic approach to fulfilling that requirement.

There are several reasons why we might want such a ma-
nipulator function:

• If our goal is to perform causal manipulations on im-
ages, the manipulator function offers an automated so-
lution.
• A manipulator that uses a given C and produces im-

ages with the desired causal effect provides strong evi-
dence thatC is indeed the visual cause of the behavior.
• Using the manipulator function we can enrich our

dataset with new datapoints, in hope of achieving bet-
ter generalization on both the causal and predictive
learning tasks.

The problem of visual causal feature learning can now be
posed as follows: Given an image space I and a metric d,
learn C—the visual cause of T—and the manipulator MC .

3.1 CAUSAL EFFECT PREDICTION

A standard machine learning approach to learning the rela-
tion between I and T would be to take an observational
dataset Dobs = {(ik, P (T | ik))}k=1,··· ,N and learn a
predictor f whose training performance guarantees a low
test error (so that f(i∗) ≈ P (T | i∗) for a test image
i∗). In causal feature learning, low test error on observa-
tional data is insufficient; it is entirely possible that D con-
tains spurious information useful in predicting test labels
which is nevertheless not causal. That is, the prediction
may be highly accurate for observational data, but com-
pletely inaccurate for a prediction of the effect of a manip-
ulation of the image (recall the barometer example). How-
ever, we can use the CCT to obtain a causal dataset from
the observational data, and then train a predictor on that
dataset. Algorithm 1 uses this strategy to learn a func-
tion C that, presented with any image i ∈ I, returns
C(i) ≈ P (T | man(I = i)). We use a fixed neural net-
work architecture to learn C, but any differentiable hypoth-
esis class could be susbtituted instead. Differentiability of
C is necessary in Section 3.2 in order to learn the manipu-
lator function.

In Step 1 the algorithm picks a representative member
of each observational class. The CCT tells us that the
causal partition coarsens the observational one. That is,
in principle (ignoring sampling issues) it is sufficient to
estimate Ĉm = P (T | man(I = ikm)) for just one
image in an observational class m in order to know that
P (T | man(I = i)) = Ĉm for any other i in the same ob-
servational class. The choice of the experimental method
of estimating the causal class in Step 2 is left to the user
and depends on the behaving agent and the behavior in
question. If, for example, T represents whether the spik-
ing rate of a recorded neuron is above a fixed threshold,

186

Algorithm 1: Causal Predictor Training
input : Dobs = {(i1, p1 = p(T | i1)), · · · ,

(iN , pN = p(T | iN)} – observational data
P = {P1, · · · , PM} – the set of observatio-
nal classes (so that ∀k, pk ∈ P, 1 ≤ k ≤ N)
Train – a neural net training algorithm

output: C : I → [0, 1] – the causal variable

1 Pick {ik1 , · · · , ikM } ⊂ {i1, · · · , iN} s.t. pkm = Pm;
2 Estimate Ĉm ← P (T | man(I = ikm)) for each m;
3 For all k let Ĉ(ik)← Ĉm if pk = Pm;
4 Dcsl ← {(i1, Ĉ(i1)), · · · , (iN , Ĉ(iN))};
5 C ← Train(Dcsl);

estimating P (T | man(I = i)) could consist of recording
the neuron’s response to i in a laboratory setting multiple
times, and then calculating the probability of spiking from
the finite sample. The causal dataset created in Step 4 con-
sists of the observational inputs and their causal classes.
The causal dataset is acquired through O(N) experiments,
where N is the number of observational classes. The fi-
nal step of the algorithm trains a neural network that pre-
dicts the causal labels on unseen images. The choice of the
method of training is again left to the user.

3.2 CAUSAL FEATURE MANIPULATION

Once we have learned C we can use the causal neural net-
work to create synthetic examples of images as similar as
possible to the originals, but with a different causal label.
The meaning of “as similar as possible” depends on the
image metric d (see Definition 9). The choice of d is task-
specific and crucial to the quality of the manipulations. In
our experiments, we use a metric induced by an L2 norm.
Alternatives include other Lp-induced metrics, distances
in implicit feature spaces induced by image kernels (Har-
chaoui and Bach, 2007; Grauman and Darrell, 2007; Bosch
et al., 2007; Vishwanathan, 2010) and distances in learned
representation spaces (Bengio et al., 2013).

Algorithm 2 proposes one way to learn the manipulator
function using a simple manipulation procedure that ap-
proximates the requirements of Definition 9 up to local
minima. The algorithm, inspired by the active learning
techniques of uncertainty sampling (Lewis and Gale, 1994)
and density weighing (Settles and Craven, 2008), starts off
by training a causal neural network in Step 2. If only ob-
servational data is available, this can be achieved using Al-
gorithm 1. Next, it randomly chooses a set of images to be
manipulated, and their target post-manipulation causal la-
bels. The loop that starts in Step 6 then takes each of those
images and searches for the image that, among the images
with the same desired causal class, is closest to the original
image. Note that the causal class boundaries are defined
by the current causal neural net C. Since C is in general a

Algorithm 2: Manipulator Function Learning
input : d : I × I → R+ – a metric on the image

space
Dcsl = {(i1, c1), · · · (iN , cN)} – causal data
C = {C1, · · · , CM} – the set of causal
classes (so that ∀i, ci ∈ C)
Train – a neural net training algorithm
nIters – number of experiment iterations
Q – number of queries per iteration
α – manipulation tuning parameter
A : I → C – an oracle for P (T | do(I))

output: MC : I × C → I – the manipulator function

1 for l← 1 to nIters do
2 C ← Train(Dcsl);
3 Choose manipulation starting points

{il,1, · · · , il,Q} at random from Dcsl;
4 Choose manipulation targets {ĉl,1, · · · , ĉl,Q}

such that ĉl,k 6= cl,k;
5 for k ← 1 to Q do
6 ı̂l,k ← argmin

j∈I
(1− α)|C(j)− ĉl,k|

+ α d(j, il,k);
7 end
8 Dcsl ← Dcsl ∪ {(̂ıl,1,A(̂ıl,1)), · · · ,

(̂ıl,Q,A(̂ıl,Q))};
9 end

highly nonlinear function and it can be hard to find its in-
verse sets, we use an approximate solution. The algorithm
thus finds the minimum of a weighted sum of |C(j)− ĉl,k|
(the difference of the output image j’s label and the desired
label ĉl,k) and d(il,k, j) (the distance of the output image j
from the original image il,k).

At each iteration, the algorithm performs Q manipulations
and the same number of causal queries to the agent, which
result in new datapoints (̂ıl,1, A(̂ıl,1)), · · · , (̂ıl,Q, A(̂ıl,Q)).
It is natural to claim that the manipulator performs well if
A(̂ıl,k) ≈ ĉl,k for many k, which means the target causal
labels agree with the true causal labels. We thus define the
manipulation error of the lth iteration MErrl as

MErrl =
1

Q

Q∑

k=1

|A(̂ıl,k)− ĉl,k|. (2)

While it is important that our manipulations are accurate,
we also want them to be minimal. Another measure of in-
terest is thus the average manipulation distance

MDistl =
1

Q

Q∑

k=1

d(Il,k, ı̂l,k). (3)

A natural variant of Algorithm 2 is to set nIters to a large

187

integer and break the loop when one or both of these per-
formance criteria reaches a desired value.

4 EXPERIMENTS
In order to illustrate the concepts presented in this article
we perform two causal feature learning experiments. The
first experiment, called GRATING, uses observational and
causal data generated by the model from Section 1.2. The
GRATING experiment confirms that our system can learn
the ground truth cause and ignore the spurious correlates of
a behavior. The second experiment, MNIST, uses images of
hand-written digits (LeCun et al., 1998) to exemplify the
use of the manipulator function on slightly more realistic
data: in this example, we transform an image into a maxi-
mally similar image with another class label.

We chose problems that are simple from the computer vi-
sion point of view. Our goal is to develop the theory of
visual causal feature learning and show that it has feasible
algorithmic solutions; we are at this point not engineering
advanced computer vision systems.

4.1 THE GRATING EXPERIMENT

In this experiment we generate data using the model of
Fig. 1, with two minor differences: H1 and H2 only in-
duce one v-bar or h-bar in the image and we restrict our
observational dataset to images with only about 3% of the
pixels filled with random noise (see Fig. 5). Both restric-
tions increase the clarity of presentation. We use Algo-
rithms 1 and 2 (with minor modifications imposed by the
binary nature of the images) to learn the visual cause of
behavior T .

Figure 5 (top) shows the progress of the training process.
The first step (not shown in the figure) uses the CCT to
learn the causal labels on the observational data. We then
train a simple neural network (a fully connected network
with one hidden layer of 100 units) on this data. The same
network is used on Iteration 1 to create new manipulated
exemplars. We then follow Algorithm 2 to train the manip-
ulator iteratively. Fig. 5 (bottom) illustrates the difference
between the manipulator on Iteration 1 (which fails almost
40% of the time) and Iteration 20, where the error is about
6%. Each column shows example manipulations of a par-
ticular kind. Columns with green labels indicate successful
manipulations of which there are two kinds: switching the
causal variable on (0 ⇒ 1, “adding the h-bar”), or switch-
ing it off (1 ⇒ 0, “removing the h-bar”). Red-labeled
columns show cases in which the manipulator failed to in-
fluence the cause: That is, each red column shows an origi-
nal image and its manipulated version which the manipula-
tor believes should cause a change in T , but which does not
induce such change. The red/green horizontal bars show
the percentage of success/error for each manipulation di-
rection. Fig. 5 (bottom, a) shows that after training on the

M
D

is
t

1 7 14 20

M
Er

r

1 7 14

0⇒1 0⇒0 1⇒0 1⇒1

(a) Iteration 1

NONE

NONE

(b) Iteration 10

Iteration

0.0

0.2

0.4

0.10

0.05

0.00

20

Figure 5: Manipulator learning for GRATING. Top. The
plots show the progress of our manipulator function learn-
ing algorithm over twenty iterations of experiments for
the GRATING problem. The manipulation error decreases
quickly with progressing iterations, whereas the manipula-
tion distance stays close to constant. Bottom. Original and
manipulated GRATING images. See text for the details.

causally-coarsened observational dataset, the manipulator
fails about 40% of the time. In Fig. 5 (b), after twenty ma-
nipulator learning iterations, only six manipulations out of
a hundred are unsuccessful. Furthermore, the causally ir-
relevant image pixels are also much better preserved than at
iteration 1. The fully-trained manipulator correctly learned
to manipulate the presence of the h-bar to cause changes in
T , and ignores the v-bar that is strongly correlated with the
behavior but does not cause it.

4.2 THE MNIST ON MTURK EXPERIMENT

In this experiment we start with the MNIST dataset of
handwritten digits. In our terminology, this – as well as any
standard vision dataset – is already causal data: the labels
are assigned in an experimental setting, not “in nature”.

Consider the following binary human behavior: T = 1
if a human observer answers affirmatively to the question

188

Starting
Digit

Target
 Class

0

1

2

3

4

5

6

7

8

9

Iteration

0.0

0.5

1.0

0.0

0.05

0.1

1 2 3 4

M
E
rr

M
D

is
t

1 2 3 4 5

1 2 3 4 5

Figure 6: Manipulator Learning for MNIST ON MTURK.
Top. In contrast to the GRATING experiment, here the
manipulation distance grows as the manipulation error de-
creases. This is because a successful manipulator needs to
change significant parts of each image (such as continuous
strokes). Bottom. Visualization of manipulator training on
randomly selected (not cherry-picked) MNIST digits. See
text for the details.

“Does this image contain the digit ‘7’?”, while T = 0 if the
observer judges that the image does not contain the digit
‘7’. For simplicity we will assume that for any image ei-
ther P (T = 1 | man(I)) = 0 or P (T = 1 | man(I)) = 1.
Our task is to learn the manipulator function that will take
any image and modify it minimally such that it will become
a ‘7’ if it was not before, or will stop resembling a ‘7’ if it
did originally.

We conduct the manipulator training separately for all the
ten MNIST digits using human annotators on Amazon Me-
chanical Turk. The exact training procedure is described
in Supplementary Material E. Fig. 6 (top) shows training
progress. As in Fig. 5, the manipulation error decreases
with training. Fig. 6 (bottom) visualizes the manipulator
training progress. In the first row we see a randomly chosen
MNIST “9” being manipulated to resemble a “0”, pushed

through successive “0-vs-all” manipulators trained at itera-
tions 0, 1, ..., 5 (iteration 1 shows what the neural net takes
to be the closest manipulation to change the “9” to a “0”
purely on the basis of the non-manipulated data). Further
rows perform similar experiments for the other digits. The
plots show how successive manipulators progressively re-
move the original digits’ features and add target class fea-
tures to the image.

5 DISCUSSION
We provide a link between causal reasoning and neu-
ral network models that have recently enjoyed tremen-
dous success in the fields of machine learning and com-
puter vision (LeCun et al., 1998; Russakovsky et al.,
2014). Despite very encouraging results in image classi-
fication (Krizhevsky et al., 2012), object detection (Dollar
et al., 2012) and fine-grained classification (Branson et al.,
2014; Zhang et al., 2014), some researchers have found that
visual neural networks can be easily fooled using adver-
sarial examples (Szegedy et al., 2014; Goodfellow et al.,
2014). The learning procedure for our manipulator func-
tion could be viewed as an attempt to train a classifier that
is robust against such examples. The procedure uses causal
reasoning to improve on the boundaries of a standard, cor-
relational classifier (Fig. 5 and 6 show the improvement).
However, the ultimate purpose of a causal manipulator net-
work is to extract truly causal features from data and au-
tomatically perform causal manipulations based on those
features.

A second contribution concerns the field of causal discov-
ery. Modern causal discovery algorithms presuppose that
the set of causal variables is well-defined and meaning-
ful. What exactly this presupposition entails is unclear, but
there are clear counter-examples: x and 2x cannot be two
distinct causal variables. There are also well understood
problems when causal variables are aggregates of other
variables (Chu et al., 2003; Spirtes and Scheines, 2004).
We provide an account of how causal macro-variables can
supervene on micro-variables.

This article is an attempt to clarify how one may construct a
set of well-defined causal macro-variables that function as
basic relata in a causal graphical model. This step strikes
us as essential if causal methodology is to be successful in
areas where we do not have clearly delineated candidate
causes or where causes supervene on micro-variables, such
as in climate science and neuroscience, economics and—in
our specific case—vision.

Acknowledgements

KC’s work was funded by the Qualcomm Innovation Fel-
lowship 2014. KC’s and PP’s work was supported by the
ONR MURI grant N00014-10-1-0933. FE would like to
thank Cosma Shalizi for pointers to many relevant results
this paper builds on.

189

References

Y. Bengio, A. Courville, and P. Vincent. Representation
learning: A review and new perspectives. Pattern Anal-
ysis and Machine Intelligence, 35(8):1798–1828, 2013.

A. Bosch, A. Zisserman, and X. Munoz. Representing
shape with a spatial pyramid kernel. In 6th ACM Interna-
tional Conference on Image and Video Retrieval, pages
401–408, 2007.

S. Branson, G. Van Horn, and C. Wah. The Ignorant Led
by the Blind: A Hybrid Human–Machine Vision System
for Fine-Grained Categorization. International Journal
of Computer Vision, 108(1-2):3–29, 2014.

T. Chu, C. Glymour, R. Scheines, and P. Spirtes. A statis-
tical problem for inference to regulatory structure from
associations of gene expression measurements with mi-
croarrays. Bioinformatics, 19(9):1147–1152, 2003.

P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedestrian
detection: An evaluation of the state of the art. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 34(4):743–761, 2012.

A. S. Fire and S. C. Zhu. Using causal induction in hu-
mans to learn and infer causality from video. The An-
nual Meeting of the Cognitive Science Society (CogSci),
2013a.

A. S. Fire and S. C. Zhu. Learning Perceptual Causality
from Video. AAAI Workshop: Learning Rich Represen-
tations from Low-Level Sensors, 2013b.

I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining
and Harnessing Adversarial Examples. arXiv preprint
arXiv:1412.6572, 2014.

K. Grammer and R. Thornhill. Human (Homo sapiens) fa-
cial attractiveness and sexual selection: The role of sym-
metry and averageness. Journal of Comparative Psy-
chology, 108(3):233–242, 1994.

K. Grauman and T. Darrell. The pyramid match kernel: Ef-
ficient learning with sets of features. Journal of Machine
Learning Research, 8:725–260, 2007.

I. Guyon, A. Elisseeff, and C. Aliferis. Causal feature se-
lection. In Computational Methods of Feature Selection
Data Mining and Knowledge Discovery Series, pages
63–85. Chapman and Hall/CRC, 2007.

Z. Harchaoui and F. Bach. Image classification with seg-
mentation graph kernels. In IEEE Computer Society
Conference on Computer Vision and Pattern Recogni-
tion, pages 1–8, 2007.

E. P. Hoel, L. Albantakis, and G. Tononi. Quantifying
causal emergence shows that macro can beat micro. Pro-
ceedings of the National Academy of Sciences, 110(49):
19790–19795, 2013.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Ima-
geNet Classification with Deep Convolutional Neural

Networks. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, editors, Advances in Neural Informa-
tion Processing Systems 25, pages 1097–1105. 2012.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, 1998.

D. D. Lewis and W. A. Gale. A sequential algorithm for
training text classifiers. In ACM SIGIR Seventeenth Con-
ference on Research and Development in Information
Retrieval, pages 3–12, 1994.

C. Meek. Strong completeness and faithfulness in Bayesian
networks. In Eleventh Conference on Uncertainty in Ar-
tificial Intelligence, pages 411–418, 1995.

J. Pearl. Causality: Models, Reasoning and Inference.
Cambridge University Press, 2000.

J. P. Pellet and A. Elisseeff. Using Markov blankets for
causal structure learning. Journal of Machine Learning
Research, 9:1295–1342, 2008.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet large scale visual
recognition challenge. arXiv preprint arXiv:1409.0575,
2014.

B. Settles and M. Craven. An analysis of active learning
strategies for sequence labeling tasks. In Conference
on Empirical Methods in Natural Langauge Processing,
pages 1070–1079, 2008.

C. R. Shalizi. Causal architecture, complexity and self-
organization in the time series and cellular automata.
PhD thesis, University of Wisconsin at Madison, 2001.

C. R. Shalizi and J. P. Crutchfield. Computational me-
chanics: Pattern and prediction, structure and simplicity.
Journal of Statistical Physics, 104(3-4):817–879, 2001.

P. Spirtes and R. Scheines. Causal inference of ambiguous
manipulations. Philosophy of Science, 71(5):833–845,
2004.

P. Spirtes, C. N. Glymour, and R. Scheines. Causation,
prediction, and search. Massachusetts Institute of Tech-
nology, 2nd ed. edition, 2000.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus. Intriguing properties of
neural networks. In International Conference on Learn-
ing Representations, 2014.

S. V. N. Vishwanathan. Graph kernels. Journal of Machine
Learning Research, 11:1201–1242, 2010.

N. Zhang, J. Donahue, R. Girshick, and T. Darrell. Part-
based R-CNNs for fine-grained category detection. In
ECCV 2014, pages 834–849, 2014.

190

Large-Margin Determinantal Point Processes

Wei-Lun Chao∗
U. of Southern California
Los Angeles, CA 90089
weilunc@usc.edu

Boqing Gong∗
U. of Southern California
Los Angeles, CA 90089
boqinggo@usc.edu

Kristen Grauman
U. of Texas at Austin

Austin, TX 78701
grauman@cs.utexas.edu

Fei Sha
U. of Southern California
Los Angeles, CA 90089
feisha@usc.edu

Abstract

Determinantal point processes (DPPs) offer a
powerful approach to modeling diversity in many
applications where the goal is to select a diverse
subset from a ground set of items. We study the
problem of learning the parameters (i.e., the ker-
nel matrix) of a DPP from labeled training data.
In this paper, we develop a novel parameter esti-
mation technique particularly tailored for DPPs
based on the principle of large margin separa-
tion. In contrast to the state-of-the-art method
of maximum likelihood estimation of the DPP
parameters, our large-margin loss function ex-
plicitly models errors in selecting the target sub-
sets, and it can be customized to trade off dif-
ferent types of errors (precision vs. recall). Ex-
tensive empirical studies validate our contribu-
tions, including applications on challenging doc-
ument and video summarization, where flexibil-
ity in balancing different errors while training the
summarization models is indispensable.

1 INTRODUCTION

Imagine we are to design a search engine to retrieve web
images that match user queries. In response to the search
term JAGUAR, what should we retrieve—the images of the
animal jaguar or the images of the automobile jaguar?

This frequently cited example illustrates the need to incor-
porate the notion of diversity. In many tasks, we want to
select a subset of items from a “ground set”. While the
ground set might contain many similar items, our goal is
not to discover all of the same ones, but rather to find a sub-
set of diverse items that ensure coverage (the exact defini-
tion of coverage is task-specific). In the example of retriev-
ing images for JAGUAR, we achieve diversity by including
both types of images.

∗Equal contribution

Recently, the determinantal point process (DPP) has
emerged as a promising technique for modeling diver-
sity [Kulesza and Taskar, 2012]. A DPP defines a proba-
bility distribution over the power set of a ground set. Intu-
itively, subsets of higher diversity are assigned larger prob-
abilities, and thus are more likely to be selected than those
with lower diversity. Since its original application to quan-
tum physics, DPP has found many applications in model-
ing random trees and graphs [Burton and Pemantle, 1993],
document summarization [Kulesza and Taskar, 2011b],
search and ranking in information retrieval [Kulesza and
Taskar, 2011a], and clustering [Kang, 2013]. Various ex-
tensions have also been studied, including k-DPP [Kulesza
and Taskar, 2011a], structured DPP [Kulesza and Taskar,
2011c], Markov DPP [Affandi et al., 2012], and DPP on
continuous spaces [Affandi et al., 2013].

The probability distribution of a DPP depends crucially on
its kernel—a square and symmetric, positive semidefinite
matrix whose elements specify how similar every pair of
items in the ground set are. This kernel matrix is often
unknown and needs to be estimated from training data.

This is a very challenging problem for several reasons.
First, the number of the parameters, i.e., the number of el-
ements in the kernel matrix, is quadratic in the number of
items in the ground set. For many tasks (for instance, im-
age search), the ground set can be very large. Thus it is
impractical to directly specify every element of the matrix,
and a suitable reparameterization of the matrix is necessary.
Secondly, the number of training samples is often limited
in many practical applications. One such example is the
task of document summarization, where our aim is to se-
lect a succinct subset of sentences from a long document.
There, acquiring accurate annotations from human experts
is costly and difficult. Thirdly, for many tasks, we need to
evaluate the performance of the learned DPP not only by its
accuracy in predicting whether an item should be selected,
but also by other measures like precision and recall. For
instance, failing to select key sentences for summarizing
documents might be regarded as being more catastrophic
than injecting sentences with repetitive information into the

191

summary.

Existing methods of parameter estimation for DPPs are in-
adequate to address these challenges. For example, max-
imum likelihood estimation (MLE) typically requires a
large number of training samples in order to estimate the
underlying model correctly. This also limits the number of
the parameters it can estimate reliably, restricting its use
to DPPs whose kernels can be parameterized with few de-
grees of freedom. It also does not offer fine control over
precision and recall.

We propose a two-pronged approach for learning a DPP
from labeled data. First, we improve modeling flexibility
by reparameterizing the DPP’s kernel matrix with multiple
base kernels. This representation could easily incorporate
domain knowledge and requires learning fewer parameters
(instead of the whole kernel matrix). Then, we optimize
the parameters such that the probability of the correct sub-
set is larger than other erroneous subsets by a large mar-
gin. This margin is task-specific and can be customized to
reflect the desired performance measure—for example, to
monitor precision and recall. As such, our approach defines
objective functions that closely track selection errors and
work well with few training samples. While the principle
of large margin separation has been widely used in clas-
sification [Vapnik, 1998] and structured prediction [Taskar
et al., 2005], formulating DPP learning with the large mar-
gin principle is novel. Our empirical studies show that
the proposed method attains superior performance on two
challenging tasks of practical interest: document and video
summarization.

The rest of the paper is organized as follows. We provide
background on the DPP in section 2, followed by our ap-
proach in section 3. We discuss related work in section 4
and report our empirical studies in section 5. We conclude
in section 6.

2 BACKGROUND: DETERMINANTAL
POINT PROCESSES

We first review background on the determinantal point pro-
cess (DPP) [Macchi, 1975] and the standard maximum
likelihood estimation technique for learning DPP param-
eters from data. More details can be found in the excellent
tutorial [Kulesza and Taskar, 2012].

Given a ground set of M items, Y = {1, 2, . . . ,M}, a DPP
defines a probabilistic measure over the power set, i.e., all
possible subsets (including the empty set) ofY . Concretely,
let L denote a symmetric and positive semidefinite matrix
in RM×M. The probability of selecting a subset y ⊆ Y is
given by

P (y;L) = det(L+ I)−1 det(Ly), (1)

where Ly denotes the submatrix of L, with rows and

columns selected by the indices in y. I is the identity ma-
trix with the proper size. We define det (L∅) = 1. The
above way of defining a DPP is called an L-ensemble. An
equivalent way of defining a DPP is to use a kernel ma-
trix to define the marginal probability of selecting a random
subset:

Py =
∑

y′⊆Y
P (y′;L)I[y ⊆ y′] = det(Ky), (2)

where we sum over all subsets y′ that contain y (I[·] is
an indicator function). The matrix K is another positive
semidefinite matrix, computable from the L matrix

K = L(L+ I)−1, (3)

and Ky is the submatrix of K indexed by y. Despite the
exponential number of summands in eq. (2), the marginal-
ization is analytically tractable and computable in polyno-
mial time.

2.1 MODELING DIVERSITY

One particularly useful property of the DPP is its ability to
model pairwise repulsion. Consider the marginal probabil-
ity of having two items i and j simultaneously in a subset:

P{i,j} = det

∣∣∣∣∣
KiiKij

KjiKjj

∣∣∣∣∣ = KiiKjj −K2
ij

≤ KiiKjj = P{i}P{j} ≤ min(P{i}, P{j}). (4)

Thus, unless Kij = 0, the probability of observing i and j
jointly is always less than observing either i or j separately.
Namely, having i in a subset repulsively excludes j and
vice versa. Another extreme case is when i and j are the
same; then Kii = Kjj = Kij , which leads to P{i,j} =
0. Namely, we should never allow them together in any
subset.

Consequently, a subset with a large (marginal) probability
cannot have too many items that are similar to each other
(i.e., with high values ofKij). In other words, the probabil-
ity provides a gauge of the diversity of the subset. The most
diverse subset, which balances all the pairwise repulsions,
is the subset that attains the highest probability

yMAP = argmaxy P (y;L). (5)

Note that this MAP inference is computed with respect to
the L-ensemble (instead of K) as we are interested in the
mode, not the marginal probability of having the subset.
Unfortunately, the MAP inference is NP-hard [Ko et al.,
1995]. Various approximation algorithms have been in-
vestigated [Gillenwater et al., 2012, Kulesza and Taskar,
2012].

192

2.2 MAXIMUM LIKELIHOOD ESTIMATION

Suppose we are given a training set {(Yn,yn)}, where each
ground set Yn is annotated with its most diverse subset
yn. How can we discover the underlying parameters L or
K? Note that different ground sets need not have over-
lap. Thus, directly specifying kernel values for every pair
of items is unlikely to be scalable. Instead, we will need
to assume that either L or K for each ground set is repre-
sented by a shared set of parameters θ.

For items i and j in Yn, suppose their kernel values Knij

can be computed as a function of xni , xnj and θ, where
xni and xnj are features characterizing those items. Our
learning objective is to optimize θ such that yn is the most
diverse subset in Yn, or attains the highest probability. This
gives rise to the following maximum likelihood estimate
(MLE) [Kulesza and Taskar, 2011b],

θMLE = argmaxθ
∑

n

logP (yn;Ln(Yn;θ)), (6)

where Ln(Yn;θ) converts features in Yn to the L matrix
for the ground set Yn. MLE has been a standard approach
for estimating DPP parameters. However, as we will dis-
cuss in section 3.2, it has important limitations.

Next, we introduce our method for learning the parameters.
We first present our multiple kernel based representation of
the L matrix and then the large-margin based estimation.

3 OUR APPROACH

Our approach consists of two components that are devel-
oped in parallel, yet work in concert: (1) the use of mul-
tiple kernel functions to represent the DPP; (2) applying
the principle of large margin separation to optimize the pa-
rameters. The former reduces the number of parameters to
learn and thus is especially advantageous when the number
of training samples is limited. The latter strengthens the ad-
vantage by optimizing objective functions that closely track
subset selection errors.

3.1 MULTIPLE KERNEL REPRESENTATION

Learning the L or K matrix for a DPP is an instance of
learning kernel functions, as those matrices are positive
semidefinite matrices, interpretable as kernel functions be-
ing evaluated on the items in the ground set. Thus, our goal
is essentially to learn the right kernel function to measure
similarity.

However, for many applications, similarity is just one of the
criteria for selecting items. For instance, in the previous
example of image retrieval, the retrieved images not only
need to be diverse (thus different) but also need to have
strong relevance to the query term. Similarly, in document
summarization, the selected sentences not only need to be

succinct and not redundant, but also need to represent the
contents of the document [Lin and Bilmes, 2010].

Kulesza and Taskar [2011b] propose to balance these two
potentially conflicting forces with a decomposable L ma-
trix:

Lij = qiqjSij = qiqjφ
T
iφj ,

qi = q(xi) = exp(θTxi), ∀ i, j ∈ Y, (7)

where qi is referred to as the quality factor, modeling how
representative or relevant the selected items are. It depends
on item i’s feature vector xi, which encodes i’s contextual
information and its representativeness of other items. For
example, in document summarization, possible features are
the sentence lengths, positions of the sentences in the text,
or others. Sij , on the other hand, measures how similar two
sentences are, computed from a different set of features,
φi and φj , such as bag-of-words descriptors that represent
each item’s individual characteristics.

However, prior work [Kulesza and Taskar, 2011b] does
not investigate whether this specific definition of similar-
ity could be made optimal and adapted to the data, thus
limiting the modeling power of the DPP largely to infer the
quality qi. Our empirical studies show that this limitation
can be severe, especially when the modeling choice is er-
roneous (cf. section 5.2).

In this paper, we retain the aspect of quality modeling but
improve the modeling of similarity Sij in two ways. First,
we use nonlinear kernel functions such as the Gaussian
RBF kernel to determine similarity. Secondly, and more
importantly, we combine several base kernels:

Sij =
∑

k

αk exp{−‖φi − φj‖22 /σ2
k}+ βφT

iφj , (8)

where k indexes the base kernels and σk is a scaling fac-
tor. The combination coefficients are constrained such that∑
k αk+β = 1. They are optimized on the annotated data,

either via maximum likelihood estimation or via our novel
parameter estimation technique, to be described next.

3.2 LARGE-MARGIN ESTIMATION OF DPP

Maximum likelihood estimation does not closely track dis-
criminative errors [Ng and Jordan, 2002, Vapnik, 1998, Je-
bara, 2004]. While improving the likelihood of the ground-
truth subset yn, MLE could also improve the likelihoods of
other competing subsets. Consequentially, a model learned
with MLE could have modes that are very different sub-
sets yet are very close to each other in their probability val-
ues. Having highly confusable modes is especially prob-
lematic for DPP’s NP-hard MAP inference—the difference
between such modes can fall within the approximation er-
rors of approximate inference algorithms such that the true
MAP cannot be easily extracted.

193

3.2.1 Multiplicative Large Margin Constraints

To address these deficiencies, our large-margin based ap-
proach aims to maintain or increase the margin between the
correct subset and alternative, incorrect ones. Specifically,
we formulate the following large margin constraints

logP (yn;Ln) ≥ max
y⊆Yn

log `(yn,y)P (y;Ln)

= max
y⊆Yn

log `(yn,y) + logP (y;Ln), (9)

where `(yn,y) is a loss function measuring the discrep-
ancy between the correct subset and an alternative y. We
assume `(yn,yn) = 0.

Intuitively, the more different y is from yn, the larger the
gap we want to maintain between the two probabilities.
This way, the incorrect one has less chance to be identified
as the most diverse one. Note that while similar intuitions
have been explored in multi-way classification and struc-
tured prediction, the margin here is multiplicative instead
of additive—this is by design, as it leads to a tractable opti-
mization over the exponential number of constraints, as we
will explain later.

3.2.2 Design of the Loss Function

A natural choice for the loss function is the Hamming dis-
tance between yn and y, counting the number of disagree-
ments between two subsets:

`H(yn,y) =
∑

i∈y
I[i /∈ yn] +

∑

i/∈y
I[i ∈ yn]. (10)

In this loss function, failing to select the right item costs
the same as adding an unnecessary item. In many tasks,
however, this symmetry does not hold. For example, in
summarizing a document, omitting a key sentence has more
severe consequences than adding a (trivial) sentence.

To balance these two types of errors, we introduce the gen-
eralized Hamming loss function,

`ω(yn,y) =
∑

i∈y
I[i /∈ yn] + ω

∑

i/∈y
I[i ∈ yn]. (11)

When ω is greater than 1, the learning biases towards
higher recall to select as many items in yn as possible.
When ω is significantly less than 1, the learning biases to-
wards high precision to avoid incorrect items as much as
possible. Our empirical studies demonstrate such flexibility
and its advantages in two real-world summarization tasks.

3.2.3 Numerical Optimization

To overcome the challenge of dealing with an exponen-
tial number of constraints in eq. (9), we reformulate it as
a tractable optimization problem. We first upper-bound

the hard-max operation with Jensen’s inequality (i.e., soft-
max):

logP (yn;Ln) ≥ log
∑

y⊆Y
elog `ω(yn,y)P (y;Ln)

= softmaxy⊆Yn log `ω(yn,y) + logP (y;Ln). (12)

With the loss function `ω(yn,y), the right-hand-side is
computable in polynomial time,

softmaxy⊆Yn log `ω(yn,y) + logP (y;Ln)

= log

∑

i/∈yn
Knii + ω

∑

i∈yn
(1−Knii)

 , (13)

where Knii is the i-th element on the diagonal of Kn, the
marginal kernel matrix corresponding to Ln. The detailed
derivation of this result is in the supplementary material.
Note thatKn can be computed efficiently fromLn through
the identity eq. (3).

The softmax can be seen as a summary of all undesirable
subsets (the correct subset yn does not contribute to the
weighted sum as `ω(yn,yn) = 0). Our optimization bal-
ances this term with the likelihood of the target with the
hinge loss function [z]+ = max(0, z),

min
∑

n

[
− logP (yn;Ln)

+ λ log

(∑

i/∈yn
Knii + ω

∑

i∈yn
(1−Knii)

)]

+

,

(14)

where λ ≥ 0 is a tradeoff coefficient, to be tuned on vali-
dation datasets. Note that this objective function subsumes
maximum likelihood estimation where λ = 0. We optimize
the objective function with subgradient descent. Details are
in the supplementary material.

4 RELATED WORK

The DPP arises from random matrix theory and quantum
physics [Macchi, 1975, Kulesza and Taskar, 2012]. In ma-
chine learning, researchers have proposed different varia-
tions to improve its modeling capacity. Kulesza and Taskar
[2011a] introduced k-DPP to restrict the sets to have a con-
stant size k. Affandi et al. [2012] proposed a Markov DPP
which offers diversity at adjacent time stamps. A struc-
tured DPP was presented in [Kulesza and Taskar, 2011c]
to model trees and graphs. The MAP inference of DPP
is generally NP-hard [Ko et al., 1995]. Gillenwater et al.
[2012] developed an 1/4-approximation algorithm. In prac-
tice, greedy inference gives rise to decent results [Kulesza
and Taskar, 2011b] though it lacks theoretical guarantees.

194

Another popular alternative is to resort to fast sampling al-
gorithms [Kang, 2013, Kulesza and Taskar, 2012].

In spite of much research activity surrounding DPPs, there
is very little work exploring how to effectively learn the
model parameters. MLE is the most popular estimator.
Compared to MLE, our approach is more robust to the
number of training data or mis-specified models, and of-
fers greater flexibility by incorporating customizable error
functions. A recent Bayesian approach works with the pos-
terior over the parameters [Affandi et al., 2014]. In contrast
to that work, we develop a large-margin training approach
for DPPs and directly minimize the set selection errors.
The large margin principle has been widely used in clas-
sification [Vapnik, 1998] and structured prediction [Taskar
et al., 2005, Tsochantaridis et al., 2004, Taskar et al., 2004,
Sha and Saul, 2006], but its application to DPP is original.
In order to make it tractable for DPPs, we use multiplicative
rather than additive margin constraints.

5 EXPERIMENTS

We validate our large-margin approach to learn DPP pa-
rameters (DPPLME) with extensive empirical studies on both
synthetic data and two real-world summarization tasks with
documents and videos. While DPP also has applications
beyond summarization, this is a particularly good testbed
to illustrate diverse subset selection: a compact summary
ought to include high quality items that, taken together, of-
fer good coverage of the source content.

5.1 SETUP

5.1.1 Evaluation Metrics

We evaluate the quality of the selected subset yMAP against
the ground-truth y? using the F-score, which is the har-
monic mean of precision and recall:

F-score =
2Precision× Recall
Precision + Recall

,

Precision =
|yMAP ∩ y?|
|yMAP| , Recall =

|yMAP ∩ y?|
|y?| . (15)

All three quantities are between 0 and 1, and higher values
are better.

5.1.2 MAP Inference

We conduct the MAP inference of DPP by brute-forth
search on the synthetic data, and turn to the so called min-
imum Bayes risk (MBR) decoding [Goel and Byrne, 2000,
Kulesza and Taskar, 2012] for larger ground sets on real
data.

The MBR inference samples subsets S = {y1, · · · ,yT}
from the learned DPP and outputs the one ŷ which achieves

the highest consensus with the others, where the consensus
can be measured by different evaluation metrics depending
on applications. We use the F-score in our case. Particu-
larly,

ŷ ← arg max
yt′∈S

1

T

T∑

t=1

F-SCORE(yt′ ,yt). (16)

Note that the MBR inference has actually introduced some
degrees of flexibility to DPP (and to other probabilistic
models). It allows users to infer the desired output accord-
ing to different evaluation metrics. As a result, the selected
subset is not necessarily the “true” diverse subset, but is
biased towards the users’ specific interests.

5.2 SYNTHETIC DATASET

5.2.1 Data

Our ground set has 10 items, Y = {x1,x2, · · · ,x10}. For
each item, we sample a 5-dimensional feature vector from
a spherical Gaussian: xi ∼ N (0, I). To generate the L
matrix for the DPP, we follow the model in eq. (7); for the
parameter vector θ we sample from a spherical Gaussian,
θ ∼ N (0, I), and for the similarity we simply let φi = xi
and compute Sij = φT

iφj .

We identify the most diverse subset y? (eq. (5)) via exhaus-
tive search of all subsets, which is possible given the small
ground set. The resulting y? has 5 items on average. We
then add noise by randomly (with probability 0.1) adding
or dropping an item to or from y?. We repeat the process of
sampling another pair of the ground set and its most diverse
set. We do so 200 times and use 100 pairs for holdout and
100 for testing. We repeat the process to yield training sets
of various sizes.

5.2.2 Learning

We compare our large-margin approach using the Ham-
ming loss (eq. (10)) to the standard MLE method for learn-
ing DPP parameters.1 All hyperparameters are tuned by
cross-validation. After learning, we apply MAP inference
to the testing ground sets.

5.2.3 Results

The DPP is parameterized by two things: θ for the quality
of the items, and Sij for the similarity among them. Since
the ground-truth parameters are known to us, we conduct
experiments to isolate the impact of learning either one.

Fig. 1(a) contrasts the two methods when learning θ
only, assuming all Sij are known and the ground-truths

1Adding a zero-mean Gaussian prior over θ while learning
with MLE, as in [Kulesza and Taskar, 2011b], did not yield im-
provement.

195

200 400 600 800 200 400 600 800
75

80

85

90
F

−
s
c
o

re
 (

%
)

training instances

DPP
MLE

 [3], true S

DPP
LME

, true S

Groundtruth

(a) Learning θ only, with Sij correctly
specified

−Inf −3 −2 −1 0 1 2 3 Inf
30

40

50

60

70

80

90

q : RBF kernel σ = 2
q
 σ

0

F
−

s
c
o

re
 (

%
)

DPP
MLE

 [3], "incorrect" S

DPP
LME

, "incorrect S"

DPP
MLE

 [3], true S

DPP
LME

, true S

(b) Learning θ under mis-specified Sij (#
training instances = 200)

200 400 600 800
75

80

85

90

F
−

s
c
o

re
 (

%
)

training instances

DPP
MLE

 [3]

DPP
MLE

 [3], true S

DPP
LME

DPP
LME

, true S

Groundtruth

(c) Learning both θ and Sij , with multiple
kernel parameterization

Figure 1: On synthetic datasets, our method DPPLME significantly outperforms the state-of-the-art parameter estimation technique
DPPMLE [Kulesza and Taskar, 2011b] in various learning settings. See text for details. Best viewed in color.

are used. Our DPPLME method significantly outperforms
DPPMLE. When the number of training samples is increased,
the performance of our method generally improves and gets
very close to the oracle’s performance, for which the true
values of both Sij and θ are used.

Fig. 1(b) examines the two methods in the setting of model
mis-specification, where the Sij values deliberately devi-
ate from the true values. Specifically, we set them to
exp(−‖xi−xj‖22/σ2) where the bandwidth σ varies from
small to large, while the true values are xT

ixj . All meth-
ods generally suffer. However, our method is fairly robust
to the mis-specification while DPPMLE quickly deteriorates.
Our advantage is likely due to our method’s focus on learn-
ing to reduce subset selection errors, whereas MLE focuses
on learning the right probabilistic model (even if it is al-
ready mis-specified).

Fig. 1(c) compares the two methods when both θ and Sij
need to be learned from the data. We apply our mul-
tiple kernel parameterization technique to model Sij , as
in eq. (8), except β is set to be zero to avoid including
the ground-truth. We see that our parameterization over-
comes the problems of model mis-specification in Fig. 1(b),
demonstrating its effectiveness in approximating unknown
similarities. In fact, both learning methods match the per-
formance of the corresponding methods with ground-truth
similarity values, respectively. Nonetheless, our large-
margin estimation still outperforms MLE significantly.

In summary, our results on synthetic data are very encour-
aging. Our multiple kernel parameterization avoids the pit-
fall of model mis-specification, and the large-margin esti-
mation outperforms MLE due to its ability to track selec-
tion errors more closely.

5.3 DOCUMENT SUMMARIZATION

Next we apply DPP to the task of extractive multi-
document summarization [Dang, 2005, Kulesza and

Taskar, 2011b, Lin and Bilmes, 2010]. In this task, the in-
put is a document cluster consisting of several documents
on a single topic. The desired output is a subset of the sen-
tences in the cluster that serve as a summary for the entire
cluster. Naturally, we want the sentences in this subset to
be both representative and diverse.

5.3.1 Experimental Setting

We use the text data from Document Understanding Con-
ference (DUC) 2003 and 2004 [Dang, 2005] as the train-
ing and testing sets, respectively. There are 60 docu-
ment clusters in DUC 2003 and 50 in DUC 2004, each
collected over a short time period on a single topic. A
cluster includes 10 news articles and on average 250 sen-
tences. Four human reference summaries are provided
along with each cluster. Following prior work, we gener-
ate the oracle/ground-truth summary by identifying a sub-
set of the original sentences that best agree with the human
reference summaries [Kulesza and Taskar, 2011b]. On av-
erage, the oracle summary consists of 5 sentences. As is
standard practice, we use the oracles only during training.
During testing, the algorithm output is evaluated against
each of the four human reference summaries separately,
and we report the average accuracy [Dang, 2005, Kulesza
and Taskar, 2011b, Lin and Bilmes, 2010].

We use the widely-used evaluation package ROUGE [Lin,
2004], which scores document summaries based on n-gram
overlap statistics. We use ROUGE 1.5.5 along with Word-
Net 2.0, and report the F-score (F), Precision (P), and Re-
call (R) of both unigram and bigram matchings, denoted
by ROUGE-1X and ROUGE-2X respectively (X ∈ {F, P,
R}). Additionally, we limit the maximum length of each
summary to be 665 characters to be consistent with exist-
ing work [Dang, 2005]. This yields 5 sentences on average
for subsets generated by our algorithm.

To allow the fairest comparison to existing DPP work for

196

Table 1: Accuracy on document summarization. Our methods outperform others with statistical significance.
Method ROUGE-1F ROUGE-1P ROUGE-1R ROUGE-2F ROUGE-2P ROUGE-2R
PEER 35 [Dang, 2005] 37.54 37.69 37.45 8.37 – –
PEER 104 [Dang, 2005] 37.12 36.79 37.48 8.49 – –
PEER 65 [Dang, 2005] 37.87 37.58 38.20 9.13 – –
DPPMLE+COS [Kulesza and Taskar, 2011b] 37.89±0.08 37.37±0.08 38.46±0.08 7.72±0.06 7.63±0.06 7.83±0.06
Ours (DPPLME+COS) 38.36±0.09 37.72±0.10 39.07±0.08 8.20±0.07 8.07±0.07 8.35±0.07
Ours (DPPMLE+MKR) 39.14±0.08 39.03±0.09 39.31±0.09 9.25±0.08 9.24±0.08 9.27±0.08
Ours (DPPLME+MKR) 39.71±0.05 39.61±0.08 39.87±0.06 9.40±0.08 9.38±0.08 9.43±0.08

this task, we use the same features designated in [Kulesza
and Taskar, 2011b]. To model quality, the features are the
sentence length, position in the original document, mean
cluster similarity, LexRank [Erkan and Radev, 2004], and
personal pronouns. To model the similarity, the features are
the standard normalized term frequency-inverse document
frequency (tf-idf) vectors.

5.3.2 Learning

We consider two ways of modeling similarities. The first
one is to use the cosine similarity (COS) between feature
vectors, as in [Kulesza and Taskar, 2011b]. The second is
our multiple kernel based similarity (MKR, eq. (8)). For
MKR, the bandwidths are σ = 2q , q = −6,−5, · · · , 6, and
the combination coefficients are learned on the data. We
implement the method in [Kulesza and Taskar, 2011b] as a
baseline (DPPMLE+COS). We also test an enhanced variant
of that method by replacing its cosine similarity with our
multiple kernel based similarity (DPPMLE+MKR).

5.3.3 Results

Table 1 compares several DPP-based methods, as well as
the top three results (PEER 35, 104, 65) from the DUC
2004 competition, which are not DPP-based (“-” indicates
results not available). Since the DPP MAP inference is NP-
hard, we use a sampling technique to extract the most di-
verse subset [Kulesza and Taskar, 2012]. We run inference
10 times and report the mean accuracy and standard error.

The state-of-the-art MLE-trained DPP model
(DPPMLE+COS) [Kulesza and Taskar, 2011b] achieves
about the same performance as the best PEER results
of DUC 2004. We obtain a noticeable improvement by
applying our large-margin estimation (DPPLME+COS). By
applying multiple kernels to model similarity, we obtain
significant improvements (above the standard errors)
for both parameter estimation techniques. In particular,
our complete method, DPPLME+MKR, attains the best
performance across all the evaluation metrics.

5.4 VIDEO SUMMARIZATION

Finally, we demonstrate the broad applicability of our
method by applying it to video summarization. In this
case, the goal is to select a set of representative and diverse

frames from a video sequence.

5.4.1 Experimental Setting

The dataset consists of 50 videos from the Open Video
Project (OVP)2. They are 30fps, 352×240 pixels, vary from
1 to 4 minutes, and are distributed across several genres in-
cluding documentary, educational, historical, etc. We use
the provided ground truth key frame summaries [de Avila
et al., 2011], where each video is labeled by five annotators
independently. We perform 5-fold validation and report the
average result. We apply several preprocessing steps to re-
move frames that are trivially redundant (due to high tem-
poral correlation) or of low visual quality. We use a sim-
ilar procedure as in the document summarization task to
generate the oracle/ground-truth subsets. On average, the
ground-truth has 9 frames (in contrast, our method yields
subsets from 5 to 20 frames). We use the public evalu-
ation package VSUMM to evaluate the system-generated
summary frames and again compute Precision, Recall and
F-score [de Avila et al., 2011]. More details are in the sup-
plementary material.

5.4.2 Features

We extract from each frame a color histogram and SIFT-
based Fisher vector [Lowe, 2004, Perronnin and Dance,
2007] to model pairwise frame similarity Sij . The two fea-
tures are combined via our multiple kernel representation.
To model the quality of each frame, we extract both intra-
frame and inter-frame representativeness features. They are
computed on the saliency maps [Rahtu et al., 2010, Hou
et al., 2012] and include the mean, standard deviation, me-
dian, and quantiles of the maps as well as the the visual
similarities between a frame and its neighbors. We z-score
them within each video sequence.

5.4.3 Results

Table 2 compares several methods for selecting key frames:
an unsupervised clustering method VSUMM [de Avila
et al., 2011] (we implemented its two variants, offering a
degree of tradeoff between precision and recall, and finely
tuned the parameters), DPPMLE with a multiple kernel pa-
rameterization of Sij , and our margin-based approach. For

2The Open Video Project: www.open-video.org

197

Table 2: Accuracy on video summarization. Our method performs the best and allows precision-recall control.

Metric VSUMM1 VSUMM2
DPPMLE+MKR

Ours (DPPLME+MKR)
[de Avila et al., 2011] [de Avila et al., 2011] ω = 1/64 ω = 1 ω = 64

F-score 70.25 68.20 72.94±0.08 71.25±0.09 73.46±0.07 72.39±0.10
Precision 70.57 73.14 68.40±0.08 74.00±0.09 69.68±0.08 67.19±0.11

Recall 75.77 69.14 82.51±0.11 72.71±0.11 81.39±0.09 83.24±0.09

our method, we illustrate its flexibility to target different
operating points, by varying the tradeoff constant ω in the
generalized Hamming distance loss function eq. (11). Re-
call that higher values of ω will promote higher recall,
while lower promote higher precision.

The results clearly demonstrate the advantage of our ap-
proach, particularly in how it offers finer control of the
tradeoff between precision and recall. By adjusting ω, our
method performs the best in each of the three metrics and
outperforms the baselines by a statistically significant mar-
gin measured in the standard errors. Controlling the trade-
off is quite valuable in this application; for example, high
precision may be preferable to a user summarizing a video
he himself captured (he knows what appeared in the video,
and wants a noise-free summary), whereas high recall may
be preferable to a user summarizing a video taken by a third
party (he has not seen the original video, and prefers some
noise to dropped frames).

More details are illustrated in Fig. 2, in which by varying
ω from 2−6 to 28 we obtain 8 pairs of (precision, recall)
values. We apply uniform interpolation among them and
draw the precision-recall curve. One can see that DPPLME

is able to control the characteristics of the DPP generated
summaries, biasing them to either high precision or high
recall and without sacrificing the other too much. Though
MLE or VSUMM does not supply such modeling flexibil-
ity, we also include them in the figure for reference.

We also present qualitative results on video summarization
in Fig. 3. For this particular video, DPPMLE, DPPLME with
ω = 1, and DPPLME with ω = 64 all give rise to high recalls.
Their output summaries are pretty lengthy, and may be bor-
ing to some users who just want to grasp something inter-
esting to watch. By turning down the weight to ω = 1/64,
our DPPLME dramatically improves the precision to 76% (in
contrast to the 48% of DPPMLE).

5.5 COMPUTATIONAL COMPLEXITY

The computational complexities of MLE and our large-
margin approach are the same, O(N× D3), for computing
the objective functions. Here N is the number of training
instances, and D is the size of the largest ground set. Our
softmax trick allows us to handle tractably an exponentially
large number of constraints. Using gradient descent in pa-
rameter learning, the computational complexity in each it-
eration is thus also O(N × D3) for both methods. MLE is
slightly faster (20% measured in wall-clock time).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Recall

P
re

c
is

io
n

LM−DPP

MLE−DPP

VSUMM

0.65 0.7 0.75 0.8
0.65

0.7

0.75

0.8

Figure 2: Balancing precision and recall. Through our large-
margin DPPs (DPPLME), we can balance precision and recall by
varying ω in the generalized Hamming distance. In contrast, nei-
ther MLE nor VSUMM (the two variants in [de Avila et al., 2011]
are plotted together) is readily able to support such flexibility.

6 CONCLUSION

The determinantal point process (DPP) offers a powerful
and probabilistically grounded approach for selecting di-
verse subsets. We proposed a novel technique for learning
DPPs from annotated data. In contrast to the status quo of
maximum likelihood estimation, our method is more flex-
ible in modeling pairwise similarity and avoids the pitfall
of model mis-specification. Empirical results demonstrate
its advantages on both synthetic datasets and challenging
real-world summarization applications.

Acknowledgements

F. S., W. C., and B. G. are supported by ARO Award
#W911NF-12-1-0241, DARPA Award #D11AP00278,
NSF IIS Award #1065243, ONR #N000141210066, and
Alfred P. Sloan Fellowship. K. G. is supported by ONR
YIP #N00014-12-1-0754.

References

R. H. Affandi, A. Kulesza, and E. B. Fox. Markov deter-
minantal point processes. In UAI, 2012.

198

DPPLME + MKR

(=64)

DPPLME + MKR

(=1)

DPPLME + MKR

(=1/64)

DPPMLE + MKR

Oracle

(F=63, P=48, R=97)

(F=77, P=76, R=81)

(F=88, P=88, R=91)

(F=67, P=55, R=91)

(F=63, P=48, R=97)

Figure 3: Video summaries generated by DPPMLE and our DPPLME with ω = 1, ω = 26, and ω = 2−6, respectively. The oracle summary
is also included for reference.

R. H. Affandi, E. B. Fox, and B. Taskar. Approximate in-
ference in continuous determinantal point processes. In
NIPS, 2013.

R. H. Affandi, E. B. Fox, R. P. Adams, and B. Taskar.
Learning the parameters of determinantal point process
kernels. In ICML, 2014.

R. Burton and R. Pemantle. Local characteristics, en-
tropy and limit theorems for spanning trees and domino
tilings via transfer-impedances. The Annals of Probabil-
ity, pages 1329–1371, 1993.

H. T. Dang. Overview of duc 2005. In Document Under-
standing Conf., 2005.

S. E. F. de Avila, A. P. B. Lopes, et al. Vsumm: A mech-
anism designed to produce static video summaries and
a novel evaluation method. Pattern Recognition Letters,
32(1):56–68, 2011.

G. Erkan and D. R. Radev. Lexrank: Graph-based lexical
centrality as salience in text summarization. JAIR, 22(1):
457–479, 2004.

J. Gillenwater, A. Kulesza, and B. Taskar. Near-optimal
map inference for determinantal point processes. In
NIPS, 2012.

V. Goel and W. J. Byrne. Minimum bayes-risk automatic
speech recognition. Computer Speech & Language, 14
(2):115–135, 2000.

X. Hou, J. Harel, and C. Koch. Image signature: High-
lighting sparse salient regions. T-PAMI, 34(1):194–201,
2012.

T. Jebara. Machine learning: discriminative and genera-
tive. Springer, 2004.

B. Kang. Fast determinantal point process sampling with
application to clustering. In NIPS, 2013.

C.-W. Ko, J. Lee, and M. Queyranne. An exact algorithm
for maximum entropy sampling. Operations Research,
43(4):684–691, 1995.

A. Kulesza and B. Taskar. k-dpps: Fixed-size determinantal
point processes. In ICML, 2011a.

A. Kulesza and B. Taskar. Learning determinantal point
processes. In UAI, 2011b.

A. Kulesza and B. Taskar. Structured determinantal point
processes. In NIPS, 2011c.

A. Kulesza and B. Taskar. Determinantal point processes
for machine learning. Foundations and Trends R© in Ma-
chine Learning, 5(2-3):123–286, 2012.

C.-Y. Lin. Rouge: A package for automatic evaluation of
summaries. In Text Summarization Branches Out: Proc.
of the ACL-04 Workshop, 2004.

H. Lin and J. Bilmes. Multi-document summarization via
budgeted maximization of submodular functions. In
NAACL/HLT, 2010.

D. G. Lowe. Distinctive image features from scale-
invariant keypoints. IJCV, 60(2):91–110, 2004.

O. Macchi. The coincidence approach to stochastic point
processes. Advances in Applied Probability, 7(1):83–
122, 1975.

A. Y. Ng and M. I. Jordan. On discriminative vs. generative
classifiers: A comparison of logistic regression and naive
bayes. In NIPS, 2002.

F. Perronnin and C. Dance. Fisher kernels on visual vocab-
ularies for image categorization. In CVPR, 2007.

199

E. Rahtu, J. Kannala, M. Salo, and J. Heikkil. Segmenting
salient objects from images and videos. In ECCV, 2010.

F. Sha and L. K. Saul. Large margin hidden markov models
for automatic speech recognition. In NIPS, 2006.

B. Taskar, C. Guestrin, and D. Koller. Max-margin markov
networks. In NIPS, 2004.

B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin.
Learning structured prediction models: A large margin
approach. In ICML, 2005.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun.
Support vector machine learning for interdependent and
structured output spaces. In ICML, 2004.

V. Vapnik. Statistical learning theory. 1998. Wiley, New
York, 1998.

200

Fast Relative-Error Approximation Algorithm for Ridge Regression

Shouyuan Chen1⇤ Yang Liu21⇤ Michael R. Lyu31 Irwin King31 Shengyu Zhang21

3: Shenzhen Key Laboratory of Rich Media Big Data Analytics and Applications,
Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China

2: The Institute of Theoretical Computer Science and Communications, The Chinese University of Hong Kong
1: Department of Computer Science and Engineering, The Chinese University of Hong Kong

chenshouyuan@gmail.com {yliu,lyu,king,syzhang}@cse.cuhk.edu.hk

Abstract

Ridge regression is one of the most popular and
effective regularized regression methods, and
one case of particular interest is that the number
of features p is much larger than the number of
samples n, i.e. p � n. In this case, the standard
optimization algorithm for ridge regression com-
putes the optimal solution x⇤ in O(n2p + n3)
time. In this paper, we propose a fast relative-
error approximation algorithm for ridge regres-
sion. More specifically, our algorithm outputs a
solution x̃ satisfying kx̃ � x⇤k2 ✏kx⇤k2 with
high probability and runs in Õ(nnz(A)+n3/✏2)
time, where nnz(A) is the number of non-zero
entries of matrix A.

To the best of our knowledge, this is the first al-
gorithm for ridge regression that runs in o(n2p)
time with provable relative-error approximation
bound on the output vector. In addition, we an-
alyze the risk inflation bound of our algorithm
and apply our techniques to two generalizations
of ridge regression, including multiple response
ridge regression and a non-linear ridge regression
problem. Finally, we show empirical results on
both synthetic and real datasets.

1 INTRODUCTION

Ridge regression is one of the most popular and effective
regularized regression methods, and one case of particu-
lar interest is that the number of features p is much larger
than the number of samples n, i.e. p � n. The defini-
tion of ridge regression problem is as follows. Given an
n⇥ p sample-by-feature design matrix A together with an
n-dimensional target vector b, and a parameter � > 0, the
goal of ridge regression is to find a p-dimensional vector

⇤The first two authors contributed equally.

x⇤ such that

x⇤ = arg min
x2Rp

kAx� bk22 + � kxk22 . (1)

Saunders et al. [29] showed that that the unique minimizer
of Eq. (1) can be computed as follows

x⇤ = AT (AAT + �In)�1b. (2)

Using Eq. (2), the time complexity of computing x⇤ is
O(n2p + n3), which is O(n2p) when p � n. This ap-
proach is widely applied in practice for the p > n cases.
However, for large dataset with high dimensional features,
i.e. p� n� 1, this approach can be prohibitively slow.

Our contributions. In this paper, we present the first al-
gorithm for ridge regression that runs in o(n2p) time with
a provable relative-error approximation bound on the out-
put vector. Specifically, our proposed algorithm outputs a
vector x̃ such that kx̃� x⇤k2 ✏ kx⇤k2 with high prob-
ability without any assumptions on input A and b. We
show that our proposed algorithm runs in O(nnz(A) +
n2r log(r

✏)/✏
2) time, where nnz(A) is the number of non-

zero entries of A and r is the rank of A. Since nnz(A)
np ⌧ n2p and r n, our algorithm is substantially faster
than the existing approach, which uses O(n2p + n3) for
p � n instances, even if A is full rank (in this case, our
algorithm runs in O(nnz(A) + n3 log(n

✏)/✏
2) time).

For supplements to our main result, we also prove a risk
inflation bound of our algorithm under standard statistical
assumptions. In addition, we apply our techniques to sev-
eral generalizations of ridge regression. In particular, we
extend our algorithm to multiple ridge regression problem,
where there are multiple target vectors. Similar to our re-
sult for standard ridge regression, we also prove a relative-
error bound on the output. Moreover, building upon the
recent results [3], we extend our techniques and design a
fast relative-error approximation algorithm for a non-linear
ridge regression problem.

We evaluate our algorithm on both synthetic and real
datasets. The experimental results support our theoretical

201

analysis and demonstrate that the proposed algorithm can
achieve considerable speed gains and produce highly accu-
rate outputs.

1.1 Related work

Oblivious subspace embedding (OSE). Sarlós [28] pio-
neered the use of OSEs for accelerating approximation al-
gorithms for numerical linear algebra problems, including
matrix multiplication, linear regression and low rank ap-
proximation. His algorithms were later improved by several
work [12, 24] using different OSEs such as sparse embed-
ding. More recent work showed that OSEs can be used to
speed up other problems as well, including k-means clus-
tering [10], approximating leverage scores [23], canonical
correlation analysis [2], support vector machine [25], SVD-
truncated linear regression [9], and non-linear regression
[3]. In this line of research, approximation algorithms of
linear regression [28, 12, 24, 27] are the most relevant to
ours. However, all of these work focused on n � p in-
stances and the fastest algorithm [24] among them runs
in O(nnz(A) + p3 log(p)/✏2) time, which is inefficient in
p � n cases. Moreover, they used the sketched matrix
SA which reduces the sample size n while we use AST

which reduces feature dimension p. This distinction leads
to a very different design and analysis of algorithms.

Ridge regression. The bottlenecks of solving ridge regres-
sion are constructing and inverting the kernel matrix AAT .
In the mean time, fast kernel approximation algorithms
for large datasets have been a research focus for many
years. Many approximation schemes are highly success-
ful such as low rank approximation [33], Nyström meth-
ods [7, 15, 19, 34], sampling [20, 1], incomplete Cholesky
factorization [5, 16] and specialized techniques for certain
classes of kernels [26, 21]. We notice that many of these
proposals focused on speeding up the n � p cases but
did not necessarily improve the p � n cases. More im-
portantly, from these work, it is not clear how the error of
kernel approximation impacts on the accuracy of the ap-
proximation result of ridge regression. This problem was
recently studied in several work [13, 4, 35] under different
settings. However, none of these work provided a relative-
error approximation guarantee on the output vector.

The work most closely related to our results is [22]. They
proposed an approximation algorithm for ridge regression
by accelerating the computation of kernel matrix AAT

using subsampled randomized Hadamard transformation
(SRHT). Their algorithm runs in O(np log(n)/✏2 + n3)
time, which is o(n2p) time. However, their algorithm does
not have a provable guarantee on the error of the output
vector. In addition, the risk inflation bound they proved
might not hold since their proof is based on a problematic
claim. We have included a detailed argument and coun-
terexample for their proof in our supplementary material
(see Section E).

2 PRELIMINARIES

2.1 NOTATION

Let [k] denote the set of integers {1, 2, . . . , k}. Given a ma-
trix M 2 Rn⇥p of rank r. For i 2 [n], let M(i) denote the
i-th row of M as a row vector. Let nnz(M) denote the num-
ber of non-zero entries of M. Let kMkF denote the Frobe-
nius norm of M and let kMk2 denote the spectral norm
of M. Let �i(M) denote the i-th largest singular value
of M and let �max(M) and �min(M) denote the largest
and smallest singular values of M. The thin SVD of M is
M = UM⌃MVT

M , where UM 2 Rn⇥r, ⌃M 2 Rr⇥r and
VM 2 Rp⇥r.

The Moore-Penrose pseudoinverse of M is a p⇥ n matrix
defined by M† = VM⌃�1

M UT
M , which can be computed in

O(n2p) time when p > n. Finally, let In denote the n⇥ n
identity matrix and let 0n denote the n⇥ n zero matrix.

2.2 OBLIVIOUS SUBSPACE EMBEDDING

We start by reviewing the definition of oblivious subspace
embedding (OSE).
Definition 1. Given any r > 0, � 2 (0, 1) and ✏ 2 (0, 1),
we call a t⇥p random matrix S an (r, �, ✏)-OSE, if, for any
rank r matrix M 2 Rp⇥m, the following holds simultane-
ously for all z 2 Rm,

(1� ✏) kMzk2 kSMzk2 (1 + ✏) kMzk2 ,

with probability at least 1� �.

In fact, many random matrices, which are widely used in
machine learning, have been shown to be OSEs, e.g. Gaus-
sian matrices [14] and random sign matrices [28]. However,
many of these matrices are dense. For a dense OSE S 2
Rt⇥p, computing sketched matrix SM given M 2 Rp⇥m

requires time O(t · nnz(M)). To speed up the computation
of the sketched matrix SM, several work sought S support-
ing fast matrix-vector multiplication [12, 32, 24]. We refer
interested readers to [8] for an overview of the development
of fast OSEs.

In this paper, we use a combination of two types of
fast OSEs: sparse embedding and subsampled randomized
Hadamard transformation (SRHT). In the following, we
review their definitions and key properties.

Sparse embedding. A sparse embedding matrix �sparse is
a very sparse matrix such that there is only one non-zero
element per column. �sparse 2 Rt⇥p can be constructed as
follows. Let h : [p] ! [t] be a random mapping such that
for each i 2 [p], h(i) is uniformly distributed over [t]. Let
� 2 {0, 1}t⇥p be a binary matrix with �h(i),i = 1 for
each i 2 [p] and all remaining entries 0. Let D be an p⇥ p
random diagonal matrix where each diagonal entry is inde-
pendent chosen +1 or �1 with equal probability. Finally,

202

the sparse embedding matrix �sparse is the product of D
and �, i.e. �sparse = �D. It is easy to see that comput-
ing �sparseM takes O(nnz(M)) time due to the sparsity of
�sparse.

Recently, Clarkson and Woodruff [12] showed that �sparse
is an (r, �, ✏)-OSE if t � O(r2/✏4). Later, the bound on
t was improved to t � O(r2/✏2) by Nelson and Nguyen
[24]. Their result is restated in the following.
Theorem 1. [24, Theorem 3] Given ✏ 2 (0, 1), � 2 (0, 1)
and r > 0, if t � ��1(r2 + r)/(2✏ � ✏2)2, then sparse
embedding matrix �sparse 2 Rt⇥p is an (r, �, ✏)-OSE.

SRHT. An SRHT matrix �srht is a highly structured matrix
which allows fast, FFT-style matrix-vector multiplication.
The definition of SRHT matrix �srht 2 Rt⇥p is as follows.
Without loss of generality, suppose that p is a power of 2
(otherwise we can pad a sufficient number of zeros). Then,
�srht is given by

�srht =

r
p

t
RHD,

where D 2 Rp⇥p is a random diagonal matrix whose en-
tries are +1 or �1 with equal probability; R 2 Rt⇥p are
t rows from the p ⇥ p identity matrix, where the rows
are chosen uniformly at random without replacement; and
H 2 Rp⇥p is a normalized Walsh-Hadamard matrix, which
is defined as

Hk =

Hk/2 Hk/2

Hk/2 �Hk/2

�
with H2 =

+1 +1
+1 �1

�
,

and H = p�
1
2 Hp 2 Rp⇥p.

Using FFT-style algorithms, the product �srhtM can be
computed in O(np log(p)) time [32]. Tropp [32] showed
that �srht is an OSE if t � O([

p
r +

p
log(p)]2 log(r)/✏),

or t � O(r log(r)/✏) when r > log(p). His result is re-
stated in the next theorem.
Theorem 2. [32, Lemma 4.1] Given ✏ 2 (0, 1), � 2 (0, 1)
and r > 0, if t � 6✏�1[

p
r +

p
8 log(3p/�)]2 log(3r/�),

then SRHT matrix �srht 2 Rt⇥p is an (r, �, ✏)-OSE.

2.3 COMBINATION OF SPARSE EMBEDDING
AND SRHT

Sparse embedding matrix is an extremely fast OSE since
computing �sparseM takes only O(nnz(M)) time, which
equals to the complexity of reading M. Meanwhile SRHT
produces a sketch with t = O(r log(r)/✏) rows which
is smaller than sparse embedding, which requires t =
O(r2/✏2). In this paper, we use the combination of SRHT
and sparse embedding that enjoys the benefits from both
of them. Specifically, we consider the product S =
�srht�sparse, where �srht is a t ⇥ t0 SRHT matrix and
�sparse is a t0 ⇥ p sparse embedding matrix. The next theo-
rem shows that, if t = O([

p
r +

p
log(p)]2 log(r)/✏) and

t0 = O(r2/✏2), the product S is an OSE.

Theorem 3. Given ✏ 2 (0, 1), � 2 (0, 1) and r > 0,
select integers t0 � 2��1(r2 + r)/(2✏/3 � ✏2/9)2 and
t � 18✏�1[

p
r +

p
8 log(6p/�)]2 log(6r/�). Let �sparse

be a t0 ⇥ p sparse embedding matrix and let �srht be a
t ⇥ t0 SRHT matrix. Then the product S = �srht�sparse is
an (r, �, ✏)-OSE.

Hence, when r � O(log(p)), the product S has t =
O(r log(r)/✏) rows, which is smaller than only using
sparse embedding matrix, and computing a sketched matrix
SM given M 2 Rp⇥m takes O(nnz(M)+mr2 log(r)/✏2)
time. The proof of Theorem 3 is deferred to the supplemen-
tary material.

3 ALGORITHMS AND MAIN RESULTS

In this section, we present our approximation algorithm for
ridge regression (Algorithm 1). Then, we state our main re-
sult on the approximation guarantee of our algorithm (The-
orem 4). In Section 3.1, we outline the proofs of our main
result.

Algorithm. Algorithm 1 takes inputs of the design ma-
trix A 2 Rn⇥p, target vector b 2 Rn, regularization
parameter � > 0 and integer parameters t0 and t. The
first part of Algorithm 1 is to compute the sketched ma-
trix AST , where S 2 Rt⇥p is chosen to be the product
of sparse embedding matrix �sparse 2 Rt0⇥p and SRHT
matrix �srht 2 Rt⇥t0 , i.e. S = �srht�sparse. As the first
step, the algorithm constructs the sparse embedding matrix
�sparse and the SRHT matrix �srht. After that, the algorithm
applies �sparse and �srht to each row A(i) and obtains the
sketched row (AST)(i) = (A(i)�

T
sparse)�

T
srht for all i 2 [n].

This step can be done in one pass through the rows of A in
arbitrary order. The algorithm then combines the sketched
rows {(AST)(i)}i2[n] to form the sketched matrix AST .

Next, the algorithm uses the sketched matrix AST to com-
pute the approximate solution x̃ of ridge regression Eq. (1).
In this step, we use the following key estimation of x̃,

x̃ = AT (AST)†T
(�(AST)†T

+ AST)†b. (3)

This step requires access to AST , which is computed in
the previous step, and a second pass through A (for pre-
multiplying AT). We summarize the above procedure of
computing AST and x̃ in Algorithm 1.

Main result. Our main result is the following theorem
which states that, with high probability, the output x̃ ob-
tained in Algorithm 1 is a relative-error approximation to
the optimal solution x⇤ of ridge regression .
Theorem 4. Suppose that we are given a design ma-
trix A 2 Rn⇥p of rank r, a target vector b 2 Rn,
a regularization parameter � > 0, accuracy parameters
✏ 2 (0, 1) and � 2 (0, 1). Select integers t0, t such that
t0 � 2��1(r2 + r)/(✏/6� ✏2/144)2 and t � 72✏�1[

p
r +p

8 log(6p/�)]2 log(6r/�). Run Algorithm 1 with inputs

203

Algorithm 1 Fast relative-error approximation algorithm
of ridge regression

Input: design matrix A 2 Rn⇥p (n samples with p fea-
tures), target vector b 2 Rn, regularization parameter
� > 0, integer parameters t0 and t.

Output: approximate solution x̃ 2 Rp to ridge regression
problem Eq. (1).

1: Construct sparse embedding matrix �sparse 2 Rt0⇥p.
2: Construct SRHT matrix �srht 2 Rt⇥t0 .
3: for each row A(i) of A in arbitrary order do
4: Compute (AST)(i) (A(i)�

T
sparse)�

T
srht

5: end for
6: Construct AST by concatenating row vectors

{(AST)(i)}i2[n].
7: Compute the pseudoinverse (AST)†

8: Set x̃ AT (AST)†T
(�(AST)†T

+ AST)†b
9: return x̃

A, b, �, t0, t and let x̃ denote the output of the algorithm.
Then, with probability at least 1� �, we have

kx̃� x⇤k2 ✏ kx⇤k2 , (4)

where x⇤ is the optimal solution of ridge regression in
Eq. (1).

In addition, if t0 = O(r2/✏2) and t = O(r log(r)/✏), the
time complexity of Algorithm 1 is

O
⇣
nnz(A) + nr2 log

⇣r

✏

⌘
/✏2 + n2r log(r)/✏

⌘
.

Running times. Set t0 = O(r2/✏2) and t =
O(r log(r)/✏) according to Theorem 4. Then, the time
complexity of each step of Algorithm 1 can be ana-
lyzed as follows. Constructing sparse embedding matrix
�sparse and SRHT matrix �srht uses O(p) time. Right-
multiplying the sparse embedding matrix A�T

sparse takes
O(nnz(A)) time. Computing SRHT (A�T

sparse)�
T
srht uses

O(nt0 log(t0)) = O(nr2 log(r
✏)/✏

2) time. The pseudoin-

verse of AST and �(AST)†T
+ AST can be computed

in O(n2t) = O(n2r log(r)/✏) time. Computing the prod-
uct (AST)†T

(�(AST)†T
+ AST)†b also takes O(n2t) =

O(n2r log(r)/✏) time. Finally, left-multiplying AT uses
O(nnz(A)) time. So, the total running time is the sum of
all these operations, which is O(nnz(A)+nr2 log(r

✏)/✏
2+

n2r log(r)/✏).

Remarks. In practice, one may not have prior knowledge
on the rank r of A. By Theorem 4, it is safe to assume that
r = n, which is the largest possible value of r, and hence
set t0 = O(n2/✏2) and t = O(n log(n)/✏). In this case, the
running time of Algorithm 1 is O(nnz(A)+n3 log(n

✏)/✏
2).

This is still an o(n2p) algorithm and is substantially faster
than the standard O(n2p + n3) solver for p� n instances.

In addition, the estimation method of x̃ as in Eq. (3) holds
for general OSEs S, not necessarily limiting to the one used

in Algorithm 1, i.e. S = �srht�sparse. This fact is formalized
in the following lemma.
Lemma 1. Given A 2 Rn⇥p of rank r, b 2 Rn, � > 0.
Suppose that S 2 Rt⇥p is an (r, �, ✏/4)-OSE for ✏ 2 (0, 1)
and � 2 (0, 1). Then, with probability at least 1 � �, the
approximation solution x̃ obtained by Eq. (3) satisfies

kx̃� x⇤k2 ✏ kx⇤k2 ,

where x⇤ is the optimal solution to ridge regression Eq. (1).

Our choice of OSE S = �srht�sparse in Algorithm 1 guar-
antees that the sketched matrix AST can be computed effi-
ciently while has a small number of columns. By Lemma 1,
one may use other OSEs as well, for example, SRHT
S = �srht. This would lead to a total time complexity
of O(np log(p) + n2r log(r)/✏), which is slower than our
choice in Algorithm 1 if A is a sparse matrix.

3.1 PROOF

From this point on, we denote the thin SVD of matrix
A 2 Rn⇥p with rank r by A = U⌃VT , with U 2 Rn⇥r,
⌃ 2 Rr⇥r and V 2 Rp⇥r. We denote the full SVD of
SV by SV = U�⌃�V

T
� , with U� 2 Rt⇥r, ⌃� 2 Rr⇥r

and V� 2 Rr⇥r. Notice that V� is an r ⇥ r unitary ma-
trix and therefore V�V

T
� = Ir. We will frequently use the

following property of the pseudoinverse of matrix product.
Fact 1. For any matrix A 2 Rm⇥n and B 2 Rn⇥p, we
have (AB)† = B†A†, if at least one of the following holds.

1. A has orthonormal columns.

2. B has orthonormal rows.

3. A has full column rank and B has full row rank.

By Fact 1, we immediate obtain the following lemma.
Lemma 2. Suppose that SV is full rank, then the pseu-
doinverse of AST is given by

(AST)† = (SV)†T⌃�1UT .

The first step of our proof is to represent x⇤ and x̃ in a form
that is easier to work with.
Lemma 3. Let the optimal solution of ridge regression x⇤

be defined as in Eq. (2). We have

x⇤ = VG�1UT b,

where G = �⌃�1 + ⌃.

Proof. Consider the full SVD of A as A = U+⌃+VT
+,

with U+ 2 Rn⇥n, ⌃+ 2 Rn⇥n and V+ 2 Rp⇥n. By
the relationship between thin SVD and full SVD, we can

see that U+ = [U,U�], ⌃+ =

⌃

0n�r

�
and V+ =

[V,V�], with U� 2 Rn⇥(n�r) and V� 2 Rp⇥(n�r) be-
ing column orthonormal matrices.

204

Now, by definition of x⇤, we have

x⇤ = AT (AAT + �I)�1b

= V+⌃+UT
+(U+⌃

2
+UT

+ + �U+UT
+)�1b

= V+⌃+(⌃2
+ + �I)�1UT

+b

= V+

⌃

0n�r

�
(⌃2 + �Ir)

�1

��1In�r

�
UT

+b

= V+

(⌃ + �⌃�1)�1

0n�r

�
UT

+b

= V(⌃ + �⌃�1)�1UT b.

Lemma 4. Define matrix G̃ = �⌃�1 + ⌃(SV)T (SV).
Let x̃ be defined as in Eq. (3). Suppose that SV is full rank.
Then, we have that G̃ is full rank and that

x̃ = VG̃�1UT b.

Proof. By the construction of x̃, we have

x̃ = AT
�
(AST)†�T ⇣�

�
(AST)†�T + AST

⌘†
b

= V⌃UT U⌃�1(SV)† ��U⌃�1(SV)† + U⌃(SV)T
�†

b

= V(SV)† ��U⌃�1(SV)† + U⌃(SV)T
�†

b

= VV�⌃
�1
� UT

�

⇣
�U⌃�1V�⌃

�1
� UT

� + U⌃V�⌃�U
T
�

⌘†
b

= VV�⌃
�1
� UT

�U�

⇣
�⌃�1V�⌃

�1
� + ⌃V�⌃�

⌘†
UT b

= VV�⌃
�1
�

⇣
�⌃�1V�⌃

�1
� + ⌃V�⌃�

⌘†
UT b, (5)

where we have repeatedly used Fact 1 and Lemma 2.

Define T1 = �⌃�1V�⌃
�1
� + ⌃V�⌃�. Next, we show

that rank(T1) = r. To see this, we define T2 = �I +
⌃V�⌃

2
�V

T
�⌃ and notice that T2 = T1(⌃�V

T
�⌃). Since

� > 0, it is clear that T2 is a positive definite matrix and
therefore rank(T2) = r.

Now notice that rank(⌃�V
T
�⌃) = rank(⌃�) = r. Hence,

we have

rank(T1) = rank(T1(⌃�V
T
�⌃)) = rank(T2) = r.

Then, using Fact 1 on ⌃†
� and T†

1, we have

(5) = VV�

�
�⌃�1V� + ⌃V�⌃

2
�

�†
UT b

= V
�
�⌃�1 + ⌃V�⌃

2
�V

T
�

�†
UT b

= VG̃†UT b,

where we have used Fact 1 again and that SV =
U�⌃�V

T
� . Finally, the rank of G̃ is given by

rank(G̃) = rank(T1⌃�V
T
�) = rank(T1) = r.

Hence the pseudoinverse of G̃ equals to its inverse,
i.e. G̃† = G̃�1, and this concludes our proof of the
lemma.

From Lemma 3 and Lemma 4, we see that x̃ admits a rep-
resentation that is very similar to x⇤. It is clear that the key
difference between x̃ and x⇤ comes from that of G̃ and G.

The next lemma (Lemma 5) is our key technical lemma,
which shows that G̃ is closely related to G in the sense
that G�1 is an approximate matrix inversion of G̃.
Lemma 5. Given ✏ 2 (0, 1/4) and � 2 (0, 1). Let S be
an (r, �, ✏)-OSE. Let G̃ = �⌃�1 + ⌃(SV)T (SV) and
G = �⌃�1 + ⌃. Notice that G is invertible and define
R = G�1G̃� I. Then, with probability at least 1� �, we
have (a) SV is a full rank matrix, (b) kRk2 2✏+ ✏2, and
(c)

��(I + R)�1R
��

2
 2✏+ ✏2

1� (2✏+ ✏2)
.

To prove Lemma 5, we need two ingredients from linear
algerbra and the theory of OSEs. First, we use the following
property on the stability of singular values.
Lemma 6. [31, Section 1.3.22 (iv)] Let C 2 Rm⇥n and
D 2 Rm⇥n be two matrices of the same size. Then, for all
i 2 [min{m, n}],

|�i(C + D)� �i(C)| kDk2 .

Lemma 6 can be regarded as a generalization of Weyl’s in-
equality to singular values of non-Hermitian matrices. We
refer readers to [see 31, Section 1.3] for a proof.

The second ingredient we needed is the following charac-
terization of OSEs.
Theorem 5. Let V 2 Rp⇥r be a column orthonormal ma-
trix. Let S 2 Rt⇥p be an (r, �, ✏)-OSE. Then, with proba-
bility 1 � � over the choices of S, we have that (a) SV is
a full rank matrix and (b) for all i 2 [r], the i-th largest
singular value of SV is bounded by

|1� �i(SV)| ✏. (6)

The proof of Lemma 6 and Theorem 5 is deferred to the
supplementary material. Using them, we are now ready to
prove Lemma 5.

Proof of Lemma 5. Since S is an (r, �, ✏)-OSE. By Theo-
rem 5, we have that, with probability 1 � �, SV is a full
rank matrix and all singular values of SV are bounded in
[1� ✏, 1+ ✏]. In the rest of the proof, we assume this holds.
And this already proves part (a) of the lemma.

We start with bounding kRk2. By the definition of R, we
have

kRk2 =
���G�1(G̃�G)

���
2

205

=
��(�⌃�1 + ⌃)�1⌃((SV)T (SV)� I)

��
2

��(�⌃�1 + ⌃)�1⌃

��
2

��V�⌃
2
�V

T
� � I

��
2

=
��(�⌃�1 + ⌃)�1⌃

��
2

��V�⌃
2
�V

T
� �V�V

T
�

��
2

=
��(�⌃�1 + ⌃)�1⌃

��
2

��⌃2
� � I

��
2

 max
i

�i

���1
i + �i

((1 + ✏)2 � 1)

 2✏+ ✏2, (7)

where we have used the fact that V� is a unitary matrix and
dropped terms that do not change spectral norm.

Now, we apply Lemma 6 by setting C = I and D = R.
Then, for all i 2 [r], we have

�i(I + R) � 1� kRk2 � 1� (2✏+ ✏2). (8)

Hence, we have
��(I + R)�1R

��
2

��(I + R)�1

��
2
kRk2

 (�min(I + R))
�1 kRk2

 2✏+ ✏2

1� (2✏+ ✏2)
.

We are now ready to prove our main results: Lemma 1 and
Theorem 4.

Proof of Lemma 1. Let ✏0 = ✏/4 and recall the definition
R = G�1G̃�I. Since S is an (r, �, ✏0)-OSE. By Lemma 5,
with probability 1��, we have that SV is a full rank matrix
and that

��(I + R)�1R
��

2
 2✏0+✏02

1�(2✏0+✏02) . In the rest of the
proof, we assume that this event happens.

Since SV is a full rank matrix. Applying Lemma 3 and
Lemma 4, we have

kx̃� x⇤k2 =
���V(G̃�1 �G�1)UT b

���
2

=
���(G̃�1 �G�1)UT b

���
2
, (9)

where we have dropped the unitary term V which does not
change l2 norm.

Next, we write G̃ = G(I + R). This means that G̃�1 =
(I + R)�1G�1. Therefore,

(9) =
���(I + R)�1 � I

�
G�1UT b

��
2

=
���(I + R)�1RG�1UT b

��
2

(10)

��(I + R)�1R

��
2

��G�1UT b
��

2

=
��(I + R)�1R

��
2
kx⇤k2

 2✏0 + ✏02

1� (2✏0 + ✏02)
kx⇤k2 (11)

 4✏0 kx⇤k2 = ✏ kx⇤k2 ,

where Eq. (10) follows from matrix inversion lemma, i.e.
C�1 �D�1 = �C�1(C �D)D�1 for any squared ma-
trices C and D of the same size, and Eq. (11) follows from
the assumption on

��(I + R)�1R
��

2
.

Proof of Theorem 4. It is easy to see that the solution x̃
returned by Algorithm 1 is given by Eq. (3) with S =
�srht�sparse. Therefore, the bound on kx̃� xk2 follows im-
mediately from Lemma 1 and Theorem 3 which shows that
S = �srht�sparse is an (r, �, ✏/4)-OSE. And the running
time analysis of Algorithm 1 is given in Section 3.

4 RISK INFLATION BOUND

In this section, we study the risk inflation of the approx-
imate solution x̃ returned by Algorithm 1 with respect to
the optimal solution x⇤ of ridge regression. We begin with
review the definition of risk of ridge regression. To prop-
erly define the risk, we need to that A and b have the linear
relationship as follows

b = Ax0 + e, (12)

where x0 2 Rp is an unknown vector which is assumed to
be the “true” parameter and e 2 Rn is independent noise in
each coordinate, with E [ei] = 0 and Var [ei] = �2. Under
this assumption, the risk of any vector b̂ 2 Rn is given by

risk(b̂) , 1

n
E

���b̂�Ax0

���
2

2

�
,

where the expectation is taken over the randomness of noise
[4].

The following theorem shows that, compared with the op-
timal solution x⇤, the approximate solution x̃ returned by
Algorithm 1 increases the risk by a small additive factor.
Theorem 6. Given A 2 Rn⇥p of rank r, b 2 Rn,
� > 0, ✏ 2 (0, 1) and � 2 (0, 1). Assume that
A and b have the linear relationship as in Eq. (12).
Let x̃ denote the output of Algorithm 1 with inputs A,
b, �, t0 =

⌃
2��1(r2 + r)/(✏/6� ✏2/144)2

⌥
and t =l

72✏�1[
p

r +
p

8 log(6p/�)]2 log(6r/�)
m

. Let x⇤ denote
the optimal solution of ridge regression. Then, with proba-
bility at least 1� �,

risk(b̃) risk(b⇤) +
3✏

n
kAk22

⇣
kx0k2 + �2⇢2

⌘
, (13)

where we define b̃ = Ax̃ and b⇤ = Ax⇤; we also define

⇢2 =
P

i2[r]

⇣
�i

�2
i +�

⌘2

and �i is the i-th largest singular
value of A.

5 EXTENSIONS

In this section, we present two extensions to our algorithm.
First, we consider the multiple response ridge regression

206

problem, and obtain an efficient approximation algorithm
with relative-error guarantee similar with Algorithm 1. Sec-
ond, combining with the recent results of Avron et al. [3],
we present a fast relative-error approximation algorithm of
a special nonlinear ridge regression problem called struc-
tured ridge regression.

5.1 MULTIPLE RESPONSE RIDGE REGRESSION

In this part, we generalize our techniques to solve multi-
ple response ridge regression [11]. The multiple response
ridge regression problem is defined as follows. Given a
design matrix A 2 Rn⇥p, m target vectors (responses)
B 2 Rp⇥m and a regression parameter � > 0, the multiple
response regression problem is to find an n⇥m matrix X⇤

such that

X⇤ = arg min
X2Rn⇥m

kAX�Bk2F + � kXk2F . (14)

The optimal solution of Eq. (14) is given by

X⇤ = AT (�In + AAT)�1B. (15)

It is clear that Eq. (15) takes O(n2p + n3 + nm) time to
compute, which is expensive if p� n� 1.

Next, we generalize our techniques to solve multiple re-
sponse regression problem. The first step is to compute the
sketched matrix AST , where S = �srht�sparse. Notice that
this step is identical to that of Algorithm 1, which uses one
pass through A. Then, we use the following generalized
version of Eq. (3) to compute the approximate solution X̃,

X̃ = AT (AST)†T (�(AST)†T + AST)†B, (16)

which uses a second pass through A. We show that the ap-
proximate solution X̃ given by Eq. (16) is a relative-error
approximation of X⇤ in the following theorem.
Theorem 7. Given A 2 Rn⇥p of rank r, B 2 Rn⇥m,
� > 0, parameter ✏ 2 (0, 1) and � 2 (0, 1). Select in-
tegers t0, t such that t0 � 2��1(r2 + r)/(✏/6 � ✏2/144)2

and t � 72✏�1[
p

r +
p

8 log(6p/�)]2 log(6r/�). Let S =

�srht�sparse, where �sparse 2 Rt0⇥p is a sparse embedding
matrix and �srht 2 Rt⇥t0 is an SRHT matrix. Then, with
probability at least 1� �, we have

���X̃�X⇤
���

F
 ✏ kX⇤kF ,

where X̃ is given by Eq. (16) and X⇤ is the optimal solu-
tion to multiple response ridge regression Eq. (14). In ad-
dition, the total time complexity of computing AST and X̃
is O(nnz(A) + nr2 log(r

✏)/✏
2 + n2r log(r)/✏+ nm).

5.2 STRUCTURED RIDGE REGRESSION

In this part, we consider a non-linear ridge regression prob-
lem, called structured ridge regression, which is closely re-
lated to kernel ridge regression with polynomial kernels.

Structured ridge regression uses a non-linear kernel ex-
pansion function 'q , which is studied recently by Avron
et al. [3] under the context of (non-regularized) structured
regression. The kernel expansion function 'q maps a p-
dimensional vector a to a pq-dimensional vector 'q(a) =

{aj�1
i }(i,j)2[p]⇥[q] for q > 1. The definition of 'q corre-

sponds to the kernel function k'q
(a,b) = 'q(a)T'q(b) =P

(i,j)2[p]⇥[q](aibi)
j�1, for any p-dimensional a and b.

Clearly, k'q is related to polynomial kernels, which is de-

fined as kq(a,b) = (aT b)q =
⇣P

i2[p] aibi

⌘q

. For more
detailed discussion and the connections of 'q to other ker-
nels, we refer interested readers to [3].

In the following, we define structured ridge regression,
which can be seen an l2 regularized version of structured
regression proposed by Avron et al. [3],

x⇤ = arg min
x2Rpq

k'q(A)x� bk22 + � kxk22 , (17)

where 'q(A) is an n⇥ pq matrix consisting of n expanded
samples, i.e. its i-th row vector is 'q(A)(i) = 'q(A(i))
for all i 2 [n]. Clearly, Eq (17) is a non-linear ridge re-
gression problem. For this problem, the dual space ap-
proach gives that x⇤ = 'q(A)T (K + �In)�1b, where
K = 'q(A)'q(A)T . It is clear that computing x⇤ using
this approach takes O(n2pq + n3) time.

We extend our techniques to accelerate the computa-
tion of structured ridge regression for p � n instances
by using the following property of 'q . Avron et al.
[3] showed that there exists a fast multiplication al-
gorithm which computes the product 'q(A)�T

sparse in
O((nnz(A) + nqt0) log2(q)) time by exploiting the
structure of 'q(A). Therefore, we only need to modify
Algorithm 1 to use the fast multiplication algorithm for
computing the sketched matrix ('q(A)�T

sparse)�
T
srht; then

run the modified algorithm with input 'q(A) and b. We
show that this procedure gives a relative-error approxima-
tion algorithm for structured ridge regression that runs in
O
�
nnz(A) log2(q) + n3q log2(q)/✏2 + n3 log

�
n
✏

�
/✏2
�

time, which is faster than the dual space approach when
p � n. For constant q, this is also asymptotically faster
than solving kernel ridge regression with polynomial
kernel in dual space, whose computational complexity is
O(n2p + n3). We defer the detailed description of the
approximation algorithm and its related analysis to the
supplementary material (see Section D).

6 EXPERIMENTS

Baselines. We compare the performance of our algorithm
SKETCHING (Algorithm 1) to three baselines. The first
baseline is the STANDARD algorithm, which computes the
optimal solution using the dual space approach in Eq. (2).
The other two baselines use popular randomized dimen-

207

(a) Speedup (b) Relative error (c) Cosine similarity (d) Objective suboptimality

Figure 1: Quality-of-approximation and running times on synthetic dataset

(a) ARCENE: Speedup (b) ARCENE: Error rate (c) ARCENE: Relative error

(d) DOROTHEA: Speedup (e) DOROTHEA: Error rate (f) DOROTHEA: Relative error

Figure 2: Classification accuracy and running times on realworld datasets

sionality reduction methods, including sampling and ran-
dom projection. The SAMPLING algorithm simply samples
a subset of t columns of A uniformly at random. The PRO-
JECTION algorithm post-multiplies A by a random sign
matrix �T

sign 2 Rp⇥t, with each entry of �sign having
value chosen from {±1/

p
t} uniformly at random. Then,

sketched matrices with t columns obtained by SAMPLING
and PROJECTION are plugged in Eq. (3) to compute an
approximate solution x̃ of ridge regression. Finally, no-
tice that �sign is also an OSE for sufficiently large t [28]
and therefore, by Lemma 1, the PROJECTION algorithm
produces a relative-error approximation as well. However,
for dense A, computing A�T

sign alone takes O(tnp) time,
which is even slower than the STANDARD algorithm when
t > n. Hence, we do not compare its running time to other
competing algorithms.

Implementation. Our implementation of Algorithm 1 is
slightly different from its description in two places. First,
Algorithm 1, and its analysis, uses the Walsh-Hadamard
transformation (as a step of SRHT), while our implementa-
tion uses discrete Hartley transformation (DHT) [30]. DHT
has a highly optimized implementation provided in FFTW
package [17]. In addition, it is possible to show that DHT or
other Fourier-type transformations have a guarantee similar
to Walsh-Hadamard transformation [2, 32]. Second, we set

t0 = 2t, i.e. the sketch size of sparse embedding is two
times larger than that of SRHT. Empirically, this setting
offers a good trade-off between accuracy and speed. All
competing algorithms are implemented using C++ and the
experiments are conducted on a standard workstation using
a single core.

6.1 SYNTHETIC DATASET

Setup. We generate the n ⇥ p design matrix A using the
following method, such that each row (sample) of A con-
tains an s-dimensional signal and p-dimensional noises.
Specifically, we define A = M⌃VT + ↵E. Here, M is
an n⇥ s matrix which represents the signals, and each en-
try Mij ⇠ N (0, 1) is an i.i.d Gaussian random variable.
⌃ is an s ⇥ s diagonal matrix and the diagonal entries are
given by ⌃ii = 1 � (i � 1)/p for each i 2 [s]. V is a
p ⇥ n column orthonormal matrix which contains a ran-
dom s-dimensional subspace of Rp. Notice that M⌃VT is
a rank s matrix with linearly decreasing singular values. E
is an n⇥ p matrix which contributes the additive Gaussian
noise Eij ⇠ N (0, 1). ↵ > 0 is a parameter chosen to bal-
ance the energy of signals M⌃VT and the energy of noises
E. In this experiment, we choose ↵ = 0.05 which brings��M⌃VT

��
F
⇡ ↵ kEkF . Then, we generate the target vec-

tor x 2 Rp with xi ⇠ N (0, 1). Finally, the target vector

208

b 2 Rn is given by b = Ax + �e, where ei ⇠ N (0, 1)
and � = 5.

Metrics. We measure the performance of our algorithm
and baselines both in terms of accuracy and speedup fac-
tor. More specifically, let x⇤ denote the optimal solu-
tion produced by the standard algorithm and let x̃ de-
note the output vector returned by an approximation al-
gorithm. To evaluate the accuracy of approximation, we
compute three metrics: relative error: kx̃�x⇤k2

kx⇤k2
; cosine sim-

ilarity: x̃T x⇤
kx̃k2kx⇤k2

; objective suboptimality: f(x̃)
f(x⇤) � 1, with

f(x) , kAx� bk22 + � kxk22. In addition, the speedup
factor is given by the ratio between the time used by STAN-
DARD algorithm and that of a competing algorithm.

Results. In the experiment, we set n = 500, p = 50000
and s = 50. We run the competing algorithms with 10
different choices of t within range [2000, 20000]. The re-
sults are shown in Figure 1. Figure 1(a) reports the speed
up of approximation algorithms with respect to the STAN-
DARD algorithm. We see that our algorithm SKETCHING
is slightly slower than the SAMPLING algorithm, but both
of them speed up considerably with respect to the STAN-
DARD algorithm. Figure 1(b), (c) and (d) plot the accuracy
metrics of the competing algorithms. We see that indeed
the accuracy of approximation improves as the sketch size
t increases. In addition, both of our SKETCHING algorithm
and the PROJECTION algorithm output a significantly more
accurate solution than the SAMPLING algorithm. Notably,
when the sketch size t ⇡ 10000, our algorithm SKETCH-
ING has a relative-error smaller than 10%, cosine similarity
larger than 99% and objective suboptimality less than 10%;
meanwhile speeds up the computation about 4 times.

6.2 REALWORLD DATASETS

Setup. We also test the proposed algorithm on two binary
classification datasets: ARCENE and DOROTHEA [18].
Both datasets are publicly available from the UCI repos-
itory [6]. ARCENE contains 200 samples (100 for train-
ing and 100 for testing) with 10000 real valued features.
DOROTHEA consists of 1150 samples (800 for training
and 350 for testing) with 100000 binary valued features.
We apply ridge regression on both classification tasks by
setting the responses to be +1 for positive examples and
�1 for negative examples. We run ridge regression algo-
rithms on the training data to compute the feature weights
and measure the classification error rate on the testing data.
For each dataset, we test 10 different choices of sketch size
t and record the classification error rates and speed up fac-
tors of competing algorithms.

Results. The experiment results are shown in Figure 2.
From the results, we observe that the classification error
decreases as the sketch size t increases. It is also clear
that, using the same sketch size t, SKETCHING and PRO-

JECTION produce more accurate predictions than SAM-
PLING. On the other hand, SKETCHING and SAMPLING al-
gorithms are considerably faster than the STANDARD algo-
rithm. From the results, we see that our algorithm SKETCH-
ING substantially speeds up the computation, while attains
a very small increase in error rate. For ARCENE dataset,
when t ⇡ 3000, SKETCHING accelerates the computation
by 2.1 times while increases the error rate by 4.5%; and,
for DOROTHEA dataset, when t ⇡ 20000, the speedup
of SKETCHING is about 4.1 times and the error rate is al-
most the same to the STANDARD algorithm. In addition, we
continue to observe that the relative-error decreases as t in-
creases. The SKETCHING algorithm and the PROJECTION
algorithm outperform the SAMPLING algorithm in terms of
accuracy on both datasets. We remark that, for moderately
large t, the SKETCHING algorithm achieves a relative-error
that is smaller than 20% on both datasets.

7 CONCLUSIONS

We presented an efficient relative-error approximation al-
gorithm for ridge regression for p � n cases. Our algo-
rithm runs in Õ(nnz(A) + n3/✏2) time, which is substan-
tially faster than the existing O(n2p + n3) algorithm for
large p instances. In addition, we analyzed the risk infla-
tion of our algorithm and extended our techniques to de-
sign fast relative-error approximation algorithms for mul-
tiple response ridge regression and structured ridge regres-
sion. We reported experimental results of our algorithm on
both synthetic and real datasets, which supported our anal-
ysis and demonstrated good practical performance.

Acknowledgments

The work described in this paper was fully supported by
the National Grand Fundamental Research 973 Program
of China (No. 2014CB340401 and No. 2014CB340405),
the Research Grants Council of the Hong Kong Special
Administrative Region, China (Project No. CUHK 413213
and CUHK 14205214), Microsoft Research Asia Regional
Seed Fund in Big Data Research (Grant No. FY13-RES-
SPONSOR-036) and Research Grants Council of the Hong
Kong S.A.R. (Project no. CUHK419413).

References

[1] Ahmed El Alaou and Michael W. Mahoney. Fast ran-
domized kernel methods with statistical guarantees.
Technical Report, 2014.

[2] Haim Avron, Christos Boutsidis, Sivan Toledo, and
Anastasios Zouzias. Efficient dimensionality reduc-
tion for canonical correlation analysis. In ICML,
2013.

209

[3] Haim Avron, Vikas Sindhwani, and David Woodruff.
Sketching structured matrices for faster nonlinear re-
gression. In NIPS. 2013.

[4] Francis Bach. Sharp analysis of low-rank kernel ma-
trix approximations. In COLT, 2013.

[5] Francis R Bach and Michael I Jordan. Kernel inde-
pendent component analysis. JMLR, 2003.

[6] K. Bache and M. Lichman. UCI machine learning
repository, 2013.

[7] Mohamed-Ali Belabbas and Patrick J Wolfe. Spectral
methods in machine learning and new strategies for
very large datasets. PNAS, 2009.

[8] Jean Bourgain and Jelani Nelson. Toward a uni-
fied theory of sparse dimensionality reduction in eu-
clidean space. Technical Report, 2013.

[9] C. Boutsidis and M. Magdon-Ismail. Faster svd-
truncated regularized least-squares. In ISIT, 2014.

[10] Christos Boutsidis, Anastasios Zouzias, and Petros
Drineas. Random projections for k-means clustering.
In NIPS. 2010.

[11] Leo Breiman and Jerome H Friedman. Predicting
multivariate responses in multiple linear regression.
J R STAT SOC B, 1997.

[12] Kenneth L Clarkson and David P Woodruff. Low rank
approximation and regression in input sparsity time.
In STOC, 2013.

[13] Corinna Cortes, Mehryar Mohri, and Ameet Tal-
walkar. On the impact of kernel approximation on
learning accuracy. In AISTATS, 2010.

[14] Sanjoy Dasgupta and Anupam Gupta. An elemen-
tary proof of a theorem of johnson and lindenstrauss.
RS&A, 2003.

[15] Petros Drineas and Michael W Mahoney. On the
nyström method for approximating a gram matrix for
improved kernel-based learning. JMLR, 2005.

[16] Shai Fine and Katya Scheinberg. Efficient svm train-
ing using low-rank kernel representations. JMLR,
2002.

[17] Matteo Frigo and Steven G. Johnson. The design and
implementation of FFTW3. P IEEE, 2005.

[18] Isabelle Guyon. Design of experiments of the nips
2003 variable selection benchmark. In NIPS 2003
workshop on feature extraction and feature selection,
2003.

[19] Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar.
On sampling-based approximate spectral decomposi-
tion. In ICML, 2009.

[20] Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar.
Sampling techniques for the nystrom method. In AIS-
TATS, 2009.

[21] Quoc Le, Tamas Sarlos, and Alexander Smola.
Fastfood-computing hilbert space expansions in log-
linear time. In ICML, 2013.

[22] Yichao Lu, Paramveer Dhillon, Dean P Foster, and
Lyle Ungar. Faster ridge regression via the subsam-
pled randomized hadamard transform. In NIPS, 2013.

[23] Michael W Mahoney, Petros Drineas, Malik Magdon-
Ismail, and David P Woodruff. Fast approximation of
matrix coherence and statistical leverage. In ICML,
2012.

[24] Jelani Nelson and Huy L. Nguyen. Osnap: Faster nu-
merical linear algebra algorithms via sparser subspace
embeddings. In FOCS, 2013.

[25] Saurabh Paul, Christos Boutsidis, Malik Magdon-
Ismail, and Petros Drineas. Random projections for
support vector machines. In AISTATS, 2013.

[26] Ali Rahimi and Benjamin Recht. Random features for
large-scale kernel machines. In NIPS, 2007.

[27] Garvesh Raskutti and Michael Mahoney. Statistical
and algorithmic perspectives on randomized sketch-
ing for ordinary least-squares. In ICML, 2015.

[28] Tamas Sarlós. Improved approximation algorithms
for large matrices via random projections. In FOCS,
2006.

[29] Craig Saunders, Alexander Gammerman, and
Volodya Vovk. Ridge regression learning algorithm
in dual variables. In ICML, 1998.

[30] H.V. Sorensen, D.L. Jones, C.S. Burrus, and M. Hei-
deman. On computing the discrete hartley trans-
form. Acoustics, Speech and Signal Processing, IEEE
Transactions on, 1985.

[31] Terence Tao. Topics in random matrix theory. 2012.

[32] Joel A Tropp. Improved analysis of the subsampled
randomized hadamard transform. AADA, 2011.

[33] Christopher Williams and Matthias Seeger. Using
the nyström method to speed up kernel machines. In
NIPS, 2001.

[34] Kai Zhang, Ivor W Tsang, and James T Kwok. Im-
proved nyström low-rank approximation and error
analysis. In ICML, 2008.

[35] Yuchen Zhang, John Duchi, and Martin Wainwright.
Divide and conquer kernel ridge regression. In COLT,
2013.

210

Selective Greedy Equivalence Search: Finding Optimal Bayesian Networks
Using a Polynomial Number of Score Evaluations

David Maxwell Chickering
Microsoft Research

Redmond, WA 98052
dmax@microsoft.com

Christopher Meek
Microsoft Research

Redmond, WA 98052
meek@microsoft.com

Abstract

We introduce Selective Greedy Equivalence
Search (SGES), a restricted version of Greedy
Equivalence Search (GES). SGES retains the
asymptotic correctness of GES but, unlike GES,
has polynomial performance guarantees. In par-
ticular, we show that when data are sampled in-
dependently from a distribution that is perfect
with respect to a DAG G defined over the ob-
servable variables then, in the limit of large data,
SGES will identify the equivalence class of G
after a number of score evaluations that is (1)
polynomial in the number of nodes and (2) expo-
nential in various complexity measures including
maximum-number-of-parents, maximum-clique-
size, and a new measure called v-width that
is at least as small as—and potentially much
smaller than—the other two. More generally,
we show that for any hereditary and equivalence-
invariant property Π known to hold in G, we
retain the large-sample optimality guarantees of
GES even if we ignore any GES deletion oper-
ator during the backward phase that results in a
state for which Π does not hold in the common-
descendants subgraph.

1 INTRODUCTION

Greedy Equivalence Search (GES) is a score-based
search algorithm that searches over equivalence classes
of Bayesian-network structures. The algorithm is appeal-
ing because (1) for finite data, it explicitly (and greedily)
tries to maximize the score of interest, and (2) as the data
grows large, it is guaranteed—under suitable distributional
assumptions—to return the generative structure. Although
empirical results show that the algorithm is efficient in real-
world domains, the number of search states that GES needs
to evaluate in the worst case can be exponential in the num-
ber of domain variables.

In this paper, we show that if we assume the generative
distribution is perfect with respect to some DAG G de-
fined over the observable variables, and if G is known to
be constrained by one of various graph-theoretic measures
of complexity, then we can disregard all but a polynomial
number of the backward search operators considered by
GES while retaining the large-sample guarantees of the al-
gorithm; we call this new variant of GES selective greedy
equivalence search or SGES. Our complexity results are a
consequence of a new understanding of the backward phase
of GES, in which edges (either directed or undirected) are
greedily deleted from the current state until a local min-
imum is reached. We show that for any hereditary and
equivalence-invariant property known to hold in genera-
tive model G, we can remove from consideration any edge-
deletion operator between X and Y for which the property
does not hold in the resulting induced subgraph over X,
Y, and their common descendants. As an example, if we
know that each node has at most k parents, we can remove
from consideration any deletion operator that results in a
common child with more than k parents.

By casting limited v-width and two other complexity
measures—maximum-clique size and maximum-parent-set
size—as graph properties, we show how to enumerate di-
rectly over a polynomial number of edge-deletion operators
at each step, and we show that we need only a polynomial
number of calls to the scoring function to complete the al-
gorithm.

The main contributions of this paper are theoretical. Our
definition of the new SGES algorithm deliberately leaves
unspecified the details of how to implement its forward
phase; we prove our results for SGES given any implemen-
tation of this phase that completes with a polynomial num-
ber of calls to the scoring function. A naive implementation
is to immediately return a complete (i.e., no independence)
graph using no calls to the scoring function, but this choice
is unlikely to be reasonable in practice, particularly in dis-
crete domains where the sample complexity of this initial
model will likely be a problem. Whereas we believe it an
important direction, our paper does not explore practical al-

211

ternatives for the forward phase that have polynomial-time
guarantees.

Our paper is organized as follows. In Section 2, we de-
scribe related work. In Section 3, we provide notation and
background material. In Section 4, we present our new
SGES algorithm, we show that it is optimal in the large-
sample limit, and we provide complexity bounds when
given an equivalence-invariant and hereditary property that
holds on the generative structure. In Section 5, we present a
simple synthetic experiment that demonstrates the value of
restricting the backward operators in SGES. We conclude
with a discussion of our results in Section 6.

2 RELATED WORK

It is useful to distinguish between approaches to learn-
ing the structure of graphical models as constraint based,
score based or hybrid. Constraint-based approaches typi-
cally use (conditional) independence tests to eliminate po-
tential models, whereas score-based approaches typically
use a penalized likelihood or a marginal likelihood to eval-
uate alternative model structures; hybrid methods combine
these two approaches. Because score-based approaches are
driven by a global likelihood, they are less susceptible than
constraint-based approaches to incorrect categorical deci-
sions about independences.

There are polynomial-time algorithms for learning the best
model in which each node has at most one parent. In
particular, the Chow-Liu algorithm (Chow and Liu, 1968)
used with any equivalence-invariant score will identify
the highest-scoring tree-like model in polynomial time;
for scores that are not equivalence invariant, we can use
the polynomial-time maximum-branching algorithm of Ed-
monds (1967) instead. Gaspers et al. (2012) show how to
learn k-branchings in polynomial time; these models are
polytrees that differ from a branching by a constant k num-
ber of edge deletions.

Without additional assumptions, most results for learning
non-tree-like models are negative. Meek (2001) shows that
finding the maximum-likelihood path is NP-hard, despite
this being a special case of a tree-like model. Dasgupta
(1999) shows that finding the maximum-likelihood poly-
tree (a graph in which each pair of nodes is connected
by at most one path) is NP-hard, even with bounded in-
degree for every node. For general directed acyclic graphs,
Chickering (1996) shows that finding the highest marginal-
likelihood structure is NP-hard, even when each node has
at most two parents. Chickering at al. (2004) extend this
same result to the large-sample case.

Researchers often assume that the “generative” distribution
of the training data is perfect with respect to some model
class in order to reduce the complexity of learning algo-
rithms. Geiger et al. (1990) provide a polynomial-time

constraint-based algorithm for recovering a polytree un-
der the assumption that the generative distribution is per-
fect with respect to a polytree; an analogous score-based
result follows from this paper. The constraint-based PC
algorithm of Sprites et al. (1993) can identify the equiva-
lence class of Bayesian networks in polynomial time if the
generative structure is a DAG model over the observable
variables in which each node has a bounded degree; this
paper provides a similar result for a score-based algorithm.
Kalish and Buhlmann (2007) show that for Gaussian dis-
tributions, the PC algorithm can identify the right structure
even when the number of nodes in the domain is larger than
the sample size. Chickering (2002) uses the same DAG-
perfectness-over-observables assumption to show that the
greedy GES algorithm is optimal in the large-sample limit,
although the branching factor of GES is worst-case expo-
nential; the main result of this paper shows how to limit
this branching factor without losing the large-sample guar-
antee. Chickering and Meek (2002) show that GES iden-
tifies a “minimal” model in the large-sample limit under a
less restrictive set of assumptions.

Hybrid methods for learning DAG models use a constraint-
based algorithm to prune out a large portion of the search
space, and then use a score-based algorithm to select
among the remaining (Friedman et al., 1999; Tsamardinos
et al., 2006). Ordyniak and Szeider (2013) give positive
complexity results for the case when the remaining DAGs
are characterized by a structure with constant treewidth.

Many researchers have turned to exhaustive enumeration
to identify the highest-scoring model (Gillispie and Perl-
man, 2001; Koivisto and Sood 2004; Silander and Myl-
lymäki, 2006; Kojima et al, 2010). There are many com-
plexity results for other model classes. Karger and Sre-
bro (2001) show that finding the optimal Markov net-
work is NP-complete for treewidth > 1. Narasimhan and
Bilmes (2004) and Shahaf, Chechetka and Guestrin (2009)
show how to learn approximate limited-treewidth models in
polynomial time. Abeel, Koller and Ng (2005) show how
to learn factor graphs in polynomial time.

3 NOTATION AND BACKGROUND

We denote a variable by an upper case letter (e.g., A) and
a state or value of that variable by the same letter in lower
case (e.g., a). We denote a set of variables by a bold-face
capitalized letter or letters (e.g., X). We use a correspond-
ing bold-face lower-case letter or letters (e.g., x) to denote
an assignment of state or value to each variable in a given
set. We use calligraphic letters (e.g., G, E) to denote statis-
tical models and graphs.

A Bayesian-network model for a set of variables U is a pair
(G,θ). G = (V,E) is a directed acyclic graph—or DAG
for short—consisting of nodes in one-to-one correspon-
dence with the variables and directed edges that connect

212

those nodes. θ is a set of parameter values that specify all
of the conditional probability distributions. The Bayesian
network represents a joint distribution over U that factors
according to the structure G.

The structure G of a Bayesian-network model represents
the independence constraints that must hold in the distribu-
tion. The set of all independence constraints implied by the
structure G can be characterized by the Markov conditions,
which are the constraints that each variable is independent
of its non-descendants given its parents. All other indepen-
dence constraints follow from properties of independence.
A distribution defined over the variables from G is perfect
with respect to G if the set of independences in the distri-
bution is equal to the set of independences implied by the
structure G.

Two DAGs G and G′ are equivalent1—denoted G ≈ G′—if
the independence constraints in the two DAGs are identi-
cal. Because equivalence is reflexive, symmetric, and tran-
sitive, the relation defines a set of equivalence classes over
network structures. We use [G]≈ to denote the equivalence
class of DAGs to which G belongs.

An equivalence class of DAGs F is an independence map
(IMAP) of another equivalence class of DAGs E if all in-
dependence constraints implied by F are also implied by
E . For two DAGs G and H, we use G ≤ H to denote that
[H]≈ is an IMAP of [G]≈; we use G < H when G ≤ H and
[H]≈ 6= [G]≈.

Verma and Pearl (1991) show that two DAGs are equivalent
if and only if they have the same skeleton (i.e., the graph
resulting from ignoring the directionality of the edges) and
the same v-structures (i.e., pairs of edgesX → Y and Y ←
Z whereX and Z are not adjacent). As a result, we can use
a partially directed acyclic graph—or PDAG for short—to
represent an equivalence class of DAGs: for a PDAG P ,
the equivalence class of DAGs is the set that has the same
skeleton and the same v-structures as P2.

We extend our notation for DAG equivalence and the DAG
IMAP relation to include the more general PDAG structure.
In particular, for a PDAG P , we use [P]≈ to denote the
corresponding equivalence class of DAGs. For any pair of
PDAGs P and Q—where one or both may be a DAG—we
use P ≈ Q to denote [Q]≈ = [P]≈ and we use P ≤ Q to
denote [Q]≈ is an IMAP of [P]≈. To avoid confusion, for
the remainder of the paper we will reserve the symbols G
andH for DAGs.

For any PDAG P and subset of nodes V, we use P[V] to
denote the subgraph of P induced by V; that is, P[V] has

1We make the standard conditional-distribution assumptions
of multinomials for discrete variables and Gaussians for contin-
uous variables so that if two DAGs have the same independence
constraints, then they can also model the same set of distributions.

2The definitions for the skeleton and set of v-structures for a
PDAG are the obvious extensions to these definitions for DAGs.

as nodes the set V and has as edges all those from P that
connect nodes in V. We use NAX,Y to denote, within
a PDAG, the set of nodes that are neighbors of X (i.e.,
connected with an undirected edge) and also adjacent to
Y (i.e., without regard to whether the connecting edge is
directed or undirected).

An edge in G is compelled if it exists in every DAG that
is equivalent to G. If an edge in G is not compelled, we
say that it is reversible. A completed PDAG (CPDAG) C
is a PDAG with two additional properties: (1) for every di-
rected edge in C, the corresponding edge in G is compelled
and (2) for every undirected edge in C the corresponding
edge in G is reversible. Unlike non-completed PDAGs, the
CPDAG representation of an equivalence class is unique.
We use PaPY to denote the parents of node Y in P . An
edge X → Y is covered in a DAG if X and Y have the
same parents, with the exception that X is not a parent of
itself.

3.1 Greedy Equivalence Search

Algorithm GES(D)

Input : Data D
Output: CPDAG C
C ←− FES(D)
C ←− BES(D, C)
return C

Figure 1: Pseudo-code for the GES algorithm.

The GES algorithm, shown in Figure 1, performs a two-
phase greedy search through the space of DAG equivalence
classes. GES represents each search state with a CPDAG,
and performs transformation operators to this representa-
tion to traverse between states. Each operator corresponds
to a DAG edge modification, and is scored using a DAG
scoring function that we assume has three properties. First,
we assume the scoring function is score equivalent, which
means that it assigns the same score to equivalent DAGs.
Second, we assume the scoring function is locally consis-
tent, which means that, given enough data, (1) if the cur-
rent state is not an IMAP of G, the score prefers edge ad-
ditions that remove incorrect independences, and (2) if the
current state is an IMAP of G, the score prefers edge dele-
tions that remove incorrect dependences. Finally, we as-
sume the scoring function is decomposable, which means
we can express it as:

Score(G,D) =
n∑

i=1

Score(Xi,PaGi) (1)

Note that the data D is implicit in the right-hand side Equa-
tion 1. Most scores in the literature have these properties.

213

For the remainder of this paper, we assume they hold for
our scoring function.

All of the CPDAG operators from GES are scored using
differences in the DAG scoring function, and in the limit of
large data, these scores are positive precisely for those op-
erators that remove incorrect independences and incorrect
dependences.

The first phase of the GES—called forward equivalence
search or FES—starts with an empty (i.e., no-edge)
CPDAG and greedily applies GES insert operators until no
operator has a positive score; these operators correspond
precisely to the union of all single-edge additions to all
DAG members of the current (equivalence-class) state. Af-
ter FES reaches a local maximum, GES switches to the sec-
ond phase—called backward equivalence search or BES—
and greedily applies GES delete operators until no operator
has a positive score; these operators correspond precisely to
the union of all single-edge deletions from all DAG mem-
bers of the current state.

Theorem 1. (Chickering, 2002) Let C be the CPDAG that
results from applying the GES algorithm tom records sam-
pled from a distribution that is perfect with respect to DAG
G. Then in the limit of large m, C ≈ G.

The role of FES in the large-sample limit is only to identify
a state C for which G ≤ C; Theorem 1 holds for GES under
any implementation of FES that results in an IMAP of G.
The implementation details can be important in practice be-
cause what constitutes a “large” amount of data depends on
the number of parameters in the model. In theory, however,
we could simply replace FES with a (constant-time) algo-
rithm that sets C to be the no-independence equivalence
class.

The focus of our analysis in the next section is on a mod-
ified version of BES, and the details of the delete operator
used in this phase are important. In Figure 2, we show the
preconditions, scoring function, and transformation algo-
rithm for a delete operator. We note that we do not need to
make any CPDAG transformations when scoring the oper-
ators; it is only once we have identified the highest-scoring
(non-negative) delete that we need to make the transforma-
tion shown in the figure. After applying the edge modifi-
cations described in the foreach loop, the resulting PDAG
P is not necessarily completed and hence we may have to
convert P into the corresponding CPDAG representation.
As shown by Chickering (2002), this conversion can be ac-
complished easily by using the structure of P to extract a
DAG that we then convert into a CPDAG by undirecting all
reversible edges. The complexity of this procedure for a P
with n nodes and e edges is O(n · e), and requires no calls
to the scoring function.

Operator: Delete(X,Y,H) applied to C
• Preconditions

X and Y are adjacent
H ⊆ NAY,X

H = NAY,X \H is a clique

• Scoring
Score(Y, {PaCY ∪H}\X)−Score(Y,X ∪PaCY ∪H)

• Transformation

Remove edge between X and Y
foreach H ∈ H do

Replace Y −H with Y → H
if X −H then Replace with X → H;

end
Convert to CPDAG

Figure 2: Preconditions, scoring, and transformation algo-
rithm for a delete operator applied to a CPDAG.

4 SELECTIVE GREEDY EQUIVALENCE
SEARCH

In this section, we define a variant of the GES algorithm
called selective GES—or SGES for short—that uses a sub-
set of the BES operators. The subset is chosen based on a
given property Π that is known to hold for the generative
structure G. Just like GES, SGES—shown in Figure 3—has
a forward phase and a backward phase.

For the forward phase of SGES, it suffices for our theoret-
ical analysis that we use a method that returns an IMAP of
G (in the large-sample limit) using only a polynomial num-
ber of insert-operator score calls. For this reason, we call
this phase poly-FES. A simple implementation of poly-FES
is to return the no-independence CPDAG (with no score
calls), but other implementations are likely more useful in
practice.

The backward phase of SGES—which we call selective
backward equivalence search (SBES)—uses only a subset
of the BES delete operators. This subset must necessarily
include all Π-consistent delete operators—defined below—
in order to maintain the large-sample consistency of GES,
but the subset can (and will) include additional operators
for the sake of efficient enumeration.

The DAG properties used by SGES must be equivalence
invariant, meaning that for any pair of equivalent DAGs,
either the property holds for both of them or it holds for
neither of them. Thus, for any equivalence-invariant DAG
property Π, it makes sense to say that Π either holds or
does not hold for a PDAG. As shown by Chickering (1995),
a DAG property is equivalence invariant if and only if it is
invariant to covered-edge reversals; it follows that the prop-

214

erty that each node has at most k parents is equivalence in-
variant, whereas the property that the length of the longest
directed path is at least k is not. Furthermore, the proper-
ties for SGES must also be hereditary, which means that
if Π holds for a PDAG P it must also hold for all induced
subgraphs of P . For example, the max-parent property is
hereditary, whereas the property that each node has at least
k parents is not. We use EIH property to refer to a property
that is equivalence invariant and hereditary.

Definition 1. Π-Consistent GES Delete
A GES delete operatorDelete(X,Y,H) is Π consistent for
CPDAG C if, for the set of common descendants W of X
and Y in the resulting CPDAG C′, the property holds for
the induced subgraph C′[X ∪ Y ∪W].

In other words, after the delete, the property holds for the
subgraph defined byX , Y , and their common descendants.

Algorithm SGES(D,Π)

Input : Data D, Property Π
Output: CPDAG C
C ←− poly-FES
C ←− SBES(D, C, Π)
return C

Figure 3: Pseudo-code for the SGES algorithm.

Algorithm SBES(D, C,Π)

Input : Data D, CPDAG C, Property Π
Output: CPDAG

Repeat
Ops←− Generate Π-consistent delete operators for C
Op←− highest-scoring operator in Ops
if score of Op is negative then return C
C ←− Apply Op to C

Figure 4: Pseudo-code for the SBES algorithm.

4.1 LARGE-SAMPLE CORRECTNESS

The following theorem establishes a graph-theoretic justi-
fication for considering only the Π-consistent deletions at
each step of SBES.

Theorem 2. If G < C for CPDAG C and DAG G, then
for any EIH property Π that holds on G, there exists a Π-
consistent Delete(X,Y,H) that when applied to C results
in the CPDAG C′ for which G ≤ C′.

The proof of Theorem 2 can be found in Chickering and
Meek (2015), an expanded version of this paper. The result
is a consequence of an explicit characterization of, for a

given pair of DAGs G and H such that G < H, an edge in
H that we can either reverse or delete inH such that for the
resulting DAGH′, we have G ≤ H′3.

Theorem 3. Let C be the CPDAG that results from apply-
ing the SGES algorithm to (1) m records sampled from a
distribution that is perfect with respect to DAG G and (2)
EIH property Π that holds on G. Then in the limit of large
m, C ≈ G.

Proof: Because the scoring function is locally consistent,
we know poly-FES must return an IMAP of G. Because
SBES includes all the Π-consistent delete operators, The-
orem 2 guarantees that, unless C ≈ G, there will be a
positive-scoring operator.

4.2 COMPLEXITY MEASURES

In this section, we discuss a number of distributional as-
sumptions that we can use with Theorem 3 to limit the num-
ber of operators that SGES needs to score. As discussed in
Section 2, when we assume the generative distribution is
perfect with respect to a DAG G, then graph-theoretic as-
sumptions about G can lead to more efficient training algo-
rithms. Common assumptions used include (1) a maximum
parent-set size for any node, (2) a maximum-clique4 size
among any nodes and (3) a maximum treewidth. Treewidth
is important because the complexity of exact inference is
exponential in this measure.

We can associate a property with each of these assumptions
that holds precisely when the DAG G satisfies that assump-
tion. Consider the constraint that the maximum number of
parents for any node in G is some constant k. Then, us-
ing “PS” to denote parent size, we can define the property
Πk
PS to be true precisely for those DAGs in which each

node has at most k parents. Similarly we can define Πk
CL

and Πk
TW to correspond to maximum-clique size and max-

imum treewidth, respectively.

For two properties Π and Π′, we write Π ⊆ Π′ if for every
DAG G for which Π holds, Π′ also holds. In other words,
Π is a more constraining property than is Π′. Because the
lowest node in any clique has all other nodes in the clique
as parents, it is easy to see that Πk

PS ⊆ Πk−1
CL . Because the

treewidth for DAG G is defined to be the size of the largest
clique minus one in a graph whose cliques are at least as
large as those in G, we also have Πk

TW ⊆ Πk−1
CL . Which

property to use will typically be a trade-off between how
reasonable the assumption is (i.e, less constraining proper-
ties are more reasonable) and the efficiency of the resulting
algorithm (i.e., more constraining properties lead to faster
algorithms).

3Chickering (2002) characterizes the reverse transformation of
reversals/additions in G, which provides an implicit characteriza-
tion of reversals/deletions inH.

4We use clique in a DAG to mean a set of nodes in which all
pairs are adjacent.

215

We now consider a new complexity measure called v-width,
whose corresponding property is less constraining than the
previous three. For a DAG G, the v-width is defined to
be the maximum of, over all pairs of non-adjacent nodes
X and Y , the size of the largest clique among common
children of X and Y . In other words, v-width is similar
to the maximum-clique-size bound, except that the bound
only applies to cliques of nodes that are shared children of
some pair of non-adjacent nodes. With this understanding
it is easy to see that, for the property Πk

VW corresponding
to a bound on the v-width, we have Πk

CL ⊆ Πk
VW .

To illustrate the difference between v-width and the other
complexity measures, consider the two DAGs in Figure 5.
The DAG in Figure 5(a) has a clique of size K, and con-
sequently a maximum-clique size of K and a maximum
parent-set size of K − 1. Thus, if K is O(n) for a large
graph of n nodes, any algorithm that is exponential in these
measures will not be efficient. The v-width, however, is
zero for this DAG. The DAG in Figure 5(b), on the other
hand, has a v-width of K.

(a)

X1

A B

X2
X3

X4

XK
X1

A B

X2
X3

X4

XK

(b)

Figure 5: Two DAGs (a) and (b) having identical maximum
clique sizes, similar maximum number of parents, and di-
vergent v-widths.

In order to use a property with SGES, we need to estab-
lish that it is EIH. For Πk

PS , Πk
CL and Πk

VW , equivalence-
invariance follows from the fact that all three properties are
covered-edge invariant, and hereditary follows because the
corresponding measures cannot increase when we remove
nodes and edges from a DAG. Although we can estab-
lish EIH for the treewidth property Πk

TW with more work,
we omit further consideration of treewidth for the sake of
space.

4.3 GENERATING DELETIONS

In this section, we show how to generate a set of dele-
tion operators for SBES such that all Π-consistent deletion
operators are included, for any Π ∈ {Πk

PS ,Π
k
CL,Π

k
VW }.

Furthermore, the total number of deletion operators we
generate is polynomial in the number of nodes in the do-
main and exponential in k.

Our approach is to restrict the Delete(X,Y,H) operators
based on the H sets and the resulting CPDAG C′. In par-

ticular, we rule out candidate H sets for which Π does
not hold on the induced subgraph C′[H ∪X ∪ Y]; because
all nodes in H will be common children of X and Y in
C′—and thus a subset of the common descendants of X
and Y—we know from Definition 1 (and the fact that Π is
hereditary) that none of the dropped operators can be Π-
consistent.

Before presenting our restricted-enumeration algorithm,
we now discuss how to enumerate delete operators with-
out restrictions. As shown by Andersson et al. (1997), a
CPDAG is a chain graph whose undirected components are
chordal. This means that the induced sub-graph defined
over NAY,X—which is a subset of the neighbors of Y—is
an undirected chordal graph. A useful property of chordal
graphs is that we can identify, in polynomial time, a set of
maximal cliques over these nodes5; let C1, ...,Cm denote
the nodes contained within these m maximal cliques, and
let H = NAY,X \ H be the complement of the shared
neighbors with respect to the candidate H. Recall from
Figure 2 that the preconditions for any Delete(X,Y,H)
include the requirement that H is a clique. This means that
for any valid H, there must be some maximal clique Ci that
contains the entirety of H; thus, we can generate all oper-
ators (without regard to any property) by stepping through
each maximal clique Ci in turn, initializing H to be all
nodes not in Ci, and then generating a new operator cor-
responding to expanding H by all subsets of nodes in Ci.
Note that if NAY,X is itself a clique, we are enumerating
over all 2|NAY,X | operators.

As we show below, all three of the properties of interest
impose a bound on the maximum clique size among nodes
in H. If we are given such a bound s, we know that any
“expansion” subset for a clique that has size greater than
s will result in an operator that is not valid. Thus, we can
implement the above operator-enumeration approach more
efficiently by only generating subsets within each clique
that have size at most s. This allows us to process each
clique Ci with only O(|Ci + 1|s) calls to the scoring func-
tion. In addition, we need not enumerate over any of the
subsets of Ci if, after removing this clique from the graph,
there remains a clique of size greater than s; we define the
function FilterCliques({C1, . . . ,Cm}, s) to be the sub-
set of cliques that remain after imposing this constraint.
With this function, we can define SELECTIVE-GENERATE-
OPS as shown in Figure 6 to leverage the max-clique-size
constraint when generating operators; this algorithm will in
turn be used to generate all of the CPDAG operators during
SBES.

Example: In Figure 7, we show an example CPDAG C for
which to run SELECTIVE-GENERATE-OPS(C, X , Y , s) for
various values of s. In the example, there is a single clique

5Blair and Peyton (1993) provide a good survey on chordal
graphs and detail how to identify the maximal cliques while run-
ning maximum-cardinality search.

216

Algorithm SELECTIVE-GENERATE-OPS(C, X, Y, s)
Input : CPDAG C with adjacent X ,Y and limit s
Output: Ops = {H1, . . . ,Hm}

Ops←− ∅
Generate maximal cliques C1, ...,Cm from NAY,X

S←− FilterCliques({C1, . . . ,Cm}, s)
foreach Ci ∈ S do

H0 ←− NAY,X \Ci

foreach C ⊆ Ci with |C| ≤ s do
Add H0 ∪C to Ops

end
end
return Ops

Figure 6: Algorithm to generate clique-size limited delete
operators.

C = {A,B} in the set NAY,X , and thus at the top of the
outer foreach loop, the set H0 is initialized to the empty
set. If s = 0, the only subset of C with size zero is the
empty set, and so that is added to Ops and the algorithm
returns. If s = 1 we add, in addition to the empty set, all
singleton subsets of C. For s ≥ 2, we add all subsets of
C.

Now we discuss how each of the three properties impose a
constraint s on the maximum clique among nodes in H, and
consequently the selective-generation algorithm in Figure 6
can be used with each one, given an appropriate bound s.
For both Πk

VW and Πk
CL, the k given imposes an explicit

bound on s (i.e., s = k for both). Because any clique in
H of size r will result in a DAG member of the resulting
equivalence class having a node in that clique with at least
r+ 1 parents (i.e., r− 1 from the other nodes in the clique,
plus both X and Y), we have for Πk

PS , s = k − 1.

We summarize the discussion above in the following
proposition.

Proposition 1. Algorithm SELECTIVE-GENERATE-OPS
applied to all edges using clique-size bound s gen-
erates all Π-consistent delete operators for Π ∈
{Πs+1

PS ,Π
s
CL,Π

s
VW }.

We now argue that running SBES on a domain of n vari-
ables when using Algorithm SELECTIVE-GENERATE-OPS
with a bound s requires only a polynomial number in n of
calls to the scoring function. Each clique in the inner loop
of the algorithm can contain at most n nodes, and therefore
we generate and score at most (n+1)s operators, requiring
at most 2(n + 1)s calls to the scoring function. Because
the cliques are maximal, there can be at most n of them
considered in the outer loop. Because there are never more
than n2 edges in a CPDAG, and we will delete at most all
of them, we conclude that even if we decided to rescore ev-

ery operator after every edge deletion, we will only make a
polynomial number of calls to the scoring function.

From the above discussion and the fact that SBES com-
pletes using at most a polynomial number of calls to the
scoring function, we get the following result for the full
SGES algorithm.

Proposition 2. The SGES algorithm, when run over a do-
main of n variables and given Π ∈ {Πs+1

PS ,Π
s
CL,Π

s
VW },

runs to completion using a number of calls to the DAG
scoring function that is polynomial in n and exponential
in s.

A B

X Y
s=0 Ops={ {} }
s=1 Ops={ {}, {A}, {B} }
s=2 Ops={ {} ,{A}, {B}, {A,B} }

Figure 7: An example CPDAG C and the resulting opera-
tors generated by SELECTIVE-GENERATE-OPS(C,X ,Y ,s)
for various values of s.

5 EXPERIMENTS

In this section, we present a simple synthetic experiment
comparing SBES and BES that demonstrates the value of
pruning operators. In our experiment we used an oracle
scoring function. In particular, given a generative model G,
our scoring function computes the minimum-description-
length score assuming a data size of five billion records,
but without actually sampling any data: instead, we use
exact inference in G (i.e., instead of counting from data)
to compute the conditional probabilities needed to compute
the expected log loss. This allows us to get near-asymptotic
behavior without the need to sample data. To evaluate the
cost of running each algorithm, we counted the number of
times the scoring function was called on a unique node and
parent-set combination; we cached these scores away so
that if they were needed multiple times during a run of the
algorithm, they were only computed (and counted) once.

In Figure 8, we show the average number of scoring-
function calls required to complete BES and SBES when
starting from a complete graph over a domain of n bi-
nary variables, for varying values of n. Each average is
taken over ten trials, corresponding to ten random genera-
tive models. We generated the structure of each generative
model as follows. First, we ordered all node pairs by ran-
domly permuting the nodes and taking each node in turn
with each of its predecessors in turn. For each node pair,
we chose to attempt an edge insertion with probability one
half. For each attempt, we added an edge if doing so (1)

217

did not create a cycle and (2) did not result in a node having
more than two parents; if an edge could be added in either
direction, we chose the direction at random. We sampled
the conditional distributions for each node and each par-
ent configuration from a uniform Dirichlet distribution with
equivalent-sample size of one. We ran SBES with Π2

PS .

0

5000

10000

15000

20000

25000

5 6 7 8 9 10 11 12

Sc
o

re
 E

vl
au

at
io

n
s

Number of Nodes

BES

SBES

Figure 8: Number of score evaluations needed to run BES
and SBES, starting from the complete graph, for a range of
domain sizes.

Our results show clearly the exponential dependence of
BES on the number of nodes in the clique, and the increas-
ing savings we get with SBES by leveraging the fact that
Π2
PS holds in the generative structure.

Note that to realize large savings in practice, when GES
runs FES instead of starting from a dense graph, a (rel-
atively sparse) generative distribution must lead FES to an
equivalence class containing a (relatively dense) undirected
clique that is subsequently “thinned” during BES. We can
synthesize challenging grid distributions to force FES into
such states, but it is not clear how realistic such distribu-
tions are in practice. When we re-run the clique experi-
ment above, but where we instead start both BES and SBES
from the model that results from running FES (i.e., with
no polynomial-time guarantee), the savings from SBES are
small due to the fact that the subsequent equivalence classes
do not contain large cliques.

6 CONCLUSION

We introduced a restricted version of the GES algorithm,
SGES, that leverages graph-theoretic complexity properties
to prune the backward-phase operators. We showed that for
a particular class of properties—which includes maximum-
clique size, maximum number of parents, and v-width—
we can guarantee that the number of score evaluations is
polynomial in the number of nodes in the domain.

The fact that we can use our approach to selectively
choose operators for any hereditary and equivalence in-
variant graph-theoretic property provides the opportunity
to explore alternative complexity measures. Another can-
didate complexity measure is the maximum number of v-
structures. Although the corresponding property does not
limit the maximum size of a clique in H, it limits directly
the size |H| for every operator and thus it is easy to enumer-
ate these operators efficiently. Another complexity mea-
sure of interest is treewidth, due to the fact that exact infer-
ence in a Bayesian-network model is takes time exponential
in this measure.

The results we have presented are for the general Bayesian-
network learning problem. It is interesting to consider the
implications of our results for the problem of learning par-
ticular subsets of Bayesian networks. One natural class that
we discussed in Section 2 is that of polytrees. If we assume
that the generative distribution is perfect with respect to a
polytree then we know the v-width of the generative graph
is one. This implies, in the limit of large data, that we can
recover the structure of the generative graph with a poly-
nomial number of score evaluations. This provides a score-
based recovery algorithm analogous to the constraint-based
approach of Geiger et al. (1990).

We presented a simple complexity analysis for the purpose
of demonstrating that SGES uses a only polynomial num-
ber of calls to the scoring function. We leave as future work
a more careful analysis that establishes useful constants in
this polynomial. In particular, we can derive tighter bounds
on the total number of node-and-parent-configurations that
are needed to score all the operators for each CPDAG, and
by caching these configuration scores we can further take
advantage of the fact that most operators remain valid (i.e.,
the preconditions still hold) and have the same score after
each transformation.

Finally, we plan to investigate practical implementations of
poly-FES that have the polynomial-time guarantees needed
for SGES.

218

References

[1] Pieter Abbeel, Daphne Koller, and Andrew Y. Ng.
Learning factor graphs in polynomial time and sam-
ple complexity. JMLR, 7:1743–1788, 2006.

[2] Steen A. Andersson, David Madigan, and Michael D.
Perlman. A characterization of Markov equivalence
classes for acyclic digraphs. Annals of Statistics,
25:505–541, 1997.

[3] Jean R. S. Blair and Barry W. Peyton. An introduction
to chordal graphs and clique trees. In Graph Theory
and Sparse Matrix Computations, pages 1–29, 1993.

[4] David Maxwell Chickering. A transformational char-
acterization of Bayesian network structures. In
UAI’95, pages 87–98. 1995.

[5] David Maxwell Chickering. Learning Bayesian net-
works is NP-complete. In Learning from Data: Ar-
tificial Intelligence and Statistics V, pages 121–130.
Springer-Verlag, 1996.

[6] David Maxwell Chickering. Optimal structure iden-
tification with greedy search. JMLR, 3:507–554,
November 2002.

[7] David Maxwell Chickering and Christopher Meek.
Finding optimal Bayesian networks. In UAI’02, pages
94–102. 2002.

[8] David Maxwell Chickering and Christopher Meek.
Selective greedy equivalence search: Finding opti-
mal Bayesian networks using a polynomial number
of score evaluations. MSR-TR-2015-45, 2015.

[9] David Maxwell Chickering, Christopher Meek, and
David Heckerman. Large-sample learning of
Bayesian networks is NP-hard. JMLR, 5:1287–1330,
October 2004.

[10] C. Chow and C. Liu. Approximating discrete prob-
ability distributions with dependence trees. IEEE
Transactions on Information Theory, 14:462–467,
1968.

[11] Sanjoy Dasgupta. Learning polytrees. In UAI’99,
pages 131–141. 1999.

[12] Jack Edmonds. Optimum branching. J. Res. NBS,
71B:233–240, 1967.

[13] Nir Friedman, Iftach Nachman, and Dana Peer.
Learning Bayesian network structure from massive
datasets: The “sparse candidate” algorithm. In
UAI’99. 1999.

[14] Serge Gaspers, Mikko Koivisto, Mathieu Liedloff,
Sebastian Ordyniak, and Stefan Szeider. On finding
optimal polytrees. In AAAI’12. 2012.

[15] Dan Geiger, Azaria Paz, and Judea Pearl. Learn-
ing causal trees from dependence information. In
AAAI’90, pages 770–776. AAAI Press, 1990.

[16] Steven B. Gillispie and Michael D. Perlman. Enumer-
ating Markov equivalence classes of acyclic digraph
models. In UAI’01, pages 171–177. 2001.

[17] Markus Kalisch and Peter Buhlmann. Estimating
high-dimensional directed acyclic graphs with the PC
algorithm. JMLR, 8:613–636, 2007.

[18] David Karger and Nathan Srebro. Learning Markov
networks: Maximum bounded tree-width graphs. In
SODA’01, pages 391–401, January 2001.

[19] Mikko Koivisto and Kismat Sood. Exact Bayesian
structure discovery in Bayesian networks. JMLR,
5:549–573, December 2004.

[20] Kaname Kojima, Eric Perrier, Seiya Imoto, and
Satoru Miyano. Optimal search on clustered struc-
tural constraint for learning Bayesian network struc-
ture. JMLR, 11:285–310, 2010.

[21] Christopher Meek. Finding a path is harder than find-
ing a tree. JAIR, 15:383–389, 2001.

[22] Mukund Narasimhan and Jeff Bilmes. PAC-learning
bounded tree-width graphical models. In UAI’04,
UAI ’04, pages 410–417, 2004.

[23] Sebastian Ordyniak and Stefan Szeider. Parameter-
ized complexity results for exact Bayesian network
structure learning. JAIR, 46:263–302, 2013.

[24] Judea Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann, 1988.

[25] Dafna Shahaf, Anton Chechetka, and Carlos
Guestrin. Learning thin junction trees via graph cuts.
In AISTATS’09, 2009.

[26] Tomi Silander and Petri Myllymäki. A simple ap-
proach for finding the globally optimal Bayesian net-
work structure. In UAI’06, pages 445–452, 2006.

[27] Peter Spirtes, Clark Glymour, and Richard Scheines.
Causation, Prediction, and Search. Springer-Verlag,
New York, 1993.

[28] Ioannis Tsamardinos, Laura E. Brown, and Con-
stantin F. Aliferis. The max-min hill-climbing
Bayesian network structure learning algorithm. Ma-
chine Learning, 2006.

[29] Thomas Verma and Judea Pearl. Equivalence and syn-
thesis of causal models. In UAI’91, pages 220–227,
1991.

219

Stable Spectral Learning Based on Schur Decomposition

Nicolò Colombo
Luxembourg Centre for Systems Biomedicine

University of Luxembourg
nicolo.colombo@uni.lu

Nikos Vlassis
Adobe Research

San Jose, CA
vlassis@adobe.com

Abstract

Spectral methods are a powerful tool for inferring
the parameters of certain classes of probability
distributions by means of standard eigenvalue-
eigenvector decompositions. Spectral algorithms
can be orders of magnitude faster than log-
likelihood based and related iterative methods,
and, thanks to the uniqueness of the spectral de-
composition, they enjoy global optimality guar-
antees. In practice, however, the applicability of
spectral methods is limited due to their sensitiv-
ity to model misspecification, which can cause
instability issues in the case of non-exact models.
We present a new spectral approach that is based
on the Schur triangularization of an observable
matrix, and we carry out the corresponding theo-
retical analysis. Our main result is a bound on the
estimation error that is shown to depend linearly
on the condition number of the ground-truth con-
ditional probability matrix and inversely on the
eigengap of an observable matrix. Numerical ex-
periments show that the proposed method is more
stable, and performs better in general, than the
classical spectral approach using direct matrix di-
agonalization.

1 INTRODUCTION

The problem of learning mixtures of probability distribu-
tions from sampled data is central in the statistical literature
(Titterington, 1985; Lindsay, 1995). In pioneering work,
Chang (1996) showed that it is possible to learn a mix-
ture of product distributions via the spectral decomposition
of ‘observable’ matrices, that is, matrices that can be esti-
mated directly from the data using suitable combinations of
the empirical joint probability distributions (Chang, 1996).
Extensions and improvements of this idea have been devel-
oped more recently in a series of works, where the spectral
technique is applied to a larger class of probability distribu-

tions, including Gaussian mixtures, Hidden Markov mod-
els, stochastic languages, and others (Mossel and Roch,
2006; Hsu et al., 2012; Anandkumar et al., 2012a,c; Balle
et al., 2014; Kuleshov et al., 2015). Some the most
widely studied algorithms include Chang’s spectral tech-
nique (Chang, 1996; Mossel and Roch, 2006), a tensor
decomposition approach (Anandkumar et al., 2012a), and
an indirect learning method for inferring the parameters of
Hidden Markov Models (Hsu et al., 2012).

Spectral algorithms are typically much faster than iterative
solvers such as the EM algorithm (Dempster et al., 1977),
and thanks to the uniqueness of the spectral decomposition,
they enjoy strong optimality guarantees. However, spec-
tral algorithms are more sensitive to model misspecifica-
tion than algorithms that maximize log-likelihood. Studies
in the field of linear system subspace identification have
shown that the solutions obtained via matrix decomposition
methods can be suboptimal (Favoreel et al., 2000; Buesing
et al., 2012). On the other hand, good results have been
obtained by using the output of a spectral algorithm to ini-
tialize the EM algorithm (Zhang et al., 2014).

The practical implementation of the spectral idea is a non-
trivial task because the stability of spectral decomposition
strongly depends on the spacing between the eigenvalues
of the empirical matrices (Anandkumar et al., 2012a; Hsu
and Kakade, 2012). Mossel and Roch (2006) obtain cer-
tain eigenvalue separation guarantees for Chang’s spec-
tral technique via the contraction of higher (order three)
moments through Gaussian random vectors. Anandkumar
et al. (2012a) describe a tensor decomposition method that
generalizes deflation methods for matrix diagonalization to
the case of symmetric tensors of order three. Another algo-
rithmic variant involves replacing the random contracting
vector of Chang’s spectral technique with an ‘anchor obser-
vation’, which guarantees the presence of at least one well
separated eigenvalue (Arora et al., 2012; Song and Chen,
2014) (See also Kuleshov et al. (2015) for a similar idea).
Finally, Zou et al. (2013) have presented a technique for
learning mixtures of product distributions in the presence
of a background model.

220

In this article we propose an alternative and more stable
approach to Chang’s method that is based on Schur de-
composition (Konstantinov et al., 1994). We show that an
approximate triangularization of all observables matrices
appearing in Chang’s spectral method can be obtained by
means of the orthogonal matrices appearing in the Schur
decomposition of their linear combination, an idea that has
been suggested earlier (Corless et al., 1997; Anandkumar
et al., 2012a). Our main result is a theoretical bound on
the estimation error that is based on a perturbation anal-
ysis of Schur decomposition (Konstantinov et al., 1994).
In analogy to related results in the literature, the bound is
shown to depend directly on the model mispecification er-
ror and inversely on an eigenvalue separation gap. How-
ever, the major advantage of the Schur approach is that the
bound depends very mildly on the condition number of the
ground-truth conditional probability matrix (see discussion
after Theorem 1). We compare numerically the proposed
Schur decomposition approach with the standard spectral
technique (Chang, 1996; Mossel and Roch, 2006), and we
show that the proposed method is more stable and does a
better job in recovering the parameters of misspecified mix-
tures of product distributions.

2 SPECTRAL LEARNING VIA SCHUR
DECOMPOSITION

Here we discuss the standard spectral technique (Chang,
1996; Mossel and Roch, 2006), and the proposed Schur de-
composition, in the context of learning mixtures of product
distributions. The complete algorithm is shown in Algo-
rithm 1. Its main difference to previous algorithms is step
13 (Schur decomposition).

The spectral approach in a nutshell. Consider ` dis-
tinct variables taking values in a discrete set with finite
number of elements {1, . . . , d}, and a sample S consisting
of a number of independent joint observations. The em-
pirical distribution corresponding to these observations is
computed by counting the frequencies of all possible joint
events in the sample (step 3), and it is modeled (approxi-
mated) by a mixture of product distributions with a given
number p of mixture components. For every p < d, spec-
tral methods allow one to recover the parameters of this
approximation by means of the simultaneous diagonalisa-
tion of a set of ‘observable’ nearly diagonalizable matrices
{M̂1, . . . , M̂p}, computed from the sample S (step 10).

If the sample is drawn exactly from a mixture of p com-
ponents, and in the limit of an infinite amount of data,
the mixture parameters, i.e., the conditional probability
distributions and the mixing weights of the mixture, are
contained exactly in the eigenvalues of the matrices M̂i

(Chang, 1996). If the sample is not drawn exactly from a
mixture of p product distributions, and in the typical finite

Algorithm 1 Spectral algorithm via Schur decomposition
Input: data sn = [xn, yn, zn] ∈ N , dimension d, number

of mixture components p
Output: estimated conditional probability matrices

X̂, Ŷ , Ẑ and mixing weights vector ŵ
1: P̂ = 0
2: for sn ∈ S do
3: P̂xnynzn = P̂xnynzn + 1
4: end for
5: for i = 1, . . . d do
6: [P̂Yi]jk = P̂jik, [P̂Xi]jk = P̂ijk, [P̂Zi]jk = P̂jki
7: end for
8: compute [P̂xz] =

∑
i[P̂

Y
i], [P̂yz] =

∑
i[P̂

X
i],

[P̂xy] =
∑
i[P̂

Z
i]

9: for i = 1, . . . , d do
10: compute M̂i = P̂Yi P̂

−1
xz

11: end for
12: find θ ∈ Rd such that M̂ =

∑
i θiM̂i has real non-

degenerate eigenvalues.
13: find Û such that ÛT Û = 1 and ÛT M̂Û is upper trian-

gular (Schur decomposition)
14: for i, j = 1, . . . , d do
15: let Ŷi,j = [ÛT M̂iÛ]jj
16: set Ŷi,j = 0 if [ÛT M̂iÛ]jj < 0
17: end for
18: normalize to 1 the columns of Ŷ
19: for i = 1, . . . , d do
20: compute M̂X

i = P̂Xi P̂
−1
yz

21: compute M̂Z
i = P̂Zi P̂

−1
xy

22: end for
23: for i, j = 1, . . . , d do
24: let X̂i,j = [Ŷ −1M̂X

i Ŷ]jj and set X̂i,j = 0 if
[Ŷ −1M̂X

i Ŷ]jj < 0

25: let Ẑi,j = [X̂−1M̂Z
i X̂]jj and set Ẑi,j = 0 if

[X̂−1M̂Z
i X̂]jj < 0

26: end for
27: normalize to 1 the columns of X̂ and Ẑ
28: compute ŵ = X̂−1P̂xy(Ŷ T)−1 and normalize to 1

221

sample setting, the model is only an approximation to the
empirical distribution, and as a result, the matrices M̂i are
no longer simultaneously diagonalizable and an approxi-
mate diagonalisation technique is required. The standard
approach consists of choosing one particular observable
matrix in the set, or a linear combination of all matrices,
and use its eigenvectors to diagonalize each M̂i (Mossel
and Roch, 2006).

Here we propose a new approach that is based on the Schur
decomposition of a linear combination of the observable
matrices. In particular, we first mix the matrices M̂i to
compute a candidate matrix M̂ (step 12), and then we ap-
ply Schur decomposition to M̂ (step 13). The eigenvalues
of each M̂i, and thereby the model parameters, are then
extracted using the orthogonal matrix Û of the Schur de-
composition (steps 15-16). Effectively we exploit the fact
that the real eigenvalues of a matrixA always appear on the
diagonal of its Schur triangularization T = UTAU , even
though the entries of the strictly upper diagonal part of T
may not be unique. Using the perturbation analysis of the
Schur system of a matrix by Konstantinov et al. (1994), we
obtain a theoretical bound on the error of such eigenvalue
estimation as a function of the model misspecification er-
ror, the condition number of the ground-truth matrix X ,
and the separation of the eigenvalues of M̂ (Theorem 1).

Detailed description and the Schur approach. Con-
sider for simplicity a sample S of independent observations
s = [x, y, z] of three distinct variables taking values in the
discrete set {1, . . . , d}. The empirical distribution associ-
ated to the sample S is defined as

P̂i,j,k =
1

|S|
∑

s∈S
δx,iδy,jδz,k (1)

where |S| is the number of elements in S and δab = 1 if
a = b and zero otherwise. The empirical distribution P̂
is a nonnegative order-3 tensor whose entries sum to one.
Its nonnegative rank rank+(P̂) is the minimum number of
rank-1 tensors, i.e., mixture components, required to ex-
press P̂ as a mixture of product distributions. Such a de-
composition of P̂ (exact or approximate) is always pos-
sible (Lim and Comon, 2009). Hence, for any choice of
p ≤ rank+(P̂), we can hypothesize that P̂ is generated by
a model

P̂ = P + ε∆P, ε ≥ 0 (2)

where P ∈ [0, 1]dx×dy×dz is a nonnegative rank-p approx-
imation of P̂ , ε is a model mispecification parameter, and
∆P ∈ [0, 1]dx×dy×dz is a nonnegative tensor whose en-
tries sum to one. The rank-p component P is interpreted as
the mixture of product distributions that approximates the
empirical distribution, and it can be written

Pijk =

p∑

h=1

wh XihYjhZkh , (3)

wherewh ∈ [0, 1] for all h = 1, . . . , p, and we have defined
the conditional probability matrices

X ∈ [0, 1]d×p, 1TdX = 1Tp , (4)

(and similarly for Y,Z), where 1n is a vector of n ones.
The columns of the matrices X,Y, Z encode the condi-
tional probabilities associated with the p mixture compo-
nents, and the mixing weights satisfy

∑
h wh + ε = 1.

The conditional probability matrices X,Y, Z and the mix-
ing weight w of the rank-p mixture can be estimated from
the approximate eigenvalues of a set of observable matrices
M̂i, for i = 1, . . . p, that are computed as follows. Let for
simplicity p = d and consider the matrices [P̂Yi]jk = P̂jik
(step 6) and [P̂xz] =

∑
i[P̂

Y
i] (step 8). Assuming that P̂xz

is invertible, we define (step 10)

M̂i = P̂Yi P̂−1xz (5)

for i = 1, . . . , d. Under the model assumption P̂ = P +
ε∆P , it is easy to show that

M̂i = Mi + ∆Mi + o(ε2) (6)

where ∆Mi ∈ Rd×d is linear in the misspecification pa-
rameter ε, and

Mi = X diag(Yi1, . . . Yip)X
−1 (7)

where diag(v1, . . . vd) denotes a diagonal matrix whose di-
agonal entries are v1, . . . vd. If the model is exact, i.e.,
p = rank+(P̂) or equivalently ε = 0, the matrices {M̂i}
are simultaneously diagonalizable and the entries of the
conditional probability matrix Y are given (up to normal-
ization of its columns) by

Yij ∝ [V −1M̂iV]jj , i, j = 1, . . . d (8)

where V is the matrix of the eigenvectors shared by all M̂i.

When ε 6= 0, the matrices M̂i are no longer simultane-
ously diagonalizable and an approximate simultaneous di-
agonalisation scheme is needed. The standard procedure
consists of selecting a representative matrix M̂ , compute
its eigenvectors V̂ , and use the matrix V̂ to obtain the ap-
proximate eigenvalues of all matrices M̂i and thereby esti-
mate Yij (Mossel and Roch, 2006; Hsu et al., 2012; Anand-
kumar et al., 2012b). In this case, the estimation error is
known to depend on the model misspecification parameter
ε and on the inverse of an eigenvalue separation γ (see, e.g.,
eq. (12)). Using matrix perturbation theorems and proper-
ties of the Gaussian distribution, Mossel and Roch (2006)
have shown that a certain separation γ > α is guaranteed
with probability proportional to (1−α) if V̂ is the matrix of
the eigenvectors of some M̂ =

∑
i θiM̂i, with θ sampled

from a Gaussian distribution of zero mean and unit vari-
ance. In practice, however, this approach can give rise to

222

instabilities (such as negative or imaginary values for Yij),
especially when the size of the empirical matrices grows.

Here we propose instead to triangularize the matrices M̂i

by means of the Schur decomposition of their linear com-
bination M̂ =

∑
i θiM̂i, for an appropriate θ (steps 12-13).

The orthogonal matrix Û obtained from the Schur decom-
position M̂ = Û T̂ ÛT is then used in place of the eigen-
vectors matrix of M̂ to approximately triangularize all the
observable matrices M̂i and thereby recover the mixture
parameters (steps 15 and 24, 25). For example, the condi-
tional probability matrix Y is estimated as

Ŷij ∝ [ÛT M̂iÛ]jj , i, j = 1, . . . d (9)

and normalized so that its columns sum to one. Let ‖ ·‖ de-
note the Frobenius norm. Our main result is the following:

Theorem 1. Let M̂i and Mi be the real d × d matrices
defined in (5) and (6). Suppose it is possible to find θ ∈ Rd

such that M̂ =
∑
k θkM̂k has real distinct eigenvalues.

Then, for all j = 1, . . . , d, there exists a permutation π
such that

|Ŷij − Yiπ(j)| ≤
(
a1

k(X)λmax

γ̂
+ 1

)
E + o(E2) (10)

where k(X) = σmax(X)
σmin(X) is the condition number of the

ground-truth conditional probability matrix X , λmax =
maxi,j Yi,j ,

γ̂ = min
i 6=j

∣∣∣λi(M̂)− λj(M̂)
∣∣∣ > 0 (11)

with λi(M̂) being the ith eigenvalue of M̂ , a1 =

‖θ‖
√

23d2

d−1 , and E = maxi ‖∆Mi‖ = maxi ‖M̂i −Mi‖.

Proof. See appendix.

The analogous bound for the diagonalization approach is
(Anandkumar et al., 2012c, Section B6, eq.11)

|Ŷij−Yiπ(j)| ≤
(
a2k(X)4

λ̃max

γ
+ a3k(X)2

)
E, (12)

where γ = mini 6=j |λi(
∑
k θkMk)− λj(

∑
k θkMk)|,

λ̃max = max(maxi[θ
TY]i,maxi,j Yi,j), and a2, a3 are

constants that depend on the dimensions of the involved
matrices.

When the model misspecification error E is not too large,
the error bound under the Schur approach (10) is charac-
terized by a much smoother dependence on k(X) than the
error bound (12). Moreover, the Schur bound depends on
the eigenvalue gap γ̂ of an observable matrix, and hence
it can be controlled in practice by optimizing θ. The sim-
plified dependence on k(X) of the Schur bound is due to

the good perturbation properties of the orthogonal matrices
involved in the Schur decomposition, as compared to the
eigenvector matrices of the Chang approach. The differ-
ence in the bounds suggests that, for a randomly generated
true model, a spectral algorithm based on the Schur de-
composition is expected to be more stable and accurate in
practice that an algorithm based on matrix diagonalization.
Intuitively, the key to the improved stability of the Schur
approach comes from the freedom to ignore the non-unique
off-diagonal parts in Schur triangulation.

During the reviewing process we were made aware of the
work of Kuleshov et al. (2015), who propose computing a
tensor factorization from the simultaneous diagonalization
of a set of matrices obtained by projections of the tensor
along random directions. Kuleshov et al. (2015) establish
an error bound that is independent of the eigenvalue gap,
but their approach does not come with global optimality
guarantees (but the authors report good results in practice).
It would be of interest to see whether such random projec-
tions combined with a simultaneous Schur decomposition
(see, e.g., De Lathauwer et al. (2004)) could offer improved
bounds.

3 EXPERIMENTS

We have compared the performance of the proposed spec-
tral algorithm based on Schur decomposition with the clas-
sical spectral method based on eigenvalue decomposition.
The two algorithms that we tested are equivalent except for
line 13 of Algorithm 1, which in the classical spectral ap-
proach should be “find V such that V −1MV = D, with
D diagonal”. In all experiments we used the same code
with decompositions performed via the two Matlab func-
tions schur(M) and eig(M) respectively. We tested the
two algorithms on simulated real multi-view and Hidden
Markov Model data. In what follows we denote by ‘schur’
the algorithm based on the Schur decomposition and by
‘eig’ the algorithm based on the eigenvalues-eigenvector
decomposition.

In the first set of experiments we generated multi-view data
from a mixture of product distributions of p mixture com-
ponents in d dimensions. For each experiment, we created
two different datasets N = {[xnynzn] ∈ [1, . . . , d]3},
and Ntest, one for training and one for testing, the latter
containing the labels L ∈ [1, . . . , p]|Ntest| of the mixture
components that generated each instance. The output was
evaluated by measuring the distance between the estimated
conditional probability distributions X̂, Ŷ , Ẑ and the cor-
responding ground-truth values X,Y, Z:

E = ‖X̂ −X‖2 + ‖Ŷ − Y ‖2 + ‖Ẑ − Z‖2. (13)

Since the order of the columns in X̂, Ŷ , Ẑ may be differ-
ent from X,Y, Z, the norms were computed after obtain-
ing the best permutation. We also tested according to a

223

|N |(d = 10, p = 5) Eschur Eeig Sschur Seig ‖T̂schur − T‖ ‖T̂eig − T‖
1000 0.057 (0.013) 0.066 (0.0167) 0.364 (0.135) 0.360 (0.135) 0.016 (0.004) 0.026 (0.009)
2000 0.039 (0.008) 0.120 (0.227) 0.415 (0.068) 0.356 (0.138) 0.011 (0.004) 0.019 (0.008)
5000 0.043 (0.012) 0.046 (0.013) 0.387 (0.114) 0.386 (0.084) 0.013 (0.004) 0.021 (0.004)

10000 0.036 (0.014) 0.047 (0.009) 0.390 (0.130) 0.402 (0.085) 0.013 (0.006) 0.022 (0.007)
20000 0.032 (0.014) 0.113 (0.230) 0.431 (0.124) 0.341 (0.157) 0.011 (0.007) 0.025 (0.007)
50000 0.019 (0.015) 0.025 (0.010) 0.475 (0.1887) 0.434 (0.143) 0.007 (0.006) 0.015 (0.009)

Table 1: Columns recovery error E, classification score S, and distance of the approximate distribution ‖T̂ − T‖ for
multi-view datasets of increasing size. The algorithm based on Schur decomposition obtained the best scores on almost all
datasets.

classification rule where the estimated conditional proba-
bility matrices [X̂, Ŷ , Ẑ] were used to assign each triple in
the test dataset to one of the mixture components. For ev-
ery run, we obtained a classification score by counting the
number of successful predictions divided by the number of
elements in the test dataset:

S =
1

|Ntest|
∑

n∈Ntest

f(n), (14)

f(n) =

{
0 arg maxi X̂xniŶyniẐzni 6= L(n)

1 arg maxi X̂xniŶyniẐzni = L(n)
. (15)

Finally we computed the distance in norm between the re-
covered tensor

T̂ijk =
∑

r

ŵr[X̂]ir[Ŷ]jr[Ẑ]kr (16)

and the original tensor

Tijk =
∑

r

[w]r[X]ir[Y]jr[Z]kr (17)

as follows

‖T̂ − T‖ =

√∑

i,j,k

[T̂ − T]2ijk . (18)

In Table 1 we show the results obtained by the two algo-
rithms for d = 10, p = 5 and increasing size of the training
dataset |N |. In the table we report the average score over
10 analogous runs and the corresponding standard devia-
tion in brackets. When the recovered matrices contained
infinite values we have set E = ‖X‖2 + ‖Y ‖2 + ‖Z‖2,
and ‖T̂ − T‖ = ‖T‖. The proposed algorithm based on
Schur decomposition obtained the best scores on almost all
datasets.

In the second set of experiments we tested the two al-
gorithms on datasets generated by a d-dimensional Hid-
den Markov Model with p hidden states. For each
experiment we randomly picked a model Mtrue =
Mtrue(Otrue, Rtrue, htrue), where Otrue ∈ [0, 1]d×p is
the observation matrix, Rtrue ∈ [0, 1]p×p is the transition

matrix, and htrue ∈ [0, 1]p is the starting distribution, and
we generated two sample datasets, one for training and one
for testing. All sequences sn were simulated starting from
an initial hidden state drawn from htrue and following the
dynamics of the model according to Rtrue and Otrue. The
length of the sequences in the training and testing datasets
was set to 20. We evaluated the two algorithms based on
the columns recovery error E as in the previous set of
experiments. Also, letting Otrue = [otrue1, . . . , otruep]
and O = [o1, . . . , op], we considered a recovery ratio
R(M) = r

p , where r is the number of columns satisfying

‖otruei − oi‖2 < ξ, ξ = 0.052 ∗ d . (19)

In Table 2 we show the results for recovering a d =
{5, 10, 20, 30} HMM with p = 5 hidden states. All val-
ues are computed by averaging over 10 experiments and
the corresponding standard variation is reported between
brackets. The Schur algorithm is in general better than the
classical approach. We note that, for a fixed number of hid-
den states, the inference of the HMM parameters becomes
harder as the dimensionality of the space decreases. As the
recovery ratio R shows, in the limit situation d = p both
algorithms fail (values R = 0 imply unstable solutions).

4 CONCLUSIONS

We have presented a new spectral algorithm for learning
multi-view mixture models that is based on the Schur de-
composition of an observable matrix. Our main result is
a theoretical bound on the estimation error (Theorem 1),
which is shown to depend very mildly (and much more
smoothly than in previous results) on the condition num-
ber of the ground-truth conditional probability matrix, and
inversely on the eigengap of an observable matrix. Numer-
ical experiments show that the proposed method is more
stable, and performs better in general, than the classical
spectral approach using direct matrix diagonalization.

Appendix - Proof of Theorem 1

Theorem 1. Let M̂i and Mi be the real d × d matrices
defined in (5) and (6). Suppose it is possible to find θ ∈ Rd

such that M̂ =
∑
k θkM̂k has real distinct eigenvalues.

224

|N |(d = 30, p = 5) E(Tschur) E(Teig) R(Tschur) R(Teig)
100 0.011 (0.001) 0.014 (0.005) 1 (0) 1 (0)
500 0.011 (0.001) 0.012 (0.002) 1 (0) 1 (0)
1000 0.011 (0.001) 0.013 (0.002) 1 (0) 1 (0)
2000 0.011 (0.001) 0.011 (0.001) 1 (0) 1 (0)
5000 0.010 (0.001) 0.010 (0.001) 1 (0) 1 (0)

|N |(d = 20, p = 5) E(Tschur) E(Teig) R(Tschur) R(Teig)
100 0.019 (0.002) 0.026 (0.010) 1 (0) 0.880 (0.168)
500 0.018 (0.003) 0.044 (0.080) 1 (0) 0.900 (0.316)
1000 0.019 (0.004) 0.021 (0.002) 1 (0) 1 (0)
2000 0.017 (0.002) 0.017 (0.002) 1 (0) 1 (0)
5000 0.015 (0.002) 0.018 (0.006) 1 (0) 0.960(0.126)

|N |(d = 10, p = 5) E(Tschur) E(Teig) R(Tschur) R(Teig)
100 0.047 (0.011) 0.050 (0.011) 0.200 (0.188) 0.220 (0.175)
500 0.044 (0.008) 0.097 (0.154) 0.240 (0.157) 0.200 (0.188)
1000 0.046 (0.017) 0.051 (0.018) 0.260 (0.211) 0.120 (0.139)
2000 0.043 (0.016) 0.048 (0.011) 0.180 (0.220) 0.120 (0.139)
5000 0.040 (0.013) 0.089 (0.153) 0.380 (0.257) 0.200 (0.133)

|N |(d = 5, p = 5) E(Tschur) E(Teig) R(Tschur) R(Teig)
100 0.163 (0.089) 0.164 (0.074) 0 (0) 0 (0)
500 0.173 (0.063) 0.228 (0.294) 0 (0) 0.040 (0.084)
1000 0.191 (0.068) 0.251 (0.273) 0.020 (0.063) 0.040 (0.084)
2000 0.205 (0.070) 0.166 (0.052) 0.060 (0.096) 0 (0)
5000 0.142 (0.063) 0.164 (0.069) 0 (0) 0.020 (0.063)

Table 2: Columns recovery error E and recovery ratio R for recovering HMMs of various dimensionality and hidden
states using the Schur and the standard spectral approach. See text for details.

Then, for all j = 1, . . . , d, there exists a permutation π
such that

|Ŷij − Yiπ(j)| ≤
(
a1

k(X)λmax

γ̂
+ 1

)
E + o(E2) (20)

with Ŷ estimated from (9), and where k(X) = σmax(X)
σmin(X) is

the condition number of the ground-truth conditional prob-
ability matrix X , λmax = maxi,j Yi,j ,

γ̂ = min
i 6=j

∣∣∣λi(M̂)− λj(M̂)
∣∣∣ > 0 (21)

with λi(M̂) being the ith eigenvalue of M̂ , a1 =

‖θ‖
√

23d2

d−1 , and E = maxi ‖∆Mi‖ = maxi ‖M̂i −Mi‖.
Proof. Consider the set of real commuting matrices Mi,
i = 1, . . . d, and their random perturbations M̂i = Mi +
∆Mi defined in (5) and (6). Assume that ‖∆Mi‖ < E for
all i = 1, . . . , d and that θ ∈ Rd is such that the eigenval-
ues of M̂ = M + ∆M =

∑
i θi(Mi + ∆Mi) are real and

non-degenerate. Let Û be the orthogonal matrix defined
by the Schur decomposition of M̂ = ÛT T̂ Û computed by
the matrix decomposition subroutine in Algorithm 1. Note
that Û may not be unique and different choices of Û lead
to different entries in the strictly upper-diagonal part of T̂ .
However, for any given Û such that ÛT T̂ Û is upper trian-
gular, there exists an orthogonal matrix U and a real matrix
∆U ∈ Rd,d such that U = Û + ∆U and

UTMU = (Û + ∆U)T (M̂ −∆M)(Û + ∆U) (22)

= T̂ −∆T (23)
= T (24)

with T upper triangular. Let Yij be the ground-truth matrix
defined in (3) and Ŷ the estimation output by Algorithm 1.
Then, assuming that ∆M and ∆U are small, there exists a
permutation of the indexes π such that, for all i, j = 1, . . . d

δy = |Ŷij − Yiπ(j)| (25)

= |[ÛT M̂iÛ]jj − [UTMiU]π(j)π(j)| (26)

≤ ‖(U −∆U)T (Mi + ∆Mi)(U −∆U)− Ti‖ (27)

=‖∆UTUTi + TiU
T∆U − UT∆MiU + o(∆2)‖(28)

= ‖xTi − Tix+ UT∆MiU + o(∆2)‖ (29)

≤ 2 ‖x‖‖Ti‖+ ‖∆Mi‖+ o(‖∆2‖) (30)

≤ 2 ‖x‖µ+ E + o(‖∆2‖) (31)

where we have defined x = UT∆U , µ = maxi ‖Mi‖ and
used 1 = (U + ∆U)T (U + ∆U) = 1 + xT + x + o(∆2)
where o(∆2) = o(x2) + o(∆Mx).

Following (Konstantinov et al., 1994), a linear bound of
‖x‖ can be estimated as follows. First, observe that the
Schur decomposition of M in (24) implies

low(T̂ x̂− x̂T̂) = low(ÛT∆MÛ) + o(∆2) (32)

where low(A) denotes the strictly lower diagonal part of
A and x̂ = ÛT∆U . Since T̂ is upper triangular, one has
low(T̂ x̂− x̂T̂) = low(T̂ low(x̂)− low(x̂)T̂), i.e. the linear
operator defined by LT̂ (x̂) = low(T̂ x̂− x̂T̂) maps strictly
lower-triangular matrices to strictly lower-triangular matri-
ces. Let L̃T̂ (·) be the restriction of LT̂ (·) to the subspace

225

of lower-triangular matrices, then from (32) one has

L̃T̂ (low(x̂)) = low(ÛT∆MÛ) + o(∆2) (33)

and the operator L̃T̂ is invertible. The invertibility of L̃T̂

follows form the non-singularity of its matrix representa-
tion mat(L̃T̂) defined by

vec
(
L̃T̂ (low(x̂))

)
= mat(L̃T̂)L vec(low(x̂)) (34)

where vec(A) is the columnwise vector representation of
A and L = [Lij] ∈ [0, 1]

d(d−1)
2 ×d2 the projector to the

subspace of vectorized lower-triangular matrices

Lij ∈ [0, 1]d−i×d, i, j = 1, . . . , d− 1 (35)

Lij =

{
0d−i,d i 6= j
[0d−i,i, 1d−i] i = j

(36)

More explicitly, mat(L̃T̂) = L (1 ⊗ T̂ − T̂T ⊗ 1) LT

is a block lower-triangular matrix mat(L̃T̂) = [Mij] ∈
R

d(d−1)
2 × d(d−1)

2 where

[Mij] ∈ Rd−i×d−j , i, j = 1, . . . , d− 1 (37)

Mij =

[0d−i,i−j , 1d−j] i > j
[mi] i = j
0 i < j

(38)

[mi]jk =

T̂j+i−1,k+i j < k

T̂j+i,j+i − Ti,i j = k
0 j > k

(39)

for i, j = 1, . . . d−1. The determinant of M is the product
of the determinants of its diagonal blocks, i.e.

det(M) =
∏

i>j

(T̂ii − T̂jj) (40)

and is not null provided that the eigenvalues of T̂ are real
separated. In this case, the matrix M and hence the opera-
tor L̃T̂ (·) are invertible. From (32) one has

low(x̂) = L̃ −1
T̂

low (ÛT∆MÛ) + o(∆2) (41)

and in particular

‖x̂‖ =
√

2‖low(x̂)‖ (42)

=
√

2‖L̃ −1T ‖F ‖∆M‖+ o(‖∆‖2) (43)

where the first equality is obtained using the linear approxi-
mation x̂ = −x̂T and ‖A‖2 = ‖low(A)‖2 +‖diag(A)‖2 +
‖up(A)‖2, with diag(A) and up(A) denoting the diagonal
and upper-diagonal parts of A. The norm of the inverse
operator can be bound using its matrix realization, i.e.

‖L̃ −1
T̂
‖F = ‖M−1‖ ≤ 1

σmin(M)
(44)

where σmin(A) is the smallest singular value of A. We can
estimate σmin(M) by using the following lemma

σmin(A) = min
rank(B)<n

‖A−B‖, rank(A) = n (45)

and observing that the rank deficient matrix closest to M
is obtained by setting T̂ = Tsingular in (38), where Tsingular
is defined by

[Tsingular]i,j =

{
T̂j∗,j∗ if i = j = i∗

T̂i,j otherwise
(46)

with (i∗, j∗) = arg mini 6=j |T̂ii − T̂jj |. One has

σmin(M) = ‖M −Msingular‖ (47)

=

√∑

i,j

(M −Msingular)2i,j (48)

=
√
d− 1 γ̂ (49)

γ̂ = |T̂i∗i∗ − T̂j∗j∗ | = min
i 6=j
|T̂ii − T̂jj | (50)

where the last equality is obtained by noting that, for all
i = 1, . . . , d, the element T̂ii appears d− 1 times in M .

The norm upper bound µ in (31) obeys

µ = max
i
‖Mi‖ (51)

= max
i
‖X diag(Yi1, . . . Yid)X

−1‖ (52)

≤ ‖X‖‖X−1‖max
i
‖diag(Yi1, . . . , Yid)‖ (53)

≤ k(X)
√
dmax

i,j
Yij (54)

= k(X)
√
d λmax . (55)

where X is the ground-truth matrix defined in (3) and
k(X) = σmax(X)

σmin(X) is the condition number of X .

Finally, the statement (10) follows from (31), (43), ‖x̂‖ =
‖x‖, (44), (49), (55) and

‖∆M‖2 = ‖
d∑

i

θi∆Mi‖2 (56)

=
d∑

j,k

∣∣∣∣∣
d∑

i

θi[∆Mi]jk

∣∣∣∣∣

2

(57)

≤
d∑

j,k

‖θ‖2
d∑

i

[∆Mi]
2
jk (58)

= ‖θ‖2‖
d∑

i

∆Mi‖2 (59)

≤ d‖θ‖2E2 (60)

where we have used the Cauchy-Schwarz inequality and
the definition of E. In particular, for all higher orders
terms contained in ∆2, one has o(‖∆2‖) = o(‖x‖2) +
o(‖∆M‖2) = o(E2).

226

References
Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M., and Tel-

garsky, M. (2012a). Tensor decompositions for learning
latent variable models. CoRR, abs/1210.7559.

Anandkumar, A., Hsu, D., Huang, F., and Kakade, S. M.
(2012b). Learning high-dimensional mixtures of graph-
ical models. arXiv preprint arXiv:1203.0697.

Anandkumar, A., Hsu, D., and Kakade, S. M. (2012c).
A method of moments for mixture models and hidden
Markov models. CoRR, abs/1203.0683.

Arora, S., Ge, R., and Moitra, A. (2012). Learning topic
models-going beyond SVD. In Foundations of Com-
puter Science (FOCS), 2012 IEEE 53rd Annual Sympo-
sium on, pages 1–10. IEEE.

Balle, B., Hamilton, W., and Pineau, J. (2014). Meth-
ods of moments for learning stochastic languages: Uni-
fied presentation and empirical comparison. In Jebara,
T. and Xing, E. P., editors, Proceedings of the 31st In-
ternational Conference on Machine Learning (ICML-
14), pages 1386–1394. JMLR Workshop and Conference
Proceedings.

Buesing, L., Sahani, M., and Macke, J. H. (2012). Spec-
tral learning of linear dynamics from generalised-linear
observations with application to neural population data.
In Advances in neural information processing systems,
pages 1682–1690.

Chang, J. T. (1996). Full reconstruction of Markov mod-
els on evolutionary trees: identifiability and consistency.
Math Biosci, 137(1):51–73.

Corless, R. M., Gianni, P. M., and Trager, B. M.
(1997). A reordered Schur factorization method for zero-
dimensional polynomial systems with multiple roots.
pages 133–140. ACM Press.

De Lathauwer, L., De Moor, B., and Vandewalle, J.
(2004). Computation of the canonical decomposition by
means of a simultaneous generalized Schur decomposi-
tion. SIAM Journal on Matrix Analysis and Applications,
26(2):295–327.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977).
Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society. Series
B (Methodological), pages 1 – 38.

Favoreel, W., De Moor, B., and Van Overschee, P. (2000).
Subspace state space system identification for industrial
processes. Journal of Process Control, 10(2):149–155.

Hsu, D. and Kakade, S. M. (2012). Learning gaussian mix-
ture models: Moment methods and spectral decomposi-
tions. CoRR, abs/1206.5766.

Hsu, D., Kakade, S. M., and Zhang, T. (2012). A spectral
algorithm for learning hidden Markov models. Journal
of Computer and System Sciences, 78(5):1460 – 1480.

Konstantinov, M. M., Petkov, P. H., and Christov, N. D.
(1994). Nonlocal perturbation analysis of the Schur sys-
tem of a matrix. SIAM Journal on Matrix Analysis and
Applications, 15(2):383–392.

Kuleshov, V., Chaganty, A., and Liang, P. (2015). Tensor
factorization via matrix factorization. In 18th Interna-
tional Conference on Artificial Intelligence and Statistics
(AISTATS).

Lim, L. H. and Comon, P. (2009). Nonnegative approxima-
tions of nonnegative tensors. Journal of Chemometrics,
23(7-8):432–441.

Lindsay, B. G. (1995). Mixture models: theory, geome-
try and applications. In NSF-CBMS regional conference
series in probability and statistics, pages 1–163. JSTOR.

Mossel, E. and Roch, S. (2006). Learning nonsingular phy-
logenies and hidden Markov models. The Annals of Ap-
plied Probability, 16(2):583–614.

Song, J. and Chen, K. C. (2014). Spectacle: Faster and
more accurate chromatin state annotation using spectral
learning. bioRxiv.

Titterington, D. M. (1985). Statistical analysis of finite mix-
ture distributions. Wiley series in probability and math-
ematical statistics. Wiley, Chichester ; New York.

Zhang, Y., Chen, X., Zhou, D., and Jordan, M. I. (2014).
Spectral methods meet EM: A provably optimal algo-
rithm for crowdsourcing. In Advances in Neural Infor-
mation Processing Systems, pages 1260–1268.

Zou, J. Y., Hsu, D., Parkes, D. C., and Adams, R. P. (2013).
Contrastive learning using spectral methods. In Ad-
vances in Neural Information Processing Systems, pages
2238–2246.

227

Semi-described and semi-supervised learning with Gaussian processes

Andreas Damianou
Dept. of Computer Science & SITraN

The University of Sheffield
Sheffield, UK

Neil D. Lawrence
Dept. of Computer Science & SITraN

The University of Sheffield
Sheffield, UK

Abstract

Propagating input uncertainty through non-linear
Gaussian process (GP) mappings is intractable.
This hinders the task of training GPs using un-
certain and partially observed inputs. In this
paper we refer to this task as “semi-described
learning”. We then introduce a GP framework
that solves both, the semi-described and the
semi-supervised learning problems (where miss-
ing values occur in the outputs). Auto-regressive
state space simulation is also recognised as a spe-
cial case of semi-described learning. To achieve
our goal we develop variational methods for han-
dling semi-described inputs in GPs, and couple
them with algorithms that allow for imputing the
missing values while treating the uncertainty in a
principled, Bayesian manner. Extensive exper-
iments on simulated and real-world data study
the problems of iterative forecasting and regres-
sion/classification with missing values. The re-
sults suggest that the principled propagation of
uncertainty stemming from our framework can
significantly improve performance in these tasks.

1 INTRODUCTION

In many real-world applications missing values can occur
in the data, for example when measurements come from
unreliable sensors. Correctly accounting for the partially
observed instances is important in order to exploit all avail-
able information and increase the strength of the inference
model. The focus of this paper is on Gaussian process (GP)
models that allow for Bayesian, non-parametric inference.

When the missing values occur in the outputs, the corre-
sponding learning task is known as semi-supervised learn-
ing. For example, consider the task of learning to classify
images where the labelled set is much smaller than the to-
tal set. Bootstrapping is a potential solution to this prob-
lem [Rosenberg et al., 2005], according to which a model

trained on fully observed data imputes the missing outputs.
Previous work in semi-supervised GP learning involved the
cluster assumption [Lawrence and Jordan, 2005] for clas-
sification. Here we consider an approach which uses the
manifold assumption [Chapelle et al., 2006; Kingma et al.,
2014] which assumes that the observed, complex data are
really generated by a compressed, less-noisy latent space.

The other often encountered missing data problem has to
do with unobserved input features (e.g. missing pixels in
input images). In statistics, a popular approach is to im-
pute missing inputs using a combination of different edu-
cated guesses [Rubin, 2004]. In machine learning, Ghahra-
mani and Jordan [1994] learn the joint density of the in-
put and output data and integrate over the missing values.
For Gaussian process models the missing input case has re-
ceived only little attention, due to the challenge of prop-
agating the input uncertainty through the non-linear GP
mapping. In this paper we introduce the notion of semi-
described learning to generalise this scenario. Specifically,
we define semi-described learning to be the task of learning
from inputs that can have missing or uncertain values. Our
approach to dealing with missing inputs in semi-described
GP learning is, algorithmically, closer to data imputation
methods. However, in contrast to past approaches, the
missing values are imputed in a fully probabilistic manner
by considering explicit distributions in the input space.

Our aim in this paper is to develop a general framework that
solves the semi-supervised and semi-described GP learn-
ing. We also consider the related forecasting regression
problem, which is seen as a pipeline where predictions
are obtained iteratively in an auto-regressive manner, while
propagating the uncertainty across the predictive sequence,
as in [Girard et al., 2003; Quiñonero-Candela et al., 2003].
Here, we cast the auto-regressive GP learning as a partic-
ular type of semi-described learning. We seek to solve all
tasks within a single coherent framework that preserves the
fully Bayesian property of the GP methodology.

To achieve our goals we need three methodological tools.
Firstly, we need approximations allowing us to consider
and communicate uncertainty between the inputs and

228

the outputs of the non-linear GP model. For this, we
build on the variational approach of Titsias and Lawrence
[2010] which allows for approximately propagating den-
sities throughout the nodes of GP-based directed graphi-
cal models. The resulting representation is particularly ad-
vantageous, because the whole input domain is now coher-
ently associated with posterior distributions. We can then
sample from the input space in a principled manner so as
to populate small initial labelled sets in semi-supervised
learning scenarios. In that way, we avoid heuristic self-
training methods [Rosenberg et al., 2005] that rely on boot-
strapping and present problems due to over-confidence.
Previously suggested approaches for modelling input un-
certainty in GPs also lack the feature of considering an ex-
plicit input distribution for both training and test instances.
Specifically, [Girard et al., 2003; Quiñonero-Candela et al.,
2003] consider the case of input uncertainty only at test
time. Propagating the test input uncertainty through a
non-linear GP results in a non-Gaussian predictive density,
but Girard et al. [2003]; Quiñonero-Candela et al. [2003];
Quiñonero-Candela [2004] rely on moment matching to
obtain the predictive mean and covariance. On the other
hand, Oakley and O’Hagan [2002] do not derive analytic
expressions but, rather, develop a scheme based on simu-
lations. McHutchon and Rasmussen [2011] rely on local
approximations inside the latent mapping function, rather
than modelling the approximate posterior densities directly.
Dallaire et al. [2009] do not propagate the uncertainty of
the inputs all the way through the GP mapping but, rather,
amend the kernel computations to account for the input un-
certainty. [Quinonero-Cañdela and Roweis, 2003] can be
seen as a special case of our developed framework, when
the data imputation is performed using a standard GP-LVM
[Lawrence, 2006]. Another advantage of our framework is
that it allows us to consider different levels of input un-
certainty per point and per dimension without, in princi-
ple, increasing the danger of under/overfitting, since input
uncertainty is modelled through a set of variational rather
than model parameters.

The second methodological tool needed to achieve our
goals has to do with the need to incorporate partial or un-
certain observations into the variational framework. For
this, we develop a variational constraint mechanism which
constrains the distribution of the input space given the ob-
served noisy values. This approach is fast, and the whole
framework can be incorporated into a parallel inference al-
gorithm [Gal et al., 2014; Dai et al., 2014]. In contrast,
Damianou et al. [2011] consider a separate process for
modelling the input distribution. However, that approach
cannot easily be extended for the data imputation purposes
that concern us, since we cannot consider different uncer-
tainty levels per input and per dimension and, additionally,
computation scales cubicly with the number of datapoints,
even within sparse GP frameworks. The constraints frame-
work that we propose is interesting not only as an inference

tool but also as a modelling approach: if the inputs are con-
strained with the outputs, then we obtain the Bayesian ver-
sion of the back-constraints framework of Lawrence and
Quiñonero Candela [2006] and Ek et al. [2008]. How-
ever, in contrast to these approaches, the constraint defined
here is a variational one, and operates upon a distribution,
rather than single points. Zhu et al. [2012] also follow the
idea of constraining the posterior distribution with rich side
information, albeit for a completely different application.
In contrast, Osborne and Roberts [2007] handle partially
missing sensor inputs by modelling correlations in the in-
put space through special covariance functions.

Thirdly, the variational methods developed here need to be
encapsulated into algorithms that perform data imputation
while correctly accounting for the introduced uncertainty.
We develop such algorithms after showing how the consid-
ered applications can be cast as learning pipelines that rely
on correct propagation of uncertainty between each stage.

In summary, our contributions in this paper are the fol-
lowing; firstly, by building on the Bayesian GP-LVM [Tit-
sias and Lawrence, 2010] and developing a variational con-
straint mechanism we demonstrate how uncertain GP in-
puts can be explicitly represented as distributions in both
training and test time. Secondly, we couple our varia-
tional methodology with algorithms that allow us to solve
problems associated with partial or uncertain observations:
semi-supervised learning, auto-regressive iterative fore-
casting and, finally, a newly studied type of GP learning
which we refer to as “semi-described” learning. We solve
these applications within a single framework, allowing
for handling the uncertainty in semi-supervised and semi-
described problems in a coherent way. The software ac-
companying this paper can be found at: http://git.io/A3TN.
This paper extends our previous workshop paper [Dami-
anou and Lawrence, 2014].

2 UNCERTAIN INPUTS
REFORMULATION OF GP MODELS

Assume a dataset of input–output pairs stored by rows in
matrices X ∈ <n×q and Y ∈ <n×p respectively. Through-
out this paper we will denote rows of the above matrices as
{yi,:,xi,:} and columns (dimensions) as {yj ,xj}, while
single elements (e.g. yi,j) will be denoted with a double
subscript. We first outline the standard GP formulation,
where all variables are fully observed. By assuming that
outputs are corrupted by zero-mean Gaussian noise, de-
noted by εf , we obtain the following generative model:

yi,j = fj(xi,:) + (εf)i,j , (εf)i,j ∼ N
(
0, β−1

)
. (1)

We place GP priors on the mapping f , so that the function
instantiations F = {fj}pj=1 follow a Gaussian distribution
p(fj |X) = N (fj |0,K), where K is the covariance matrix
obtained by evaluating the GP covariance function kf on

229

the inputs X. Therefore, the model likelihood p(Y|X) is:

∫

F

p(Y|F)p(F|X) =

p∏

j=1

N
(
yj |0,K + β−1I

)
. (2)

In the other end of the spectrum is the GP-LVM [Lawrence,
2006], where the inputs are fully unobserved (i.e. latent).
This corresponds to the unsupervised GP setting. In the
absence of observed inputs, the likelihood p(Y|X) takes
the same form as in equation (2) but the inputs X now
need to be recovered from the outputs Y through maxi-
mum likelihood. The Bayesian GP-LVM proceeds by ad-
ditionally placing a Gaussian prior on the latent space,
p(X) =

∏n
i=1N (xi,:|0, I), and approximately integrating

it out by constructing a variational lower bound F , where

F ≤ log p(Y) = log

∫

X

p(Y|X)p(X),

and by introducing a variational distribution

q(X) =
∏n

i=1
q(xi,:) =

∏n

i=1
N (xi,:|µi,:,Si,:) ,

where Si,: is a diagonal matrix, so that µi,:, diag(Si,:) ∈
<q . We can derive an expression for this variational bound,

F = 〈log p(Y|X)〉q(X) − KL (q(X) ‖ p(X)) , (3)

where 〈·〉q(X) denotes an expectation with respect to q(X).
Since X appears non-linearly inside p(Y|X) (in the inverse
of the covariance matrix K + β−1I), the first term of the
above variational bound is intractable. However, we can
follow [Titsias and Lawrence, 2010] to approximate the in-
tractable expectation analytically.

In this paper we wish to define a general framework that
operates in the whole range of the two aforementioned ex-
trema, i.e. the fully observed and fully unobserved inputs
case. The first step to obtaining such a framework is to
allow for uncertainty in the inputs. We assume that the in-
puts X are not observed directly but, rather, we only have
access to their noisy versions {zi,:}ni=1 = Z ∈ <n×q . The
relationship between the noisy and true inputs is given by
assuming Gaussian noise:

xi,: = zi,: + (εx)i,:, (εx)i,: ∼ N (0,Σx) , (4)

so that p(X|Z) =
∏n
i=1N (xi,:|zi,:,Σx). Obviously,

when this distribution collapses to a delta function we re-
cover the standard GP case, and when Z is not given we
recover the GP-LVM. The problem with the modelling as-
sumption of equation (4) is that now we cannot use equa-
tion (1), since the inputs are not available. On the other
hand, if we replace xi,: in that equation with zi,:, then we
effectively ignore the input noise. McHutchon and Ras-
mussen [2011] proceed by combining equations (1) and (4)
to obtain the GP mapping fj(xi,: − (εx)i,:) which is then

treated using local approximations. However, our aim in
this paper is to consider an explicit input distribution. One
way to achieve this is to treat the unobserved true inputs
as latent variables to be estimated from the marginal like-
lihood p(Y|Z) =

∫
X
p(Y|X)p(X|Z). Following Dami-

anou et al. [2011] we can obtain a variational lower bound
F ≤ log p(Y|Z), with:

F = 〈log p(Y|X)〉q(X) − KL (q(X) ‖ p(X|Z)) . (5)

This formulation corresponds to the graphical model of
Figure 1(a). However, with this approach one needs to ad-
ditionally estimate the noise parameters Σx, which might
be challenging given their large number and their interplay
with the variational noise parameters {Si,:}ni=1. Therefore
we considered an alternative solution which we found to
result in better performance.

Z Y

X

f

(a)

Z Y

X

f

(b)

Z Y

f

X X

(c)

Figure 1: Incorporating uncertain inputs Z in GPs through
an intermediate input space X by considering: (a) a Gaus-
sian prior on X, centered on Z and (b) a variational con-
straint (dashed line) on the approximate posterior. Figure
(c) represents our two-stage approach to dealing with miss-
ing outputs for classification, where the dotted line repre-
sents a discriminative mapping.

2.1 VARIATIONAL CONSTRAINT

An alternative way of relating the true with the noisy in-
puts can be obtained by focusing on the posterior rather
than the prior distribution. To start with, we re-express the
variational lower bound of equation (5) as:

log p(Y|Z) ≥
∫

X

q(X) log
p(Y|Z)p(X|Y,Z)

q(X)
= F

from where we break the logarithm to obtain:

F = log p(Y|Z)− KL (q(X) ‖ p(X|Y,Z)) .

We see that the lower bound becomes exact when the vari-
ational distribution q(X) matches the true posterior distri-
bution of the noise-free latent inputs given the observed in-
puts and outputs. To allow for this approximation we in-
troduce a simple variational constraint which operates on
the factorised distribution, which is now written as q(X|Z)
to highlight its dependency on Z. In the simplest case

230

where all inputs are observed but uncertain, the constraint
just consists of replacing the variational means µi,: of each
factor q(xi,:) with the corresponding observed input zi,:.
The variational parameters Si,: then account for the uncer-
tainty. Similarly to the back-constraint of Lawrence and
Quiñonero Candela [2006]; Ek et al. [2008], our varia-
tional constraint does not constitute a probabilistic map-
ping. However, it allows us to encode the input noise
directly in the approximate posterior without having to
specify additional noise parameters or sacrifice scalability.
Next, we elaborate on the exact form of the constraint.

In the general case, namely having inputs that are only par-
tially observed, we can define a similar constraint which
specifies a variational distribution as a mix of Gaussian and
Dirac delta distributions. Notationally we consider data
to be split into fully and partially observed subsets, e.g.
Z = (ZO,ZU), where O and U denote fully and partially
observed sets respectively. The features missing in ZU can
appear in different dimension(s) for each individual point
zU
i,:, but for notational clarity U will index rows containing

at least one missing dimension. In this case, the variational
distribution is constrained to have the form

q(X|Z, {O, U}) = q(XO|ZO) q(XU |ZU)

=
∏

i∈O
N
(
xO
i,:|zO

i,:, εI
)∏

i∈U
N
(
xU
i,:|µU

i,:,S
U
i,:

)
, (6)

where ε → 0, so that the corresponding distributions ap-
proximate a Dirac delta. Notice that for a partially observed
row zU

i,:, we can still replace an observed dimension j with
its corresponding observation in the second set of factors
of equation (6), i.e. µU

i,j = zU
i,j , so q(XU |ZU) 6= q(XU).

Given the above, as well as a spherical Gaussian prior for
p(X), the required intractable density log p(Y|Z) is ap-
proximated with a variational lower bound:

F = 〈log p(Y|X)〉q(X|Z) − KL (q(X|Z) ‖ p(X)) , (7)

where for clarity we dropped the dependency on {O, U}
from our expressions. Since the Dirac functions are ap-
proximated with sharply peaked Gaussians inside the pos-
terior q(X|Z), the above variational bound can be com-
puted in the same manner as the Bayesian GP-LVM bound
of equation (3). Specifically, the KL term is tractable, since
it only involves Gaussians.

As for the first term of equation (7), we follow the Bayesian
GP-LVM methodology and we augment the probability
space with m extra samples U = {ui}mi=1 of the latent
function f evaluated at a set of pseudo-inputs (known as
“inducing points”) Xu, so that U ∈ <m×p and Xu ∈
<m×q . Due to the consistency of GPs, p(U|Xu) is a Gaus-
sian distribution. From now on we omit dependence on Xu

from our expressions. The likelihood then becomes:

p(Y,F,U|X) = p(Y|F)p(F|U,X)p(U).

Then, the marginal p(Y|X) can be obtained from
Jensen’s inequality after introducing a variational distribu-
tion q(F,U), so that F̂ ≤ log p(Y|X), where:

F̂ =

∫

F,U

q(F,U) log
p(Y|F)p(F|U,X)p(U)

q(F,U)
. (8)

Now the fist term of equation (7) is approxmated as
〈p(Y|X)〉q(X|Z) ≥ 〈F̂〉q(X|Z). However, this approx-
imation is still intractable, since the problematic term
p(F|U,X) still appears inside F̂ and contains X in the
inverse of the covariance matrix, thus rendering the expec-
tation intractable. The trick of Titsias and Lawrence [2010]
is to define a variational distribution of the form:

q(F,U) = p(F|U,X)q(U). (9)

Replacing equation (9) inside the bound of equation (8) re-
sults in the cancellation of p(F|U,X), leaving us with a
tractable (partial) bound, which takes the form:

〈p(Y|X)〉q(X|Z) ≥ 〈F̂〉q(X|Z) = −KL (q(U) ‖ p(U))

+

∫

X,U

[
q(X|Z)q(U)

∫

F

p(F|U,X) log p(Y|F)

]
.(10)

The augmentation trick decouples the latent function val-
ues given the inducing points, so that any uncertainty in the
inputs can be propagated through the nested integral. After
this operation, the inducing outputs U can be marginalised
out. Therefore, the above integral is analytically tractable,
since the nested integral is tractable and results in a Gaus-
sian where X no longer appears in the inverse of the covari-
ance matrix. The final lower bound to use as an objective
function is thus obtained by using the partial bound of eq.
(10) in place of the first term of equation (7), thus obtaining
a new, final bound (more details in the Appendix):

F2 = 〈F̂〉q(X|Z) − KL (q(X|Z) ‖ p(X)) . (11)

To summarise, the variational methodology seeks to ap-
proximate the true posterior with a variational distribution
q(F,U,X) = q(F)q(U)q(X). To achieve this, q(F) is
constrained to take the exact form p(F|U,X). This term
is then “eliminated”, giving us tractability, but its effect
is re-introduced through the variational distribution (in the
nested integral of eq. (10)). Contrast this with the varia-
tional constraint on q(X): that approximate posterior fac-
tor is constrained according to Z, so that the effect of Z is
considered only through the q(X|Z) (eq. (11)). The above
comparison gives insight in the conceptual similarity of the
variational approach followed to obtain tractability and the
one followed for handling partially observed inputs.

The variationally constrained model is shown in fig. 1(b).
The total set of parameters to be optimised in the objective
function F2 of equation (11) (e.g. using a gradient-based
optimiser) are the model parameters (θf , β), where θf de-
notes the hyper-parameters of the covariance function kf ,

231

and the variational parameters (Xu, {µU
i,:,S

U
i,:}i∈U) (q(U)

can be optimally eliminated, see Appendix). Depending on
the application and corresponding learning algorithm, cer-
tain dimensions of {µU

i,:,S
U
i,:} can be treated as observed.

Such algorithms are discussed in the following sections.

3 GP LEARNING WITH MISSING
VALUES

We formulate both the semi-described and semi-supervised
learning as particular instances of learning a mapping
function where the inputs are associated with uncertainty.
In both cases, we devise a two-step strategy based on
our uncertain inputs GP framework, which allows to ef-
ficiently take into account the partial information in the
given datasets to improve the predictive performance. For
brevity, we refer to the framework described in the previ-
ous section as a variationally constrained GP, from where
a semi-described, an auto-regressive and a semi-supervised
GP approach are obtained as special cases, given the algo-
rithms that will be explained in this section.

3.1 SEMI-DESCRIBED LEARNING

We assume a set of observed outputs Y that correspond
to fully observed inputs ZO and partially observed inputs
ZU , so that Z = (ZO,ZU). To make the correspondence
clearer, we also split the observed outputs according to the
sets {O, U}, so that Y = (YO,YU), but note that both out-
put sets are fully observed. We are then interested in learn-
ing a regression function from Z to Y by using all avail-
able information. Since in the variationally constrained
GP the inputs are replaced by distributions q(XO|ZO) and
q(XU |ZU), the uncertainty over ZU can be taken into ac-
count naturally through this variational distribution. In this
context, we formulate a data imputation-based approach
which is inspired by self-training methods; nevertheless, it
is more principled in the handling of uncertainty.

Specifically, the algorithm has two stages; in the first step,
we use the fully observed data subset (ZO,YO) to train an
initial variationally constrained GP model which encapsu-
lates the sharply peaked variational distribution q(XO|ZO)
given in equation (6). Given this model, we can then use
YU to estimate the predictive posterior1 q(XU |ZU) in the
missing locations of ZU (for the observed locations we
match the mean with the observations in a sharply peaked
marginal, as for ZO). Essentially, we replace the missing
locations of the variational means µU

i,: and variances SU
i

of q(XU |ZU) with the predictive mean and variance ob-
tained through the “self-training” step. This selection for
{µU

i,:,S
U
i } constitutes nevertheless only an initialisation. In

1The predictive posterior for test data Y∗ is obtained by max-
imising a variational lower bound similar to the training one (eq.
(11)), but X and Y are now replaced with (X,X∗) and (Y,Y∗).

the next step, these parameters are further optimised to-
gether with the fully observed data. Specifically, after ini-
tializing q(X|Z) = q(XO,XU |Z) as explained in step 1,
we proceed to train a variationally constrained GP model
on the full (extended) training set ((ZO,ZU) , (YO,YU)),
which contains fully and partially observed inputs.

Algorithm 1 outlines the approach in more detail. This for-
mulation defines a semi-described GP approach which nat-
urally incorporates fully and partially observed examples
by communicating the uncertainty throughout the relevant
parts of the model in a principled way. Indeed, the predic-
tive uncertainty obtained when imputing missing values in
the first step of the pipeline is incorporated as input uncer-
tainty in the second step of the pipeline. In extreme cases
resulting in very non-confident predictions, for example in
the presence of outliers, the corresponding locations will
simply be ignored automatically due to the large uncer-
tainty. This mechanism, together with the subsequent opti-
misation of the parameters of q(XU |ZU) in stage 2, guards
against reinforcing bad predictions when imputing missing
values based on a smaller training set. The model includes
GP regression and the GP-LVM as special cases. In par-
ticular, in the limit of having no observed values our semi-
described GP is equivalent to the GP-LVM and when there
are no missing values it is equivalent to GP regression.

There are some similarities to traditional self-training
[Rosenberg et al., 2005], but as there are no straightforward
mechanisms to propagate uncertainty in that domain, they
typically rely on boot-strapping followed by thresholding
“bad” samples to prevent model over-confidence. In our
framework, the predictions made by the initial model only
constitute initialisations which are later optimised along
with model parameters and, hence, we refer to this step as
partial self-training. Further, the predictive uncertainty is
not used as a hard measure of discarding unconfident pre-
dictions; instead, we allow all values to contribute accord-
ing to an optimised uncertainty measure, that is, the input
variances Si. Therefore, the way in which uncertainty is
handled makes the self-training part of our algorithm prin-
cipled compared to many bootstrap-based approaches.

DEMONSTRATION

We considered simulated and real-world data to demon-
strate our semi-described GP algorithm. The simulated
data were created by sampling inputs Z from a GP (which
was unknown to the competing models) and then giving
these samples as input to another unknown GP, to obtain
corresponding outputs Y. For the real-world data demon-
stration we considered a motion capture dataset taken from
subject 35 in the CMU motion capture database. We se-
lected a subset of walk and run motions of a human body
represented as a set of 59 joint locations. We formulated
a regression problem where the first 20 dimensions of the
original data are used as targets and the remaining 39 as

232

Algorithm 1 Semi-described learning with uncertain input GPs.

1: Given: Fully and partially observed inputs, ZO and ZU respectively, corresponding to fully observed outputs YO and YU .

2: Construct q(XO|ZO) =
∏n

i=1N
(
xO
i,:|zO

i,:, εI
)
,where: ε→ 0

3: Fix q(XO|ZO) in the optimiser # (i.e. q(XO|ZO) has no free parameters)

4: Train a variationally constrained GP modelMO with inputs q(XO|ZO) and outputs YO

5: for i = 1, · · · , |YU | do
6: Predict the distributionN

(
xU
i,:|µ̂U

i,:, Ŝ
U
i

)
≈ p(xU

i,:|yU
i,:,MO) from the approximate posterior of modelMO.

7: Initialise parameters {µU
i,:,S

U
i } of q(xU

i,:|zU
i,:) = N

(
xU
i,:|µU

i,:,S
U
i

)
as follows:

8: for j = 1, · · · , q do
9: if zU

i,j is observed then
10: µU

i,j = zU
i,j and (SU

i)j,j = ε,where: ε→ 0
11: Fix µU

i,j , (S
U
i)j,j in the optimiser # (i.e. they don’t constitute parameters)

12: else
13: µU

i,j = µ̂U
i,j and (SU

i)j,j = (ŜU
i)j,j

14: Train model MO,U with inputs q(X{O,U}|Z{O,U}) and outputs (YO,YU). The input distribution q(X{O,U}|Z{O,U}) =
q(XO|ZO)q(XU |ZU) is constructed in steps 2, 5-13 and further optimised in the non-fixed locations.

15: ModelMO,U now constitutes the semi-described GP and can be used for all required prediction tasks.

inputs. That is, given a partial joint representation of the
human body, the task is to infer the rest of the represen-
tation. For both datasets, simulated and motion capture,
we selected a portion of the training inputs, denoted as ZU ,
to have randomly missing features. The extended dataset
((ZO,ZU) , (YO,YU)) was used to train: a) our method,
referred to as semi-described GP (SD-GP) b) multiple lin-
ear regression (MLR) c) regression by performing nearest
neighbour (NN) search between the test and training in-
stances, in the observed input locations d) performing data
imputation using the standard GP-LVM. Not taking into
account the predictive uncertainty during imputation was
found to have catastrophic results in the simulated data,
as the training set was not robust against bad predictions.
Therefore, the “GP-LVM” variant was not considered in
the real data experiment. We also considered: e) a standard
GP which cannot handle missing inputs straightforwardly
and so was trained only on the observed data (ZO,YO).
The goal was to reconstruct test outputs Y∗ given fully ob-
served test inputs Z∗. For the simulated data we used the
following sizes: |ZO| = 40, |ZU | = 60 and |Z∗| = 100.
The dimensionality of the inputs is q = 15 and of the
outputs is p = 5. For the motion capture data we used
|ZO| = 50, |ZU | = 80 and |Z∗| = 200. In fig. 2 we plot the
MSE obtained by the competing methods for a varying per-
centage offv missing features in ZU . For the simulated data
experiment, each of the points in the plot is an average of 4
runs which considered different random seeds. For clarity,
the y−axis limit is fixed in figure 2, because some methods
produced huge errors. The full picture is in figure 5 (Ap-
pendix). As can be seen in the figures, the semi-described
GP is able to handle the extra data and make much better
predictions, even if a very large portion is missing. Indeed,
its performance starts to converge to that of a standard GP
when there are 90% missing values in ZU and performs

identically to the standard GP when 100% of the values are
missing. We found that when q is large compared to p and
n, then the data imputation step can be problematic as the
percentage of missing features in ZU approaches 100% i.e.
the method is reliant on having some covariates available.
Appendix D discusses this behaviour, but a more system-
atic investigation is left as future work.

3.2 AUTO-REGRESSIVE GAUSSIAN PROCESSES

Having a method which implicitly models the uncertainty
in the inputs of a GP also allows for doing predictions
in an autoregressive manner [Oakley and O’Hagan, 2002]
while propagating the uncertainty through the predictive
sequence [Girard et al., 2003; Quiñonero-Candela et al.,
2003]. Specifically, assuming that the given data Y consti-
tute a multivariate timeseries where the observed time vec-
tor t is equally spaced, and given a time-window of length
τ , we can reformat Y into input-output collections of pairs
Ẑ and Ŷ as follows: the first input to the model, ẑ1,:, will
be given by the stacked vector [y1,:, ...,yτ,:] and the first
output, ŷ1,:, will be given by yτ+1,: and similarly for the
other data in Ẑ and Ŷ, so that:

[ẑ1,:, ẑ2,:, ..., ẑn−τ,:] =[
[y1,:,y2,:, ...,yτ,:], [y2,:,y3,:, ...,yτ+1,:] , ...

]
,

[ŷ1,:, ŷ2,:, ..., ŷn−τ,:] = [yτ+1,:,yτ+2,:, ...,yn,:].

To perform extrapolation we first train the model on
the modified dataset (Ẑ, Ŷ). By referring to the semi-
described formulation described in Section 3.1, we assign
all training inputs to the observed set O. After training, we
can perform iterative prediction to find a future sequence
Ẑ∗ := [yn+1,:,yn+2,:, ...] where, similarly to the approach
taken by Girard et al. [2003], the predictive variance in each

233

0 20 40 60 80
0.05

0.1

0.15

0.2

0.25

0.3
M

S
E

SD−GP
GP
NN
GPLVM

Toy data

0 20 40 60 80
0.2

0.25

0.3

0.35

0.4

0.45

0.5

M
S

E

Motion capture data

% missing features% missing features

Figure 2: MSE for predictions obtained by different methods on semi-described learning. GP cannot handle partial ob-
servations, thus the uncertainty (2σ) is constant; for clarity, the errorbar is plotted separately on the right of the dashed
vertical line (for nonsensical x values). The results for simulated data are obtained from 4 trials. For clarity, the limits on
the y−axis are fixed, so when the errors become too big for certain methods they get off the chart. The errorbars for the
GPLVM-based approach are also too large and not plotted. The full picture is given in figure 5 (Appendix).

step is accounted for and propagated in the subsequent pre-
dictions. The algorithm makes iterative 1-step predictions
in the future; initially, the output ẑ1,∗ := yn+1,: will be pre-
dicted (given the training set) with predictive variance Ŝ∗;1.
In the next step, the “observations” set will be augmented
to include the distribution of predictions over yn+1,:, by

defining q(xn+1,:|ẑ1,∗) = N
(
xn+1,:|ẑ∗,1, Ŝ∗;1

)
, and so

on. This simulation process can be seen as constructing a
predictive sequence step by step, i.e. the newly inserted in-
put points constitute parts of the (test) predictive sequence
and not training points. Therefore, this procedure can be
seen as an iterative version of semi-described learning.

Note that it is straightforward to extend this model by ap-
plying this auto-regressive mechanism in a latent space of
a stacked model or, more generally, as a deep GP [Dami-
anou and Lawrence, 2013]. By additionally introducing
functions that map from this latent space nonlinearly to an
observation space, we obtain a fully nonlinear state space
model in the manner of Deisenroth et al. [2012]. For our
model, uncertainty is encoded in both the states and the
nonlinear transition functions. Correct propagation of un-
certainty is vital in well calibrated models of future system
behavior, and automatic determination of the structure of
the model (e.g. the window size) can be informative in de-
scribing the order of the underlying dynamical system.

DEMONSTRATION: ITERATIVE FORECASTING

Here we demonstrate our framework in the simulation of a
state space model. We consider the Mackey-Glass chaotic
time series, a standard benchmark which was also consid-
ered by Girard et al. [2003]. The data is one-dimensional
so that the timeseries can be represented as pairs of values
{y, t}, t = 1, 2, · · · , n and simulates the process:

dζ(t)
dt

= −bζ(t) + α ζ(t−T)
1+ζ(t−T)10 , (α, b, T) = (0.2, 0.1, 17).

Obviously the generating process is very non-linear, ren-
dering this dataset challenging. We trained the autoregres-
sive model on data from this series, where the modified
dataset {ẑ, ŷ} was created with τ = 18 and we used the
first 4τ = 72 points to train the model and predicted the
subsequent 1110 points through iterative free simulation.

We compared our method with a “naive autoregressive” GP
model where the input-output pairs were given by the au-
toregressive modification of the dataset {ẑ, ŷ}. For that
model, the predictions are made iteratively and the pre-
dicted values after each predictive step are added to the
“observation” set. However, this standard GP model has
no straight forward way of incorporating/propagating the
uncertainty and, therefore, the input uncertainty is zero for
every step of the iterative predictions. We also compared
against the method of Girard et al. [2003]2, denoted in the
plots as “GPuncert”. Figure 3 shows the results for the last
310 steps (i.e. t = 800 onwards) of the full free simula-
tion (1110−step ahead forecasting); figure 6 (Appendix)
gives a more complete picture. As can be seen in the vari-
ances plot, both our method and GPuncert are more robust
in handling the uncertainty throughout the predictions; the
“naive” GP method underestimates the uncertainty. Conse-
quently, as can be seen in figure 6, in the first few predic-
tions all methods give the same answer. However, once the
predictions of the “naive” method diverge a little by the true
values, the error is carried on and amplified due to under-
estimating the uncertainty. On the other hand, GPuncert per-
haps overestimates the uncertainty and, therefore, is more
conservative in its predictions, resulting in higher errors.
Quantification of the error is shown in Table 1 (Appendix).

2We implemented the basic moment matching approach, al-
though in the original paper the authors use additional approxima-
tions, namely Taylor expansion around the predictive moments.

234

90
0

10
00

11
00

12
00

−2

−1

0

1

2
Iterative predictions

90
0

10
00

11
00

12
00

Iterative predictions

90
0

10
00

11
00

12
00

0

0.02

0.04

0.06

0.08

0.1

0.12
Predictions: 2σ

true ours GP GPunc

Figure 3: Chaotic timeseries: forecasting 1110 steps ahead by iterative prediction. The first 800 steps are not shown here,
but figure 6 (Appendix) gives the complete picture. Comparing: a “naive autoregressive” GP which does not propagate
(and hence underestimates) the uncertainties; the method of Girard et al. [2003], referred to as GPuncert; and our approach,
which closely tracks the true test sequence until the last steps of the extrapolation. The comparative depiction of the
predictions is split into two plots (for clarity), left and center. The rightmost plot shows the predictive uncertainties (2σ).
x−axis is the prediction step (t) and y−axis is the function value, f(t).

3.3 SEMI-SUPERVISED LEARNING

In this section we study semi-supervised learning which, in
contrast to semi-described learning, is for handling missing
values in the outputs. This scenario is typically encoun-
tered in classification settings. Therefore, we introduce the
sets {L,M} that index respectively the labelled and miss-
ing (unlabelled) rows of the outputs (labels) Y. Accord-
ingly, the full dataset is split so that Z = (ZL,ZM) and
Y = (YL,YM), where Z is now fully observed. The task
is then to devise a method that improves classification per-
formance by using both labelled and unlabelled data.

Inspired by Kingma et al. [2014] we define a semi-
supervised GP framework where features are extracted
from all available information and, subsequently, are given
as inputs to a discriminative classifier. Specifically, using
the whole input space Z, we learn a low-dimensional la-
tent space X through an approximate posterior q(X) ≈
p(X|Z). Obviously, this specific case where the input
space is uncertain but totally unobserved (i.e. a latent
space) just reduces to the Bayesian GP-LVM model. No-
tice that the posterior q(X) is no longer constrained with
Z but, rather, directly approximates p(X|Z), since we now
have a forward probabilistic mapping from X to Z and Z is
treated as a random variable with p(Z|X) being a Gaussian
distribution, i.e. exactly the same setting used in the GP-
LVM. Since there is one-to-one correspondence between
X, Z and Y, we can notationally write X = (XL,XM).
Further, since we assume that q(X) is factorised across dat-
apoints, we can write q(X) = q(XL)q(XM).

In the second step of our semi-supervised algorithm, we
train a discriminative classifier from q(XL) to the observed
labelled space, YL. The main idea is that, by including
the inputs ZM in the first learning step, we manage to de-

fine a better latent embedding from which we can extract
a more useful set of features for the discriminative clas-
sifier. Notice that what we would ideally use as input to
the discriminative classifier is a whole distribution, rather
than single point estimates. Therefore, we wish to take ad-
vantage of the associated uncertainty; specifically, we can
populate the labelled set by sampling from the distribution
q(XL). For example, if a latent point xL

i,: corresponds to
the input-output pair (zL

i,:,y
L
i,:), then a sample from q(xL

i,:)
will be assigned the label yL

i,:.

The two inference steps described above are graphically
depicted in Figure 1c. This is exactly the same setting
suggested by Kingma et al. [2014], but here we wish to
investigate its applicability in a non-parametric, Gaussian
process based framework. The very encouraging results
reported below point towards the future direction of apply-
ing this technique in the framework of deep Gaussian pro-
cesses [Damianou and Lawrence, 2013], so as to be able
to compare to [Kingma et al., 2014] who considered deep,
generative (but nevertheless parametric) models.

DEMONSTRATION

We evaluated our semi-supervised GP algorithm in two
datasets: firstly, we considered 2000 examples from the
USPS handwritten digit database [Hull, 1994]. These ex-
amples contained the digits {0, 2, 4, 6} and were split so
that 800 instances were used as a test set. From the re-
maining 1200 instances, we selected various portions to be
labelled and the rest to be unlabelled. The experiment was
repeated 8 times (each time involving different subsets due
to different random seeds), so that we can include error-
bars in our plots. Secondly, we considered the oil flow data
[Bishop and James, 1993] that consist of 1000, 12 dimen-

235

20 40 60 80 100 120 140 160

20

40

60

80

100

120

E

rr
or

s
O

il
da

ta

Semi−supervised (using sampling)

PCA

Observed

-

Observed
100 200 300 400 500 600

30

40

50

60

70

80

90

100

D
ig

its
 d

at
a

Semi−supervised (using sampling)

Bayesian GP−LVM

PCA

E

rr
or

s

-
Figure 4: Plots of the number of incorrectly classified test points as a function of |ZL|. Multiple trials were performed,
but the resulting errorbars are shown at one standard deviation. In small training sets large errorbars are expected because,
occasionally, very challenging instances/outliers can be included and result in high error rates (for all methods) that affect
the overall standard deviation. The Bayesian GP-LVM baseline struggled with small training sets and performed very
badly in the oil dataset; thus, it is not plotted for clarity.

sional observations belonging to three known classes cor-
responding to different phases of oil flow. In each of the
10 performed trials, 700 instances were used as a test set
whereas the rest were split to different proportions of la-
belled/unlabelled sets. Multi-label data can also be handled
by our method, but this case was not considered here.

Our method learned a low-dimensional embedding q(X)
from all available inputs, and a logistic regression classifier
was then trained from the relevant parts of the embedding
to the corresponding class space. We experimented with
taking different numbers of samples from q(XL) for popu-
lating the initial labelled set; the difference after increasing
over 6 samples was minimal. Also, when using only the
mean of q(XL) (as opposed to using multiple samples) we
obtained worse results (especially in the digits data), but
this method still outperformed the baselines. We compared
with training the classifier on features learned by (a) a stan-
dard Bayesian GP-LVM and (b) PCA, both applied in ZL.
Both of the baselines do not take ZM into account, nor do
they populate small training sets using sampling. Figure 4
presents results suggesting that our approach manages to
effectively take into account unlabelled data. The gain in
performance is significant, and our method copes very well
even when labelled data is extremely scarce. Notice that all
methods would perform better if a more robust classifier
was used, but logistic regression was a convenient choice
for performing multiple trials fast. Therefore, our conclu-
sions can be safely drawn from the obtained relative errors,
since all methods were compared on equal footing.

4 DISCUSSION AND FUTURE WORK

We have defined semi-described learning as the scenario
where missing and uncertain values occur in the inputs. We

considered semi-described problems to be part of a general
class of missing value problems that also includes semi-
supervised learning and auto-regressive future state sim-
ulation. A principled method for including input uncer-
tainty and partial inputs in Gaussian process models was
also introduced to solve these problems within a single, co-
herent framework. We explicitly represent this uncertainty
as approximate posterior distributions which are variation-
ally constrained. This allowed us to further define algo-
rithms for casting the missing value problems as particular
instances of learning pipelines which use our variationally
constrained GP formulation as a building block. Our algo-
rithms resulted in significant performance improvement in
forecasting, regression and classification. We believe that
our contribution paves the way for building powerful mod-
els for representation learning from real-world, heteroge-
nous data. In particular, this can be achieved by combin-
ing our method with deep Gaussian process models [Dami-
anou and Lawrence, 2013] that use relevance determination
techniques [Damianou et al., 2012], so as to consolidate
semi-described hierarchies of features that are gradually
abstracted to concepts. We plan to investigate the appli-
cation of these models in settings where control [Deisen-
roth et al., 2014] or robotic systems learn by simulating
future states in an auto-regressive manner and by using in-
complete data with miminal human intervention. Transfer
learning is another promising direction for applying these
models.

ACKNOWLEDGEMENTS

This research was funded by the European research project
EU FP7-ICT (Project Ref 612139 “WYSIWYD”). We
thank Michalis Titsias for useful discussions.

236

References
C. M. Bishop and G. D. James. Analysis of multiphase

flows using dual-energy gamma densitometry and neural
networks. Nuclear Instruments and Methods in Physics
Research, A327:580–593, 1993.

O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-
supervised Learning. MIT Press, Cambridge, MA, 2006.

Z. Dai, A. Damianou, J. Hensman, and N. Lawrence. Gaus-
sian process models with parallelization and GPU accel-
eration. arXiv preprint arXiv:1410.4984, 2014.

P. Dallaire, C. Besse, and B. Chaib-Draa. Learning Gaus-
sian process models from uncertain data. In Neural In-
formation Processing, pages 433–440. Springer, 2009.

A. Damianou and N. Lawrence. Deep Gaussian processes.
In Proceedings of the Sixteenth International Workshop
on Artificial Intelligence and Statistics (AISTATS), pages
207–215. JMLR W&CP 31, 2013.

A. Damianou and N. Lawrence. Uncertainty propagation in
Gaussian process pipelines. NIPS workshop on modern
non-parametrics, 2014.

A. Damianou, M. Titsias, and N. D. Lawrence. Variational
Gaussian process dynamical systems. In Advances in
Neural Information Processing Systems 24, pages 2510–
2518. 2011.

A. Damianou, C. Ek, M. Titsias, and N. Lawrence. Mani-
fold relevance determination. In Proceedings of the 29th
International Conference on Machine Learning (ICML),
pages 145–152. Omnipress, 2012.

M. P. Deisenroth, R. D. Turner, M. F. Huber, U. D.
Hanebeck, and C. E. Rasmussen. Robust filtering and
smoothing with Gaussian processes. Automatic Control,
IEEE Transactions on, 57(7):1865–1871, 2012.

M. P. Deisenroth, D. Fox, and C. E. Rasmussen. Gaus-
sian processes for data-efficient learning in robotics and
control. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 99:1, 2014. ISSN 0162-8828.

C. H. Ek, J. Rihan, P. Torr, G. Rogez, and N. D. Lawrence.
Ambiguity modeling in latent spaces. In A. Popescu-
Belis and R. Stiefelhagen, editors, Machine Learning for
Multimodal Interaction (MLMI 2008), LNCS, pages 62–
73. Springer-Verlag, 28–30 June 2008.

Y. Gal, M. van der Wilk, and C. E. Rasmussen. Distributed
variational inference in sparse Gaussian process regres-
sion and latent variable models. arXiv:1402.1389, 2014.

Z. Ghahramani and M. I. Jordan. Learning from incom-
plete data. Technical Report CBCL 108, Massachusetts
Institute of Technology, 1994.

A. Girard, C. E. Rasmussen, J. Quiñonero Candela, and
R. Murray-Smith. Gaussian process priors with uncer-
tain inputs—application to multiple-step ahead time se-
ries forecasting. In Advances in Neural Information Pro-
cessing Systems, pages 529–536, 2003.

J. J. Hull. A database for handwritten text recognition re-
search. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 16:550–554, 1994.

D. P. Kingma, D. J. Rezende, S. Mohamed, and M. Welling.
Semi-supervised learning with deep generative models.
CoRR, abs/1406.5298, 2014.

N. D. Lawrence. The Gaussian process latent variable
model. Technical Report CS-06-03, The University of
Sheffield, Department of Computer Science, 2006.

N. D. Lawrence and M. I. Jordan. Semi-supervised learn-
ing via Gaussian processes. In L. Saul, Y. Weiss, and
L. Bouttou, editors, Advances in Neural Information
Processing Systems, volume 17, pages 753–760, Cam-
bridge, MA, 2005. MIT Press.

N. D. Lawrence and J. Quiñonero Candela. Local dis-
tance preservation in the GP-LVM through back con-
straints. In W. Cohen and A. Moore, editors, Proceed-
ings of the International Conference in Machine Learn-
ing, volume 23, pages 513–520. Omnipress, 2006. ISBN
1-59593-383-2. doi: 10.1145/1143844.1143909.

A. McHutchon and C. E. Rasmussen. Gaussian process
training with input noise. In NIPS, 2011.

J. Oakley and A. O’Hagan. Bayesian inference for
the uncertainty distribution of computer model outputs.
Biometrika, 89(4):769–784, 2002.

M. Osborne and S. J. Roberts. Gaussian processes for pre-
diction. Technical report, Department of Engineering
Science, University of Oxford, 2007.

J. Quiñonero-Candela. Learning with uncertainty-
Gaussian processes and relevance vector machines. PhD
thesis, Technical University of Denmark, 2004.

J. Quinonero-Cañdela and S. Roweis. Data imputation and
robust training with Gaussian processes. NIPS, 2003.

J. Quiñonero-Candela, A. Girard, J. Larsen, and C. E. Ras-
mussen. Propagation of uncertainty in bayesian kernel
models-application to multiple-step ahead forecasting.
In Acoustics, Speech, and Signal Processing, 2003. Pro-
ceedings.(ICASSP’03). 2003 IEEE International Con-
ference on, volume 2, pages II–701. IEEE, 2003.

C. Rosenberg, M. Hebert, and H. Schneiderman. Semi-
supervised self-training of object detection mod-
els. In Application of Computer Vision, 2005.
WACV/MOTIONS ’05 Volume 1., volume 1, pages 29–
36, Jan 2005. doi: 10.1109/ACVMOT.2005.107.

D. B. Rubin. Multiple imputation for nonresponse in sur-
veys, volume 81. John Wiley & Sons, 2004.

M. Titsias and N. D. Lawrence. Bayesian Gaussian pro-
cess latent variable model. Journal of Machine Learning
Research - Proceedings Track, 9:844–851, 2010.

J. Zhu, A. Ahmed, and E. P. Xing. Medlda: maximum
margin supervised topic models. The Journal of Machine
Learning Research, 13(1):2237–2278, 2012.

237

Budget Constraints in Prediction Markets

Nikhil Devanur
Microsoft Research

Miroslav Dudı́k
Microsoft Research

Zhiyi Huang
University of Hong Kong

David M. Pennock
Microsoft Research

Abstract

We give a detailed characterization of optimal
trades under budget constraints in a prediction
market with a cost-function-based automated
market maker. We study how the budget con-
straints of individual traders affect their ability
to impact the market price. As a concrete ap-
plication of our characterization, we give suffi-
cient conditions for a property we call budget
additivity: two traders with budgets B and B′

and the same beliefs would have a combined im-
pact equal to a single trader with budget B +B′.
That way, even if a single trader cannot move
the market much, a crowd of like-minded traders
can have the same desired effect. When the
set of payoff vectors associated with outcomes,
with coordinates corresponding to securities, is
affinely independent, we obtain that a generaliza-
tion of the heavily-used logarithmic market scor-
ing rule is budget additive, but the quadratic mar-
ket scoring rule is not. Our results may be used
both descriptively, to understand if a particular
market maker is affected by budget constraints
or not, and prescriptively, as a recipe to construct
markets.

1 INTRODUCTION

A prediction market is a central clearinghouse for people
with differing opinions about the likelihood of an event—
say Hillary Clinton to win the 2016 U.S. Presidential
election—to trade monetary stakes in the outcome with one
another. At equilibrium, the price to buy a contract paying
$1 if Clinton wins reflects a consensus of sorts on the prob-
ability of the event. At that price, and given the wagers
already placed, no agent is willing to push the price further
up or down. Prediction markets have a good track record
of forecast accuracy in many domains [11, 19].

The design of combinatorial markets spanning multiple

logically-related events raises many interesting questions.
What information can be elicited—the full probability dis-
tribution, or specific properties of the distribution? What
securities can the market allow traders to buy and sell?
How can the market support and ensure a variety of trades?
For example, in addition to the likelihood of Clinton win-
ning the election, we may want to elicit information about
the distribution of her electoral votes.1 If we create one se-
curity for each possible outcome between 0 and 538, each
paying $1 iff Clinton gets exactly that many electoral votes,
the market is called complete, allowing us to elicit a full
probability distribution. Alternatively, if we create just two
securities, one paying out $x if Clinton wins x electoral
votes, and the other paying out $x2, we cannot elicit a full
distribution, but we can still elicit the mean and variance of
the number of electoral votes.

When agents are constrained in how much they can trade
only by risk aversion, prediction market prices can be in-
terpreted as a weighted average of traders’ beliefs [2, 20],
a natural reflection of the “wisdom of the crowd” with a
good empirical track record [14] and theoretical support
[2]. However, when agents are budget constrained, discon-
tinuities and idiosyncratic results can arise [7, 16] that call
into question whether the equilibrium prices can be trusted
to reflect any kind of useful aggregation.

We consider prediction markets with an automated market
maker [1, 4, 13] that maintains standing offers to trade ev-
ery security at some price. Unlike a peer-to-peer exchange,
all transactions route through the market maker. The com-
mon market makers have bounded loss and are (myopi-
cally) incentive compatible: the best (immediate) strategy
is for a trader to move the market prices of all securities
to equal his own belief. The design of such an automated
market maker boils down to choosing a convex cost func-
tion [1]. This amount of design freedom presents an oppor-
tunity to seek cost functions that satisfy additional desider-
ata such as computational tractability [1, 6].

1 A U.S. Presidential candidate receives a number of electoral
votes between 0 and 538. The candidate who receives a plurality
of electoral votes wins the election.

238

Most of the literature assumes either risk-neutral or risk-
averse traders with unbounded budgets. In this paper, we
consider how agents with budget constraints trade in such
markets, a practical reality in almost all prediction markets
denominated in both real and virtual currencies. Our re-
sults help with a systematic study of the market’s liquidity
parameter, or the parameter controlling the sensitivity of
prices to trading volume. Setting the liquidity is a nearly
universal practical concern and, at present, is more (black)
art than science. We adopt the notion of the “natural budget
constraint” introduced by Fortnow and Sami [8]: the agent
is allowed only those trades for which the maximum loss
for any possible outcome does not exceed the budget.

The main contribution of this paper is a rich, geometric
characterization of the impact of budget constraints. Price
vectors, outcomes and trader beliefs are embedded in the
space of the same dimension as the number of securities.
Outcome vectors enumerate security payoffs; belief vec-
tors enumerate the traders’ expectations of payoffs. We
consider, for a fixed belief, the locus of the resulting price
vectors of an optimal trade as a function of the budget. We
show that the price vector moves in the convex hull of the
belief and the set of tight outcomes, in a direction that is
perpendicular to the set of tight outcomes. We also intro-
duce the concept of budget additivity: two agents with bud-
gets B and B′ and the same beliefs have the same power to
move the prices as a single agent with the same belief and
budgetB+B′. An absence of budget additivity points to an
inefficiency in incorporating information from the traders.
We show that budget additivity is a non-trivial property by
giving examples of market makers that do not satisfy bud-
get additivity. We give a set of sufficient conditions on the
market maker and the set of securities offered which guar-
antee budget additivity. Further, for two of the most com-
monly used market makers (the quadratic and logarithmic
market scoring rules), we show sufficient conditions on the
set of securities that guarantee budget additivity.

Of greatest practical interest is the application of our re-
sults to markets consisting of several independent ques-
tions, with each question priced according to a separate
logarithmic market scoring rule. This setup constitutes a
de facto industry standard, and the companies that use (or
used) it include Inkling Markets,2 Consensus Point,3 Mi-
crosoft and Yahoo! [17]. Our Theorems 5.6 and 5.8 show
that these markets are budget additive.

Previously, Fortnow and Sami [8] considered a different
question: do budget-constrained bidders always move the
market prices in the direction of their beliefs? They showed
that the answer to this is no: there always exist market
prices, beliefs and budgets such that the direction of price
movement is not towards the belief. We give a richer char-

2inklingmarkets.com
3www.consensuspoint.com

acterization of how the market prices move in the presence
of budget constraints, by charting the path the prices take
with increasing budgets. The impossibility result of Fort-
now and Sami [8] can be easily derived from our character-
ization (see Appendix D).4

A designer of a prediction market has a lot of freedom but
little guidance, and our results can be used both descrip-
tively and prescriptively. As a descriptive tool, our results
enable us to analyze commonly used market makers and
understand if budget constraints hamper information aggre-
gation in these markets. As a prescriptive tool, our results
can be used to construct markets that are budget additive. In
particular, we speculate that budget additivity simplifies the
choice of the liquidity parameter in the markets, because it
allows considering trader budgets in aggregate.

Proof overview and techniques. Our analysis borrows
heavily from techniques in convex analysis and builds on
the notion of Bregman divergence. We use the special case
of Euclidean distance (corresponding to a quadratic market
scoring rule) to form our geometric intuition which we then
extend to arbitrary Bregman divergences. For the sake of
an example, consider a complete market over a finite set of
outcomes, where the market prices lie in a simplex, exactly
coinciding with the set of probability distributions over out-
comes. Every possible outcome imposes a constraint on
the set of prices to which a trader can move the market, be-
cause the trader is not allowed to exceed the budget if that
outcome occurs. The prices satisfying this constraint form
a ball with the outcome at its center. The set of feasible
prices to which the trader can move the market is therefore
the intersection of these balls (see Figure 1).

The key structural result we obtain is the chart of the price
movement. Suppose that there is an infinite sequence of
agents with infinitesimally small budgets all with the same
belief. What is the path along which the prices move from
some initial values? This is determined by the agents’ be-
lief and the set of budget constraints that are tight at any
point, corresponding to the highest risk outcomes (out-
comes with the highest potential loss). We show that the
price vector can always be written as a convex combina-
tion of these highest risk outcomes and the agents’ belief.
Further, the market prices move in a direction that is per-
pendicular to the affine space of these outcomes.

The agents’ belief partitions the simplex interior into re-
gions, where each region is the interior of the convex hull
of the agent belief and a particular subset of outcomes. For
a region that is full-dimensional, every interior point can
be uniquely written as a convex combination of the agent
belief and all except one outcome. Assume that the current
price vector lies in this region. In the anticipation of the
further development, we call this outcome profitable and
others risky. Motivated by the characterization above, we

4The full version of this paper on arXiv includes the appendix.

239

ω1 ω2

ω3

ω1 ω2

ω3

`1

`2

Figure 1: Left: ◦ —current state, × —belief, � —optimal action for a given belief and budget. Three circles bound the
allowed final states for budget 0.1. We plot optimal actions for two different beliefs. Right: A path from the initial state to
the belief, consisting of optimal actions for increasing budgets.

move perpendicular to the risky outcomes in the direction
towards the agents’ belief. As a result, we increase the risk
of risky outcomes (equally for all outcomes), while getting
closer to the one profitable outcome (and hence increas-
ing its profit). The characterization then guarantees that the
prices along this path are indeed those chosen by traders at
increasing budgets, because the risky outcomes yield tight
constraints.

We would like the same to be true for the lower dimensional
regions as well; that is, for the set of tight constraints to
be exactly the corresponding set of outcomes defining the
convex hull. In fact, this property is sufficient to guaran-
tee budget additivity. The markets for which the tight con-
straints are exactly the minimal set of outcomes that define
the region the price lies in are budget additive. (We conjec-
ture that the converse holds as well.) The entire path is then
as follows: w.l.o.g. you start at a full-dimensional region,
move along the perpendicular until you hit the boundary of
the region and you are in a lower-dimensional region, move
along the perpendicular in this lower-dimensional region,
and so on until you reach the belief (see Figure 1). The set
of tight constraints is monotonically decreasing. We show
that such markets are characterized by a certain acute an-
gles assumption on the set of possible outcomes. Loosely
speaking, this assumption guarantees that outcomes out-
side the minimal set behave as the profitable outcome in
the above example.

Other related work. There is a rich literature on scor-
ing rules and prediction markets. Two of the most stud-
ied scoring rules are the quadratic scoring rule [3] and the
logarithmic market scoring rule [13]. We consider cost-
function-based prediction markets [4, 12], a fully general
class under reasonable assumptions [1, 5]. Their equiva-
lence with proper scoring rules has been implicitly noted
by Gneiting and Raftery [10]. Several authors have studied
relationships between utility functions and price dynamics
in prediction markets, drawing a parallel to online learning
[2, 5, 9]. Our analysis touches on the problem of setting the

market maker’s liquidity parameter [15, 17], which deter-
mines how (in)sensitive prices are to trading volume. With
budget additivity, the market designer can optimize liquid-
ity according to aggregate budgets, without worrying about
how budgets are partitioned among traders.

2 PRELIMINARIES

Securities and payoffs. Consider a probability space with
a finite set of outcomes Ω ⊆ Rn. A security is a financial
instrument whose payoff depends on the realization of an
outcome in Ω. In other words, the payoff of a security is
a random variable of the probability space. We consider
trading with n securities corresponding to n coordinates of
the outcomes ω ∈ Ω. A security can be traded before the
realization is observed with the intention that the price of a
security serves as a prediction for the expected payoff, i.e.,
the expected value of the corresponding coordinate.

Cost function, prices and utilities. An automated mar-
ket maker always offers to trade securities, for the right
price. In fact the price vector is the current prediction of
the market maker for the expectation of ω. A cost func-
tion based market maker is based on a differentiable con-
vex cost function, C : Rn → R. It is a scalar function of an
n-dimensional vector q ∈ Rn representing the number of
outstanding shares5 for our n securities. We also refer to q
as the state of the market.

The vector of instantaneous prices of the securities is sim-
ply the gradient of C at q, denoted by p(q) := ∇C(q).
The prices of securities change continuously as the secu-
rities are traded, so it is useful to consider the cost of
trading a given quantity of securities. The cost of buy-
ing δ ∈ Rn units of securities (where a negative value
corresponds to selling) is determined by the path integral∫
π
p(q̄) · dq̄ = C(q + δ) − C(q), where π is any smooth

5We allow trading fractions of a security. Negative values cor-
respond to short-selling.

240

curve from q to q + δ.

When the outcome ω is realized, the vector of δ units of
securities pays off an amount of δ · ω. Thus, the realized
utility of a trader whose trade δ moved the market state
from q to q′ = q + δ is

U(q′, ω; q) := (q′ − q) · ω − C(q′) + C(q) .

We make a standard assumption that the maximum achiev-
able utility, which is also the maximum loss of the market
maker, is bounded by a finite constant (in Section 4, we in-
troduce a standard approach to check this easily). LetM
be the convex hull of the payoff vectors,M := conv(Ω). It
is easy to see thatM contains exactly the vectors µ ∈ Rn
which can be realized as expected payoffs E[ω] for some
probability distribution over Ω. For a trader who believes
that E[ω] = µ, the expected utility takes form

U(q′, µ; q) := E [U(q′, ω; q)] = (q′−q)·µ−C(q′)+C(q) .

Throughout, we consider a single myopic trader who trades
as if he were the last to trade. A key property satisfied by
expected utility is path independence: for any q, q̄, q′ ∈
Rn, U(q′, µ; q̄) + U(q̄, µ; q) = U(q′, µ; q), that is, risk-
neutral traders have no incentive to split their trades. For a
risk-neutral trader, q′ ∈ Rn is an optimal action if and only
if µ = ∇C(q′) = p(q′) (this follows from the first-order
optimality conditions). In other words, the trader is incen-
tivized to move the market to the prices corresponding to
his belief as long as such prices exist. In general, there may
be multiple states yielding the same prices, so the inverse
map p−1(µ) returns a set, which can be empty if no state
yields the price vector µ.

Commonly-used cost functions include the quadratic cost,
logarithmic market-scoring rule (LMSR) and the log-
partition function. They are described in detail in Ap-
pendix A. The quadratic cost is defined by C(q) = 1

2‖q‖22
and p(q) = q. Log-partition function is defined as C(q) =
ln(
∑
ω∈Ω e

q·ω). It subsumes LMSR as a special case for
the complete market with the outcomes corresponding to
vertices of the simplex. The prices under log-partition cost
correspond to the expected value of ω under the distribution
Pq(ω) = eq·ω−C(q) over Ω, i.e., p(q) = EPq [ω].

Budget constraints. Trading in prediction markets needs
an investment of capital. It is possible that an agent loses
money on the trade, in particular U(q′, ω; q) could be neg-
ative for some ω. One restriction on how an agent trades
could be that he is unable to sustain a big loss, due to a bud-
get constraint. We consider the notion of natural budget
constraint defined by Fortnow and Sami [8] which states
that the loss of the agent is at most his budget, for all ω ∈ Ω.
Given a starting market state q0 and a budget of B ≥ 0, a
trader with the belief µ ∈M then solves the problem:

max
q∈Rn

U(q, µ; q0)

s.t. U(q, ω; q0) ≥ −B ∀ω ∈ Ω .
(2.1)

For quadratic costs, each constraint corresponds to a sphere
with one of the outcomes at its center, so the feasible region
is an intersection of these spheres. We will later see that
this generalizes to an intersection of balls w.r.t. a Bregman
divergence for general costs.

In general, there may be multiple q optimizing this objec-
tive. In the following definition we introduce notation for
various solution sets we will be analyzing. The belief µ is
fixed throughout most of the discussion, so we suppress the
dependence on µ.
Definition 2.1 (Solution sets). Let Q̂(B; q0) denote the set
of solutions of Convex Program (2.1) for a fixed initial state
and budget. Let Q̂(q0) =

⋃
B≥0 Q̂(B; q0) denote the set of

solutions of (2.1) for a fixed initial state across all budgets.
Let Q̂(ν; q0) = p−1(ν) ∩ Q̂(q0) denote the set of states q
that optimize (2.1) for some budget B and yield the market
price vector ν.

The next theorem shows that solutions for a fixed initial
state and budget always yield the same price vector. It is
proved in Appendix B.
Theorem 2.2. If q, q′ ∈ Q̂(B; q0), then p(q) = p(q′).

Geometry of linear spaces. We finish this section by re-
viewing a few standard geometric definitions we use in next
sections. Let X ⊆ Rn. Then aff(X) denotes the affine hull
of the set X (i.e., the smallest affine space including X).
We write X⊥ to denote the orthogonal complement of X:
X⊥ := {u ∈ Rn : u · (x′ − x) = 0 for all x, x′ ∈ X}.
We use the convention ∅⊥ = Rn. A set K ∈ Rn is called a
cone if it is closed under multiplication by positive scalars.
If a cone is convex, it is also closed under addition. Since Ω
is finite, the realizable setM = conv(Ω) is a polytope. Its
boundary can be decomposed into faces. More precisely,
X ⊆ Ω, X 6= ∅, forms a face of M if X is the set of
maximizers over Ω of some linear function.6 We also view
X = ∅ as a face of M. With this definition, for any two
faces X , X ′, also their intersection X ∩X ′ is a face.

3 CHARACTERIZING SOLUTION SETS

We start with the optimality (KKT) conditions for the Con-
vex Program (2.1), as characterized by the next lemma.
One of the key conditions is that the solution prices must be
in the convex hull of the belief µ and all the ω’s for which
the budget constraints are tight. The set of tight constraints
is always a face of the polytopeM. We allow an empty set
as a face, which corresponds to the case when none of the
constraints are tight and the solution prices coincide with
µ. The proof follows by analyzing KKT conditions (see
Appendix C of the full version for details).

6Strictly speaking, this is the definition of an exposed face,
but all faces of a polytope are exposed, so the distinction does not
matter here. The exposed face is typically defined to be conv(X),
but in this paper, it is more convenient to work with X directly.

241

Lemma 3.1 (KKT lemma). Let q0 ∈ Rn. Then q ∈
Q̂(B; q0) if and only if there exists a face X ⊆ Ω such
that the following conditions hold:

(a) U(q, x; q0) = U(q, x′; q0), or equivalently
(q − q0) · (x′ − x) = 0, for all x, x′ ∈ X

(b) U(q, ω; q0) ≥ U(q, x; q0), or equivalently
(q − q0) · (ω − x) ≥ 0, for all x ∈ X , ω ∈ Ω\X

(c) p(q) ∈ conv(X ∪ {µ})
(d) B = −U(q, x; q0) for all x ∈ X if X 6= ∅, or

B ≥ maxω∈Ω[−U(q, ω; q0)] if X = ∅
where conditions (a) and (b) hold vacuously for X = ∅.

The condition (a) requires that q − q0 be orthogonal to the
active setX . The set of points satisfying conditions (a) and
(c) will be called the Bregman perpendicular and will be
defined in the next section. The condition (b) is a statement
about acuteness of the angle between q − q0 (the perpen-
dicular) and the outcomes. It will be the basis of our acute
angles assumption. The condition (d) just states how the
budget is related to the active set X .

Witness cones and minimal faces. We now introduce
some notation to help us state reinterpretations of the con-
ditions in Lemma 3.1. First of all, given a face X , what
is the set of q’s that satisfy conditions (a) and (b)? This is
captured by what we call the witness cone.

Definition 3.2. The witness cone for a face X ⊆ Ω is de-
fined as K(X) := {u ∈ Rn : u · (ω − x) ≥ 0 for all x ∈
X,ω ∈ Ω} if X 6= ∅, and K(X) := Rn if X = ∅.

The following two properties of witness cones are immedi-
ate from the definition:

• Anti-monotonicity: if X ⊆ X ′, then K(X) ⊇ K(X ′).
• Orthogonality: K(X) ⊆ X⊥.

A state q satisfies conditions (a) and (b) for a given face X
if and only if q−q0 ∈ K(X). Now given a state q, consider
the set of faces that could satisfy condition (c). This set has
a useful structure, namely that there is a unique minimal
face (proved in Appendix C of the full version).

Definition 3.3. Given a price vector ν ∈ M, the minimal
face for ν is the minimal face X (under inclusion) s.t. ν ∈
conv(X ∪ {µ}). The minimal face for ν is denoted as Xν .

With the existence of a minimal face and the anti-
monotonicity of the witness sets, it follows that if q and
X satisfy conditions (a), (b) and (c), then so do q and
Xp(q). Thus we obtain the following version of Lemma 3.1
(proved in Appendix C of the full version).

Theorem 3.4 (Characterization of Solution Sets). q ∈
Q̂(q0) if and only if q ∈ [q0 +K(Xp(q))].

Using Theorem 3.4, we immediately obtain a characteriza-
tion of when a price vector ν could be the price vector of
an optimal solution to (2.1).

Corollary 3.5. Q̂(ν; q0) = p−1(ν) ∩ [q0 + K(Xν)]. In
particular, ν is the price vector of an optimal solution to
(2.1) if and only if p−1(ν) ∩ [q0 +K(Xν)] 6= ∅.

We now study an example using the above characteriza-
tion. More examples can be found in Appendix E of the
full version.

Example 3.6 (Quadratic cost on an obtuse triangle; see Ex-
ample E.2 in the full version for details). Consider the fol-
lowing outcome space, belief, and the sequence of market
states (depicted in Figure 2):

ω1 = (0.0, 0.0) q0 = ν0 = 11
14ω2 + 3

14ω3

ω2 = (1.8, 0.0) q1 = ν1 = 1
3ω2 + 2

3µ

ω3 = (6.0, 4.2) q2 = ν2 = 1
9ω1 + 8

9µ

µ = qµ = (2.7, 1.8) q3 = ν3 ≈ 1
19ω1 + 18

19µ

Using the KKT lemma, we can show for j = 1, 2, 3, that
qj = νj is an optimal action at qj−1 = νj−1 under belief
µ, with the corresponding budgets as:

ω1 ω2 ω3

U(q1, ·; q0) 0.45 −0.09 −0.09 B01 = 0.09
U(q2, ·; q1) −0.56 −0.56 1.12 B12 = 0.56
U(q3, ·; q2) −0.565 −0.28 . . . 0.82 . . . B23 = 0.565
U(qµ, ·; q0) −1.215 −1.215 2.565 B0µ = 1.215

The above table also shows that the budget B0µ = 1.215
suffices to move directly from q0 to qµ. However, note that
the sum B01 + B12 + B23 = 1.215 = B0µ, but ν3 6= µ,
i.e., after the sequence of optimal actions with budgetsB01,
B12, and B23, the market is still not at the belief shared by
all agents, even though with the budget B0µ, it would have
reached it.

Budget additivity. The above example suggests that
multiple traders with the same belief may have less power
in moving the market state towards their belief compared
to a single trader with the same belief and the combined
budget. Since prediction markets aim to efficiently aggre-
gate information from agents, it is natural to ask under what
conditions multiple traders with the same beliefs do have a
combined impact equal to a single trader with the combined
budget.

Next, we formally define this property as budget additivity.
We then define the Euclidean version of the acute angles
condition that we show is sufficient for budget additivity.

Definition 3.7 (Budget additivity). We say that a prediction
market is budget additive onM′ ⊆M if for all beliefs µ ∈
M′ and all initial states q0 ∈ p−1(M′) the following holds:
For any budgets B,B′ ≥ 0 and any sequence of solutions
q ∈ Q̂(B; q0) and q′ ∈ Q̂(B′; q), we have p(q), p(q′) ∈
M′ and q′ ∈ Q̂(B +B′; q0).

In other words, the market is budget additive if the se-
quence of optimal actions of two agents with the same be-

242

ω1 ω2

ν0

ν1

ν2
ν3 µ

ω1 ω2

ω3

ω4

A0.2

A0.4

A0.6

A0.8

Figure 2: Left: An example of non-additive budgets when payoffs form obtuse angles (see Example 3.6 and its extended
version Example E.2 in the full version). Right: An examples of a non-linear perpendicular for the log-partition cost.

lief and budgetsB andB′ is also an optimal action of a sin-
gle agent with the same belief and a larger budget B +B′.
Thanks to Theorem 2.2 we then also obtain that the price
vector following the sequence of optimal actions by the two
agents is the same as the price vector after the optimal ac-
tion by an agent with the combined budget (all with the
same beliefs).

We now state the acute angles assumption for the Euclidean
case, to give an intuition. Our acute angles assumption
(Definition 5.1) is a generalization of this. We later show
that the acute angles property is sufficient for budget addi-
tivity (Theorem 5.2).
Definition 3.8. We say that the Euclidean acute angles
hold for a face X , if the angle between any point ν̄ ∈ M,
its projection on the affine hull of X and any payoff ω ∈ Ω
is non-obtuse (the angle is measured at the projection).

Based on the above example, one may hypothesize that the
obtuse angles are to blame for the lack of budget additivity.
In the following sections we will show that this is indeed
the case, but that the notion of obtuse/acute angles depends
on the Bregman divergence. In particular, the above ex-
ample would have been budget-additive if we used the log-
partition cost instead of the quadratic cost.

4 BREGMAN DIVERGENCE AND
PERPENDICULARS

We will see next that the utility function U can be writ-
ten as the difference of two terms measuring the distance
between the belief and the market state before and after
the trade. This distance measure is the mixed Bregman
divergence.7 To define the Bregman divergence, first let
C∗ : Rn → (−∞,∞] be the convex conjugate of C de-
fined as C∗(ν) := supq′∈Rn [q′ · ν − C(q′)] . Since C∗ is
a supremum of linear functions, it is convex lower semi-
continuous. Up to a constant, it characterizes the maximum
achievable utility on an outcome ω for a fixed initial state q

7Our notion of Bregman divergence is more general than typ-
ically assumed in the literature.

as supq′∈Rn U(q′, ω; q) = C∗(ω)+
[
C(q)−q·ω

]
. The term

in the brackets is always finite, but C∗ might be positive
infinite. We make a standard assumption that C∗(ω) < ∞
for all ω ∈ Ω, i.e., that the maximum achievable utility,
which is also the maximum loss of the market maker, is
bounded by a finite constant. By convexity, this implies
that C∗(µ) < ∞ for all µ ∈ M. The Bregman divergence
derived from C is a function D : Rn × Rn → (−∞,∞]
measuring the maximum expected utility under belief µ at
a state q

D(q, µ) := C(q) +C∗(µ)− q ·µ = supq′∈Rn U(q′, µ; q) .

From the convexity ofC andC∗ and the definition ofC∗, it
is clear that: (i) D is convex and lower semi-continuous in
each argument separately; (ii) D is non-negative; and (iii)
D is zero iff p(q) = ∇C(q) = µ. By the bounded loss
assumption, Bregman divergence is finite on µ ∈ M. For
µ ∈M, we can write

U(q′, µ; q) = D(q, µ)−D(q′, µ) . (4.1)

Thus, maximizing the expected utility is the same as min-
imizing the Bregman divergence between the state q′ and
the belief µ. From Eq. (4.1) it is also clear that each con-
straint in (2.1) is equivalent to D(q, ω) ≤ D(q0, ω) + B,
and the geometric interpretation is that the agent seeks to
find the state closest to his belief, within the intersection of
Bregman balls

For the quadratic cost, we have C∗(ν) = 1
2‖ν‖2 and

D(q, ν) = 1
2‖q − ν‖2, i.e., the Bregman divergence co-

incides with the Euclidean distance squared. For log-
partition cost, we have C∗(ν) =

∑
ω∈Ω Pν(ω) lnPν(ω)

where Pν is the distribution maximizing entropy among P
satisfying EP [ω] = ν. The Bregman divergence is the KL-
divergence between Pq and Pν : D(q, ν) = KL(Pν‖Pq).

Convex analysis. We overview a few standard defini-
tions and results from convex analysis. For X ⊆ Rn,
we write riX for the relative interior of X (i.e., the in-
terior relative to the affine hull). For a convex function
F : Rn → (−∞,∞], we define its effective domain

243

as domF := {u ∈ Rn : F (u) < ∞} (i.e., the set
of points where it is finite). The subdifferential of F at
a point u is the set ∂F (u) := {v ∈ Rn : F (u′) ≥
F (u) + (u′ − u) · v for all u′ ∈ Rn}. We say that F is
subdifferentiable at u if ∂F (u) 6= ∅. A standard result of
convex analysis states that F is always subdifferentiable on
a superset of ri domF . If F is not only convex, but also
lower semi-continuous, then ∂F and ∂F ∗ are inverses in
the sense that v ∈ ∂F (u) iff u ∈ ∂F ∗(v). If F is differ-
entiable everywhere on Rn, then F ∗ is strictly convex on
ri domF ∗.

Let im p := {p(q) : q ∈ Rn} denote the set of prices
that can be expressed by market states. The implications
for our setting are that: (i) C∗ is subdifferentiable on im p;
(ii) p−1(ν) = ∂C∗(ν) for all ν ∈ Rn; (iii) all beliefs
in ri domC∗ can be expressed by some state q; (iv) C∗

is strictly convex on ri domC∗, and similarly D(q, ν) is
strictly convex on ri domC∗ as a function of the second
argument.

Assumptions on the cost function.

• Convexity and differentiability on Rn. C is convex and
differentiable on Rn.
• Finite loss.M⊆ domC∗, i.e., C∗ is finite onM.
• Inclusion of the relative interior. riM⊆ ri domC∗.

The first two assumptions are standard. The third assump-
tion is a regularity condition that we require in our re-
sults. Here we briefly discuss how it compares with the
finite loss assumption. While the two assumptions look
similar, neither of them implies the other. For example,
if domC∗ is an n-dimensional simplex and M is one of
its lower dimensional faces, which are lower dimensional
simplices, then the finite loss assumption holds, but the in-
clusion assumption does not. Similarly, for n = 1 and
M = [0, 1], the inclusion assumption is satisfied by the
conjugate C∗(ν) = 1/ν + 1/(1 − ν) on ν ∈ (0, 1) and
C∗(ν) = ∞ on ν 6∈ (0, 1), but this conjugate does not
satisfy the finite loss assumption.

We do not view the inclusion assumption as very restric-
tive, since it is satisfied by many common cost functions.
For instance, it always holds when C is constructed as in
[1], because their construction guarantees domC∗ = M.
However, the inclusion assumption might not hold for cost
functions that allow arbitrage (e.g., [6]).

Our main result relies on strict convexity of C∗ on
ri domC∗, so some of our statements will require that
the market prices and beliefs lie in that set. The inclu-
sion assumption above guarantees that at the minimum
riM ⊆ ri domC∗, but the boundary of M is not neces-
sarily included. To allow some generality beyond riM, we
define the set

M̃ :=

{
M ifM⊆ ri domC∗

riM otherwise.

In either case we obtain that M̃ ⊆ ri domC∗ ⊆ im p,
i.e., beliefs in M̃ can be expressed by some state q. For
the quadratic cost, M̃ = M. For the log-partition cost,
M̃ = riM.

Perpendiculars. We now define the notion of a Bregman
perpendicular to an affine space. This is a constructive def-
inition. It plays a central role in the definition of the acute
angles assumption, and also in the proof of the main result
(Theorem 5.2). We will see that the set of optimal price
vectors for different budgets is a sequence of Bregman per-
pendiculars. Naturally, perpendiculars are closely related
to the conditions in Lemma 3.1; in particular to the set of
q’s that satisfy conditions (a) and (c) for a given face X .

For quadratic costs, Bregman perpendiculars coincide with
the usual Euclidean perpendiculars. Consider an affine
space and a point not in it. A projection of the point onto
the space is the point in the space that is closest in Eu-
clidean distance to the given point. Now consider moving
this affine space towards the projected point. The locus of
the projection as we move the space is the perpendicular to
the space through the given point. We extend this definition
to arbitrary Bregman divergences by defining the projection
using the corresponding Bregman divergence.

A Bregman perpendicular is determined by three geomet-
ric objects within the affine hull aff(domC∗). The first of
these is an affine space, say A0 ⊆ aff(domC∗). The sec-
ond is a point a1 ∈ aff(domC∗)\A0. The affine space
A = aff(A0 ∪ {a1}) ⊆ aff(domC∗) will be the ambi-
ent space that will contain the perpendicular. Define par-
allel spaces to A0 in A, for an arbitrary point a0 ∈ A0, as
Aλ := A0 +λ(a1− a0) for λ ∈ R. Note that the definition
of Aλ is independent of the choice of a0. The third geo-
metric object is a market state q ∈ Rn such that p(q) ∈ A.
For technical reasons, we will define a perpendicular at q
rather than a more natural notion, which would be at p(q).
Our reason for switching into q-space is that inner products,
defining optimality of the Bregman projection, are between
elements of q-space and ν-space (the two spaces coincide
for Euclidean distance). For all λ ∈ R define a Bregman
projection of q onto Aλ as

νλ := argmin
ν∈Aλ

D(q, ν) .

Since D(q, ν) is bounded from below and lower semi-
continuous, the minimum is always attained (but it may be
equal to ∞). If it is attained at more than one point, we
choose an arbitrary minimizer. Whenever we can choose
νλ ∈ ri domC∗, this νλ must be the unique minimizer by
strict convexity of D(q, ·) on ri domC∗, and the minimum
is finite. We use these νλ’s to define the perpendicular:

Definition 4.1. Given A0, a1 and q as above, the a1-
perpendicular to A0 at q is a map γ : λ 7→ νλ defined
over λ ∈ Λ := {λ ∈ R : νλ ∈ ri domC∗}. We call Λ
the domain of the perpendicular. We define a total order on

244

νλ, νλ′ ∈ im γ as νλ � νλ′ iff λ ≤ λ′.

In Appendix F.2 of the full version, we show that per-
pendiculars are continuous maps. The name perpendicu-
lar is justified by the following proposition which matches
our Euclidean intuition that the perpendiculars can be ob-
tained by intersecting the ambient space A with the affine
space which passes through q and is orthogonal to A0. It
also shows that the perpendicular corresponds to the set of
prices that satisfy conditions (a) and (c) with the convex
hull relaxed to the affine hull (when A0 is the affine hull
of face X , point a1 coincides with µ and q is the initial
state). Recall that for an arbitrary set X ⊆ Rn, its orthog-
onal complement is defined as X⊥ := {u : u · (x′ − x) =
0 for all x, x′ ∈ X}.
Proposition 4.2. Let γ be the a1-perpendicular to A0 at q,
and let A = aff(A0 ∪ {a1}). The following two statements
are equivalent for any ν′ ∈ Rn:

(i) ν′ ∈ im γ
(ii) ν′ ∈ A ∩ (ri domC∗), p−1(ν′) ∩ (q +A⊥0) 6= ∅

Proposition 4.2 is proved in Appendix F of the full ver-
sion. The perpendiculars have the following closure prop-
erty which is useful for showing budget additivity (also
proved in Appendix F of the full version):

Proposition 4.3. Under the assumptions of Proposi-
tion 4.2, γ is also the a1-perpendicular to A0 at any q′ ∈
p−1(im γ) ∩ (q +A⊥0).

5 BUDGET ADDITIVITY

We now state the acute angles property which links the
Bregman perpendicular and Corollary 3.5, and is sufficient
for budget additivity.

Definition 5.1. We say that the acute angles hold for a face
X , if for every µ-perpendicular γ to X at q, such that µ ∈
M̃ and q ∈ p−1(M̃), the following holds: If ν′ ∈ im γ
and ν′ � p(q), then p−1(ν′) ∩ [q +K(X)] 6= ∅.

The motivation for the name “acute angles” comes from the
Euclidean distance case, where this assumption is equiva-
lent to Definition 3.8 (see Proposition G.1 in the full ver-
sion). The acute angles property is non-trivial and we have
seen that without this property, budget additivity need not
hold; we conjecture that it is also a necessary condition.
After stating the main theorem, we analyze in more detail
when the acute angles are satisfied by the quadratic and
log-partition costs.

We now state the main result, that the acute angles are suf-
ficient for budget additivity:

Theorem 5.2 (Sufficient conditions for budget additivity).
If acute angles hold for every face X ⊆ Ω, then the predic-
tion market is budget additive on M̃.

Sufficient conditions for acute angles. We next give the
sufficient conditions when the acute angles hold for the
quadratic and log-partition cost functions. We also show
that the acute angles hold for all one-dimensional outcome
spaces, and that they are preserved by taking direct sums of
markets. Recall that a set K ∈ Rn is called a cone if it is
closed under multiplication by positive scalars. A cone is
called acute, if x · y ≥ 0 for all x, y ∈ K. An affine cone
with the vertex a0 is a set K′ of the form a0 + K where K
is a cone.

Theorem 5.3 (Sufficient condition for quadratic cost). Let
X be a face and A′ be the affine space a0 + X⊥ for an
arbitrary a0 ∈ aff(X). Acute angles hold for the face X
and the quadratic cost if and only if the projection of Ω (or,
equivalently,M) onA′ is contained in an affine acute cone
with the vertex a0.

Corollary 5.4. Acute angles hold for the quadratic cost
and a hypercube Ω = {0, 1}n.

Corollary 5.5. Acute angles hold for the quadratic cost
and simplex Ω = {ei : i ∈ [n]} where [n] = {1, 2, . . . , n}
and ei is the i-th vector of the standard basis in Rn.

Theorem 5.6 (Log-partition over affinely independent out-
comes). If the set Ω is affinely independent then acute an-
gles assumption is satisfied for the log-partition cost.

Theorem 5.7 (One-dimensional outcome spaces). Acute
angles hold for any cost function ifM is a line segment.

Let Ω1 ⊆ Rn1 and Ω2 ⊆ Rn2 be outcome spaces with costs
C1 andC2. We define the direct sum of Ω1 and Ω2 to be the
outcome space Ω = Ω1 × Ω2 with the cost C : Rn1+n2 →
R defined as C(q1, q2) = C1(q1) + C2(q2).

Theorem 5.8 (Acute angles for direct sums). If acute an-
gles hold for Ω1 with cost C1, and Ω2 with cost C2, then
they also hold for their direct sum.

As a direct consequence of this theorem, we obtain that
the log-partition cost function satisfies the acute angles as-
sumption on a hypercube. More generally, any direct sum
of costs on line segments satisfies the acute angles. This
means that all cost-based prediction markets consisting of
independent binary questions are budget additive, regard-
less of costs used to price individual questions.

As mentioned in the introduction, a vast number of de-
ployed cost-based prediction markets consists of indepen-
dent questions (not necessarily binary), each priced accord-
ing to an LMSR (i.e., a log-partition cost on a simplex).
Theorems 5.6 and 5.8 imply that this industry standard is
budget additive.

5.1 Proof of Theorem 5.2

In this section we sketch the proof of Theorem 5.2 (for a
complete proof see Appendix H of the full version). We
proceed in several steps. Let ν0 = p(q0). Assuming acute

245

angles, we begin by constructing an oriented curve L join-
ing ν0 with µ, by sequentially choosing portions of per-
pendiculars for monotonically decreasing active sets. We
then show that budget additivity holds for any solutions
with prices in L, and finally show that the curve L is the
locus of the optimal prices of solutions Q̂(q0), as well as
optimal prices of solutions Q̂(q) for any q ∈ Q̂(q0).

Part 1: Construction of the solution path L. In this part,
we construct:

• a sequence of prices ν0, ν1, . . . , νk with ν0 = p(q0)
and νk = µ
• a sequence of oriented curves `0, . . . , `k−1 where each
`i goes from νi to νi+1

• a monotone sequence of sets Ω ⊇ X0 ⊃ X1 ⊃
· · · ⊃ Xk = ∅, such that the following minimal-
ity property holds: Xi is the minimal face for all
ν ∈ (im `i)\{νi+1} for i ≤ k − 1, and Xk is the
minimal face for νk.
• a sequence of states q1, . . . , qk−1 such that qi ∈
p−1(νi) ∩ [qi−1 +K(Xi−1)]

The curves `i will be referred to as segments. The curve
obtained by concatenating the segments `0 through `k−1

will be called the solution path and denoted L. In the spe-
cial case that ν0 = µ, we have k = 0, X0 = ∅ and L is a
degenerate curve with imL = {µ}.
If ν0 6= µ, we construct the sequence of segments it-
eratively. Let X0 6= ∅ be the minimal face such that
ν0 ∈ conv(X0 ∪ {µ}). By the minimality, µ 6∈ aff(X0).
Let γ be the µ-perpendicular to aff(X0) at q0. The curve γ
passes through ν0 and eventually reaches the boundary of
conv(X0 ∪ {µ}) at some ν1 by continuity of γ (see Theo-
rem F.3). Let segment `0 be the portion of γ going from ν0

to ν1.

This construction gives us the first segment `0. There are
two possibilities:

1. ν1 = µ; in this case we are done;
2. ν1 lies on a lower-dimensional face of conv(X0 ∪
{µ}); in this case, we pick some q1 ∈ p−1(ν1)∩ [q0 +
K(X0)], which can be done by the acute angles as-
sumption, and use the above construction again, start-
ing with q1, and obtaining a new set X1 ⊂ X0 and a
new segment `1; and iterate.

The above process eventually ends, because with each iter-
ation, the size of the active set decreases. This construction
yields monotonicity of Xi and the minimality property.

The above construction yields a specific sequence of qi ∈
p−1(νi) ∩ [qi−1 + K(Xi−1)]. We show in Appendix H of
the full version that actually qi ∈ p−1(νi) ∩ (q0 + X⊥i−1)
and that the construction of L is independent of the choice
of q1, q2, . . . , qk−1.

Part 2: Budget additivity for points on L. Let ν, ν′ ∈

imL such that ν � ν′. Let q ∈ Q̂(ν; q0) and q′ ∈ Q̂(ν′; q)
such that q ∈ Q̂(B; q0) and q′ ∈ Q̂(B′; q). In this part we
show that q′ ∈ Q̂(B +B′; q0).

First, consider the case that ν′ = µ. To see that q′ ∈
Q̂(B + B′; q0), first note that the constraints of Convex
Program (2.1) hold, because U(q′, ω; q0) = U(q′, ω; q) +
U(q, ω; q0) ≥ −B′ − B for all ω by path independence of
the utility function. As noted in the introduction, in the ab-
sence of constraints, the utility U(q̄, µ; q0) is maximized at
any q̄ with p(q̄) = µ. Thus, q′ is a global maximizer of the
utility and satisfies the constraints, so q′ ∈ Q̂(B +B′; q0).
If ν = µ, we must also have ν′ = µ and the statement holds
by previous reasoning.

In the remainder, we only analyze the case ν � ν′ ≺
µ. This means that ν ∈ (im `i)\{νi+1} and ν′ ∈
(im `j)\{νj+1} for i ≤ j. By Theorem 3.4, we therefore
must have q ∈ [q0 + K(Xi)] and q′ ∈ [q + K(Xj)]. By
anti-monotonicity of witness cones, K(Xj) ⊇ K(Xi) and
hence, q′ ∈ [q0 +K(Xj)], yielding q′ ∈ Q̂(ν′; q0).

We now argue that the budgets add up. Let x ∈ Xj ⊆ Xi.
By Lemma 3.1, we obtain that q ∈ Q̂(B; q0) for B =
−U(q, x; q0), and q′ ∈ Q̂(B′; q) for B′ = −U(q′, x; q),
and finally q′ ∈ Q̂(B̄; q0) for B̄ = −U(q′, x; q0). How-
ever, by path independence of the utility function

B̄ = −U(q′, x; q0) = −U(q′, x; q)−U(q, x; q0) = B′+B.

Part 3: L as the locus of all solutions. See Appendix H
of the full version for the proof that

Q̂(q0) =
⋃
ν∈imL Q̂(ν; q0) .

Part 3’: L as the locus of solutions starting at a mid-
point. Let ν ∈ imL and q ∈ Q̂(ν; q0). Since Q̂(ν; q0) ⊆
p−1(ν) ∩ (q0 + X⊥ν), Part 1’ (Appendix H of the full ver-
sion) yields that the solution path L′ for q coincides with
the portion of L starting at ν. Applying the proof of Part 3
to L′, we obtain

Q̂(q) =
⋃
ν′∈imL:ν′�ν Q̂(ν′; q) .

Part 4: Proof of the theorem. Let B,B′ ≥ 0 and q ∈
Q̂(B; q0) and q′ ∈ Q̂(B′; q). From Parts 3 and 3’, we know
that q ∈ Q̂(ν; q0) and q′ ∈ Q̂(ν′; q) for some ν, ν′ ∈ imL
such that ν � ν′. By Part 2, we therefore obtain that q′ ∈
Q̂(B +B′; q0), proving the theorem.

246

References
[1] Jacob Abernethy, Yiling Chen, and Jennifer Wort-

man Vaughan. An optimization-based framework for
automated market-making. In ACM Conference on
Electronic Commerce, pages 297–306, 2011.

[2] Alina Beygelzimer, John Langford, and David M.
Pennock. Learning performance of prediction mar-
kets with Kelly bettors. In International Confer-
ence on Autonomous Agents and Multiagent Systems,
pages 1317–1318, 2012.

[3] GW Brier. Verication of forecasts expressed in terms
of probability. Monthly Weather Review, 78:13, 1950.

[4] Yiling Chen and David M. Pennock. A utility frame-
work for bounded-loss market makers. In Conference
on Uncertainty in Artificial Intelligence, pages 49–56,
2007.

[5] Yiling Chen and Jennifer Wortman Vaughan. A new
understanding of prediction markets via no-regret
learning. In ACM Conference on Electronic Com-
merce, pages 189–198, 2010.

[6] Miroslav Dudı́k, Sébastien Lahaie, and David M.
Pennock. A tractable combinatorial market maker
using constraint generation. In ACM Conference on
Electronic Commerce, 2012.

[7] Edmund Eisenberg and David Gale. Consensus of
subjective probabilities: The pari-mutuel method. An-
nals of Mathematical Statistics, 30:165–168, 1959.

[8] Lance Fortnow and Rahul Sami. Multi-outcome
and multidimensional market scoring rules. CoRR,
abs/1202.1712, 2012.

[9] Rafael Frongillo, Nicolas Della Penna, and Mark
Reid. Interpreting prediction markets: a stochastic
approach. In Advances in Neural Information Pro-
cessing Systems 25, pages 3275–3283. 2012.

[10] Tilmann Gneiting and Adrian E Raftery. Strictly
proper scoring rules, prediction, and estimation. Jour-
nal of the American Statistical Association, 102(477):
359–378, 2007.

[11] Sharad Goel, Daniel M. Reeves, Duncan J. Watts,
and David M. Pennock. Prediction without markets.
In ACM Conference on Electronic Commerce, pages
357–366, New York, NY, USA, 2010. ACM.

[12] Robin Hanson. Combinatorial information market de-
sign. Information Systems Frontiers, 5(1):107–119,
2003.

[13] Robin Hanson. Logarithmic market scoring rules
for modular combinatorial information aggregation.
Journal of Prediction Markets, 1(1):3–15, February
2007.

[14] Robert A. Jacobs. Methods for combining experts’
probability assessments. Neural Computation, 7(5):
867–888, September 1995.

[15] Xiaolong Li and Jennifer Wortman Vaughan. An ax-
iomatic characterization of adaptive-liquidity market
makers. In ACM Conference on Electronic Com-
merce, 2013.

[16] Charles F. Manski. Interpreting the predictions of pre-
diction markets. Economics Letters, 91(3):425–429,
June 2006.

[17] Abraham Othman, Tuomas Sandholm, David M. Pen-
nock, and Daniel M. Reeves. A practical liquidity-
sensitive automated market maker. In ACM Confer-
ence on Electronic Commerce, 2010.

[18] R. Tyrrell Rockafellar. Convex Analysis. Princeton
University Press, Princeton, New Jersey, 1970.

[19] Justin Wolfers and Eric Zitzewitz. Prediction markets.
Journal of Economic Perspectives, Winter, 2004.

[20] Justin Wolfers and Eric Zitzewitz. Interpreting pre-
diction market prices as probabilities. IZA Discussion
Papers 2092, Institute for the Study of Labor (IZA),
April 2006.

247

A Probabilistic Logic for Reasoning about Uncertain Temporal Information

Dragan Doder
Computer Science and Communication

University of Luxembourg
6, rue Coudenhove-Kalergi L-1359 Luxembourg

dragan.doder@uni.lu

Zoran Ognjanović
Mathematical Institute

Serbian Academy of Sciences and Arts
Kneza Mihaila 36, 11000 Belgrade, Serbia

zorano@mi.sanu.ac.rs

Abstract

The main goal of this work is to present the
proof-theoretical and model-theoretical approach
to a probabilistic logic which allows reasoning
about temporal information. We extend both the
language of linear time logic and the language of
probabilistic logic, allowing statements like “A
will always hold”and “the probability that A will
hold in next moment is at least the probability
that B will always hold,” where A and B are arbi-
trary statements. We axiomatize this logic, pro-
vide corresponding semantics and prove that the
axiomatization is sound and strongly complete.
We show that the problem of deciding decidabil-
ity is PSPACE-complete, no worse than that of
linear time logic.

1 INTRODUCTION

The study of temporal logics started with the seminal work
of Arthur Prior [Prior, 1957]. Temporal logics are designed
in order to analyze and reason about the way that sys-
tems change over time, and have been shown to be a use-
ful tool in describing behavior of an agent’s knowledge
base, for specification and verification of programs, hard-
ware, protocols in distributed systems etc. [Emerson, 1990,
Emerson, 1995]. In many practical situations the temporal
information is not known with certainty. A typical exam-
ple is formal representation of information about tracking
moving objects with GPS systems, in the case in which the
locations or the identities of the objects are not certainly
known [Grant et al., 2010].

Many different tools are developed for representing, and
reasoning with, uncertain knowledge. One particular line
of research concerns the formalization in terms of proba-
bilistic logic. After Nilsson [Nilsson, 1986] gave a proce-
dure for probabilistic entailment which, given probabilities
of premises, calculates bounds on the probabilities of the

derived sentences, researchers from the field started inves-
tigation about formal systems for probabilistic reasoning.
[Fagin et al., 1990] provided a finitary axiomatization for
reasoning about linear combinations of probabilities, and
they proved weak completeness (every consistent formula
is satisfiable). Their formulas are Boolean combinations of
the expressions of the form r1w(α1) + . . . + rnw(αn) ≥
rn+1, where w is the probability operator and αi’s are
propositional formulas. The semantics of the logic use
finitely additive probabilities, since σ-additivity cannot be
expressed by a formula of their language.

In this paper, we extend the approach from
[Fagin et al., 1990]. We start with the propositional
linear time logic (LTL) [Gabbay et al., 1980] with the
“next” operator © and “until” operator U . The meaning
of the formula©α is “α holds in the next time instance”,
and αUβ we read “α holds in every time instance until
β holds”. We apply the probabilistic operator w to the
formulas of LTL and define probabilistic formulas using
the linear combinations, like in [Fagin et al., 1990]. In our
logic there are two types of formulas, LTL formulas and
probabilistic formulas, with the requirement that if an LTL
formula is true, then its probability is equal to 1.

The main technical challenge in axiomatizing such a logic
lies in the fact that the set of models of the formula αUβ
can be represented as a countable union of models of tem-
poral formulas which are pairwise disjoint. As a conse-
quence, finitely additive semantics is obviously not ap-
propriate for such a logic, and we propose σ-additive se-
mantics for the logic. On the other hand, expressing σ-
additivity with an axiom would require infinite disjunc-
tions, and the resulting logic would be undecidable. We
shown in Section 3.1 that any finitary axiomatic system
wouldn’t be complete for the σ-additive semantics.

In order to overcome this problem, we axiomatize our lan-
guage using infinitary rules of inference. Thus, in this work
the term “infinitary” concerns the meta language only, i.e.,
the object language is countable and the formulas are finite,
while only proofs are allowed to be infinite. We prove that
our axiomatization is sound and strongly complete (every

248

consistent set of formulas is satisfiable). We also prove that
the logic is decidable, and we show that the satisfiability
problem is PSPACE-complete, no harder then satisfia-
bility for LTL.

There are several logics which combine time and prob-
ability in different ways [Guelev, 2000, Haddawy, 1996,
Halpern and Pucella, 2006, Hansson and Jonsson, 1994,
Ognjanovic, 2006, Shakarian et al., 2011]. However,
to the best of our knowledge, this is the first complete
axiomatization for the σ-additive probabilistic semantics.

2 THE LOGIC PLLTL: SYNTAX AND
SEMANTICS

We present the syntax and semantics of the logic for prob-
abilistic reasoning about linear time formulas, that we de-
note by PLLTL. The logic contains two types of formu-
las: formulas of LTL without probabilities, and the linear
weight formulas in the style of [Fagin et al., 1990], with
weights applied to temporal formulas.

In order to give semantics to the formulas,
we first briefly review some probability theory
[Ash and Doléans-Dade, 1999]. If W 6= ∅, then H is
an algebra of subsets of W , if it is a set of subsets of W
such that:

(a) W ∈ H ,
(b) if A,B ∈ H , then W \A ∈ H and A ∪B ∈ H .

A function µ : H −→ [0, 1] is a (σ-additive) probability
measure, if the following conditions hold:

(1) µ(W) = 1,
(2) µ(

⋃
i∈ω Ai) =

∑
i∈ω µ(Ai), whenever A,Ai ∈ H and

Ai ∩Aj = ∅ for all i 6= j.

For W , H and µ described above, the triple 〈W,H, µ〉 is
called a probability space. A function µ : H −→ [0, 1] is a
finitely additive probability measure, if the condition

(3) µ(A ∪B) = µ(A) + µ(B), whenever A ∩B = ∅.
holds, instead of (2). We also say that an algebra H is a
σ-algebra, if

⋃
i∈ω Ai ∈ H whenever Ai ∈ H for every

i ∈ ω.

For a finitely additive µ, the condition (2) is equivalent to
the condition

(2’) µ(
⋃
i∈ω Ai) = limn→+∞ µ(

⋃n
i=0Ai).

We will actually use (2’) in the axiomatization of our logic
(see the inference rule R6).

2.1 SYNTAX

First we introduce LTL formulas. Suppose that P is a
nonempty finite set of propositional letters. We denote the

elements of P with p and q, possibly with subscripts.

Definition 1 (LTL formula) An LTL formula is any for-
mula built from propositional letters from P , using the
Boolean connectives ¬ and ∧, and the temporal operators
© and U .

We use ForLTL for the set of all state formulas and de-
note arbitrary LTL formulas by α, β and γ, possibly with
subscripts.

We use ¬ and ∧ as the primitive connectives, while other
Boolean connectives (→, ∨,↔) can be introduced as usual.
We also define other LTL operators F (sometime) and G
(always) as abbreviations: Fα is >Uα, and Gα is ¬F¬α.
Note that we use the strong version of U , which means that
if αUβ holds in a path, then β must hold eventually.

Example 1 The expression

©(p ∧ q)→ (pU¬q)

is an example of LTL formula. Its meaning is “if both p and
q hold in the next moment, then p will hold until q becomes
false”.

Semantics for LTL formulas consists of the set of paths,
where a path is a ω-structure in P , of the form σ =
s0, s1, s2, . . . Here si, called the i-th time instance of σ,
is a subset of P , and p ∈ si represent the propositional
letter p being true at time i in σ. We denote the set of all
paths with Σ. In the rest of the paper, we use the following
abbreviations:

• σ≥i is the path si, si+1, si+2, . . .

• σi is the state si.

The evaluation function1 v : Σ × ForLTL −→ {0, 1} is
defined recursively as follows:

• if p ∈ P , then v(σ, p) = 1 iff p ∈ σ0,

• v(σ,¬α) = 1 iff v(σ, α) = 0,

• v(σ, α ∧ β) = 1 iff v(σ, α) = 1 and v(σ, β) = 1,

• v(σ,©α) = 1 iff v(σ≥1, α) = 1,

• v(σ, αUβ) = 1 iff there is some i ∈ ω such that
v(σ≥iβ) = 1, and for each j ∈ ω, if 0 ≤ j < i
then v(σ≥j , β) = 1.

1In the literature, the evaluation of LTL formulas in paths is
usually given in terms of satisfiability relation |=. We do not fol-
low this notation, because in this paper we use |= to denote satis-
fiability of formulas in PLLTL-structures.

249

We say that α is true in the path σ, if v(σ, α) = 1.

Now we introduce the probabilistic formulas. ByQ we de-
note the set of rational numbers. First we define the proba-
bilistic terms.

Definition 2 (Probabilistic term) A probabilistic term is
any expression of the form

r1w(α1) + . . .+ rkw(αk) + rk+1,

where k is a positive integer, and for all i ≤ k + 1, αi ∈
ForLTL and ri ∈ Q.2

We use f and g, possibly subscripted, to denote probabilis-
tic terms.

Definition 3 (Probabilistic formula) A basic probabilis-
tic formula is any formula of the form f ≥ r, where f
is a probabilistic term and r ∈ Q. The set ForP of prob-
abilistic formulas is the smallest set containing all basic
probabilistic formulas, closed under Boolean connectives.

We denote by φ, ψ and θ (possibly with indices) the ele-
ments of ForP . To simplify notation, we define the fol-
lowing abbreviations: f ≥ g is f − g ≥ 0, f ≤ g is g ≥ f ,
f < g is ¬f ≥ g, , f > g is ¬f ≤ g and f = g is
f ≥ g ∧ f ≤ g.

Example 2 The expression

w(p ∨ q) = w(©p)→ w(Gq) ≤ 1

2

is a probabilistic formula. Its meaning is “if the probabil-
ity that either p or q hold in this moment is equal to the
probability that p will hold in the next moment, then the
probability that q will always hold is at most one half”.

Definition 4 (Formula) The set For of all formulas of the
logic PLLTL is For = ForLTL ∪ ForP .

We denote arbitrary formulas by Φ and Ψ (possibly with
subscripts). We denote by ⊥ both φ ∧ ¬φ and α ∧ ¬α,
letting the context determines the meaning. Similarly, we
use > for both LTL and probabilistic formulas.

Example 3 The expression

(p ∨©q)→ w(p ∨©q) = 1

is not a formula, since mixing LTL formulas and proba-
bilistic formulas is not allowed, by Definition 4.

2In [Fagin et al., 1990], rk+1 does not appear in the definition
of terms. We introduce it for the simpler presentation, when we
introduce other formulas as abbreviations.

2.2 SEMANTICS

The semantics of the logic PLLTL is based on the possible-
world approach.

Definition 5 (PLLTL structure) A PLLTL structure is a
tuple M = 〈W,H, µ, π〉 where:

• W is a nonempty set of worlds,

• 〈W,H, µ〉 is a probability space, and

• π : W −→ Σ provides for each world w ∈ W a path
π(w).

For a PLLTL structure M = 〈W,H, µ, π〉, we define

[α]M = {w ∈W | v(π(w), α) = 1}.

We say that M is measurable, if [α]M ∈ H for every α ∈
ForLTL. We denote the class of all measurable PLLTL
structures with PLMeas

LTL .

Now we define the satisfiability of a formula from For in
a structure from PLMeas

LTL .

Definition 6 (Satisfiability) Let M = 〈W,H, µ, π〉 be a
PLLTL structure. We define the satisfiability relation |=⊆
PLMeas

LTL × For recursively as follows:

• M |= α iff v(π(w), α) = 1 for every w ∈W ,

• M |= r1w(α1) + . . .+ rkw(αk) ≥ r iff
r1µ([α1]M) + . . .+ rkµ([αk]M) ≥ r,

• M |= ¬φ iff M 6|= φ,

• M |= φ ∧ ψ iff M |= φ and M |= ψ.

Definition 7 (Model) We say that M ∈ PLMeas
LTL is a

model of Φ, if M |= Φ. A formula Φ is valid, if M |= Φ
holds for every M ∈ PLMeas

LTL . We say that M is a model
of a set of formulas T , and we write M |= T , iff M |= Φ
for every Φ ∈ T . A set of formulas T is satisfiable if there
is M such that M |= T .

Definition 8 (Entailment) We say that the set of formulas
T entails a formula Φ, and we write T |= Φ, if all M ∈
PLMeas

LTL , M |= T implies M |= Φ.

For every α, β ∈ ForLTL, let us denote by αUnβ the for-
mula

(
n−1∧

k=0

©kα) ∧©nβ,

and by αUnβ the formula
∨n
k=0 αUnβ.

250

Those formulas will play the important role in our axioma-
tization. Obviously, v(σ, αUβ) = 1 iff there is some n ∈ ω
such that v(σ, αUnβ) = 1, and

[αUβ]M =
⋃

n∈ω
[αUnβ]M . (1)

Similarly,
[αUβ]M =

⋃

n∈ω
[αUnβ]M . (2)

Since (1) follows directly from the definition of the evalu-
ation function v, we will use it to properly axiomatize LTL
part of our logic. On the other hand, (2) is more convenient
for capturing σ-additivity.

3 The axiomatization of PLLTL

In this section we provide an axiomatization for PLLTL,
which we denote by AXPLLTL . Let us first discuss some
axiomatization issues. By (2) and σ-additivity, we obtain
µ([αUβ]M) = µ(

⋃
n∈ω[αUnβ]M). Then we can see that

the set

T = {w(αUβ) > r} ∪ {w(αUnβ) ≤ r|n ∈ ω}

is an unsatisfiable set of formulas. On the other hand, it is
easy to check that every finite subset of T is satisfiable. In
other words, the logic is not compact. It is known that, in
this case, any finitary axiomatization would be incomplete
[van der Hoek, 1997]. Here we use an infinitary rule (R6)
to obtain completeness, and, in particular, to make the set
T inconsistent. It turns that it is necessary (see the proof
of Theorem 4) to introduce another infinitary rule (R4) to
properly axiomatize LTL part of the logic, since the set of
LTL formulas {αUβ} ∩ {¬(αUnβ) | n ∈ ω} is also an
example of non-compactness.

3.1 THE AXIOMATIC SYSTEM AXPLLTL

the axiomatization AXPLLTL contains 8 axioms and 6
rules of inference. We divide the axioms into 3 groups as
given below.

Tautologies

A1. All instances of classical propositional tautologies for
both LTL and probabilistic formulas.

Temporal axioms

A2. ©(α→ β)→ (©α→©β).

A3. ¬© α↔©¬α.

A4. αUβ ↔ β ∨ (α ∧©(αUβ)).

Axioms for reasoning about linear inequalities

A5. All instances of valid formulas about linear inequali-
ties.

Probabilistic axioms

A6. w(α) ≥ 0.

A7. w(α ∧ β) + w(α ∧ ¬β) = w(α).

A8. w(α→ β) = 1→ w(α) ≤ w(β).

Inference rules

R1. From Φ and Φ → Ψ infer Ψ (where either Φ,Ψ ∈
ForLTL or Φ,Ψ ∈ ForP).

R2. From α infer©α.

R3. From α infer w(α) = 1.

R4. From the set of premises

{γ → ¬(αUnβ) | n ∈ ω}

infer γ → ¬(αUβ).

R5. From the set of premises

{φ→ f ≥ r − 1

n
| n ∈ ω \ {0}}

infer φ→ f ≥ r.

R6. From the set of premises

{φ→ w(αUnβ) ≤ r | n ∈ ω}

infer φ→ w(αUβ) ≤ r.

Let us briefly discuss the axiomatic system.
A1 and R1 allow propositional reasoning with all formulas
from For.
The axioms A2–A4 are some standard axioms in various
axiomatization of LTL. Although all the axiomatizations
contain some additional axioms, we show in Lemma 1(1)
that all the valid temporal formulas can be deduced in
AXPLLTL . Moreover, by Lemma 2, A1–A4 together with
R1,R2 and R4 make a strongly complete system for LTL.
Note that we use the temporal necessitation R2 with the
next operator, while the standard generalization can be de-
rived, as it is shown in the proof of Lemma 1(1). The rule
R4 is an infinitary rule that characterizes the until operator.
It is similar to a rule from [Marinkovic et al., 2014], and it
is necessary for the proof of σ-additivity.
The axiom A5 includes all valid formulas about linear in-
equalities. For example, f + 1 ≤ f + 2 and f + g =

251

g + f are instances of A5. A particular sound and com-
plete axiomatization for Boolean combination is given in
[Fagin et al., 1990], but, as it is pointed out there, any other
axiomatization can be used.
The probabilistic axioms A6 and A7 correspond to non-
negativity and finite additivity, respectively. They are two
of the four axioms presented in [Fagin et al., 1990]. Other
two axioms are theorems of AXPLLTL (see Lemma 1).
The rule R3 states that if we know that α holds, then we
believe that it is true with probability 1. The rules R4–R6
are infinitary rules of inference. R4 and R6 are crucial for
the proof of σ-additivity, while R5, ensures that the values
of probability measures belong to the set of reals. R5 is a
variant of a rule introduced in [Perovic et al., 2008].

Definition 9 (Proof) A formula Φ is a theorem of the logic
PLLTL, (` Φ), if there is an at most countable sequence
of formulas Φ0,Φ1, . . . ,Φ, such that every Φi is an axiom,
or it is derived from the preceding formulas by an inference
rule.
A formula Φ is deducible from a set of formulas T (T `
Φ) if there is an at most countable sequence of formulas
Φ0,Φ1, . . . ,Φ, such that every Φi is a theorem or a formula
from T , or it is derived from the preceding formulas by one
of the inference rules, excluding R2. The corresponding
sequence Φ0,Φ1, . . . ,Φ is the proof of Φ from T .

By the previous definition, application of the rule R2 is re-
stricted to theorems only. Otherwise, any change during the
time would be impossible. Note that the length of a proof
(the number of formulas in the corresponding sequence) is
any countable successor ordinal.

Definition 10 (Consistency) A set of formulas T is con-
sistent if there is no φ ∈ ForP such that T ` φ ∧ ¬φ,
otherwise it is inconsistent. T is maximal consistent if it is
consistent and for all Φ /∈ T , T ∪ {Φ} is inconsistent.

Next we make several observations about the notions of
consistency and maximal consistency:

- If T is consistent, then there is no α ∈ ForLTL such that
T ` α ∧ ¬α, since otherwise T ` w(α) = 1 ∧w(¬α) = 1
by R3, and T ` w(α) = 1 ∧ ¬w(α) = 1 by probabilistic
axioms.

- Maximal consistency of T doesn’t imply that for every
α ∈ ForLTL either T ` α or T ` ¬α. Indeed, suppose
that w(α) = 1

2 ∈ T for some α. If T ` α or T ` ¬α,
then by R3 (and some probabilistic reasoning) we have
T ` w(α) = 1 or T ` w(α) = 0, which would make
T inconsistent. On the other hand, for a φ ∈ ForP we
have either T ` φ or T ` ¬φ (see Lemma 1(4)).

- If T is consistent, then T is deductively closed, i.e., if
T ` Φ then Φ ∈ T .

3.2 SOME THEOREMS ABOUT AXPLLTL

It is straightforward to check that all the axioms of
AXPLLTL are valid, and that the rules of inference main-
tain the validity of formulas. Thus, we omit the proof of
the following result.

Theorem 1 (Soundness) The axiomatization AXPLLTL

is sound with respect to the class of models PLMeas
LTL .

Theorem 2 (Deduction theorem) Let T be a set of for-
mulas and let Φ and Ψ be two formulas such that either
Φ,Ψ ∈ ForLTL or Φ,Ψ ∈ ForLTL. Then T ∪ {Φ} ` Ψ
iff T ` Φ→ Ψ.

Proof. (sketch) We will prove the direction from right to
left because the other direction is immediate from R1. We
will use induction on the length of the inference. We will
only consider the case when R6 is applied. Suppose that
T ∪ {φ} ` ψ → w(αUβ) ≤ r is obtained by R6. Then
T ∪ {φ} ` ψ → w(αUnβ) ≤ r holds, by assumption, for
every n ∈ ω. Using induction hypothesis and reasoning as
above, we have:
T ` φ→ (ψ → w(αUnβ) ≤ r), for for every n ∈ ω;
T ` (φ ∧ ψ)→ w(αUnβ) ≤ r, for every n ∈ ω;
T ` (φ ∧ ψ)→ w(αUβ) ≤ r, by R6;
T ` φ→ (ψ → w(αUβ) ≤ r).

Lemma 1

1. If v(σ, α) = 1 for all σ ∈ Σ, then ` α.

2. ` w(>) = 1

3. If T ` α↔ β, then T ` w(α) = w(β)

4. If T is maximal consistent then either φ ∈ T or ¬φ ∈
T , for every φ ∈ ForP .

Proof. (1) If is sufficient to prove that all the axioms of
any complete axiomatization of LTL (for example C1–C8
form [Reynolds, 2001]) are theorems of our logic, and that
the standard Generalization rule “if α is a theorem, from α
infer Gα” is derived rule in AxPLLTL . As an ilustration,
let us derive Generalization. If ` α, applying rule R2 we
obtain ` ©nα for every n ∈ ω. Using A3, we conclude
` ¬ ©n ¬α for every n ∈ ω. Note that ¬ ©n ¬α can
be writen as ¬(>Un¬α). Finally, applying R4 we obtain
` ¬(>U¬α), or, equivalently, ` Gα.
(2) Follows directly form R3.
(3) Apply R3, then A8.
(4) If φ 6∈ T , then T∪{φ} ` ⊥, by the maximality of T . By
Theorem 2, we have T ` φ → ⊥, so T ` ¬φ. Similarly,
ifφ 6∈ T , then T ` ¬φ, which contradicts the assumption
that T is consistent.

Let us comment the lemma. By (1), we can use all the stan-
dard theorems of LTL in our reasoning in PLLTL. (2) is an

252

axiom for probabilistic reasoning from [Fagin et al., 1990].
(3) plays the crucial role in the construction of the canoni-
cal model in the next section. If we choose α and β to be
propositional formulas and T = ∅, we obtain another ax-
iom from [Fagin et al., 1990]. Thus, by (1)–(3), AXPLLTL

extends both temporal and probabilistic logic.
We use (4) in the proof of Theorem 5. We already pointed
out that the same property doesn’t hold for the LTL for-
mulas. Note that we cannot copy the proof of (4) in LTL
case, since we distinguish between the probabilistic contra-
diction and LTL contradiction (although we use ⊥ in both
cases).

4 THE COMPLETENESS OF PLLTL

In this section we prove strong version of completeness the-
orem: “every consistent set of formulas has a model”. We
use a Henkin-like construction. First we extend a consis-
tent set T of formulas to a maximal consistent set T ∗, then
we use T ∗ to define the corresponding structure MT∗ , and
finally we prove that MT∗ is a model of T . For given T ∗,
we say that MT∗ is its canonical model.

4.1 LINDENBAUM’S LEMMA

Theorem 3 (Lindenbaum’s lemma) Every consistent set
of formulas can be extended to a maximal consistent set.

Proof.(sketch) Let T be a consistent set and let Φ0,Φ1, . . .
be an enumeration of all formulas from For. We define the
sequence of sets Ti, i = 0, 1, 2, . . . and the set T ∗ recur-
sively as follows:

1. T0 = T ,

2. for every i ≥ 0,

(a) if Ti∪{Φi} is consistent, then Ti+1 = Ti∪{Φi},
otherwise

(b) if Φi is of the form γ → ¬(αUβ), then Ti+1 =
Ti ∪ {γ → (αUnβ)}, where n is the smallest
nonnegative integer such that Ti+1 is consistent,
otherwise

(c) if Φi is of the form φ → f ≥ r, then Ti+1 =
Ti ∪ {φ → f < r − 1

n}, where n is the small-
est positive integer such that Ti+1 is consistent,
otherwise

(d) if Φi is of the form φ → w(αUβ) ≤ r, then
Ti+1 = Ti ∪ {φ → w(αUnβ) > r}, where n is
the smallest nonnegative integer such that Ti+1 is
consistent, otherwise

(e) Ti+1 = Ti.

3. T ? =
⋃∞
i=0 Ti.

First, using Theorem 2 one can prove that the set T ∗ is
correctly defined, i.e., there exist n from the parts 2(b)–2(d)
of the construction. Each Ti, i > 0 is consistent. The steps
(1) and (2) of the construction ensure that T ? is maximal.
Also, T ? obviously doesn’t contain all formulas. Finally,
one can show that T ? is deductively closed set, and as a
consequence we obtain that T ? is consistent (otherwise it
would contain ⊥).

4.2 CANONICAL MODEL

Definition 11 (Canonical model) For a maximal consis-
tent set T ∗, we define a PLLTL structure as a tupleMT∗ =
〈W,H, µ, π〉, such that:

1. W = {σ ∈ Σ | v(σ, α) = 1 for all α ∈ T ∗ ∩
ForLTL},

2. H = {[α] | α ∈ ForLTL}, where [α] = {w ∈
W | v(w,α) = 1},

3. µ([α]) = sup{r ∈ Q | T ∗ ` w(α) ≥ r}, for every
α ∈ ForLTL,

4. π(w) = w for every w ∈W .

Now we show that MT∗ is a measurable PLLTL structure.
In the proof, we will use the following result.

Lemma 2 The axioms A1–A4 and the inference rules R1,
R2 and R4 form a strongly complete axiomatization for
LTL.

Proof. We need to show that every consistent set T of
LTL formulas has a model, i.e., that there is σ such that
v(σ, α) = 1 for every α ∈ T . Reasoning similarly as
above, we can prove that Deduction theorem holds and that
T can be extended to a maximal consistent set T ∗. Now
we work with LTL formulas only, and we can prove that
for each α either α ∈ T ∗ or ¬α ∈ T ∗. Also, using the
axiomatization it is straightforward to show that if T ∗ is
maximal consistent set, then the set T ∗n = {α | ©α ∈ T ∗}
is also maximal consistent.
For given T ∗ , we define the path σ = s0, s1, . . . by
si = {p ∈ P | T ∗i ` p}.
It is sufficient to prove that v(σ, γ) = 1 iff T ∗ ` γ, for
every LTL formula γ. We use induction on the complexity
of the formula. The only interesting case is when γ is of
the form αUβ.
v(σ, γ) = 0 iff v(σ,¬(αUβ)) = 1
iff for all n ∈ ω, it is not the case that v(σ≥n, β) = 1 and
for all k < n, v(σ≥k, α) = 1
iff for all n ∈ ω, it is not the case that T ∗n ` β and for all
k < n, T ∗k ` α (by induction hypothesis)
iff for all n ∈ ω, it is not the case that T ∗ ` ©nβ and for
all k < n, T ∗ ` ©kα

253

iff for all n ∈ ω, T ∗ ` ¬(αUnβ) (by the maximal consis-
tency of T ∗)
iff T ∗ ` ¬(αUβ) (by R4).

Theorem 4 For every maximal consistent set T ∗, MT∗ ∈
PLMeas

LTL .

Proof. First we need to show that the definition is correct.
The set {[α] | α ∈ ForLTL} is an algebra of subsets of W ,
since W = [>], W \ [α] = [¬α] and [α] ∪ [β] = [α ∨ β].
We also need to check that µ is correctly defined, i.e., that
if [α] = [β] then µ([α]) = µ([β]). From [α] = [β]
we conclude that if σ is a path such that v(σ, γ) = 1
for all γ ∈ T ∗ ∩ ForLTL, then v(σ, α ↔ β) = 1.
From Lemma 2 we obtain T ∗ ` α ↔ β. Consequently,
T ∗ ` w(α) = w(β) by Lemma 1(3), so µ([α]) = µ([β]).
Obviously µ(W) = µ([>]) = 1 by Lemma 1(2). Similarly,
using A6 we conclude that µ is nonnegative, and using A7
we conclude that µ is a finitely additive probability mea-
sure on A. We need to prove that µ is σ-additive.
Let HΣ = {[α]Σ | α ∈ ForLTL}, where [α]Σ = {σ ∈
Σ | v(w,α) = 1}. By For©LTL we denote the set of all
LTL formulas in which © is the only temporal operator
(i.e. there are no appearances of U). We also introduce the
set A = {[α] | α ∈ For©LTL}. Using the same argument as
above, we can show that the sets HΣ and A are two alge-
bras of subsets of Σ. Similarly as in the definition of MT∗ ,
we define µ∗ on HΣ by

µ∗([α]Σ) = sup{r ∈ Q | T ∗ ` w(α) ≥ r}.

Reasoning as above, we conclude that µ∗ is a finitely ad-
ditive measure. We also use the same symbol µ∗ to de-
note the restriction of µ∗ to A. We actually want to show
that µ∗ is σ-additive on A. It is sufficient to show that if
B =

⋃
n∈ω Bi, where B,Bi ∈ A , then there is n such that

B =
⋃ω
n=0Bi.

If 2P denotes the set of subsets of P , note that Σ =
2P × 2P × 2P × . . . If we assume discrete topology on
the finite set 2P and the induced product topology on Σ,
then Σ is a compact space as a product of compact spaces.3

By definition of evaluation function v, we obtain that for
every α ∈ For©LTL there exist n ∈ ω (for example n is
the number of appearances of ©) and S ⊆ (2P)n such
that [α]Σ = S × 2P × 2P × . . . are Note that the sets of
the form S × 2P × 2P × . . ., where S ⊆ (2P)n for some
n ∈ ω, are clopen (both closed and open) sets in product
topology. Thus, each [α]Σ ∈ A is a clopen set in Σ. Now
assume that [α]Σ =

⋃
n∈ω[αn]Σ, where α ∈ For©LTL and

αn ∈ For©LTL for every n ∈ ω. The set {[αn]Σ | n ∈ ω}
is an open cover of the closed subset [α]Σ of the compact
space Σ, so there is a finite subcover {[αn1]Σ, . . . , [αn1]Σ}
of [α]Σ. Thus, µ∗ is σ-additive on A.

3For the basic notions and results about the topology used here
we refer the reader to [Kechris, 1995]

Let F be the σ-algebra generated by A. Since [αUβ]Σ =⋃
n∈ω[αUnβ]Σ, we can show that [α]Σ ∈ F for every

α ∈ ForLTL, using the induction on the number of appear-
ances of U in α. Thus, HΣ ⊆ F . By Caratheodory’s exten-
sion theorem (see [Ash and Doléans-Dade, 1999]), there is
a unique σ-additive probability measure ν on F which
coincide with µ∗ on A. We will actually show that
µ∗ is the restriction of ν to HΣ, i.e., that µ∗([α]Σ) =
ν([α]Σ) for all α ∈ ForLTL, using the induction on the
number of appearances of U in α. Indeed, ν([α]Σ) =

ν(
⋃
n∈ω[αUnβ]Σ) = limk→+∞ ν(

⋃k
n=1[αUnβ]Σ) =

limk→+∞ µ∗(
⋃k
n=1[αUnβ]Σ) = µ∗([αUβ]Σ). Here we

used σ-additivity of ν, the induction hypothesis and, in the
last step, the definition of µ∗ and R6.
Thus, µ∗ is a σ-additive probability measure on HΣ. Note
that we have that µ∗([α]Σ) = 1 whenever T ∗ ` α, by R3.
Thus, µ∗(W) = µ∗(

⋂
α:T∗`α[α]Σ) = 1, by σ-additivity of

µ∗.
Note that [α] = [α]Σ ∩ W , so H ⊆ F . Let µ be the σ-
additive probability measure on H induced by µ∗ by

µ([α]) = µ([α]Σ ∩W) = µ∗([α]Σ).

Note that µ∗(W) = 1 implies µ∗([α]Σ) = µ∗([α]Σ ∩W),
so µ∗([α]) = ν([α]). By definitions of µ and µ∗ it follows
that µ and ν coincide. Thus, µ is σ-additive.
We showed that MT∗ is a PLLTL structure. Finally, note
that [α] = [α]MT∗ , by the choice of π, soMT∗ ∈ PLMeas

LTL .

Now we can prove the main result of this section.

4.3 COMPLETENESS THEOREM

Theorem 5 (Strong completeness) A set of formulas T ⊆
For is consistent iff it is satisfiable.

Proof. The direction from right to left follows from the
soundness of the axiomatization AXPLLTL . For the other
direction, we need to show that a consistent set of formulas
T has a model. First we extend T to a maximal consistent
set T ∗, and we construct the canonical model MT∗ . We
will show that MT∗ is a model of T ∗, and, consequently, a
model of T . It is sufficient to prove that for all Φ ∈ For,
T ∗ ` Φ iff MT∗ |= Φ.
If Φ = α ∈ ForLTL. If α ∈ T ∗, then by the definition of
W from MT∗ , MT∗ |= α. Conversely, if MT∗ |= α, by
Lemma 2, α ∈ T ∗.
If Φ ∈ ForP , we proceed by induction on the complexity
of Φ.
Let Φ = f ≥ r. If f = r1w(α1) + . . .+ rkw(αk) + rk+1,
we can show, using the properties of supremum, that

r1µ([α1])+. . .+rkµ([αk])+rk+1 = sup{s | T ∗ ` f ≥ s}.

If we suppose that f ≥ r ∈ T ∗, then r ≤ sup{s | T ∗ `
f ≥ s}, so MT∗ |= f ≥ r. For the other direction, assume
that MT∗ |= f ≥ r. Then MT∗ 6|= f < r. If f < r ∈ T ∗,

254

then, reasoning as above, we conclude MT∗ |= f < r, a
contradiction. By Maximality of T ∗, we obtain f ≥ r ∈
T ∗.
If Φ = ¬φ, then MT∗ |= ¬φ iff MT∗ 6|= φ iff φ 6∈ T ∗ iff
¬φ ∈ T ∗, by maximality of T ∗.
If Φ = φ ∧ ψ, then MT∗ |= φ ∧ ψ iff MT∗ |= φ and
MT∗ |= φ iff φ, ψ ∈ T ∗ iff φ ∧ ψ ∈ T ∗, by maximality of
T ∗.

As it is well known, the alternative formulation of Com-
pleteness theorem, stated below, follows directly from the
previous result.

Theorem 6 If T ⊆ For and Φ ∈ For, then T |= Φ iff
T ` Φ.

5 THE DECIDABILITY OF PLLTL

[Sistla and Clarke, 1985] proved that the logic LTL is de-
cidable, and they showed that the problem of decid-
ing whether an LTL formula is satisfiable in a path is
PSPACE-complete. Note that if α is not satisfiable in
any path, then by Definition 6 it is not satisfiable in the
logic PLLTL. On the other hand, if there is a path σ such
that v(σ, α) = 1, then we can define a measurable structure
M = 〈W,H, µ, π〉, such that W = {w} is a singleton and
π(w) = σ (note that in that case the range of µ is {0, 1}).
Obviously, v(π(w), α) = 1 for every w ∈ W , so M |= α.
Thus, we proved that the satisfiability problem of LTL for-
mulas for the logic PLLTL is PSPACE-complete.

Now let us consider the satisfiability of a formula ϕ ∈
ForP . Let ForB(ϕ) denote the set of all basic probabilis-
tic formulas which appear in ϕ. Suppose that the formula
ϕ ∈ ForP is given in the complete disjunctive normal form
(CDNF),. i.e., ϕ =

∨m
i=1 ϕi, where each ϕi is a conjunc-

tion of the formulas from ForB(ϕ) or their negations, us-
ing all elements of ForB(ϕ), i.e. the number of conjuncts
of each ϕi is |ForB(ϕ)|. Note that the disjunction ϕ is
satisfiable iff at least one of its disjuncts ϕi is satisfiable.

Thus, we focus on satisfiability of the formulas of the form

|ForB(ϕ)|∧

k=1

ψk, (3)

where each ψk is a basic formula or its negation. In the fol-
lowing, we assume that a formula of the form (3) is given,
and we denote by F the set of its conjuncts {ψk | k =
1, . . . , |ForB(ϕ)|}.
For a LTL formula α, by Subfor(α) we denote the set
of its subformulas. If ForLTL(F) is the set of all LTL
formulas which appear in at least one element of F (un-
der the scope of probability operator w), let Subfor =⋃
α∈ForLTL(F) Subfor(α). Let us consider the formulas

of the form
|Subfor|∧

k=1

βk, (4)

where each βk belongs to Subfor ∪ {¬β | β ∈ Subfor},
and each subformula of α appears exactly once (negated or
not). Obviously the conjunction of any two different for-
mulas of the form (4) is a contradiction, while the disjunc-
tion of all such formulas is a tautology. This enables us to
translate the satisfiability problem to the problem of find-
ing a solution of a system of inequalities. First, note that
there are 2|Subfor| formulas of the form (4). First we elim-
inate the formulas which are not satisfiable in LTL, using
the procedure from [Sistla and Clarke, 1985]. Suppose that
there are ` formulas which are satisfiable (` ≤ 2|Subfor|).
We denote those formulas by α1, . . . , α`.

For any formula α ∈ ForLTL(F) we have that α ∈
Subfor. Consequently, α appears in each conjunction αk,
negated or not. Since

∨`
k=1 αk is a tautology, there is

a unique set of indices Iα ⊆ {1, . . . , `} such that α ↔∨
i∈Iα αi is a tautology. Let Γα be the corresponding set
{αi | i ∈ Iα}. Using the probabilistic axioms and Lemma
1(3), we obtain

` w(α) =
∑

αi∈Γα

w(αi). (5)

Now, we can transform every formula ψ ∈ F of the form
r1w(γ1)+ . . .+rkw(γk) ≥ rk+1 to the equivalent formula

r1

∑

αi∈Γγ1

w(αi) + . . .+ rk
∑

αi∈Γγk

w(αi) ≥ rk+1. (6)

Thus, we obtain that a measurable structure M =
〈W,H, µ, π〉 satisfies ψ if and only if

r1

∑

αi∈Γγ1

µ([αi]) + . . .+ rk
∑

αi∈Γγk

µ([αi]) ≥ rk+1. (7)

Similarly, if ψ from F is a negation of a basic probabilistic
formula, then it is of the form r1w(γ1) + . . .+ rkw(γk) <
rk+1, which give us the similar condition for satisfiability
of ψ under M :

r1

∑

αi∈Γγ1

µ([αi]) + . . .+ rk
∑

αi∈Γγk

µ([αi]) < rk+1. (8)

Let denote by xi the probability of the formula αi in a po-
tential model M = 〈W,H, µ, π〉 of the formula (3), i.e.,
xi = µ([αi]) each i ∈ {1, . . . , `}.
Let Fpos be the set of basic probabilistic formulas from F ,
and let Fneg be the set of formulas from F which are nega-
tions of basic probabilistic formulas. For given ψ ∈ Fpos
of the form r1w(γ1)+ . . .+rkw(γk) ≥ rk+1 we define the
inequality Ineq(ψ), obtained by (7), as

Ineq(ψ) : r1(
∑

i:αi∈Γγ1

xi) + . . .+ rk(
∑

i:αi∈Γγk

xi) ≥ rk+1.

255

In the same way we define Ineq(ψ) for ψ ∈ Fneg of the
form r1w(γ1) + . . .+ rkw(γk) < rk+1 as

Ineq(ψ) : r1(
∑

i:αi∈Γγ1

xi) + . . .+ rk(
∑

i:αi∈Γγk

xi) < rk+1.

Then the formula (3) is satisfiable iff the following sentence
of the language of real closed fields is satisfiable:

∃x1 . . . ∃x`
(∧̀
k=1

(xk ≥ 0)

∧ ∑̀
k=1

xk = 1

∧ ∧
ψ∈F

Ineq(ψ)
)
.

The sentence represents a nonlinear system of linear in-
equalities: the first line represents non-negativity of prob-
ability measures; the second line represents the condition
µ(W) = µ([>]) =

∑`
k=1 µ([αk]) = 1. The third line rep-

resent the conditions (7) and (8). Obviously, if the system
doesn’t have a solution, there is no µ which satisfies (3).
If the system has the solution (x1, . . . , x`) = (c1, . . . , c`),
then we can construct M = 〈W,H, µ, π〉 which satisfies
(3) in the following way: W = {w1, . . . w`}, π(wi) is any
path σ such that v(σ, αi) = 1, H is the set of all subsets of
W and µ is determined by the condition µ({wi}) = ci.

Since the theory of real closed fields is decidable, our logic
is decidable as well. Moreover, note that the above sen-
tence is an existential sentence. Thus, we can use Canny’s
decision procedure from [Canny, 1988]. Since the proce-
dure decides satisfiability of the formula in PSPACE, we
conclude that satisfiability of probabilistic formulas is in
PSPACE as well.

Thus, in both probabilistic and LTL case there is a
procedure which decides satisfiability of the formula in
PSPACE. Since PSPACE is also a lower bound in the
case of LTL formulas, we proved the following result.

Theorem 7 The problem of deciding whether a formula of
the logic PLLTL is satisfiable in a measurable structure
from PLMeas

LTL is PSPACE-complete.

6 CONCLUSION

In this paper, we introduced the logic PLLTL for prob-
abilistic reasoning about temporal information. The lan-
guage contains both LTL formulas and probabilistic for-
mulas in the style of [Fagin et al., 1990], with the differ-
ence that the probabilistic operator w is now applied to
LTL formulas. We propose an axiomatization for the logic
and prove strong completeness. Since the semantical rela-
tionship between the operators “next” and “until” explicitly
requires σ-additive semantics, the axiomatization contains
infinitary rules of inference. We show that the satisfiability

problem is PSPACE-complete, no harder then satisfiabil-
ity for LTL.

It seems that combining any standard finitary axiomatizatin
of LTL with the axiomatization from [Fagin et al., 1990]
could be extended to a weakly (but not strongly) com-
plete axiomatization for a finitely additive restriction of our
logic, which would be convenient for possible applications.
On the other hand, we believe that our infinitary rules of
inference can be represented using schemes (similarly as
quantifiers in the first order logic are abbreviations for the
infinite conjunctions and disjunctions), so that some of in-
finitary proofs might be finitary represented and used in au-
tomated reasoning.

Some probabilistic LTL’s were motivated by
the need to analyze probabilistic programs and
stochastic systems [Donaldson and Gilbert, 2008,
Feldman, 1984, Hansson and Jonsson, 1994, Kozen, 1985,
Lehmann and Shelah, 1982]. In some of them, probabilis-
tic operators are not explicitly mentioned in the formulas,
while in the others it is possible to directly express prob-
abilities. Our logic allows one to quantify runs satisfying
some properties. In this paper we restrict our attention
to theoretical issues (e.g., worst case complexity), while
the possible applications (e.g., heuristic procedures for
satisfiability checking) are left for the future work.

Acknowledgements

This work was supported by the National Research Fund
(FNR) of Luxembourg through project PRIMAT, and by
the Serbian Ministry of Education and Science through
projects ON174026 and III44006.

We wish to thank the anonymous UAI referees whose com-
ments and suggestions helped us to improve the paper. We
also wish to thank Marc van Zee for his help.

References

[Ash and Doléans-Dade, 1999] Ash, R. B. and Doléans-
Dade, C. A. (1999). Probability & Measure Theory,
Second Edition. Academic Press, 2 edition.

[Canny, 1988] Canny, J. F. (1988). Some algebraic and ge-
ometric computations in PSPACE. In Proceedings of the
20th Annual ACM Symposium on Theory of Computing,
May 2-4, 1988, Chicago, Illinois, USA, pages 460–467.

[Donaldson and Gilbert, 2008] Donaldson, R. and Gilbert,
D. (2008). A monte carlo model checker for probabilis-
tic ltl with numerical constraints. Technical report, Uni-
versity of Glasgow, Department of Computing Science.

[Emerson, 1990] Emerson, A. E. (1990). Temporal and
modal logic. pages 995–1072.

256

[Emerson, 1995] Emerson, E. A. (1995). Automated tem-
poral reasoning about reactive systems. In Logics for
Concurrency - Structure versus Automata (8th Banff
Higher Order Workshop, August 27 - September 3, 1995,
Proceedings), pages 41–101.

[Fagin et al., 1990] Fagin, R., Halpern, J. Y., and Megiddo,
N. (1990). A logic for reasoning about probabilities. Inf.
Comput., 87(1/2):78–128.

[Feldman, 1984] Feldman, Y. A. (1984). A decidable
propositional dynamic logic with explicit probabilities.
Information and Control, 63(1/2):11–38.

[Gabbay et al., 1980] Gabbay, D. M., Pnueli, A., Shelah,
S., and Stavi, J. (1980). On the temporal basis of fair-
ness. In Conference Record of the Seventh Annual ACM
Symposium on Principles of Programming Languages,
Las Vegas, Nevada, USA, January 1980, pages 163–173.

[Grant et al., 2010] Grant, J., Parisi, F., Parker, A., and
Subrahmanian, V. S. (2010). An agm-style belief revi-
sion mechanism for probabilistic spatio-temporal logics.
Artif. Intell., 174(1):72–104.

[Guelev, 2000] Guelev, D. P. (2000). Probabilistic neigh-
bourhood logic. In Formal Techniques in Real-Time and
Fault-Tolerant Systems, 6th International Symposium,
FTRTFT 2000, Pune, India, September 20-22, 2000,
Proceedings, pages 264–275.

[Haddawy, 1996] Haddawy, P. (1996). A logic of time,
chance, and action for representing plans. Artif. Intell.,
80(1-2):243–308.

[Halpern and Pucella, 2006] Halpern, J. Y. and Pucella, R.
(2006). A logic for reasoning about evidence. J. Artif.
Intell. Res. (JAIR), 26:1–34.

[Hansson and Jonsson, 1994] Hansson, H. and Jonsson, B.
(1994). A logic for reasoning about time and reliability.
Formal Asp. Comput., 6(5):512–535.

[Kechris, 1995] Kechris, A. S. (1995). Classical Descrip-
tive Set Theory (Graduate Texts in Mathematics) (v.
156). Springer, 1 edition.

[Kozen, 1985] Kozen, D. (1985). A probabilistic PDL. J.
Comput. Syst. Sci., 30(2):162–178.

[Lehmann and Shelah, 1982] Lehmann, D. J. and Shelah,
S. (1982). Reasoning with time and chance. Information
and Control, 53(3):165–198.

[Marinkovic et al., 2014] Marinkovic, B., Ognjanovic, Z.,
Doder, D., and Perovic, A. (2014). A propositional lin-
ear time logic with time flow isomorphic to ω2. J. Ap-
plied Logic, 12(2):208–229.

[Nilsson, 1986] Nilsson, N. J. (1986). Probabilistic logic.
Artif. Intell., 28(1):71–87.

[Ognjanovic, 2006] Ognjanovic, Z. (2006). Discrete
linear-time probabilistic logics: Completeness, decid-
ability and complexity. J. Log. Comput., 16(2):257–285.

[Perovic et al., 2008] Perovic, A., Ognjanovic, Z.,
Raskovic, M., and Markovic, Z. (2008). A probabilistic
logic with polynomial weight formulas. In Foundations
of Information and Knowledge Systems, 5th Interna-
tional Symposium, FoIKS 2008, Pisa, Italy, February
11-15, 2008, Proceedings, pages 239–252.

[Prior, 1957] Prior, A. (1957). Time and Modality. Claren-
don Press, Oxford.

[Reynolds, 2001] Reynolds, M. (2001). An axiomatiza-
tion of full computation tree logic. J. Symb. Log.,
66(3):1011–1057.

[Shakarian et al., 2011] Shakarian, P., Parker, A., Simari,
G. I., and Subrahmanian, V. S. (2011). Annotated prob-
abilistic temporal logic. ACM Trans. Comput. Log.,
12(2):14.

[Sistla and Clarke, 1985] Sistla, A. P. and Clarke, E. M.
(1985). The complexity of propositional linear temporal
logics. J. ACM, 32(3):733–749.

[van der Hoek, 1997] van der Hoek, W. (1997). Some con-
siderations on the logic pfd˜. Journal of Applied Non-
Classical Logics, 7(3).

257

Training generative neural networks via Maximum Mean Discrepancy
optimization

Gintare Karolina Dziugaite
University of Cambridge

Daniel M. Roy
University of Toronto

Zoubin Ghahramani
University of Cambridge

Abstract

We consider training a deep neural network to
generate samples from an unknown distribu-
tion given i.i.d. data. We frame learning as
an optimization minimizing a two-sample test
statistic—informally speaking, a good genera-
tor network produces samples that cause a two-
sample test to fail to reject the null hypothesis.
As our two-sample test statistic, we use an un-
biased estimate of the maximum mean discrep-
ancy, which is the centerpiece of the nonpara-
metric kernel two-sample test proposed by Gret-
ton et al. [2]. We compare to the adversar-
ial nets framework introduced by Goodfellow et
al. [1], in which learning is a two-player game
between a generator network and an adversarial
discriminator network, both trained to outwit the
other. From this perspective, the MMD statistic
plays the role of the discriminator. In addition to
empirical comparisons, we prove bounds on the
generalization error incurred by optimizing the
empirical MMD.

1 INTRODUCTION

In this paper, we consider the problem of learning gener-
ative models from i.i.d. data with unknown distribution P .
We formulate the learning problem as one of finding a func-
tion G, called the generator, such that, given an input Z
drawn from some fixed noise distribution N , the distribu-
tion of the output G(Z) is close to the data’s distribution
P . Note that, given G and N , we can easily generate new
samples despite not having an explicit representation for
the underlying density.

We are particularly interested in the case where the gener-
ator is a deep neural network whose parameters we must
learn. Rather than being used to classify or predict, these
networks transport input randomness to output random-

ness, thus inducing a distribution. The first direct in-
stantiation of this idea is due to MacKay [7], although
MacKay draws connections even further back to the work
of Saund [11] and others on autoencoders, suggesting that
generators can be understood as decoders. MacKay’s pro-
posal, called density networks, uses multi-layer perceptrons
(MLP) as generators and learns the parameters by approxi-
mating Bayesian inference.

Since MacKay’s proposal, there has been a great deal of
progress on learning generative models, especially over
high-dimensional spaces like images. Some of the most
successful approaches have been based on restricted Boltz-
mann machines [10] and deep Boltzmann networks [3]. A
recent example is the Neural Autoregressive Density Esti-
mator due to Uria, Murray, and Larochelle [15]. An indepth
survey, however, is beyond the scope of this article.

This work builds on a proposal due to Goodfellow et al.
[1]. Their adversarial nets framework takes an indirect
approach to learning deep generative neural networks: a
discriminator network is trained to recognize the differ-
ence between training data and generated samples, while
the generator is trained to confuse the discriminator. The
resulting two-player game is cast as a minimax optimiza-
tion of a differentiable objective and solved greedily by it-
eratively performing gradient descent steps to improve the
generator and then the discriminator.

Given the greedy nature of the algorithm, Goodfellow et
al. [1] give a careful prescription for balancing the training
of the generator and the discriminator. In particular, two
gradient steps on the discriminator’s parameters are taken
for every iteration of the generator’s parameters. It is not
clear at this point how sensitive this balance is as the data
set and network vary. In this paper, we describe an approx-
imation to adversarial learning that replaces the adversary
with a closed-form nonparametric two-sample test statistic
based on the Maximum Mean Discrepancy (MMD), which
we adopted from the kernel two sample test [2]. We call our
proposal MMD nets.1 We give bounds on the estimation

1In independent work reported in a recent preprint, Li, Swer-

258

error incurred by optimizing an empirical estimator rather
than the true population MMD and give some illustrations
on synthetic and real data.

2 LEARNING TO SAMPLE AS
OPTIMIZATION

It is well known that, for any distribution P and any con-
tinuous distributionN on sufficiently regular spaces X and
W, respectively, there is a function G : W → X, such that
G(W) ∼ P when W ∼ N . (See, e.g., [4, Lem. 3.22].) In
other words, we can transform an input from a fixed input
distribution N through a deterministic function, producing
an output whose distribution is P . For a given family {Gθ}
of functions W → X, called generators, we can cast the
problem of learning a generative model as an optimization

arg min
θ
δ(P, Gθ(N)), (1)

where δ is some measure of discrepancy and Gθ(N) is the
distribution of Gθ(W) when W ∼ N . In practice, we only
have i.i.d. samplesX1, X2, . . . fromP , and so we optimize
an empirical estimate of δ(P, Gθ(N)).

2.1 ADVERSARIAL NETS

Adversarial nets [1] can be cast within this framework: Let
{Dφ} be a family of functions X → [0, 1], called discrim-
inators. We recover the adversarial nets objective with the
discrepancy

δAN(P, Gθ(N)) = max
φ

E
[
logDφ(X) + log(1−Dφ(Y))

]
,

where X ∼ P and Y ∼ Gθ(N). In this case, Eq. (1)
becomes

min
θ

max
φ

V (Gθ, Dφ)

where

V (Gθ, Dφ) = E
[
logDφ(X) + log(1−Dφ(Gθ(W)))

]

for X ∼ P and W ∼ N . The output of the discrimina-
tor Dφ can be interpreted as the probability it assigns to its
input being drawn from P , and so V (Gθ, Dφ) is the ex-
pected log loss incurred when classifying the origin of a
point equally likely to have been drawn from P or Gθ(N).
Therefore, optimizing φ maximizes the probability of dis-
tinguishing samples from P and Gθ(N). Assuming that
the optimal discriminator exists for every θ, the optimal
generator G is that whose output distribution is closest to
P , as measured by the Jensen–Shannon divergence, which
is minimized when Gθ(N) = P .

sky, and Zemel [6] also propose to use MMD as a training ob-
jective for generative neural networks. We leave a comparison to
future work.

In [1], the generators Gθ and discriminators Dφ are chosen
to be multilayer perceptrons (MLP). In order to find a mini-
max solution, they propose taking alternating gradient steps
along Dφ and Gθ. Note that the composition Dφ(Gθ(·))
that appears in the value function is yet another (larger)
MLP. This fact permits the use of the back-propagation al-
gorithm to take gradient steps.

2.2 MMD AS AN ADVERSARY

In their paper introducing adversarial nets, Goodfellow et
al. [1] remark that a balance must be struck between opti-
mizing the generator and optimizing the discriminator. In
particular, the authors suggest k maximization steps for ev-
ery one minimization step to ensure that Dφ is well syn-
chronized with Gθ during training. A large value for k,
however, can lead to overfitting. In their experiments, for
every step taken along the gradient with respect toGθ, they
take two gradient steps with respect to Dφ to bring Dφ

closer to the desired optimum (Goodfellow, pers. comm.).

It is unclear how sensitive this balance is. Regardless, while
adversarial networks deliver impressive sampling perfor-
mance, the optimization takes approximately 7.5 hours to
train on the MNIST dataset running on a GeForce GTX
TITAN GPU from nVidia with 6GB RAM. Can we poten-
tially speed up the process with a more tractable choice of
adversary?

Our proposal is to replace the adversary with the kernel
two-sample test introduced by Gretton et al. [2]. In partic-
ular, we replace the family of discriminators with a family
H of test functions X→ R, closed under negation, and use
the maximum mean discrepancy between P and Gθ(N)
overH, given by

δMMDH(P, Gθ(N)) = sup
f∈H

E[f(X)]− E[f(Y)], (2)

where X ∼ P and Y ∼ Gθ(N). See Fig. 1 for a compari-
son of the architectures of adversarial and MMD nets.

While Eq. (2) involves a maximization over a family of
functions, Gretton et al. [2] show that it can be solved in
closed form when H is a reproducing kernel Hilbert space
(RKHS).

More carefully, letH be a reproducing kernel Hilbert space
(RKHS) of real-valued functions on Ω and let 〈·, ·〉H denote
its inner product. By the reproducing property it follows
that there exists a reproducing kernel k ∈ H such that every
f ∈ H can be expressed as

f(x) = 〈f, k(·, x)〉H =
∑

αik(x, xi) (3)

The functions induced by a kernel k are those functions in
the closure of the span of the set {k(·, x) : x ∈ Ω}, which is
necessarily an RKHS. Note, that for every positive definite
kernel there is a unique RKHS H such that every function
inH satisfies Eq. (3).

259

2
64

wm,1

...
wm,d

3
75

2
64

ym,1

...
ym,d

3
75G✓ D� P

⇢
input came from

data not generator

�

non-parametric
two-sample test statistic+ kernel two-sample

test statistic

2
64

wm,1

...
wm,d

3
75

2
64

ym,1

...
ym,d

3
75G✓

D� P

⇢
input came from

data not generator

�
non-parametric

two-sample test statistic

+ kernel two-sample
test statistic

Initialized Iter = 10 Iter = 50 Iter = 80 Trained. Iter = 400

Training

Generated 0 100 200 300 400
−0.2

0

0.2

0.4

0.6

0.8
Convergence of Training Error

Iteration

M
M

D
2

−2 0 2 4
0

2

4

6

8

10

p
d
f

Before Training

true data

generated data

−2 0 2 4
0

0.2

0.4

0.6

0.8

1

p
d
f

After Training

true data

generated data

sigma

m
u

squared MMD

1 2 3 4
0

0.5

1

1.5

2

2.5

3

−2 0 2 40

2

4

6

8

10

pd
f

Before Training

true data
generated data

−2 0 2 40

0.2

0.4

0.6

0.8

1

pd
f

After Training

Figure 1: (top left) Comparison of adversarial nets and MMD nets. (top right) Here we present a simple one-dimensional illustration of
optimizing a generator via MMD. Both the training data and noise data are Gaussian distributed and we consider the class of generators
given by G(µ,σ)(w) = µ + σw. The plot on the left shows the isocontours of the MMD-based cost function and the path taken by
gradient descent. On right, we show the distribution of the generator before and after a number of training iterations, as compared with
the data generating distribution. Here we did not resample the generated points and so we do not expect to be able to drive the MMD to
zero and match the distribution exactly. (bottom) The same procedure is repeated here for a two-dimensional dataset. On the left, we see
the gradual alignment of the Gaussian-distributed input data to the Gaussian-distributed output data as the parameters of the generator
Gθ are optimized. The learning curve on the right shows the decrease in MMD obtained via gradient descent.

Assume that X is a nonempty compact metric space and F
a class of functions f : X→ R. Let p and q be Borel proba-
bility measures on X, and let X and Y be random variables
with distribution p and q, respectively. The maximum mean
discrepancy (MMD) between p and q is

MMD(F , p, q) = sup
f∈F

E[f(X)]− E[f(Y)]

If F is chosen to be an RKHSH, then

MMD2(F , p, q) = ‖µp − µq‖2H

where µp ∈ H is the mean embedding of p, given by

µp =

∫

X
k(x, ·) p(dx) ∈ H

and satisfying, for all f ∈ H,

E[f(X)] = 〈f, µp〉H.

The properties of MMD(H, ·, ·) depend on the underlying
RKHS H. For our purposes, it suffices to say that if we
take X to be RD and consider the RKHS H induced by
Gaussian or Laplace kernels, then MMD is a metric, and so
the minimum of our learning objective is achieved uniquely
by P , as desired. (For more details, see Sriperumbudur et
al. [12].)

In practice, we often do not have access to p or q. Instead,
we are given independent i.i.d. data X,X ′, X1, . . . , XN

and Y, Y ′, Y1, . . . , YM fom p and q, respectively, and
would like to estimate the MMD. Gretton et al. [2] showed
that

MMD2[H, p, q] = E[k(X,X ′)− 2k(X,Y) + k(Y, Y ′)]

and then proposed an unbiased estimator

MMD2
u[H, X, Y] =

1

N(N − 1)

∑

n 6=n′
k(xn, xn′)

+
1

M(M − 1)

∑

m6=m′
k(ym, ym′)

− 2

MN

M∑

m=1

N∑

n=1

k(xn, ym).

(4)

3 MMD NETS

With an unbiased estimator of the MMD objective in hand,
we can now define our proposal, MMD nets: Fix a neural
network Gθ, where θ represents the parameters of the net-
work. Let W = (w1, . . . , wM) denote noise inputs drawn
from N , let Yθ = (y1, . . . , ym) with yj = Gθ(wj) denote

260

Algorithm 1 Stochastic gradient descent for MMD nets.

Initialize M , θ, α, k
Randomly divide training set X into Nmini mini batches
for i← 1, number-of-iterations do

Regenerate noise inputs {wi}i=1,...,M every r iterations
for nmini ← 1, Nmini do

for m← 1,M do
ym ← Gθ(wm)

end for
compute the n’th minibatch’s gradient∇C(n)

update learning rate α (e.g., RMSPROP)
θ ← θ − α∇Cn

end for
end for

the noise inputs transformed by the network Gθ, and let
X = (x1, .., xN) denote the training data in RD. Given a
positive definite kernel k on RD, we minimize C(Yθ, X)
as a function of θ, where

C(Yθ, X) =
1

M(M − 1)

∑

m 6=m′
k(ym, ym′)

− 2

MN

M∑

m=1

N∑

n=1

k(ym, xn).

Note that C(Yθ, X) is composed of only those parts of the
unbiased estimator (Eq. (4)) that depend on θ.

In practice, the minimization is solved by gradient descent,
possibly on subsets of the data. More carefully, the chain
rule gives us

∇C(Yθ, X) =
1

N

N∑

n=1

M∑

m=1

∂Cn(Yθ, Xn)

∂ym

∂Gθ(wm)

∂θ
,

where

Cn(Yθ, Xn) =
1

M(M − 1)

∑

m 6=m′
k(ym, ym′)

− 2

M

M∑

m=1

k(ym, xn).

Each derivative ∂Cn(Yθ,Xn)
∂ym

is easily computed for standard
kernels like the RBF kernel. Our gradient∇C(Yθ, Xn) de-
pends on the partial derivatives of the generator with re-
spect to its parameters, which we can compute using back
propagation.

4 MMD GENERALIZATION BOUNDS

MMD nets operate by minimizing an empirical estimate
of the MMD. This estimate is subject to Monte Carlo error
and so the network weights (parameters) θ̂ that are found to

minimize the empirical MMD may do a poor job at mini-
mizing the exact population MMD. We show that, for suffi-
ciently large data sets, this estimation error is bounded, de-
spite the space of parameters θ being continuous and high
dimensional.

Let Θ denote the space of possible parameters for the gen-
erator Gθ, let N be the distribution on W for the noisy
inputs, and let pθ = Gθ(N) be the distribution of Gθ(W)

when W ∼ N for θ ∈ Θ. Let θ̂ be the value optimizing the
unbiased empirical MMD estimate, i.e.,

MMD2
u(H, X, Yθ̂) = inf

θ
MMD2

u(H, X, Yθ), (5)

and let θ∗ be the value optimizing the population MMD,
i.e.,

MMD2(H, pdata, pθ∗) = inf
θ

MMD2(H, pdata, pθ).

We are interested in bounding the difference

MMD2(H, pdata, pθ̂)−MMD2(H, pdata, pθ∗).

To that end, for a measured space X , write L∞(X) for
the space of essentially bounded functions on X and write
B(L∞(X)) for the unit ball under the sup norm, i.e.,

B(L∞(X)) = {f : X → R : (∀x ∈ X)f(x) ∈ [−1, 1]}.

The bounds we obtain will depend on a notion of complex-
ity captured by the fat-shattering dimension:

Definition 1 (Fat-shattering [8]). Let XN =
{x1, . . . , xN} ⊂ X and F ⊂ B(L∞(X)). For ev-
ery ε > 0, XN is said to be ε-shattered by F if there
is some function h : X → R, such that for every
I ⊂ {1, . . . , N} there is some fI ∈ F for which

fI(xn) ≥ h(xn) + ε if n ∈ I,
fI(xn) ≤ h(xn)− ε if n /∈ I.

For every ε, the fat-shattering dimension of F , written
fatε(F), is defined as

fatε(F) = sup {|XN | : XN ⊂ X , XN is ε-shattered by F} .

Consider the class

GXk+ = {g = k(x,Gθ(·)) : x ∈ X, θ ∈ Θ}

of functions from W to R that are compositions of some
generator and the kernel with some fixed input, and the
(sub)class

Gk+ = {g = k(Gθ(w), Gθ(·)) : w ∈ W, θ ∈ Θ}.

We then have the following bound on the estimation error:

261

Theorem 1 (estimation error). Assume the kernel is
bounded by one and that there exists γ1, γ2 > 1 and
p1, p2 ∈ N such that, for all ε > 0, it holds that
fatε(Gk+) ≤ γ1ε

−p1 and fatε(GXk+) ≤ γ2ε
−p2 . Then with

probability at least 1− δ,

MMD2(H, pdata, pθ̂) < MMD2(H, pdata, pθ∗) + ε,

with

ε = r(p1, γ1,M) + r(p2, γ2,M − 1) + 12M−
1
2

√
log

2

δ
,

where the rate r(p, γ,M) is

r(p, γ,M) = Cp
√
γ

M−
1
2 if p < 2,

M−
1
2 log

3
2 (M) if p = 2,

M−
1
p if p > 2,

for constants Cp1 and Cp2 depending on p1 and p2 alone.

The proof appears in the appendix. We can obtain simpler,
but slightly more restrictive, hypotheses if we bound the
fat-shattering dimension of the class of generators {Gθ :
θ ∈ Θ} alone: Take the observation space X to be a
bounded subset of a finite-dimensional Euclidean space
and the kernel to be Lipschitz continuous and translation
invariant. For the RBF kernel, the Lipschitz constant is
proportional to the inverse of the length-scale: the result-
ing bound loosens as the length scale shrinks.

5 EMPIRICAL EVALUATION

In this section, we demonstrate the approach on an illustra-
tive synthetic example as well as the standard MNIST dig-
its and Toronto Face Dataset (TFD) benchmarks. We show
that MMD-based optimization of the generator rapidly de-
livers a generator that produces recognizable samples, but
these samples are inferior to those produced by adversarial
networks, both visually and as measured by an estimate of
the mean log density on a held-out test set.

5.1 GAUSSIAN DATA, KERNEL, AND
GENERATOR

Under an RBF kernel and Gaussian generator with param-
eters θ = {µ, σ}, it is straightforward to find the gradi-
ent of C(Yθ, X) by applying the chain rule. Using fixed
random standard normal numbers {w1, ..., wM}, we have
ym = µ + σwm for m ∈ {1, ..,M}. The result of these
illustrative synthetic experiments can be found in Fig. 1.
The dataset consisted of N = 200 samples from a standard
normal and M = 50 noise input samples were generated
from a standard normal with a fixed random seed. The al-
gorithm was initialized at values {µ, σ} = {2.5, 0.1}. We
fixed the learning rate to 0.5 and ran gradient descent steps
for K = 250 iterations.

5.2 MNIST DIGITS

We evaluated MMD nets on MNIST digits [5]. The genera-
tor was chosen to be a fully connected, 3 hidden layer neu-
ral network with sigmoidal activation functions. Following
Gretton et al. [2], we used a radial basis function (RBF)
kernel, but also evaluated the rational quadratic (RQ) ker-
nel [9] and Laplacian kernel, but found that the RBF per-
formed best in the parameter ranges we evaluated. We used
Bayesian optimization (WHETLab) to set the bandwidth of
the RBF and the number of neurons in each layer on ini-
tial test runs of 50,000 iterations. However, one can get a
similar-quality generator simply using the median heuris-
tic [2] to set the kernel bandwidth. The learning rate was
adjusting during optimization by RMSPROP [14].

Fig. 2 presents the digits learned after 1,000,000 iterations.
(Doubling the number of iterations produced similar im-
ages.) We performed minibatch stochastic gradient de-
scent, resampling the generated digits every 300 iterations,
with minibatches of 500 training and generated points. It
is clear that the digits produced have many artifacts not
appearing in the MNIST data set. Indeed, the mean log
density of held-out test data was estimated to be only 113
± 2, as compared with the reported 225 ± 2 achieved by
adversarial nets. On the other hand, most of the gain is
achieved by MMD nets in the first 100-200k iterations, and
so perhaps MMD nets could be used to initialize a network
further optimized by other means.

5.3 TORONTO FACE DATASET

We also evaluated MMD nets on the Toronto face dataset
(TFD) [13]. We used a 3-hidden-layer sigmoidal MLP with
similar architecture (1000, 600, and 1000 units) and RBF
kernel for the cost function with the same hyper parameter.
We used 500 training and generated points per batch. The
generated points were resampled every 500 iterations. The
network was optimized for 500,000 iterations. Samples
from the resulting network are plotted in Fig. 3. Again, the
samples produced by MMD nets are clearly distinguishable
from the training samples and this is reflected in a much
lower mean log density than adversarial nets.

6 CONCLUSION

MMD offers a closed-form surrogate for the discriminator
in the adversarial nets framework. After using Bayesian
optimization for the parameters, we found that the network
produced samples that were visually similar, but far from
indistinguishable from those used to train the network. On
one hand, adversarial nets handedly outperformed MMD
nets in terms of mean log density. On the other, MMD nets
achieve most of their gain quickly and so it seems promis-
ing to combine MMD nets with another technique, perhaps
using MMD nets to initialize a more costly procedure.

262

Figure 2: (top-left) MNIST digits from the training set. (top-right) Newly generated digits produced after 1,000,000 iterations (approx-
imately 5 hours). Despite the remaining artifacts, the resulting kernel-density estimate of the test data is state of the art. (top-center)
Newly generated digits after 300 further iterations optimizing the associated empirical MMD. (bottom-left) MMD learning curves for
first 2000 iterations. (bottom-right) MMD learning curves from 2000 to 500,000 iterations. Note the difference in y-axis scale. No
appreciable change is seen in later iterations.

Figure 3: (left) TFD. (right) Faces generated by network trained for 500,000 iterations. (center) After an additional 500 iterations.

A PROOFS

We begin with some preliminaries and known results:

Definition 2 ([8]). A random variable σ is said to be a
Rademacher random variable if it takes values in {−1, 1},
each with probability 1/2.

Definition 3 ([8]). Let µ be a probability measure on X ,
and let F be a class of uniformly bounded functions on X .
Then the Rademacher complexity of F (with respect to µ)
is

RN (F) = EµEσ1,...,σN

[
1√
N

sup
f∈F

∣∣∣
N∑

n=1

σnf(Xn)
∣∣∣
]
,

where σ = (σ1, σ2, . . .) is a sequence of independent
Rademacher random variables, and X1, X2, . . . are inde-
pendent, µ-distributed random variables, independent also
from σ.

Theorem 2 (McDiarmids Inequality [8]). Let f : X1 ×
· · · × XN → R and assume there exists c1, . . . , cN ≥ 0
such that, for all k ∈ {1, . . . , N}, we have

sup
x1,...,xk,x′k,...,xN

|f(x1, . . . , xk, . . . , xN)

− f(x1, . . . , x
′
k, . . . , xN)| ≤ ck.

Then, for all ε > 0 and independent random variables
ξ1, . . . , ξn in X ,

Pr {f(ξ1, . . . , ξN)− E(f(ξ1, . . . , ξN)) ≥ ε)}

< exp

(
−2ε2

∑N
n=1 c

2
n

)
.

Theorem 3 ([8, Thm. 2.35]). Let F ⊂ B(L∞(X)). As-
sume there exists γ > 1, such that for all ε > 0, fatε(F) ≤
γε−p for some p ∈ N. Then there exists constants Cp
depending on p only, such that RN (F) ≤ CpΨ(p,N, γ)
where

Ψ(p,N, γ) = γ
1
2

1 if 0 < p < 2

log
3
2 N if p = 2

N
1
2− 1

p if p > 2.

Theorem 4 ([2]). Assume 0 ≤ k(xi, xj) ≤ K, M = N .
Then

Pr
[
|MMD2

u(H, X, Yθ)−MMD2(H, pdata, pθ)| > ε
]
≤ δε

where

δε = 2 exp

(
− ε2M

16K2

)
.

The case where Θ is a finite set is elementary:
Theorem 5 (estimation error for finite parameter set). Let
pθ be the distribution of Gθ(W), with θ taking values in
some finite set Θ = {θ1, ..., θT }, T <∞. Then, with prob-
ability at least 1 − (T + 1)δε, where δε is defined as in
Theorem 4, we have

MMD2(H, pdata, pθ̂) < MMD2(H, pdata, pθ∗) + 2ε.

Proof. Let E(θ) = MMD2
u(H, X, Yθ) and let T (θ) =

MMD2(H, pdata, pθ).

Note, that the upper bound stated in Theorem 4 holds for
the parameter value θ∗, i.e.,

Pr [|E(θ∗)− T (θ∗)| > ε] ≤ δε. (6)

263

Because θ̂ depends on the training data X and generator
data Y , we use a uniform bound that holds over all θ.
Specifically,

Pr
[
|E(θ̂)− T (θ̂)| > ε

]
≤ Pr

[
sup
θ
|E(θ)− T (θ)| > ε

]

(7)

≤
T∑

t=1

Pr
[
|E(θ̂)− T (θ̂)| > ε

]
≤ Tδε.

This yields that with probability at least 1− Tδε,

2ε ≥ |E(θ̂)− T (θ̂)|+ |E(θ∗)− T (θ∗)|
≥ |E(θ∗)− E(θ̂) + T (θ̂)− T (θ∗)|.

(8)

Since θ∗ was chosen to minimize T (θ), we know that
T (θ̂) ≥ T (θ∗). Similarly, by Eq. (5), E(θ∗) ≥ E(θ̂).
Therefore it follows that

2ε ≥ T (θ̂)− T (θ∗)

= MMD2(H, pdata, pθ∗)−MMD2(H, pdata, pθ̂)

proving the theorem.

Corollary 1. With probability at least 1− δ,

MMD2(H, pdata, pθ̂) < MMD2(H, pdata, pθ∗) + 2εδ,

where

εδ = 8K

√
1

M
log [2(T + 1)δ].

In order to prove the general result, we begin with some
technical lemmas. The development here owes much to
Gretton et al. [2].
Lemma 1. Let F = {f : Y × Y → R} and

F+ = {h = f(y, ·) : f ∈ F , y ∈ Y} ∩B(L∞(Y)).

Let {Yn}Nn=1 be µ-distributed independent random vari-
ables in Y . Assume for some γ > 1 and some p ∈ N, we
have fatε(F+) ≤ γε−p, for all ε > 0. For yn ∈ Y ∀n =
1, . . . , N , define ρ(y1, . . . , yN) to be

sup
f∈F

∣∣∣E (f(Y, Y ′))− 1

N(N − 1)

∑

n 6=n′
f(yn, yn′)

∣∣∣.

Then there exists a constant C that depends on p, such that

E (ρ(Y1, . . . , YN)) ≤ C√
N − 1

Ψ(γ,N − 1, p).

Proof. Let us introduce {ζn}Nn=1, where ζn and Yn′ have
the same distribution and are independent for all n, n′ ∈
{1, . . . , N}. Then the following is true:

E(f(Y, Y ′)) = E
(1

N(N − 1)

∑

n,n′:n 6=n′
f(ζn, ζn′)

)

Using Jensen’s inequality and the independence of Y, Y ′

and Yn, Yn′ , we have

E (ρ(Y1, . . . , YN))

= E

(
sup
f∈F

∣∣∣∣E(f(Y, Y ′))

− 1

N(N − 1)

∑

n 6=n′
f(Ym, Ym′)

∣∣∣∣
)

≤ E
(

sup
f∈F

∣∣∣∣
1

N(N − 1)

∑

n 6=n′
f(ζn, ζ

′
n)

− 1

N(N − 1)

∑

n 6=n′
f(Yn, Yn′)

∣∣∣∣
)
.

(9)

Introducing conditional expectations allows us to rewrite
the equation with the sum over n outside the expectations.
I.e., Eq. (9) equals

1

N

∑

n

EE(Yn,ζn)
(

sup
f∈F

∣∣∣ 1

N − 1

∑

n6=n′
Φ(ζn, ζn′ , Yn, Yn′)

∣∣∣
)

=EE(Y,ζ)
(

sup
f∈F

∣∣∣ 1

N − 1

N−1∑

n=1

σnΦ(ζ, ζn, Y, Yn)
∣∣∣
)
,

(10)

where Φ(x, x′, y, y′) = f(x, x′) − f(y, y′). The sec-
ond equality follows by symmetry of random variables
{ζn}N−1

n=1 . Note that we also added Rademacher random
variables {σn}N−1

n=1 before each term in the sum since
(f(ζn, ζn′) − f(Yn, Yn′)) has the same distribution as
−(f(ζn, ζn′) − f(Yn, Yn′)) for all n, n′ and therefore the
σ’s do not affect the expectation of the sum.

Note that ζm and Ym are identically distributed. Thus the
triangle inequality implies that Eq. (10) is less than or equal
to

2

N − 1
E

(
E(Y)

(
sup
f∈F

∣∣
N−1∑

n=1

σnf(Y, Yn)
∣∣
))

≤ 2√
N − 1

RN−1(F+),

where RN−1(F+) is the Rademacher’s complexity of F+.
Then by Theorem 3, we have

E (ρ(Y1, . . . , YN)) ≤ C√
N − 1

Ψ(γ,N − 1, p).

Lemma 2. Let F = {f : X × Y → R} and F+ = {f :
x × Y → R, x ∈ X} and assume F+ ⊂ B(L∞(Y)). Let
{Xn}Nn=1 and {Ym}Mn=1 be ν- and µ-distributed indepen-
dent random variables in X and Y , respectively. Assume
for some γ > 1, such that for all ε > 0, fatε(F+) ≤ γε−p,

264

for some p ∈ N. For all xn ∈ X , n ≤ N , and all ym ∈ Y ,
m ≤M , define

ρ(x1, . . . , xN , y1, . . . , yM) =

sup
f∈F

∣∣∣E(f(X,Y)− 1

NM

∑

n,m

f(xn, ym)
∣∣∣.

Then there exists C that depends on p, such that

E (ρ(X1, . . . , XN , Y1, . . . , YM)) ≤ C√
M

Ψ(γ,M, p).

Proof. The proof is very similar to that of Lemma 1.

Proof of Theorem 1. The proof follows the same steps as
the proof of Theorem 5 apart from a stronger uniform
bound stated in Eq. (7). I.e., we need to show:

Pr

[
sup
θ∈Θ
|E(θ)− T (θ)| ≥ ε

]
≤ δ.

Expanding MMD as defined by Eq. (4), and substituting
Y = Gθ(W), yields

sup
θ∈Θ
|E(θ)− T (θ)|

= sup
θ∈Θ

∣∣∣E(k(X,X ′))

− 1

N(N − 1)

∑

n′ 6=n
k(Xn, Xn′)

+ E(k(Gθ(W), Gθ(W
′)))

− 1

M(M − 1)

∑

m 6=m′
k(Gθ(Wm), Gθ(Wm′))

− 2E(k(X,Gθ(W)))

+
2

MN

∑

m,n

k(Xn, Gθ(Wm))
∣∣∣.

(11)

For all n ∈ {1, . . . , N}, k(Xn, Xn′) does not depend on
θ and therefore the first two terms of the equation above
can be taken out of the supremum. Also, note that since
|k(·, ·)| ≤ K, we have
∣∣∣ζ(x1, . . . , xn, . . . , xN)− ζ(x1, . . . , x

′
n, . . . , xN)

∣∣∣ ≤ 2K

N
,

where

ζ(x1, . . . , xN) =
1

N(N − 1)

∑

n,n′:n′ 6=n
k(xn, xn′),

and ζ is an unbiased estimate of E(k(X,X ′)). Then from
McDiarmid’s inequality on ζ, we have

Pr
(∣∣∣E(k(X,X ′))− 1

N(N − 1)

∑

n′ 6=n
k(Xn, Xn′)

∣∣∣ ≥ ε
)

≤ exp

(
− ε2

2K2
N

)
. (12)

Therefore Eq. (11) is bounded by the sum of the bound on
Eq. (12) and the following:

sup
θ∈Θ

∣∣∣E(k(Gθ(W), Gθ(W
′)))

− 1

M(M − 1)

∑

m 6=m′
k(Gθ(Wm), Gθ(Wm′))

− 2E(k(X,Gθ(W)))

+
2

MN

∑

m,n

k(Xn, Gθ(Wm))
∣∣∣.

(13)

Thus the next step is to find the bound for the supremum
above.

Define

f(W1, . . . ,WM ; pnoise) = f(WM)

= sup
θ∈Θ

∣∣∣E(k(Gθ(W), Gθ(W
′)))

− 1

M(M − 1)

∑

m6=m′
k(Gθ(Wm), Gθ(Wm′))

∣∣∣

and

h(X1, . . . , XN ,W1, . . . ,WM ; pdata, pnoise)

= h(XN ,WM)

= sup
θ∈Θ

∣∣∣ 1

MN

∑

m,n

k(Xn, Gθ(Wm))− E(k(X,Gθ(W)))
∣∣∣.

Then by triangle inequality, the supremum in Eq. (13) is
bounded by

f(WM) + 2h(XN ,WM).

We will first find the upper bound on f(WM), i.e., for ev-
ery ε > 0, we will show that there exists δf , such that

Pr (f(WM) > ε) ≤ δf (14)

For each m ∈ {1, . . . ,M},
∣∣∣f(W1, . . . ,Wm, . . . ,WM)

− f(W1, . . . ,W
′
m, . . . ,WM)

∣∣∣ ≤ 2K

M

since the kernel is bounded by K, and therefore
k(Gθ(Wm), Gθ(Wm′)) is bounded by K for all m. The
conditions of Theorem 2 are satisfied and thus we can use
McDiarmids Inequality on f :

Pr (f(WM)− E(f(WM)) ≥ ε) ≤ exp

(
−ε

2M

2K2

)
.

Define

Gk = {k(Gθ(·), Gθ(·)) : θ ∈ Θ}

265

To show Eq. (14), we need to bound the expectation of f .
We can apply Lemma 1 on the function classes Gk and Gk+.
The resulting bound is

E(f(WM)) ≤ εp1 =
Cf√
M − 1

Ψ(γ1,M − 1, p1), (15)

where p1 and γ1 are parameters associated with fat shatter-
ing dimension of Gk+ as stated in the assumptions of the
theorem, and Cf is a constant depending on p1.

Now we can write down the bound on f :

Pr (f(WM) ≥ εp1 + ε) ≤ exp

(
−ε

2M

2K2

)
= δf . (16)

Similarly, h(XN ,WM) has bounded differences:
∣∣∣h(X1, . . . , Xn, . . . , XN ,W1, . . . ,WM)

− h(X1, . . . , Xn′ , . . . , XN ,W1, . . . ,WM)
∣∣∣ ≤ 2K

N

and
∣∣∣h(X1, . . . , XN ,W1, . . . ,Wm, . . . ,WM)

− h(X1, . . . , XN ,W1, . . . ,Wm′ , . . . ,WM)
∣∣∣ ≤ 2K

M
.

McDiarmid’s inequality then implies

Pr (h(XN ,WM)− E(h(XN ,WM) ≥ ε)

≤ exp

(
− ε2

2K2

NM

N +M

)
.

(17)

We can bound expectation of h(XN ,WM) using Lemma 2
applied on GXk and GXk+, where

GXk = {k(·, Gθ(·)) : θ ∈ Θ}.

Then

E(h(XN ,WM)) ≤ εp2 =
Ch√
M

Ψ(γ2,M, p2). (18)

for some constant Ch that depends on p@. The final bound
on h is then

Pr (h(XN ,WM) ≥ εp2 + ε)

≤ exp

(
− ε2

2K2

NM

N +M

)
= δh.

Summing up the bounds from Eq. (16) and Eq. (17), it fol-
lows that

Pr (f(WM) + 2h(XN ,WM) ≥ εp1 + 2εp2 + 3ε)

≤ max(δf , δh) = δh.

Using the bound in Eq. (12), we have obtain the uniform
bound we were looking for:

Pr

[
sup
θ∈Θ
|E(θ)− T (θ)| > εp1 + 2εp2 + 4ε

]
≤ δh,

which by Eq. (7) yields

Pr
[
|E(θ̂)− T (θ̂)| > εp1 + 2εp2 + 4ε

]
≤ δh.

Since it was assumed that K = 1 and N = M , we get
δh = exp

(
−ε2M/4

)
.

To finish, we proceed as in the proof of Theorem 5. We
can rearrange some of the terms to get a different form of
Eq. (6):

Pr [|E(θ∗)− T (θ∗)| > 2ε] ≤ 2 exp

(
−ε

2M

4

)
= 2δh.

All of the above implies that for any ε > 0, there exists δ,
such that

Pr
(
MMD2(H, pdata, pθ̂)−MMD2(H, pdata, pθ∗) ≥ ε

)
≤ δ,

where

ε = εp1 + 2εp2 +
12√
M

√
log

2

δ
.

We can rewrite ε as:

ε = r(p1, γ1,M) + r(p2, γ2,M − 1) + 12M−
1
2

√
log

2

δ
,

The rate r(p, γ,N) is given by Eq. (15) and Eq. (18):

r(p, γ,M) = Cp
√
γ

M−
1
2 if p < 2,

M−
1
2 log

3
2 (M) if p = 2,

M−
1
p if p > 2,

where Cp1 and Cp2 depend on p1 and p2 alone.

We close by noting that the approximation error is zero in
the nonparametric limit.
Theorem 6 (Gretton et al. [2]). Let F be the unit ball
in a universal RKHS H, defined on the compact metric
space X, with associated continuous kernel k(·, ·). Then
MMD[H, p, q] = 0 if and only if p = q.
Corollary 2 (approximation error). Assume pdata is in the
family {pθ} and that H is an RKHS induced by a charac-
teristic kernel. Then

inf
θ

MMD(H, pdata, pθ) = 0

and the infimum is achieved at θ satisfying pθ = pdata.

Proof. By Theorem 6, it follows that MMD2(H, ·, ·) is a
metric. The result is then immediate.

Acknowledgments

The authors would like to thank Bharath Sriperumbudur for
technical discussions.

266

References

[1] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio. “Generative Adversarial Nets”. 2014.

[2] A. Gretton, K. M. Borgwardt, M. J. Rasch, B.
Schölkopf, and A. Smola. “A Kernel Two-sample
Test”. In: J. Mach. Learn. Res. 13 (Mar. 2012),
pp. 723–773.

[3] G. E. Hinton and R. R. Salakhutdinov. “Reducing
the dimensionality of data with neural networks”. In:
Science 313.5786 (July 2006), pp. 504–507.

[4] O. Kallenberg. Foundations of modern probability.
2nd. New York: Springer, 2002, pp. xx+638.

[5] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner.
“Gradient-based learning applied to document
recognition”. In: Proceedings of the IEEE. 1998,
pp. 2278–2324.

[6] Y. Li, K. Swersky, and R. Zemel. “Gen-
erative Moment Matching Networks”.
http://arxiv.org/abs/1502.02761v1. 2015.

[7] D. J. MacKay. “Bayesian Neural Networks and Den-
sity Networks”. In: Nuclear Instruments and Meth-
ods in Physics Research, A. 1994, pp. 73–80.

[8] S. Mendelson. “A Few Notes on Statistical Learn-
ing Theory”. English. In: Advanced Lectures on
Machine Learning. Ed. by S. Mendelson and A.
Smola. Vol. 2600. Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 2003, pp. 1–40.

[9] C. E. Rasmussen and C. K. I. Williams. Gaussian
Processes for Machine Learning (Adaptive Com-
putation and Machine Learning). The MIT Press,
2005.

[10] R. Salakhutdinov and G. E. Hinton. “Deep Boltz-
mann Machines”. In: Journal of Machine Learning
Research - Proceedings Track 5 (2009), pp. 448–
455.

[11] E. Saund. “Dimensionality-Reduction Using Con-
nectionist Networks.” In: IEEE Trans. Pattern Anal.
Mach. Intell. 11.3 (1989), pp. 304–314.

[12] B. K. Sriperumbudur, A. Gretton, K. Fukumizu,
G. Lanckriet, and B. Schölkopf. “Injective Hilbert
Space Embeddings of Probability Measures”. In:
Conf. Comp. Learn. Theory, (COLT). 2008.

[13] J. M. Susskind, A. K. Anderson, and G. E. Hinton.
The Toronto face database. Tech. rep. 2010.

[14] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp:
Divide the gradient by a running average of its re-
cent magnitude. COURSERA: Neural Networks for
Machine Learning. 2012.

[15] B. Uria, I. Murray, and H. Larochelle. “A
Deep and Tractable Density Estimator.” In: CoRR
abs/1310.1757 (2013).

267

Incremental Region Selection for Mini-bucket Elimination Bounds

Sholeh Forouzan
Department of Computer Science
University of California, Irvine

Irvine, CA, 92697

Alexander Ihler
Department of Computer Science
University of California, Irvine

Irvine, CA, 92697

Abstract

Region choice is a key issue for many approxi-
mate inference bounds. Mini-bucket elimination
avoids the space and time complexity of exact
inference by using a top-down partitioning ap-
proach that mimics the construction of a junc-
tion tree and aims to minimize the number of re-
gions subject to a bound on their size; however,
these methods rarely take into account functions’
values. In contrast, message passing algorithms
often use “cluster pursuit” methods to select re-
gions, a bottom-up approach in which a pre-
defined set of clusters (such as triplets) is scored
and incrementally added. In this work, we de-
velop a hybrid approach that balances the advan-
tages of both perspectives, providing larger re-
gions chosen in an intelligent, energy-based way.
Our method is applicable to bounds on a variety
of inference tasks, and we demonstrate its power
empirically on a broad array of problem types.

1 INTRODUCTION

Mini-bucket elimination (MBE) (Dechter and Rish, 2003)
is a popular bounding technique for reasoning tasks de-
fined over graphical models. MBE is often used to de-
velop heuristic functions for search and optimization tasks
(Dechter and Rish, 2003; Kask and Dechter, 2001; Mari-
nescu and Dechter, 2007; Choi et al., 2007; Marinescu
et al., 2014), although it has also been used to provide
bounds on weighted counting problems such as computing
the probability of evidence in Bayesian networks (Rollon
and Dechter, 2010; Liu and Ihler, 2011).

MBE obtains its bounds by approximating the variable or
“bucket” elimination process. Rather than exactly eliminat-
ing each variable, MBE partitions the functions into smaller
sets of bounded complexity; eliminating within each par-
tition separately gives an upper or lower bound. A sin-

gle control variable allows the user to easily trade off be-
tween accuracy and computation (memory and time). A
recent extension called weighted mini-bucket (WMB) also
serves to connect mini-bucket to the framework of vari-
ational bounds, allowing iterative reparameterization up-
dates to improve the WMB bound.

The partitioning of a bucket into mini-buckets of bounded
size can be accomplished in many ways, each resulting in
a different accuracy. Viewed from a variational perspec-
tive, this corresponds to the critical choice of regions in
the approximations, defining which sets of variables will
be reasoned about jointly.

Traditionally, MBE is guided only by the graph structure,
using a scope-based heuristic (Dechter and Rish, 2003) to
minimize the number of buckets. However, this ignores
the influence of the functions themselves on the bound.
More recent extensions such as Rollon and Dechter (2010)
have suggested ways of incorporating the function values
into the partitioning process, with mixed success. A more
bottom-up construction technique is the relax-compensate-
recover (RCR) method of Choi and Darwiche (2010),
which constructs a sequence of mini-bucket-like bounds of
increasing complexity.

Variational approaches typically use a greedy, bottom-up
approach termed cluster pursuit. Starting with the small-
est possible regions, the bounds are optimized using mes-
sage passing, and then new regions are added greedily from
an enumerated list of clusters such as triplets (e.g., Sontag
et al., 2008; Komodakis and Paragios, 2008). This tech-
nique is often very effective if only a few regions can be
added, but the sheer number of regions considered often
creates a computational bottleneck and prevents adopting
large regions (e.g., Batra et al., 2011).

We propose a hybrid approach that is guided by the graph
structure and connects to the mini-bucket construction, but
takes advantage of the iterative optimization and scoring
techniques of cluster pursuit. In practice, we find that our
methods work significantly better than either the partition-
ing heuristics of Rollon and Dechter (2010), or a pure re-

268

gion pursuit approach. We also discuss the connections of
our work to RCR (Choi and Darwiche, 2010). We validate
our approach with experiments on a wide variety of prob-
lems drawn from recent UAI approximate inference com-
petitions (Elidan et al., 2012).

2 PRELIMINARIES

Graphical models capture the dependencies among large
numbers of random variables by explicitly representing the
independence structure of the joint probability distribution.
Consider a distribution

p(x) =
1

Z

∏

α∈I
fα(xα) Z =

∑

x

∏

α

fα(xα)

where xα indicates a subset of variables and Z is the nor-
malizing constant called the partition function. We asso-
ciate p(x) with a graph G = (V,E) where each variable
xi is associated with a node i ∈ V and is connected to xj
if both variables xi and xj are arguments of some function
fα. I is then a set of all cliques in G.

Common inference tasks include finding the most likely or
MAP configuration of p(x), a combinatorial optimization
problem, or computing the partition function Z, a combi-
natorial summation problem. Computing Z, which corre-
sponds to the probability of evidence in Bayesian networks,
or the marginal probabilities of p(x), are central problems
in many learning and inference tasks.

2.1 MINI-BUCKET ELIMINATION

Unfortunately, inference tasks such as computing the par-
tition function are often computationally intractable for
many real-world problems. Exact inference, such as vari-
able or “bucket” elimination (Dechter, 1999) is exponential
in the tree-width of the model, leading to a spectrum of ap-
proximations and bounds subject to computational limits.
In this section, we briefly describe bucket elimination and
mini-bucket approximations.

Bucket Elimination (Dechter, 1999) is an exact algorithm
that directly eliminates variables in sequence. Given an
elimination order, BE collects all factors that include vari-
able xi as their earliest-eliminated argument in a bucket Bi,
then takes their product and eliminates xi to produce a new
factor over later variables, which is placed in the bucket of
its “parent” πi, the earliest uneliminated variable:

λi→πi(xi→πi) =
∑

xi

∏

fα∈Bi
fα(xα)

∏

λj→i∈Bi
λj→i(xj→i)

The functions λj→i constructed during this process can be
interpreted as messages that are passed downward in a join-
tree representation of the model (Ihler et al., 2012); see Fig-
ure 1(a)-(b).

The space and time complexity of BE are exponential in
the induced width of the graph given the elimination or-
der. While good elimination orders can be identified using
various heuristics (see e.g., Kask et al., 2011), this expo-
nential dependence often makes direct application of BE
intractable for many problems of interest.

Minibucket Elimination. To avoid the complexity of
bucket elimination, Dechter and Rish (1997) proposed
an approximation in which the factors in bucket Bi are
grouped into partitions Qi = {q1i , ..., qpi }, where each par-
tition qji ∈ Qi, also called a mini-bucket, includes no more
than ibound+1 variables. The bounding parameter ibound
then serves as a way to control the complexity of elimina-
tion, as the elimination operator is applied to each mini-
bucket separately. Using the inequality

∑

xi

∏

fα∈Bi
fα ≤

[∑

xi

∏

fα∈q1i

fα

]
·
[

max
xi

∏

fα∈q2i

fα

]
,

MBE gives an upper bound on the true partition function,
and its time and space complexity are exponential in the
user-controlled ibound. Smaller ibound values result in
lower computational cost, but are typically less accurate.
See Figure 1(c) for an illustration.

The resulting bound depends significantly on the partition-
ings {Qi}; we discuss strategies for partitioning in Sec-
tion 2.2.

Weighted Mini-bucket. A recent improvement to mini-
bucket (Liu and Ihler, 2011) generalizes the MBE bound
with a “weighted” elimination,

∑

xi

∏

fα∈Bi
fα ≤

[∑

xi

∏

fα∈q1i

f
1
w1
α

]w1

·
[∑

xi

∏

fα∈q2i

f
1
w2
α

]w2

,

where wi > 0 and w1 + w2 = 1.

Liu and Ihler (2011) also show that the resulting bound is
equivalent to a class of bounds based on tree reweighted
(TRW) belief propagation (Wainwright et al., 2005), or
more generally conditional entropy decompositions (CED)
(Globerson and Jaakkola, 2007), on a join-graph defined
by the mini-bucket procedure (see Figure 1(d)). This con-
nection is used to derive fixed point reparameterization up-
dates, which change the relative values of the factors fα
while keeping their product constant in order to tighten the
bound.

2.2 PARTITIONING METHODS

As discussed above, mini-bucket elimination and its
weighted variant compute a partitioning over each bucket
Bi to bound the complexity of inference and compute an
upper bound on the partition function Z. However, dif-
ferent partitioning strategies will result in different upper

269

G:	 	 	 (GEF)	
	
E:	 	 	 	 (EBF)	 	 	 	 	 (EF)	
	
F:	 	 	 	 (FCD)	 	 	 	 	 (BF)	
	
D:	 	 	 (DB)	 	 	 	 	 	 	 (CD)	
	
C:	 	 	 (CAB)	 	 	 	 	 (CB)	
	
B:	 	 	 (BA)	 	 	 	 	 (AB)	 	 	 	 (B)	
	
A:	 	 	 	 (A)	 	 	 	 	 	 (A)	 	 	 	 	 	 	 	 	

(a) (b) (c) (d)

Figure 1: (a) A belief network P (A,B,C,D,E, F,G) = P (A)·P (B|A)·P (C|A,B)·P (D|B)·P (F |C,D)·P (E|B,F)·
P (G|E,F); (b) a join-tree decomposition for exact inference; (c) a mini-bucket approximation (ibound = 2), with F
eliminated approximately; (d) the region or join-graph associated with (c).

bounds. Rollon and Dechter (2010) proposed a frame-
work to study different partitioning heuristics, and com-
pared them with the original scope based heuristic pro-
posed by Dechter and Rish (1997). Here we summarize
several approaches.

Scope-based Partitions. Proposed in Dechter and Rish
(1997), scope-based partitioning is a top-down approach
that tries to minimize the number of mini-buckets in Bi
by including as many functions as possible in each mini-
bucket qki . To this end, it first orders the factors in Bi by
decreasing number of arguments. Starting from the largest,
each factor fα is then merged with the first available mini-
bucket that satisfies the computational limits, i.e., where
|var(f) ∪ var(qji)| ≤ ibound + 1. If there are no mini-
buckets available that can include the factor, a new mini-
bucket is created and the scheme continues until all factors
are assigned to a mini-bucket.

Content-based Partitions. Rollon and Dechter (2010), on
the other hand, seeks to find a partitioning that is closest
to the true bucket function, gi =

∑
Xi

∏
α∈Bi fα. This

requires solving an optimization problem

Q∗ = arg min
Q

dist(gQi , gi)

where Q is a partitioning of Bi with bounding parameter
ibound and

gQi =

p∏

j=1

∑

Xi

∏

α∈qji

fα

is the function represented by the partitioning Q. The dis-
tance is minimized in a greedy fashion, and Rollon and
Dechter (2010) studied the effectiveness of several different
distance functions across multiple problem instances; how-
ever, no one distance was found to consistently outperform
scope-based partitioning.

Relax-Compensate-Recover. Choi and Darwiche (2010)
indirectly addresses the problem of partition selection
within their Relax, Compensate and Recover framework,

in which certain equality constraints in the graph are first
relaxed in order to reduce complexity of inference. New
auxiliary factors are then introduced to compensate for the
relaxation and enforce a weaker notion of equivalence. The
recovery process then aims to identify those equivalence
constraints whose relaxation were most damaging and re-
cover them. Choi and Darwiche (2010) proposed a number
of recovery heuristics, including mutual information and
residual recovery.

2.3 VARIATIONAL BOUNDS.

The variational viewpoint of inference corresponds to op-
timizing an objective function over a collection of beliefs
constrained to lie within the marginal polytope, or set of
marginal probabilities that can be achieved by some joint
distribution. Efficient approximations are developed by re-
laxing these constraints to enforce only a subset of the con-
straints – that the beliefs be consistent between overlapping
cliques. In the case of the log partition function, we also ap-
proximate the entropy term in the objective; for example,
the CED bound is:

logZ ≤ max
bα∈L

∑

α

Ebα [log fα] +
∑

i,α

wiαH(xi|xα\i ; bα)

where
∑
α wiα = 1 for all i.

Like mini-bucket bounds, the quality of variational bounds
depends significantly on the choice of regions, which de-
termine what constraints will be enforced by the local
polytope L as well as the form of the entropy approxi-
mation. Traditionally, variational approximations have fo-
cused more on the optimization of the bound through mes-
sage passing than the region selection aspect. Often regions
are chosen to match the original model factors, and then im-
proved using methods like cluster pursuit, described next.

Cluster Pursuit. Sontag et al. (2008) studied the prob-
lem of region selection for MAP inference in the context
of cluster-based dual decomposition relaxations. They de-
veloped a bottom-up approach in which regions (typically

270

cycles or triplets) are added incrementally: First, the dual
decomposition bound is optimized through message pass-
ing. Then, a pre-defined set of clusters, such as triplets or
faces of a grid, are scored by computing a lower bound on
their potential improvement of the bound; the scoring func-
tion used measures the difference between independently
maximizing each pairwise factor, versus jointly maximiz-
ing over the triplet. After adding the best-scoring clus-
ter, the procedure repeats. Similar cycle repair processes
were also proposed by Komodakis and Paragios (2008) and
Werner (2008), and related cluster pursuit methods have
also been applied to summation problems (Welling, 2004;
Hazan et al., 2012). However, scoring all possible clus-
ters often becomes a computational bottleneck; for exam-
ple, Batra et al. (2011) proposed pre-selection heuristics to
reduce the number of clusters considered. In practice, clus-
ter pursuit is usually applied to add only a few, small re-
gions; scoring sets of larger regions is typically considered
prohibitive.

3 A HYBRID APPROACH

Mini-bucket elimination avoids the space and time com-
plexity of exact inference by using a top-down partitioning
approach that mimics the construction of a junction tree.
In contrast, message passing algorithms often use “cluster
pursuit” methods to select regions, a bottom-up approach
in which a predefined set of clusters (such as triplets) is
scored and incrementally added.

To balance the effectiveness of both approaches, our hybrid
scheme, like mini-bucket, uses the graph structure to guide
region selection, while also taking advantage of the itera-
tive optimization and scoring techniques of cluster pursuit.

Cluster pursuit algorithms use the function values, and
more concretely the bound produced by them, in order
to select regions that tighten the upper bound more effec-
tively. However, there are often prohibitively many clus-
ters to consider: for example, in a fully connected pairwise
model, there are O(n3) triplets, O(n4) possible 4-cliques,
etc., to score at each step. For this reason, cluster pursuit
methods typically restrict their search to a predefined set of
clusters, such as triplets Sontag et al. (2008). Our proposed
approach uses the graph structure to guide the search for
regions, restricting the search to merges of existing clus-
ters, within one bucket at a time. This allows us to restrain
the complexity of the search and add larger regions more
effectively.

In contrast, the content-based heuristics for region selection
of Rollon and Dechter (2010) use the graph structure as a
guide, but their scoring scheme only takes into account the
messages from the earlier buckets in the elimination order.
Our proposed hybrid approach uses iterative optimization
on the junction tree in order to make more effective parti-
tioning decisions.

Algorithm 1 Incremental region selection for WMBE
Input: factor graph (G), bounding parameter ibound
and maximum number of iterations T
Initialize wmb to a join graph using e.g. a min-fill or-
dering o, uniform weights and uniform messages
for each bucket Bi following the elimination order do

repeat
(qmi , q

n
i)← SelectMerge(Qi)

R ← AddRegions(wmb, o, qmi , qni)
wmb←MergeRegions(wmb,R)
for iter = 1 to T do

// pass forward messages and reparameterize:
wmb← msgForward(wmb)
// pass backward messages:
wmb← msgBackward(wmb)

end for
until no more merges possible

end for

Algorithm 1 describes the overall scheme of our hybrid ap-
proach, which is explained in detail next.

3.1 INITIALIZING A JOIN TREE

Given a factor graph G and a bounding parameter ibound,
we start by initializing a join graph, using a min-fill elim-
ination ordering (Dechter, 2003) o = {x1, ..., xn} and
ibound = 1. For any given bucket Bi, this results in
each mini-bucket k ∈ Bi containing a single factor fα.
We denote the result of the elimination as λk→l which is
sent to the bucket Bj of its first-eliminated argument in o.
Here, l = pa(k) denotes the parent region of k which can
be one of the initial mini-buckets in Bj if var(λk→l) ⊆
var(l), or be a new mini-bucket with fl = 1. In our
implementation we choose l ∈ Bj to be the mini-bucket
with the largest number of arguments,|var(l)|, such that
var(λk→l) ⊆ var(l).

Using weighted mini-bucket for our elimination scheme,
we initialize the mini-bucket weights wr uniformly within
each bucket Bi, so that for r ∈ Qi, wr = 1

|Qi| , which
ensures

∑
r∈Qi wr = 1.

3.2 MESSAGE PASSING

We use iterative message passing on the join graph to guide
the region selection decision. Having built an initial join
graph, we use the weighted mini-bucket messages (Liu
and Ihler, 2011) to compute forward and backward mes-
sages, and perform reparameterization of the functions fα
to tighten the bound.

Let r be a region of the mini-bucket join graph, and s its
parent, s = pa(r), with weights wr and ws, and fr(xr the
product of factors assigned to region r. Then we compute

271

the forward messages as,

Forward Messages:

λr→s(xs) =
[∑

xr\xs

[
fr(xr)

∏

t:s=pa(t)

λt→s(xs)
] 1
ws

]ws

(1)

and compute the upper bound using the product of forward
messages computed at roots of the join graph,

Upper bound on Z:

Z ≤
∏

r:pa(r)=∅
λr→∅ (2)

In order to tighten the bound, we compute backward mes-
sages in the join graph,

Backward Messages:

λs→r(xr) =
[∑

xs\xr

[
fs(·)

∏

t

λt→s(·)
] 1
ws
[
λr→s(·)

]− 1
wr

]wr

where t indexes all neighbors (parent and children) of re-
gion s. We then use these incoming messages to compute a
weighted belief at region r, and reparameterize the factors
fr for each region r in a given bucket Bi (e.g., r ∈ Qi) to
enforce a weighted moment matching condition:

Reparameterization:

br(xi) =
∑

xr\xi

[
fr(xr)

∏

t

λt→r(xr)
] 1
wr

b̄(xi) =
[∏

r∈Qi
br(xi)

]1/∑r wr

fr(xr)← fr(xr)
[
b̄(xi)/br(xi)

]wr

In practice, we usually match on the variables present in
all mini-buckets r, e.g., ∩r∈Qixr, rather than just xi; this
gives a tighter bound for the same amount of computation.

3.3 ADDING NEW REGIONS

New regions are added to the initial join tree after one or
more rounds of iterative optimization. To contain the com-
plexity of the search over clusters, we restrict our attention
to pairs of mini-buckets to merge within each bucket. To do
so, we also use the elimination order o to guide our search,
processing each bucket Bi one at a time in order.

Given bucket Bi and current partitioning Qi =
{q1i , ..., qki }, we score the merge for each allowed pair
of mini-buckets (qmi , q

n
i), e.g., those with |var(qmi) ∪

var(qni)| ≤ ibound + 1, using an estimate of the benefit
to the bound that may arise from merging the pair:

S(qmi , q
n
i) =

max
x

log [λm→πm(xπm)× λn→πn(xπn)÷ λr→πr (xr)]

This score can be justified as a lower bound on the de-
crease in logZ, since it corresponds to adding region πr
with weight wπr = 0, while reparameterizing the parents
πm, πn to preserve their previous beliefs. This procedure
leaves the bound unchanged except for the contribution of
πr; eliminating with wπr = 0 is equivalent to the max op-
eration. For convenience, we set S(qmi , q

n
i) = 0 for pairs

which violate the ibound constraint. Then, having com-
puted the score between all pairs, we choose the pair with
maximum score to be merged into a new clique. In Algo-
rithm 1, the function SelectMerge(·) denotes this scoring
and selection process.

3.4 UPDATING GRAPH STRUCTURE

Having found which mini-buckets to merge, we update the
join graph to include the new clique r = qmi ∪qni . Our goal
is to add the new region such that it affects the scope of the
existing regions in the join tree as little as possible. Adding
the new clique is done in two steps:

First we initialize a new mini-bucket in Bi with its scope
matching var(r). Eliminating variable xi from this new
mini-bucket results in the message λr→πr . The earliest ar-
gument of λr→πr in the elimination order determines the
bucket Bj containing mini-buckets that can potentially be
the parent, πr, of the new region. To find πr in Bj we seek
a mini-bucket qkj that can contain r, i.e., var(λr→πr) ⊆
var(qkj). If such a mini-bucket exists, we set πr to qkj ; oth-

erwise, we create a new mini-bucket q|Qj |+1
j and add it to

Qj , with a scope that matches var(λr→πr). The same pro-
cedure is repeated after eliminating xj from q

|Qj |+1
j until

we either find a mini-bucket already in the join tree that can
serve as the parent, or var(λr→πr) = ∅ in which case the
newly added mini-bucket is a root. Algorithm 2 describes
these initial structural modifications.

Having added the new regions, we then try to remove any
unnecessary mini-buckets, and update both the join tree and
the function values of the newly added regions to ensure
that the bound is improved. To this end, we update every
new mini-bucket r that was added to the join tree in the
previous step as follows. For mini-bucket r ∈ Qi, we first
find any mini-buckets s ∈ Qi that can be subsumed by
r, i.e., var(s) ⊆ var(r). For each of these mini-buckets
s, we connect all of s’s children (mini-buckets t such that
pa(t) = s) to r, e.g., set pa(t) = r. We also merge the
factors associated with r and s, so that fr ← fr × fs.
Next, we reparameterize several other functions in the join
graph in order to preserve or improve the current bound

272

Algorithm 2 AddRegions: find regions to add for merge
Input: The join graph wmb, elimination order o, and
mini-buckets qmi and qni to be merged
Output: a list of newly added mini-bucketsR
Initialize new region qr with var(qr) = var(qmi ∪ qni)
and add it to Qi
repeat

UpdateR = R∪ qr
Set new clique C = var(qr)\xi
if C = ∅ then
done← True

else
Find Bj corresponding to the first un-eliminated
variable in C based on elimination order o
for each mini-bucket region qkj ∈ Qj do

if C ⊆ var(qkj) then
// forward message fits in existing mini-bucket:
done← True

end if
end for

end if
if not done then

// Create a new region to contain forward message:
Initialize new region qr with var(qr) = C and add
it to Qj

end if
until done

value. Specifically, removing s changes the incoming, for-
ward messages to its parent, πs = pa(s), which changes
the bound. By reparameterizing the factor at πs,

fπs ← fπs × λs→πs fπr ← fπr ÷ λs→πs

we keep the overall distribution unchanged, but ensure that
the bound is strictly decreased.

Finally we remove s from Qi, completing the merge of
mini-buckets s and r. This process is given in Algorithm 3
and depicted in Figure 2 for a small portion of join-graph.

Every merge decision is followed by one or more iterations
of message passing, followed by rescoring the mini-buckets
inBi. The process of message passing and merging contin-
ues until no more mini-buckets of Bi can be merged, while
satisfying the bounding parameter ibound.

Continuing along the elimination order, the same procedure
is repeated for the mini-buckets in each bucket Bi, and the
final upper bound to the partition function is computed us-
ing Eq. (2).

4 DISCUSSION

Our method is similar to context-based mini-buckets, with
the main difference being that message passing performed

Algorithm 3 MergeRegions: merge and parameterize
newly added regions to improve bound

Input: The join graph wmb and a list of newly added
mini-bucketsR
for all r ∈ R do

Initialize new region r in Bi with fr(xr) = 1
Find regions {s | s ∈ Qi & var(s) ⊆ var(s)}
// Remove / merge contained regions s:
for all found regions s do

Connect all children of s to r
fr = fr · fs // merge factors and
// preserve belief at parent πs:
fπs = fπs × λs→πs
fπr = fπr ÷ λs→πs
Remove s from Qi

end for
end for

↓ λ3,4 ↓ λ3,5

x2,3,4 x2,3,5

x3,4 x3,5,6

⇒
x2,3,4,5

x3,4,5 x3,5,6

↓ λ3,4,5
÷λ3,5 ×λ3,5

(a) (b)

Figure 2: Merge and post-merge reparameterization op-
erations. (a) A portion of a join-graph corresponding to
the elimination of x2 and x3, each with two mini-buckets.
(b) Merging cliques (2, 3, 4) and (2, 3, 5) produces a new
clique (3, 4, 5), which subsumes and removes clique (3, 4).
Having removed parent (2, 3, 5), we reparameterize the
new clique functions by the original message λ3,5 (red) to
preserve the original belief at (3, 5, 6) and ensure that the
bound is tightened. See text for more detail.

on the simpler graph is used to reparameterize the functions
before the merge scores are computed.

Our method can also be viewed as a cluster pursuit ap-
proach, in which we restrict the clusters considered, to
unions of the current minibuckets at the earliest bucket Bi,
and merge up to our computational limit before moving
on to later buckets. These restrictions serve to reduce the
number of clusters considered, but in addition, appear to
lead to better regions than a purely greedy region choice –
in the experiments (Section 5), we compare our approach
to a more “cluster pursuit-like” method, in which pairs of
regions in any bucket Bi are considered and scored. Per-
haps surprisingly, we find that this greedy approach actu-
ally gives significantly worse regions overall, suggesting

273

that processing the buckets in order can help by avoiding
creating unnecessary regions.

Finally, our method is also closely related to RCR (Choi
and Darwiche, 2010). From this perspective, we “relax”
to a low-ibound minibucket, “compensate” by variational
message passing, and “recover” by selecting regions that
will tighten the variational bound defined by the join graph.
Compared to RCR, we find a number of differences in our
approach: (1) RCR selects constraints to recover anywhere
in the graph, similar to a greedy cluster pursuit; as noted,
this appears to work significantly less well than an ordered
recovery process. (2) RCR makes its recovery updates to
the relaxed graph, then (re)builds a (new) join tree over
the relaxed graph; in contrast, we incrementally alter the
join graph directly, which avoids starting from scratch af-
ter each merge. (3) Our method is solidly grounded in the
theory of variational bounds and message passing, ensuring
that both the message passing and region merging steps are
explicitly tightening the same bound. From this perspec-
tive, for example, it becomes clear that RCR’s “residual re-
covery” heuristic is unlikely to be effective, since after mes-
sage passing, the reparameterization updates should ensure
that all mini-buckets containing a variable xi will match on
their marginal beliefs. In other words, residual recovery is
making its structure (region) choices using a criterion that
actually measures mismatches that can be resolved by mes-
sage passing.

5 EMPIRICAL EVALUATION

To show our method’s effectiveness compared to previous
region selection strategies for MBE, we tested our incre-
mental approach on a number of real world problems drawn
from past UAI approximate inference challenges, includ-
ing linkage analysis, protein side chain prediction, and seg-
mentation problems. We compare our hybrid region selec-
tion method against the scope-based heuristic of Dechter
and Rish (1997) and the content-based heuristic of Rollon
and Dechter (2010).

Experimental Setup. For each set of experiments,
we initialize a join tree using WMB elimination with
ibound = 1. We use an elimination ordering found using
the min-fill heuristic (Dechter, 2003) and set the weights
uniformly in each bucket. As a result, each mini-bucket qki
contains a single factor fα as described in section 3.1.

From this initial setup, we then use Algorithm 1 to merge
mini-buckets incrementally and compute the upper bound
as in Eq. (2).

Segmentation. To evaluate the different methods on pair-
wise binary problems we used a set of segmentation models
from the UAI08 approximate inference challenge. These
models have≈ 230 binary variables and≈ 850 factors. We

used varying ibounds for comaprison and report the results
on two values, ibound ∈ [5, 10] . Table 1 compares the up-
per bound on the log partition function for a representative
subset of instances in this category, for two different com-
putational limits, ibound = 5 and ibound = 10. Different
columns show the bound achieved using different partition-
ing heuristics:
(1) Scp represents naı̈ve scope-based partitioning;
(2) Cont represents the energy based heuristic of Rollon
and Dechter (2010); and
(3) Hyb represents our hybrid approach, interleaving itera-
tive optimization with partitioning.

The results show clear improvement in the upper bound us-
ing our hybrid approach, indicating the effectiveness of it-
erative message passing and optimization in guiding region
selection. To further study the effectiveness of the merged
regions in the context of message passing and optimiza-
tion, we then fully optimized the join-graphs generated by
the three region selection schemes using iterative message
passing until convergence. The upper bounds after such
optimization are denoted by inst-opt for each problem in-
stance, inst. As might be expected, this additional opti-
mization step improves the bounds of the scope-based and
content-based heuristics more dramatically than our hy-
brid method; however, even after full optimization of the
bounds, we find that the hybrid method’s bounds remain
better in all of the 6 instances except one, indicating that
our method has identified fundamentally better regions than
the previous approaches.

Linkage Analysis. To compare the various methods on
models with non-pairwise factors and higher cardinalities
of variables, we studied pedigree models. The pedigree
linkage analysis models from the UAI08 approximate in-
ference challenge have≈ 300−1000 variables, whose car-
dinalities vary in the range of [2, ..., 5]; the induced width
of the models are typically ≈ 20 − 30. We used varying
ibounds for comaprison and report the results on two val-
ues ibound ∈ [5, 10] .

Table 2 shows the upper bounds on a subset of pedigree
problems, again showing the effectiveness of the hybrid
method: we find that again, the hybrid method consistently
outperforms the other two region selection approaches, and
results in better fully optimized bounds in all of the 22
instances when ibound = 5 and all but two cases when
ibound = 10.

Effect of ibound. We further studied the results of the
three partitioning methods across a range of ibounds to
compare the effectiveness of our method when ibound is
set to a range of values. Figure 3 shows the results for an
instance of pedigree dataset. As shown here, our method is
more effective on smaller ibounds, where there are a large
number of possible merges and finding the best one results

274

Table 1: UAI Segmentation Instances. Different columns show the bound achived using each partitioning heuristic, where
“Scp”, “Cont” and “Hyb” represent the naı̈ve scope based partitioning for MBE (Dechter and Rish, 1997), the context (or
energy) based heuristic of Rollon and Dechter (2010) and our hybrid approach interleaving iterative optimization with
partitioning, respectively. In all but one case, our proposed construction provides tighter bounds.

ibound = 5 ibound = 10
Instance Scp Cont Hyb Scp Ctxt Hyb

2-17-s -31.3197 -33.4840 -49.5670 -38.9801 -42.1524 -52.507
2-17-s-opt -46.9314 -45.4286 -49.6432 -48.661 -48.4306 -52.5633

8-18-s -54.9884 -60.9899 -85.6518 -72.3045 -72.284 -87.2385
8-18-s-opt -80.6527 -81.1391 -85.6694 -83.0398 -79.0921 -87.2556

9-24-s -51.2897 -49.3903 -55.6046 -54.9325 -55.0151 -55.615
9-24-s-opt -56.0513 -53.7852 -55.6241 -54.9325 -55.0151 -55.615

17-4-s -58.7953 -59.0758 -81.5415 -80.267 -79.3323 -85.3712
17-4-s-opt -71.7959 -76.8213 -81.6079 -83.2573 -82.9646 -85.3865

7-11-s -59.8250 -57.2773 -72.7178 -71.1296 -70.1542 -75.2869
7-11-s-opt -70.7037 -68.8255 -72.9556 -74.6424 -73.9855 -75.2905

Table 2: UAI Pedigree Instances. Different columns show the bound achieved using each partitioning heuristic; again,
“Scp”, “Cont” and “Hyb” are scope based partitioning (Dechter and Rish, 1997), the context-based heuristic (Rollon and
Dechter, 2010) and our proposed, hybrid approach. In all cases, our proposed construction provides stronger bounds, both
before and after full optimization using message passing.

ibound = 5 ibound = 10
Instance Scp Cont Hyb Scp Ctxt Hyb

ped23 -67.8848 -69.9015 -71.9677 -75.6057 -78.4033 -79.4649
ped23-opt -71.6951 -71.6988 -72.0670 -76.0531 -78.7646 -79.4669

ped20 -35.6986 -40.1787 -44.7230 -51.2648 -54.4136 -57.6506
ped20-opt -42.3024 -42.8980 -44.7501 -52.6043 -56.2193 -57.7841

ped42 -41.6656 -43.5206 -51.0000 -55.0681 -57.5755 -61.3504
ped42-opt -49.0089 -50.0585 -51.1018 -57.3718 -59.2170 -61.3560

ped38 -79.4742 -89.6906 -92.7643 -98.6339 -101.1178 -113.6004
ped38-opt -83.0351 -91.8510 -93.0615 -101.0715 -104.1031 -113.8926

ped19 -58.9234 -63.2737 -80.6488 -90.7840 -93.9027 -100.3230
ped19-opt -72.3311 -77.7023 -80.7167 -92.8916 -96.2846 -100.3388

in a greater improvement to the upper bound. For larger
ibounds, the upper bounds produced by all three heuristics
are fairly close.

Protein Side-Chain Prediction. Finally, to examine
models over high-cardinality variables, we look at a sub-
set of the protein side chain prediction models, originally
from Yanover and Weiss (2003) and Yanover et al. (2006).
These models contain ≈ 300 − 1000 variables with car-
dinalities between 2 and 81, with pairwise potential func-
tions. For these problems, we only ran our experiments

using ibound = 2, due to the high number of states for
each variable. Table 3 shows the results of the three parti-
tioning methods, which again agrees with the previous ex-
periments: our hybrid method outperforms the other two in
all 44 instances in this problem set, both before and after
the bound is fully optimized.

Greedy vs. Elimination Order Based Merging. As
discussed before, we restrict the clusters considered for
merges to unions of the current minibuckets at the earli-
est bucket Bi, and merge up to our computational limit be-

275

ibound

4 6 8 10 12 14 16 18 20

L
o
g
Z

 u
p
p
e
r

b
o
u
n
d

-90

-85

-80

-75

-70

-65

-60

Scp

Cont

Hyb

Scp-opt

Cont-opt

Hyb-opt

Figure 3: The upper bound achieved by the three partition-
ing heuristics for pedigree23 instance over ibound range
between 4 to 20.

Table 3: Protein side-chain prediction. Here we show
results for only ibound = 2, due to the high number of
states in each variable. Our method often produces dra-
matically better partitionings than scope- or context-based
mini-bucket partitions.

Instance Scp Cont Hyb

1crz -242.2036 -284.865 -451.598
1crz -opt -528.5348 -495.514 -545.929
2cav 71.2802 -26.0052 -148.637
2cav -opt -156.5387 -240.289 -272.606
1kk1 89.5527 46.8216 -121.723
1kk1 -opt -115.4737 -105.894 -143.447
1e4f 40.6686 -6.1785 -190.943
1e4f -opt -212.4607 -202.547 -240.27
1ehg 71.3308 14.768 -149.158
1ehg -opt -169.8435 -147.333 -211.678

fore moving on to later buckets, which serves to reduce the
number of clusters considered. We compare our choice of
clusters with a purely greedy region choice in which pairs
of regions in any bucket Bi are considered and scored.

Interestingly the upper bounds achieved using the greedy
approach was not better than the top down merging based
on elimination order. The reason for this behavior is that
the top-down approach allows large regions generated by
mini-buckets early in the elimination ordering to be pro-
cessed by buckets later in the order; the greedy approach
disrupts this flow and results in extra regions that cannot be
merged with any other region while respecting the ibound.

6 CONCLUSION

We presented a new merging heuristic for (weighted) mini-
bucket elimination that uses message passing optimization
of the bound, and variational interpretations, in order to
construct a better heuristic for selecting moderate to large
regions in an intelligent, energy-based way. Our approach
inherits the advantages of both cluster pursuit in variational

Table 4: Top-down vs. Greedy Merging. We examine the
effect of using a “fully greedy” merging procedure closer
to standard cluster pursuit, in which we merge the best-
scoring cluster in any bucket at each step. We find that
following the top-down ordering actually results in signifi-
cantly better bounds. Results shown are for ibound = 5.

Instance Top-Down Greedy

ped23 -71.9677 -67.9094
ped23-opt -72.0670 -67.9094
ped20 -44.7230 -38.0717
ped20-opt -44.7501 -38.0718
ped42 -49.9955 -37.8576
ped42-opt -50.0469 -37.8582
ped38 -92.7643 -79.9144
ped38-opt -93.0615 -79.9144
ped19 -80.6488 -48.6900
ped19-opt -80.7167 -48.6904

inference, and (weighted) mini-bucket elimination perspec-
tives to produce a tight bound. We validated our approach
with experiments on a wide variety of problems drawn from
a recent UAI approximate inference competition. In prac-
tice, we find that our methods work significantly better than
either existing partitioning heuristics for mini-bucket (Rol-
lon and Dechter, 2010), or a pure region pursuit approach.
We expect this construction to improve our ability to search
and solve large problems. However, our method does in-
volve additional computational overhead compared to, say,
scope-based constructions, in order to to evaluate and make
merge decisions. We did not focus here on any-time per-
formance; a more nuanced balance of time, memory, and
bound quality is one direction of potential future study.

Acknowledgements

This work is supported in part by NSF grants IIS-1065618
and IIS-1254071, and by the United States Air Force un-
der Contract No. FA8750-14-C-0011 under the DARPA
PPAML program.

References

D. Batra, S. Nowozin, and P. Kohli. Tighter relaxations
for map-mrf inference: A local primal-dual gap based
separation algorithm. JMLR - Proceedings Track, 15:
146–154, 2011.

Arthur Choi and Adnan Darwiche. Relax, compensate and
then recover. In New Frontiers in Artificial Intelligence
- JSAI-isAI 2010 Workshops, LENLS, JURISIN, AMBN,

276

ISS, Tokyo, Japan, November 18-19, 2010, Revised Se-
lected Papers, pages 167–180, 2010.

Arthur Choi, Mark Chavira, and Adnan Darwiche. Node
splitting: A scheme for generating upper bounds in
bayesian networks. In UAI, pages 57–66. AUAI Press,
2007.

R. Dechter and I. Rish. Mini-buckets: A general scheme of
approximating inference. Journal of ACM, 50(2):107–
153, 2003.

Rina Dechter. Bucket elimination: A unifying framework
for reasoning. Artificial Intelligence, 113(12):41 – 85,
1999.

Rina Dechter. Constraint Processing. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2003. ISBN
1558608907.

Rina Dechter and Irina Rish. A scheme for approximating
probabilistic inference. In Proc. Uncertainty in Artificial
Intelligence (UAI), pages 132–141, 1997.

G. Elidan, A. Globerson, and U. Heinemann. PAS-
CAL 2011 probabilistic inference challenge.
http://www.cs.huji.ac.il/project/PASCAL/, 2012.

A. Globerson and T.S. Jaakkola. Approximate inference
using conditional entropy decompositions. In In Pro-
ceedings of the 11th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS-07), 2007.

T. Hazan, J. Peng, and A. Shashua. Tightening fractional
covering upper bounds on the partition function for high-
order region graphs. In Uncertainty in Artificial Intelli-
gence, 2012.

Alexander Ihler, Natalia Flerova, Rina Dechter, and Lars
Otten. Join-graph based cost-shifting schemes. In Un-
certainty in Artificial Intelligence (UAI), pages 397–406.
AUAI Press, Corvallis, Oregon, August 2012.

K. Kask and R. Dechter. A general scheme for automatic
generation of search heuristics from specification depen-
dencies. Artificial Intelligence, 129(1-2):91–131, 2001.

Kalev Kask, Andrew Gelfand, Lars Otten, and Rina
Dechter. Pushing the power of stochastic greedy or-
dering schemes for inference in graphical models. In
AAAI’11, pages –1–1, 2011.

N. Komodakis and N. Paragios. Beyond loose LP-
relaxations: Optimizing MRFs by repairing cycles.
pages 806–820, 2008.

Qiang Liu and Alexander Ihler. Bounding the partition
function using hölder’s inequality. In Lise Getoor and
Tobias Scheffer, editors, Proceedings of the 28th Inter-
national Conference on Machine Learning (ICML-11),
ICML ’11, pages 849–856, New York, NY, USA, June
2011. ACM. ISBN 978-1-4503-0619-5.

R. Marinescu and R. Dechter. Best-first and/or search for
most probable explanations. In Uncertainty in Artificial
Intelligence (UAI), 2007.

R. Marinescu, R. Dechter, and A. Ihler. AND/OR search
for marginal MAP. In International Conference on Un-
certainty in Artificial Intelligence (UAI), pages 563–572,
2014.

Emma Rollon and Rina Dechter. Evaluating partition
strategies for mini-bucket elimination. In International
Symposium on Artificial Intelligence and Mathematics
(ISAIM 2010), Fort Lauderdale, Florida, USA, January
6-8, 2010, 2010.

D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and
Y. Weiss. Tightening lp relaxations for map using mes-
sage passing. In Uncertainty in Artificial Intelligence,
pages 503–510, 2008.

M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. A new
class of upper bounds on the log partition function. 51
(7):2313–2335, July 2005.

M. Welling. On the choice of regions for generalized be-
lief propagation. In Uncertainty in Artificial Intelligence,
pages 585–592, 2004.

T. Werner. High-arity interactions, polyhedral relaxations,
and cutting plane algorithm for soft constraint optimiza-
tion (map-mrf). In Computer Vision and Pattern Recog-
nition, 2008.

Chen Yanover and Yair Weiss. Approximate inference and
protein-folding. In S. Thrun S. Becker and K. Ober-
mayer, editors, Advances in Neural Information Pro-
cessing Systems 15, pages 1457–1464. MIT Press, Cam-
bridge, MA, 2003.

Chen Yanover, Talya Meltzer, and Yair Weiss. Linear pro-
gramming relaxations and belief propagation - an empir-
ical study. Journal of Machine Learning Research, 7:
1887–1907, 2006.

277

Estimating Mutual Information by Local Gaussian Approximation

Shuyang Gao
Information Sciences Institute

University of Southern California
sgao@isi.edu

Greg Ver Steeg
Information Sciences Institute

University of Southern California
gregv@isi.edu

Aram Galstyan
Information Sciences Institute

University of Southern California
galstyan@isi.edu

Abstract

Estimating mutual information (MI) from sam-
ples is a fundamental problem in statistics, ma-
chine learning, and data analysis. Recently it was
shown that a popular class of non-parametric MI
estimators perform very poorly for strongly de-
pendent variables and have sample complexity
that scales exponentially with the true MI. This
undesired behavior was attributed to the reliance
of those estimators on local uniformity of the un-
derlying (and unknown) probability density func-
tion. Here we present a novel semi-parametric
estimator of mutual information, where at each
sample point, densities are locally approximated
by a Gaussians distribution. We demonstrate that
the estimator is asymptotically unbiased. We
also show that the proposed estimator has a supe-
rior performance compared to several baselines,
and is able to accurately measure relationship
strengths over many orders of magnitude.

1 Introduction

Mutual information (MI) is a fundamental measure of de-
pendence between two random variables. While it initially
arose in the theory of communication as a natural measure
of ability to communicate over noisy channels (Shannon,
1948), mutual information has since been used in differ-
ent disciplines such as machine learning, information re-
trieval, neuroscience, and computational biology, to name
a few. This widespread use is due in part to the general-
ity of the measure, which allows it to characterize depen-
dency strength for both linear and non-linear relationships
between arbitrary random variables.

Let us consider the following basic problem, where, given
a set of i.i.d. samples from an unknown, absolutely contin-
uous joint distribution, our goal is to estimate the mutual
information from these samples. A naive method would

be first to learn the underlying probability distribution us-
ing either parametric or non-parametric methods, and then
calculate the mutual information from the obtained distri-
bution. Unfortunately, this naive approach often fails, as it
requires a very large number of samples, especially in high
dimensions. A different approach is to estimate mutual in-
formation directly from samples. For instance, rather than
estimating the whole probability distribution, one could es-
timate the density (and its marginals) only at each sam-
ple point, and then plug those estimates into the expres-
sion for mutual information. This type of direct estimators
been shown to be a more feasible method for estimating
MI in higher dimensions. An important and very popu-
lar class of such estimators is based on k-nearest-neighbor
(kNN) graphs and their generalizations (Singh et al., 2003;
Kraskov et al., 2004; Pál et al., 2010).

Despite the widespread popularity of the direct estimators,
it was recently demonstrated that those methods fail to ac-
curately estimate mutual information for strongly depen-
dent variables (Gao et al., 2015). Specifically, it was shown
that accurate estimation of mutual information between two
strongly dependent variables requires a number of samples
that scales exponentially with the true mutual information.
This undesired behavior was contributed to the assumption
of local uniformity of the underlying distribution postulated
by those estimators. To address this shortcoming, (Gao
et al., 2015) proposed to add a correction term to com-
pensate for non-uniformity, based on local PCA-induced
neighborhoods. Although intuitive, the resulting estimator
relied on a heuristically tuned threshold parameter and had
no theoretical performance guarantees (Gao et al., 2015).

Our main contribution is to propose a novel mutual infor-
mation estimator based on local Gaussian approximation,
with provable performance guarantees, and superior em-
pirical performance compared to existing estimators over
a wide range of relationship strength. Instead of assuming
a uniform distribution in the local neighborhood, our new
estimator assumes a Gaussian distribution locally around
each point. The new estimator leverages previous results on
local likelihood density estimation (Hjort and Jones, 1996;

278

Loader, 1996). As our main theoretical result, we demon-
strate that the new estimator is asymptotically unbiased.
We also demonstrate that the proposed estimator performs
as well as existing baseline estimators for weak relation-
ships, but outperforms all of those estimators for stronger
relationships.

The paper is organized as follows. In the next section, we
review the basic definitions of information-theoretic con-
cepts such as mutual information and formally define our
problem. In section 3, we review the limitations of cur-
rent mutual information estimators as pointed out in (Gao
et al., 2015). Section 4 introduces local likelihood density
estimation. In Section 5 we use this density estimator to
propose a novel entropy and mutual information estimator,
and summarize certain theoretical properties of those esti-
mator, which are then proved in Section 6. Section 7 pro-
vides numerical experiments demonstrating the superiority
of the proposed estimator. We conclude the paper with a
brief survey of related work followed by the discussion of
our main results and some open problems.

2 Formal Problem Definition

In this section we briefly review the formal definition of
Shannon entropy and mutual information, before formally
defining the objective of our paper.

Definition 1 Let x denote a d-dimensional absolutely con-
tinuous random variable with probability density function
f : Rd → R. The Shannon differential entropy is defined
as

H (x) = −
∫

Rd

f (x) log f (x) dx (1)

Definition 2 Let x and y denote d-dimensional and b-
dimensional absolutely continuous random variables with
probability density function fX : Rd → R and fY : Rb →
R, respectively. Let fXY denote the joint probability den-
sity function of x and y. The mutual information between
x and y is defined as

I (x : y) =

∫

y∈Rb

∫

x∈Rd

fXY (x,y) log
fXY (x,y)

fX (x) fY (y)
dxdy

(2)

It is easy to show that

I (x : y) = H (x) +H (y)−H (x,y) , (3)

where H(x,y) stands for the joint entropy of (x,y), and
can be calculated from Eq. 1 using the joint density fXY .
We use the natural logarithms so that information is mea-
sured in nats.

It is sometime useful to represent entropy and mutual in-
formation as the following expectations:

H (x) = EX [− log f(x)] (4)

I (x : y) = EXY
[
log

fXY (x,y)

fX (x) fY (y)

]
(5)

Assume now we are given N i.i.d. samples (X ,Y) =
{(x,y)(i)}ni=1 from the unknown joint distribution fXY .
Our goal is then to construct a mutual information estima-
tor Î(x : y) based on those samples.

3 Limitations of Nonparametric MI
Estimators

As pointed out in Section 1, one of the most popular class of
mutual information estimators is based on k-nearest neigh-
bor (kNN) graphs and their generalizations (Singh et al.,
2003; Kraskov et al., 2004; Pál et al., 2010). However, it
was recently shown that for strongly dependent variables,
those estimators tend to underestimate the mutual informa-
tion (Gao et al., 2015). To understand this problem, let us
focus on kNN-based estimator as an example. The kNN es-
timator assumes uniform density within the kNN rectangle
(containing k-nearest neighbors), as shown in Figure 1(a).
Generally speaking, this assumption can be made valid for
any relationship as long as we have sufficient number of
samples. However, for limited sample size, this assump-
tion becomes problematic when the relationship between
the two variables becomes sufficiently strong. In fact, as
shown in Fig. 1(b), the obtained local neighborhood in-
duced by kNN is beyond the support of the probability dis-
tribution (shaded area).

This undesired behavior is closely related to the so-called
boundary effect that occurs in nonparametric density es-
timation problem. Namely, for strongly dependent ran-
dom variables, almost all the sample points are close to
the boundary of the support (as illustrated in Figure 1(b)),
making the density estimation problem difficult.

To relax the local uniformity assumption in kNN-based es-
timators, (Gao et al., 2015) proposed to replace the axis-
aligned rectangle with a PCA-aligned rectangle locally, and
use the volume of this rectangle for estimating the unknown
density at a given point. Mathematically, the above revi-
sion was implemented by introducing a novel term that ac-
counted for local non-uniformity. It was shown the the re-
vised estimator significantly outperformed the existing esti-
mators for strongly dependent variables. Nevertheless, the
estimator suggested in (Gao et al., 2015) relied on a heuris-
tic for determining when to use the correction term, and
did not have any theoretical guarantees. In the remaining
of this paper, we suggest a novel estimator based on local
gaussian approximation, as more general approach to over-
come the above limitations. The main idea is that, instead

279

(a) (b)

Figure 1: For a given sample point x(i), we show the
max-norm rectangle containing k nearest neighbors (a) for
points drawn from a uniform distribution, k = 3, (shaded
area), and (b) for points drawn from a distribution over two
strongly correlated variables, k = 4, (the area within dotted
lines).

of assuming a uniform distribution around the local kNN-
or a PCA-aligned rectangle, we approximate the unknown
density at each sample point by a local Gaussian distribu-
tion, which is estimated using the k-nearest neighborhood
of that point. In addition to demonstrating superior empir-
ical performance of the proposed estimator, we also show
that it is asymptotically unbiased.

4 Local Gaussian Density Estimation

In this section, we introduce a density estimation method
called local Gaussian density estimation, or LGDE (Hjort
and Jones, 1996), which serves as the basic building block
for the proposed mutual information estimator.

Consider N i.i.d. samples x1,x2, ...,xN drawn from
an unknown density f(x), where x is a d-dimensional
continuous random variable. The central idea behind
LGDE is to locally approximate the unknown probabil-
ity density at point x using a Gaussian parametric fam-
ily Nd (µ(x),Σ(x)), where µ(x) and Σ(x) are the (x-
dependent) mean and covariance matrix of each local ap-
proximation. This intuition is formalized in the following
definition:

Definition 3 (Local Gaussian Density Estimator) Let x
denote a d-dimensional absolutely continuous ran-
dom variable with probability density function f(x),
and let {x1, x2,..., xN} be N i.i.d. samples
drawn from f(x). Furthermore, let KH(x) be
a product kernel with diagonal bandwidth matrix
H = diag(h1, h2, ..., hd), so that KH (x) =
h−11 K

(
h−11 x1

)
h−12 K

(
h−12 x2

)
...h−1d K

(
h−1d xd

)
, where

K(·) can be any one-dimensional kernel function. Then
the Local Gaussian Density Estimator, or LGDE, of f(x)
is given by

f̂ (x) = Nd (x;µ(x),Σ(x)) , (6)

Here µ,Σ are different for each point x, and are obtained

by solving the following optimization problem,

µ(x),Σ(x) = arg max
µ,Σ

L (x, µ,Σ) , (7)

where L (x,µ,Σ) is the local likelihood function defined
as follows:

L (x,µ,Σ) =
1

N

N∑

i=1

KH (xi − x) logNd (xi;µ,Σ)

−
∫

KH (t− x)Nd (t;µ,Σ) dt (8)

The first term in the right hand side of Eq. 8 is the local-
ized version of Gaussian log-likelihood. One can see that
without the kernel function, Eq. 8 becomes similar to the
global log-likelihood function of the Gaussian parametric
family. However, since we do not have sufficient infor-
mation to specify a global distribution, we make a local
smoothness assumption by adding this kernel function. The
second term of right hand side in Eq. 8 is a penalty term to
ensure the consistency of the density estimator.

The key difference between kNN density estimator and
LGDE is that the former assumes that the density is lo-
cally uniform over the neighborhood of each sample point,
whereas the latter method relaxes local uniformity to local
linearity1, which allows to compensates for the boundary
bias. In fact, any non-uniform parametric probability dis-
tribution is suitable for fitting a local distribution under the
local likelihood, and the Gaussian distribution used here is
simply one realization.

I Theorem 1 below establishes the consistency property of
this local Gaussian estimator; for a detailed proof see (Hjort
and Jones, 1996).

Theorem 1 ((Hjort and Jones, 1996)) Let x denote a d-
dimensional absolutely continuous random variable with
probability density function f(x), and let {x1, x2,..., xN}
be N i.i.d. samples drawn from f(x). Let f̂ (x) be the Lo-
cal Gaussian Density Estimator with diagonal bandwidth
matrix diag(h1, h2, ..., hd), where the diagonal elements
hi-s satisfy the following conditions:

lim
N→∞

hi = 0 , lim
N→∞

Nhi =∞, i = 1, 2, . . . , d. (9)

Then the following holds:

lim
N→∞

E|f̂ (x)− f (x)| = 0 (10)

lim
N→∞

E|f̂ (x)− f (x)|2 = 0 (11)

1To elaborate on the local linearity, we note that Gaussian
distribution is essentially a special case of Elliptical distribution
f(x) = k ∗g((x−µ)TΣ−1(x−µ)). Therefore, the local Gaus-
sian approximation actually assumes a rotated hyper-ellipsoid lo-
cally at each point.

280

The above theorem states that LGDE is asymptotically un-
biased and L2-consistent.

5 LGDE-based Estimators for Entropy and
Mutual Information

We now introduce our estimators for entropy and mutual
information that are inspired by the local density estimation
approach defined in the previous section.

Let us again consider N i.i.d samples (X ,Y) =
{(x,y)(i)}Ni=1 drawn from an unknown joint distribution
fXY , where x and y are random vectors of dimensionality
d and b, respectively. Let us construct the following esti-
mators for entropy,

Ĥ (x) = − 1

N

N∑

i=1

log f̂ (xi), (12)

and mutual information

Î (x : y) =
1

N

N∑

i=1

log
f̂ (xi,yi)

f̂ (xi) f̂ (yi)
(13)

where f̂(x), f̂(y), f̂(x,y) are the local Gaussian density
estimators for fX(x), fY (y), fXY (x,y) respectively, de-
fined in the previous section.

Recall that the entropy and mutual information can be writ-
ten as appropriately defined expectations; see Eqs. 4 and
5. Then the proposed estimator simply replaces the expec-
tation by the sample averages, and then plugs in density
estimators from Section 4 into those expectations.

The next two theorems state that the proposed estimators
are asymptotically unbiased.

Theorem 2 (Asymptotic Unbiasedness of Entropy Estimator)
If the conditions in Eq. 9 hold, then the entropy estimator
given by Eq. 12 is asymptotically unbiased, i.e.,

lim
N→∞

EĤ (x) = H(x) (14)

Theorem 3 (Asymptotic Unbiasedness of MI Estimator)
If the conditions in Eq. 9 hold, then the mutual information
estimator given by Eq. 13 is asymptotically unbiased:

lim
N→∞

EÎ (x : y) = I(x : y) (15)

We provide the proofs of the above theorems in the next
section.

6 Proofs of the Theorems

Before getting to the actual proofs, we first introduce the
Lebesgue’s dominated convergence theorem.

Theorem 4 (Lebesgue dominated convergence theorem)
Let {fN} be a sequence of functions, and assume this
sequence converges point-wise to a function f , i.e.,
fN (x) → f(x) for any x ∈ Rd. Furthermore, let us
assume that fN is dominated by an integrable function g,
e.g., we have for any x

|fN (x)| ≤ g(x)

Then we have

lim
N→∞

∫

x∈X

|fN (x)− f (x)| dx = 0

6.1 Proof of Theorem 2

Consider N i.i.d. samples
{
x(i)
}N
i=1

drawn from the prob-
ability density f(x), and let FN (x) denote the empirical
cumulative distribution function.

Let us define the following two quantities:

H1 = − 1

N

N∑

i=1

lnEf̂(xi) (16)

H2 = − 1

N

N∑

i=1

ln f(xi) (17)

Then we have,

E|Ĥ(x)−H(x)|
= E|(Ĥ −H1) + (H1 −H2) + (H2 −H)|
≤ E|Ĥ −H1|+ E|H1 −H2|+ E|H2 −H|(18)

We now procced to show that each of the terms in Eq. 18
individually converges to 0 in the limit N → ∞, which
will then yield Eq. 14.

First, we note that according to the mean value theorem,
for any x, there exist tx and t′x in (0, 1), such that

ln f̂ (x) = lnEf̂ (x) + (19)(
f̂ (x)− Ef̂ (x)

)
ln
(
txf̂ (x) + (1− tx)Ef̂ (x)

)

and

lnEf̂ (x) = ln f (x) + (20)(
Ef̂ (x)− f (x)

)
ln
(
t′xf (x) + (1− t′x)Ef̂ (x)

)

281

For the first term in Eq. 18, we use Eq. 19 to obtain

E
∣∣∣Ĥ −H1

∣∣∣

= E
∣∣∣∣
∫

[ln f̂ (x)− lnEf̂ (x)]dFN (x)

∣∣∣∣

= E

∣∣∣∣∣

∫ |f̂(x)− Ef̂(x)|
txf̂ (x) + (1− tx)Ef̂ (x)

dFN (x)

∣∣∣∣∣

≤ 1

1− tE
∣∣∣∣∣

∫ |f̂ (x)− Ef̂ (x)|
Ef̂ (x)

dFN (x)

∣∣∣∣∣

=
1

1− tE
(

1

N

N∑

i=1

|f̂ (xi)− Ef̂ (xi)|
Ef̂ (xi)

)

=
1

1− tE
(
E

(
|f̂ (u)− Ef̂ (u)|

Ef̂ (u)

)
|x = u

)

=
1

1− t

∫
|f̂ (u)− Ef̂ (u)| f̂ (u)

Ef̂ (u)
du (21)

where t is the maximum value among all tx. Using Theo-
rem 1, we have |f̂ (u)− Ef̂ (u)| → 0 as N → ∞. Fur-
thermore, it is possible to show that ∃N0, so that for any
N > N0 one has |f̂ (u)− Ef̂ (u)| f̂(u)

Ef̂(u)
< 2f (u). Thus,

using Theorem 4, we obtain

lim
N→∞

E|H −H1| = 0 (22)

Similarly, using Eq. 20, E |H1 −H2| can be written as

E |H1 −H2|

= E
∣∣∣∣
∫

[lnEf̂ (x)− ln f (x)]dFN (x)

∣∣∣∣

= E

∣∣∣∣∣

∫ |Ef̂ (x)− f (x)|
t′xf (x) + (1− t′x)Ef̂ (x)

dFN (x)

∣∣∣∣∣

≤ 1

t′
E

∣∣∣∣∣

∫ |Ef̂ (x)− f (x)|
f (x)

dFN (x)

∣∣∣∣∣

=
1

t′
E

(
1

N

N∑

i=1

|Ef̂ (xi)− f (xi)|
f (xi)

)

=
1

t′

∫
f (x)

|Ef̂ (x)− f (x)|
f (x)

dx

=
1

t′

∫
|Ef̂ (x)− f (x)|dx (23)

where t′ is the minimum value among all t′x.

Invoking Theorem 1 again, we observe that the last term in
Eq. 23 |Ef̂ (x)− f (x)| → 0 as N>∞, and is bounded by
2f(x) for sufficiently large N (e.g., when when f̂(u) and
Ef̂(u) are sufficiently close). Therefore, by Theorem 4, we
have

lim
N→∞

E |H1 −H2| = 0 (24)

Finally, for the last term in Eq. 18, we note that

EH2 = − 1

N
E

N∑

i=1

ln f (xi) = E[− ln f (x)] (25)

Thus, EH2 is simply the entropy in Definition 1; see Eq. 4.
Therefore,

lim
N→∞

E |H2 −H| = 0 (26)

Combining Eqs. 22, 24, 26 and 18, we arrive at Eq. 14,
which concludes the proof.

6.2 Proof of Theorem 3

For mutual information estimation, we use Eq. 3 to get

E|Î (x : y)− I (x : y)| ≤ E|H (x)− Ĥ (x)|
+ E|H (y)− Ĥ (y)|
+ E|H (x,y)− Ĥ (x,y)| (27)

Using Theorem 2, we see that all three terms on the right
hand side in Eq. 27 converge to zero as N →∞, therefore
limN→∞ E|Î (x : y)− I (x : y)| = 0, thus concluding the
proof.

7 Experiments

7.1 Implementation Details

Our main computational task is to maximize the local like-
lihood function in Eq. 8. Since computing the second term
on the right hand side of Eq. 8 requires integration that can
be time-consuming, we choose the kernel function K(·) to
be a Gaussian kernel, KH(t − x) = Nd(t; x,H) so that
the integral can be performed analytically, yielding
∫

KH (t− x)Nd (t;µ,Σ)dt = Nd (x;µ,H + Σ) (28)

Thus, Eq. 8 reduces to

L (x,µ,Σ) =
1

N

N∑

i=1

Nd (xi; x,H) logNd (xi;µ,Σ)

− Nd (x;µ,H + Σ) (29)

Maximizing Eq. 29 is a constrained non-convex optimiza-
tion problem with the condition that the covariance matrix
Σ is positive semi-definite. We use Cholesky parameteri-
zation to enforce the positive semi-definiteness of Σ, which
allows to reduce our constrained optimization problem into
an unconstrained one. Also, since we would like to pre-
serve the local structure of the data, we select the band-
width to be close to the distance between pair of k-nearest
points (averaged over all the points).

282

We use Newton-Ralphson method to do the maximization
although the function itself is not exactly concave. The
full algorithm for our estimator is given in Algorithm 1
which takes Algorithm 2 as a subroutine. Note that in Al-
gorithm 2, the Wolfe condition is a set of inequalities in
performing quasi-Newton methods (Wolfe, 1969).

Algorithm 1 Mutual Information Estimation with Local
Gaussian Approximation

Input: points (x,y)(1), (x,y)(2), ..., (x,y)(N)

Output: Î(x; y)

Calculate entropy Ĥ(x) using samples x(1), x(2)...,x(N)

Calculate entropy Ĥ(y) using samples y(1), y(2)...,y(N)

Calculate joint entropy Ĥ(x,y) using input samples
(x,y)(1), (x,y)(2), ..., (x,y)(N)

Return estimated mutual information Î = Ĥ(x) +

Ĥ(y)− Ĥ(x,y)

Algorithm 2 Entropy Estimation with Local Gaussian
Approximation

Input: points u(1),u(2), ...,u(N)

Output: Ĥ(u)

Initialize Ĥ(u) = 0
for each point x(i) do

initialize µ = µ0, L = L0

while not L(x(i),µ,Σ = L ∗LT) converge do
Calculate L(x(i),µ,Σ = L ∗LT)
Calculate gradient vector G of L(x(i),µ,Σ =
L ∗LT), with respect to µ, L
Calculate Hessian matrix of H of L(x(i),µ,Σ =
L ∗LT), with respect to µ, L
Do Hessian modification to ensure the positive
semi-definiteness of H
Calculate descent direction D = −αH−1G,
where we compute α to satisfy Wolfe condition
Update µ,L with (µ,L) + D

end while
f̂(x(i)) = N (x;µ,Σ = L ∗LT)

Ĥ(u) = Ĥ(u)− log f(x(i))
N

end for

In a single step, evaluating the gradient and Hessian in Al-
gorithm 2 would take O(N) time because Eq. 8 is a sum-
mation over all the points. However, for points that are far
from the current point x(i), the kernel weight function is
very close to zero and we can ignore those point and do the
summation only over a local neighborhood of x(i).

7.2 Experiments with synthetic data

Functional relationships We test our MI estimator for
near-functional relationships of form Y = f(X)+U(0, θ),

where U(0, θ) is the uniform distribution over the inter-
val (0, θ), and X is drawn randomly uniformly from [0, 1].
Similar relationships were studied in (Reshef et al., 2011),
(Kinney and Atwal, 2014) and (Gao et al., 2015).

Noise Level

0

4

8

12

I(
X

:Y
)

Y=X+U
Local Gaussian

Kraskov

MST

GNN

Ground Truth

Noise Level

I(
X

:Y
)

Y=X2 +U
Local Gaussian

Kraskov

MST

GNN

Ground Truth

Noise Level

0

4

8

12

I(
X

:Y
)

Y=X3 +U
Local Gaussian

Kraskov

MST

GNN

Ground Truth

Noise Level

I(
X

:Y
)

Y=2X +U
Local Gaussian

Kraskov

MST

GNN

Ground Truth

3−8 3−6 3−4 3−2 30 32 34

Noise Level

0

4

8

12

I(
X

:Y
)

Y=sin(4πX) +U
Local Gaussian

Kraskov

MST

GNN

Ground Truth

3−8 3−6 3−4 3−2 30 32 34

Noise Level

I(
X

:Y
)

Y=cos(5πX(1−X)) +U
Local Gaussian

Kraskov

MST

GNN

Ground Truth

Figure 2: Functional relationship test for mutual informa-
tion estimators. The horizontal axis is the value of θ which
controls the noise level; the vertical axis is the mutual in-
formation in nats. For the Kraskov and GNN estimators we
used nearest neighbor parameter k = 5. For the local Gaus-
sian estimator, we choose the bandwidth to be the distance
between a point and its 5rd nearest neighbor.

We compare our estimator to several baselines that include
the kNN estimator proposed by (Kraskov et al., 2004),
an estimator based on generalized nearest-neighbor graphs
(GNN) (Pál et al., 2010), and minimum spanning tree
method (MST) (Yukich and Yukich, 1998). We evaluate
those estimators for six different functional relationships as
indicated in Figure 2. We use N = 2500 sample points for
each relationship. To speed up the optimization, we lim-
ited the summation in Eq. 29 to only k nearest neighbors,
thus reducing the computational complexity from O(N) to
O(k) in every iteration step of Algorithm 2.

283

One can see from Fig. 2 that when θ is relatively large,
all methods except MST produce accurate estimates of MI.
However, as one decreases θ, all three baseline estimators
start to significantly underestimate mutual information. In
this low-noise regime, our proposed estimator outperforms
the baselines, at times by a significant margin. Note also
that all the estimators, including ours, perform relatively
poorly for highly non-linear relationships (the last row in
Figure 2). According to our intuition, this happens when
the scale of the non-linearity becomes sufficiently small,
so that the linear approximation of the relationship around
the local neighborhood of each sample point does not hold.
Under this scenario, accuracy can be recovered by adding
more samples.

8 Related Work

Mutual Information Estimators Recently, there has been
a significant amount of work on estimating information-
theoretic quantities such as entropy, mutual information,
and divergences, from i.i.d. samples. Methods include
k-nearest-neighbors (Singh et al., 2003), (Kraskov et al.,
2004), (Pál et al., 2010), (Póczos et al., 2011); minimum
spanning trees (Yukich and Yukich, 1998); kernel density
estimate (Moon et al., 1995), (Singh and Poczos, 2014);
maximum likelihood density ratio (Suzuki et al., 2008); en-
semble methods (Moon and Hero, 2014), Sricharan et al.
(2013), etc. As pointed our earlier, all of those methods
underestimate the mutual information when two variables
have strong dependency. (Gao et al., 2015) addressed this
shortcoming by introducing a local non-uniformity correc-
tion, but their estimator depended on a heuristically defined
threshold parameter and lacked performance guarantees.

Density Estimation and Boundary Bias Density estima-
tion is a classic problem in statistics and machine learn-
ing. Kernel density estimation and k-nearest-neighbor den-
sity estimates are the two most popular and successful
non-parametric methods. However, it has been recognized
that these non-parametric techniques often suffer from
the problem of so-called “boundary bias”. Researchers
have proposed a variety of methods to overcome the bias,
such as the reflection method (Schuster, 1985), (Silverman,
1986); the boundary kernel method (Zhang and Karuna-
muni, 2000), the transformation method (Marron and Rup-
pert, 1994), the pseudo-data method (Cowling and Hall,
1996) and others. All these methods are useful in some
particular settings. But when it comes to mutual informa-
tion estimation, how can we choose the most efficient one
to use? It seems that local likelihood method (Hjort and
Jones, 1996), (Loader, 1996), is a good choice for estimat-
ing the mutual information due to its ability to detect the
boundary without any prior knowledge. Previous studies
have already proven the power of local regression, which
can automatically overcome the boundary bias. Methods
based on local likelihood estimation has traditionally at-

tracted less attention due to their computational complex-
ity. However, advances in computational power allow us to
re-consider this class of method.

9 Conclusion and Future Work

Past research on mutual information estimation has mostly
focused on distinguishing weak dependence from indepen-
dence. However, in the era of big data, we are often inter-
ested in highlighting the strongest dependencies among a
large number of variables. When those variables are highly
inter-dependent, traditional non-parametric mutual infor-
mation estimators fail to accurately estimate the value due
to the boundary bias.

We have addressed this shortcoming by introducing a novel
semi-parametric method for estimating entropy and mutual
information based on local Gaussian approximation of the
unknown density at the sample points. We demonstrated
that the proposed estimators are asymptotically unbiased.
We also showed empirically that the proposed estimator has
a superior performance compared to a number of popular
baseline methods, and can accurately measure strength of
the relationship even for strongly dependent variables, and
limited number of samples.

There are several potential avenues for future work. First
of all, we would like to validate the proposed estimator in
higher-dimensional settings. In principle, the approach is
general and can be applied in any dimensions. However,
the optimization procedure may be computational expen-
sive in higher dimensions, since the number of parameters
scales as O(d2) with dimensionality d. An intuitive solu-
tion would be to initialize the parameters with the results
obtained from the close points, which can facilitate conver-
gence.

Another interesting issue is the bandwidth selection, which
is an important problem in general density estimation prob-
lems. If the bandwidth is too large, the local Gaussian as-
sumption may not be valid, whereas very small bandwidth
will result in non-smooth densities. Ideally, we would like
to choose the bandwidth in a way that preserves the lo-
cal Gaussian structure in the neighborhood of each point.
Another interesting extension would be choosing the band-
width adaptively for each point.

Finally, while here we have focused on the asymptotic un-
biasedness of the proposed estimator, it will be very valu-
able to establish theoretical results about the convergence
rates of the estimators, as well as its variance in the large
sample limit.

Acknowledgements

This research was supported in part by DARPA grant No.
W911NF–12–1–0034.

284

References
Ann Cowling and Peter Hall. On pseudodata methods for remov-

ing boundary effects in kernel density estimation. Journal of
the Royal Statistical Society. Series B (Methodological), pages
551–563, 1996.

Shuyang Gao, Greg Ver Steeg, and Aram Galstyan. Efficient esti-
mation of mutual information for strongly dependent variables.
In AISTATS’15, 2015.

NL Hjort and MC Jones. Locally parametric nonparametric den-
sity estimation. The Annals of Statistics, pages 1619–1647,
1996.

J. Kinney and G. Atwal. Equitability, mutual information, and the
maximal information coefficient. Proceedings of the National
Academy of Sciences, 111(9):3354–3359, 2014.

A. Kraskov, H. Stögbauer, and P. Grassberger. Estimating mu-
tual information. Phys. Rev. E, 69:066138, 2004. doi:
10.1103/PhysRevE.69.066138. URL http://link.aps.
org/doi/10.1103/PhysRevE.69.066138.

Clive R Loader. Local likelihood density estimation. The Annals
of Statistics, 24(4):1602–1618, 1996.

James Stephen Marron and David Ruppert. Transformations to
reduce boundary bias in kernel density estimation. Journal of
the Royal Statistical Society. Series B (Methodological), pages
653–671, 1994.

K.R. Moon and A.O. Hero. Ensemble estimation of multivari-
ate f-divergence. In Information Theory (ISIT), 2014 IEEE In-
ternational Symposium on, pages 356–360, June 2014. doi:
10.1109/ISIT.2014.6874854.

Young-Il Moon, Balaji Rajagopalan, and Upmanu Lall. Esti-
mation of mutual information using kernel density estimators.
Physical Review E, 52(3):2318–2321, 1995.

Dávid Pál, Barnabás Póczos, and Csaba Szepesvári. Estimation
of rényi entropy and mutual information based on generalized
nearest-neighbor graphs. In Advances in Neural Information
Processing Systems 23, pages 1849–1857. Curran Associates,
Inc., 2010.

Barnabás Póczos, Liang Xiong, and Jeff Schneider. Nonparamet-
ric divergence estimation with applications to machine learning
on distributions. In Proceedings of Uncertainty in Artificial In-
telligence (UAI), 2011.

David N Reshef, Yakir A Reshef, Hilary K Finucane, Sharon R
Grossman, Gilean McVean, Peter J Turnbaugh, Eric S Lander,
Michael Mitzenmacher, and Pardis C Sabeti. Detecting novel
associations in large data sets. science, 334(6062):1518–1524,
2011.

Eugene F Schuster. Incorporating support constraints into
nonparametric estimators of densities. Communications in
Statistics-Theory and methods, 14(5):1123–1136, 1985.

C.E. Shannon. A mathematical theory of communication. The
Bell System Technical Journal, 27:379423, 1948.

Bernard W Silverman. Density estimation for statistics and data
analysis, volume 26. CRC press, 1986.

Harshinder Singh, Neeraj Misra, Vladimir Hnizdo, Adam Fe-
dorowicz, and Eugene Demchuk. Nearest neighbor estimates
of entropy. American Journal of Mathematical and Man-
agement Sciences, 23(3-4):301–321, 2003. doi: 10.1080/
01966324.2003.10737616. URL http://dx.doi.org/
10.1080/01966324.2003.10737616.

Shashank Singh and Barnabas Poczos. Generalized expo-
nential concentration inequality for renyi divergence esti-
mation. In Proceedings of the 31st International Con-
ference on Machine Learning (ICML-14), pages 333–341,
2014. URL http://machinelearning.wustl.edu/
mlpapers/papers/icml2014c1_singh14.

K. Sricharan, D. Wei, and A.O. Hero. Ensemble estimators for
multivariate entropy estimation. Information Theory, IEEE
Transactions on, 59(7):4374–4388, July 2013. ISSN 0018-
9448. doi: 10.1109/TIT.2013.2251456.

Taiji Suzuki, Masashi Sugiyama, Jun Sese, and Takafumi
Kanamori. Approximating mutual information by maximum
likelihood density ratio estimation. In Yvan Saeys, Huan
Liu, Iaki Inza, Louis Wehenkel, and Yves Van de Peer, ed-
itors, FSDM, volume 4 of JMLR Proceedings, pages 5–20.
JMLR.org, 2008.

Philip Wolfe. Convergence conditions for ascent methods. SIAM
review, 11(2):226–235, 1969.

Joseph E Yukich and Joseph Yukich. Probability theory of classi-
cal Euclidean optimization problems. Springer Berlin, 1998.

Shunpu Zhang and Rohana J Karunamuni. On nonparametric den-
sity estimation at the boundary*. Journal of nonparametric
statistics, 12(2):197–221, 2000.

285

Psychophysical Detection Testing with Bayesian Active Learning

Jacob R. Gardner
gardner.jake@wustl.edu

Washington University in St. Louis
St. Louis, MO 63130

Xinyu Song
xinyu.song@wustl.edu

Washington University in St. Louis
St. Louis, MO 63130

Kilian Q. Weinberger
kilian@wustl.edu

Washington University in St. Louis
St. Louis, MO 63130

Dennis Barbour
dbarbour@wustl.edu

Washington University in St. Louis
St. Louis, MO 63130

John P. Cunningham
jpc2181@columbia.edu

Columbia University
New York, NY 10027

Abstract

Psychophysical detection tests are ubiquitous in
the study of human sensation and the diagno-
sis and treatment of virtually all sensory im-
pairments. In many of these settings, the goal
is to recover, from a series of binary observa-
tions from a human subject, the latent function
that describes the discriminability of a sensory
stimulus over some relevant domain. The audi-
tory detection test, for example, seeks to under-
stand a subject’s likelihood of hearing sounds as
a function of frequency and amplitude. Conven-
tional methods for performing these tests involve
testing stimuli on a pre-determined grid. This
approach not only samples at very uninforma-
tive locations, but also fails to learn critical fea-
tures of a subject’s latent discriminability func-
tion. Here we advance active learning with Gaus-
sian processes to the setting of psychophysical
testing. We develop a model that incorporates
strong prior knowledge about the class of stimuli,
we derive a sensible method for choosing sample
points, and we demonstrate how to evaluate this
model efficiently. Finally, we develop a novel
likelihood that enables testing of multiple stim-
uli simultaneously. We evaluate our method in
both simulated and real auditory detection tests,
demonstrating the merit of our approach.

1 INTRODUCTION

Psychophysical tests are a fundamental tool for investigat-
ing human perception: does a particular stimulus produce
sensation for a particular person? The most common form
of psychophysical tests – detection tests – present n sen-
sory stimuli to a subject, and ask for n binary reports as

to whether each stimulus was detected or not. Detection
tests exist for vision (Schiefer et al., 2005), pain (Carter and
Shieh, 2009), and many other settings. Perhaps the most
common example is audiometry (Carhart and Jerger, 1959;
Don et al., 1978; Hughson and Westlake, 1944): a subject
is presented with a sequence of n tones xt ∀t = 1, ..., n,
where each tone xt ∈R2 is a pure tone with a specific fre-
quency (pitch) and intensity (volume). The subject reports
an observation yt=1 if he/she heard the tone, and a yt=0
is concluded in the absence of a positive report. The pur-
pose of the test is to infer, from this sequence of observa-
tions, the underlying audiometric function g(x), a function
that describes how likely the subject is to hear sounds over
the domain of typical frequencies and intensities. There
is substantial variability in each person’s audiogram, par-
ticularly for those with partial, selective, or degenerative
hearing loss (Gosztonyi Jr et al., 1971; Robinson, 1991;
Schmuziger et al., 2004). Accurate estimates of audio-
grams are thus essential to understanding human audition,
and to all medical studies and treatments of various forms
of hearing loss.

A standard auditory detection test is carried out by playing
an n-length sequence of pure tones on a pre-defined grid
in frequency-intensity space. This approach, while simple,
has several salient drawbacks that lead to an unnecessarily
large n. First, a given tone is played multiple times, even if
it is highly audible or highly inaudible. Second, informa-
tion is not shared between previous outcomes. For exam-
ple, human audition is monotonically increasing in inten-
sity, but in the standard test, even if a particular frequency
of sound is heard at a given intensity, tones with the same
frequency but higher intensity will still be tested. Finally,
owing to limitations on the size of sequence n, a standard
detection test probes only six discrete frequencies (Madi-
son et al., 2005). The coarseness of this grid can cause
significant errors, as human hearing loss can span a range
narrow enough to be entirely missed by these six frequen-

286

cies (Jerger, 1960; Zhao et al., 2002; Zhao and Stephens,
1998). All of these issues, combined with the impractical-
ity and burden to human subjects of a large n sequence,
motivate an active learning approach.

Here we treat psychophysical detection tests as an active
learning problem, extending and adapting recent work on
active learning with Gaussian processes (GPs) (Garnett
et al., 2013; Houlsby et al., 2011; Iwata et al., 2013). Our
method addresses all the drawbacks of grid-sampling by
performing Bayesian active learning of the audiometric
function g(x). Specifically, we place a GP prior on the
latent audiogram f(x), which we transform to a [0, 1] val-
ued quantity using a probit transformation (Kuss and Ras-
mussen, 2005), such that g(x) ≈ Φ(f(x)). We use this
model to sequentially sample at each time step t the most
informative next tones conditioned on the previous t−1 ob-
servations y1, ..., yt−1. This model significantly enhances
the accuracy and efficiency of learning audiograms. Our
work offers two main contributions:

1. We extend and adapt existing work on Bayesian op-
timization and active learning to the setting of psy-
chophysical detection tests. We present a model that
incorporates strong prior knowledge about the audi-
tory stimulus space, and we present experimental re-
sults demonstrating the effectiveness of a Bayesian ac-
tive learning approach.

2. We develop a novel ‘OR-channel’ likelihood that al-
lows the query of multiple tones simultaneously. We
analyze this likelihood in the active learning context,
clarifying the non-obvious intuition for why and when
such an approach can outperform single-tone queries.

We evaluate our algorithm on both simulated and real au-
diometric detection tests. Our active learning approach ob-
tains finer grained estimates of the audiogram g(x) with
substantially fewer stimuli queries (lower n). We note that,
in the remainder of this work (notably our experiments), we
will continue to use the example and nomenclature of au-
diometry, though our algorithm is precisely equivalent for
other psychophysical detection tests as well.

2 GAUSSIAN PROCESSES

Throughout this paper we will make extensive use of Gaus-
sian processes (GPs). A GP is formally a prior over
functions, f ∼ GP(µ0(·), k(·, ·)), parameterized by a
mean function µ0(x) = E[f(x)] and covariance function
k(x,x′) = E[(f(x)− µ0(x))(f(x′)− µ0(x′))].

For any set of n observations X = [x1, . . . ,xn], the GP
implies that their function values f = [f(x1), . . . , f(xn)]

>

are jointly Gaussian distributed, f ∼ N (µ(X),K), where
K defines the covariance Kij = Cov[fi, fj] = k(xi,xj).

If we add a test point x∗ with unknown function value f∗

this distribution extends naturally by one dimension to
[

f
f∗

]
∼ N

([
µ(X)
µ(x∗)

]
,

[
K k∗

k∗> k(x∗,x∗)

])
.

We can utilize standard Gaussian conditioning rules (Ras-
mussen and Williams, 2006) to derive the posterior distri-
bution, p(f∗|X, f ,x∗), which is Gaussian with mean and
variance

µ∗(x∗) = µ0(x∗) + k∗>K−1(f − µ0(x∗)) (1)
σ∗2(x∗) = k(x∗,x∗)− k∗>K−1k∗. (2)

Here k∗ = [k(x∗,x1), ..., k(x∗,xn)]> denotes the kernel
vector between the test input x∗ and each training input.

In practice, we often do not observe fi directly, but rather
some dependent random variable yi. A popular example
is to assume additive Gaussian noise, yi = fi+ε with ε ∼
N (0, σ2

n). In this setting, the distribution for f∗ remains
Gaussian, with a mean and variance similar to eqs. (1) and
(2) (where K is replaced with K + σ2

nI).

However, with most observation models, the posterior dis-
tribution of f∗ conditioned on y is not Gaussian, and ex-
act inference becomes impossible. Approximate inference
may be performed using a Gaussian approximation to the
likelihood (Kuss and Rasmussen, 2005; Minka, 2001). In
particular, by using a Gaussian approximation to the like-
lihood, we recover the Gaussianity of the posterior. For a
full treatment of Gaussian processes, see (Rasmussen and
Williams, 2006).

Note that in many cases, our goal is to make predictions, for
which we use the posterior predictive distribution–a distri-
bution over y∗:

p(y∗|X,y,x∗) =

∫

f∗
p(y∗|f∗)p(f∗|X,y,x∗)df∗, (3)

This distribution is typically not computable analytically.
However, if the posterior distribution for f∗ is Gaussian
(e.g., because a Gaussian likelihood or Gaussian approxi-
mate likelihood was used), this integral can often be com-
puted efficiently.

2.1 BAYESIAN ACTIVE LEARNING

The goal of Bayesian active learning is to sequentially
choose samples so as to accurately model an unknown
function g(·) with as few samples as possible. In the audio-
metric setting, g(x) is the probability that the patient hears
the tone x. If we query whether the patient can hear a set
of tones X, we would like for our predictive posterior be-
lief p(y∗|X,y,x∗) to match g(x∗) as well as possible and
as confidently as possible. Suppose that at iteration t < n
the points X = [x1, ...,xt] and corresponding labels y are

287

known. Houlsby et al. (2011) propose to use mutual infor-
mation,

I(f , yt|xt)=H [f |X,y]−E [H[f |X,y, yt]]p(yt|X,y,xt) (4)

where H[A] denotes the differential entropy of a random
variable A, to identify a new point xt, with future label yt,
to be queried in iteration t—i.e. xt is chosen to be

xt = arg max
x

I(f , y|x) (5)

3 METHOD

In this section, we discuss our model and approach to psy-
chophysical detection testing using Gaussian processes. As
a running example, we will use audiometry. In an audio-
metric detection test, a patient is presented with tones of
varying frequency and intensity. The patient is asked to re-
spond (e.g., by pressing a button) if he/she hears the sound.
In the absence of a timely reaction the tone is assumed to
be inaudible to the patient. The delay between tones is suf-
ficiently randomized to prevent patients from responding to
predictable patterns (Gosztonyi Jr et al., 1971).

At time step t, we choose a tone xt=(ω, i) with frequency
ω and intensity i to present to the subject. In return, we
receive a response yt ∈ {0, 1}, where yt = 1 indicates that
the patient heard the sound and yt=0 indicates that he/she
did not. There is inherent observation noise in patient re-
sponses. When patients become uncertain when presented
with sounds very close to their threshold (i.e., the sounds
become faint and hard to hear). Patients do not have per-
fect detection boundaries, and only hear tones near their
hearing threshold with some probability. This uncertainty
is observed in reality for a number of reasons. First, pa-
tient attention may waver, or they may be unable to distin-
guish between tones near their hearing threshold and slight
background noise. Alternatively, this uncertainty may de-
rive from physical sources. For example, if a tone is faint
enough, a patient may be able to hear that tone between–
but not during–heart beats. Our goal is therefore to predict
the probability that a patient is able hear a given sound.

3.1 PRIOR

In the case of audiometric testing, we have valuable prior
knowledge about a patient’s audiometric function that we
can encode in our GP model. In particular, the probability
that a patient hears a sound (ω, i) is monotonically increas-
ing in the intensity i. In other words, if a tone is audible
to a patient, then an even louder tone is more likely to be
audible. Furthermore, audition is a smooth function with
respect to the frequency ω. Human nerves that detect sim-
ilar frequencies are co-located in the cochlea and, as a re-
sult, a partial loss of hearing in one frequency is likely to
cause a loss of hearing in nearby frequencies. A GP prior

can encode both properties naturally through its covariance
function. A combination of a linear kernel in intensity and a
squared exponential kernel in frequency ensures the mono-
tonicity and smoothness properties:

k ((ω, i), (ω′, i′)) = ii′ + exp

{
−1

`
‖ω − ω′‖22

}
. (6)

Here, ` regulates the smoothness (characteristic length-
scale) w.r.t. frequency. Note that a GP prior is techni-
cally incapable of supporting only monotonically increas-
ing functions. However, we only need that the posterior
probability of detection, 3, be monotonic, which is gener-
ally true after a few tones are sampled (for example, see
figure 3).

For the mean function µ0, we note that intensity is typically
measured in dB HL, which is an empirical unit of measure-
ment normalized based on population data so that at each
frequency the typical human hearing threshold is around 0
dB HL. As a result we choose a constant mean function.

3.2 OBSERVATION MODEL

This mean function, µ0(·), and covariance function, k(·, ·),
define a prior over real-valued latent functions f ∼
GP(µ0(·), k(·, ·)). Our goal is to predict the probability
(i.e. within [0, 1]) that a patient hears a tone with a spec-
ified frequency and intensity. We can never observe these
probabilities directly. For any tone, we can instead only
observe the outcome of a Bernoulli trial with the true prob-
ability. This setting is akin to Gaussian Process classifica-
tion (Kuss and Rasmussen, 2005) and similarly we use a
Bernoulli likelihood, where Pr(y = 1|f) = Φ(f) and Φ(·)
denotes the standard normal cumulative density function
(CDF).

The linear component of the kernel in (6) results in a func-
tion that, after being warped by Φ(·), is sigmoidal in the
intensity dimension: after the slope is fixed (by condition-
ing on the first few points), the posterior belief about Φ(f)
will tend to 0 as the intensity decreases and 1 as the inten-
sity increases. This reflects our prior knowledge that tones
of extremely low intensity are unlikely to be heard, whereas
tones of high intensity are more likely to be audible.

Predictions. Once we have collected data, we can use
the predictive distribution p(y∗|X,y x∗) to summarize our
belief about whether the patient will hear a test tone
x∗. As our likelihood is non-Gaussian, the posterior
p(f∗|X,y,x∗) has no closed form solution. However,
an approximate Gaussian posterior over f∗ can be ob-
tained with the standard Laplace approximation to the
likelihood (Kuss and Rasmussen, 2005; Rasmussen and
Williams, 2006).

288

3.3 MULTIPLE TONES

An interesting property of audiometry (that may also be
common to other psychophysical domains, e.g. visual or
touch sensory tests), is that multiple tone stimuli can be
presented to a patient simultaneously by overlaying tones.
In this setting however, we can still only query whether the
patient heard the overlaid tones. A negative response to a
multi-tone sample indicates that the patient did not hear any
of the overlaid tones; a positive response indicates that the
patient heard at least one of them.

OR-Channel. Presenting a patient with k tones leads
to a novel extension to the standard Bernoulli likelihood
used in classification. We present the patient with k tones
x1, ...,xk. The patient hearing the individual tone xi is still
the outcome of a Bernoulli trial with Pr(yi|fi) = Φ(fi),
as the individual trials are independent conditioned on f .
However, we cannot directly observe any individual yi.
Rather, we record them through an OR-channel, that is we
observe ȳ, which is 1 if the patient hears at least one of
the k tones presented, and is 0 otherwise. This leads to the
OR-channel likelihood:

Pr(ȳ = 1|f1..k) = 1−
∏

j

(1− Φ(fj))

= 1−
∏

j

Φ(−fj) (7)

Note when k= 1, eq. (7) reduces to the standard Bernoulli
likelihood for single tones, Pr(ȳ = 1|f1) = Φ(f1).

3.4 QUERY SELECTION

In iteration twe present the subject with a query set of over-
laid tones qt=[{x1, ...,xk}] and query the response ȳt. To
select qt we pick the point set that maximizes the expected
decrease in posterior entropy, analogous to eq. (4).

Single tone mutual information. We first consider the
setting of picking a single tone, i.e. where qt = [{xt}].
Houlsby et al. (2011) derive an analytical approximation
to the mutual information, eq. (5), when using a Bernoulli
likelihood. These results directly apply when picking a sin-
gle tone xt. When ft is known, the entropy of the Bernoulli
variable yt is given by h(Φ(ft)), where

h(p) = −p log p− (1−p) log(1−p),

is the Bernoulli entropy function. We can rephrase the en-
tropy in eq. (4) as

I(f , yt|qt) = H [yt|X,y]− E [H [yt|f]]p(f |X,y) , (8)

and rewrite both terms on the right hand side through h. If f
is unknown and yt is conditioned on X,y, the entropy can

be expressed in terms of the expectation over the posterior
for ft:

H [yt|X,y] = h (E [Φ(ft)]) . (9)

If ft is known we have Pr(y|f) = Φ(ft), yielding

H [yt|f] = h (Φ(ft)) . (10)

Substituting eqs. (9), (10) into (8) leads us to the following
expression for the mutual information between f and yt in
the single tone scenario:

I1(f , yt|qt) = h (E [Φ(ft)])− E [h (Φ(ft))] . (11)

The computation of I1 involves an intractable integral,
which can be approximated through numerical integration.
This approach is very fast in practice as the integral is
only one dimensional and can be computed efficiently us-
ing quadrature.

Multiple tone mutual information The above results
can be extended to compute the mutual information when
sampling multiple tones qt = [{x1, ...,xk}]. In partic-
ular, the probability of observing ȳt = 1 changes from
Φ(ft) to the OR-channel probability, (7). Thus, when
f1, ..., fk are known, the entropy of the Bernoulli variable
ȳt is h

(
1−∏k

i=1 Φ(−fi)
)

.

To simplify notation, let us define p̄1 = Pr(ȳ = 1|f1..k) as
defined in (7). Substituting p̄1 for Φ(ft) in (11) gives the
mutual information of paired tone sample qt after observ-
ing the outcome ȳt:

Ik(f , ȳt|qt)=h(E [p̄1])−E [h(p̄1)]

= h
(
E
[∏

jΦ(−fj)
])
−E

[
h
(∏

jΦ(−fj)
)]

(12)

where the second equality holds by the linearity of expec-
tation and because h(p) is a concave function that is sym-
metric about p= 0.5 (i.e. h(p) = 1−h(p)). The last term
leads again to an intractable integral. However, similar to
the one tone scenario, Ik can also be evaluated efficiently
using numerical integration, as k is relatively small.

Computational Considerations Finding a set of k ≤ K

tones q(k)
t to maximize Ik(f , ȳt|qt) from a candidate set X

of size S requires O
((
S
k

))
considerations. In order to en-

sure that patients do not have to wait for a lengthy duration
between sounds are played, we construct a set of multiple
tones to play greedily. We select the best single tone by ex-
haustively searching X . Then, to select the best set of size
k, we exhaustively add each x̂ ∈ X to the best set of size
k− 1, q(k−1)

t and compute the expected decrease in poste-
rior entropy of q(k−1)

t ∪ x̂. This greedy selection procedure
reduces the computational complexity of considering tone
sets of up to size k to O (Sk), and in practice requires only
a few seconds of computation time.

289

0 1
0

1

I1

α β

I2

ᾱ β̄

hB

Single
Paired

0 1
0

1

α

β

0 1
−3

−2

−1

0

1

correlation ρ

m
ea

n
µ

I 2
−
I 1

−0.1

0

0.1a b c
h(·)

Figure 1: Difference in mutual information I2 − I1 between a paired query and a single query: (a) discrete distribution
with two atoms (α, β) = 0.05, 0.65, and corresponding ᾱ = 1 − (1 − α)2 ≈ 0.1, β̄ ≈ 0.88). Here I2 − I1 ≈ 0.18; (b)
I2 − I1 as a function of α, β (white cross denotes the specific example of panel a); (c) the normally distributed latent input
case. I2 − I1 is shown as a function of the mean µ and correlation ρ. Colorbar at right is for both panel b and c.

3.5 OR-CHANNEL ANALYSIS

We first investigate the OR-channel likelihood of eq. (7), as
it is unclear if this elaboration can provide any benefit over
a standard Bernoulli likelihood. Intuitively, the result of
ȳ = 0 from an OR-channel is quite informative: all inputs
into that channel must have been 0 (in the auditory exam-
ple, no sounds were heard). On the other hand, the result of
ȳ = 1 is much less informative than in the Bernoulli chan-
nel, as it means only that one or more of the inputs were 1
(some sound or sounds were heard), but there is no infor-
mation about which. Here we analyze simple models that
support the use of the OR-channel likelihood. We compare
a single input, corresponding to the standard Bernoulli like-
lihood, to a paired input, corresponding to an OR-channel
likelihood with two inputs. That is, with inputs {f1, f2}
and output y ∈ {0, 1} as above, our quantities of interest
are I1 := I(y, f1) and I2 := I(y, {f1, f2}), and we seek to
understand if more information about the inputs can exist
in the paired-input query, than in the single-input query.

3.5.1 OR-channel Inputs With Discrete Support

The simplest case involves perfectly correlated inputs f1 =
f2, and further, a discrete distribution on f1 with two atoms
of equal mass. The implied probability φ(f1) will then
have the same discrete distribution, which we write as
p (φ(f1)) = 1

2δ(φ(f1) = α) + 1
2δ(φ(f1) = β), for some

atoms α and β. Then, the mutual information of the single
query is:

I1 = H(y)−H(y|f1)

= h (Ef [φ (f1)])− Ef [h (φ (f1))] (13)

= h
(

1

2
(α+ β)

)
− 1

2
(h(α) + h(β)) ,

where Ef is the expectation under the distribution on
f . The OR-channel likelihood for two terms is similarly

p(y = 1|{f1, f2}) = 1 − (1− φ(f1)) (1− φ(f2)) =

1−(1− φ(f1))
2. The mutual information of a paired-input

query becomes

I2 = h
(

1

2

(
ᾱ+ β̄

))
− 1

2

(
h (ᾱ) + h

(
β̄
))
, (14)

where ᾱ = 1 − (1 − α)2 and β̄ = 1 − (1 − β)2. I2
and I1 offer a convenient geometric interpretation by view-
ing mutual information as the Jensen’s inequality gap of
h (eqs. (13) and (14)). With this simple discrete distribu-
tion, α and β can be chosen such that I2 − I1 will be pos-
itive or negative. We show the critical case I2 > I1 in
Figure 1a, where the blue line segment connects (α, h(α))
to (β, h(β)) with (α, β) = (0.05, 0.65), and the red line
segment is then implied by those choices of α, β (that is,
(ᾱ, β̄) ≈ (0.10, 0.88) in the figure). Here the difference is
I2 − I1 = 0.18 bits. The contours of I2 − I1 as a function
of (α, β) is shown in Figure 1b.

3.5.2 OR-channel Inputs With Normal Densities

We next analyze the OR-channel likelihood with two la-
tent factors f1 = f(x1) and f2 = f(x2), which are
jointly Gaussian according to the GP model of Section 3:
[f1, f2] ∼ N (m,S). We calculate I2 − I1 numerically us-
ing eq. (11) (note that, compared to the previous example,
only the expectation over f has changed). We simplify the

parameter space with m =

[
µ
µ

]
and S =

[
1 ρ
ρ 1

]
(but note

that the function I2 − I1 is not invariant to either of these
simplifications). We plot the contours of I2 − I1 as a func-
tion of correlation ρ and mean µ in Figure 1c, which indeed
has substantial regions of both positive and negative mass.

In summary, though intuitively non-obvious, the above
analyses clarify that the OR-channel likelihood can, but
need not, increase mutual information between the input
distribution and the binary outcome y. This finding offers a

290

Frequency (Log Hz)

In
te

ns
ity

 (d
B

H
L)

Po
st

er
io

r P
ro

b.
 o

f D
et

ec
tio

n

Standard Audiogram, 114 Samples Multi-tone GP Audiogram, 60 Iterations

8 9 10 11 12 13
-10
0
10
20
30
40
50
60
70
80

8 9 10 11 12 13
-10
0
10
20
30
40
50
60
70
80

0.2

0.2
0.2

0.4

0.4
0.4

0.6

0.6
0.6

0.8

0.8
0.8

0

0.2

0.4

0.6

0.8

1

Figure 2: Standard grid search audiogram with tones played at every octave from 250 to 8000 Hz, and every 5 dB HL from
-10 dB to 80 dB, compared to a multi-tone GP audiogram with 60 iterations (and therefore 119 “samples”).

critical takeaway: the OR-channel can be used effectively,
but only in the setting where a judicious choice of input
distribution can be made. Indeed, this is exactly what our
framework will achieve: it will choose pairs of input points
(paired sounds) to learn more about the underlying audio-
gram than a single point alone. Thus, the OR-channel like-
lihood offers benefit beyond this scheme, which we already
expect to outperform a naive approach to learning these la-
tent functions. In this work we only consider paired inputs;
a future question for study is how the information gain dis-
tribution changes with increasing numbers of inputs.

4 RELATED WORK

A number of papers have been recently published on
Bayesian active learning. Many papers have consid-
ered Bayesian active learning using mutual information in
the regression setting (Guestrin et al., 2005; Krause and
Guestrin, 2007; Srinivas et al., 2009). However, the compu-
tation of mutual information is significantly less tractable
in the classification setting. To our knowledge, Houlsby
et al. (2011) is the first paper to leverage the rewriting of
mutual information in (12), allowing for tractable compu-
tation of mutual information with the Bernoulli observation
model. This paper is most similar to ours, as the Bernoulli
observation model is identical to our single tone audiomet-
ric algorithm. A number of other, orthogonal applications
and extensions of this method have since been published
(Garnett et al., 2013; Iwata et al., 2013).

Alternative techniques for estimating audiograms have ex-
isted for many years. Sweep-based audiometry, such as
Bekesy audiometry and Audioscan, are able to produce a
more continuous estimate of the audiogram that can of-
ten detect notches, but with the disadvantage of a partic-

ularly time- and attention-demanding task (Jerger, 1960;
Meyer-Bisch, 1996). Several Bayesian audiogram estima-
tion techniques, such as parameter estimation by sequen-
tial testing (PEST) and maximum likelihood methods also
exist, although most do not simultaneously estimate multi-
ple frequencies (Green, 1993; Leek et al., 2000; Özdamar
et al., 1990; Pentland, 1980; Taylor and Creelman, 1967).
More recent advances in audiometric testing have focused
on improving the accessibility of hearing screening by dis-
tribution over telephone, Internet, or mobile devices (Smits
et al., 2004; Swanepoel et al., 2014; Vlaming et al., 2014;
Watson et al., 2012; Williams-Sanchez et al., 2014).

5 RESULTS

In this section, we empirically evaluate our proposed al-
gorithms for psychophysical detection. We focus on our
application to audiometry, and seek to evaluate the merits
of using Gaussian processes for audiometry in general, as
well as to compare single-tone and multi-tone audiometry,
focusing on the machine learning aspects of our algorithms.

We have since published a small clinical trial in a medi-
cal journal evaluating the novel GP audiometric techniques
discussed here from a clinical point of view as well, and re-
fer readers to Song et al. (2015) for additional results com-
paring GP audiometry and standard audiometry.

To begin, we compare the audiograms found by a standard
grid audiometric test and by our multi-tone GP model. In
both cases we run the same human subject in the same au-
diometric setting. The only differences are the tones pre-
sented and the method used to infer the audiometric func-
tion. All audiometric tests were run in accordance with
an approved IRB. In the standard setting, tones from this

291

Frequency (Log Hz)

In
te

ns
ity

 (d
B

H
L)

Po
st

er
io

r P
ro

b.
 o

f D
et

ec
tio

n

8 9 10 11 12 13
-10
-5
0
5
10
15
20
25
30
35

0.
2

0.2

0.2

0.2

0.
4

0.4

0.4

0.4

0.
6

0.6

0.6

0.6

0.
8

0.8

0.8

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

8 9 10 11 12 13
-10
-5
0
5
10
15
20
25
30
35

0.
2

0.2

0.2

0.2

0.
4

0.4

0.4

0.4

0.
6 0.6

0.6

0.6

0.
8

0.8

0.8
0.8

8 9 10 11 12 13
-10
-5
0
5
10
15
20
25
30
35

0.
2

0.2

0.2

0.2

0.
4

0.4

0.4

0.4

0.
6

0.6

0.6

0.6

0.
8

0.8

0.8

0.8

8 9 10 11 12 13
-10
-5
0
5
10
15
20
25
30
35

0.
2

0.2

0.2

0.2 0.2

0.
4

0.4

0.4
0.4

0.
6

0.6

0.6
0.6

0.
8

0.8

0.8

0.8

8 9 10 11 12 13
-10
-5
0
5
10
15
20
25
30
35

0.4
0.4 0.4

0.6

0.6 0.6

0.8

30 Iterations 60 Iterations

1 Iteration 15 Iterations

Figure 3: The posterior probability of detection within the frequency / intensity space during a GP audiometric test on a
human subject. Panels show the learned GP after 1, 15, 30, and 60 iterations. Queries consist of a single or a paired tone
(as selected by the model). Blue circles indicate a positive outcome (sound was heard), red crosses indicate a negative
outcome. Paired tones with positive outcome (at least one of the two tones was heard) are connected by a blue line. Almost
all queries are close to the final audible threshold (0.5 posterior detection probability), which is well approximated even
after only 15 iterations.

grid are presented in a pre-determined order, typically as-
cending in frequency and decreasing in intensity. In the
GP model, pairs of tones were actively selected given all
previous pairs of tones and the responses to those tones.
A random delay of up to 3 seconds was inserted between
tone presentations to prevent subjects from memorizing a
pattern in the test. Figure 2 shows the resulting data and in-
ferred audiograms plotted in frequency-intensity space (left
panel: standard audiometric test; right panel: GP method).

For both the standard and GP experiments, tones that were
detected by the patient are plotted as blue circles, and tones
that were not detected are plotted as red crosses. For the
paired-tone GP test (right panel), paired samples that were
detected are plotted as blue circles connected by a blue line
(recall that, due to the OR-channel likelihood, we do not
know which tone was heard). Paired tones that were not
detected are again plotted as individual red crosses, as these
data are functionally equivalent to two single-tone samples

that were not detected (again due to the OR-channel obser-
vation model).

In the standard audiometric test, the inferred audiogram
is simply an “audible threshold” that is the piecewise lin-
ear function connecting the detection threshold at each fre-
quency. This threshold is depicted as a black line in the left
panel of Figure 2. In the GP case, we infer a full posterior
distribution on the detection threshold. We plot contours
of the posterior detection probability in the right panel of
Figure 2, with a solid black line at 50% posterior detection
probability.

This confirmatory comparison offers several key points of
interpretation. First, the tests agree with each other: the
50% posterior detection probability in the GP case is within
5dB of the standard audiogram, giving confidence to the
general sensibility of this model. Second, perhaps most im-
portantly to the active learning goal, the GP active learning

292

Frequency (Log Hz)
8 9 10 11 12 13

In
te

ns
ity

 (d
B

H
L)

-10
0

10
20
30
40
50
60
70
80

0.2

0.2

0.2

0.4
0.4

0.4

0.6
0.6

0.6

0.8 0.8

0.8

0

0.2

0.4

0.6

0.8

1

(a) A GP trained on 100 single tones. Blue circles denote tones
detected by the subject, and red crosses denote tones that were not
detected. The posterior probabilities are shown as color contours.

(b) Log likelihood of random presentation of tones (no active
learning, shown in gray), active learning presentation of sin-
gle tones (shown in blue), and active learning with paired tones
(shown in red), under the ground truth audiometric function from
Figure 4a. Log likelihood is plotted as a function of iterations in
each audiometric testing strategy. Shaded areas denote standard
error.

Figure 4: Comparison of multi-tone and single-tone GP audiometrics

model presents approximately half as many iterations (60
actively learned paired tones compared to 114 single tones
preselected from a grid). Thus the GP model is able to
explore substantially more of the frequency space than the
standard grid test, and it does so in many fewer overall iter-
ations, reducing the burden of these tests. Third, note that
the GP model does not explore uninformative regions of
tone space: above a certain intensity (at which the model is
confident that tones are certainly heard), there are no tones
queried. This observation differs sharply from the standard
test, which squanders numerous samples at intensities well
above this subject’s audible threshold, where little to no in-
formation is available. Fourth, by design our GP model
offers a full posterior distribution over tone space, and thus
produces a richer and more descriptive audiogram than the
piecewise linear audible threshold function in the standard
test. Finally, it is worth noting that, though the paired tones
in the right panel of Figure 2 appear to be sampled at very
similar frequencies in log-space, the differences were often
nontrivial, up to four or five half steps in an octave.

Next, Figure 3 investigates the convergence of our GP
model after 1, 15, 30, 60 iterations of our paired-tone GP
audiometric algorithm. The posterior after a single iter-
ation (upper left panel) reflects primarily the prior mean
and the covariance of the model, which incorporates our
knowledge about the general shape of human audiograms.
As the active learning procedure continues (other panels),
the GP posterior quickly converges to the audiogram of this
particular subject. After only 30 iterations, the GP model

has already captured the audiogram shape, and subsequent
changes are very minor.

To investigate the performance of our GP active learning
method in greater detail, we construct a synthetic data set
with known ground truth (a known audiometric function).
We begin by training a GP on 100 single tones and the
detection of those tones reported by a second human sub-
ject. The tones sampled and the inferred audiogram are
presented in Figure 4a. We use this posterior GP as the true
audiogram of a simulated subject.

This ground truth audiometric function allows for the crit-
ical assessment of performance shown in Figure 4b. We
compare three strategies of data presentation: random pre-
sentation of tones (no active learning, shown in gray), ac-
tive learning presentation of single tones (shown in blue),
and active learning with paired tones (shown in red). For
each strategy, at each iteration (tone presentation), we infer
the GP posterior mean, which is the MAP estimate of the
audiometric function, given each stream of data. We evalu-
ate the log likelihood of each strategy’s GP posterior mean
under the ground truth GP from Figure 4a. This step offers
a quantitative assessment of how closely each strategy has
approximated the true audiometric function. The maroon
dashed line depicts the log likelihood of the ground truth
GP itself, which is thus the maximum achievable perfor-
mance of any strategy. All three strategies (random, single
tone active learning, paired tone active learning) should,
with enough iterations, converge to ground truth. Thus, the
essential question of this work, and indeed of any active

293

learning method, is how much more quickly a particular
strategy approaches the ground truth than competing strate-
gies.

We ran the single and paired tone active learning methods
ten times each, and standard errors are plotted as shaded
regions. Because of the very high standard error of the ran-
dom tone audiogram, these results were averaged over 100
runs.

Figure 4b has a few key findings. Both the single and paired
tone active learning strategies significantly outperform ran-
dom sampling. Thus our strong prior rapidly learns that
large portions of the tone space are either very likely or very
unlikely to be heard, and is able to quickly learn to sample
in regions of high information. After 80-90 iterations the
paired tone algorithm matches the ground truth model very
closely. This result is in significant contrast to randomly
choosing tones, which not only has very large standard er-
ror, but also rarely converges to a good model. Finally, we
observe that the paired tone active learning strategy signif-
icantly outperforms the single tone strategy. In fact, the
paired tone strategy requires only half as many iterations to
achieve the same level of likelihood. Compared to random
sampling, paired tone active learning reduces the number
of iterations by 85%.

6 DISCUSSION

In this paper, we explored the problem of adapting
Bayesian active learning to psychophysical testing, and im-
proving upon standard techniques used in audiometric test-
ing. In the process of our investigation, we developed a
novel OR-channel likelihood that allows us to present mul-
tiple tones to a subject simultaneously, leading to an au-
diometric testing strategy that not only yields good audio-
gram estimation using significantly fewer samples, but also
leads to much better coverage of the frequency dimension.
We demonstrate a non-obvious result, that multiple tones
played through an OR-channel can, but do not have to,
yield more information than a single tone. As future work
we will continue to investigate the theoretical properties of
this likelihood function and its use in active learning. We
also hope that the drastic improvements of our method over
the state-of-the-art will convince experts in medicine and
psychology to adapt machine learned approaches for psy-
chophysical testing.

7 ACKNOWLEDGEMENTS

KQW and JRG are supported by NIH grant U01
1U01NS073457-01 and NSF grants IIA-1355406, IIS-
1149882, EFRI-1137211, CNS-1017701, CCF-1215302,
and IIS-1343896. XS and DB are supported by NIH grant
R01-DC009215. JPC is supported by a Sloan Research Fel-
lowship.

References
Raymond Carhart and James Jerger. Preferred method for

clinical determination of pure-tone thresholds. Journal
of Speech & Hearing Disorders, 1959.

Matt Carter and Jennifer C Shieh. Guide to research tech-
niques in neuroscience. Academic Press, 2009.

Manuel Don, Jos J Eggermont, and Derald E Brackmann.
Reconstruction of the audiogram using brain stem re-
sponses and high-pass noise masking. The Annals of
otology, rhinology & laryngology. Supplement, (3 Pt 2
Suppl 57):1–20, 1978.

Roman Garnett, Michael A Osborne, and Philipp Hennig.
Active learning of linear embeddings for gaussian pro-
cesses. arXiv preprint arXiv:1310.6740, 2013.

Rudolph E Gosztonyi Jr, Lawrence A Vassallo, and Joseph
Sataloff. Audiometric reliability in industry. Archives of
Environmental Health: An International Journal, 22(1):
113–118, 1971.

David M Green. A maximum-likelihood method for esti-
mating thresholds in a yes–no task. The Journal of the
Acoustical Society of America, 93(4):2096–2105, 1993.

Carlos Guestrin, Andreas Krause, and Ajit Paul Singh.
Near-optimal sensor placements in gaussian processes.
In ICML, 2005.

Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and
Máté Lengyel. Bayesian active learning for clas-
sification and preference learning. arXiv preprint
arXiv:1112.5745, 2011.

WAITER Hughson and Harold Westlake. Manual for pro-
gram outline for rehabilitation of aural casualties both
military and civilian. Trans Am Acad Ophthalmol Oto-
laryngol, 48(Suppl):1–15, 1944.

Tomoharu Iwata, Neil Houlsby, and Zoubin Ghahramani.
Active learning for interactive visualization. In Proceed-
ings of the Sixteenth International Conference on Artifi-
cial Intelligence and Statistics, pages 342–350, 2013.

James Jerger. Bekesy audiometry in analysis of auditory
disorders. Journal of Speech, Language, and Hearing
Research, 3(3):275–287, 1960.

Andreas Krause and Carlos Guestrin. Nonmyopic ac-
tive learning of gaussian processes: an exploration-
exploitation approach. In ICML 24, 2007.

Malte Kuss and Carl Edward Rasmussen. Assessing ap-
proximate inference for binary gaussian process classifi-
cation. The Journal of Machine Learning Research, 6:
1679–1704, 2005.

Marjorie R Leek, Judy R Dubno, Ning-ji He, and Jayne B
Ahlstrom. Experience with a yes–no single-interval
maximum-likelihood procedure. The Journal of the
Acoustical Society of America, 107(5):2674–2684, 2000.

294

Ted Madison et al. Guidelines for manual pure-tone thresh-
old audiometry. 2005.

Christian Meyer-Bisch. Audioscan: a high-definition au-
diometry technique based on constant-level frequency
sweeps-a new method with new hearing indicators. In-
ternational Journal of Audiology, 35(2):63–72, 1996.

Thomas P Minka. Expectation propagation for approxi-
mate bayesian inference. In UAI, 2001.

Özcan Özdamar, Rebecca E Eilers, Edward Miskiel, and
Judith Widen. Classification of audiograms by sequen-
tial testing using a dynamic bayesian procedure. The
Journal of the Acoustical Society of America, 88(5):
2171–2179, 1990.

Alex Pentland. Maximum likelihood estimation: The best
pest. Attention, Perception, & Psychophysics, 28(4):
377–379, 1980.

C.E. Rasmussen and C.K.I. Williams. Gaussian processes
for machine learning. MIT Press, 2006.

DW Robinson. Long-term repeatability of the pure-tone
hearing threshold and its relation to noise exposure.
British journal of audiology, 25(4):219–235, 1991.

U Schiefer, J Pätzold, and F Dannheim. Konventionelle
perimetrie. Der Ophthalmologe, 102(6):627–646, 2005.

Nicolas Schmuziger, Rudolf Probst, and Jacek Smurzynski.
Test-retest reliability of pure-tone thresholds from 0.5 to
16 khz using sennheiser hda 200 and etymotic research
er-2 earphones. Ear and hearing, 25(2):127–132, 2004.

Cas Smits, Theo S Kapteyn, and Tammo Houtgast. Devel-
opment and validation of an automatic speech-in-noise
screening test by telephone. International journal of au-
diology, 43(1):15–28, 2004.

X. D. Song, B. M. Wallace, J. R. Gardner, N. M. Ledbetter,
K. Q. Weinberger, and D. L Barbour. Fast, continuous
audiogram estimation using machine learning. Ear and
Hearing, 2015.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and
Matthias Seeger. Gaussian process optimization in the
bandit setting: No regret and experimental design. arXiv
preprint arXiv:0912.3995, 2009.

De Wet Swanepoel, Hermanus C Myburgh, David M
Howe, Faheema Mahomed, and Robert H Eikelboom.
Smartphone hearing screening with integrated quality
control and data management. International journal of
audiology, 53(12):841–849, 2014.

MiM Taylor and C Douglas Creelman. Pest: Efficient
estimates on probability functions. The Journal of the
Acoustical Society of America, 41(4A):782–787, 1967.

Marcel SMG Vlaming, Robert C MacKinnon, Marije
Jansen, and David R Moore. Automated screening for
high-frequency hearing loss. Ear and hearing, 35(6):
667, 2014.

Charles S Watson, Gary R Kidd, James D Miller, Cas
Smits, and Larry E Humes. Telephone screening tests
for functionally impaired hearing: Current use in seven
countries and development of a us version. Journal of
the American Academy of Audiology, 23(10):757–767,
2012.

Victoria Williams-Sanchez, Rachel A McArdle, Richard H
Wilson, Gary R Kidd, Charles S Watson, and Andrea L
Bourne. Validation of a screening test of auditory func-
tion using the telephone. Journal of the American
Academy of Audiology, 25(10):937–951, 2014.

F Zhao, D Stephens, and C Meyer-Bisch. The audioscan: a
high frequency resolution audiometric technique and its
clinical applications. Clinical Otolaryngology & Allied
Sciences, 27(1):4–10, 2002.

Fei Zhao and Dafydd Stephens. Analyses of notches in au-
dioscan and dpoaes in subjects with normal hearing. In-
ternational Journal of Audiology, 37(6):335–343, 1998.

295

Locally Conditioned Belief Propagation

Thomas Geier and Felix Richter and Susanne Biundo
Institute of Artificial Intelligence

Ulm University, Germany
{thomas.geier, felix.richter, susanne.biundo}@uni-ulm.de

Abstract

Conditioned Belief Propagation (CBP) is an al-
gorithm for approximate inference in probabilis-
tic graphical models. It works by conditioning
on a subset of variables and solving the remain-
der using loopy Belief Propagation. Unfortu-
nately, CBP’s runtime scales exponentially in the
number of conditioned variables. Locally Condi-
tioned Belief Propagation (LCBP) approximates
the results of CBP by treating conditions locally,
and in this way avoids the exponential blow-up.
We formulate LCBP as a variational optimization
problem and derive a set of update equations that
can be used to solve it. We show empirically that
LCBP delivers results that are close to those ob-
tained from CBP, while the computational cost
scales favorably with problem size.

1 INTRODUCTION

Modern SAT solvers are capable of solving problem in-
stances with hundreds of thousands of variables (Katebi
et al., 2011), despite the fact that SAT is an NP-hard
problem. Most of today’s practical solvers are CDCL
(conflict-driven, clause-learning) solvers (Marques-Silva
et al., 2009). Their main algorithmic components are
branching, unit propagation, and clause learning (Katebi
et al., 2011). Generalizing these concepts, we could talk of
branching as analysis by cases, unit propagation as infer-
ence within a single case (both already found in the clas-
sic DPLL algorithm (Davis et al., 1962)), and clause learn-
ing (Silva and Sakallah, 1996) as reusing inference results
across cases.

The #P-hard (Roth, 1996) problem of computing marginal
probabilities (or the partition function) in discrete-valued
graphical models is closely related to #SAT—the task of
counting the models of a propositional formula. Proba-
bilistic inference generalizes the boolean conjunction of

clauses to a product over local real-valued functions. The
#SAT problem is usually tackled using modified CDCL
solvers (Bayardo Jr and Pehoushek, 2000; Sang et al.,
2004; Huang and Darwiche, 2005). Both for probabilistic
inference and #SAT, it is not enough to find one satisfy-
ing case, but one has to take into consideration all cases.
But while SAT problems are usually sparse, probabilistic
problems can often be strictly positive. It is thus not very
surprising that the basic probabilistic inference algorithms
do not employ analysis by cases, but rely on inference by
propagation only: Variable elimination (Koller and Fried-
man, 2009, Chapter 9), the Junction tree method (Shenoy
and Shafer, 1990), loopy Belief Propagation (Pearl, 1986),
and more generally the class of algorithms with varia-
tional interpretations (Wainwright and Jordan, 2008) can
be counted towards this class.

But there are also algorithms that complement propaga-
tion with an analysis by cases, such as the exact Recur-
sive Conditioning (Darwiche, 2001) and Value Elimina-
tion (Bacchus et al., 2002). Also there exist approximate
instances: Cutset Sampling (Bidyuk and Dechter, 2007),
SampleSearch (Gogate and Dechter, 2011), Conditioned
Belief Propagation (Eaton and Ghahramani, 2009) and col-
lapsed sampling algorithms in general, just to name a few.
These approaches appear to have an advantage when the
problem encodes a distribution that is not strictly positive,
i.e., factors can evaluate to zero (we call these factors deter-
ministic dependencies). Under the presence of determinis-
tic dependencies, analysis by cases is able to reveal context-
specific independencies, and prune the search space with-
out incurring an approximation error.

The third algorithmic component in SAT solvers is reusing
results across cases. Notably both named exact algorithms
heavily rely on this concept under the name of caching. Of
the named approximate inference algorithms that employ
analysis by cases, only the importance sampler Sample-
Search shares work across cases, and only for determin-
istic dependencies, by using no-good learning (Dechter,
1990). Conditioned Belief Propagation (CBP) (Eaton and
Ghahramani, 2009; Geier et al., 2014a) is the straight-

296

x3

refined context:
x7 = 1, x3 = 0

¬x3

x7 ¬x7

x3

x1 ¬x1

¬x3

x7 ¬x7

iteration 3 iteration 4

conditioned variable: x1

Figure 1: Iterative CBP (Geier et al., 2014a) is a divide-
and-conquer algorithm that splits the problem by recur-
sive conditioning. The state of the algorithm is defined
by a tree, where edges represent assignments to variables,
and nodes represent the partial assignment defined by their
path from the root (or the sub-problem obtained by condi-
tioning on this assignment). In each iteration a leaf node
(case, context) is chosen and further refined by splitting on
an unassigned variable. An approximation to the partition
function is obtained by summing the partition function es-
timates found by BP on each leaf. Marginal probabilities
can be obtained by forming a convex combination of the
corresponding estimates for the leafs, using their estimated
partition functions as weights.

forward combination of systematic analysis by cases (con-
ditioning) with loopy Belief Propagation (BP) as approx-
imate inference within each case. It works by recursively
splitting on the assignments to single variables, producing
an unbalanced and dynamically ordered tree in the pro-
cess (Figure 1). This appears to be a fertile combination,
as BP yields good results in weakly coupled (high entropy)
models and suffers under the presence of strong depen-
dencies (Montanari and Rizzo, 2005; Mooij and Kappen,
2007). Contrarily, conditioning provides benefits for low
entropy models with strong dependencies, but fails when
the probability mass is spread out evenly over a large num-
ber of similar conditions. As shown empirically by Geier
et al. (2014b), CBP is indeed able to deliver good improve-
ments over plain BP in particular for low entropy distribu-
tions (Figure 2). But the same work also highlights one ma-
jor shortcoming of CBP: To sustain the same proportional
improvement, the number of cases CBP has to evaluate in-
creases exponentially with problem size (Figure 2).

In this essay we describe a method to improve the CBP al-
gorithm in such a way that work between cases is shared
approximately—thus adding the third algorithmic compo-
nent found in modern SAT solvers. The basic idea focuses
on the observation that the influence of conditioning on
variables usually diminishes with graphical distance. We
underpin this assumption empirically by visualizing the ef-
fect of conditioning a single variable in randomly generated
grid problems in Figure 3. We exploit this “locality of ef-

Relative Error CBP Error CBP / Error BP

2e−05

5e−05

1e−04

2e−04

1 8 64
Iteration

0.02

0.05

0.10

0.20

0.50

0 1 2 3
σ

Figure 2: The plots show the typical behavior of iterative
CBP on random binary-valued 8×8 grid problems (Geier
et al., 2014b). The left plot shows the relative error in
lnZ (median over 500 problems, factor values sampled
from exp(N (0, σ)) with σ = 1), which improves only log-
arithmically with the number of distinguished cases (Iter-
ations). The right plot shows the CBP error after 64 itera-
tions as a fraction of the BP error for problems with varying
strength of interaction (higher σ corresponds to stronger in-
teractions, σ = 0 excluded, median over 250 problems).
The approximation error of CBP compared to the error of
BP consistently decreases with stronger dependencies.

fect” assumption in the proposed Locally Conditioned Be-
lief Propagation (LCBP) model. LCBP conceptually works
by merging nodes of the BP graph between different cases
of CBP, thus effectively sharing message values. An intu-
ition of the difference between CBP and LCBP is conveyed
by Figure 4.

2 PRELIMINARIES

We focus on undirected graphical models over n random
variables X1, X2, . . . , Xn, referring to the set of all vari-
ables as X . Each variable Xi ∈ X may assume values out
of its finite domain Dom(Xi). A problem is given by a fi-
nite set Φ of non-negative local functions (factors). Each
function φa ∈ Φ is defined over the valuations Val(Xa)
(assignments of values to variables) for a subset Xa ⊆ X
of variables. The (unnormalized) product over all factors is
p̃(x) =

∏
a φa(xa), and it implies a proper distribution by

p(x) =
1

Z
p̃(x) with Z =

∑

x

p̃(x). (1)

The normalizing constant Z is called the partition function.

2.1 BELIEF PROPAGATION AS OPTIMIZATION

Given a factorized distribution p, the basic problem of
probabilistic inference is to compute some property of
it. These properties are usually expectations, marginal
probabilities, the partition function, or most probable

297

0.1 0.5 1.0

0

5

10

15

0 5 10 15 0 5 10 15 0 5 10 15

1e−17 1e−12 1e−07 1e−02
Difference

Figure 3: Comparison between two runs of BP on a 16×16
grid problem of binary-valued variables. The color encodes
the difference of the marginal probabilities after condition-
ing the variable in the lower left (median over 100 random
instances). Factor values are drawn from an exponentiated
normal distribution exp(N (0, σ)) with standard deviation
σ ∈ {0.1, 0.5, 1}. Gray means the difference is lower than
than numerical accuracy. One can see that the effect of the
conditioning is local to the conditioned variable. The range
of the effect increases with stronger potentials.

assignments—and their exact computation is often in-
tractable (Roth, 1996). Variational inference (Wainwright
and Jordan, 2008) is a form of approximate inference that
works by substituting p by some element q from a class
of (pseudo-) distributions Q, on the members of which
inference is tractable. The instance q is chosen to be as
close to p as possible. The notion of closeness is captured
by some distance measure, which is often taken to be the
Kullback-Leibler divergence—though other measures are
possible (Minka, 2005).

From the KL-divergence between q and p one can obtain

lnZ = Eq[ln p̃] + H(q) + KL(q ‖ p). (2)

Here, H(q) denotes the entropy of q, and Eq[f(x)] denotes
the expectation of f(x) taken with respect to the measure
q. From Equation 2 we identify the functional F (q), known
as the negative free energy:

F (q) = Eq[ln p̃] + H(q) (3)

It yields the exact log-partition function if q = p, and can
serve as a lower bound to Z if the class Q contains only
valid distributions. The task in variational inference is to
find a q∗ that maximizes F . In general, either because there
exists no exact representation of p in Q, because the class
Q also contains non-distribution functions, or because we
cannot solve the optimization problem perfectly, the found
value of F (q) can only serve as an approximation for lnZ.
In addition, for many interesting classes Q, the functional
cannot be given in closed form and one has to resort to
further approximations.

We briefly summarize how to express the BP algorithm as

CBP

LCBP

Figure 4: The upper row represents how CBP works by
making full copies of the problem for each case. The lower
row shows how LCBP only makes copies of the nodes that
are local to the conditioned variable.

a variational optimization problem. A more detailed expo-
sition can be found in Yedidia et al. (2005) and Koller and
Friedman (2009, Chapter 11). For deriving the BP message
update equations using the variational approach, members
q of classQBP are defined by marginal distributions qi(Xi)
over the variables (called variable beliefs), and marginal
distributions qa(Xa) over the factors in Φ (called factor be-
liefs):

q(x) =
∏

a

qa(xa)
∏

i

qi(xi)
(1−di) (4)

Here, di = |{φa ∈ Φ|Xi ∈ Xa}| represents the number of
factors that depend on variable Xi. In addition to being
proper probability measures (sum to one, non-negative),
the variable and factor beliefs have to be consistent with
respect to their marginal probabilities. This is formalized
by requiring for all factors φa, adjacent variablesXi ∈ Xa,
and values xi ∈ Val(Xi):

∑

xa|=xi
qa(xa) = qi(xi) (5)

Note that we write xa |= xi for all the (partial) assignment
xa ∈ Val(Xa) that are an extension of xi. A further in-
gredient in the variational derivation of standard BP exists
in an approximation to the entropy, known as the Bethe-
Peierls (also BP) approximation and given by

HBP(q) =
∑

a

H(qa) +
∑

i

(1− di)H(qi). (6)

A justification for HBP is usually given by the fact that it is
exact for tree-structured problems. The BP approximation
together with the assumption that the functions qa resemble
marginal distributions of q over the variables in Xa yields
the functional

FBP(q) =
∑

a

Eqa [lnφa] + HBP(q). (7)

Optimizing FBP(q) under the given constraints using the
method of Lagrange multipliers yields the update equations

298

of the BP algorithm. Loosely speaking, the Lagrange mul-
tipliers assume the role of messages between variables and
factors (mi→a(xi) and ma→i(xi)), each encoding a dis-
tribution over the respective variable Xi. With abuse of
notation, writing i ∈ Xa instead of Xi ∈ Xa, the update
equations are

mi→a(xi) ∝
∏

b:i∈Xb,b 6=a
mb→i(xi), (8)

ma→i(xi) ∝
∑

xa|=xi
φa(xa)

∏

j∈Xa,j 6=i
mj→a(xj). (9)

The BP algorithm recomputes the message values accord-
ing to those equations until convergence (which is not guar-
anteed). The variable beliefs can then be computed by
bi(xi) =

∏
a:i∈Xa

ma→i(xi), and factor beliefs are given
by ba(xa) = φa(xa)

∏
i∈Xa

mi→a(xi).

3 VARIATIONAL CBP

Before introducing the LCBP model, we want to interpret
CBP in a variational way as a mixture model. For this we
reduce the iterative CBP algorithm (Figure 1) to the BP in-
ference on the induced partitioning into cases (the leafs of
the tree), and ignore the way in which the partition was ob-
tained. We call this non-iterative interpretation variational
CBP, and use the term iterative CBP when we want to em-
phasize the recursive conditioning aspect. In variational
CBP, we are given a set of partial assignments/conditions
C whose extensions partition the set of all assignments
Val(X). The set C corresponds to the leafs of a tree pro-
duced when running iterative CBP. A member q of class
QCBP is then defined by

q(x) =
∑

c∈C
qC(c)

∏

a

qca(xa)
∏

i

qci (xi)
1−di . (10)

It can be interpreted as a mixture of BP approximations,
where qC(c) encodes the mixture weight. The necessary
constraints are the BP constraints for each set of beliefs
qca, q

c
i . The weight vector qC : C → [0, 1] is required to

be a proper distribution (non-negative, sum to one). And in
addition to the BP constraints, we require qci (xi) = 1 for
c |= xi to enforce the conditions within the mixture com-
ponents. As a result of this constraint, the mixture com-
ponents have mutually exclusive support. By defining an
appropriate energy functional, and solving the variational
problem forQCBP, one finds that a solution can be found by
solving the BP variational problem for each mixture com-
ponent independently.

The computational cost of CBP is about linear in the num-
ber of conditions, as each condition implies one run of the
BP algorithm. Let us assume that the number of condi-
tioned variables has to attain a certain ratio of the total num-
ber of variables for CBP to be able to produce a good ap-
proximation. This implies that the number of distinguished

conditions |C| (and thus inference cost) grows exponen-
tially with problem size when sustaining good approxima-
tion quality.

4 LCBP

LCBP is designed with the goal that its computational cost
scales sub-exponentially in the number of (fully) condi-
tioned variables. This means, we want to approximate vari-
ational CBP for an exponentially large set C, and have the
computational cost scaling only polynomially with ln |C|.
To achieve this we have to overcome two obstacles. The
first one is getting rid of the exponential number of pa-
rameters qca, q

c
i present in the variational CBP approxima-

tion. Under the assumptions that BP messages do not differ
much when far away from a disturbance (Figure 3), we can
substitute some qc1a by qc2a in equation 10 given that fac-
tor φa is far enough from all variables where conditions
c1 and c2 differ. The second problem is representing the
weight distribution qC . As we will observe in the sequel,
this problem will be solved by representing qC in factored
form, necessitating probabilistic inference over the condi-
tion variables.

4.1 CONDITIONING SCHEME

To formalize which local functions qca, q
c
i can be shared

between conditions, we introduce a concept termed con-
ditioning scheme. We focus on a particular form of con-
ditioning scheme that we call factored, local scheme (FL-
scheme). FL-schemes are not powerful enough to capture
all aspects of iterative CBP, i.e., they emulate only bal-
anced and statically ordered search trees. But their sim-
ple structure allows a formal derivation of the LCBP al-
gorithm, while they are expressive enough to capture the
essential improvement LCBP offers over CBP. For a dis-
cussion on lifting the restrictions implied by FL-schemes
see Section 6.1.

An FL-scheme S : X → 2X assigns a set of conditioning
variables (conditioners) to each variable in X . The idea is
that, locally at a variableXi, we have a copy of the BP mes-
sages and beliefs for each assignment to the conditioners
S(Xi) of Xi. We use the notations Si = S(Xi) and Sa =⋃
i∈Xa

S(Xi) for the set of variable conditioners and fac-
tor conditioners respectively. We writeC =

⋃
Xi∈X S(Xi)

for the set of all conditioners. Given some variable Xc, we
call the set {Xi | Xc ∈ Si} the area of influence of con-
ditioner Xc or the set of Xc’s conditionees. For the lower
right example in Figure 4, we have C = {X}. The three
variables aroundX , andX itself are the conditionees ofX .
They have only X as their conditioner, and thus are repli-
cated for each possible value of X (0 and 1). The variable
at the left-most corner is not conditioned, and thus has an
empty set assigned by the scheme. Note that an FL-scheme
only tells how to split variables and the associated variable

299

beliefs. Factor beliefs are split by assignments to the union
of the conditioners of the variables in their scope Sa. They
are thus always split in a more fine-grained way than the
adjacent variables.

4.2 APPROXIMATING CLASS QLCBP

Given an FL-scheme S for a problem Φ, we define a
pseudo distribution q from class QLCBP. The parameters
are the variable beliefs qcii and factor beliefs qcaa known
from BP, but now each in multiple versions for each local
variable condition ci ∈ Val(Si) or local factor condition
ca ∈ Val(Sa). In addition we require a normalized proba-
bility measure qC : Val(C) → [0, 1] over all possible con-
ditions. Until the end of this section we assume that qC is
represented as a flat (unstructured) function. Writing x[A]
for restricting the assignment x ∈ Val(X) to the variables
in A ⊆ X , we define one mixture component qc as

qc(x) =
∏

a

qc[Sa]a (xa)
∏

i

(
q
c[Si]
i (xi)

)1−di
. (11)

We define the pseudo distribution for the LCBP model as

q(x) =
∑

c∈Val(C)

qC(c)qc(x). (12)

To enforce that q is close to a probabilistic measure, we
formulate a set of constraints on its parameters. Non-
negativity constraints are assumed implicitly.

The normalization of the conditioning distribution:
∑

c

qC(c) = 1 (13)

The normalization of factor beliefs for all φa ∈ Φ, ca ∈
Val(Sa): ∑

xa

qcaa (xa) = 1 (14)

The normalization of variable beliefs for all Xi ∈ X , ci ∈
Val(Si): ∑

xi

qcii (xi) = 1 (15)

The marginal consistency constraints for all φa ∈ Φ, Xi ∈
Xa, ci ∈ Val(Si), xi ∈ Val(Xi):

∑

ca|=ci
qC(ca|ci)

∑

xa|=xi
qcaa (xa) = qcii (xi) (16)

We enforce the condition for all Xi ∈ C, ci ∈ Val(Si):

qcii (xi) = 1 (17)

Equation 16 is the LCBP version of the marginal consis-
tency constraints of the BP approximation. It formalizes
the way in which beliefs are merged between conditions by
taking the expectation with respect to the distribution over
conditions qC .

4.3 FREE ENERGY APPROXIMATION

We are now going to derive a set of fixed-point equations
that can be used to implement a message passing algorithm.
By partitioning the set of variables into conditioners and the
rest C̄ = X \C, applying the identity H(C, C̄) = H(C) +
H(C̄|C) for the conditioned entropy, and using the Bethe-
Peierls approximation (6), we obtain

HLCBP(q) = H(qC) + EqC [HBP(qc)]. (18)

Under the assumption that the conditioned factor beliefs qca
are truly the marginals of q over Xa under given condition
c, we can write the energy functional for LCBP as

FLCBP(q) =
∑

a

∑

ca

qC(ca)
∑

xa

qcaa (xa) lnφa(xa)

+ HLCBP(q).

(19)

4.4 UPDATE EQUATIONS

Optimizing (19) under the constraints (13) to (17) using the
method of Lagrange multipliers lets us derive the message
update rules1. The update equations work on these addi-
tional entities:

1. mci
i→a(xi) is a message from variable i to factor a

under variable condition ci ∈ Val(Si).

2. mci
a→i(xi) is a message from factor a to variable i

under variable condition ci ∈ Val(Si).

3. ncaa→i(xi) is a message from factor a to variable i
under factor condition ca ∈ Val(Sa).

We use the artificial factor ρcii (xi) = 1 [ci[Xi] = xi] to
enforce condition (17) on the variable beliefs2. The update
equations are as following:

mci
i→a(xi) ∝ ρcii (xi)

∏

b:i∈Xb,b 6=a
mci
b→i(xi) (20)

mci
a→i(xi) ∝

∑

ca|=ci
qC(ca|ci) · ncai→a(xi) (21)

ncaa→i(xa) ∝
∑

xa|=xi
φa(xa)

∏

j∈Xa,j 6=i
m
ca[Sj]
j→a (xj) (22)

The variable and factor beliefs are computed from the mes-
sages via the following formulas:

qcaa (xa) ∝ φa(xa)
∏

i∈Xa

mci
i→a(xi) (23)

qcii (xi) ∝ ρcii (xi)
∏

a:i∈Xa

mci
a→i(xi) (24)

1A more detailed derivation of the update equations is pro-
vided in the appendix available in the supplied materials.

21 [A] represents the indicator function that yields 1 when the
condition A is true and 0 otherwise.

300

And the update equation for the condition distribution is

qC(c) ∝ exp [FBP(qc)]
∏

a

∏

i∈Xa

∏

xi

δcaai (xi), (25)

with

δcaai (xi) = mci
i→a(xi)

m
ci
i→a(xi)(n

ca
a→i(xi)−m

ci
a→i(xi)). (26)

The fact that the stated update equations are suited to op-
timize the formulated variational problem is formalized by
the following theorem.

Theorem 1. The interior stationary points of the varia-
tional problem specified by maximizing the LCBP func-
tional (19) under the given constraints (13) through (17)
are exactly the fixed points of the LCBP update equa-
tions (20) through (25).

The proof is given by the derivation in the appendix avail-
able in the extended version of this paper.

The term (26) (and thus the triple product in (25)) vanishes
when the messages ncaa→i agree with the aggregate message
mci
a→i. According to Figure 3 this can happen when the set

of conditionees is chosen to be large. Empirically we could
not detect a significant difference in inference quality be-
tween calculating the δcaai terms according to (26) or setting
them to 1.

Until now we have treated the distribution over the condi-
tions qC(c) as flat. Taking a closer look at equation (25),
we notice that the right hand side is a product, with fac-
tors coming from the exponentiated BP energy and the δcaai
terms. These factors all depend on different subsets of vari-
ables from C. Thus the right side of equation (25) de-
scribes an undirected graphical model. We call it the con-
dition problem, while referring to the original problem as
the primal problem. When calibrating the message beliefs,
it becomes necessary to calculate conditional probabilities
qC(ca|ci) for this problem, and this can be done using any
inference algorithm for graphical models. The graphical
structure of the condition problem is determined by the
overlap between the sets of conditionees for different con-
ditioners, and exact inference in the condition problem can
become intractable.

5 EMPIRICAL EVALUATION

We conducted two experiments examining the performance
of LCBP on randomly generated problem instances. The
first experiment is meant to demonstrate that the quality
of the LCBP approximation approaches that of variational
CBP when increasing the area of influence around condi-
tioned nodes. A second experiment examines how the com-
putational effort of LCBP scales when the problem size in-
creases. In both experiments we condition fully on all con-
ditioners to obtain the variational CBP approximation.

For the experiments, we have implemented two variants of
LCBP using the derived update equations. The first vari-
ant (LCBP-JT) employs exact inference over the condi-
tion problem using the Junction tree method (Shenoy and
Shafer, 1990). The second variant (LCBP-BP) uses BP to
approximate the marginals of the condition problem. All
algorithms are implemented using Round-robin message
schedules with no damping. Except for plain BP, the al-
gorithms managed to converge every time. When reporting
accuracy we remove all instances where BP did not con-
verge, and thus favor BP in our presentation. We like to
remark that when running algorithms from the CBP class,
the tolerance for the convergence check has to be set very
low. Otherwise the numerical errors may pile up and dete-
riorate the result even below BP level.

For the first set of experiments, we applied LCBP-JT and
CBP to 6× 6 grid problems with binary variables and ran-
dom interactions (Figure 5). We selected four fixed vari-
ables as conditioners. We varied both the number of con-
ditionees and the interaction strength of the random grids.
As expected, the error produced by LCBP-JT approaches
the error of CBP both with decreasing interaction strength,
and with growing area of influence. We can thus conclude
that LCBP-JT acts as an approximation to the CBP result.

The second set of experiments is meant to examine the
scaling behavior of LCBP. While the number of parame-
ters of the variational approximation of LCBP grows more
slowly than variational CBP, it is conceivable that LCBP
takes significantly longer to converge (or even fails to con-
verge at all). To be able to demonstrate that LCBP can
yield good quality approximations, we designed a special
problem class that we call two-layer grid model (Figure 6).
Models with a similar geometry are used in image classi-
fication (Kato et al., 1996), sometimes called hierarchical
Markov random fields. CBP can achieve good results for
this class of problems when conditioning on the nodes of
the upper layer, if the variables in the remaining problem
(the lower layer) interact only weakly and can thus be ap-
proximated well by BP. We applied BP, CBP, LCBP-JT
and LCBP-BP to two-layer grid problems with weak inter-
action on the first and second layer, and strong interactions
between layers. We varied the size of the problems to ex-
amine the computational effort of the various algorithms.
The chosen FL-scheme marks all second layer nodes as
conditioners, with all directly connected first layer nodes
as respective conditionees.

Figure 7a shows the relative error in the inferred log par-
tition function for varying problem sizes. Notice how all
examined algorithms maintain about the same approxima-
tion quality once boundary effects are overcome; starting
with widths greater than 10. We can observe that all condi-
tioning algorithms improve over the plain BP approxima-
tion. CBP performs best, followed closely by LCBP-JT.
LCBP-BP produces the worst result among the condition-

301

ing approaches, though its result is still better than BP by
about two orders of magnitude. The difference between
the LCBP-JT and the LCBP-BP result was expected, since
the condition problem is not acyclic—it contains strong
dependencies induced by the explicit interactions between
the variables in the second layer. Experiments without in-
teractions in the second layer (not shown) put the LCBP-
BP result much closer to LCBP-JT, as paths going through
the lower grid induce only weak coupling in the condition
problem, while experiments with stronger interactions put
LCBP-BP closer to the BP results. For all examined pa-
rameter combinations the experiment produces the same
qualitative result, i.e., the same order among the exam-
ined algorithms. Figure 7b shows the CPU time for the
different algorithms. As expected CBP shows an expo-
nential growth with problem size and thus the number of
conditioners. In contrast, the effort for the LCBP variants
grows approximately linearly with problem size. Note that
the LCBP implementations underwent only moderate opti-
mization, as we are interested only in their asymptotic be-
havior. Thus, one should not draw any conclusions from
the concrete slopes of the curves in Figure 7b. Also note
that the generated problems have fixed tree-width; both the
primal problem and the condition problem. This explains
the linear scaling of LCBP-JT.

6 DISCUSSION AND FUTURE WORK

The presented LCBP algorithm provides a scalable approx-
imation to the variational interpretation of CBP. By shift-
ing our focus from iterative CBP to variational CBP, we
have lost the anytime behavior that iteratively refines the
approximation over time in a heuristically guided way. The
step from variational CBP to LCBP further removed the
possibility of having an unbalanced and dynamically or-
dered tree to represent the set of examined conditions. This
was necessary to achieve the factorization of the condition
problem. According to our assessment, LCBP can be ex-
tended to resemble iterative CBP more closely, although
we expect that this requires substantial further work. The
situation is not much different for Generalized Belief Prop-
agation (Yedidia et al., 2005), though. An iterative and
heuristically guided construction of region graphs for GBP
is as desirable as the adaptive construction of conditioning
schemes in the LCBP setting. Approaches to this prob-
lem for GBP are still rare, although some work does ex-
ist (Welling, 2004; Sibel et al., 2012). In this section we
will discuss some steps that point in this direction. Note
that some of the discussion is also applicable to GBP.

6.1 DESIGNING CONDITIONING SCHEMES

When looking at the iterative CBP algorithm, it is apparent
that one of its main strengths is its ability to focus its work
on the modes of the target distribution. The trees that can

0.25 1 4

●
●

●●
●●
●

●
●●

●
●●

●

●

●

●
●

● ●

●

●
● ●

●
●

●●
●●

●
●

●

●●
●

●
●

● ●
●

●

●
●

●

●
●

●●
●●
●
●

●●
●

●●

●

●

●

●
●

●●

●

●
●●

●
●

●●●●
●

●
●

●●
●
●

●

●●
●

●

●
●

●

●
●

●●
●●
●

●
●●

●
●●

●

●

●

●
●

●●

●

●
●●

●
●

●●●●
●
●
●

●●
●

●
●

●●
●

●

●
●

●

●

●

●

●

●
●

●
●
●

●●

● ●

●

●

●

●

●●

●

●

● ●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●●

●●

●

●

●

●

●●

●

●

● ●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●●

●

●

●

●●

●

●

●●●

●

●

●

●
●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

1e−08

1e−05

1e−02

1e−08

1e−05

1e−02

1e−08

1e−05

1e−02

0
1

2

1e−08 1e−05 1e−021e−08 1e−05 1e−021e−08 1e−05 1e−02
LCBP Relative Error

C
B

P
 R

el
at

iv
e

E
rr

or

Figure 5: Evaluation results comparing LCBP-JT relative
error in log partition function with CBP relative error on
randomly generated binary, 6×6 grid networks. Four sym-
metrically placed variables are conditioned. The set of con-
ditionees for LCBP-JT is increased along the rows, includ-
ing variables with a distance of at most 0, 1 or 2 accord-
ing to the max norm on the grid coordinates. The columns
stand for grids with stronger potentials from left to right
(sampled from exp(N (0, σ)), with σ ∈ {0.25, 1, 4}). One
can see that both with growing area of influence (going
down), and with weaker coupling (right to left!) the re-
sult of LCBP-JT approaches that of CBP. If both algorithms
disagree, CBP yields a lower error.

be constructed have no constraint on their shape, and they
can become very deep and narrow. This is also an advan-
tage of iterative CBP over GBP, where the approximation
is improved by using marginals over larger clusters of vari-
ables than the factor clusters qa used in BP. Given a clus-
ter, GBP can only improve by adding another variable to
the cluster, which multiplies the computational burden as-
sociated with the cluster by the domain size of the added
variable. CBP can circumvent this problem by refining
single leafs of its tree; basically making context-specific
refinements. LCBP faces the same problem as GBP, be-
cause of the limited expressiveness of FL-schemes. With
FL-schemes the complexity of LCBP scales exponentially
with the number of conditioners a conditionee has—they
define the size of the factor scopes for the condition prob-
lem. For practical purposes one would aim at using more
expressive schemes that allow for context-specific refine-
ments, e.g., conditioning some variable on the conditions
{X1 = 0, X2 = 0}, {X1 = 0, X2 = 1}, {X1 = 1}, thus
condition only on X2 for X1 = 0. A simple improve-
ment for problems with large variable domains is to branch
on elements of arbitrary partitions of assignments to single

302

1e−06

1e−04

0 10 20 30
width (cells)

re
la

tiv
e

er
ro

r

algorithm LCBP−BP LCBP−JT CBP BP

(a) relative error in log partition function

0

50

100

0 10 20 30
width (cells)

cp
u

tim
e

(s
)

algorithm LCBP−BP LCBP−JT CBP

(b) CPU time

Figure 7: Inference results and used CPU time for two-layer grid problems of varying size (see Figure 6). The x-axis
shows the number of columns (width) of the upper grid, where a “cell” is supposed to be a group of nodes on the lower
layer connected to a single node on the upper layer. The height of the upper grid is fixed to 2 to obtain problems where
exact inference is tractable. All variables have binary domains. Interactions within the lower and the upper layer are
weak (factor values drawn from exp{N (0, 0.5)}), while interactions between layers are strong (factor values drawn from
exp{N (0, 4)}). CBP was not applied to the larger instances, due to resource constraints. All lines are means over 500
random instances.

Figure 6: Illustration of the two-layer grid model used for
evaluation. Each upper node is connected to 3 × 3 lower
nodes. The upper nodes form a two-by-n grid, where n is
varied to obtain problems of different size.

variables, e.g., distinguish between X1 < 3 and X1 ≥ 3.

6.2 ITERATIVE, HEURISTIC CONSTRUCTION
OF SCHEMES

The iterative CBP algorithm has the big advantage of of-
fering an anytime approximation scheme that can be sen-
sitive both to problem structure, and to parameters. This
is achieved through the use of different types of heuristics,
choosing how to refine the approximation over the course
of the computation (Geier et al., 2014b).

Looking at iterative CBP, it appears natural to build the
scheme for LCBP incrementally—refining the approxima-
tion after running inference and looking at the result. For
CBP there exist basically two decision points: Choose the
condition/leaf on which to work, then choose the variable
to condition on. For LCBP with an FL-scheme choosing

a branch is not possible, as this requires context-specific
schemes. If those are available, then LCBP must blur both
decision points of CBP into one: Choose which variable to
refine under which condition—as the available conditions
depend on the chosen variable. This is in contrast to CBP,
where all variables are available under every condition (un-
less they are already conditioned). In addition, for LCBP
there exists the new choice of extending the set of condi-
tionees of a conditioner. For this decision we can think of
promising candidates for evaluation, like the disagreement
among the aggregated messages of the sub-conditions. Us-
ing this heuristic would result in splitting variables on the
condition until the effect of conditioning has fallen below
some threshold (remember Figure 3). Clearly this require-
ment is too strong, as for tree-structured problems the mes-
sages under different conditions can be combined at any
moment while still obtaining an exact result.

To find truly informed heuristics, we have to look at the
source of the error within the BP approximations. A
promising way to construct heuristics for iteratively refin-
ing LCBP appears to be exploitation of the loop series ex-
pansion (Montanari and Rizzo, 2005). It specifies a cor-
rection for the BP functional (Equation 4), that allows to
reconstruct the exact value of the partition function. This
is done by adding a term for each generalized loop of the
graph. Since error contribution is associated with loops, it
is not focused on variables, but decentralized. By condi-
tioning on one variable of a loop, while placing the com-
plete loop in the area of influence, the loop can be cor-

303

rected. In this way the loop series expansion could provide
guidance on choosing both conditioners and conditionees
consistently in an error-oriented manner.

6.3 THE CONDITION PROBLEM

One nice aspect about FL-schemes is their property to
induce ordinary Markov networks as condition problem.
As demonstrated in the evaluation, one can use any al-
gorithm that computes (conditional) marginal probabili-
ties for Markov networks to solve the condition problem.
This choice can be influenced by the expected characteris-
tics of the condition problem. If the primal problem con-
tains deterministic dependencies, it is conceivable to “pre-
solve” the condition problem. When inference during pre-
solving assigns zero probability to some marginal assign-
ments, the corresponding elements of the LCBP calcula-
tion can be safely pruned. In addition, elements with very
low marginal probability can be pruned on a heuristic basis,
incurring a further approximation of the final result.

If a message passing algorithm is chosen for inference
within the condition problem, it becomes possible to run
it interleaved with the LCBP message updates. This opens
the door to using more sophisticated message update sched-
ules, for example Residual Belief Propagation (Elidan,
2006), making it possible to balance the ratio of LCBP up-
dates against inference in the condition problem.

An interesting idea is recursively using LCBP for inference
in the condition problem. A perceivable application are hi-
erarchical grid problems with more layers. We expect this
construction to scale well, meaning that nesting analysis by
cases using LCBP does not incur an exponential growth in
model size. It is not clear how to create such a deep hier-
archical approximation using other variational techniques,
such as GBP.

7 RELATED WORK

There exists some prior work on using mixture models for
variational inference. Jaakkola and Jordan (1998) use mix-
tures of mean field approximations to improve inference
quality. Beside the weaker approximation of mean field
compared to BP and the locality of conditions, the main
difference to LCBP is the use of mixture components with
overlapping support in contrast to mutually exclusive con-
ditions. The overlapping approach is more powerful in the-
ory, because the mixture components are not restricted in
the sense that they are clamped to an intended condition.
But in contrast to this, only a weaker approximation to the
entropy is used by Jaakkola and Jordan (1998) as the mu-
tually exclusiveness allows for better analytical treatment.
Split Variational Inference (Bouchard and Zoeter, 2009)
is another application of conditioning and the variational
method applied to arbitrary integrals.

The “Gates” model (Minka and Winn, 2008) is also in-
tended as a variational treatment of local mixture compo-
nents, and arrives at similar update equations for expec-
tation propagation and variational message passing. The
LCBP model can be described using Gates with the con-
ditioners being the selector variables, and the conditionees
(and incident factors) being placed inside the gate. The
LCBP derivation is more explicitly cast as a variational
problem by specifying the variational distribution and the
constraints, and, more importantly, it allows overlap be-
tween gates, which Minka and Winn explicitly forbid. One
could say that FL-schemes are more expressive then the
(implicit) schemes allowed by Minka and Winn.

8 CONCLUSION

We have formulated a variational interpretation of CBP as
a mixture of BP approximations. Based on this, we have
derived LCBP, which yields inference results that approx-
imate those obtained from CBP. We have shown empiri-
cal evidence that supports the claims that LCBP approxi-
mates CBP, while scaling much more favorably with prob-
lem size.

LCBP allows a non-trivial integration between an arbi-
trary probabilistic inference algorithm used for solving the
condition problem and BP used for inference over the re-
mainder. The automatic construction of good conditioning
schemes for LCBP remains an open research question. But
we were able to construct schemes for a motivated problem
class resembling hierarchical Markov random fields, which
are used in image recognition. We are currently work-
ing on formulating more expressive classes of conditioning
schemes, together with an informed heuristic based on the
loop series expansion for BP. We also plan to investigate
the relationship between LCBP and GBP more closely.

Acknowledgements

This work was done within the Transregional Collaborative
Research Centre SFB/TRR 62 ”Companion-Technology
for Cognitive Technical Systems” funded by the German
Research Foundation (DFG).

References

Bacchus, F., S. Dalmao, and T. Pitassi (2002). Value elim-
ination: Bayesian inference via backtracking search. In
Proceedings of the 18th Conference on Uncertainty in
Artificial Intelligence, pp. 20–28.

Bayardo Jr, R. J. and J. D. Pehoushek (2000). Counting
models using connected components. In Proceedings of
the 17th National Conference on Artificial Intelligence,
pp. 157–162.

Bidyuk, B. and R. Dechter (2007). Cutset sampling for

304

Bayesian networks. Journal of Artificial Intellenge Re-
search 28, 1–48.

Bouchard, G. and O. Zoeter (2009). Split variational infer-
ence. In Proceedings of the 26th International Confer-
ence on Machine Learning, pp. 57–64. ACM.

Darwiche, A. (2001). Recursive conditioning. Artificial
Intelligence 126(1), 5–41.

Davis, M., G. Logemann, and D. Loveland (1962). A ma-
chine program for theorem-proving. Communications of
the ACM 5(7), 394–397.

Dechter, R. (1990). Enhancement schemes for constraint
processing: Backjumping, learning, and cutset decom-
position. Artificial Intelligence 41(3), 273–312.

Eaton, F. and Z. Ghahramani (2009). Choosing a variable to
clamp: Approximate inference using conditioned belief
propagation. In Proceedings of the 12th International
Conference on Artificial Intelligence and Statistics, Vol-
ume 5, pp. 145–152.

Elidan, G. (2006). Residual belief propagation: Informed
scheduling for asynchronous message passing. In Pro-
ceedings of the 22nd Conference on Uncertainty in Arti-
ficial Intelligence.

Geier, T., F. Richter, and S. Biundo (2014a). Condi-
tioned belief propagation revisited. In Proceedings of
the 21st European Conference on Artificial Intelligence,
pp. 1011–1012.

Geier, T., F. Richter, and S. Biundo (2014b). Conditioned
belief propagation revisited: Extended version. Techni-
cal Report UIB 2014-03, Ulm University.

Gogate, V. and R. Dechter (2011). SampleSearch: Impor-
tance sampling in presence of determinism. Artificial
Intelligence 175(2), 694–729.

Huang, J. and A. Darwiche (2005). DPLL with a trace:
From SAT to knowledge compilation. In Proceedings
of the 19th International Joint Conference on Artificial
Intelligence, Volume 5, pp. 156–162.

Jaakkola, T. S. and M. I. Jordan (1998). Improving the
mean field approximation via the use of mixture distribu-
tions. In M. Jordan (Ed.), Learning in Graphical Models,
Volume 89, pp. 163–173. Springer.

Katebi, H., K. A. Sakallah, and J. P. Marques-Silva (2011).
Empirical study of the anatomy of modern SAT solvers.
In Theory and Applications of Satisfiability Testing, pp.
343–356. Springer.

Kato, Z., M. Berthod, and J. Zerubia (1996). A hierar-
chical Markov random field model and multitemperature
annealing for parallel image classification. Graphical
models and image processing 58(1), 18–37.

Koller, D. and N. Friedman (2009). Probabilistic Graphi-
cal Models: Principles and Techniques. MIT Press.

Marques-Silva, J., I. Lynce, and S. Malik (2009). Hand-
book of satisfiability, Chapter CDCL Solvers, pp. 131 –
150. IOS Press.

Minka, T. (2005). Divergence measures and message pass-
ing. Technical report, Microsoft Research.

Minka, T. and J. Winn (2008). Gates. In Advances in Neu-
ral Information Processing Systems, pp. 1073–1080.

Montanari, A. and T. Rizzo (2005). How to compute loop
corrections to the Bethe approximation. Journal of Sta-
tistical Mechanics: Theory and Experiment 2005(10),
10011.

Mooij, J. M. and H. J. Kappen (2007). Sufficient conditions
for convergence of the sum–product algorithm. IEEE
Transactions on Information Theory 53(12), 4422–4437.

Pearl, J. (1986). Fusion, propagation, and structuring in
belief networks. Artificial Intelligence 29(3), 241–288.

Roth, D. (1996). On the hardness of approximate reason-
ing. Artificial Intelligence 82(1), 273–302.

Sang, T., F. Bacchus, P. Beame, H. A. Kautz, and T. Pitassi
(2004). Combining component caching and clause learn-
ing for effective model counting. In Proceedings of the
7th International Conference on Theory and Applica-
tions of Satisfiability Testing.

Shenoy, P. P. and G. Shafer (1990). Axioms for probability
and belief-function proagation. In Proceedings of the 6th
Conference on Uncertainty in Artificial Intelligence, pp.
169–198.

Sibel, J.-C., S. Reynal, and D. Declercq (2012). A novel
region graph construction based on trapping sets for the
generalized belief propagation. In International Confer-
ence on Communication Systems (ICCS), pp. 305–309.
IEEE.

Silva, J. P. M. and K. A. Sakallah (1996). GRASP—a
new search algorithm for satisfiability. In Proceedings
of the International Conference on Computer-Aided De-
sign, pp. 220–227. IEEE.

Wainwright, M. J. and M. I. Jordan (2008). Graphical
models, exponential families, and variational inference.
Foundations and Trends in Machine Learning 1(1-2), 1–
305.

Welling, M. (2004). On the choice of regions for gener-
alized belief propagation. In Proceedings of the 20th
Conference on Uncertainty in Artificial Intelligence, pp.
585–592.

Yedidia, J. S., W. T. Freeman, and Y. Weiss (2005). Con-
structing free-energy approximations and generalized
belief propagation algorithms. IEEE Transactions on In-
formation Theory 51(7), 2282–2312.

305

Discriminative Switching Linear Dynamical Systems applied to Physiological
Condition Monitoring

Konstantinos Georgatzis
School of Informatics

University of Edinburgh
k.georgatzis@sms.ed.ac.uk

Christopher K. I. Williams
School of Informatics

University of Edinburgh
ckiw@inf.ed.ac.uk

Abstract

We present a Discriminative Switching Linear
Dynamical System (DSLDS) applied to patient
monitoring in Intensive Care Units (ICUs). Our
approach is based on identifying the state-of-
health of a patient given their observed vital signs
using a discriminative classifier, and then infer-
ring their underlying physiological values con-
ditioned on this status. The work builds on the
Factorial Switching Linear Dynamical System
(FSLDS) (Quinn et al., 2009) which has been
previously used in a similar setting. The FSLDS
is a generative model, whereas the DSLDS is a
discriminative model. We demonstrate on two
real-world datasets that the DSLDS is able to
outperform the FSLDS in most cases of interest,
and that an α-mixture of the two models achieves
higher performance than either of the two models
separately.

Condition monitoring of patients in intensive care units
(ICUs) based on vital signs (e.g. heart rate, blood pressure)
is of critical importance, as they can be subject to a num-
ber of serious physiological events such as bradycardia and
hypotension. However, a variety of artifactual processes
can “contaminate” the data, e.g. the taking of blood sam-
ples, performing suctions, recalibrating sensors, etc. These
artifactual processes complicate the task of identifying the
important physiological events and are the main source of
false alarms in ICUs. Moreover, it is of interest to maintain
beliefs about the true physiological values of a patient when
these cannot be directly observed due to artifact. For exam-
ple, it would be desirable to display the patient’s estimated
blood pressure, when the corresponding measuring device
has been disconnected or is otherwise displaying artifac-
tual values (as is the case during a blood sample event). Of
course, this estimate should be clearly distinguishable from
the raw data (e.g. by using a different display colour).

One approach to this problem is to build a latent variable

model, using a number of discrete latent variables to model
the physiological and artifactual events through time, and
a linear dynamical system (LDS) conditional on these dis-
crete variables to model the associated dynamics in the vi-
tal signs observations. This is the factorial switching LDS
(or FSLDS) of Quinn et al. (2009). However, we have no-
ticed that in building such systems it is necessary to con-
struct quite detailed models of the artifactual events in or-
der to capture them properly. This can be non-trivial since
some of these events can be highly variable, which is hard
to capture with a generative model. Despite this high vari-
ability, the vital signs can still contain informative features
which could act as input to a discriminative model. Thus,
if it is possible to build such a model that can fairly eas-
ily distinguish between the various events, then it would
seem simpler and easier to make the discrete-state infer-
ence be discriminative, and use FSLDS-style inference for
the continuous latent variables conditional on the inferred
discrete state. We call this a discriminative switching linear
dynamical system (DSLDS). In this paper we compare the
FSLDS and DSLDS models on two ICU condition mon-
itoring datasets. The results show that using the DSLDS
gives increased performance in most cases of interest, and
that an α-mixture of the two methods was able to achieve
a higher performance than either of the two models sepa-
rately.

To summarise, our goal is to build a model with increased
performance for the following tasks:

• Identifying artifactual processes (e.g blood samples),
which will reduce the high false alarm rate in ICUs
and facilitate the task of identifying physiological pro-
cesses.

• Identifying physiological processes which can be of
critical importance (e.g bradycardias).

• Providing an estimate of a patient’s true physiological
values when these are obscured by artifact.

The structure of the remainder of the paper is as follows: in
Section 1 we give a description of our proposed model and

306

compare its graphical structure and inference methods to
those of the FSLDS, and briefly describe related work. In
Section 2 we describe our experiments and provide results
for the comparison between the DSLDS and the FSLDS.
Finally, in Section 3 we conclude with general remarks
about our proposed model and suggestions for future work.

1 MODEL DESCRIPTION

The graphical model of the FSLDS is depicted in Figure 1
(top). It operates on three different sets of variables: The
observed variables, yt ∈ Rdy represent the patient’s vital
signs obtained from the monitoring devices at time t, which
act as the input to our model. The continuous latent vari-
ables, xt ∈ Rdx , track the evolution of the dynamics of a
patient’s underlying physiology. The discrete variable, st,
represents the switch setting or regime which the patient is
currently in (e.g. stable, a blood sample is being taken etc.
). The switch variable can be factorised according to the
cross-product ofM factors, so that st = f1t ⊗f2t ⊗...⊗fMt .
Each factor variable, fmt , is usually a binary vector indicat-
ing the presence or absence of a factor, but in general it
can take on L(m) different values and K =

∏M
m=1 L

(m)

is the total number of possible configurations of the switch
variable, st. Also, st depends explicitly on the previous
time step, so that p(st|st−1) =

∏M
m=1 p(f

m
t |fmt−1). Condi-

tioned on a particular regime, the FSLDS is equivalent to an
LDS. The FSLDS can be seen then as a collection of LDS’s,
where each LDS models the dynamics of a patient’s under-
lying physiology under a particular regime, and can also be
used to generate a patient’s observed vital signs. An LDS
provides a generative framework for modelling our belief
over the state space, given observations.

We can alternatively adopt a discriminative view. We start
by modelling p(st|yt−l:t+r) with a discriminative classi-
fier, where (features of) observations from the previous l
and future r time steps affect the belief of the model about
st. The inclusion of r frames of future context is analogous
to fixed-lag smoothing in an FSLDS (see e.g. Särkkä, 2013,
sec. 10.5). We note that inclusion of future observations in
the conditioning set means that the DSLDS will operate
with a delay of r seconds, since an output of the model
at time t can be produced only after time t + r. Provided
that r is small enough (r ≤10 in experiments), this delay
is negligible compared to the increase in performance. The
LDS can also be regarded from a similarly discriminative
viewpoint which allows us to model p(xt|xt−1,yt). This is
similar to the Maximum Entropy Markov Model (MEMM)
(McCallum et al., 2000) with the difference that the latent
variable is continuous rather than discrete. The main ad-
vantage of this discriminative view is that it allows for a
rich number of (potentially highly correlated) features to
be used without having to explicitly model their distribu-
tion or the interactions between them, as is the case in a
generative model. A combination of these two discrimina-

tive viewpoints gives rise to the DSLDS graphical model in
Figure 1 (bottom). The DSLDS, conditioned on st, can be
seen then as a collection of MEMM’s, where each MEMM
in the DSLDS plays a role equivalent to that of each LDS
in the FSLDS.

The DSLDS can be defined as

p(s,x|y) = p(s1|y1)p(x1|s1,y1)×
T∏

t=2

p(st|yt−l:t+r)p(xt|xt−1, st,yt) . (1)

st−1 st st+1

xt−1 xt xt+1

yt−1 yt yt+1

st−1 st st+1

xt−1 xt xt+1

yt−1 yt yt+1

Figure 1: Graphical model of the FSLDS (top) and the
DSLDS (bottom). The state-of-health and underlying phys-
iological values of a patient are represented by st and xt
respectively. The shaded nodes correspond to the observed
physiological values, yt. Note that in the case of the
DSLDS the conditional probability p(st|yt−l:t+r) is mod-
elled directly.

The simplest assumption we can make for the DSLDS is
that p(st|yt−l:t+r) factorises, so that

p(st|yt−l:t+r) =
M∏

m=1

p(f
(m)
t |yt−l:t+r) . (2)

However, one could use a structured output model to pre-
dict the joint distribution of different factors.

307

1.1 Predicting st

Our belief about the state of health of a patient at time
t is modelled by p(st|yt−l:t+r), the conditional probabil-
ity of the switch variable given the observed vital signs.
Following the factorisation of the switch variable in eq. 2,
we model the conditional probability of each factor be-
ing active at time t given the observations with a prob-
abilistic discriminative binary classifier, so that p(f (i)t =
1|yt−l:t+r) = G(φ(yt−l:t+r)), where G(·) is a classifier-
specific function, and φ(yt−l:t+r) is the feature vector that
acts as input to our model at each time step as described
in Section 2.1. As is evident from Figure 1 (bottom) there
is no explicit temporal dependence on the switch variable
sequence. However, temporal continuity is implicitly in-
corporated in our model through the construction of the
features.

1.1.1 An α-mixture of st

The DSLDS model can be seen as complementary to the
FSLDS, and they can be run in parallel. One way of
combining the two outputs is to maintain an α-mixture
over st. If pg(st) and pd(st) are the outputs for the
switch variable at time t from FSLDS and the DSLDS
respectively, then their α-mixture is given by: pα(st) =

c
(
pg(st)

(1−α)/2
+ pd(st)

(1−α)/2
)2/(1−α)

, where c is a
normalisation constant which ensures that pα(st) is a prob-
ability distribution. The family of α-mixtures then sub-
sumes various known mixtures of distributions and defines
a continuum across them via the α parameter. For exam-
ple, for α = −1 we retrieve the mixture of experts (with
equally weighted experts) framework, while for α → 1,
the formula yields p1(st) = c

√
pg(st)pd(st), rendering

it equivalent to a product of experts viewpoint. In gen-
eral, as α increases, the α-mixture assigns more weight
to the smaller elements of the mixture (with α → ∞
giving p∞(st) = min{pg(st), pd(st)}), while as α de-
creases, more weight is assigned to the larger elements
(with α → −∞ giving p−∞(st) = max{pg(st), pd(st)})
A thorough treatment is given in Amari (2007).

1.2 Predicting xt

The model of the patient’s physiology should capture the
underlying temporal dynamics of their observed vital signs
under their current health state. The idea is that the current
latent continuous state of a patient should be dependent on
(a) the latent continuous state at the previous time step, (b)
the current state of health and (c) the current observed val-

ues. We model these assumptions as follows

p(xt|xt−1, st,yt) ∝

exp{−1
2
(xt−A(st)xt−1)

>(Q(st))−1(xt−A(st)xt−1)}×

exp{−1
2
(C(st)xt−yt)>(R(st))−1(C(st)xt−yt)} . (3)

The first term on the RHS of eq. 3 is the system model
for an LDS and captures the dynamics of a patient’s latent
physiology under state st. The second term can be seen as
the discriminative counterpart of the observation model of
an LDS. In our condition monitoring setting, the observed
vital signs are considered to be noisy realisations of the
true, latent physiology of a patient and thus, the observa-
tion model encodes our belief that xt is a noisy version
of yt. Under this assumption, Cst consists of 0/1 entries,
which are set based on our knowledge of whether the ob-
servations yt are artifactual or not under state st. In the
FSLDS, the corresponding observation model encodes the
belief that the generated yt should be normally distributed
around xt with covariance Rst , whereas in our discrimina-
tive version, the observation model encodes our belief that
xt should be normally distributed around yt with covari-
ance Rst . The idea behind this model is that at each time
step we update our belief about xt conditioned on its previ-
ous value, xt−1, and the current observation, yt, under the
current regime st. For example, under an artifactual pro-
cess, the observed signals do not convey useful information
about the underlying physiology of a patient. In that case,
we drop the connection between yt and xt (for the artifact-
affected channels) which translates into setting the respec-
tive entries of Cst to zero. Then, the latent state xt evolves
only under the influence of the appropriate system dynam-
ics parameters (A(st),Q(st)). Conversely, operation un-
der a non-artifactual regime incorporates the information
from the observed signals, effectively transforming the in-
ferential process for xt into a product of two “experts”, one
propagating probabilities from xt−1 and one from the cur-
rent observations.

We note that the step of conditioning on the current regime
st in order to predict xt is required for our task, as we do
not have training data for the x-state. Otherwise, one could
imagine building a simpler model such as a conditional ran-
dom field (Lafferty et al., 2001), to predict the x-state di-
rectly from the observations. However, in our case, where
only labels about the patient’s regime are available, this is
not possible.

1.3 Learning

We first describe learning in the general SLDS setting. The
parameters that need to be learned are: {As, Qs, Cs, Rs}.
Given training data for each switch setting, these can be
learned independently as LDS parameters for each con-
figuration of s. Following Quinn et al. (2009) we use an

308

independent ARIMA model with added observation noise
for each channel. Casting such a model into state space
form is a standard procedure as described in Brockwell and
Davis (2009, sec. 12.1), and amounts into reformulating
the parameters of the ARIMA model into the parameters
of a state-space model. Once the model is in state space
form, As, Qs, Cs, Rs can be fit according to the maximum
likelihood criterion by using numerical optimisation meth-
ods (like Newton-Raphson, Gauss-Newton), as presented
in Shumway and Stoffer (2000, sec. 2.6) or expectation
maximisation (EM) as presented in Ghahramani and Hin-
ton (1996). We note that the vector ARMA (VARMA) rep-
resentation is used, where for example a one-dimensional
AR(p) process can be encoded as a p + 1-dimensional
VAR(1) process by maintaining a latent state representa-
tion of the form xt = [xt xt−1 ... xt−p].

In the DSLDS, the same set of parameters needs to be
learned. As mentioned in Section 1.2, the assumptions for
the DSLDS observation model constrain Cs to be a binary
matrix, whose values are set so as to pick the most recent
value xt under the VARMA representation. For example,
assuming that we are modelling one channel, under a phys-
iological regime, as an AR(2) process, then Cs = [1 0 0].
Under this constrained form of Cs we obtain the remaining
parameters, As, Qs and Rs, using the same learning pro-
cess as the one already described for the case of a general
SLDS.

The task of determining the order of the respective ARIMA
models is less straightforward. We have followed a practi-
cal approach as suggested in Diggle (1990, sec. 6.2). The
autocorrelation and partial autocorrelation function (ACF
and PACF respectively) of the stationary data (if a time se-
ries is not stationary, we make it stationary by successive
differencing) were examined to provide an initial estimate
of the appropriate model order. A clear cut-off at lag q in
the ACF plot is suggestive of an MA(q) process, while a
clear cut-off at lag p in the PACF plot is suggestive of an
AR(p) process. Clear cut-offs are rare in a real world ap-
plication, in which case we looked for less clear tail-offs in
the PACF and ACF plots. After establishing a small num-
ber of potential model orders suggested by these tail-offs,
further exploration of the model order around these initial
estimates was carried out by calculating the Akaike Infor-
mation Criterion (AIC) score (Akaike, 1972) for each of
these potential model orders, and finally the one with the
smallest AIC value was chosen.

1.4 Inference

In this paper we are concerned with the task of comput-
ing the distribution p(st,xt|y1:t+r). According to our pro-
posed model, p(st|yt−l:t+r) can be inferred at each time
step via a classifier as described in Section 1.1. However,
exact inference for xt is still intractable. The same lim-

itation as in the case of a standard SLDS applies (Lerner
and Parr, 2001): In order to maintain an exact belief over
the posterior distribution of xt we need to keep track of all
the potential combinations of switch variable settings that
could have lead us from xt−1 to xt, making inference scale
exponentially with time. An approximation of this distri-
bution can be maintained via the Gaussian Sum algorithm1

(Alspach and Sorenson, 1972). The idea is that at each time
step t we maintain an approximation of p(xt|st,y1:t+r) as
a mixture of J Gaussians. Moving one time step forward
will result in the posterior p(xt+1|st+1,y1:t+r+1) having
KJ components, which are again collapsed to J compo-
nents. In our experiments we use J = 1, which translates
into matching moments (up to second order) of the distri-
bution for each setting of st, as shown in Murphy (1998).
Therefore inference in the DSLDS can be seen as a two-
step process, where p(st|yt−l:t+r) is inferred by our dis-
criminative classifier, and p(xt|st,y1:t+r) is inferred ac-
cording to the Gaussian Sum algorithm.

1.5 Related work

In terms of methodology, our proposed model bears some
similarities to the one used by Lu et al. (2009). How-
ever, their model was used to model spatial relationships
and they were only concerned with a binary discrete la-
tent space. In our case, we are concerned with modelling
temporal structure and we have a richer and more complex
discrete latent space. More importantly, in their work the
distribution maintained over the continuous latent space is
a single multivariate Gaussian, whereas in our model, as
described in the previous section, the belief over the con-
tinuous latent space is modelled as a mixture of KJ Gaus-
sians. This allows us to keep track of multiple modes about
the belief over a patient’s underlying physiology, since this
is potentially affected by multiple factors.

In terms of application, our work is mostly similar to the
one presented in Quinn et al. (2009). The same task of
inferring artifactual and physiological processes was con-
sidered there. However a generative approach was taken
there via the use of an FSLDS. In Lehman et al. (2014), a
switching vector autoregressive model was used on minute-
by-minute heart rate and blood pressure vital signs to pro-
vide inputs for a logistic regression classifier with the goal
of patient outcome prediction. Also, Nemati et al. (2013)
propose training a SLDS in a discriminative manner so as
to optimize prediction of the s sequence given the observa-
tions, and apply this to identifying four postural categories
under a controlled protocol. Stanculescu et al. (2014) use
a hierarchical structure in the discrete space of an SLDS
motivated by expert knowledge on modelling sepsis. In
our work, we use a discriminative SLDS, capable of mod-

1The Gaussian Sum algorithm is also known as the Gener-
alised Pseudo Bayesian (GPB) algorithm as mentioned in Murphy
(1998).

309

elling both discrete and continuous latent states in a unified
framework, applied to two challenging real-world datasets.
It yields superior results for state-of-health identification,
and maintains at the same time beliefs about a patient’s un-
derlying physiology.

2 EXPERIMENTS

In this section we describe experiments on two challenging
datasets comprising of patients admitted to ICUs in two dif-
ferent hospitals, namely a neonatal ICU and an adult ICU.
We emphasise that it is highly non-trivial to obtain annota-
tions for medical datasets as it requires the very scarce re-
source of experienced clinicians. Indeed, for the adult ICU,
the annotated data are the product of a one-year collabora-
tion with that ICU. Physionet (Goldberger et al., 2000), a
freely available medical dataset, is not suitable for our task
since the only available time-series annotations are a lim-
ited set of life threatening/terminal events, for which iden-
tification would not be of practical use in the ICU.

For both datasets, we evaluate the performance of the
DSLDS compared to the FSLDS. We also report the per-
formance of an α-mixture of the two models. Note that the
FSLDS has been shown in Quinn et al. (2009) to achieve
superior results compared to more basic models such as
a factorial hidden Markov model (FHMM) for the task of
condition monitoring in ICUs. We first provide a short de-
scription of the various features that were used as input to
the state-of-health model as described in Section 1.1, fol-
lowed by an outline of the main characteristics of the two
datasets. We conclude this section by providing results on
two tasks: a) inferring a patient’s state of health and b) in-
ferring a patient’s underlying physiology in the presence of
artifact corruption.

2.1 Features & Classifiers

As described in Section 1.1, the estimate of st is the output
of a discriminative classifier. For both datasets, we found
that using a random forest (Breiman, 2001) as our classifi-
cation method yields the best performance. Suggestions for
judicious selection of various tree-construction parameters
can be found in Hastie et al. (2009, Ch. 15). The Gini index
was used as the criterion for splitting nodes for each tree in
the random forest. The output of the random forest for a
new test point is an average of the predictions produced by
each tree, where the prediction of each tree is the propor-
tion of the observations that belong to the positive class in
the leaf node in which the test point belongs to. Apart from
their high performance, another appealing property of ran-
dom forests is that they can handle missing observations
via the construction of surrogate variables and splits within
each decision tree as explained in Hastie et al. (2009, sec.
9.2.4).

We use a variety of features to capture interesting temporal
structure between successive observations. At each time
step, a sliding window of length l+ r+1 is computed. For
some features we also divide the window into further sub-
windows and extract additional features from them. More
precisely, the full set of features that are being used are: (i)
the observed, raw values of the previous l and future r time
steps (yt−l:t+r); (ii) the slopes (calculated by least squares
fitting) of segments of that sliding window that are obtained
by dividing it in segments of length (l + r + 1)/k; (iii) an
exponentially weighted moving average of this window of
raw values (with a kernel of width smaller than l + r + 1);
(iv) the minimum, median and maximum of the same seg-
ments; (v) the first order differences of the original win-
dow; and (vi) differences of the raw values between differ-
ent channels.

2.2 Neonatal ICU

The first dataset is the one used in Quinn et al. (2009)2. It
comprises 24-hour periods from fifteen neonates admitted
to the ICU of the Edinburgh Royal Infirmary, with events
of interest annotated by two clinical experts. These annota-
tions include: i) blood sample events (BS), ii) periods dur-
ing which an incubator is open (IO), iii) core temperature
probe disconnections (TD), iv) bradycardias (BR), and v)
periods that are clearly not stable but no further identifica-
tion was made by the clinicians (X). These last cases can
be collectively considered as a “none-of-the-above” factor,
which is referred to as the X-factor by Quinn et al. (2009).
More details about the events of interest can be found in the
aforementioned work. We used the same parameters for the
underlying physiology model as the ones used there.

2.3 Adult ICU

The second dataset comprises data collected from nine
adults admitted to the neuro ICU of the Southern General
Hospital in Glasgow. An average of 33-hour periods were
collected from each of these patients, consisting of mea-
surements recorded on a second-by-second basis for four
different channels: heart rate (HR), systolic and diastolic
blood pressure (BPsys, BPdia), and systolic intracranial
pressure (ICPsys). These data were then annotated by a
clinical expert. We give a brief description of the learning
process for stability periods and modelled factors, which
include blood samples, damped traces (DT), suction events
(SC), and the X-factor.

Stable periods correspond to time periods when no anno-
tation occurred from the experts, suggesting that the patient
is in a stable condition. In Williams and Stanculescu (2011)
it was found that in a similar setting a 15 minute period of
stability provides an adequate amount of training data. We

2The dataset has been anonymised and is available at:
www.cit.mak.ac.ug/staff/jquinn/software.html

310

use the same time interval for our experiments. We found
that ARIMA(2,1,0) models were adequate for all channels.

An example of a blood sample is shown in Figure 4 (bot-
tom). Changes in BPsys and BPdia can be modelled as
a four-stage process: i) the blood is diverted to a syringe
for blood sampling, which causes an artifactual ramp in the
observed measurements. This is similar to the blood sam-
ple model described in Quinn et al. (2009) and we follow
the same approach here. ii) A recalibration stage follows,
causing measurements to drop to zero which can be mod-
elled similarly to a dropout event as in Quinn et al. (2009).
iii) BP measurements continue as a stable period for a brief
period. iv) The blood sample is concluded with a flushing
event for hygiene purposes which causes a sharp increase in
measurements. This stage is modelled as an AR(3) process
for both the BPsys and BPdia channels. A total number of
64 blood sample events have been annotated, with an aver-
age duration of 1.6 minutes.

During a suction event, a flexible catheter is inserted into
the airway of the patient to remove secretions that have ac-
cumulated over time in their pulmonary system. This event
is observed as a significant increase in the values of all ob-
served channels. An AR(2) process models the HR chan-
nel, while AR(3) processes were used to model the remain-
ing channels. A total number of 53 suction events have
been annotated, with an average duration of 4.3 minutes.

A damped trace, an example of which is shown in Figure
4 (top), is usually observed due to blood residues being ac-
cumulated in the line used for measuring the blood pressure
channel, which leads both BPsys and BPdia to converge to
a similar mean value while at the same time the measure-
ments exhibit high variability. Both channels were mod-
elled with AR(3) processes. A total number of 32 damped
trace events have been annotated, with an average duration
of 14 minutes.

Except for the aforementioned factors which we explicitly
model, there are a multitude of other factors present in our
training data, corresponding to either known but not yet
modelled factors (such as hygiene events, tachycardias etc.)
or to unknown factors (clear abnormalities which however
have not been identified by the clinicians). We collectively
treat those events as unknown and model them according
to the X-factor model proposed in Quinn et al. (2009). A
total number of 278 X-factor events have been annotated,
with an average duration of 7.5 minutes. Channels which
are unaffected by an artifactual process (as shown in Table
1) are modelled as in the stable case. In every case the
parameters of the x-state models were further optimised by
EM.

Table 1: Channels affected by different processes for the
adult ICU are marked by •.

HR BPsys BPdia ICPsys

Blood sample • •
Damped trace • •

Suction • • • •
X-factor • • • •

Table 2: Comparison of DSLDS, FSLDS and α-mixture
performance for the Neonatal ICU dataset. Optimal value
of the α parameter is shown inside parenthesis.

AUC BS IO TD BR X

DSLDS 0.98 0.83 0.90 0.94 0.57
FSLDS 0.92 0.87 0.88 0.85 0.66

α-mixture(0.5) 0.98 0.89 0.93 0.92 0.67

2.4 Results

For both datasets we compare the performance of the
DSLDS and the FSLDS for the task of inferring a patient’s
state of health. Having obtained estimates st for each factor
and each time step, we proceed to calculate Receiver Oper-
ating Characteristic (ROC) curves for the classification of
each factor. We also measure the performance of the mod-
els by reporting the Area under each ROC curve (AUC).
Plots of the ROC curves, comparing the DSLDS, FSLDS,
and an α-mixture of the two models, are shown in Figures
2 and 3.

In the case of the DSLDS, the features described in Section
2.1 involve a number of hyperparameters that need to be
chosen. Fitting them with a standard cross-validation (CV)
scheme when data are not abundant poses a non-negligible
risk of overfitting. As is shown in Varma and Simon (2006),
using CV to evaluate performance of a model when the
model’s hyperparameters have been themselves tuned us-
ing CV can lead to an optimistic bias of the estimate of
the true performance. In that same work, a nested CV ap-
proach is shown to yield an almost unbiased estimate of
the true performance, which we also follow in our exper-
iments. In the outer loop the data are partitioned into P
disjoint test sets. After choosing one of these partitions,
the rest of the data are used in the inner loop in a standard
CV setup to select the hyperparameters. The hyperparame-
ters which yielded the highest performance (average cross-
validated AUC across factors in our case) in the inner loop
are then used to estimate the performance of the model on
the partition (test set) in the outer loop. This process is re-
peated P times, once for each partition in the outer loop.
For both datasets, we use leave-one-patient-out CV for the

311

inner loop and 3-fold CV for the outer loop. In the inner
loop, we perform a grid search over hyperparameters in the
following sets: a) number of trees of random forest clas-
sifiers in {10, 25, 50, 100, 200}; b) l in {4, 9, 14, 19, 29,
49}; c) r in {0, 5, 10}. The sub-segments lengths (for slope
features) were always set to max{5, (l + r + 1)/5} and the
kernel widths (for moving average features) were always
set to max{5, (l + r + 1)/5}.
In the case of the FSLDS, it is not necessary to follow the
same procedure. Using the AIC score, as shown in Sec-
tion 1.3, for choosing the orders of the ARIMA processes
(which constitute the model’s hyperparameters) avoids po-
tential overfitting by penalising the model’s likelihood as
the parameters grow. We therefore use 3-fold CV to evalu-
ate the FSLDS’s performance.

To evaluate the α-mixture model, we have chosen the op-
timal α value as the one that maximises the average AUC
across factors, via 3-fold CV. This also allowed us to ex-
plore the behaviour of the model as a function of α for both
datasets.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

Blood sample

FSLDS
DSLDS
α−mixture

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

Incubator open

FSLDS
DSLDS
α−mixture

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

Temperature probe disconnection

FSLDS
DSLDS
α−mixture

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

Bradycardia

FSLDS
DSLDS
α−mixture

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

X−factor

FSLDS
DSLDS
α−mixture

Figure 2: ROC curves per modelled factor in the case of
the neonatal ICU.

2.4.1 Neonatal ICU

In the case of the neonatal ICU we compare the two models
on the full set of annotated factors reported in Quinn et al.
(2009). The results are shown in Table 23. The DSLDS
outperforms the FSLDS in three out of the four clinically
identified factors. The difference in favour of the DSLDS
is clear for bradycardias and blood samples, but less pro-
nounced for core temperature disconnections. The FSLDS
achieves slightly higher performance in the case of the in-
cubator open factor, and clearly outperforms the DSLDS
in the case of the X-factor. The FSLDS models the pres-
ence of outliers by the inclusion of an extra factor, which
is essentially governed by the same parameters as stability
with the only difference being that the system noise covari-
ance is an inflated version of the respective covariance of
the stability dynamics (for more details, see Quinn et al.,
2009). Such an approach has the potential to address the
issue of outlier detection in a more general and thus more
satisfactory way. In the case of the DSLDS, our approach
is to collectively treat all abnormal events, other than the
ones attributed to known factors, as an “X-class” and build
a binary classifier to distinguish that class. As the training
datapoints for this class are highly inhomogeneous in terms
of shared discriminative features, and test points belonging
to the X-class may not exhibit a high degree of similarity
to the training set, it is not surprising that the DSLDS may
perform rather poorly for the X-factor. However, by con-
sidering an α-mixture of the two models, we can combine
the discriminative power of the DSLDS for known factors
with the increased performance of the FSLDS for the X-
factor, thus achieving a higher performance (bottom line
of Table 2) compared to considering the two models sepa-
rately. The behaviour of the α-mixture model as a function
of α is shown in Figure 5 (top). The optimal α-mixture
(α = 0.5) yields the best average AUC across factors (in
fact, α = 0.5 yields optimal performance for each factor
separately except bradycardia, where it is almost optimal)
compared to all other considered α values and also outper-
forms the DSLDS and the FSLDS in all cases except for
the bradycardia factor, where the DSLDS performs slightly
better.

2.4.2 Adult ICU

In the case of the adult ICU, inferences for two example
events are shown in Figure 4. In the top, a damped trace
event is shown, which lasts for almost one hour before be-
ing resolved by a flushing event (spiking of both channels).
The DSLDS accurately identifies the damped trace event,

3The FSLDS results were obtained using code provided by
Quinn et al. (2009) with the same parameters as the ones men-
tioned there. The results are very close with the exception of
the core temperature disconnection factor (for which the reported
AUC in Quinn et al. (2009) was 0.79, while we obtained a value of
0.88), and the blood sample factor (for which the reported AUC in
Quinn et al. (2009) was 0.96, while we obtained a value of 0.92).

312

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

Blood sample

FSLDS
DSLDS
α−mixture

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

Damped trace

FSLDS
DSLDS
α−mixture

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

Suction

FSLDS
DSLDS
α−mixture

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te
X−factor

FSLDS
DSLDS
α−mixture

Figure 3: ROC curves per modelled factor in the case of
the adult ICU.

Table 3: Comparison of DSLDS, FSLDS and α-mixture
performance for the Adult ICU dataset. Optimal value of
the α parameter is shown inside parenthesis.

AUC BS DT SC X

DSLDS 0.96 0.93 0.67 0.65
FSLDS 0.95 0.79 0.57 0.74

α-mixture(0) 0.99 0.94 0.70 0.71

while the FSLDS fails totally to detect it, but hypothesises
several incorrect blood sample events. In the bottom panel
a blood sample event is shown, where the multiple stages
are clearly visible. The event starts with two artifactual
ramps, followed by a flushing, a zeroing, and finally with
another flushing. This is slightly different than the descrip-
tion we have already given, but slight deviations from the
standard protocol due to human error is to be expected. In
this case, both models manage to capture the event in a gen-
erally satisfactory manner. Summary results are reported
in Table 3. The DSLDS outperforms the FLSDS on all of
the known factors. The damped trace and suction events
particularly are characterised by high variability which is
hard to capture with a generative process. However, sim-
ple discriminative features are able to capture them with
higher accuracy. As was expected, the FSLDS achieves a
higher AUC for the X-factor. Again, the optimal α-mixture
(α = 0) outperforms the DSLDS and the FSLDS in all
cases except for the X-factor, where the FSLDS achieves a
slightly higher AUC. Contrary to the neonatal ICU dataset,
as shown in Figure 5 (bottom) there are alternative α values

 Damped trace (FSLDS)

 Blood sample (FSLDS)

50

100

150

200

250

mmHg

True damped trace

Time (s)

True blood sample
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

BPdia
BPsys

 Damped trace (DSLDS)

 Blood sample (DSLDS)

 Damped trace (FSLDS)

 Blood sample (FSLDS)

0

50

100

150

200

250

300

mmHg

True damped trace

Time (s)

True blood sample
0 50 100 150 200 250

 Blood sample (DSLDS)

 Damped trace (DSLDS)

BPdia
BPsys

Figure 4: Example of DSLDS and FSLDS inferences for
a damped trace event (top) and a blood sample event (bot-
tom).

which can yield higher AUC across different factors. For
example, an X-factor AUC value of 0.76 can be obtained
by setting α = 5. However, apart from the superior (on
average) performance of the α-mixture, another appealing
property is that α could be treated as a user-tunable param-
eter. In a practical setting, the model could be preset with
the optimal α value, but a clinician could decide, for exam-
ple, to make the model focus on maximising its predictive
performance on the X-factor (or some important physio-
logical factor like bradycardia) to the potential detriment
of other factors. Then the model could adjust its α param-
eter in real-time based on training data results to maximise
its performance on the desired factor.

2.4.3 Inference for x-state

Finally, Figure 6 shows the inferred distribution of underly-
ing physiology during a blood sample taken from a neonate
for both models. In both cases, estimates are propagated
with increased uncertainty under the correctly inferred ar-
tifactual event. Note a small difference at the start of the
event: The DSLDS partially identifies the event causing
an increase in uncertainty, while the FSLDS (incorrectly)
identifies this part as stable and thus its x-state update ex-
hibits lower uncertainty. Maintaining an estimate of the
underlying vital signs in the presence of artifacts can then
be used for data imputation. Another use, which has been
deemed important by our clinical experts, is that such an
estimate can help doctors maintain an approximate view of
a patient’s underlying physiology during artifactual events
that would otherwise completely obscure a patient’s vital
signs. This can be crucial during treatment of a patient un-

313

Neonatal ICU

−5 −4 −3 −2 −1 0 1 2 3 4 5

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

alpha

AU
C

X−factor
Bradycardia
Core temp.
Open incu.
Blood sample

Adult ICU

−5 −4 −3 −2 −1 0 1 2 3 4 5

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

alpha

AU
C

X−factor
Damped trace
Suction
Blood sample

Figure 5: Performance of the α-mixture models as a func-
tion of α (step = 0.25) for the Adult ICU (top) and the
neonatal ICU dataset (bottom). The asterisk marks the op-
timal value for α.

der critical conditions, such as the ones found in an ICU.

3 DISCUSSION

We have presented a discriminative approach for the very
important application of patient monitoring in ICUs. We
show that our new approach is able to outperform the pre-
vious generative approach used for the same task in most of
the investigated cases. We also show that an α-mixture of
the two approaches yields better results than either model
separately. In our approach we have assumed that the pre-
diction of the switching variable factorises over the state
space. However, one could use a structured output model
to predict the joint distribution of different factors. Finally,
another issue is the lack of explicit temporal continuity in
the s-chain. Implicitly, this is handled by the feature con-
struction process. However, a future direction could be to
establish a Markovian connection on the s-chain too and
compare with our current approach.

Acknowledgements

We extend our thanks to Ian Piper and Christopher
Hawthorne for their expert insight and annotated data, and
to Martin Shaw and Partha Lal for preprocessing code and
valuable discussions. Author KG was funded by the Scot-
tish Informatics and Computer Science Alliance. This re-
search was funded in part by the Chief Scientist Office

DSLDS

Blood sample

20

30

40

50

60

70

80

BP
sy

s
(m

mH
g)

20

30

40

50

60

70

80

BP
dia

(m
mH

g)

True blood sample

Time (s)
0 50 100 150 200 250 300 350

FSLDS

Blood sample

20

30

40

50

60

70

80

BP
sy

s
(m

mH
g)

20

30

40

50

60

70

80

BP
dia

(m
mH

g)

True blood sample
0 50 100 150 200 250 300 350

Figure 6: Example of the inferred underlying physiology
in the presence of a blood sample in the case of the DSLDS
(top) and the FSLDS (bottom). The solid line corresponds
to the actual observations, while the estimated true physi-
ology is plotted as a dashed line with the shaded area indi-
cating two standard deviations.

(Scotland) ref. CZH/4/801.

References

Akaike, H. (1972). Information theory and an extension
of the maximum likelihood principle. 2nd Int. Symp.
Information Theory, Supp. to Problems of Control and
Information Theory, pages 267–281.

Alspach, D. L. and Sorenson, H. W. (1972). Nonlinear
Bayesian Estimation Using Gaussian Sum Approxima-
tions. Automatic Control, IEEE Transactions on, 17(4),
439–448.

Amari, S.-i. (2007). Integration of Stochastic Models by
Minimizing α-Divergence. Neural Computation, 19(10),
2780–2796.

Breiman, L. (2001). Random Forests. Machine Learning,
45(1), 5–32.

Brockwell, P. J. and Davis, R. A. (2009). Time Series: The-
ory and Methods. Springer.

Diggle, P. (1990). Time Series: A Biostatistical Introduc-
tion. Oxford University Press.

Ghahramani, Z. and Hinton, G. E. (1996). Parameter Esti-
mation for Linear Dynamical Systems. Technical report,
Technical Report CRG-TR-96-2, University of Totronto,
Dept. of Computer Science.

314

Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff,
J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody,
G. B., Peng, C.-K., and Stanley, H. E. (2000). Phys-
iobank, physiotoolkit, and physionet components of a
new research resource for complex physiologic signals.
Circulation, 101(23), e215–e220.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The
Elements of Statistical Learning. Springer.

Lafferty, J., McCallum, A., and Pereira, F. C. (2001). Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In International
Conference on Machine Learning (ICML).

Lehman, L., Adams, R., Mayaud, L., Moody, G., Malho-
tra, A., Mark, R., and Nemati, S. (2014). A physiological
time series dynamics-based approach to patient monitor-
ing and outcome prediction. Biomedical and Health In-
formatics.

Lerner, U. and Parr, R. (2001). Inference in Hybrid Net-
works: Theoretical Limits and Practical Algorithms. In
Proceedings of the Seventeenth conference on Uncer-
tainty in Artificial Intelligence (UAI), pages 310–318.
Morgan Kaufmann Publishers Inc.

Lu, W.-L., Murphy, K. P., Little, J. J., Sheffer, A., and Fu,
H. (2009). A Hybrid Conditional Random Field for Es-
timating the Underlying Ground Surface from Airborne
LiDAR Data. Geoscience and Remote Sensing, IEEE
Transactions on, 47(8), 2913–2922.

McCallum, A., Freitag, D., and Pereira, F. C. (2000). Max-
imum Entropy Markov Models for Information Extrac-
tion and Segmentation. In International Conference on
Machine Learning (ICML), pages 591–598.

Murphy, K. P. (1998). Switching Kalman Filters. Technical
report, U.C.Berkeley.

Nemati, S., Lehman, L.-W., and Adams, R. P. (2013).
Learning outcome-discriminative dynamics in multivari-
ate physiological cohort time series. In Engineering in
Medicine and Biology Society (EMBC), 2013 35th An-
nual International Conference of the IEEE, pages 7104–
7107. IEEE.

Quinn, J. A., Williams, C. K., and McIntosh, N. (2009).
Factorial Switching Linear Dynamical Systems applied
to Physiological Condition Monitoring. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 31(9),
1537–1551.

Särkkä, S. (2013). Bayesian Filtering and Smoothing.
Cambridge University Press.

Shumway, R. H. and Stoffer, D. S. (2000). Time Series
Analysis and Its Applications. Springer New York.

Stanculescu, I., Williams, C. K., and Freer, Y. (2014). A Hi-
erarchical Switching Linear Dynamical System Applied
to the Detection of Sepsis in Neonatal Condition Mon-
itoring. In Proceedings of the Thirtieth Conference on

Uncertainty in Artificial Intelligence (UAI), pages 752–
761. AUAI Press.

Varma, S. and Simon, R. (2006). Bias in error estimation
when using cross-validation for model selection. BMC
Bioinformatics, 7(1), 91.

Williams, C. K. and Stanculescu, I. (2011). Automating
the Calibration of a Neonatal Condition Monitoring Sys-
tem. In Artificial Intelligence in Medicine, pages 240–
249. Springer.

315

Revisiting Non-Progressive Influence Models: Scalable Influence Maximization
in Social Networks

Golshan Golnari ∗
Electrical and Computer

Engineering Dept.
University of Minnesota
Minneapolis, MN 55455

Amir Asiaee T. ∗
Computer Science and

Engineering Dept.
University of Minnesota
Minneapolis, MN 55455

Arindam Banerjee
Computer Science and

Engineering Dept.
University of Minnesota
Minneapolis, MN 55455

Zhi-Li Zhang
Computer Science and

Engineering Dept.
University of Minnesota
Minneapolis, MN 55455

Abstract

While influence maximization in social networks
has been studied extensively in computer sci-
ence community for the last decade the focus
has been on the progressive influence models,
such as independent cascade (IC) and Linear
threshold (LT) models, which cannot capture
the reversibility of choices. In this paper, we
present the Heat Conduction (HC) model which
is a non-progressive influence model with real-
world interpretations. We show that HC uni-
fies, generalizes, and extends the existing non-
progressive models, such as the Voter model [1]
and non-progressive LT [2]. We then prove
that selecting the optimal seed set of influen-
tial nodes is NP-hard for HC but by establishing
the submodularity of influence spread, we can
tackle the influence maximization problem with
a scalable and provably near-optimal greedy al-
gorithm. We are the first to present a scalable
solution for influence maximization under non-
progressive LT model, as a special case of the
HC model. In sharp contrast to the other greedy
influence maximization methods, our fast and ef-
ficient C2GREEDY algorithm benefits from two
analytically computable steps: closed-form com-
putation for finding the influence spread as well
as the greedy seed selection. Through extensive
experiments on several large real and synthetic
networks, we show that C2GREEDY outperforms
the state-of-the-art methods, in terms of both in-
fluence spread and scalability.

1 INTRODUCTION
Motivated by viral marketing and other applications, the
problem of influence maximization in a social network has
attracted much attention in recent years. Given a social net-
work where nodes represent users in a social group, and
edges represent relationships and interactions between the

∗∗ G. Golnari and A. Asiaee contributed equally to this work.

users (and through which they influence each other), the ba-
sic idea of influence maximization is to select an initial set
of “most influential” users (often referred to as the seeds)
among all users so as to maximize the total influence under
a given diffusion process (often referred to as the influence
model) on the social network. In the context of viral mar-
keting, this amounts to initially targeting a set of influential
customers, e.g., by providing them with free product sam-
ples, with the goal to trigger a cascade of influence through
“word-of-mouth” or recommendations to friends to maxi-
mize the total number of customers adopting the said prod-
uct. Domingos and Richardson [3] introduced this algo-
rithmic problem to the Computer Science community and
Kempe et al. [2] made the topic vastly popular under the
name of influence maximization. They studied two influ-
ence models, the independent cascade (IC) model and the
linear threshold (LT) model, and applied a greedy method
to tackle the influence maximization problem [2]. Unfor-
tunately Kempe et al.’s approach [2] for calculating the in-
fluence spread is based on Monte Carlo simulations which
does not scale to large networks [4,5]. As the result, it mo-
tivated researchers to either improve the scalability [4,5] or
study more tractable influence models [6, 7].

The focus of almost all of these earlier studies are, however,
progressive influence models, including LT and IC models,
in which once a costumer adopts a product or a user per-
forms an action she cannot revert it. Retweeting news and
sharing videos in online social network websites, are exam-
ples of progressive, i.e. irreversible actions. Nevertheless,
there are numerous real world instances where the actions
are non-progressive, especially in the technology adop-
tion domain. For example, adopting a cell phone service
provider, such as AT&T and T-mobile, is a non-progressive
action where a user can switch between providers. The
objective of influence maximization in this example is to
persuade more users to adopt the intended provider for
a longer period of time. To capture the reversibility of
choices in real scenarios, we present the Heat Conduction
(HC) model that unifies, generalizes, and extends the exist-
ing non-progressive models, including non-progressive LT
(NLT) [2] and Voter model [1] (see Section 5). In contrast

316

to the Voter model, HC does not necessarily reach consen-
sus, where one product dominates and extinguishes the oth-
ers after finite time, so the proposed HC model can explain
the coexistence of multiple product adoptions, which is a
typical phenomena in the real world. In addition, the HC
model incorporates both “social” and “non-social” factors,
e.g., intrinsic inertia or reluctance of some users in adopt-
ing a new idea or trying out a new product, external “media
effect” which exerts a “non-social” influence in promoting
certain ideas or products.

We tackle the influence maximization problem under the
HC influence model with a scalable and provably near-
optimal solution. The approach by Kempe et al. [2] for
influence maximization under NLT model, is to reduce the
model to (progressive) LT by replicating the network as
many as time progresses and compute the influence spread
by the same slow Monte Carlo method for the resulted huge
network. This approach is practically impossible for large
networks, specially for the infinite time horizon. We also
prove that contrary to the Voter model, for which the in-
fluence maximization can be solved exactly in polynomial
time [1], the influence maximization for HC is NP-hard.
We develop an approximation (greedy) algorithm for influ-
ence maximization under HC for infinite time horizon with
guaranteed near-optimal performance. We are able to pro-
vide closed form solution for both computing the influence
spread and greedy selection step which entirely removes
the need to explicitly evaluate each node as the best seed
candidate. Our fast and scalable algorithm, C2GREEDY,
for influence maximization under the HC model removes
the computational barrier that prevented the literature from
considering the non-progressive influence models.

Our extensive experiments on several large real and syn-
thetic networks validate the efficiency and effectiveness of
our method which outperforms the state-of-the-art in terms
of both influence spread and scalability. We show that the
most influential nodes under progressive models does not
necessarily act as the most influential nodes under non-
progressive models and a designated non-progressive al-
gorithm is necessary. Moreover, we present the first real
non-progressive cascade dataset which models the non-
progressive propagation of research topics among network
of researchers. Our contribution in this paper is as follows:
• We propose the HC influence model which unifies, gen-
eralizes, and extends the existing non-progressive models.
•We show that the HC has three key properties which en-
ables us to solve the influence maximization efficiently.
• To the best of our knowledge, we are the first to present
a scalable solution for influence maximization under non-
progressive LT model.
•We demonstrate high performance and scalability of our
algorithm via extensive experiments and present the first
ever real non-progressive cascade dataset.

The rest of this paper is organized as follows. After a brief

review on the related work, we introduce our HC model
in Section 2. Next, we show how to compute the influ-
ence spread for HC in closed form in Section 3. In Section
4, we present our efficient algorithm C2GREEDY for influ-
ence maximization under the HC model. Section 5 explains
how HC unifies other non-progressive models and provides
a more complete view of the HC model. Finally we con-
duct comprehensive experiments in Section 6 to illustrate
performance of our algorithm.

Related work. After the debut of influence maximization
as a data mining problem [3], it is formulated as a dis-
crete optimization problem based on progressive influence
models (LT and IC) from social and physical sciences [2].
Kempe et al. [2] show that influence maximization is NP-
hard under LT and IC models but the influence spread is
submodular for the models which enables them to use the
greedy method. Although the algorithm is greedy it usu-
ally does not scale, because it needs to compute influence
spread many times in each iteration while influence spread
has no known closed form and is estimated by Monte Carlo
simulation. The follow-up studies [4–9] attempt to speed
up this process by avoiding or decreasing the need for the
MC simulation (for further details of the studies on pro-
gressive influence model please refer to Supplementary).
Kempe et al. [2] also introduce a non-progressive version
of the LT influence model (NLT) and try to tackle the in-
fluence maximization problem under NLT by reducing the
model to (progressive) LT, discussed in Section 1.
The Voter model, as the most well-known non-progressive
model, is originally introduced in [10, 11] and adopted for
viral marketing in [1]. Even-Dar and Shapira show that
under the Voter model, highest degree nodes are the solu-
tion of influence maximization [1]. Unfortunately since the
Voter model reaches consensus, i.e. one product remains
in long term, it can not explain the coexistence of multi-
ple product adoptions, which is a typical case in many real
product adoptions.

2 HEAT CONDUCTION INFLUENCE
MODEL

The heat conduction (HC) influence model is inspired by
the resemblance of influence diffusion through a social net-
work to heat conduction through an object, where heat is
transferred from the part with higher temperature to the part
with lower temperature. We provide a simple description of
HC in this section and defer the complete view of it as well
as its unification property to Section 5.

Considering a directed graph G = (V, E) which represents
a social (influence) network, where the directed edge from
node i to node j declares that i follows j (or equivalently
j influences i). The edge weight ωij indicates the amount
that i trusts j, and 0 ≤ ωij ≤ 1. The set of i’s neighbors,
representing the nodes that influence i, is denoted byN (i).
The influence cascade can be assumed as a binary process
in which a node who adopts the “desired” product is called

317

active, and inactive otherwise. Note that this assumption
holds for the cases with multiple products as well, where
the objective is to maximize the influence (publicity) of the
“desired” product, and the rest are all considered “unde-
sired”. Seed is a node that has been selected for the direct
marketing and remains active during the entire process. In
the HC model, the influence cascade is initiated from a set
of seeds S and arbitrary values for other nodes. The choice
of node i to become active or inactive at time t + 1 is a
linear function of the choices of its neighbors at time t as
well as its intrinsic (or non-social) bias toward activeness:

Pr
(
δi(t+1) = 1|N (i)

)
= βib+(1−βi)

∑

j∈N (i)

ωijδj(t), (1)

where βi ∈ (0, 1), b ∈ [0, 1], and
∑
j∈N (i) ωij = 1. In-

dicator function δi(t) is 1 when node i adopts the desired
product at time t and 0 otherwise. We refer to (1) as the
choice rule. The dependence on neighbors in (1) repre-
sents the “social” influence and the bias value b accounts
for “non-social” influence which comes from any source
out of the neighbors, e.g. media. The “non-social” in-
fluence can explain the cases where the “social” influence
alone fails to model the cascades [12]. We discuss further
interpretation and extensions of HC in Section 5.

Replacing the choice rule (1) in Pr
(
δi(t + 1)

)
=∑

Pr(δi(t + 1)|N (i))Pr(N (i)) results in the follow-
ing probabilistic interpretation of the original binary HC
model. Each node i has a value at time t denoted by u(i, t)
which represents the probability that she adopts the desired
product at time t:

u(i, t+ 1) = βib+ (1− βi)
∑

j∈N (i)

ωiju(j, t), (2)

Simple calculation shows that the bias value b can be inte-
grated into the network by adding a bias node n (assuming
that the network has n−1 nodes) with adoption probability
b. Therefore, HC dynamics converts to the following:

u(i, t+ 1) =
∑

j∈EN (i)

Piju(j, t), (3)

where EN (i) = N (i)∪{n} is the extended neighborhood,
Pin = βi, u(n, t) = b, and ∀j 6= n : Pij = (1 − βi)ωij .
Rewriting (3) in the following form shows that HC follows
the discrete form of Heat Equation [13], which reveals the
naming reason of HC influence model: u(:, t + 1) − u(:
, t) = (P − I)u(:, t), where L = I − P is the Laplacian
matrix, u(i, t) is the temperature of particle i at time t, and
“:” denotes the vector of all entries.

3 HC INFLUENCE SPREAD
The influence spread of set S for time t is defined as the ex-
pected number of active nodes at time t of a cascade started
with S. Knowing that u(i, t) is the probability of node i be-
ing active at time t, influence spread (or function) σ(S, t)

is computed from:

σ(S, t) =
∑

i∈V
u(i, t). (4)

Motivated by the classical heat transfer methods, the initial
and the boundary conditions should be specified to solve
the heat equation and find u(i, t) uniquely. In HC, the seeds
S and the bias node are the boundary nodes and the rest are
interiors. Assuming S = {n−1, n−2, ..., n−|S|} and n as
the bias node, HC is defined by the following heat equation
system:

Main equation : u(:, t+ 1)− u(:, t) = −Lu(:, t)

Boundary conditions : u(n, t) = b,

u(s, t) = 1 ∀s ∈ S (5)
Initial condition : u(:, 0) = z + [0, ..., 0, 1, ..., 1︸ ︷︷ ︸

|S|

, b]′,

where, as indicated in this formula, initial value u(:, 0) is
the sum of two vectors: the initial values of the interior
nodes (z) and the initial values of boundaries (the second
vector). The corresponding entries of boundaries in z are
zero. In the continue, exploiting probability theory and
novel Markov chain metrics, we provide a closed form so-
lution to this heat equation system.

Social network G can be interpreted as an absorbing
Markov chain where the absorbing states (boundary set B)
are the seeds and bias node, B = S ∪ {n}, and Pij is the
probability of transition from i to j. The adoption proba-
bility of the nodes at time t, i.e. u(:, t), can be written as a
linear function of initial condition (3):

u(:, t) = P tu(:, 0), (6)

where P is row-stochastic and has the following block

form: P =

[
R B
0 I

]
. The superscript indicates the time

here. The boundary set by definition have fixed values over
time and do not follow any other nodes which leads to the
zero and identity blocks I(|S|+1)×(|S|+1). Blocks R and
B represent transition probabilities of interior-to-interior
and interior-to-boundary respectively. Note that different
boundary conditions in (5), like different seed set, result
in a different P . Therefore both P and u(:, t) implicitly
depend on S.

When t goes to infinity, transient part of u vanishes and it
converges to the steady-state solution v = u(:,∞), which
is independent of time and is Harmonic, meaning that it
satisfies Pv = v [14]. Assume v =

(
vI , vB)T where I =

V \ B is the set of interior nodes, then the value of interior
nodes is computed from boundary nodes [14]:

vI = (I −R)−1BvB = FBvB = QvB. (7)

where F = (I − R)−1 is the fundamental matrix and Fij
indicates the average number of times that a random walk

318

started from i passes j before absorption by any absorbing
(boundary) nodes [14]. Also, the absorption probability
matrixQ = FB is a (n−|S|−1)×(|S|+1) row-stochastic
matrix, where Qij denotes the probability of absorption of
a random walk started from i by the absorbing node j [14].

From here on, without loss of generality, we assume b to
be zero in equation (5). Using (6) and (7), the influence
spreads for infinite time can be computed in closed form:

σ(S,∞) =

n∑

i=1

v(i) = |S|+
∑

i∈I

∑

s∈S
QSis. (8)

The superscript in QS and PS explicitly indicates that they
are functions of seed set S. Note that in fact they are de-
pending on the total boundary set, B = S ∪ {n}, but since
the bias node is always a boundary, throughout this paper
we discard it from the superscripts to avoid clutter.

4 INFLUENCE MAXIMIZATION FOR
HC

In this section we solve the influence maximization prob-
lem for infinite time horizon under the HC model:

S∗ = argmax
S⊆V

σ(S,∞), s.t. |S| ≤ K. (9)

4.1 INFLUENCE MAXIMIZATION FOR K = 1

Based on (8) and (9), the most influential person (MIP)
is the solution of the following optimization problem:
argmaxV\{n}

∑
i∈V\{s,n}Q

{s}
is . This equation states that

to find the MIP, we need to pick each candidate s and make
it absorbing and compute the new P as P {s} which in turn
changes Q to Q{s}, and repeat this procedure n − 1 times
for all s. This procedure is problematic because for each
Q{s} we require to recompute matrix F {s} which involves
matrix inversion. But, in the following theorem we show
that we are able to do this by only one matrix inversion in-
stead of n − 1 matrix inversions, and having matrix F ∅ is
enough to find the most influential person of the network (∅
sign indicated no seed is selected):
Theorem 1. MIP under HC (1) when t→∞ can be com-
puted in closed form from the following formula:

MIP = argmax
s∈V\{n}

∑

i∈V\{n}

F ∅is
F ∅ss

= argmax1′F̆ ∅, (10)

where F̆ ∅ is F ∅ when each of its columns is normalized by
the corresponding diagonal entry. Note that left multiplica-
tion of all ones row vector is just a column-sum operation.

4.2 INFLUENCE MAXIMIZATION FOR K > 1

Although the influence maximization can be solved opti-
mally for K = 1 , the general problem (9) under HC for
K > 1 is NP-hard:
Theorem 2. Given a network G = (V, E) and a seed set
S ⊆ V , influence maximization for infinite time horizon (9)
under HC defined by (1) is NP-hard.

In spite of being NP-hard, we show that the influence
spread σ(S,∞) is submodular in the seed set S which en-
ables us to find a provable near-optimal greedy solution. A
set function f : 2V → R maps subsets of a finite set V to
the real numbers and is submodular if for T ⊆ S ⊆ V and
s ∈ V \ S , f(T ∪ {s}) − f(T) ≥ f(S ∪ {s}) − f(S)
holds, which is the diminishing return property. Following
theorem presents our established submodularity results.

Theorem 3. Given a networkG = (V, E), influence spread
σ(S,∞) under the HC model is non-negative monotone
submodular function.

The greedy solution adds nodes to the seed set S se-
quentially and maximizes a monotone submodular func-
tion with (1 − 1/e) factor approximation guarantee
[15]. More formally the (k + 1)-th seed is the node
with maximum marginal gain: (k + 1)th-MIPt =
argmaxs∈V\{Sk∪{n}} σ(Sk ∪ {s}, t)− σ(Sk, t), where Sk
is the set of k seeds which have been picked already. Al-
though we can compute the above objective function in
closed form, for selecting the next seed we have to test all
s to solve the problem which is the approach of all existing
greedy based method in the literature. Previously a lazy
greedy scheme have been introduced to reduce the number
testing candidate nodes s [8]. In the next section we go one
step further and show that under the HC model and for infi-
nite time horizon we can solve the marginal gain in closed
form.

4.3 GREEDY SELECTION

An important characteristic of the linear systems, like HC
when t→∞, is the “superposition” principle. We leverage
this principle to calculate the marginal gain of the nodes
efficiently and pick the one with maximum gain for the
greedy algorithm. Based on this principle, the value of each
node in HC for infinite time, and for a given seed set S, is
equal to the algebraic sum of the values caused by each
seed acting alone, while all other values of seeds have been
kept zero. Therefore, when a node s is added to the seed set
Sk, its marginal gain can be calculated as the summation of
values of the nodes when all of the values of Sk have been
turned to zero and node s is the only seed in the network,
whose value is 1− vSk(s). In this new problem, the vector
of boundary values vSk∪{s}B is a vector of all 0’s except the
entry corresponding to the node s with value 1 − vSk(s),
and the value of interior node i is obtained from (7):

v
Sk∪{s}
I (i) = Q

Sk∪{s}
is (1− vSk(s))

Substituting Q from lemma 3 result (see Supplementary),
the k + 1-th seed is determined from the following closed

319

form equation:

(k + 1)th-MIP

= argmax
s∈V\{Sk∪{n}}

∑

i∈V\{Sk∪{n}}

FSkis
FSkss

(
1− vSk(s)

)
,

= argmax(1− vSk)′F̆Sk (11)

Note that vector vSk is obtained in step k and is known,
and matrix FSk can be calculated from FSk−1 without any
need for matrix inversion (see Supplementary, lemma 1).
One may observe that equation (11) is the general form of
Theorem 1, since vS0 = v∅ = 0. Notice that equation
(11) intuitively uses two criteria for selecting the new seed:
its current value should be far from 1 (higher value for
(1−vSk(s)) term) which suggests that it is far from the pre-
viously selected seeds, and at the same time it should have
a high network centrality (corresponding to the FSkis /F

Sk
ss

term). Algorithm 1 summarizes our C2GREEDY method
for t → ∞: a greedy algorithm with 2 closed form steps.
Operator ⊗ in step 10 denotes the Hadamard product.

Algorithm 1 C2GREEDY

1: input: extended directed network G = (V, E) with bias
node n, maximum budget K.

2: output: seed set SK ⊆ V with cardinality K.
3: compute matrix P from G.
4: S0 := ∅
5: FS0 := (I − PS0)−1

6: s = argmax1′F̆ ∅, and S1 = S0 ∪ {s}
7: vS1 = F̆S0(:, s)
8: for k = 1 to K − 1 do

9: ∀i, j ∈ I : F
Sk∪{s}
ij = F

Sk
ij −

F
Sk
is F

Sk
sj

F
Sk
ss

10: s = argmax(1− vSk)′⊗1′F̆Sk , and Sk+1 = Sk ∪{s}
11: vSk+1 = vSk + (1− vSk (s))F̆Sk (:, s)
12: end for

5 DISCUSSION
In this section, we present the comprehensive view of the
HC model and elaborate its (unifying) relation to the other
models by providing multiple interpretations.

Social interpretation. HC can be simply extended to
model many real cases that the other influence models fail
to cover. As briefly mentioned in Section 2, the original
HC (1), models both “social” and “non-social” influences
which cover the observations from the real datasets [12].
The extension of HC which is more flexible in modeling
real world cascades is as follows:

u(i, t+1) = mαi +rγi +(1−γi−αi)
∑

j∈N (i)

ωiju(j, t), (12)

where,
∑
j∈N (i) ωij = 1, γi, αi ∈ [0, 1], m = 1, and

r = 0. Factor r models the “discouraging” factor like
intrinsic reluctance of customers toward a new product,
and m represents “encouraging” factor like media that pro-
motes the new product. These two factors can explain cases

where all neighbors of a node are active but the node re-
mains inactive, or when a node becomes active while none
of her neighbors are active [12]. Note that all of the for-
mulas and results stated so far is simply applicable to the
general HC model (12).

Unification of existing non-progressive models. HC (1)
unifies and extends many of the existing non-progressive
models. In the Voter model, a node updates its choice at
each time step by picking one of its neighbors randomly
and adopting its choice. In other words, the choice rule of
node i is the ratio of the number of her active neighbors to
her total number of neighbors. Thus, Voter’s choice rule
is the simplified form of HC’s choice rule (1) where ωij is
equal to 1

di
(di is the out-degree of node i) and all βis are

set to zero. Also, note that having βi = 0 indicates that the
Voter does not cover the “non-social” influence.

In the non-progressive LT (NLT) [2], each node is as-
signed a random threshold θ at each time step and be-
comes active if the weighted number of its active neighbors
(at previous time step) becomes larger than its threshold:∑
j∈N (i) ωijδj(t) ≥ θi(t+1), where the edge weights sat-

isfy
∑
j∈N (i) ωij ≤ 1. Thus, the choice rule of node i at

time (t+ 1) under the NLT is obtained from the following
equation:

Pr
(
δi(t+ 1) = 1|N (i)

)
= Pr

(
θi(t+ 1) ≤ ΣωNLT

ij δj(t)
)

= ΣωNLT
ij δj(t), (13)

where the second equality is the result of sampling θi(t +
1) from the uniform distribution U(0, 1). Equation (13) is
the simplified form of HC’s choice rule (1), where b = 0
and (1 − βi)ω

HC
ij = ωNLT

ij . Note that since in the NLT b
accepts only zero value, this influence model also cannot
cover encouraging “non-social” influence. Moreover, if the
edge weights’ gap in NLT, i.e. gi = 1 −∑j∈N (i) ω

NLT
ij ,

is zero for all the nodes, it cannot model the “non-social”
influence at all, since the corresponding βi’s in (1) would
be equal to zero in that case.

Generalized linear threshold (GLT) is another non-
progressive model proposed in [16] to model the adoption
process of multiple products. Assigning a color c ∈ C to
each product, a node updates its color, at each time step,
by randomly picking one of its neighbors based on its edge
weights and adopts the selected neighbor’s color. For bi-
nary case |C| = 2, where we only distinct between adoption
of a desired product (active) and the rest of products (inac-
tive), GLT’s choice rule reduces to the following equation:
Pr
(
δi(t+1) = 1|N (i)

)
= β

2 +(1−β)
∑
j∈N (i) ωijδj(t).

It is easy to see that this is the restricted form of HC’s
choice rule (1), where nodes are all connected to the bias
node with equal weight of β and bias value b has to be β

2 .

Physical interpretation. We showed that the existing
non-progressive models are special cases of HC, and in
this part we describe their equal heat conduction system

320

Table 1: Specifying the equal heat system for existing non-progressive influence models.

Model Non-Social
influence Weighted edges Boundary Init. Cond. Equivalent Physical

Heat Conduction SystemHigh T = 1 Low T < 1 = 0 6= 0
NLT1

√ √ √ √
Circular ring with a fixed-temp. point

NLT2
√ √ √ √ √ A rod with fixed-temp.

ends, one high one low
NLT3

√ √
(Isolated) circular ring

NLT4
√ √ √

Circular ring with a fixed-temp. point
Voter

√
(Isolated) circular ring

GLT
√ √ √

Circular ring with a fixed-temp. point

which are uniquely specified by the initial and boundary
conditions. Table 1 summarizes the heat interpretation of
the influence models. We introduce four variants of non-
progressive LT, based on two factors: seed and gap gi.
NLT1 and NLT2 support non-zero gaps, and NLT2 and
NLT4 allows seeds, i.e. nodes in the network that always
remain active. The non-progressive LT model presented
in [2] is equivalent to NLT2. Reluctance factor and seeds
in all models are equivalent to the low and high temperature
boundaries respectively, and initial condition addresses the
interiors’ initial values (z in (5)). The non-social influence
and edge weights factors appear in the Laplacian matrix
calculation of (5). The equivalent physical heat conduction
systems are easy to understand, here we just briefly point
out the equivalence of the Voter model and the isolated cir-
cular ring. Circular ring is a rod whose ends are connected
to each other and do not have any energy exchange with
outside [17] which explains why the Voter conserves the
total initial heat energy, and reaches to an equilibrium with
an equal temperature for all of the nodes, i.e., consensus.

Random walk interpretation. Beside the heat conduc-
tion view, the random walk prospect helps to gain a better
understanding of the models and their relations. Assume
that active and inactive nodes are colored black and white
respectively. Consider the original view of any influence
model which is the actual process that unfolds in time, so
we look at the time-forward direction. We take a snapshot
of the colored network at each time step t. Putting together
the sequence of snapshots, the result is a random walk in
the “colored graphs” state space with 2n states. On the
other hand, the dual view looks at the time-reverse direction
of influence models. It is known for both IC-based models
(like IC [2] and ConTinEst [7]) and LT-based models (Ta-
ble 1 as well as HC and LT) that a single node from N (i)
is responsible for i’s color switch, which we name it as the
parent of i. Now assuming that the process has advanced up
to the time t, we reverse the process by starting from each
node i and follow its ancestors. Here is the point where
IC and LT based models separate from each other: due to∑
j∈N (i) ωij ≤ 1 constraint, ancestors of i in the LT-based

models form a random walk starting from node i, which is
not the case in IC-based models. Note that we have n ran-
dom walks that can meet and merge, thus they are known
as coalescing random walks [18]. This view also helps us
to demonstrate the essential difference between progressive

Table 2: List of networks used in experiments.

|V| |E| Params

Synthetic
Networks

Random 1024 - [0.5, 0.5; 0.5, 0.5]

Hier. 1024 - [0.9, 0.1; 0.1; 0.9]

Core. 1024 - [0.9, 0.5; 0.5, 0.3]

ForestFire 1− 300K 2.5|V| [0.35, 0.25]

Real
Networks

KClub 34 501 -
PBlogs 1490 19087 -

WikiVote 7115 103689 -
MLWFW 10604 168918 -

and non-progressive models. Dual view of progressive LT
model is a coalescing self-avoiding walks which is the out-
come of randomizing the threshold θ only once at the be-
ginning of the process for the nodes in each realization.
This bounds the number of “live” edges [2] connected to
each node by one which prevents the creation of “loop” in
the influence paths. Note that both counting and finding the
probability of self-avoiding walks are #P hard [4].

6 EXPERIMENTS
In this section, we examine several aspects of C2GREEDY
and compare it with state-of-the-art methods. Experi-
ments mainly focus on influence maximization and tim-
ing aspects. Finally, we present one example of real non-
progressive data and illustrate the result of C2GREEDY.

6.1 DATASET
Table 2 summarizes the statistics of the networks that we
use throughout the experiments. We work with both syn-
thetic and real networks which we briefly discuss next.

Synthetic network generation. We consider the follow-
ing types of Kronecker network for extensive performance
comparison of our method with the state-of-the-art meth-
ods: random [19] (parameter matrix [0.5, 0.5; 0.5, 0.5]),
hierarchical [20] ([0.9, 0.1; 0.1; 0.9]), and core-periphery
[21] ([0.9, 0.5; 0.5, 0.3]). We generate 10 samples from
each network and report the average performance of each
method. Edge weights are drawn uniformly at random from
[0, 1] and weights of each node’s outgoing edges is normal-
ized to 1. For timing experiment, we use ForestFire [20]
(Scale-free) network with forward and backward burning
probability of 0.35 and 0.25, respectively, and set the out-
going edge weights of node i to 1/|N (i)|. The expected
density, i.e., number of edges per node, for the resulted
ForestFire networks is 2.5.

321

1 2 3 4 5
0

2

4

6

8

10

12

14

In
flu

en
ce

 fu
nc

tio
n
(

S
,

)

Seed size |S|

Optimal
Greedy
Degree
PageRank
Random

(a) C2Greedy vs. optimal.

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

Seed size |S|

In
flu

en
ce

 fu
nc

tio
n
(

S
,

)

C2Greedy Performance
Offline Bound
Online Bound

(b) Online and offline bounds.

Figure 1: For small network (a) shows C2Greedy matches the
optimal performance. For a larger network (b) compares perfor-
mance of C2Greedy with online and offline bounds.

Real Networks. Zachary’s karate club network (KClub)
is a small friendship network with 34 nodes and 501 edges
[22]. The political blogs network (PBlogs) [23], is a moder-
ate size directed network of hyperlinks between weblogs on
US politics with 1490 nodes and 19087 edges. Wikipedia
vote network (WikiVote), is the network of who-vote-
whom from wikipedia administrator elections [24] with
7115 nodes and 103689 edges. Finally, MLWFW is the
network of who-follow-whom in the machine learning re-
search community which we extract from citation networks
of combined ACM and DBLP citation network which is
available as a part of ArnetMiner [25]. For more informa-
tion about MLWFW refer to Section 6.4.

For all synthetic and real networks, after constructing the
network, we add the bias node to the network and connect
all nodes to it with weight βi = 0.1 and re-normalize the
weight of the other edges accordingly.

6.2 INFLUENCE MAXIMIZATION
In this section we investigate the performance of
C2GREEDY in the main task of influence maximization
i.e., solving the set function optimization (9). Since find-
ing the optimal solution for (9) is NP-hard, we compare
C2GREEDY with optimal solution only for a small net-
work, then for a large network we show that C2GREEDY
result is close to the online bound [8]. We also compare the
performance of C2GREEDY with the state-of-the-art meth-
ods proposed for solving (9) under different (mostly pro-
gressive) influence models.

C2GREEDY vs. optimal. For testing the quality of
C2GREEDY method, we compare its performance with the
best seed set (determined by brute force) on a small size
network. We work with the KClub network for the brute-
force experiment with K = 5. As Figure 1(a) shows
C2GREEDY selects nodes that match the performance of
the optimal seed set. In the next step, on a larger network,
we show that the performance of C2GREEDY is close to the
known online upper bound [8]. We compute the online and
offline bounds of greedy influence maximization [8] with
K = 30 for PBlogs network. Figure 1(b) illustrates that
C2GREEDY result is close to the online bound and there-
fore close to the optimal solution’s performance.

C2GREEDY vs. state-of-the-art. Next, we compare
C2GREEDY with the state-of-the-art methods of influence
maximization over three aforementioned synthetic net-
works and WikiVote real network. Among baseline meth-
ods PMIA [5] and LDAG [4] are approximation for IC and
LT models respectively and SP1M [26] is a shortest-path
based heuristic algorithm for influence maximization under
IC. ConTinEst [27] is a recent method for solving contin-
uous time model of [6] and PageRank is the well-known
information retrieval algorithm [28]. Finally, Degree se-
lects the nodes with highest degree as the most influential
and Random picks the seed set randomly.

The comparison results are depicted in Figure 2. Inter-
estingly, our algorithm outperformed all of the baselines.
Strangely, ConTinEst performs close to Random (except in
the random network). A closer look at the results for three
synthetic networks reveal that except ConTinEst’s odd be-
havior all other methods have persistence rank in perfor-
mance. C2GREEDY is the best method and is followed by
PMIA and LDAG, both in second place, which are closely
followed by SP1M. PageRank, Degree and Random are
next methods in order. In WikiVote real network of Figure
2(d) surprisingly most of the state-of-the-art methods per-
form terribly poor and Degree (as the KMIP solution to the
Voter model) is the only competitor of C2GREEDY. Result
of experiment with WikiVote shows that most influential
nodes in a progressive models are not necessary influential
in non-progressive ones, and designing non-progressive-
specific algorithms (like C2GREEDY) is required for influ-
ence maximization under non-progressive models.

6.3 SPEED AND SCALABILITY
In this part we illustrate the speed benefits of having
two closed form updates in the greedy algorithm and
also deal with the required single inverse computation of
C2GREEDY to prove the scalability of our method.

Closed form benefits. As discussed in Section 4, our main
algorithm C2GREEDY benefits from closed form compu-
tation for both influence spread (8) and greedy selection
(11). To show the gain of these closed form solutions, we
run the greedy algorithm in three different settings. First
without using any of (8) and (11) which we call GREEDY
and uses Monte Carlo simulation to estimate the influence
spread. Second we only use (8) to have the closed form
for influence spread without closed form greedy update of
(11) which results in C1GREEDY, and finally C2GREEDY
which uses both (8) and (11). Note that we can add
lazy update of [8] (see Supplementary) to GREEDY and
C1GREEDY to get LGREEDY and LC1GREEDY respec-
tively. Finally we include the original greedy method [2] of
solving LT model (progressive version of our model) and
its lazy variant, with 100 iteration of Monte Carlo simula-
tion. Note that for having a good approximation of influ-
ence spread in LT model, simulations are run for several
thousand iterations, but here we just want to illustrate that

322

0 10 20 30 40 50
0

100

200

300

400

500

Seed size |S|

In
flu

en
ce

 fu
nc

tio
n
(

S
,

)

Degree
SP1M
PageRank
Random
PMIA
LDAG
ConTinEst
C2Greedy

(a) Random network

0 10 20 30 40 50
0

50

100

150

200

250

300

350

Seed size |S|

In
flu

en
ce

 fu
nc

tio
n
(

S
,

)

Degree
SP1M
PageRank
Random
PMIA
LDAG
ConTinEst
C2Greedy

(b) Hierarchical network

0 10 20 30 40 50
0

100

200

300

400

500

600

700

Seed size |S|

In
flu

en
ce

 fu
nc

tio
n
(

S
,

)

Degree
SP1M
PageRank
Random
PMIA
LDAG
ConTinEst
C2Greedy

(c) Core-periphery network

0 10 20 30 40 50
0

100

200

300

400

500

600

700

800

Seed size |S|

In
flu

en
ce

 fu
nc

tio
n
(

S
,

)

Degree
SP1M
PageRank
Random
PMIA
LDAG
ConTinEst
C2Greedy

(d) Real network (WikiVote)

Figure 2: Comparing performance of C2Greedy with state-of-the-art influence maximization methods. Networks of (a), (b), and (c) are
synthetic and (d) is a real network.

10
0

10
1

10
2

10
3

10
4

10
5

T
im

in
g

(s
ec

)

1.0095 sec

LC1G

C1G

LG

G LLT

LT

C2G

(a) Total time

2 4 6 8 10
10

-2

10
0

10
2

10
4

kth seed

G
re

ed
y

se
le

ct
io

n
tim

e

Gr LGr C1Gr LC1Gr C2Gr LTM LLTM

(b) Time per seed (sec)

Figure 3: In (a) we compare the total timing of seven algorithms
to investigate the effect of closed updates on speed and in (b) we
show the per-seed required time for the same experiment.

the greedy algorithm for HC is much faster than LT, for
which 100 iterations is enough. Figure 3(a) illustrates the
speed in log-scale of all seven algorithms for K = 10 over
the Pblogs dataset [23]. Note that the required time of in-
verse computation (7) is also included. The results confirm
that both closed forms decrease the timing significantly (1
sec vs. 461 sec for the next best variation) and help the
greedy algorithm far more than the lazy update.

Per-seed selection time. The major computational bottle-
neck of our algorithm is the inverse computation of (7). But
fortunately this is needed once and at the beginning of the
process. Here assuming offline inverse computation, we
are interested in the cost of adding each seed. Figure 3(b)
compares the cost of selecting k-th seed for the five vari-
ation of our algorithm, plus LT and LazyLT all described
previously. As expected C2GREEDY requires the lowest
computation time per seed. Also, the timing per seed for
C2GREEDY is strictly decreasing over the size of S, be-
cause the matrix N shrinks, while per seed selection time
of LT is increasing on average, because more seeds proba-
bly lead to bigger cascades.

Inverse approximation. Going beyond networks of size
104 makes the inverse computation problematic, but fortu-
nately we have a good approximation of the inverse through
the following expansion: F = (I−R)−1 ≈ I+R1+R2+
... + RT . Since all eigenvalues of R are less than or equal
to 1 contribution of (R)i to the summation drops very fast
as i increases. The question is how many terms of the ex-
pansion, T , is enough for our application. Heuristically we
choose the (effective) diameter of the graph as the number
that provides us with a good approximation of F−1. Note

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

Seed Size |S|

In
flu

en
ce

 fu
nc

tio
n
(

S
,

)

F-1

T = 1
T = 5
T = 10
T = 15
T = 20

(a) Inverse Approximation

10
3

10
4

10
5

10
-2

10
-1

10
0

10
1

Network Size

T
im

e
(M

in
)

10 minutes

(b) Scalability for K = 10

Figure 4: Timing for inf. max. in large scale networks by ex-
ploiting (a) inverse approximation and (b) parallel programming.
Results of (b) are on FF networks with edge density 2.5.

that the ith term of the expansion pertains to the shortest
paths of size i between any pair of nodes. Since the graph
diameter is the longest shortest path between any pair of
nodes, having that many terms gives us a good approxima-
tion of F−1. This is also demonstrated by the experimental
result of Figure 4(a) where we compare the result of the
influence maximization on the WikiVote network with di-
ameter 15, with actual F−1 and its approximation for dif-
ferent T ’s. As discussed when T reaches to the diameter,
the result of the algorithm that uses inverse approximation
coincides with the algorithm that uses the exact inverse.

Scalability. Finally to show the scalability of C2GREEDY
we perform influence maximization on networks with sizes
up to 3× 105. For speeding up the large scale matrix com-
putation of the Algorithm 1 we developed an MPI version
of our code which allows us to run C2GREEDY on com-
puting clusters. Figure 4(b) shows the running time of
C2GREEDY for ForestFire networks of sizes varying be-
tween 1K to 300K with edge density 2.5 (i.e. ratio of edges
to nodes) and effective diameter of 10. The MPI code was
run on up to 400 cores of 2.8 GHz. As Figure 4(b) indi-
cates even for the largest tested network with 0.3 million
nodes and 0.75 million edges C2GREEDY takes less than
10 minutes for K = 10.

To give a sense of our achievement in scalability we briefly
mention the result of one of the state-of-the-art methods:
The scalable ConTinEst [7] runs with 192 cores for almost
60 minutes on ForestFire network of size 100K and edge
density of 1.5 to select 10 seeds, where our C2GREEDY
finishes in less than 2 minutes for the similar ForestFire

323

Publication Year

A
ut

ho
r

ID

01 02 03 04 05 06 07 08 09 10 11 12

200

400

600

800

1000

(a) Non-progressive cascade
of ML research topic.

0 10 20 30 40 50
0

200

400

600

800

1000

Seed Size |S|

In
flu

en
ce

 fu
nc

tio
n
(

S
,

)

Most Cited Author
Degree
Random
C2Greedy

(b) Inf. max. on inferred
WFW network, MLWFW.

Figure 5: In (a) we show the existence of non-progressive cas-
cade of ML research topic where white means all papers of the au-
thor is about ML. In (b) we compare C2Greedy result with other
baselines such as most cited author.

network (100K nodes and density 1.8) with 200 cores.

6.4 REAL NON-PROGRESSIVE CASCADE
Collaboration and citation networks are two well-known
real networks that have been studied in social network anal-
ysis literature [2, 29]. Here we introduce a new network
that represents who-follows-whom (WFW) in a research
community. Note that the nodes in the collaboration and
citation networks are authors and papers respectively but
in WFW network nodes are authors and edges are inferred
from citations. A directed edges (u, v) means that author u
has cited one of the papers of author v which reveals that
u follows/reads papers of v. Here we investigate the “re-
search topic adoption” cascade. Researchers adopt new re-
search topics during their careers and influence their peers
along different research communities. The process starts
with an arbitrary research topic for each author and they
are influenced by the research topic of those they follow
and switch to another topic. For example a data mining
researcher that follows mostly the papers of machine learn-
ing authors is probably going to switch his research topic
to machine learning.

For illustration, we consider only the authors who have
published papers in Machine Learning (ML) conferences
and journals in a given time period. For the list of ML
related conferences and journal we use resources of Arnet-
Miner project [25]. We consider each time step a year and
study the years 2001 - 2012. An author is an active ML
author in a given year if at least half of his publications in
that year was published in ML venues. Figure 5(a) shows
the change in the percentage of ML publication of ML au-
thors who has more than 70 publication in years between
2001 and 2012. As Figure 5(a) suggests, cascade of ML
research topic is a non-progressive process and researcher
switch back and forth between ML and other alternatives.
Among 1049 authors of Figure 5(a) about 400 of them are
core ML authors who have rarely published in any other
topic, but the non-progressive nature of the process is more
visible in the rest (bottom part of Figure 5(a)).

Next we perform influence maximization on the inferred
WFW network which we call MLWFW network. We ex-

tract the MLWFW network from the combined citation net-
work of DBLP and ACM which is publicly available as a
part of ArnetMiner project [25] and learn the edge weights
similar to the weighted cascade model of [2]. The ML-
WFW network of 2001 - 2012 time frame consists of 10604
authors and 168918 edges. Figure 5(b) compares the re-
sult of influence maximization using C2GREEDY and other
baselines. Note that other than regular baselines in this spe-
cific domain we have another well-known method which
is “most cited author” that is equal to selecting authors
with highest weighted in-degree in MLWFW network. As
Figure 5(b) illustrates, C2GREEDY outperforms all of the
other methods. Note that the list of K most influential au-
thors in this experiment means that “if” those authors were
switching to the ML topic completely (becoming a mem-
ber of seed set S) they would make the topic vastly popu-
lar. Therefore, although the seed set contains the familiar
names of well-known ML authors (e.g., Michael I. Jordan
and John Lafferty in first and second places), sometimes
we encounter exceptions. For example, in the list of top
10 authors selected by C2GREEDY we have “Emery N.
Brown” who is a renowned neuroscientist with publications
in “Neural Computation” journal.

7 CONCLUSION
We introduced the Heat Conduction Model which is able
to capture both social influence and non-social influence,
and extends many of the existing non-progressive models.
We also presented a scalable and provably near-optimal so-
lution for influence maximization problem by establishing
three essential properties of HC: 1) submodulairty of in-
fluence spread, 2) closed form computation for influence
spread, and 3) closed form greedy selection. We conducted
extensive experiments on networks with hundreds of thou-
sands of nodes and close to million edges where our pro-
posed method gets done in a few minutes, in sharp contrast
with the existing methods. The experiments also certified
that our method outperforms the state-of-the-art in terms of
both influence spread and scalability. Moreover, we exhib-
ited the first real non-progressive cascade dataset for influ-
ence maximization. We believe that our method removes
the computational barrier that prevented the literature from
considering the non-progressive influence models. Study-
ing other forms of non-progressive influence models, such
as non-progressive IC, is an interesting future work.

Acknowledgements
ZZ and GG acknowledge partial support from DTRA
grants HDTRA1-09-1-0050 and HDTRA1-14-1-0040,
DoD ARO MURI Award W911NF-12-1-0385, and NSF
grants CNS-10171647, CNS-1117536 and CNS-1411636.
AB and AA acknowledge partial support from NSF grants
IIS-1447566, IIS-1422557,CCF-1451986, CNS-1314560,
IIS-0953274, IIS-1029711, NASA grant NNX12AQ39A,
a gift from IBM and Yahoo!, and technical support from
the University of Minnesota Supercomputing Institute.

324

References

[1] E. Even-Dar and A. Shapira, “A note on maximizing
the spread of influence in social networks,” in WINE,
2007, pp. 281 – 286.

[2] D. Kempe, J. Kleinberg, and v. Tardos, “Maximizing
the spread of influence through a social network,” in
KDD, 2003, pp. 137 – 146.

[3] P. Domingos and M. Richardson, “Mining the net
value of customers,” in KDD, 2001, pp. 57 – 66.

[4] W. Chen, Y. Yuan, and L. Zhang, “Scalable influ-
ence maximization in social networks under the linear
threshold model,” in ICDM, 2010, pp. 88 – 97.

[5] W. Chen, C. Wang, and Y. Wang, “Scalable influence
maximization for prevalent viral marketing in large-
scale social networks,” in KDD, 2010, pp. 1029 –
1038.

[6] M. Gomez-Rodriguez, D. Balduzzi, and B. Schlkopf,
“Uncovering the temporal dynamics of diffusion net-
works,” in ICML, 2011.

[7] N. Due, L. Song, M. G. Rodriguez, and H. Zha, “Scal-
able influence estimation in continuous-time diffusion
networks,” in NIPS, 2013.

[8] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos,
J. VanBriesen, and N. Glance, “Cost-effective out-
break detection in networks,” in KDD, 2007, pp. 420
– 429.

[9] A. Goyal, W. Lu, and L. V. Lakshmanan, “Simpath:
An efficient algorithm for influence maximization un-
der the linear threshold model,” in ICDM, 2011, pp.
211–220.

[10] P. Clifford and A. Sudbury, “A model for spatial con-
flict,” Biometrika, vol. 60, no. 3, pp. 581 – 588, 1973.

[11] R. Holley and T. Liggett, “Ergodic theorems for
weakly interacting infinite systems and the voter
model,” The Annals of Probability, vol. 3, no. 4, pp.
643 – 663, 1975.

[12] M. Cha, A. Mislove, and K. P. Gummadi, “A
measurement-driven analysis of information propaga-
tion in the flickr social network,” in WWW, 2009, pp.
721 – 730.

[13] G. Lawler, Random walk and the heat equation, 2010.

[14] P. G. Doyle and J. L. Snell, Random walks and elec-
tric networks, 1984.

[15] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher,
“An analysis of approximations for maximizing sub-
modular set functionsI,” Mathematical Programming,
vol. 14, no. 1, pp. 265 – 294, Dec. 1978.

[16] N. Pathak, A. Banerjee, and J. Srivastava, “A general-
ized linear threshold model for multiple cascades,” in
ICDM, 2010, pp. 965 – 970.

[17] F. P. Incropera, Fundamentals of heat and mass trans-
fer. John Wiley & Sons, 2011.

[18] D. Aldous and J. A. Fill, Reversible Markov chains
and random walks on graphs, 2002.

[19] P. Erdos and A. Renyi, “On the evolution of random
graphs,” in Pub. of the Mathematical Institute of the
Hungarian Academy of Science, 1960, pp. 17– 61.

[20] A. Clauset, C. Moore, and M. E. J. Newman, “Hierar-
chical structure and the prediction of missing links in
networks,” Nature, vol. 453, pp. 98–101, 2008.

[21] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Falout-
sos, and Z. Ghahramani, “Kronecker graphs: An ap-
proach to modeling networks,” JMLR, vol. 11, pp.
985–1042, 2010.

[22] W. Zachary, “An information flow model for conflict
and fission in small groups,” Journal of Anthropolog-
ical Research, vol. 33, pp. 452 – 473, 1977.

[23] L. A. Adamic and N. Glance, “The political blo-
gosphere and the 2004 U.S. election: Divided they
blog,” in LinkKDD, 2005, pp. 36 – 43.

[24] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Pre-
dicting positive and negative links in online social net-
works,” in WWW, 2010, pp. 641 – 650.

[25] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su,
“ArnetMiner: extraction and mining of academic so-
cial networks,” in KDD, 2008, pp. 990–998.

[26] M. Kimura and K. Saito, “Tractable models for infor-
mation diffusion in social networks,” in PKDD, 2006,
pp. 259–271.

[27] M. Gomez-Rodriguez and B. Schlkopf, “Influence
maximization in continuous time diffusion networks,”
in ICML, 2012.

[28] S. Brin and L. Page, “The anatomy of a large-scale
hypertextual web search engine,” 1998.

[29] J. Tang, D. Zhang, and L. Yao, “Social network ex-
traction of academic researchers,” in ICDM, 2007, pp.
292–301.

[30] F. Zhang, The Schur complement and its applications.
Springer, 2006, vol. 4.

[31] A. Agarwal and J. Lang, Foundations of analog &
digital electronic circuits, 2005.

325

Scalable Recommendation with Hierarchical Poisson Factorization

Prem Gopalan
Department of Computer Science

Princeton University
Princeton, NJ

Jake M. Hofman
Microsoft Research

641 Sixth Avenue, Floor 7
New York, NY

David M. Blei
Departments of Statistics & Computer Science

Columbia University
New York, NY

Abstract

We develop hierarchical Poisson matrix factor-
ization (HPF), a novel method for providing
users with high quality recommendations based
on implicit feedback, such as views, clicks, or
purchases. In contrast to existing recommen-
dation models, HPF has a number of desirable
properties. First, we show that HPF more accu-
rately captures the long-tailed user activity found
in most consumption data by explicitly consider-
ing the fact that users have finite attention bud-
gets. This leads to better estimates of users’ la-
tent preferences, and therefore superior recom-
mendations, compared to competing methods.
Second, HPF learns these latent factors by only
explicitly considering positive examples, elimi-
nating the often costly step of generating arti-
ficial negative examples when fitting to implicit
data. Third, HPF is more than just one method—
it is the simplest in a class of probabilistic models
with these properties, and can easily be extended
to include more complex structure and assump-
tions. We develop a variational algorithm for ap-
proximate posterior inference for HPF that scales
up to large data sets, and we demonstrate its per-
formance on a wide variety of real-world recom-
mendation problems—users rating movies, lis-
tening to songs, reading scientific papers, and
reading news articles.

1 INTRODUCTION

Recommendation systems are a vital component of the
modern Web. They help readers effectively navigate oth-
erwise unwieldy archives of information and help websites
direct users to items—movies, articles, songs, products—
that they will like. A recommendation system is built from
historical data about which items each user has consumed,
be it clicked, viewed, rated, or purchased. First, it uncovers

the behavioral patterns that characterize various types of
users and the kinds of items they tend to like. Then, it ex-
ploits these discovered patterns to recommend future items
to its users.

In this paper, we develop Hierarchical Poisson factoriza-
tion (HPF) for generating high-quality recommendations.
Our algorithms easily scale to massive data and outperform
several existing methods. We show HPF is tailored to real-
world properties of user behavior data: the heterogeneous
interests of users, the varied types of items, and a realistic
distribution of the finite resources that users have to con-
sume these items.

In more detail, HPF is a probabilistic model of users and
items. It associates each user with a latent vector of prefer-
ences, each item with a latent vector of attributes, and con-
strains both sets of vectors to be sparse and non-negative.
The model assumes that each cell of the observed behavior
matrix is drawn from a Poisson distribution—an exponen-
tial family distribution over non-negative integers—whose
parameter is a linear combination of the corresponding user
preferences and item attributes. The main computational
problem is posterior inference: given an observed matrix
of user behavior, we would like to discover the latent at-
tributes that describe the items and the latent preferences
of the users, which we can then use to make predictions
and recommendations.

This inferential computation is common to many vari-
ants of matrix factorization. We find, however, that HPF
enjoys significant quantitative advantages over classical
methods for a variety of implicit feedback data sets. Fig-
ure 4 shows that HPF performs better than competing
methods—including the industry standard of matrix factor-
ization with user and item biases (MF) fit using stochas-
tic gradient descent—for large data sets of Netflix users
watching movies, Last.FM users listening to music, scien-
tists reading papers, and New York Times readers clicking
on articles.

We review related work in detail in Section 4. We now dis-
cuss details of the Poisson factorization model, including

326

yui

�i✓u

a c

U
D

⇠u ⌘i

a0,
a0

b0
c0,

c0

d0

Figure 1: The hierarchical Poisson factorization model.

its statistical properties and methods for scalable inference.

2 POISSON RECOMMENDATION

In this section we describe the Poisson factorization model
for recommendation, and discuss its statistical properties.

We are given data about users and items, where each user
has consumed and possibly rated a set of items. The obser-
vation yui is the rating that user u gave to item i, or zero if
no rating was given. In the “implicit” consumer data that
we consider here, yui equals one if user u consumed item i
and zero otherwise. User behavior data, such as purchases,
clicks, or views, are typically sparse. Most of the values of
the matrix y are zero.

We model these data with factorized Poisson distribu-
tions [4], where each item i is represented by a vector
of K latent attributes �i and each user u by a vector of
K latent preferences ✓u. The observations yui are mod-
eled with a Poisson distribution, parameterized by the in-
ner product of the user preferences and item attributes,
yui ⇠ Poisson(✓>u �i). This is a variant of probabilistic
matrix factorization [33] but where each user and item’s
weights are positive [25] and where the Poisson replaces
the Gaussian. While a Bernoulli distribution may seem
more appropriate for modeling binary data, we demonstrate
in Section 2.1 that the additivity of independent Poissons
result in models that capture the marginal user, item distri-
butions well. 1

Beyond the basic data generating distribution, we place
Gamma priors on the latent attributes and latent prefer-
ences, which encourage the model towards sparse repre-
sentations of the users and items. Furthermore, we place
additional priors on the user and item-specific rate param-
eter of those Gammas, which controls the average size of
the representation. This hierarchical structure allows us to

1Our ongoing work considers censored Poisson distributions.
Our initial results indicate that it is computationally expensive but
does not give better performance.

capture the diversity of users, some tending to consume
more than others, and the diversity of items, some being
more popular than others. The literature on recommenda-
tion systems suggests that a good model must capture such
heterogeneity across users and items [23].

Putting this together, the generative process of the hierar-
chical Poisson factorization model (HPF), illustrated in the
graphical model in Figure 1, is as follows:

1. For each user u:
(a) Sample activity ⇠u ⇠ Gamma(a0, a0/b0).
(b) For each component k, sample preference

✓uk ⇠ Gamma(a, ⇠u).

2. For each item i:
(a) Sample popularity ⌘i ⇠ Gamma(c0, c0/d0).
(b) For each component k, sample attribute

�ik ⇠ Gamma(c, ⌘i).

3. For each user u and item i, sample rating

yui ⇠ Poisson(✓>u �i).

This process describes the statistical assumptions behind
the model. We note that this contains, as a sub-class, a fac-
torization model with fixed rate parameters for all users and
items. We call this model Bayesian Poisson Factorization
(BPF).

The central computational problem is posterior inference,
which is akin to “reversing” the generative process. Given
a user behavior matrix, we want to estimate the conditional
distribution of the latent per-user and per-item structure,
p(✓1:N ,�1:M | y), termed the posterior, which is the key to
recommendation. We estimate the posterior expectation of
each user’s preferences, each items attributes and, subse-
quently, form predictions about which unconsumed items
each user will like. We discuss posterior inference in Sec-
tion 2.2.

Once the posterior is fit, we use HPF to recommend items
to users by predicting which of the unconsumed items each
will like. We rank each user’s unconsumed items by their
posterior expected Poisson parameters,

scoreui = E[✓>u �i | y]. (1)

This amounts to asking the model to rank by probability
which of the presently unconsumed items each user will
likely consume in the future.

2.1 Properties of HPF

With the modeling details in place, we highlight several
statistical properties of hierarchical Poisson factorization.

327

Netflix

1

10

100

1,000

10,000

100,000

1 10 100 1,000 10,000
User activity

N
um

be
r o

f u
se

rs

HPF
MF

Figure 2: A posterior predictive check of the distribution
of total ratings for the Netflix data set. The black squares
show the empirical count of the number of users who have
rated a given number of items, while the red and blue
curves show the simulated totals from fitted Poisson and
traditional matrix factorization models, respectively. The
Poisson marginal closely matches the empirical, with the
exception of users with very low activity, whereas classical
matrix factorization fits a large mean to account for skew
in the distribution and the missing ratings.

These properties provide advantages over classical Gaus-
sian matrix factorization. Specifically, by classical MF
we mean L2 regularized matrix factorization with bias
terms for users and items, fit using stochastic gradient de-
scent [23]. Without the bias terms, this corresponds to
maximum a-posteriori inference under Probabilistic Ma-
trix Factorization [33]. We generate negatives by randomly
sampling from missing ratings in the training set [7, 8, 29].

HPF captures sparse factors. As mentioned above, the
Gamma priors on preferences and attributes encourages
sparse representations of users and items. Specifically, by
setting the shape parameter to be small, most of the weights
will be close to zero and only a few will be large. This leads
to a simpler, more interpretable model.

HPF models the long-tail of users and items. One sta-
tistical characteristic of real-world user behavior data is the
distribution of user activity (i.e., how many items a user
consumed) and item popularity (i.e., how many users con-
sumed an item). These distributions tend to be long-tailed:
while most users consume a handful few items, a few “tail
users” consume thousands of items. A question we can ask
of a statistical model of user behavior data is how well it
captures these distributions. We found that HPF captures
them well, while classical matrix factorization does not.

To check this, we implemented a posterior predictive check
(PPC) [31, 10], a technique for model assessment from the
Bayesian statistics literature. The idea behind a PPC is to
simulate a complete data set from the posterior predictive
distribution—the distribution over data that the posterior

induces—and then compare the generated data set to the
true observations. A good model will produce data that
captures the important characteristics of the observed data.

We developed a PPC for matrix factorization algorithms on
user behavior data. First, we formed posterior estimates of
user preferences and item attributes for both classical MF
and HPF. Then, from these estimates, we simulated user
behavior by drawing values for each user and item. (For
classical matrix factorization, we truncated these values at
zero and rounded to one in order to generate a plausible
matrix.) Finally, we compared the matrix generated by the
posterior predictive distribution to the true observations.

Figure 2 illustrates our PPC for the Netflix data. In this fig-
ure, we illustrate three distributions over user activity: the
observed distribution (squares), the distribution from a data
set replicated by HPF (red line), and a distribution from
a data set replicated by Gaussian MF with generated neg-
atives using popularity-based sampling (blue line). HPF
captures the truth much more closely than Gaussian MF,
which overestimates the distribution of user activity. This
indicates that HPF better represents real data when mea-
sured by its ability to capture distributions of user activity.
In fact, this is encoded in its assumptions. We can rewrite
the Poisson observation model as a two stage process where
a user u first decides on a budget bu she has to spend on
items, and then spends this budget rating items that she is
interested in:

bu ⇠ Poisson(✓T
u

X

i

�i)

[yu1, · · · , yuM] ⇠ Mult(bu,
✓T

u �i

✓T
u

P
i �i

).

This shows that learning a PF model for user-item ratings
is effectively the same as learning a budget for each user
while also learning how that budget is distributed across
items.

HPF downweights the effect of zeros. Another advan-
tage of HPF is that it implicitly down-weights the contri-
bution of the items that each user did not consume. With
an appropriate fit to user activity, the model has two ways
of explaining an unconsumed item: either the user is not
interested in it or she would be interested in if she the op-
portunity to consider it. In contrast, a user that consumes
an item must be interested in it. Thus, the model benefits
more from making latent factors for a consumed user/item
pair more similar compared to making them less similar for
an unconsumed user/item pair.

Classical MF is based on Gaussian likelihoods (i.e.,
squared loss), which gives equal weight to consumed and
unconsumed items. Consequently, when faced with a
sparse matrix and implicit feedback, i.e., binary consump-
tion data, matrix factorization places more total emphasis
on the unconsumed user/item pairs. (This too can be seen

328

to stem from classical MF’s overestimation of the distri-
bution of user activity.) To address this, researchers have
patched MF in complex ways, for example, by including
per-observation confidences [23] or considering all zeroes
to be hidden variables [29]. Poisson factorization naturally
solves this problem with a realistic model of user activity.

As an example, consider two similar science fiction
movies, “Star Wars” and “The Empire Strikes Back”, and
consider a user who has seen one of them. The Gaussian
model pays an equal penalty for making the user simi-
lar to these items as it does for making the user different
from them—with quadratic loss, seeing “Star Wars” is ev-
idence for liking science fiction, but not seeing “The Em-
pire Strikes Back” is evidence for disliking it. The Pois-
son model, however, will prefer to bring the user’s latent
weights closer to the movies’ weights because it favors
the information from the user watching “Star Wars”. Fur-
ther, because the movies are similar, this increases the Pois-
son model’s predictive score that a user who watches “Star
Wars” will also watch “The Empire Strikes Back”.

Fast inference with sparse matrices. Finally, the like-
lihood of the observed data under HPF depends only on
the consumed items, that is, the non-zero elements of the
user/item matrix y. This facilitates computation for the
kind of sparse matrices we observe in real-world data.

We can see this property from the form of the Poisson dis-
tribution. Given the latent preferences ✓u and latent at-
tributes �i, the Poisson distribution of the rating yui is

p(yui | ✓u,�i) =
�
✓>u �i

�y
exp

�
�✓>u �i

/yui! (2)

Recall the elementary fact that 0! = 1. With this, the log
probability of the complete matrix y can be written as

log p(y | ✓,�) =
P

{yui>0} yui log(✓>u �i)� log yui!

� (
P

u ✓u)
>

(
P

i �i) .

This avoids the need for sub-sampling [7], approxima-
tion [17], or stochastic optimization [27] that complicate
other approaches.

2.2 INFERENCE WITH VARIATIONAL
METHODS

Using HPF for recommendation hinges on solving the pos-
terior inference problem. Given a set of observed ratings,
we would like to infer the user preferences and item at-
tributes that explain these ratings, and then use these in-
ferences to recommend new content to the users. In this
section we discuss the details and practical challenges of
posterior inference for HPF, and present a mean-field vari-
ational inference algorithm as a scalable approach. Our
algorithm easily accommodates data sets with millions of
users and hundreds of thousands of items on a single CPU.

Given a matrix of user behavior, we would like to compute
the posterior distribution of user preferences ✓uk, item at-
tributes �ik, user activity ⇠u and item popularity ⌘i. As
for many Bayesian models, however, the exact posterior is
computationally intractable. We show how to efficiently
approximate the posterior with mean-field variational in-
ference.

Variational inference is an optimization-based strategy for
approximating posterior distributions in complex proba-
bilistic models [21, 35]. Variational algorithms posit a fam-
ily of distributions over the hidden variables, indexed by
free “variational” parameters, and then find the member of
that family that is closest in Kullback-Liebler (KL) diver-
gence to the true posterior. (The form of the family is cho-
sen to make this optimization possible.) Thus, variational
inference turns the inference problem into an optimization
problem. Variational inference has previously been used
for large-scale recommendation [29].

We will describe a simple variational inference algorithm
for HPF. To do so, however, we first give an alternative
formulation of the model in which we add an additional
layer of latent variables. These auxiliary variables facilitate
derivation and description of the algorithm [11, 16].

For each user and item we add K latent variables zuik ⇠
Poisson(✓uk�ik), which are integers that sum to the
user/item value yui. A sum of Poisson random variables
is itself a Poisson with rate equal to the sum of the rates.
Thus, these new latent variables preserve the marginal dis-
tribution of the observation, yui ⇠ Poisson(✓>u �i). These
variables can be thought of as the contribution from compo-
nent k to the total observation yui. Note that when yui = 0,
these auxiliary variables are not random—the posterior dis-
tribution of zui will place all its mass on the zero vector.
Consequently, our inference procedure need only consider
zui for those user/item pairs where yui > 0.

With these latent variables in place, we now describe the
algorithm. First, we posit the variational family over the
hidden variables. Then we show how to optimize its pa-
rameters to find an approximation to the posterior.

The latent variables in the model are user weights ✓uk, item
weights �ik, and user-item contributions zuik, which we
represent as a K-vector of counts zui. The mean-field fam-
ily considers these variables to be independent and each
governed by its own distribution,

q(�, ✓, ⇠, ⌘, z) =
Y

i,k

q(�ik |�ik)
Y

u,k

q(✓uk | �uk)

Y

u

q(⇠u |u)
Y

i

q(⌘i | ⌧i)
Y

u,i

q(zui |�ui).

Though the variables are independent, this is a flexible fam-
ily of distributions because each variable is governed by
its own free parameter. The variational factors for prefer-
ences ✓uk, attributes �ik, activity ⇠u, and popularity ⌘i are

329

For all users and items, initialize the user parameters
�u, rte

u and item parameters �i, ⌧ rte
i to the prior with

a small random offset. Set the user activity and item
popularity shape parameters:

shp
u = a0 + Ka; ⌧ shp

i = c0 + Kc

Repeat until convergence:

1. For each user/item such that yui > 0, update the
multinomial:

�ui / exp{ (�shp
uk)�log �rte

uk+ (�shp
ik)�log �rte

ik}.

2. For each user, update the user weight and activity
parameters:

�shp
uk = a +

P
i yui�uik

�rte
uk =

shp
u

rte
u

+
P

i �
shp
ik /�rte

ik

rte
u =

a0

b0
+
X

k

�shp
uk

�rte
uk

3. For each item, update the item weight and popu-
larity parameters:

�shp
ik = c +

P
u yui�uik

�rte
ik =

⌧ shp
i

⌧ rte
i

+
P

u �
shp
uk /�rte

uk

⌧ rte
i =

c0

d0
+
X

k

�shp
ik

�rte
ik

Figure 3: Variational inference for Poisson factorization.
Each iteration only needs to consider the non-zero elements
of the user/item matrix.

all Gamma distributions, with freely set scale and rate vari-
ational parameters. The variational factor for zui is a free
multinomial, i.e., �ui is a K-vector that sums to one. This
form stems from zui being a bank of Poisson variables con-
ditional on a fixed sum yui, and the property that such con-
ditional Poissons are distributed as a multinomial [20, 5].

After specifying the family, we fit the variational param-
eters ⌫ = {�, �,, ⌧,�} to minimize the KL divergence
to the posterior, and then use the corresponding variational
distribution q(· | ⌫⇤) as its proxy. The mean-field factoriza-
tion facilitates both optimizing the variational objective and
downstream computations with the approximate posterior,
such as the recommendation score of Equation 1.

We optimize the variational parameters with a coordinate
ascent algorithm, iteratively optimizing each parameter
while holding the others fixed. The algorithm is illustrated

in Figure 3. We denote shape with the superscript “shp”
and rate with the superscript “rte”. We provide a detailed
derivation in the Appendix.

Note that our algorithm is efficient on sparse matrices. In
step 1, we need only update variational multinomials for
the non-zero user/item observations yui. In steps 2 and
3, the sums over users and items need only to consider
non-zero observations. This efficiency is thanks the like-
lihood of the full matrix only depending on the non-zero
observations, as we discussed in the previous section. Both
HPF and BPF enjoy this property and have the same com-
putational overhead, but HPF allows for more flexibility
in modeling the variation in activity and popularity across
users and items, respectively.

We terminate the algorithm when the variational distribu-
tion converges. Convergence is measured by computing the
prediction accuracy on a validation set. Specifically, we ap-
proximate the probability that a user consumed an item us-
ing the variational approximations to posterior expectations
of ✓u and �i, and compute the average predictive log like-
lihood of the validation ratings. The HPF algorithm stops
when the change in log likelihood is less than 0.0001%.
We find that the algorithm is largely insensitive to small
changes in the hyper-parameters. To enforce sparsity, we
set the shape hyperparameters a0, a, c and c0 to provide ex-
ponentially shaped prior Gamma distributions—we fixed
each hyperparameter at 0.3. We set the hyperparameters b0

and d0 to 1, fixing the prior mean at 1.

3 EMPIRICAL STUDY

We evaluate the performance of the Hierarchical Poisson
factorization (HPF) algorithm on a variety of large-scale
user behavior data sets: users listening to music, users
watching movies, users reading scientific articles, and users
reading the newspaper. We find that HPF provides signif-
icantly better recommendations than competing methods.
We provide an exploratory analysis of preferences and at-
tributes on the New York Times data set in the appendix.2

Data Sets. We study the HPF algorithm in Figure 3 on
several data sets of user behavior:

• The Mendeley data set [19] of scientific articles is a
binary matrix of 80,000 users and 260,000 articles,
with 5 million observations. Each cell indicates the
presence or absence of an article in a user’s library.

• The Echo Nest music data set [2] is a matrix of 1 mil-
lion users and 385,000 songs, with 48 million obser-
vations. Each observation is the number of times a
user played a song.

2Our source code is available from
https://github.com/premgopalan/hgaprec

330

• The New York Times data set is a matrix of 1,615,675
users and 103,390 articles, with 80 million observa-
tions. Each observation is the number of times a user
viewed an article.

• The Netflix data set [23] contains 480,000 users and
17,770 movies, with 100 million observations. Each
observation is the rating (from 1 to 5 stars) that a user
provided for a movie.

The scale and diversity of these data sets enables a robust
evaluation of our algorithm. The Mendeley, Echo Nest, and
New York Times data are sparse compared to Netflix. For
example, we observe only 0.001% of all possible user-item
ratings in Mendeley, while 1% of the ratings are non-zero
in the Netflix data. This is partially a reflection of large
number of items relative to the number of users in these
data sets.

Furthermore, the intent signaled by an observed rating
varies significantly across these data sets. For instance,
the Netflix data set gives the most direct measure of stated
preferences for items, as users provide a star rating for
movies they have watched. In contrast, article click counts
in the New York Times data are a less clear measure of how
much a user likes a given article—most articles are read
only once, and a click through is only a weak indicator of
whether the article was fully read, let alone liked. Ratings
in the Echo Nest data presumably fall somewhere in be-
tween, as the number of times a user listens to a song likely
reveals some indirect information about their preferences.

As such, we treat each data set as a source of implicit feed-
back, where an observed positive rating indicates that a user
likes a particular item, but the rating value itself is ignored.
The Mendeley data are already of this simple binary form.
For the Echo Nest and New York Times data, we consider
any song play or article click as a positive rating, regard-
less of the play or click count. As in previous work, we
consider an implicit version of the Netflix data where only
4 and 5 star ratings are retained as observations [29].

Competing methods. We compare Poisson factorization
against an array of competing methods:

• NMF: Non-negative Matrix Factorization [25]. In
NMF, user preferences and item attributes are mod-
eled as non-negative vectors in a low-dimensional
space. These latent vectors are randomly initialized
and modified via an alternating multiplicative update
rule to minimize the Kullback-Leibler divergence be-
tween the actual and modeled rating matrices. We use
the GraphLab implementation of NMF [24] to scale to
our large data sets.

• LDA: Latent Dirichlet Allocation [3]. LDA is a
Bayesian probabilistic generative model where user

preferences are represented by a distribution over dif-
ferent topics, and each topic is represented by a dis-
tribution over items. Interest and topic distributions
are randomly initialized and updated using stochas-
tic variational inference [16] to approximate these in-
tractable posteriors. We used the default setting of the
hyperparameters in the Vowpal Wabbit package [37].

• MF: Probabilistic Matrix Factorization with user and
item biases. We use a variant of matrix factorization
popularized through the Netflix Prize [23], where a
linear predictor—comprised of a constant term, user
activity and item popularity biases, and a low-rank in-
teraction term—is fit to minimize the mean squared
error between the predicted and observed rating val-
ues, subject to L2 regularization to avoid overfit-
ting. Weights are randomly initialized and updated
via stochastic gradient descent using the Vowpal Wab-
bit package [37]. This corresponds to maximum a-
posteriori inference under Probabilistic Matrix Factor-
ization [33]. We selected hyperparameters using grid
search with a small validation set.

• CliMF: Collaborative Less-is-More filtering [34]
maximizes mean reciprocal rank to improve the top-n
predictive performance on binary relevance data sets.
We use the GraphLab implementation of CliMF [24]
to scale to our large data sets, and use the default pa-
rameter settings in the package.

We note that while HPF and LDA take only the non-zero
observed ratings as input, traditional matrix factorization
requires that we provide explicit zeros in the ratings matrix
as negative examples for the implicit feedback setting. In
practice, this amounts to either treating all missing ratings
as zeros (as in NMF) and down-weighting to balance the
relative importance of observed and missing ratings [17],
or generating negatives by randomly sampling from miss-
ing ratings in the training set [8, 7, 29]. We take the lat-
ter approach for computational convenience, employing a
popularity-based sampling scheme: we sample users by
activity—the number of items rated in the training set—
and items by popularity—the number of training ratings an
item received to generate negative examples.3

Finally, we note that a few candidate algorithms failed to
scale to our data sets. The fully Bayesian treatment of the
Probabilistic Matrix Factorization [32], uses a MCMC al-
gorithm for inference. The authors [32] report that a single
Gibbs iteration on the Netflix data set with 60 latent factors,
requires 30 minutes, and that they throw away the first 800
samples. This implies at least 16 days of training, while
the HPF variational inference algorithm converges within

3We also compared this to a uniform random sampling of neg-
ative examples, but found that the popularity-based sampling per-
formed better.

331

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

Mendeley New York Times Echo Nest Netflix (implicit)

0%

1%

2%

6%

8%

10%

4%

6%

8%

15%

20%

25%

M
ea

n
no

rm
al

ize
d

pr
ec

is
io

n

HPF
BPF
LDA
MF
NMF
CLIMF

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

Mendeley New York Times Echo Nest Netflix (implicit)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

4%

5%

6%

7%

8%

4%

6%

8%

9%

12%

15%

18%

M
ea

n
re

ca
ll

HPF
BPF
LDA
MF
NMF
CLIMF

Figure 4: Predictive performance on data sets. The top and bottom plots show normalized mean precision and mean recall
at 20 recommendations, respectively. While the relative performance of the competing methods varies across data sets,
HPF consistently outperforms each of them.

13 hours on the Netflix data. Another alternative, Bayesian
Personalized Ranking (BPR) [30, 8], optimizes a ranking-
based criteria using stochastic gradient descent. The al-
gorithm performs an expensive bootstrap sampling step at
each iteration to generate negative examples from the vast
set of unobserved. We found time and space constraints to
be prohibitive when attempting to use BPR with the data
sets considered here. Finally, the GraphChi implementa-
tion of CLiMF [24] failed with an error on the Netflix and
New York Times data sets.

Evaluation. Prior to training any models, we randomly se-
lect 20% of ratings in each data set to be used as a held-out
test set comprised of items that the user has consumed. Ad-
ditionally, we set aside 1% of the training ratings as a val-
idation set and use it to determine algorithm convergence
and to tune free parameters. We used the HPF settings de-
scribed in Section 2.2 across all data sets, and set the num-
ber of latent components K to 100.

During testing, we generate the top M recommendations
for each user as those items with the highest predictive
score under each method. For each user, we compute a
variant of precision-at-M that measures the fraction of rel-
evant items in the user’s top-M recommendations. So as
not to artificially deflate this measurement for lightly active
users who have consumed fewer than M items, we compute
normalized precision-at-M , which adjusts the denominator
to be at most the number of items the user has in the test
set. Likewise, we compute recall-at-M , which captures the
fraction of items in the test set present in the top M recom-
mendations.

Figure 4 shows the normalized mean precision at 20 rec-
ommendations for each method and data sets. We see that

HPF outperforms other methods on all data sets by a size-
able margin. Poisson factorization provides high-quality
recommendations—a relatively high fraction of items rec-
ommended by HPF are found to be relevant, and many rel-
evant items are recommended. While not shown in these
plots, the relative performance of methods within a data
set is consistent as we vary the number of recommenda-
tions shown to users. We also note that while Poisson fac-
torization dominates across all of these data sets, the rela-
tive quality of recommendations from competing methods
varies substantially from one data set to the next. For in-
stance, LDA performs quite well on the Echo Nest data, but
fails to beat classical matrix factorization for the implicit
Netflix data set.

We also study precision and recall as a function of user ac-
tivity to investigate how performance varies across users
of different types. In particular, Figure 5 shows the mean
difference in precision and recall to HPF, at 20 recommen-
dations, as we look at performance for users of varying ac-
tivity, measured by percentile. For example, the 10% mark
on the x-axis shows mean performance across the bottom
10% of users, who are least active; the 90% mark shows the
mean performance for all but the top 10% of most active
users. Here we see that Poisson factorization outperforms
other methods for users of all activity levels.

4 RELATED WORK

The roots of Poisson factorization come from nonnega-
tive matrix factorization [25], where the objective func-
tion is equivalent to a factorized Poisson likelihood. The
original NMF update equations have been shown to be an
expectation-maximization (EM) algorithm for maximum

332

Mendeley New York Times Echo Nest Netflix (implicit)

−0.009

−0.006

−0.003

0.000

−0.03

−0.02

−0.01

0.00

−0.020

−0.015

−0.010

−0.005

0.000

−0.06

−0.04

−0.02

0.00

10% 50% 90% 10% 50% 90% 10% 50% 90% 10% 50% 90%
User percentile by activityM

ea
n

di
ffe

re
nc

e
in

 p
re

ci
si

on

HPF
BPF
LDA
MF
NMF
CLIMF

Mendeley New York Times Echo Nest Netflix (implicit)

−0.03

−0.02

−0.01

0.00

−0.04

−0.02

0.00

−0.06

−0.04

−0.02

0.00

−0.15

−0.10

−0.05

0.00

10% 50% 90% 10% 50% 90% 10% 50% 90% 10% 50% 90%
User percentile by activity

M
ea

n
di

ffe
re

nc
e

in
 re

ca
ll

HPF
BPF
LDA
MF
NMF
CLIMF

Figure 5: Predictive performance across users. The top and bottom plots show the mean difference in precision and recall
to HPF at 20 recommendations, respectively, by user activity.

likelihood estimation of a Poisson model [5].

Placing a Gamma prior on the user weights results in the
GaP model [4], which was developed as an alternative text
model to latent Dirichlet allocation (LDA) [3, 18]. The GaP
model is fit using the expectation-maximization algorithm
to obtain point estimates for user preferences and item at-
tributes. The Probabilistic Factor Model (PFM) [26] im-
proves upon GaP by placing a Gamma prior on the item
weights as well, and using multiplicative update rules to
infer an approximate maximum a posteriori estimate of the
latent factors. Our model uses a hierarchical prior struc-
ture of Gamma priors on both user and item weights, and
Gamma priors over the rate parameters from which these
weights are drawn. Furthermore, we approximate the full
posterior over all latent factors using a scalable variational
inference algorithm.

Independently of GaP and user behavior models, Poisson
factorization has been studied in the context of signal pro-
cessing for source separation [5, 15] and for detecting com-
munity structure in network data [1, 13]. This research in-
cludes variational approximations to the posterior, though
the issues and details around these data differ significantly
from user data we consider and our derivation in the sup-
plement (based on auxiliary variables) is more direct.

When modeling implicit feedback data sets, researchers
have proposed merging factorization techniques with
neighborhood models [22], weighting techniques to ad-
just the relative importance of positive examples [17], and
sampling-based approaches to create informative negative
examples [8, 7, 29]. In addition to the difficulty in appro-
priately weighting or sampling negative examples, there is
a known selection bias in provided ratings that causes fur-
ther complications [28]. HPF does not require such special

adjustments for negative examples and scales linearly in the
observed ratings.

Comparison to Gaussian MF. Many of the leading MF
methods are based on Gaussian likelihoods (i.e., squared
loss). When applied to explicit data, Gaussian models are
fit only to the observed ratings [23] and infer distributions
over user preferences. For each user, the items she did not
consume, i.e., the zero observations, are treated as miss-
ing. Gaussian models make up the state of the art in this
setting [32, 33, 23].

In implicit data sets of user consumption, there is a funda-
mental asymmetry that allows one to infer which items a
user consumed, and therefore liked, but not which items a
user did not like [17]. In this setting, Gaussian MF applied
to all observations gives equal weight to consumed and un-
consumed items. Consequently, when faced with a sparse
matrix and implicit feedback, matrix factorization places
more total emphasis on the unconsumed user/item pairs.

To address this limitation of Gaussian MF, researchers have
proposed two main approaches. The first approach, pro-
posed by [17], is to treat the unconsumed items with greater
uncertainty and increase confidence as the rating for an
item increases. This converts the raw observations into two
separate quantities with distinct interpretations: user pref-
erences and confidence levels. Hu et al. [17] present an
alternating least squares algorithm that considers all obser-
vations but whose per-iteration complexity is still linear in
the number of non-zero observations.

The second approach is to randomly synthesize negative
examples [7, 8, 29]. In this approach, unconsumed items
are subsampled for each user to balance out the consumed
items. As Dror et al. [7] note, it is unclear how to bal-

333

ance these two sets of items. Do we use an equal number
of consumed and consumed items, or do we use the full
set of unconsumed items [6, 17]? Further, the subsampling
of negative or unconsumed items is often expensive, and
can account for a substantial fraction of resources devoted
to model fitting. An issue that we found in Gaussian MF
with subsampled zeros, fit using SGD, is that it systemati-
cally overestimates the users’ budgets. We confirmed this
in Section 3 using a posterior predictive check [10]. Pois-
son factorization does not require synthesizing negative ex-
amples and is better able to capture distributions of users’
budgets.

Further, the HPF algorithm retains the linear-scaling of
Gaussian MF with downweighted zeros [17]. HPF algo-
rithms only need to iterate over the consumed items in the
observed matrix of user behavior. This follows from the
mathematical form of the Poisson distribution. In contrast,
the subsampling-based Gaussian MF methods [7, 8, 29]
must iterate over both positive and negative examples in the
implicit setting. This makes it difficult to take advantage of
data sparsity to scale to massive data sets.

Finally, unlike Gaussian MF which typically provides
dense latent representations of users and items, PF models
provide sparse latent representations. This property arises
from the PF log-likelihood which can be shown to mini-
mize the information (Kullback-Leibler) divergence under
NMF [5], and from the Gamma priors in the HPF model.

Recent extensions. Building on the HPF model and al-
gorithm we presented in a preprint, recent extensions have
been proposed. One extension is a combined model of ar-
ticle text and reader preferences [14]. This model takes ad-
vantage of the sparse, non-negative representations in PF,
which are useful in capturing different types of discrete
data, such as word counts and user ratings. Further, they ex-
ploit the additive properties of independent Poisson random
variables to capture dependencies between discrete data,
for example, the dependence of user ratings of an article on
its content. Another recent work proposes a Bayesian non-
parametric model [12] that adapts the dimensionality of the
latent representations, learning the preference patterns (and
their number) that best describe the users. Both models ex-
ploit the scalability of PF algorithms to study massive data
sets. These extensions testify to the modeling flexibility of
PF models.

5 DISCUSSION

We have demonstrated that Poisson factorization is an ef-
ficient and effective means of generating high quality rec-
ommendations across a variety of data sets ranging from
movie views to scientific article libraries. It significantly
outperforms a number of leading methods in modeling im-
plicit behavior data without the need for ad hoc modifica-
tions. Variational inference for HPF scales to massive data

and differs from traditional methods in its ability to cap-
ture the heterogeneity amongst users and items, accounting
for the wide range of activity and popularity amongst them,
respectively. The HPF algorithm is a robust, off-the-shelf
tool, providing high accuracy even with fixed hyperparam-
eter settings.

Finally, we emphasize that HPF is more than just one
method—it is the simplest in a class of probabilistic mod-
els with these properties, and has already been extended to
a combined model of article content and reader ratings [14],
and a Bayesian nonparametric model that adapts the dimen-
sionality of the latent representations [12].

A notable innovation in Gaussian MF is the algorithm
of [17] that explicitly downweights zeros using confidence
parameters. We presented the empirical study in this pa-
per comparing to the Gaussian MF with subsampled ze-
ros [23]. We attempted to compare to a GraphChi imple-
mentation [24] of [17], but it gave unexpectedly poor re-
sults. We found another implementation [36], and these
comparisons are ongoing work. Another piece of ongoing
work includes bringing the confidence-weighting of [17]
into HPF. This will allow downweighting of the zeros be-
yond that provided implicitly by Poisson factorization.

Acknowledgements

We thank Ulrich Paquet, Laurent Charlin, Francisco J. R.
Ruiz, Rajesh Ranganath, Matthew D. Hoffman and the
anonymous reviewers for comments and discussions. DMB
is supported by NSF CAREER NSF IIS-0745520, NSF
BIGDATA NSF IIS-1247664, ONR N00014-11-1-0651,
and DARPA FA8750-14-2-0009.

References
[1] B. Ball, B. Karrer, and M. Newman. Efficient and principled

method for detecting communities in networks. Physical
Review E, 84(3), Sept. 2011.

[2] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere.
The million song dataset. In ISMIR, 2011.

[3] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation.
Journal of Machine Learning Research, 3:993–1022, Jan-
uary 2003.

[4] J. Canny. GaP: A factor model for discrete data. In ACM
SIGIR, 2004.

[5] A. T. Cemgil. Bayesian inference for nonnegative matrix
factorisation models. Computational Intelligence and Neu-
roscience, 2009, May 2009.

[6] P. Cremonesi, Y. Koren, and R. Turrin. Performance of
recommender algorithms on top-n recommendation tasks.
In Proceedings of the fourth ACM conference on Recom-
mender systems, pages 39–46. ACM, 2010.

[7] G. Dror, N. Koenigstein, Y. Koren, and M. Weimer. The Ya-
hoo! music dataset and KDD-cup ’11. Journal of Machine
Learning Research, 18:8–18, 2012.

334

[8] Z. Gantner, L. Drumond, C. Freudenthaler, and L. Schmidt-
Thieme. Bayesian personalized ranking for non-uniformly
sampled items. JMLR W&CP, Jan 2012.

[9] A. Gelman, J. Carlin, H. Stern, and D. Rubin. Bayesian
Data Analysis. Chapman & Hall, London, 1995.

[10] A. Gelman, X. Meng, and H. Stern. Posterior predictive
assessment of model fitness via realized discrepancies. Sta-
tistica Sinica, 6:733–807, 1996.

[11] Z. Ghahramani and M. Beal. Propagation algorithms for
variational Bayesian learning. In NIPS, pages 507–513,
2001.

[12] P. Gopalan, F. J. Ruiz, R. Ranganath, and D. M. Blei.
Bayesian nonparametric Poisson factorization for recom-
mendation systems. In Proceedings of the Seventeenth Inter-
national Conference on Artificial Intelligence and Statistics,
pages 275–283, 2014.

[13] P. K. Gopalan and D. M. Blei. Efficient discovery of over-
lapping communities in massive networks. Proceedings of
the National Academy of Sciences, 110(36):14534–14539,
2013.

[14] P. K. Gopalan, L. Charlin, and D. Blei. Content-based rec-
ommendations with Poisson factorization. In Advances in
Neural Information Processing Systems, pages 3176–3184,
2014.

[15] M. Hoffman. Poisson-uniform nonnegative matrix factor-
ization. In ICASSP, 2012.

[16] M. Hoffman, D. Blei, C. Wang, and J. Paisley. Stochas-
tic variational inference. Journal of Machine Learning Re-
search, 14(1303–1347), 2013.

[17] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for
implicit feedback datasets. In Data Mining, 2008. ICDM’08.
Eighth IEEE International Conference on, pages 263–272.
IEEE, 2008.

[18] D. Inouye, P. Ravikumar, and I. Dhillon. Admixture of
Poisson MRFs: A topic model with word dependencies. In
ICML, pages 683–691, 2014.

[19] J. Jack, Kris anwd Hammerton, D. Harvey, J. J. Hoyt, J. Re-
ichelt, and V. Henning. Mendeleys reply to the datatel chal-
lenge. Procedia Computer Science, 1(2):1–3, 2010.

[20] N. Johnson, A. Kemp, and S. Kotz. Univariate Discrete
Distributions. John Wiley & Sons, 2005.

[21] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. Intro-
duction to variational methods for graphical models. Ma-
chine Learning, 37:183–233, 1999.

[22] Y. Koren. Factorization meets the neighborhood: a mul-
tifaceted collaborative filtering model. In ACM SIGKDD,
pages 426–434. ACM, 2008.

[23] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. Computer, 42(8):30–
37, 2009.

[24] A. Kyrola, G. E. Blelloch, and C. Guestrin. Graphchi:
Large-scale graph computation on just a PC. In OSDI, vol-
ume 12, pages 31–46, 2012.

[25] D. Lee and H. Seung. Learning the parts of objects by non-
negative matrix factorization. Nature, 401(6755):788–791,
October 1999.

[26] H. Ma, C. Liu, I. King, and M. R. Lyu. Probabilistic factor
models for web site recommendation. In ACM SIGIR, pages
265–274. ACM Press, 2011.

[27] J. Mairal, J. Bach, J. Ponce, and G. Sapiro. Online learn-
ing for matrix factorization and sparse coding. Journal of
Machine Learning Research, 11:19–60, 2010.

[28] B. Marlin, R. S. Zemel, S. Roweis, and M. Slaney. Collabo-
rative filtering and the missing at random assumption. arXiv
preprint arXiv:1206.5267, 2012.

[29] U. Paquet and N. Koenigstein. One-class collaborative fil-
tering with random graphs. In WWW, 2013.

[30] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-
Thieme. BPR: Bayesian personalized ranking from implicit
feedback. In UAI, pages 452–461, 2009.

[31] D. Rubin. Bayesianly justifiable and relevant frequency cal-
culations for the applied statistician. The Annals of Statis-
tics, 12(4):1151–1172, 1984.

[32] R. Salakhutdinov and A. Mnih. Bayesian probabilistic ma-
trix factorization using Markov chain Monte Carlo. In
ICML, pages 880–887. ACM, 2008.

[33] R. Salakhutdinov and A. Mnih. Probabilistic matrix factor-
ization. Advances in Neural Information Processing Sys-
tems, 20:1257–1264, 2008.

[34] Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, N. Oliver,
and A. Hanjalic. Climf: learning to maximize reciprocal
rank with collaborative less-is-more filtering. In Proceed-
ings of the sixth ACM conference on Recommender systems,
pages 139–146. ACM, 2012.

[35] M. Wainwright and M. Jordan. Graphical models, expo-
nential families, and variational inference. Foundations and
Trends in Machine Learning, 1(1–2):1–305, 2008.

[36] C. Wang and D. M. Blei. Collaborative topic modeling for
recommending scientific articles. In ACM SIGKDD, KDD
’11, pages 448–456, 2011.

[37] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and
J. Attenberg. Feature hashing for large scale multitask learn-
ing. In ICML, pages 1113–1120, 2009.

335

State Sequence Analysis in Hidden Markov Models

Yuri Grinberg
Ottawa Hospital Research Institute

Ottawa, Ontario, Canada
ygrinberg@ohri.ca
www.perkinslab.ca

Theodore J. Perkins
Ottawa Hospital Research Institute

Ottawa, Ontario, Canada
tperkins@ohri.ca
www.perkinslab.ca

Abstract

Given a discrete time finite state hidden Markov
model (HMM) and a sequence of observations,
there are different ways to estimate the hidden
behavior of the system. In this paper, the prob-
lem of finding the most probable state sequence
is considered. The state sequence, as opposed
to the state trajectory, specifies the sequence of
states that the HMM visits but does not spec-
ify the dwelling times in these states. This in-
ference problem is relevant in a variety of do-
mains, like text analysis, speech recognition, or
behavior recognition, where the exact timing of
hidden state transitions is not nearly as impor-
tant as the sequence of states visited. No existing
algorithm addresses this inference question ade-
quately. Leveraging previous work on continu-
ous time Markov chains, we develop a provably
correct algorithm, called state sequence analysis,
that addresses this inference question in HMMs.
We discuss and illustrate empirically the differ-
ences between finding the most probable state se-
quence directly and doing so through running the
Viterbi algorithm and collapsing repetitive state
visitations. Experimental results in two synthetic
domains demonstrate that the Viterbi-based ap-
proach can be significantly suboptimal compared
to state sequence analysis. Further, we demon-
strate the benefits of the proposed approach on a
real activity recognition problem.

1 INTRODUCTION

Hidden Markov models are a powerful and widely-
used formalism for analyzing sequential information
in a variety of domains, including speech recog-
nition [Bahl et al., 1986, Rabiner, 1989], text anal-
ysis [Blei and Moreno, 2001], behavior recognition
[Yamato et al., 1992, Nguyen et al., 2005], protein struc-

ture prediction [Sonnhammer et al., 1998], genomics
[Haussler and Eeckman, 1996, Wang et al., 2007], and so
on. As with graphical models generally, much of the utility
of HMMs derives from our ability to use them to make
estimates about hidden/unobserved variables based on
observable variables. HMMs are often used as models of
dynamical systems. In this context, the unobserved vari-
ables would be the true (underlying) state of the dynamical
system. The observed variables would be something
that we “see” when we observe or measure the system.
The observations typically have some relationship to the
underlying state, but the relationship may be imperfect or
noisy. A typical task would then involve receiving some
kind of observations of the system, and estimating the
underlying states that generated those observations. Of
course, an HMM can model sequential information that is
not dynamical in nature, as seen for instance in applications
in text analysis, genome annotation, etc. Regardless, the
most common task is to estimate underlying states based
on observations.

There are several different types of hidden state estimation
problems for HMMs. Although we define HMMs formally
in the next section, to distinguish different types of infer-
ence problems it is useful to introduce a small amount of
notation here. We let Xt be a random variable denoting
the underlying state at time t, and xt a realization of that
variable. Similarly, we let ot be the observation at time
t. Further, we let X1:t = (X1, X2, . . . , Xt) be a random
variable describing possible system trajectories, a realiza-
tion of which is denoted x1:t = (x1, x2, . . . , xt). Similarly,
a series of observations is denoted o1:t = (o1, o2, . . . , ot).

One of the fundamental HMM inference problems is to
compute the probabilities of different underlying system
states based on observations. More formally, if we receive
a stream of observations, o1, o2, o3, . . . then at each time
t = 1, 2, 3, . . . we may want to compute the probabili-
ties of different states x conditional on the observations:
P(Xt = x|o1:t). This can be done by the forward algo-
rithm [Rabiner, 1989], which is very efficient, and indeed
allows us to readily compute P(Xt = x|o1:t) incremen-

336

tally based on P(Xt−1 = x′|o1:t−1). If we are given an
entire sequence of observations, o1:t, and we want to esti-
mate the underlying state probabilities at all times, namely
P(Xt′ = x|o1:t) for all x and 1 ≤ t′ ≤ t, then the
forward-backward algorithm [Rabiner, 1989] gives us an
efficient solution. From those probabilities, one can eas-
ily compute the most probable state at each time: xmax

t′ =
argmaxx P(X

′
t = x|o1:t).

Each of these problems give us some information about un-
derlying states based on observations, but they do not ex-
plicitly give us any pathway information. The forward and
forward-backward algorithms, for example, give us only
state probabilities. The sequence of most probable states,
xmax
1 , xmax

2 , xmax
3 , . . ., may or may not comprise a valid

system path. That is, some transition xmax
t′ → xmax

t′+1 may
not even be allowed under the dynamics. Thus, while these
approaches are useful for estimating underlying states or
“classifying” time points into different states, they are not
directly useful for reconstructing underlying system paths.

For path reconstruction, by far the most common ap-
proach is the Viterbi algorithm [Rabiner, 1989], which is
an efficient means for computing the maximum proba-
bility trajectory underlying a given sequence of observa-
tions: argmaxx1:t P(x1:t|o1:t). Despite the many suc-
cesses of the Viterbi approach (e.g., in speech recogni-
tion, activity recognition and bioinformatics, as described
above), it has has been critiqued on a few different grounds.
For one, like any maximum a posteriori (MAP) estima-
tor, there is a question of how “representative” the maxi-
mum is. Intuitively, if the bulk of the posterior distribu-
tion contains trajectories that are “unlike” the MAP trajec-
tory in some way, then the MAP trajectory can be mislead-
ing in our attempt to interpret observational data (see, e.g.,
[Lember and Koloydenko, 2014] and references therein).
As a simple example, imagine the underlying state system
is a series of independent flips of a biased coin that comes
up heads with probability p > 0.5, and suppose we receive
totally non-informative observations. Then the MAP tra-
jectory is a series of all heads. But this path is “atypical”
in a number of senses. For instance, we do expect some
tails—in particular, about n(1− p) of them where n is the
number of flips. This and a great many other statistics about
the series of coin flips are not represented in the MAP path.
This is not a criticism of Viterbi per se, but merely of the
practice of thinking or hoping that the MAP path is some-
how representative of other probable paths as well.

In some other work, the authors have pointed out problems
with MAP paths for stochastic continuous-time discrete-
state systems [Perkins, 2009, Levin et al., 2012]. Such sys-
tems dwell in a state for random period of time, before
moving on to a randomly-chosen next state. Although
MAP paths can be efficiently computed [Perkins, 2009],
solutions are non-typical in that they involve “instant” tran-
sitions through low latency states and dwells in high latency

states. Similar issues can arise in discrete time HMMs, par-
ticularly, but not exclusively, when analyzing an HMM that
arises from discretizing a continuous-time process.

A second problem with MAP paths is that they consti-
tute an overly-specific inference. For example, in a simple
speech recognition scenario, a MAP path might assign a
word or phoneme to every timestep underlying the speech
signal. However, transitions between words are not truly
so crisp. Moreover, there is usually no point in assigning
precise start and end times to each word or phoneme. If
we hear, “The quick brown fox . . . ”, what is the value of
estimating that the word “The” ends and the word “quick”
begins precisely 0.823 seconds into a spoken signal? It is
the sequence of words spoken, and not their exact timing,
that is important. Similarly for gesture recognition, activity
recognition, etc.

Motivated by these criticisms of MAP trajectories, an al-
ternative inference method, called state sequence analysis,
was proposed earlier [Levin et al., 2012]. In this inference
problem, the objective is to find the maximum a posteriori
sequence of states, but averaging away (i.e. marginalizing
over) the transition times between those states—essentially
treating them as nuisance variables. In that work, how-
ever, the inference problem is solved for systems modeled
as continuous-time Markov chains with initial and/or ter-
minal probabilities; no observations during the time period
of interest are allowed. In the present work, we study state
sequence analysis for HMMs: the focus is on discrete time
setting, where a series of noisy observations is allowed. We
describe a provably-correct algorithm that finds the most
probable state sequence given a trajectory of observations.
Then, we demonstrate how state sequence analysis differs
from Viterbi path inference on synthetic and real examples,
and in particular (as it is designed to do) how state sequence
analysis provides more accurate estimates of the sequence
of states underlying a noisy series of observations.

2 BACKGROUND

Let X be a discrete finite state space and O the observa-
tion space of a hidden Markov model [Rabiner, 1989]. Let
T be the transition matrix of this HMM, with Tx,y repre-
senting the probability of transitioning from state x ∈ X
to state y ∈ X , and px(o) be the emission probability of
observation o ∈ O in state x ∈ X .

For a possible trajectory of states visited by a discrete time
HMM we are interested in identifying what is the corre-
sponding duration–free sequence of states, i.e. sequence of
states with self-loops removed. For example, given the tra-
jectory of states 〈x, x, x, y, y, y, x〉, the corresponding state
sequence will be 〈x, y, x〉. We denote the probability that
HMM trajectory follows the state sequence s given the se-

337

quence of n observations, as

P(X1:n ∈ seqn(s)|o1:n),

where seqn(s) is a set of all length n trajectories whose
duration–free sequence equals to s. Where possible, we
will use P(s|o1:n) as a shortcut to the above notation.

3 THE STATE SEQUENCE INFERENCE
PROBLEM

Finding the most probable state sequence, which we call
state sequence analysis (SSA), can be seen as a search
problem that requires evaluation of probabilities of state
sequences. Recall that, to find the most probable trajec-
tory of states, a naive exhaustive enumeration quickly be-
comes infeasible because the number of possible trajecto-
ries grows exponentially with the length of observation se-
quence. Similarly, a naive implementation of the search for
the most probable state sequence does not scale well. Even
a single evaluation of a probability of a state sequence in-
volves the summation over possibly large number of terms.
Specifically, the number of terms in the set seqn(s) is equal
to
(
n−1
|s|−1

)
for the state sequence s.

Nevertheless, inferring the most probable trajectory can be
done efficiently by a well–known Viterbi algorithm that
uses dynamic programming to do the search and evaluation
simultaneously. Although a Viterbi-like approach does not
appear to be possible to address the question we pose, in
what follows we develop search and evaluation algorithms
that make the problem tractable. First, we identify a par-
ticular structure within the search space that allows us to
prune large parts of the space as the search progresses. Sec-
ond, we provide a recursive relation that is used to effi-
ciently evaluate probabilities of new state sequences using
dynamic programming. However, prior to delving into the
algorithmic details, we begin with a little discussion about
the similarities and differences between most probable state
sequence and most probable state trajectory.

3.1 THE MOST PROBABLE STATE SEQUENCE
AND TRAJECTORY

The definition of a state sequence presented in an earlier
section leaves little doubt that the most probable state tra-
jectory is not necessarily the same as the most probable
state sequence, given a sequence of observations. Yet, to
better understand the nature of their differences it might be
helpful to pinpoint the cases where those two will, in fact,
be equal. In the first case, consider a HMM in which prob-
abilities of staying in any state are zero. Any state trajec-
tory generated by this HMM will have no repetitive states,
and therefore the only state sequences that have non zero
probability of happening must be of the same length as the
observation sequence. Hence, the most probable state tra-

jectory and the most probable state sequence will be the
same.

In the second case, suppose that the observations identify
the underlying hidden states exactly (observation sequence
is also Markov). It implies that there is only one state tra-
jectory that could generate a given sequence of observa-
tions. Hence, there is only one state sequence explaining
a given observation sequence; that state sequence can be
computed by collapsing repetitive states appearing in the
only possible state trajectory.

Of course, both of these cases are rather extreme, and in
their exact form can rarely be found in practice. However,
one can expect that the “closer” the given HMM is to one of
those extremes, the less evident will the difference be be-
tween the most probable state sequence and state trajectory
(in its collapsed form). This intuition is also backed up, to
some extent, by the experimental results presented in later
sections.

3.2 DOMINATION OF SEQUENCES

In [Levin et al., 2012], the authors develop a structural rela-
tion between state sequences of a continuous time Markov
chain that allows them to avoid searching all of the space of
sequences. In this section, we develop a similar relation be-
tween sequences in the setting of discrete time HMMs. The
following derivation, which serves as a basis for this de-
velopment, enables us to express the probability of longer
state sequences in terms of shorter state sequences. Let sx
be a state sequence that ends with state x , and let uy be a
one step shorter subsequence of sx such that sx = 〈uy, x〉.
Then,

P(sx|o1:n) =
∑n−1
i=1 P[X1:i ∈ seqi(uy);Xi+1:n = x|o1:n]

=
∑n−1
i=1 P[X1:i ∈ seqi(uy) | o1:n]

· P[Xi+1:n = x | o1:n;Xi = y]

=
∑n−1
i=1

P[o1:n | X1:i∈seqi(uy)]·P[X1:i∈seqi(uy)]
P(o1:n)

· P[Xi+1:n = x | oi+1:n;Xi = y]

=
∑n−1
i=1

P[o1:i | X1:i∈seqi(uy)]·P[X1:i∈seqi(uy)]
P(o1:i)

· P[oi+1:n | Xi=y]
P[oi+1:n | o1:i]

· P[Xi+1:n = x | oi+1:n;Xi = y]

=
∑n−1
i=1 P[X1:i ∈ seqi(uy) | o1:i]

· P[Xi+1:n=x;oi+1:n | Xi=y]
P[oi+1:n | o1:i]

=
∑n−1
i=1 P(uy | o1:i) ·

Ty,xT
n−i−1
x,x

∏n
j=i+1 px(oj)

P[oi+1:n | o1:i]

(1)

Eq. (1) makes the separation between the parameters of
the problem (HMM, observation sequence) and the shorter
state sequence explicit. Specifically, the probability of

338

longer state sequence equals to convolution of probabilities
of shorter state sequence and the probability of staying in
new state, normalized appropriately by the emission prob-
abilities. As a result, the following definition of dominance
between sequences turns out to be useful in speeding up the
search.

Definition 1. Given a sequence of observations o1:n, let s
and v be sequences that start from the same state and end
with the same state. Then we say that s dominates v, and
denote it by s�n v, if

∀i ∈ {1, ..., n} : P(s|o1:i) ≥ P(v|o1:i).

The dominance relation assures us that extensions of domi-
nated sequences should never be explored within the search
space, as the following lemma suggests.

Lemma 1. Let vy and sy be two state sequences that start
with the same state and end with state y. If vy is domi-
nated by sy given an observation sequence o1:n−1 for some
n > 1, then a one step extension of state sequence vy will
be dominated by some other state sequence, given an ob-
servation sequence o1:n.

Proof. Observe that if vy is dominated by sy for an obser-
vation sequence o1:n−1, then the same holds for shorter ob-
servation sequences, e.g. ∀i ∈ {1, ..., n− 1} : o1:i, simply
following the definition of the dominance. Now, let 〈vy, x〉
be a one step extension of a state sequence vy . Since vy is
dominated by sy for observation sequences o1:i (∀i < n),
following equation (1) we get that

∀i ≤ n : P(〈vy, x〉|o1:n) ≤ P(〈sy, x〉|o1:n).

Based on the above result, similarly to [Levin et al., 2012],
we devise the algorithm that performs the search within the
space of sequences by maintaining sets of non–dominated
sequences only. The pseudo-code of the algorithm is pro-
vided in Algorithm 1 box. Each new sequence is checked
against existing non–dominated sequences (line 6). If it
appears to be non–dominated by any of those sequences, it
is added to the set on non–dominated sequences (line 7).
All sequences that are dominated by the new sequence in
this set are removed (line 8), and all one step extensions of
the new sequence will be checked by the algorithm later on
(line 9).

3.3 COMPUTING THE PROBABILITY OF A
STATE SEQUENCE

As mentioned above, performing the search within the
space of state sequences will rely on evaluation of proba-
bilities of those sequences. One approach to do so is based
on implementing the recursive relation between sequences

given in Eq. (1) using dynamic programming. Following
this route it requires O(n2k) operations to evaluate the
probability of a state sequence of length k given n obser-
vations. On the other hand, the following recursive relation
can be used to evaluate probabilities in just O(nk) opera-
tions. As previously, let sx = 〈uy, x〉 be a state sequence
that consists of a shorter state sequence uy and a last state
x.

P(sx|o1:n) =
P[o1:n−1,on | X1:n∈seqn(sx)]·P [X1:n∈seqn(sx)]

P(on | o1:n−1)·P(o1:n−1)

= P[o1:n−1 | X1:n∈seqn(sx)]·P[X1:n∈seqn(sx)]
P(o1:n−1)

· P[on | Xn = x]

P(on | o1:n−1)

= P[X1:n ∈ seqn(sx)|o1:n−1]

· px(on)

P(on|o1:n−1)
. (2)

Now, the first term in the product of Eq. (2) can be ex-
panded as follows:

P[X1:n ∈ seqn(sx) | o1:n−1]

= P[X1:n ∈ seqn(sx);Xn−1 = y | o1:n−1]

+ P[X1:n ∈ seqn(sx);Xn−1 = x | o1:n−1]

= P[X1:n−1 ∈ seqn−1(uy);Xn = x | o1:n−1]

+ P[X1:n−1 ∈ seqn(sx);Xn = x | o1:n−1]

= P(uy|o1:n−1)Ty,x + P(sx|o1:n−1)Tx,x. (3)

Combining Eq. (2) and Eq. (3) we get,

P(sx|o1:n) =
px(on)

P(on|o1:n−1)
(4)

·
[
P(uy|o1:n−1)Ty,x + P(sx|o1:n−1)Tx,x

]
.

Algorithm 1 State Sequence Analysis for HMMs
1: Initialize ∀x, y : NDx,y = ∅ - sets of non–dominated

sequences for each pair of start and end states x, y
2: Initialize Queue CheckQ = {∀x : 〈x〉,∀x, y : 〈x, y〉}
3: while CheckQ is not empty do
4: Fetch sx,y ∈ CheckQ
5: Compute ∀i : P(sx,y|o1:i)
6: if sx,y is not dominated by NDx,y then
7: Add sx,y to NDx,y

8: Remove all ux,y ∈ NDx,y s.t. sx,y �n ux,y
9: ∀z 6= y : Add 〈sx,y, z〉 to CheckQ

10: end if
11: end while
12: return argmax∀x,y:s∈NDx,y P(s|o1:n)

339

4 EMPIRICAL EVALUATION

4.1 SYNTHETIC EVENT-DETECTION
EXAMPLES

To demonstrate state sequence analysis, and its difference
compared to the Viterbi algorithm, consider the HMM in
Figure 1A. Trajectories begin in state S and can remain
there through self-looping or move on either to state B
or state E. State E is absorbing. When the system is in
state B it can remain there through self-looping or proceed
to state E. All states emit normal-distributed observations
with standard deviation 1. However, the mean observation
is zero in states S and E, and µB in state B. Thus, states
S and E appear the same, whereas state B may appear dif-
ferent if µB 6= 0.

At a high level, this example models event detec-
tion problems—for instance, detecting a security in-
trusion [Qiao et al., 2002], detecting specific gestures
[Dardas and Georganas, 2011], detecting molecular events
[Schreiber and Karplus, 2015], etc. Essentially, there is a
series of noisy but harmless or uninteresting events, punc-
tuated, rarely and for a short time, with relevant activity.
But that relevant activity may still be subtle to detect, de-
pending on how different it is from the background.

We simulated state-observation trajectories of 100 steps
from the HMM. Because the chance of following the self-
loop on state S is 0.95, the chance that a trajectory remains
in that state for all 100 steps is 0.9599 ≈ 0.0062. Thus,
almost all trajectories move on from the initial state, and
they do so on average after 20 steps. From S, trajectories
are equally likely to proceed toE orB, thus approximately
half of all trajectories will contain a visit to state B, and
half will not. Because the self-loop probability on state B
is 2/3, trajectories remain there on average for just three
steps before moving on to state E. Figure 1B shows ex-
ample observation trajectories that respectively do not and
do include a visit to state B with µB = 4.5. In the second
trajectory, the visit to B happens on steps 15 and 16, as
indicated by the black bar below.

We simulated 10,000 state-observation trajectories, and for
each observation series applied the Viterbi algorithm and
state sequence analysis. We “collapsed” the simulated state
trajectory into the sequence of states visited, and likewise
for the Viterbi solution. Then, we counted on how many of
the 10,000 simulations Viterbi and/or state sequence analy-
sis inferred the correct state sequence from the observation
series. Figure 1C shows the fraction of correct state se-
quence inferences for each algorithm as a function of µB .
When µB = 0, there is no information to distinguish any
of the states and so, unsurprisingly, both algorithms are
right approximately half the time. Conversely, when µB
is large, a brief visit to state B is so obvious that the se-
quence is clear, and both algorithms get nearly 100% of

state sequence correct. In between, both algorithms have
intermediate performance, but state sequence analysis is
correct a greater fraction of the time. Figure 1D reports
in greater detail the frequencies of simulated and inferred
state sequences when µB = 5. Both algorithms are cor-
rect more than 90% of the time, but state sequence analysis
demonstrates substantially fewer “false positive” detections
of state B than Viterbi does (66 versus 467), although it in-
curs a greater number of “false negatives” (inferring no B
visit when there was one, 115 versus 36).

Figure 2A shows a similar problem where more than one
event (visit to state B) can occur in a given trajectory, with
a sample observation trajectory displayed in Figure 2B with
µB = 4. Again, we ran 10,000 simulations of 100 time
steps to generate observation trajectories, and then applied
Viterbi and state sequence analysis to estimate the underly-
ing state sequences. Figure 2C shows the results. Similar
to the previous example, when µB is high, so that events
are clearly observed, both algorithms predict the number
of events correctly. However, when µB is lower, state se-
quence analysis outperforms Viterbi. Unlike the previous
example, state sequence analysis predicts correctly more
often than Viterbi even when µB = 0, so that observations
are uninformative. With uninformative observations, state
sequence analysis predicts the sequence with the highest a
priori probability, which turns out to be SBSBSBSBS.
By contrast, Viterbi computes the maximum probability
trajectory to be SS . . . S, but this corresponds to the state
sequence S, which is of much lower probability. So, even
with non-informative observations, state sequence analy-
sis “guesses” correctly a greater fraction of the time. In
part, this advantage extends to partially-informative obser-
vations. Figure 2D shows a heatmap of true numbers of
events versus predicted numbers of events by the two al-
gorithms, across our 10,000 simulations when µB = 2. In
this domain, we see that Viterbi tends to underestimate the
number of events, whereas state sequence analysis appears
much less biased.

4.2 ACTIVITY RECOGNITION DATASET

The increasing availability of various kinds of sensors al-
lows us to collect and analyze data that was previously
unthinkable. One place where sensors invade our lives is
houses and apartments. The data collected from those sen-
sors is the basis for designing various intelligent environ-
ments [Cook and Das, 2004, Augusto and Nugent, 2006]
and several healthcare applications [Abowd et al., 2002,
Suzuki et al., 2004]. In [van Kasteren et al., 2011], activ-
ity data was collected from several individuals living in an
apartment/house. The data consists of sensor readings and
activity annotations made either manually or automatically.
The sensors installed around the house report, for exam-
ple, open-close states of doors and cupboards, and pressure
measurements on the couch, while the activities might in-

340

0 1 2 3 4 5 6 7 8
0.4

0.6

0.8

1

µB

C
or

re
ct

 F
ra

ct
io

n

Viterbi
SSA

−3
0
3

0 20 40 60 80 100
−3
0
3

ob
se
rv
at
io
n

S

B

E

0.95

0.025

0.025

0.6667

0.3333

1

N (0,1) N (μB,1) N (0,1)

1

(A)

(C)

 o

t

 o
t

time, t

(B)

S

SB

SE

SBE

SBESESBS

5

0

60

4530

36

6

467

4896

00

0

0

0 0

0 0

(D)
SBESESBS

5

0

66

4931

115

0

66

4817

00

0

0

0 0

0 0

Tr
ue

 s
eq

ue
nc

e

Viterbi prediction SSA prediction

Figure 1: Demonstration of State Sequence Analysis, and
comparison with the Viterbi algorithm, on a simple detec-
tion problem. Based on a noisy time series, the problem is
to infer the underlying sequence of states, which is approx-
imately equivalent to determining whether the sequence
contains a visit to the state B.

(A)

S B

0.95

0.05

0.3333

0.6667

N (0,1) N (μB,1)

1

time, t
0 20 40 60 80 100

−3
0
3
6

ob
se
rv
at
io
n

o t

(B)

(C)

0 1 2 3 4 5 6 7 8
0

0.5

1

µB

C
or

re
ct

 F
ra

ct
io

n

Viterbi
SSA

9

(D)

Tr
ue

 n
um

be
r o

f
ev

en
ts

 (v
is

its
 to

 B
)

Viterbi prediction SSA prediction

0

3

6

9

0 3 6 9 0 3 6

Figure 2: Comparison of State Sequence Analysis and
Viterbi on a detection problem where multiple events per
trajectory are possible.

341

clude cooking, eating, taking a shower, etc. The authors
trained several models that identify past activities given a
time series of sensor readings. Modeling the data with an
HMM and using the Viterbi algorithm to identify the activ-
ities was among the options that demonstrated competitive
recognition performance. The reported results offer a use-
ful benchmark to evaluate new methods of activity recog-
nition in this setting.

Interestingly, the current problem formulation for activity
recognition task around the house does not necessarily re-
flect the type of questions that the user is interested to find
answers to. In particular, it is easy to imagine that what
really matters to the user is the sequence of activities per-
formed in a period of time, regardless of their duration. If
an intelligent system is able to identify the activity perfectly
at each point of time, one can obtain the sequence of activ-
ities simply by collapsing repetitive activities into a single
value. Clearly, sensor readings do not always help to iden-
tify activities perfectly. As seen from the synthetic prob-
lem described earlier, when observations provide limited
information about the underlying state, collapsing repeti-
tive activities identified by the most probable state trajec-
tory (Viterbi output) is often inferior to finding the most
probable state sequence directly.

To illustrate the potential benefits of state sequence
analysis on a realistic problem, we evaluate it on
the largest out of three available datasets collected in
[van Kasteren et al., 2011]. This dataset, named House A,
contains 592 hours (nearly 25 days) of recorded activities
and sensor readings of a single individual living in a one
floor apartment. There are 14 sensors with binary out-
puts reporting different states of objects and 10 possible
activities that the person can do at any single time period
(see Table 1). A single record of activity and sensor read-
ings was recorded every minute. To compare Viterbi and
SSA approaches, 25 HMMs were trained, each on data
from different sets of 24 days. These HMMs were then
used, in combination with Viterbi or SSA, to make predic-
tions on 24 trajectories (one hour each) taken from the re-
maining single day. For more details about the dataset see
[van Kasteren et al., 2011].

As previously, we compared the performance of SSA to
the results obtained by collapsing repetitive activities in the
most probable state trajectory computed using the Viterbi
algorithm. Out of 592 sample trajectories, Viterbi and SSA
disagreed on 25 (≈ 5%) of those. Further, we measured
how well the produced state sequences match the true state
sequences using the insert-delete string comparison1. On
7 trajectories the results of Viterbi produced a better score,
while on 13 trajectories SSA performed better (for the other

1This is similar to the well known edit/Levenshtein string dis-
tance, except that the replace operation is not directly allowed.
In the context of activity recognition problems, it is better not to
report a particular activity at all then to report a wrong activity.

Activities: idle, leave house, use toilet, take shower,
brush teeth, go to bed, prepare breakfast, prepare din-
ner, get snack, get drink.

Sensors: microwave, hall-toilet door, hall-bathroom
door, cups cupboard, fridge, plates cupboard, front
door, toilet flush, freezer, pans cupboard, groceries cup-
board, hall-bedroom door.

Table 1: House A: activities and sensors.

5 the scores were equal). Although the difference might
appear not very meaningful at first glance, there are sev-
eral factors about the problem that need to be understood.
First, some sensors identify the activities rather precisely,
e.g., using toilet flush indicates that the toilet was used at
that time, or opening the front door means that the person
is leaving/coming back to the apartment. Second, most of
the true state sequences are short (see Table 2, first line).
In fact, around 75% of those contain only a single state,
the majority of which are either idling (unidentified activ-
ity), go to bed or leave house. However, hours that include
3 activities or more are much more likely to produce se-
quences of observations on which Viterbi and SSA differ
(see Table 2, second line). Considering that, it is expected
to have a small number of trajectories on which Viterbi and
SSA disagree. Among those, SSA provided a better pre-
diction on nearly twice the number of trajectories on which
Viterbi performed better. An example of a one hour trajec-
tory where SSA improves over Viterbi inference is given
in Figure 3. This is a typical example where sensor read-
ings provide only indirect information about an activity that
happens, which Viterbi algorithm fails to identify. From the
computational perspective, it took about 5 minutes to run
SSA algorithm on the entire dataset using a 3.40GHz CPU
with 16GB memory machine, and a fraction of a second to
find the most probable state trajectories (Viterbi).

To further establish the fact that SSA performs better as
compared to Viterbi algorithm on this domain, we trained
an HMM on the entire dataset and sampled a large number
of state and observation trajectories. Specifically, for each
starting state of an HMM we sampled 1000 one–hour–long
trajectories and evaluated SSA and Viterbi on this simu-
lated dataset. The results are presented in Figure 4. As
expected, depending on the initial state of the HMM, there
will be a different number of trajectories on which SSA and
Viterbi state sequences are not equal. Moreover, depend-
ing on the initial state, the general performance of SSA and
Viterbi, compared to each other, can be different. Never-
theless, in most cases SSA performed significantly better
then Viterbi. In total, Viterbi scored better on 286 trajec-
tories while SSA scored better on 494 trajectories, which
amounts to more than 70% improvement in performance.

342

length ≥ 1 length ≥ 2 length ≥ 3 length ≥ 4
100% (592) ≈ 25% ≈ 20% ≈ 12%
100% (25) 96% 92% 52%

Table 2: House A: the percentage of state sequences of dif-
ferent length appearing in the dataset (line 1), and those
whose Viterbi and SSA scores were different (line 2).

Figure 3: Example of a one hour trajectory of observations.
Y axis enumerates binary sensor readings, and points on
the plot identify active sensors. Note that we use the sen-
sor readings representation that continues to be active until
there is any change in other sensor readings (see more de-
tails in [van Kasteren et al., 2011]). Vertical dashed lines
on the plots show the time of true activity change. The true
underlying activity sequence is: idle, brush teeth, use toilet,
go to bed. SSA outputs the true activity sequence, whose
probability equals to 0.53. However, Viterbi’s output omits
the brush teeth activity, and the probability of resulting ac-
tivity sequence is only 0.34.

5 CONCLUSION

Inference problem in Hidden Markov Models have re-
ceived considerable attention, and several algorithms have
been used in a variety of domains to infer the be-
havior of the underlying system this HMM represents,
given a sequence of noisy observations. Typically,
these algorithms estimate different quantities involving
hidden variables (e.g., Viterbi, posterior decoder, most
probable annotation sequence, etc. [Brejová et al., 2007,
Lember and Koloydenko, 2014]) and therefore, at their
core, address different inference problems. In this work,
we point out that in a variety of domains none of these
techniques is adequate enough to answer our question of
interest, which is to find the most probable state sequence.
Naturally, the closest existing approach that can be used to
find the most probable state sequence is to find the most
probable state trajectory using the Viterbi algorithm and
collapse repetitive state visitations. However, by doing so,
the recovered state sequence is not guaranteed to be the

Figure 4: Comparison of SSA and Viterbi evaluated on
simulated trajectories from House A dataset. X axis iden-
tifies the initial state of an HMM that the trajectories were
sampled from. For each state, 1000 trajectories were sam-
pled, and the performance of SSA was compared to Viterbi.
As previously, trajectories on which the outputs of SSA
and Viterbi differ were used to measure the performance
by means of insert-delete string distance (Viterbi/SSA vs.
true state sequence). Each bar in a category represents the
number of trajectories on which the corresponding method
scored better.

most probable state sequence. Moreover, the resulting state
sequence might actually have a much lower probability of
happening compared to the most probable one, as our ex-
perimental results suggest. In fact, those discrepancies are
not surprising since, using Bayesian networks terminology,
the Viterbi algorithm for HMMs produces most probable
explanation (MPE) solution, while we are seeking to find
a MAP solution different from MPE as we ignore dwelling
time (variables) [Darwiche, 2009].

Building on earlier work where an algorithm to find the
most probable state sequence in continuous time Markov
chains was proposed [Levin et al., 2012], in this work we
developed a state sequence analysis algorithm that finds the
most probable state sequence of an HMM given a sequence
of observations. The algorithm performs a search in the
space of state sequences by evaluating those sequences and
pruning parts of the search space by carefully maintaining
a domination relationship between the sequences. We eval-
uated the algorithm on synthetic event–detection problems
first to highlight its advantages over a Viterbi–based ap-
proach. Then, we used state sequence analysis to find the
most probable sequence of activities based on a real activ-
ity recognition dataset collected from individuals perform-
ing different duties at home [van Kasteren et al., 2011]. Al-
though the Viterbi algorithm performed reasonably well on
this problem, the advantages of using state sequence anal-
ysis were nevertheless apparent.

Much remains to be done with respect to the analysis and
evaluation of our proposed approach. One of the topics that

343

requires further attention is the computational complexity
of the algorithm. Although we did not experience diffi-
culties running the algorithm on the problems presented in
this paper, it is still not clear whether the problem of find-
ing the most probable state sequence is polynomial or NP
hard in general. Further, in many real dynamical systems
that involve hidden variables, the model of choice is Hid-
den Semi-Markov Models (HSMM) [Yu, 2010]. It seems
rather straightforward to adapt our algorithm to HSMMs,
however experimental results are needed to verify its bene-
fits and computational cost.

Acknowledgements

This work was supported in part by a Discovery grant from
the Natural Sciences and Engineering Research Council of
Canada (NSERC) to TJP, and by an NSERC Postdoctoral
Fellowship to YG.

References

[Abowd et al., 2002] Abowd, G. D., Bobick, A. F., Essa, I. A.,
Mynatt, E. D., and Rogers, W. A. (2002). The aware home:
A living laboratory for technologies for successful aging. In
Proc. of the AAAI Workshop ”Automation as Caregiver”,
pages 1–7.

[Augusto and Nugent, 2006] Augusto, J. C. and Nugent, C. D.
(2006). Designing smart homes: the role of artificial intelli-
gence, volume 4008. Springer Science & Business Media.

[Bahl et al., 1986] Bahl, L., Brown, P., de Souza, P. V., and Mer-
cer, R. (1986). Maximum mutual information estimation of
hidden Markov model parameters for speech recognition. In
Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Pro-
cessing., volume 11, pages 49–52.

[Blei and Moreno, 2001] Blei, D. M. and Moreno, P. J. (2001).
Topic segmentation with an aspect hidden Markov model. In
Proc. of ACM SIGIR Conf. on Research and Development in
Information Retrieval, pages 343–348. ACM.

[Brejová et al., 2007] Brejová, B., Brown, D. G., and Vinař, T.
(2007). The most probable annotation problem in HMMs and
its application to bioinformatics. Journal of Computer and Sys-
tem Sciences, 73(7):1060–1077.

[Cook and Das, 2004] Cook, D. and Das, S. (2004). Smart envi-
ronments: Technology, protocols and applications, volume 43.
John Wiley & Sons.

[Dardas and Georganas, 2011] Dardas, N. H. and Georganas,
N. D. (2011). Real-time hand gesture detection and recog-
nition using bag-of-features and support vector machine tech-
niques. IEEE Trans. on Instrumentation and Measurement,
60(11):3592–3607.

[Darwiche, 2009] Darwiche, A. (2009). Modeling and reasoning
with Bayesian networks. Cambridge University Press.

[Haussler and Eeckman, 1996] Haussler, D. K. D. and Eeckman,
M. G. R. F. H. (1996). A generalized hidden Markov model for
the recognition of human genes in DNA. In Proc. Int. Conf. on
Intelligent Systems for Molecular Biology, pages 134–142.

[Lember and Koloydenko, 2014] Lember, J. and Koloydenko,
A. A. (2014). Bridging viterbi and posterior decoding: a gener-
alized risk approach to hidden path inference based on hidden
Markov models. The Journal of Machine Learning Research,
15(1):1–58.

[Levin et al., 2012] Levin, P., Lefebvre, J., and Perkins, T. J.
(2012). What do molecules do when we are not looking? state
sequence analysis for stochastic chemical systems. Journal of
The Royal Society Interface, 9(77):3411–3425.

[Nguyen et al., 2005] Nguyen, N. T., Phung, D. Q., Venkatesh,
S., and Bui, H. (2005). Learning and detecting activities from
movement trajectories using the hierarchical hidden Markov
model. In Proc. IEEE Int. Conf. on Computer Vision and Pat-
tern Recognition, volume 2, pages 955–960. IEEE.

[Perkins, 2009] Perkins, T. J. (2009). Maximum likelihood tra-
jectories for continuous-time Markov chains. In Advances in
Neural Information Processing Systems, pages 1437–1445.

[Qiao et al., 2002] Qiao, Y., Xin, X., Bin, Y., and Ge, S. (2002).
Anomaly intrusion detection method based on HMM. Elec-
tronics Letters, 38(13):663–664.

[Rabiner, 1989] Rabiner, L. (1989). A tutorial on hidden Markov
models and selected applications in speech recognition. Proc.
of the IEEE, 77(2):257–286.

[Schreiber and Karplus, 2015] Schreiber, J. and Karplus, K.
(2015). Analysis of nanopore data using hidden Markov mod-
els. Bioinformatics, Epub ahead of print: Feb. 3.

[Sonnhammer et al., 1998] Sonnhammer, E. L., Von Heijne, G.,
Krogh, A., et al. (1998). A hidden Markov model for pre-
dicting transmembrane helices in protein sequences. In Proc.
Int. Conf. on Intelligent Systems for Molecular Biology, pages
175–182.

[Suzuki et al., 2004] Suzuki, R., Ogawa, M., Otake, S., Izutsu,
T., Tobimatsu, Y., Izumi, S.-I., and Iwaya, T. (2004). Analy-
sis of activities of daily living in elderly people living alone:
single-subject feasibility study. Telemedicine Journal & E-
Health, 10(2):260–276.

[van Kasteren et al., 2011] van Kasteren, T., Englebienne, G.,
and Kröse, B. J. (2011). Human activity recognition from wire-
less sensor network data: Benchmark and software. In Activity
recognition in pervasive intelligent environments, pages 165–
186. Springer.

[Wang et al., 2007] Wang, K., Li, M., Hadley, D., Liu, R.,
Glessner, J., Grant, S. F., Hakonarson, H., and Bucan, M.
(2007). Penncnv: an integrated hidden Markov model de-
signed for high-resolution copy number variation detection
in whole-genome SNP genotyping data. Genome research,
17(11):1665–1674.

[Yamato et al., 1992] Yamato, J., Ohya, J., and Ishii, K. (1992).
Recognizing human action in time-sequential images using
hidden Markov model. In Proc. IEEE Int. Conf. on Vision and
Pattern Recognition, pages 379–385.

[Yu, 2010] Yu, S.-Z. (2010). Hidden semi-markov models. Arti-
ficial Intelligence, 174(2):215–243.

344

Multitasking: Efficient Optimal Planning for Bandit Superprocesses

Dylan Hadfield-Menell and Stuart Russell

Abstract

A bandit superprocess is a decision problem
composed from multiple independent Markov
decision processes (MDPs), coupled only by the
constraint that, at each time step, the agent may
act in only one of the MDPs. Multitasking prob-
lems of this kind are ubiquitous in the real world,
yet very little is known about them from a com-
putational viewpoint, beyond the observation that
optimal policies for the superprocess may pre-
scribe actions that would be suboptimal for an
MDP considered in isolation. (This observation
implies that many applications of sequential de-
cision analysis in practice are technically incor-
rect, since the decision problem being solved
is often part of a larger, unstated bandit super-
process.) The paper summarizes the state-of-the-
art in the theory of bandit superprocesses and
contributes a novel upper bound on the global
value function of a bandit superprocess, defined
in terms of a direct relaxation of the arms. The
bound is equivalent to an existing bound (the
Whittle integral), but is defined constructively,
as the value of a related multi-armed bandit. We
provide a new method to compute this bound and
derive the first practical algorithm to select opti-
mal actions in bandit superprocesses. The algo-
rithm operates by repeatedly establishing domi-
nance relations between actions using upper and
lower bounds on action values. Experiments indi-
cate that the algorithm’s run-time compares very
favorably to other possible algorithms designed
for more general factored MDPs.

1 INTRODUCTION

Multitasking is no doubt an activity familiar to the reader:
one faces several decision problems but can act on only
one (or perhaps a bounded number) at a time. Such prob-

lems are ubiquitous for individuals, corporations, armies,
and governments.

Multitasking problems are expressed by the class of ban-
dit superprocesses [Nash, 1973] or BSPs. A k-armed BSP
M consists of k independent Markov decision processes
M1, . . . ,Mk; the MDPs are coupled by a common discount
factor and by the constraint that at each time step the agent
can act in only one MDP.

Since the MDPs are independent of each other, one might
imagine that the optimal policy for M is obtained by
solving each MDP—turning the BSP into a multi-armed
bandit—and then using Gittins indices to choose a se-
quence of arms. In fact, the optimal policy for a BSP may
include actions that are suboptimal from the point of view
of the constituent MDP in which they are taken. The reason
for this is that the availability of other MDPs in which to
act changes the balance between short-term and long-term
rewards in a component MDP; in fact, it tends to lead to
greedier behavior in each MDP because aiming for long-
term reward in one MDP would delay rewards in all the
other MDPs. The globally and locally optimal policies nec-
essarily coincide only when the discount factor is 1.

Hence, in addition to their general importance in the real
world, a second reason to study multitasking problems is
that they undermine an assumption implicit in practical ap-
plications of sequential decision analysis: the assumption
that an optimal solution for the user’s decision problem is
optimal for a user who faces multiple decision problems.

Despite these considerations, there has been remarkably lit-
tle research on bandit superprocesses and almost none in
AI. Section 2 summarizes what is known. Obviously, there
are connections to multi-armed bandits (MABs), which are
a special case of BSPs in which each arm only allows
one choice of action rather than several. Unfortunately,
the index theorems that simplify the computation of opti-
mal MAB policies are not valid for BSPs. There are also
strong connections—hitherto unexplored—between BSPs
and sums of games as studied in combinatorial game the-
ory [Conway, 2000]. The principal question we address in

345

this paper is whether an algorithm exists that is substan-
tially more efficient than applying a standard MDP solver
to the “cross-product” MDP obtained by combining the
states spaces of the constituent MDPs.

The sole known case where planning for a BSP is provably
more efficient is the case where a dominating policy exists:
if a single policy is optimal across the family of retirement
processes associated with each arm then a BSP can be re-
duced to an equivalent MAB [Whittle, 1980]. (Retirement
processes provide a measure of how the optimal policy de-
pends on context and are defined in Section 3.) However,
this condition is seldom satisfied in practice.

This paper provides three contributions. First, we give a
concise survey of the bandit superprocess literature tailored
to the AI community. Second, we provide a novel upper
bound on the global value function of a BSP. For a BSP,
M , with arms {M1, . . . ,Mk} we relax each arm to obtain
an MAB M ′ = {M ′1, . . . ,M ′k} by adding actions to en-
sure that dominating policies exists. We show that this up-
per bound is equivalent to the Whittle integral, an existing
upper bound for BSPs [Brown and Smith, 2013]. Because
our bound is defined in terms of an explicit relaxation, it
provides insight into the nature of the bound and opens
an avenue to extend this work to more general MDPs. Fi-
nally, we describe a practical computational approach for
solving BSPs: we derive a simple method for computing
the Whittle integral upper bound that can use an arbitrary
MDP solver as a black box; then we combine this upper
bound with a lower bound to derive an efficient algorithm
for ε-optimal decision making in a BSP. We present em-
pirical results to show that it substantially improves over
more general optimal factored MDP algorithms; we use it
to compute provably optimal actions for problems with up-
wards of 1030 states in the full state space.

2 RELATED WORK

Robbins [1952] provided the first formulation of multi-
armed bandits (MABs) in their modern form. The famous
Gittins index theorem [Gittins, 1979] showed that optimal
MAB policies are obtained by ranking the arms according
to an index function defined on each seperately. An imme-
diate corollary is that optimal decision making in an MAB
is linear in the number of arms. Problems with this prop-
erty are said to be indexable.

Bandit superprocesses (BSPs) were introduced by Nash
[1973] as a generalization of multi-armed bandits to study
allocation of resources among research projects. Whittle
[1980] provided an alternate proof of the Gittins index the-
orem that extends to bandit superprocesses with dominat-
ing policies. His proof utilized a construction called the
Whittle integral, which allows one to compute the value
of a composite state in an MAB. Glazebrook [1982] pro-
vides a proof that bandit superprocesses are not indexable

in general. Glazebrook [1993] considers bandit superpro-
cesses where the arms can exert limited influence on each
other and shows a result analogous to Whittle’s.

Brown and Smith [2013] were the first to identify the sig-
nifigance of the Whittle integral for sequential decision
making. They developed a version of policy iteration to
compute it, and recognized that it upper bounds the value
function of a BSP,1 but did not derive an algorithm for solv-
ing BSPs. Our work provides two further contributions re-
garding the Whittle integral: a short proof that it is an upper
bound and a simpler algorithm to compute it.

Within the AI community, there has been limited study
of loosely coupled Markov decision processes. Singh and
Cohn [1998] consider optimal solutions to simultaneous
MDPs, where an agent can take actions in a number of
MDPs. Their formulation is more general than ours, as it
is possible to act in multiple MDPs at once. They derive
bounds for this problem and give an algorithm that com-
bines a form of real-time dynamic programming with prun-
ing steps to remove provably suboptimal actions. However,
their bounds are substantially looser than ours, and our ex-
periments show that the corresponding algorithm can be
impractical for simple BSPs with many arms.

Meuleau et al. [1998] examine MDPs that are coupled by
constraints on the use of shared resources. BSPs fit within
this class if we view the restriction to a single MDP at a
time as a constraint on the agent’s attention. Interestingly,
their heuristics are also defined in terms of a parameter-
ized value function for the component MDPs—it would be
interesting to attempt to generalize the approaches consid-
ered here to their problem domain. In this work, we lever-
age the particular structure of our resource to compute op-
timal solutions; Meuleau et al. construct a heuristic policy.

3 TECHNICAL BACKGROUND

MARKOV DECISION PROCESSES

Definition 1. (Markov Decision Process [Puterman,
2009]) A (finite-state, discounted) MDP, M , is a tuple
M = 〈S,A, T,R, γ〉. S is a set of states. A is a set of
actions. T : S × A × S → [0, 1] is a function that assigns
probability to state transitions for each state–action pair.
R is a (bounded) reward function that maps state–action
pairs to (positive) rewards R : S × A → R+. γ ∈ [0, 1) is
a discount factor.

A solution to M is a policy, π, that maps states to actions.
The value of a state, s, under π is the sum of expected dis-
counted rewards received by starting in s and selecting ac-

1This result first appears in the literature as an intermediate
step in a larger proof from Whittle [1980]. It went unnoticed or
unappreciated in the intervening 30+ years.

346

tions according to π:

V π(s) = E

[∞∑

t=0

γtR(st)|s0 = s, π

]
.

The optimal policy, π∗, maximizes this value. In the above
definition, and the ones that follow, we use superscripts to
indicate dependence on the agent’s policy. To simplify no-
tation, we will omit these superscripts when the policy re-
ferred to is the optimal policy (e.g., V (s) = V π

∗
(s)). The

Q-function for the state–action pair, (s, a), is the value of
taking a in s and selecting future actions according to π∗.

RETIREMENT PROCESSES

Given an MDP, Whittle defines a family of optimal stop-
ping problems:
Definition 2. (Retirement Process [Whittle, 1980]) Let M
be an MDP. For ρ ≥ 0, the retirement process for M with
retirement reward, ρ, is an MDP, Mρ, with a single addi-
tional state, sR, and action, aR. aR transitions determinis-
tically to sR and receives reward ρ. sR is a sink state that
accrues zero reward.

We refer to a decision to select aR as a decision to retire.
We denote the retirement process value function as a func-
tion of a state and retirement reward, V (s, ρ). We let the op-
timal policy for retirement reward ρ be π∗ρ . We write the set
of states where the policy, π, retires as τπρ . We use ρ−(π)
and ρ+(π) to denote the interval of retirement rewards so
that π is optimal:

ρ′ ∈ [ρ+(π), ρ+(π)]⇒ V π(s, ρ) = V (s, ρ).

We adopt the convention from the MAB/BSP literature
and abuse notation to denote the (random) number of
steps prior to retirement as τπρ (s). For s′ ∈ τπρ we let
Pretire(s

′|s, ρ, π) be the probability that s′ is the first state
in τπρ the agent will reach given that it is in state s and
executes policy π. We denote the expected discounted re-
ward accrued prior to retirement, starting in s, as Rπρ (s).
In regions of retirement reward where the optimal policy
and stopping rule do not change, ∂V∂ρ (s, ρ) is defined and
is equal to the expected value of the discount parameter at
retirement. This allows us to write the following expression
for the retirement process value function:

V (s, ρ) = Rρ(s) + E[γτρ(s)]ρ. (1)

V (s, ρ) is piecewise linear in ρ. Figure 1 shows V (s, ρ) for
the example BSP in Ex. 1. A policy that is optimal for every
setting of ρ is called a dominating policy.
Definition 3. (Dominating Policy) Let π be a policy for an
MDP, M . π is a dominating policy iff

∀ρ ≥ 0 ∀s /∈ τρ π(s) = π∗ρ(s).

MULTI-ARMED BANDITS AND BANDIT
SUPERPROCESSES

Multi-armed bandits (MAB) are a restricted class of MDPs
that have received extensive study. Of particular interest are
the form of the optimal policy and its utility in modelling
“exploration vs exploitation” trade-offs.

An MAB consists of a set of Markov reward processes
(MRPs), where an MRP is an MDP with a single action.
Each MRP is referred to as an arm of the problem. At each
time-step, the agent selects an arm, that arm transitions ac-
cording to its transition distribution, and the agent receives
the corresponding reward. We adopt a summation notation
to indicate the combination of several MRPs into an MAB.
For example, ifX and Y are MRPs and Z is the MAB with
arms X and Y , we will write Z = X + Y .

A famous result is that the optimal policy for any MAB
is an index policy [Gittins, 1979]. Each state, si, in the
individual arms is assigned an index, Isi . In joint state
s = {s1, . . . , sk}, the optimal action is to select
argmaxi Isi . For MAB arm Mi in state si, the index is de-
fined as the value of retirement reward such that the agent
is indifferent between immediate retirement and following
the optimal stopping policy [Whittle, 1980]:

Isi = min
ρ
{ρ ; Vi(si, ρ) = ρ}.

This means that, in a sense, context for a multi-armed ban-
dit can always be summarized by a single number.

To model a multi-tasking problem, we consider a gen-
eralization of multi-armed bandits: bandit superprocesses
(BSPs). Bandit superprocesses allow arms that are arbitrary
MDPs (and so are a generalization of MABs); at each time
step, the agent selects both an arm and an action to take
within that arm.

Definition 4. (Bandit Superprocess [Nash, 1973]) Given k
MDPs, {Mi = 〈Si,Ai, Ti, Ri, γ〉}, we define

M =
∑

i

Mi = 〈S, A, T, R, γ 〉

to be the bandit superprocess with arms {Mi}. S = ×
i
Si

and A = ∪
i
Ai. The transition distribution is station-

ary for arms that are not selected and follows the identical
reward and transition distributions for the selected arm.

Naturally, this makes planning more difficult. To see how,
consider the following proposal:

Conjecture 1. Let X = 〈SX ,AX , TX , RX , γ〉 be an
MDP. Define Y similarly and let Z = X + Y be the
bandit superprocess that is their sum. Let a ∈ AX ,
sX ∈ SX be a state–action pair from X . Suppose that
this transition is suboptimal in every retirement process:
∀ ρ ≥ 0, VX(sX , ρ) > QX((sX , a), ρ). Then a is

347

suboptimal for any state in Z with sX as one of the compo-
nents:

∀sY ∈ SY , VZ({sX , sY }) > QZ({sX , sY }, a).

This conjecture essentially proposes that state–action pairs
can be safely ignored if they are suboptimal for all settings
of a constant alternative. Unfortunately, as the following
example illustrates, this is not the case.

Example 1. Define X to be a deterministic reward chain
and Y to be an initial choice between three reward chains
(y0, y1, y2) defined as follows:

X = 28, 28, 28, 28, 28, 28, 0, 0 . . .

Y =

y0 = 100, 100, 100, 0, 0, 0 . . .
y1 = 99, 99, 99, 1.4, 1.4, 1.4 . . .
y3 = 28, 28, 28, . . .

The retirement process value function for each reward
chain can be computed by simulating the Gittins index pol-
icy:2

V (y0, ρ) = max

{
100

(
2∑

t=0

γt

)
+ γ3ρ, ρ

}

V (y1, ρ) = max

{
99

(
2∑

t=0

γt

)
+ γ3 max

{
1.4

1− γ , ρ
}
, ρ

}

V (y2, ρ) = max

{
28

1− γ , ρ
}
.

If we let γ = .9, then we have

∀280 > ρ ≥ 0 max{V (y0, ρ), V (y2, ρ)} > V (y1, ρ).

Thus, any policy for a retirement process retirement process
derived from Y that initially selects y1 is suboptimal. We
can apply the same strategy to compute the value of each
combination of reward streams:

V (y0 +X) = 100

(
2∑

t=0

γt

)
+ γ3

(
28

5∑

t′=0

γt
′

)

V (y1 +X) = 99

(
2∑

t=0

γt

)
+ γ3

(
28

5∑

t′=0

γt
′
+ γ6

1.4

1− γ

)

V (y2 +X) =
28

1− γ

From this we can see that the optimal policy for the BSP
that combines these MDPs, Z = X + Y , initially collects
reward from y1. This contradicts Conjecture 1.

2Here we use the fact that the Gittins index of a non-increasing
reward sequence is equal to the instantaneous reward.

4 AN UPPER BOUND FOR BANDIT
SUPERPROCESSES

In this section we show a bound on the value function of
a bandit superprocess. We derive this bound by adding ac-
tions to a BSP so that it is equivalent to an MAB. The value
function of our relaxed BSP is equivalent to the Whittle in-
tegral bound derived in Brown and Smith [2013] and so it
yields insight into that computation. We begin by defining
the Whittle integral and show some basic results in order to
motivate our relaxation.
Definition 5. (Whittle Integral [Brown and Smith, 2013])
Let M be a BSP. Let i index the arms of M. For any state,
s = {si}, and ρ ≥ 0, the Whittle integral of s is defined as

V̂ (s, ρ) = I −
∫ I

x=ρ

dx
∏

i

∂Vi
∂ρ

(si, x). (2)

Where I ≥ maxi Isi .

When the arms of a BSP admit a dominating policy the
Whittle integral is equal to the value function:
Theorem 1. (Whittle Condition [Whittle, 1980]) Let M be
a k-armed BSP with components {Mi} and state space S .
If each Mi has a dominating policy, then

∀s ∈ S,∀ρ ≥ 0, V̂ (s, ρ) = V (s, ρ).

MRPs have a single action per state, so the Whittle con-
dition is trivially satisfied for all multi-armed bandits.
V (s, 0) = V (s), so V̂ (s, 0) provides an efficient method to
compute the value of an MAB. For BSPs an arm that sat-
isfies the Whittle condition can be replaced with an MRP
that selects actions according to π∗.

The formula in Eq. 2 lends itself to a straightforward im-
plementation, but is very challenging to interpret. We show
below that this is equivalent to evaluating the retirement
process value function for a single arm with a set of re-
wards determined by the other arms3. We refer to this set
of rewards as the critical points of those arms.
Definition 6. (Critical Points of an MDP) Let M be
a Markov decision process. The critical points of M ,
C(M) = {ρi}, are the values of retirement reward such
that the optimal stopping rule or policy changes.

These are points where there is a discontinuity in ∂V
∂ρ . We

let

∆M (s, ρ) = lim
δ→0

∂VM
∂ρ

(s, ρ+ δ)− ∂VM
∂ρ

(s, ρ− δ)

be the size of the corresponding discontinuities. This is
equivalent to the expected increase in E [γτ] under the new
stopping rule. Theorem 2 shows that ∆ and C characterize
the interaction between arms of an MAB.

3Our result is a small extension on a related result in Brown
and Smith [2013]; it is primarily included to provide intuition.

348

Theorem 2. Let X,Y be Markov reward processes. Let
Z = X + Y be the 2-armed bandit. ∀s = {sX , sY } ∈ SZ ,

VZ(s) =
∑

ρ∈C(Y)

VX(sX , ρ)∆Y (sY , ρ). (3)

Proof. (sketch) As a first step, we follow the steps in Whit-
tle [1980] and integrate Equation 2 by parts. This expresses
V̂ as the following integral:

V̂Z(s) =

∫ IsX

ρ′=ρ
VX(sX , ρ

′)
∂2VY (sY , ρ

′)
∂ρ2

dρ′.

VY is piecewise linear with respect to ρ so ∂2VY
∂ρ2 is a

weighted sum of delta functions centered at VY ’s kinks.
C(Y) and ∆Y respectively characterize these kinks and
weights. Thus, V̂Z(s) is equal to the rhs of Eq. 3. X and Y
are MRPs, so an appeal to Theorem 1 shows the result.

A similar property holds for arbitrary k-armed bandits. This
shows that we can summarize the context for an arm as
a collection of weighted retirement rewards. Turning to
BSPs, this lends insight into the approximation the Whit-
tle integral introduces.

To see how, we reconsider Ex. 1. Recall that this example
consists of the BSP Z = X + Y and that Y is a choice
between three reward chains, {y0, y1, y2}. Theorem 2 al-
lows us to write the gap between the Whittle integral upper
bound and the value of selecting y1 as

∑

ρ∈C(X)

(
max
i
Vyi(si, ρ)− Vy1(s1, ρ)

)
∆X(sX , ρ)

Figure 1 shows the retirement process value functions for
this example. While the retirement process value of y1 is
always less than that of either y0 or y2, it is close enough
to their maximum that choosing y1 essentially achieves
the upper bound. The Whittle integral for Z is a weighted
combination of distinct retirement process value functions
(Vy0 , Vy2) but, in reality, the agent will be forced to pick a
single policy of the two.

DOMINATED RELAXATION OF AN MDP

In this section, we introduce our primary theoretical result:
a relaxation for the arms of a BSP so that a dominating pol-
icy exists. This reduces the BSP to an MAB whose value
upper bounds the value of states in the BSP. We can show
that the Whittle integral computes the value of states in this
MAB and arrive at a straightforward proof that the Whit-
tle integral is an upper bound. We call the result the dom-
inated relaxation of an MDP. Before providing the details,
we illustrate the main ideas with an example. The relaxed
MDP is actually a Semi-MDP (SMDP): a generalization of
an MDP where each action, a, has a duration, δ(a) ∈ R+.

Example 2. Let MDP M be an initial choice between
MRPs:

M =

{
15, 0, 0, 0 . . .

10, 10, 10, 3, 3, 3, . . .
.

Let T (B) be the top (bottom) MRP. Let πT (πB) be the
policy that selects T (B) in s0. We can relaxM with the ad-
dition of a single durative action, a′, that transitions from
the sink state in T to the sink state B. We set δ(a′) = 2.
We take ρ such that V πT (s0, ρ) = V πB (s0, ρ) and set the
rewards associated with a′ to be

RπBρ (s0)−RπTρ (s0) = 10
2∑

0

γt − 15 = 12.1 .

With this change, at low settings of retirement reward, the
agent is indifferent between a policy that opts for the top
chain then selects a′ and the bottom reward chain. For high
settings of retirement reward, the optimal policy retires im-
mediately or retires after collecting the reward of 15. This
SMDP satisfies the Whittle condition and can be replaced
by an MRP in any bandit superprocess. Fig. 1 (c) shows an
illustration of the state space and the introduced action.

In this example, we connected the state where πT retires to
the state where πB retires. This lets the agent collect short-
term and long-term rewards with the same policy. To do
this in general, we introduce multiple copies of the state
space, one for each policy that is optimal for some ρ.

Definition 7. (Dominated Relaxation of an MDP) Let M
be an MDP with discount factor γ and state space S. Let
s be a state in M . The dominated relaxation of M for s,
MD(s), is a semi-Markov decision process that fixes s as
an initial state. Let {πi} be the policies that are optimal for
some ρ: {π∗ρ|ρ ∈ C(M)}. This sequence is ordered so that
ρ−(πi) is increasing in i4.

For each i, we introduce a copy of the state space, Si, where
the agent is restricted to following πi. Let s′i be the ana-
logue of s′ in Si. For s′i ∈ τρ−(πi), we introduce a single
durative action, ai, that takes the agent from Si to Si−1 and
characterize it as follows:

• R(s′i) = Rρ+(πi−1)(s)−Rρ−(πi)(s)

• T (s′i, ai, s
′′
i−1) = Pretire(s

′′|πi−1, ρ+(πi−1), s)

• δ(ai) = logγ E
[
γτ

πi−1
ρ+

(s)
]
− logγ E

[
γτ

πi
ρ− (s)

]

For each i, we introduce an action that transitions from s to
si with δ = 0. Let VD(s) represent the value of s inMD(s).

Theorem 3. Let M be an MDP with state space S. The
following statements are true for s ∈ S and ρ ≥ 0:

4Recall that [ρ−(π), ρ+(π)] is the interval of retirement re-
wards where π is optimal.

349

1. MD(s) satisfies the Whittle condition.

2. VD(s, ρ) = V̂ (s, ρ).

3. V̂ (s, ρ) ≥ V (s, ρ)

Proof. See supplementary materials

5 AN ε-OPTIMAL ALGORITHM FOR
BANDIT SUPERPROCESSES

In this section, we present two algorithms related to BSPs.
The first is a novel algorithm to compute V (s, ρ) that can
use any method to solve the underlying MDP. The second is
an efficient algorithm to compute optimal actions for a BSP.
Our approach, Branch-and-Bound Value Iteration (BBVI),
uses Whittle integrals to compute upper and lower bounds
on value. Then, we apply a modified Branch-and-Bound
search to find provably optimal actions.

COMPUTING A RETIREMENT PROCESS VALUE
FUNCTION

Before we present BBVI, we give a simple algorithm to
compute a retirement process value function that uses an
(arbitrary) MDP solver as a black box. Brown and Smith
[2013] describe an algorithm to compute retirement pro-
cess value functions, but their approach requires custom
implementation of a modified simplex algorithm. Our ap-
proach is simple and based on an algorithm that initially
appeared in the solutions manual for Russell and Norvig
[2010].

Our goal is to identify each component of V (·, ρ), so our
output will be a list of critical points and the associated
slopes. First, we will need the following result.

Lemma 1. Let M be an MDP with state space S. Let
ρ0 < ρ1. Consider a retirement reward in the interior of
this interval, ρ ∈ (ρ0, ρ1). If, ∀s ∈ S

V (s, ρ) = V (s, ρ0) +
V (s, ρ1)− V (s, ρ0)

ρ1 − ρ0
(ρ− ρ0), (4)

then there is at least one policy and stopping rule that is op-
timal for every ρ′ ∈ [ρ0, ρ1]. The expected value of the dis-
count factor at retirement is the slope between those points:

E
[
γτ
∗(s)
]

=
V (s, ρ1)− V (s, ρ0)

ρ1 − ρ0
. (5)

Proof. This follows from the form of Equation 1 and the
fact that V (s, ρ) is piecewise linear, increasing, and convex.

(a)

(b)

15

10

10 10

0

3

r = 12.1
�t = 2

(c)

Figure 1: (a-b) Retirement process value functions for
the reward chains in Ex. 1. The slope of the lines is the
expected value of the discount parameter at retirement:
E [γτ]. Flat sections indicate regions of retirement rewards
where retirement is always suboptimal. The kink in the
green curve at ρ = 280 indicates that it has become op-
timal to retire immediately. The kink in the black curve at
ρ = 14 increases the slope to γ6 < 1; for ρ > 14, it is op-
timal to retire after collecting a prefix of the reward stream
from y2. (c) Dominated relaxation of the MDP in Ex. 2. We
add additional durative actions to the state space to ensure
that a dominating policy exists. Note that the original MDP
does not admit a dominating policy.

350

This test allows us to implement a binary search over re-
tirement rewards. Our approach relies on a given MDP so-
lution method, SOLVE, that returns the vector of values for
a given MDP. We initialize an interval that contains all criti-
cal points and make a call to SOLVE to compute the retire-
ment process value at each endpoint. Then we call SOLVE
to compute the retirement process value for the midpoint
of our interval and apply the test in Eq. 4. If it succeeds,
we return the lower endpoint and the corresponding slope.
If this does not, we sub-divide our interval and recurse. We
can concatenate the results to get the breakpoints and slopes
for the retirement process value function over this interval.
Algorithm 1 shows pseudocode for this algorithm.

Algorithm 1 Computing an MDP’s Critical Points
Define: CRITICALPOINTS(M [, ρ−, ρ+, V −, V +])
Input: MDP, M ; Interval of retirement values, ρ−, ρ+;
Values at interval endpoints, V −, V +

if ρ−, ρ+ are not set then
ρ− ← 0

ρ+ ← maxReward(M)
1−γ

V − ← SOLVE(Mρ−)
V + ← ρ+ ## Retirement is initially optimal

end if
ρ← ρ+−ρ−

2
V ← SOLVE(Mρ)

if |V −
(
V − + (ρ− ρ−)V

+−V −
ρ+−ρ−

)
| < ε then

return [ρ−],
[
V +−V −
ρ+−ρ−

]

else
pts−, slope− ←CRITICALPOINTS(M,ρ−, ρ, V −, V)
pts+, slope+ ←CRITICALPOINTS(M,ρ, ρ+, V, V +)
Merge adjacent intervals with the same slope
if slope−[−1] = slope+[0] then

del pts+[0],del slope+[0]
end if
return pts− ∪ pts+, slopes− ∪ slopes+

end if

BRANCH-AND-BOUND VALUE ITERATION

Now, we present a practical algorithm to compute optimal
actions in a bandit superprocess. While a BSP is not index-
able, we would like to be able to plan efficiently when the
arms are ‘close’ to indexable—when there are only a few
states where the optimal policy changes in response to the
opportunity cost of delayed rewards in other arms.

Our approach is based on envelope dynamic programming
methods to solve MDPs: we compute value estimates for
a given initial state by solving a dynamic program defined
over a reachable subset of the state space [Gardiol, Natalia
H and Kaelbling, Leslie P, 2003, Hansen and Zilberstein,
2001]. The primary difference between our approach and
standard envelope methods is that we use dynamic pro-

gramming on our envelope to update an upper bound and
a lower bound on the value. This is useful in a BSP be-
cause the Whittle integral allows efficient calculation of
both bounds.

Our goal is to compute the optimal action for a given state
s in a BSP, M = 〈M1, . . . ,MK〉. We can obtain an upper
bound on V (s) with a Whittle integral. We use a Whittle
integral for the MAB that solves each arm independently to
compute a lower bound. Our algorithm maintains upper and
lower bounds on the Q-function for each action that could
be executed from s. We write these bounds as Q+(s, a)
and Q−(s, a) respectively. If there is a pair of actions a, a′

such that Q+(s, a′) < Q−(s, a) + ε, then we can conclude
that a′ is at least ε-suboptimal. If this test removes all but
a single action, then we have found a ε-optimal action and
return it.

In the event that more than one action remains, we do a par-
tial expansion of the state space around s. We keep track of
a set of expanded states, E , and a set of boundary states, B.
States in the boundary set, B, are states that some expanded
state can transition to but have not yet been added to E .
We can use these states to update the bounds on Q(s, ·) by
solving a related MDP. This is formalized in the following
theorem.

Theorem 4. Let M be an MDP with state space S and
action space A. Let S ′ ⊆ S where S ′ = B ∪ E and
∀ s ∈ E , T (s, a, s′) 6= 0 ⇒ s′ ∈ S ′. Let M+ be
an MDP with state space S ′ ∪{α}. M+’s transition distri-
bution and rewards are identical for states in E (expanded
states). Each state s ∈ B transitions deterministically to α
and receives a reward that is an upper bound on VM (s). α
is a sink state that accrues 0 reward. Then the value of a
state in M+ is an upper bound on its value in M :

VM+(s) ≥ VM (s).

Proof. See supplementary materials.

It is straightforward to show that an updated lower bound
can be computed by fixing boundary states to have value
equal to a lower bound. Our approach alternates between
pruning actions based on dominance relations, adding
states to E , and computing the value of an MDP defined
over E . We interleave value iteration with a branch-and-
bound search, so we call it Branch-and-Bound Value Itera-
tion (BBVI). Algorithm 2 shows pseudocode to implement
this method. At termination, the action we return is guaran-
teed to be at most ε-suboptimal.

Theorem 5. Let M be a BSP and let s be a state in M . Let
a be the action returned by BBV I(M, s, ε).

V (s)−Q(s, a) < ε.

Proof. See supplementary materials.

351

Large regions of the state space are irrelevant to our ob-
jective so we use a heuristic to guide node expansion. Our
heuristic is a measure of the sensitivity of values at the root
to change in the upper and lower bounds of unexpanded
nodes. Similar heuristics have been applied in many set-
tings [Rivest, 1987, Smith and Simmons, 2004]. In BBVI,
these values are the expected discounted visitation rates in
the bounding MDPs and are computed as the dual variables
from a value iteration LP. The backup procedure is slower
than node expansions, so we perform backups in batches. In
between backups and heuristic computations, we approxi-
mate the state space as a tree and push new states onto the
agenda with their parent’s heuristic value weighted by the
transition probability.

Algorithm 2 Branch-and-Bound Value Iteration
Define:BBVI(〈M0, . . . ,MK〉, s0, ε)
Input: BSP arms, Mk; Initial state, s0; Tolerance, ε
Lower bound M by fixing a policy for each arm
LBk ←toMRP(Mk)
Compute critical points for Mk, LBk
Compute bounds on Q(s0, ·) with Whittle integrals for
M and LB.
Keep track of expanded region of state space
E ← ∅
Keep track of states at boundary of M+,M−

B ← {s0}
a∗ ← argmax

a
Q−(s0, a)

while ∃a′ 6= a∗ s.t Q+(s0, a
′) ≥ Q−(s0, a

∗) do
s←pop(B)
E ← E ∪ {s}
for a ∈ A do

for s′ ∈ successors(s) do
Compute upper and lower bounds for Q(s′, ·)
B ← B ∪ {s′}

end for
end for
Q+ ← SOLVE(BOUNDMDP(E ,B, Q+))
Q− ← SOLVE(BOUNDMDP(E ,B, Q−))
a∗ ← argmax

a
Q−(s0, a)

end while
return ε-optimal action a∗

6 EMPRIRICAL EVALUATION

We implemented BBVI in Python and use the linear pro-
gramming solver Gurobi to compute value functions. Our
experiments were run on an Intel i7 with 16 GB of RAM. In
our first experiments, we compare the scalability of BBVI
with that of standard MDP algorithms. In particular we
compare the following algorithms:

• SPUDD: the baseline factored MDP algorithm in the
2011 IPPC [Hoey et al., 1999].

(a) State Space for R & D BSP

(b) Runtime vs. Problem Size

(c) Solution Quality vs. Problem Size

Figure 2: (a) the state space for an arm of a R & D BSP.
All states accrue 0 reward except for the ‘Working Prod-
uct’ state, which collects a fixed reward per time step. (b)
shows runtime (log-scale) vs problem size for BBVI and
several alternatives on an R & D BSP. SPUDD [Hoey et al.,
1999] and LRTDP (with the heuristic from Singh and Cohn
[1998]) scale poorly compared with algorithms that lever-
age the Whittle integral. BBVI’s additional improvement
over LRTDP stems from the use of an efficient, exact lower
bound to check convergence. (c) BBVI’s bound on sub-
optimality after 10,000 node expasions (measured in units
of discounted reward). Changing the number of rewards
in each arm allows us to measure BBVI’s performance as
arms become more sensitive to context.

352

• LRTDP(Merge): Labeled Real-Time Dynamic Pro-
gramming [Bonet and Geffner, 2003] with the upper
bound from Singh and Cohn [1998] as a heuristic.

• LRTDP(WI): LRTDP with the Whittle integral as an
upper bound.

• BBVI: Branch-and-Bound Value Iteration.

We evaluate performance on a simple BSP designed to
model allocation of research resources to product research
and development. Each arm in this problem corresponds to
a potential product that our agent could sell in the market.
However, before we sell a product we must devote effort to
R&D. This can be done in one of two ways, a safe research
approach that is slow but reliable, and a risky approach that
is fast, but runs a risk of producing a defective product.

After at least one product has been researched, the agent
can opt to spend a round to produce and sell that product or
continue research on a different project. Because taking a
product to market does not change the state of the BSP, it is
straightforward to show that any stationary policy (includ-
ing π∗) will only ever produce a single product. We define
a distribution over these problems by selecting a random
market value for each product uniformly from [0, 1] and
random durations for the safe and risky research strategies
(although we ensure that safe research is at least 3x as slow
as risky research). Figure 2 (a) shows the state space for an
example arm with typical parameters.

Figure 2 (b) shows the results of our comparison. We used
a timeout of 1000s and set a memory limit of 4 GB. We ran
our experiments in an online setting and running times re-
flect the amount of time to select an optimal action from
scratch. While this is a natural setting for LRTDP and
BBVI, it is admittedly a little unfair to SPUDD (which
computes a full policy). This is mitigated by the fact that
BBVI’s improvement over SPUDD, which is a little under
5 orders of magnitude with 108 states, is such that an agent
would need to be planning over an immense horizon before
SPUDD presents a reasonable alternative.

The factored MDP bounds from Singh and Cohn [1998]
are quite ill-suited to this problem. This is because its up-
per bound (the sum of the independent value for each arm)
is very loose and it essentially forces LRTDP to enumer-
ate the state space. In contrast, LRTDP performs quite well
when it has good heuristic information. However, its per-
formance degrades faster than that of BBVI, because it does
not effectively leverage a lower bound on value. Even for
very large problem instances, BBVI computes optimal so-
lutions in well under a second.

BBVI’s performance in the R&D domain is largely ex-
plained by the structure of the arms and the short horizon
within each arm. Although there may be a large number
of arms, BBVI reduces each individual arm to an equiva-
lent MRP after a small number of node expansions. This

means that running time is essentially linear in the number
of arms. Note that, in this domain, the solution that solves
each MDP independently and executes the corresponding
index policy will just opt for conservative research on the
most valuable option. This policy is essentially always sub-
optimal: as long as there are reasonable alternatives it is
usually a good idea to try some risky projects.

Our next experiment uses a synthetic domain to explore the
performance of BBVI as the structure and number of arms
changes. In this BSP, each arm is a 20x20 grid world. The
actions in this world correspond to moving in the 4 car-
dinal directions. Rewards are 0 everywhere except at ran-
domly chosen locations and after receiving a reward, the
agent transitions to a random location.

In this experiment we vary the number of rewards that are
available in each arm. Adding rewards will typically cause
the optimal policy for an arm to be more sensitive to con-
text. This means that the dominated relaxation will produce
a looser upper bound, because it will need to add more ac-
tions. We evaluate this difficultly by measuring the con-
vergence criterion of BBVI after 10,000 node expansions.
Figure 2 (c) shows the results of this experiment. We can
see that BBVI’s solution quality decreases with the number
of states, but the primary variation comes from changes in
the properties of the arms.

7 CONCLUSION AND FUTURE WORK

In summary, we presented a model of highly decoupled de-
cision making: bandit superprocesses. A BSP presents an
agent with the opportunity to act in one of several Markov
decision processes. The key constraint is that the agent can
only act in a single process at a time. We provided a sum-
mary of BSP research, including an upper bound for the
value function of a BSP in the form of the Whittle integral.
We derived an equivalent relaxation and thus gave a novel
proof that the Whittle integral is an upper bound. Finally
we presented and evaluated algorithmic solutions for this
class of decision problems.

In future work, we plan to extend these ideas in three direc-
tions. The first is algorithmic improvements for BSPs. A
potential direction here is to leverage factored dynamics in
the bounding MDPs themselves. A search over sequences
of MDPs that only consider states where the current pol-
icy stops could be more efficient. Next, also plan to explore
generalizations of the bounds used for BSPs to more gen-
eral cases of global resource constraints (e.g., those con-
sidered in Meuleau et al. [1998]). Finally, the similarity to
sums of games studied in Conway [2000] suggests an unex-
plored connection between BSPs and combinatorial game
theory.

353

References
Blai Bonet and Hector Geffner. Labeled RTDP: Improving

the convergence of real-time dynamic programming. In
IEEE Conference on Automated Planning and Schedul-
ing, pages 12–21, 2003.

David B. Brown and James E. Smith. Optimal sequential
exploration: Bandits, clairvoyants, and wildcats. Opera-
tions Research, 61(3):644–665, 2013.

John H. Conway. On Numbers and Games. CRC Press,
2000.

Gardiol, Natalia H and Kaelbling, Leslie P. Envelope-
based planning in relational MDPs. In Advances in Neu-
ral Information Processing Systems, page None, 2003.

John C. Gittins. Bandit processes and dynamic allocation
indices. Journal of the Royal Statistical Society. Series
B (Methodological), pages 148–177, 1979.

Kevin D. Glazebrook. On a sufficient condition for super-
processes due to Whittle. Journal of Applied Probability,
pages 99–110, 1982.

Kevin D. Glazebrook. Indices for families of competing
Markov decision processes with influence. The Annals
of Applied Probability, pages 1013–1032, 1993.

Eric A Hansen and Shlomo Zilberstein. Lao: A heuristic
search algorithm that finds solutions with loops. Artifi-
cial Intelligence, 129(1):35–62, 2001.

Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig Boutilier.
SPUDD: Stochastic planning using decision diagrams.
In Fifteenth Conference on Uncertainty in Artificial In-
telligence, pages 279–288. Morgan Kaufmann Publish-
ers Inc., 1999.

Nicolas Meuleau, Milos Hauskrecht, Kee-Eung Kim,
Leonid Peshkin, Leslie Pack Kaelbling, Thomas L Dean,
and Craig Boutilier. Solving very large weakly coupled
Markov decision processes. In Fifteenth National Con-
ference on Artificial Intelligence, pages 165–172, 1998.

Peter Nash. Optimal allocation of Resources Between Re-
search Projects. PhD thesis, University of Cambridge,
1973.

Martin L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
2009.

Ronald L. Rivest. Game tree searching by min/max ap-
proximation. Artificial Intelligence, 34(1):77–96, 1987.

Herbert Robbins. Some aspects of the sequential design of
experiments. In Herbert Robbins Selected Papers, pages
169–177. Springer, 1952.

Stuart Russell and Peter Norvig. Artificial Intelligence: A
Modern Approach. 3 edition, 2010. Excercise 17.5.

Satinder Singh and David Cohn. How to dynamically
merge Markov decision processes. Advances in Neural
Information Processing Systems, (10):1057–1063, 1998.

Trey Smith and Reid Simmons. Heuristic search value it-
eration for POMDPs. In Proceedings of the 20th Con-
ference on Uncertainty in Artificial Intelligence, pages
520–527. AUAI Press, 2004.

Peter Whittle. Multi-armed bandits and the Gittins in-
dex. Journal of the Royal Statistical Society. Series B
(Methodological), pages 143–149, 1980.

354

Importance Sampling over Sets: A New Probabilistic Inference Scheme

Stefan Hadjis, Stefano Ermon
Department of Computer Science

Stanford University, Stanford, CA, USA
{shadjis, ermon}@cs.stanford.edu

Abstract

Computing expectations in high-dimensional
spaces is a key challenge in probabilistic infer-
ence and machine learning. Monte Carlo sam-
pling, and importance sampling in particular, is
one of the leading approaches. We propose a
generalized importance sampling scheme based
on randomly selecting (exponentially large) sub-
sets of states rather than individual ones. By col-
lecting a small number of extreme states in the
sampled sets, we obtain estimates of statistics
of interest, such as the partition function of an
undirected graphical model. We incorporate this
idea into a novel maximum likelihood learning
algorithm based on cutting planes. We demon-
strate empirically that our scheme provides accu-
rate answers and scales to problems with up to a
million variables.

1 INTRODUCTION

Probabilistic inference is one of the key computational
challenges in statistical machine learning and Bayesian
statistics. The key computational bottleneck for many sta-
tistical inference problems of interest lies in the computa-
tion of high-dimensional integrals. Examples include com-
puting posterior probabilities, model averaging, and eval-
uating partition functions of undirected graphical models.
The field is dominated by two main paradigms tracing their
roots to statistics and physics: Monte Carlo sampling meth-
ods [1, 15, 19] and variational techniques [16, 29]. Monte
Carlo sampling is an extremely influential idea leveraged
by numerous algorithms which have found an enormous
number of applications in many fields of scientific com-
putation, with application ranging from machine learn-
ing, statistics, and physics. It is often ranked among the
most important algorithms of all time in polls and sur-
veys [4]. The basic idea is to estimate properties of a high-
dimensional space (e.g., the integral of a function) by look-

ing at a small number of representative states. The major
difference between Monte Carlo schemes lies in how these
representative states are selected and weighted.

Importance sampling (IS) is one of the most popular Monte
Carlo sampling schemes. It is a simple and elegant idea,
which is at the core of other widely used techniques such
as Markov Chain Monte Carlo, Annealed Importance Sam-
pling [21], and others [10]. The approach is very gen-
eral: one can choose the samples randomly according to
any desired proposal distribution (some mild restrictions
have to be met), and IS provides a recipe to properly weight
the samples and obtain an estimate for the original high-
dimensional integral. The choice of the proposal distribu-
tion affects the variance of the estimate, and the number of
samples required to obtain a statistically reliable estimate
can grow exponentially in the problem size if the proposal
distribution is poorly chosen. Unfortunately, designing a
good proposal distribution is generally hard.

We introduce a more general scheme which we call im-
portance sampling over sets (ISS) where we randomly se-
lect (large) subsets of states (rather than individual sam-
ples) using a generalized notion of proposal distribution
called set-proposal distribution. Like traditional impor-
tance sampling, we provide a way to re-weight the sam-
ples and obtain an unbiased estimator for the original high-
dimensional integral of interest. Intuitively, the idea is that
by considering a very large (potentially, even exponential in
the dimensionality of the problem) number of samples, one
can significantly reduce the variance. Unfortunately, sim-
ply enumerating the samples would take exponential space.
We therefore consider specially structured set-proposal dis-
tributions such that the set of samples can be represented in
an implicit and compact way. The second main obstacle to
overcome is that it is no longer possible to do enumeration-
based inference on the samples. We therefore propose an
approximation based on the importance weight of the heav-
iest configuration in the sampled set. For many classes of
probabilistic models, e.g. log-supermodular [6], we can
compute these statistics efficiently, e.g. using graphcuts.
Surprisingly, we can show some strong formal guarantees

355

for this approximation. In particular, we identify a natu-
ral link between our scheme and some recently introduced
probabilistic inference schemes based on randomized hash-
ing and optimization [7, 8]. By reformulating these prior
results within our framework, we show that there exists
set-proposal distributions that are in some sense universal -
they are guaranteed to give accurate answers using a small
number of samples no matter what the underlying proba-
bilistic model is.

We improve the accuracy and efficiency of our approach
by developing a class of adaptive set-proposal distribu-
tions that can be tailored to the specific target probabilistic
model leveraging the samples we draw from the model. We
show that this approach provides very accurate estimates
for the partition function of undirected graphical models
on a range of benchmark problems. Our method is also ex-
tremely scalable: we are able to estimate the partition func-
tion for models with up to one million variables in a matter
of minutes. Finally, we develop a new maximum likeli-
hood parameter learning scheme based on our probabilistic
inference framework. Our technique is very different from
standard gradient descent approaches, and resembles struc-
tured prediction schemes such as structured SVM learning.
We empirically show the effectivness of our technique on
the standard MNIST handwritten digits dataset.

2 SETUP

Given an undirected graphical model with n binary vari-
ables, let X = {0, 1}n be the set of all possible configura-
tions (variable assignments or possible states of the world).
Define a weight function w : X → R+ that assigns to
each configuration x a score proportional to its probabil-
ity p(x): w(x) =

∏
α∈I ψα({x}α). The weight function

is compactly represented as a product of factors or poten-
tials. The partition function of the model Z is defined as
Z =

∑
x∈X w(x) =

∑
x∈X

∏
α∈I ψα({x}α). It is a nor-

malization constant used to guarantee that p(x) = w(x)/Z
sums to one. Computing Z is typically intractable because
it involves a sum over an exponential number of configura-
tions, and is often the most challenging inference task for
many families of graphical models. Computing Z is re-
quired for many inference and learning tasks, such as eval-
uating the likelihood of data for a given model, computing
marginal probabilities, and comparing competing models
of data [29, 17].

Given that probabilistic inference problems are intractable
in the worst case [23], a number of approximate inference
algorithms have been developed. There are two main fam-
ilies of algorithms: Monte Carlo sampling techniques and
variational approximations. Variational methods are based
on approximating the target distribution p using a family
of tractable approximating distributions, and minimizing a
notion of divergence. Sampling techniques are randomized

approaches where the key idea is to estimate statistics of in-
terest by looking at a small number of representative states.

3 IMPORTANCE SAMPLING

The simplest (naive) approach is to sample x1, · · ·xM uni-
formly from X , and estimate Ẑ = 1

M

∑M
i=1 w(xi)2

n.
This is an unbiased estimator of Z as E[Ẑ] =
1
M

∑M
i=1

∑
x∈X

1
2n 2nw(x) = Z. The variance of this esti-

mator can be very large since we are limited to a small num-
ber of samples M , while the number of possible configura-
tions |X | is exponential in n. The variance can be reduced
using importance sampling (IS) techniques, i.e. sampling
using a proposal distribution (which is closer to p(x)) rather
than uniformly [1, 15, 19]. Here, x1, · · ·xM are sampled
from X according to some proposal distribution q(x), and
weighted by their inverse likelihood, Ẑ = 1

M

∑M
i=1

w(xi)
q(xi)

.
This is also an unbiased estimator for Z.

Unfortunately, it is usually the case that the closer the pro-
posal distribution q is to the original intractable p(x), the
harder it gets to sample from it. Markov Chain Monte
Carlo sampling is one of the leading approaches for sam-
pling from arbitrary distributions [1, 15, 19]. The key idea
is to draw proper representative samples from p(x) by set-
ting up a Markov Chain over the entire state space which
has to reach an equilibrium distribution. For many statis-
tical models of interest, reaching the equilibrium distribu-
tion will require simulating the chain for a number of steps
which is exponential in n. Unless there are special regu-
larity conditions, if the random walk does not visit all the
possible states it might miss some important parts. In prac-
tice, the approach will therefore only give approximate an-
swers. There is generally little or no information on the
quality of the approximation. In fact, the Markov Chain
may get trapped in less relevant areas and completely miss
important parts of the state space.

Most similar to our approach is Greedy Importance Sam-
pling (GIS) [27], a reformulation of IS which achieves
variance reduction by sampling blocks of variables from
a proposal distribution and then searching for highly
weighted regions in the target distribution. The blocks of
points are non-overlapping and points within a block are
ordered, allowing points in a block to be selected using
a greedy search. This search increases the probability of
blocks containing highly weighted points and outperforms
naive methods which are unlikely to observe such points by
chance. These blocks can be seen as a special-case of sets
in the ISS technique, in which the sets are selected through
search. Whereas GIS blocks are likely to contain highly
weighted points due to explicit search, sets in ISS more
generally contain highly weighted points by sampling any
exponentially large subset of points and extracting statis-
tics of interest. For example ISS allows the use of order-
statistics (MAP/MPE estimation) which can often be com-

356

puted efficiently (e.g. using graphcuts, Viterbi), although
the search method of GIS is another approach. The meth-
ods are orthogonal and future work can investigate incor-
porating explicit search or other techniques such as ana-
lytic marginalization within ISS to further reduce variance.
Another key generalization of ISS is that sets of points can
overlap, which grants additional freedom in selecting set-
proposal distributions. For example when sets are defined
by parity constraints, set-proposal distributions implement
a strongly universal hash function, providing strong theo-
retical guarantees on the accuracy of the estimates.

4 IMPORTANCE SAMPLING OVER
SETS

We propose a generalized importance sampling procedure,
in which instead of randomly selecting a single configura-
tion x we randomly select a (large) subset of configurations
S ⊆ X . Let P (X) denote the power set of X = {0, 1}n,
i.e. the set of all subsets of X . We define a probability
distribution q over P (X) as a set-proposal distribution.
A set-proposal distribution induces the following function
γ : X → [0, 1]

γ(x, q) =
∑

S∈P (X)

1(x ∈ S)q(S) (1)

Intuitively, γ(x, q) is the probability of x being contained in
a set S sampled from q. We omit the dependency on q when
the set-proposal distribution used is clear from the context.
Standard proposal distributions used in Importance Sam-
pling are a special case of set-proposal distributions, as-
signing zero probability to all subsets S ⊆ X such that
|S| 6= 1. The following results generalizes the standard
importance sampling result to our more general case.

Proposition 1. Let q be any set-proposal distribution such
that w(x) > 0 implies γ(x, q) > 0. Let S ∼ q de-
note a random sample from the set-proposal distribution
q. Then

∑
x∈S

w(x)
γ(x,q) is an unbiased estimator for the par-

tition function Z.

Proof.

Z =
∑

x∈X
w(x) =

∑

x∈X
w(x)

γ(x)

γ(x)

=
∑

x∈X

w(x)

γ(x)

∑

S∈P (X)

1(x ∈ S)q(S)

=
∑

S∈P (X)

q(S)
∑

x∈X

w(x)

γ(x)
1(x ∈ S)

=
∑

S∈P (X)

q(S)
∑

x∈S

w(x)

γ(x)
= ES∼q

[∑

x∈S

w(x)

γ(x)

]

Note that when the set-proposal distribution q is a standard
proposal distribution (over singletons), one recovers the
standard importance sampling result. There are three main
aspects to consider for the practical usability of Proposition
1. We need to 1) sample a subset S from q efficiently, 2)
evaluate the importance weight γ(x) tractably, 3) when S
is (exponentially) large, represent S compactly and evalu-
ate the summation. The first two considerations apply to
traditional importance sampling as well. The third one is
new. For example, if q deterministically chooses S = X ,
then evaluating the estimator is just as hard as computing
the partition function. As this extreme example suggests,
the advantage is that by considering larger sets, one can
significantly reduce the variance. The following corollary
is very useful,

Corollary 1. Let q be any set-proposal distribution such
that w(x) > 0 implies γ(x) > 0. Let S ∼ q denote a
random sample from the set-proposal distribution q. Then
ES∼q

[
maxx∈S

w(x)
γ(x)

]
is a lower bound for the partition

function Z.

Proof. Since the weights are non-negative w(x) ≥ 0, it
follows that maxx∈S

w(x)
γ(x) ≤

∑
x∈S

w(x)
γ(x) and the claim fol-

lows from Proposition 1 by linearity of expectation.

Notice that if q is a standard proposal distribution, i.e.
q(S) = 0 if |S| 6= 1, the estimators

∑
x∈S

w(x)
γ(x)

and maxx∈S
w(x)
γ(x) coincide. In general, the value of

maxx∈S
w(x)
γ(x) can be exponentially far from

∑
x∈S

w(x)
γ(x) , for

example in the case of a constant (uniform) weight func-
tion w(·). The upside is that the max statistic, i.e. com-
puting the mode of the distribution, is often more tractable.
For example, there are numerous classes of probabilistic
models, such as attractive Ising models, where one can find
the mode of the distribution (MAP/MPE query) in polyno-
mial time, while computing the partition function is NP-
hard [11, 14].

4.1 EXAMPLES OF SET-PROPOSAL
DISTRIBUTIONS

In both examples below, let m ≤ n, let vm(x) =
{vi(xi), i = 1, · · · ,m} be a family of marginal distribu-
tions over individual variables. Let bi be independent sam-
ples from vi(xi) for i = 1, · · · ,m.

4.1.1 Constraining Variables

We can define a set-proposal distribution q where to sample
a set we define S = {x ∈ X : xi = bi,∀i ∈ {1, · · · ,m}}.
Note that γ(x) =

∏m
i=1 q(xi) =

∏m
i=1 vi(xi)

bi(1 −
vi(xi))

1−bi . The set can be represented compactly using
m equations (equivalently, additional factors to be added

357

to the graphical model that clamp some variables to cer-
tain values). Intuitively, this approach samples a set S
where |S| = 2n−m by constraining or "clamping" variables
x1, · · · , xm to fixed binary values.

4.1.2 Parity Constraints

As a second example of a set-proposal distribution, let
A ∈ {0, 1}m×n be a binary matrix with rows ai. We de-
fine a set-proposal distribution q according to the following
generative process. To sample a set S from q, we define
S = {x ∈ X : aix = bi mod 2,∀i ∈ {1, · · · ,m}}. It can
be seen that given any x ∈ X , the probability that x belongs
to a randomly chosen S ∼ q is again γ(x) =

∏m
i=1 q(xi).

This is the probability that x satisfies m parity equations
with randomly chosen right-hand side coefficients. The
set can be represented compactly using m linear equations
modulo 2. Parity constraints can be represented compactly
as a product of factors, using a linear number of extra vari-
ables [7].

5 MULTIPLE PROPOSAL
DISTRIBUTIONS

As noted earlier, the lower bound obtained with Corollary
1 given by L(S, q) = maxx∈S

w(x)
γ(x,q) might be loose com-

pared to A(S, q) =
∑
x∈S

w(x)
γ(x,q) , which is an unbiased es-

timator of Z by Proposition 1. Here we are making explicit
the dependence of γ(x, q) on the set-proposal distribution
q. Intuitively, this approximation is accurate when the
weight distribution over S is peaked, i.e. the mode is a good
approximation of the “total area”. On the other hand, the
lower bound is loose when there are “many” configurations
in S that have a weight comparable to the one of the heav-
iest assignment. If that is the case, it is intuitively possible
to randomly subsample the set S and obtain a smaller set
S′ ⊆ S such that maxx∈S w(x) ≈ maxx∈S′ w(x). Since
|S′| < |S|, the gap between the approximation introduced
by considering only the mode of the weight distribution on
S′ yields a smaller error. This suggests the use of another
set-proposal distribution q′ that is more likely to propose
smaller sets S′ compared to q. Because we do not know a
priori if the bound is tight or not, this discussion motivates
a more general scheme that relies on multiple set-proposal
distributions. By letting the typical size of a sampled set
change, e.g. from 1 to |X | = 2n, we can sample from a
wide variety of configurations and accurately predict logZ
for distributions which are peaked to various degrees.

Proposition 2. Let Q = (q1, · · · , qk) be a family of set-
proposal distributions. Let S1 ∼ q1, S2 ∼ q2, · · · , Sk ∼
qk. Suppose that for all i, w(x) > 0 implies γ(x, qi) > 0.
Then 1

k

∑k
i=1

∑
x∈Si

w(x)
γ(x,qi) is an unbiased estimator for

the partition function Z.

Proof.

ES1∼q1,··· ,Sk∼qk

[
1

k

k∑

i=1

∑

x∈Si

w(x)

γ(x, qi)

]
=

1

k

k∑

i=1

ESi∼qi

[∑

x∈Si

w(x)

γ(x, qi)

]
= Z

where the last step follows from Proposition 1.

The following corollary follows, and is implemented by Al-
gorithm 1 with input T = 1.
Corollary 2. Let Q = (q1, · · · , qk) be a family of set-
proposal distributions. Let S1 ∼ q1, S2 ∼ q2, · · · , Sk ∼
qk. Suppose that for all i, w(x) > 0 implies γ(x, qi) > 0.
Then 1

k

∑k
i=1 maxx∈Si

w(x)
γ(x,qi) is in expectation a lower

bound for the partition function Z.

Proof. Follows immediately from Corollary 1.

Input : w : X → R+, T , k, qi for i = 1, . . . , k
Output: Estimate of logZ = log

∑
x∈X w(x)

1 for i = 1, . . . , k do
2 Sample S1

i . . . S
T
i according to qi

3 for t = 1, . . . , T do
4 mt

i = maxx∈Sti
w(x)
γ(x,qi)

5 end
6 Mi ←Median(m1

i . . .mT
i)

7 end
8 Return 1

k

∑k
i=1Mi

Algorithm 1: Set importance sampling

If we now let the typical size of a sampled set change, e.g.
from |S| = 1 to |S| = |X | = 2n, the magnitude of the
various γ(x, qi) varies exponentially. Therefore it is often
the case that many terms in the sum

∑k
i=1 maxx∈Si

w(x)
γ(x,qi)

will not contribute significantly to the overall estimate ofZ.
In practice, a sufficiently accurate lower bound is obtained
by T samples of only the highest weighted sets,

k
max
i=1

max
x∈Si

w(x)

γ(x, qi)
(2)

The main advantage of this approach is computational, as
we have now reduced the inference procedure to a single
optimization problem. The following result shows that this
still provides a valid lower bound:
Corollary 3. Let Q = (q1, · · · , qk) be a family of set-
proposal distributions. Suppose that for all i, w(x) > 0
implies γ(x, qi) > 0. Let S1

i , · · · , STi ∼ qi be i.i.d
samples from the i-th set-proposal distribution qi. Then
maxki=1 Median

(
maxx∈S1

i

w(x)
γ(x,qi) , · · · ,maxx∈STi

w(x)
γ(x,qi)

)

is with high probability an approximate lower bound for
the partition function Z.

358

Proof. For every i, let us denote L(Si) = maxx∈Si
w(x)
γ(x,qi) .

Then by Proposition 1, ESi∼qi [L(Si)] ≤ Z. Therefore by

Markov’s inequality, P
[
maxx∈Si

w(x)
γ(x,qi) ≥ 4Z

]
≤ 1

4 . Let

S1
i , · · · , STi be samples from qi. It follows from Chernoff’s

inequality that

P [Median(L(S1
i), · · · , L(STi)) ≥ 4Z] ≤ exp

(
− T

24

)

therefore from the union bound

P [∪k
i=1Median(L(S1

i), · · · , L(ST
i)) ≥ 4Z] ≤ k exp

(
− T
24

)

Therefore

P [
k

max
i=1

Median(L(S1
i), · · · , L(ST

i)) ≤ 4Z] ≥ 1−k exp
(
− T
24

)

Corollary 3 is implemented in Algorithm 1 with line 8
changed to return the maximum Mi instead of the mean.

To make the procedure of Corollary 3 clear, consider again
a family of set-proposal distributions qi constructed by con-
straining variables as in the example of section 4.1.1. This
can be implemented in Algorithm 1 by setting k = n + 1
and selecting qi to constrain the first i − 1 variables: The
outer-loop (line 1) searches for the qi which contributes
most towards the estimate of logZ by, in each iteration,
enforcing i "hard" variable constraints which limit the set
of possible configurations by defining sets Sti where |Sti | =
2n+1−i. Notice under this setup that if the maximum it-
eration is i = 1 (no variables constrained, |S| = |X | =
2n), then this is equivalent to approximating logZ by the
MAP/MPE configuration. Conversely, if the maximum is
at i = n + 1, then this is equivalent to naive importance
sampling based on proposal distribution qn+1 (all variables
constrained, |S| = 1). If the heaviest weighted set is not
one of these two special cases, then the set importance
sampling method will produce a more accurate estimate of
logZ. Also note that since empirically most of the itera-
tions do not contribute significantly to the overall estimate
of logZ, the outer loop in Algorithm 1 over all n variables
can search with a larger granularity or logarithmically for
the heaviest i. In practice, fixing the number of iterations
in the outer loop to 10 (sampling sets with a granularity of
n
10 constrained variables) is both accurate and fast to run.
In fact, this can be taken a step further by skipping the loop
altogether and searching for the heaviest weighted set as a
single optimization problem: rather than a loop which in-
crementally adds "hard" variable constraints, we can add all
the variable constraints at once as "soft" constraints which
an optimization oracle may choose to satisfy. The reward
for satisfying these constraints matches the scaling 1

γ(x,qi) .
Formulating the estimate of logZ as a single optimization
problem is useful for learning, see section 7.

5.1 RELATIONSHIP WITH RANDOMIZED
HASHING

The advantage of using multiple proposal distributions is
that one might be able to reduce the variance of the estima-
tor, in accordance with the intuitive motivation presented
earlier. In fact, it can be shown that there exists set-proposal
distributions (based on universal hash functions) such that
a polynomial number of samples is sufficient to obtain con-
centration of the estimate around the mean. The surprising
result is that these proposal distributions are “universal”,
in that they are guaranteed to give accurate estimates (con-
stant factor approximations) for any weight function w(·),
i.e., any underlying graphical model.

Let S ⊆ P (X) be a family of sets defined as S = {{x ∈
X : Ax = b mod 2}, A ∈ {0, 1}i×n, b ∈ {0, 1}i}. Let qi
be a set-proposal distribution where to sample from qi we
randomly choose each entry of A, b uniformly at random
(independently). Then it can be shown that γ(x) = 2−i.
For a state space X = {0, 1}n, let us consider a family
of n proposal distributions QP = (q0, · · · , qn). These
set-proposal distributions can be interpreted as implement-
ing a strongly universal hash function, where each element
x ∈ X is sampled by the i-th proposal distribution qi with
probability 2−i, and elements are sampled pairwise inde-
pendently [9, 3, 12, 7, 8, 13]. As noted above, we can sam-
ple from qi tractably, and represent sets S ∈ S in a compact
way. Theorem 1 from [8] implies the follwing remarkable
result

Corollary 4. Let QP = (q0, · · · , qn) be defined as
above. Let L(Si) = maxx∈Si

w(x)
γ(x,qi) for every i.

Then for any weight function w(·) and 1 > δ > 0,∑n
i=1 Median(L(S1

i), · · · , L(STi)) is with probability at
least 1 − δ a constant factor approximation of Z when
T = Θ(n lnn/δ).

Reinterpreted in our set-proposal distribution framework,
Corollary 4 is important because it shows that there exists a
family of universal set-proposal distributions that are guar-
anteed to work well for any underlying target probability
distribution p.

Although sets S ∈ S defined by parity constraints can be
represented compactly, the resulting optimization problems
maxx∈Si

w(x)
γ(x,qi) are generally difficult to solve, even when

w(·) can be tractably optimized, i.e., maxx∈X w(x) can be
solved efficiently. Rather than take a worst-case approach
and consider a proposal distribution that is guaranteed to
work for any weight function w as in [9, 3, 12, 7, 8, 13], in
this paper we consider a more general class of set-proposal
distributions. In particular, we construct proposal distri-
butions that are tailored to particular probabilistic models
(and weight function w). The main advantage of this ap-
proach is that we can leverage the structure of the origi-
nal problem, and the corresponding optimization problems

359

will be easier to solve, leading to massive improvements in
scalability. This is similar in spirit to traditional importance
sampling, where one typically uses some prior knowledge
on the underlying probabilistic model to construct good
proposal distributions.

6 ADAPTIVE SET IMPORTANCE
SAMPLING SCHEME

Similarly to standard adaptive importance sampling
schemes (e.g. [22]), we propose an adaptive procedure
where set-proposal distributions are adapted based on the
samples collected. This is an enhancement of Algorithm 1
in that its iterative procedure can be exploited to adaptively
improve the input set-proposal distributions.

Recall from section 4.1.1 that a set-proposal distribution
can be defined in which sets Si are sampled by constrain-
ing variables x1, · · · , xi. For a fixed i there are 2i such
sets Si (where |Si| = 2n−i), and as in the previous sec-
tion for each i we sample T such sets Sti . Next, let eti =

arg maxx∈Sti
w(x)
γ(x,qi) . We define empirical marginal distri-

butions v̂i+1(x) based on the fraction of samples eti that
have variables x1 to xi+1 set to one (with Laplace smooth-
ing). Intuitively, the adaptive set importance algorithm per-
forms the same iteration as Algorithm 1, sampling sets by
incrementally constraining variables x1 to xi, except that
it interpolates the input proposal distribution with the em-
pirical marginal distributions from the previous iteration to
define a new set-proposal distribution for the current itera-
tion. The full details of the algorithm are shown in Algo-
rithm 2. During each iteration, as in Algorithm 1, generate
T sets S1

i . . . S
T
i where each represents a set of configura-

tions x in which the first i binary variables are "clamped"
to 0 or 1. The solutions eti = arg maxx∈Sti

w(x)
γ(x,qi) produce

T samples which define the empirical marginal distribution
v̂i+1(x), and this empirical marginal distribution is used to
sample sets in iteration i+1. For the first iteration, the vari-
able x1 is sampled according to any proposal distribution
(uniformly by default). Note also that when obtaining the
MAP configuration of many variables is intractable, the it-
eration can begin with any number of variables constrained
according to any proposal distribution (not just x1). ISS is
still guaranteed to perform at least as well (and often much
better) as IS by selecting subsets small enough that calcu-
lating the mode by brute force enumeration is tractable.

7 LEARNING

Because set importance sampling provides fast and scal-
able partition function estimates, it can be used for learn-
ing. We consider the standard problem of maximum like-
lihood learning of the parameters of an undirected graph-
ical model. Given samples x1, · · · , xM from a parame-
terized probability distribution pθ(x) = 1

Z(θ) exp (θφ(x)),

Input : w : X → R+, T
Output: Estimate of logZ = log

∑
x∈X w(x)

1 M0 ← arg maxx∈X w(x)
2 Define v̂1(x) as uniform marginal over x1
3 for i = 1, . . . , n do
4 Sample S1

i . . . S
T
i using marginals v̂i(x) as in 4.1.1

5 for t = 1, . . . , T do
6 mt

i, eti = max, arg maxx∈Sti
w(x)
γ(x,qi)

7 end
8 Mi ← Median(m1

i . . .mT
i)

9 Compute v̂i+1(x) based on e1i . . . eTi (with Laplace
smoothing). This is the fraction of argmax results eti
with xj = 1, for j ∈ {1, · · · , i+ 1}.

10 end
11 Return 1

n+1

∑n
i=0Mi

Algorithm 2: Adaptive set importance sampling

find maximum likelihood estimate of the parameters

max
θ

M∑

i=1

log pθ(xi) (3)

which can be equivalently written as
maxθ θ

1
M

∑M
i=1 φ(xi) − logZ(θ). It is well known

that solving this parameter learning problem is very
challenging because it requires inference to evaluate the
partition function (or its gradient). In this section we
show how our importance sampling scheme can be used
to approximate the value of the partition function, leading
to a new learning algorithm. The algorithm we obtain is
similar to structured prediction learning algorithms and
cutting plane techniques[30, 28, 26], used for example
in training structured support vector machines. A key
difference is that our approach is used to (approximately)
optimize the likelihood (in a generative setting), rather
than minimizing a loss function in a discriminative setting.

7.1 LEARNING ALGORITHM

Structured support vector machines (SSVM) [30] and other
structured prediction learning methods [18, 5] are trained
by solving a convex optimization problem in which the
number of constraints is exponential. The problems can
be solved tractably by iteratively constructing a sufficient
subset of constraints and employing an optimization oracle
to find the next constraint to include. In this way the sub-
set of the constraints is enlarged iteratively and provides a
lower bound on the optimization objective.

The learning approach based on set importance sampling
is similar, but using the set importance sampling technique
as an optimization oracle. Beginning from the logarithm
of equation (3), maxθ θ

1
M

∑M
i=1 φ(xi)− logZ(θ), we can

introduce a variable α which takes the place of logZ and
cast the optimization as follows

360

maximize
θ,α

θ
1

M

M∑

i=1

φ(xi)− α

subject to α ≥ logZ(θ)

We then express Z(θ) using the approximation given by
equation (2) as

α ≥ logZ(θ) ≥ k
max
i=1

max
x∈Si

θφ(x)− log γ(x, qi) (4)

Note this is an exponentially large set of linear constraints
in θ and α, and therefore corresponds to a linear program
(LP). Because the number of constraints is exponential in
the number of variables, as in structured learning we con-
sider only a subset C of constrained configurations x. The
reduced LP becomes,

maximize
θ

θ
1

M

M∑

i=1

φ(xi)− α

subject to α ≥ θφ(x) + β(x) ∀ x ∈ C
(5)

where β(x) = maxi|x∈Si(− log γ(x, qi))) and intuitively
is the maximum importance weight for a given x under all
set-proposal distributions qi (see Appendix A). C is ini-
tially set to the training data set {x1, · · · , xM}, and is en-
larged during each learning iteration by searching for the
most violated constraint, i.e. maxx θφ(x) + β(x).

The full learning procedure is described in Algorithm 3.
The input to the algorithm are theM training examples, the
vector of sufficient statistics φ and the (optional) choice of
set-proposal distributions q1 · · · qk (for example uniform,
based on the training examples, or adaptive if no qi are
provided). Each iteration of learning begins by finding the
optimal weights for the LP in equation (5). Following the
solution of the LP, we obtain the pair (θi, αi). Then, using
these learned weights θi, importance sampling over sets is
used to approximate logZ for various set-proposal distri-
butions and importance weights, and each of these samples
(modes) is added to constraint setC. Note that Algorithm 3
takes advantage of an optimization oracle to solve the LP
in equation (5). Another optimization oracle is used within
our importance sampling over sets procedure to estimate
logZ (by optimizing equation (4) using the current param-
eter estimate θi). Intuitively, the value of the partition func-
tion is not just approximated using the MAP assignment,
but thanks to the importance weights, we are able to obtain
better estimates. For example, if using the current weight
vector θi the distribution is close to uniform, an approxima-
tion based on the MAP assignment would be poor, but we
can still get good approximation to the partition function
thanks to the importance weights.

Because at each iteration a (convex) linear program is
solved to obtain the weights θ, at each iteration the weights
obtained for the constraints C are guaranteed to be glob-
ally optimal for the approximate likelihood objective. This

Input : xm,m = 1, . . . ,M , φ(x), T , qi, i = 1, . . . , k
Output: Learned weight parameters θ

1 converged← False
2 i← 0
3 C ← {xm,m = 1, . . . ,M}
4 while not converged do
5 i← i+ 1
6 θi, αi = solve LP (5) subject to C
7 for t = 1, . . . , T do
8 x∗i,t, logZest,t = Run ISS with θi, {q1, . . . qk}
9 end

10 logZest ← median
t=1,...,T

logZest,t

11 if αi ≥ logZest then
12 converged← True
13 else
14 C ← C ∪

{
x∗i,t, t = 1, . . . , T

}

15 end
16 end
17 Return θi

Algorithm 3: Iterative learning algorithm

is in contrast to gradient-based learning algorithms. More-
over, as more constraints are added to C at each iteration,
C approaches X and the LP objective is guaranteed to de-
crease monotonically towards the optimal approximate log
likelihood of the training data.

8 EXPERIMENTAL RESULTS

8.1 PARTITION FUNCTION

One application of importance sampling over sets is for
problems in which computing maxw(x) is tractable, but∑
x w(x) is intractable. An example are functions which

are log-supermodular. For such problems we can leverage
fast optimization (for example using graph cuts), as long as
w(x)/γ(x) stays tractable. For example, it is sufficient that
log(1/γ(x)) is supermodular.

We evaluated importance sampling over sets (ISS) against
standard inference algorithms: junction tree (EXACT), be-
lief propagation (BP), mean-field (MF), the MAP config-
uration (MAP), and naive importance sampling (IS). For
junction tree, belief propagation and mean-field, the libDAI
library was used [20].

First, we evaluated importance sampling over sets for func-
tions which are not log-supermodular, to demonstrate the
effectiveness of the method on general models. Table 1
shows estimates of the log partition function of the Ising
Models from the 2011 Probabilistic Inference Challenge
(PIC2011) 1. These models have “mixed” interactions and
therefore are not log-supermodular. For general functions

1www.cs.huji.ac.il/project/PASCAL/showNet.php

361

which are not log-supermodular, each arg max in ISS was
solved as an integer quadratic program (IQP) in CPLEX,
with a search granularity of n

10 to find the heaviest sets
as discussed in section 5. The log partition function es-
timates in Table 1 use a uniform proposal distribution to
show that even in the absence of a proposal distribution
the ISS method performs better than both naive impor-
tance sampling and the MAP configuration (which are both
special-cases of ISS).

Our second experiment validated ISS for functions which
are log-supermodular, and thus for which ISS can be run
in polynomial time. Fig. 1 evaluates the importance sam-
pling over sets method on attractive (log-supermodular)
Ising models with varying coupling strengths. Models have
a field factor of 2.0, although we observed that a range of
field factors gave almost identical results. For these log-
supermodular potentials, optimization was performed with
graph cuts using the OpenGM [2] library. For these ex-
periments, importance sampling algorithms (IS and ISS)
use the adaptive importance sampling scheme as a proposal
distribution, where first ISS was run and the final empirical
marginals in iteration n were also used for IS.

-50

-40

-30

-20

-10

0

10

0 1 2 3 4 5 6 7

Lo
g

pa
rt

iti
on

 fu
nc

tio
n

es
tim

at
io

n
er

ro
r

Coupling Strength

BP

MF

MAP

IS

ISS

Figure 1: Log partition function error of various infer-
ence algorithms for 10x10 Ising grids with attractive (log-
supermodular) interactions, a field factor of 2.0, and vari-
ous coupling strengths. Importance sampling (IS) and im-
portance sampling over sets (ISS) use adaptive set impor-
tance sampling.

Across a range of attractive Ising models, the set impor-
tance sampling technique provides very accurate estimates
of the log partition function. Moreover, due to the log-
supermodularity of the potentials, the ISS technique scales
to much larger models, providing accurate estimates in
polynomial time while other algorithms fail to converge.
Tables 2 and 3 show the log partition function estimates and
run-times for various Ising grid sizes, ranging from 10x10

Table 2: Log partition function estimates for various Ising
model sizes. "–" indicates that no solution was obtained
after 10 minutes. As in Table 1, ISS estimates are between
MF (which tends to under-estimate) and BP (which tends
to over-estimate)

BP MF MAP IS ISS
10 207.6 202.7 202.0 161.2 206.4
20 840.3 817.7 825.3 593.5 832.3
50 5195 4940 5110 3704 5125

100 20930 19910 20679 14670 20690
300 1.91E5 1.82E5 1.88E5 1.35E5 1.88E5
1000 2.11E6 – 2.09E6 1.48E6 2.09E6

Table 3: Time (in seconds) to estimate logZ for Ising model
sizes. "–" indicates that the algorithm did not converge
within 10 minutes.

EXACT BP MF MAP IS ISS
10 1 1 1 1 1 1
20 – 1 1 1 1 1
50 – 5 8 1 1 5

100 – 15 112 1 1 3
300 – 119 – 8 1 27
1000 – – – 105 15 300

to 1000x1000. Notably, for the 300x300 models mean-field
did not converge, but was still run for 10 minutes to give a
solution. Similarly for 1000x1000 models, belief propaga-
tion did not converge but gave a solution after 10 minutes.
For 1000x1000 models mean-field did not complete a sin-
gle iteration within 10 minutes.

Finally, we extend the evaluation beyond Ising models by
analyzing restricted Boltzmann machines (RBMs). Table 4
shows log partition function estimates for the largest RBM
in [25] (784 visible units, 500 hidden units, trained on the
MNIST dataset). AIS is the Annealed Importance Sam-
pling technique described in that work. BP failed to con-
verge. MF converged quickly but was less accurate than
AIS. The quick convergence of mean-field was also noted
by [24]. AIS was run in two modes, "no data" which es-
timated logZ from the model alone, and "data" which ad-
ditionally used the training data to initialize the algorithm.
In a similar spirit, due to the quick convergence of MF,
and further demonstrating the flexibility of ISS to use any
choice of proposal distribution, we ran mean-field to ob-
tain marginals and used these as the proposal distribution
for both IS and ISS. By leveraging MF as a proposal distri-
bution ISS matches the accuracy of AIS with data. The ISS
approach is valid even when no data is available.

8.2 LEARNING

In this final section we present preliminary analysis and
empirical justification for the learning algorithm. We gen-

362

Table 1: Comparison of methods estimating the log partition function for Ising Models. The Importance Sampling (IS)
and Importance Sampling over Sets (ISS) methods uses a uniform proposal distribution run over 5 random seeds, with the
median presented. Shown in brackets next to ISS is the median number of constrained variables in the heaviest weighted
set. The best estimate for each model is shown in bold.

EXACT BP MF MAP IS ISS (c)
grid10x10.f10 697.9 738.2 601.6 695.8 20.4 697.8 (3)

grid10x10.f10.wrap 767.5 837 695.4 766.5 65.85 767.9 (2)
grid10x10.f15.wrap 1146 1247 1036 1145.2 65.2 1146.6 (2)
grid10x10.f5.wrap 390.1 419.7 355.1 387.8 66.4 389.2 (2)

grid20x20.f10 3021 3234 2592 3015.7 299.1 3017.1 (2)
grid20x20.f15 4520 4756 3947 4517.3 309.3 4518.7 (2)
grid20x20.f2 671.7 677.9 621.6 635.7 282.9 637.8 (21)
grid20x20.f5 1531 1674 1391 1521.6 289.0 1522.4 (1)

Table 4: Log partition function estimates for a restricted
Boltzmann machine (RBM) trained on the MNIST dataset.
Annealed importance sampling (AIS) was run with and
without MNIST data for initialization. BP did not con-
verge. IS and ISS were initialized with mean-field
marginals as a proposal distribution and require no data.

Algorithm logZ
AIS (no data) 446.2

AIS (data) 451.1
BP –
MF 437.5

MAP 71.6
IS 447.2

ISS 450.2

eratively trained a naive Bayes model represented as an
MRF on the MNIST handwritten digit dataset (size 28x28
images) and observed the algorithm’s capability to learn
weights which accurately modeled the data. The learned
model contained 794 variables and 7840 parameters. Ex-
amples were used as described in Algorithm 3. Fig. 2
shows a visualization of the learned weights as training pro-
gresses. The top image in Fig. 2 shows weights after 5 it-
erations of training, while the bottom image shows weights
after 1000 iterations. Early in training the model captures
with high confidence the most common patterns in the dig-
its, but also noise. As training progresses, the model learns
to generalize and differentiate between random noise and
statistical variations in the data. Adaptive ISS was used as
a proposal distribution, and similar results were obtained
using marginals defined by the training data.

A straightforward extension of this work is extending the
learning to latent variable models such as restricted Boltz-
mann machines, which the cutting-plane technique may be
well-suited to given the accuracy of ISS in estimating RBM
partition functions. We leave learning larger and more
complex models to future work as the current contribution
focuses on the importance sampling over sets technique.

Figure 2: Visualization of learned weights of an undirected
naive Bayes model trained generatively on the MNIST
dataset. The top image shows weights after 5 iterations of
training while the bottom image shows weights after 1000
iterations. Large positive weights are shown in white and
large negative weights are shown in black.

9 CONCLUSIONS

We introduced a novel probabilistic inference algorithm
called importance sampling over sets, based on randomly
selecting (exponentially large) subsets of states rather than
individual ones as in traditional importance sampling. By
solving MAP inference queries over the sampled sets we
obtain estimates of the partition function of undirected
graphical models. This idea was incorporated into a novel
maximum likelihood learning algorithm where the opti-
mization oracle was used to obtain cutting planes. We
demonstrated empirically that our scheme provides accu-
rate answers on a range of benchmark instances and scales
to very large problems with up to a million variables.

363

References
[1] Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and

Michael I Jordan. An introduction to MCMC for machine
learning. Machine learning, 50(1-2):5–43, 2003.

[2] T. Beier B. Andres and J. H. Kappes. OpenGM: A C++
library for discrete graphical models. ArXiv e-prints, 2012.

[3] S. Chakraborty, K. Meel, and M. Vardi. A scalable and
nearly uniform generator of SAT witnesses. In Proc. of the
25th International Conference on Computer Aided Verifica-
tion (CAV), 2013.

[4] Barry A Cipra. The best of the 20th century: editors name
top 10 algorithms. SIAM news, 33(4):1–2, 2000.

[5] Michael Collins. Discriminative training methods for hid-
den markov models: Theory and experiments with per-
ceptron algorithms. In Proceedings of the ACL-02 confer-
ence on Empirical methods in natural language processing-
Volume 10, pages 1–8. Association for Computational Lin-
guistics, 2002.

[6] Josip Djolonga and Andreas Krause. From MAP to
marginals: Variational inference in Bayesian submodular
models. In Neural Information Processing Systems (NIPS),
2014.

[7] Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, and
Bart Selman. Optimization with parity constraints: From
binary codes to discrete integration. In Proc. of the 29th
Conference on Uncertainty in Artificial Intelligence (UAI),
2013.

[8] Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, and
Bart Selman. Taming the curse of dimensionality: Dis-
crete integration by hashing and optimization. In Proc.
of the 30th International Conference on Machine Learning
(ICML), 2013.

[9] Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, and
Bart Selman. Low-density parity constraints for hashing-
based discrete integration. In Proc. of the 31st International
Conference on Machine Learning (ICML), pages 271–279,
2014.

[10] V. Gogate and R. Dechter. SampleSearch: Importance sam-
pling in presence of determinism. Artificial Intelligence,
175(2):694–729, 2011.

[11] Leslie Ann Goldberg and Mark Jerrum. The complexity of
ferromagnetic ising with local fields. Combinatorics, Prob-
ability and Computing, 16(01):43–61, 2007.

[12] Carla P. Gomes, A. Sabharwal, and B. Selman. Model
counting: A new strategy for obtaining good bounds. In
Proc. of the 21st National Conference on Artificial Intelli-
gence (AAAI), pages 54–61, 2006.

[13] Carla P. Gomes, Willem Jan van Hoeve, Ashish Sabharwal,
and Bart Selman. Counting CSP solutions using generalized
XOR constraints. In Proc. of the 22nd National Conference
on Artificial Intelligence (AAAI), 2007.

[14] Mark Jerrum and Alistair Sinclair. Polynomial-time approx-
imation algorithms for the ising model. SIAM Journal on
computing, 22(5):1087–1116, 1993.

[15] Mark Jerrum and Alistair Sinclair. The markov chain monte
carlo method: An approach to approximate counting and in-
tegration. In Approximation Algorithms for NP-hard Prob-
lems, pages 482–520. PWS Publishing, Boston, MA, 1997.

[16] Michael I. Jordan, Z. Ghahramani, Tommi Jaakkola, and
L.K. Saul. An introduction to variational methods for graph-
ical models. Machine learning, 37(2):183–233, 1999.

[17] Daphne Koller and Nir Friedman. Probabilistic graphical
models: principles and techniques. MIT Press, 2009.

[18] Alex Kulesza and Fernando Pereira. Structured learning
with approximate inference. In Advances in neural infor-
mation processing systems, pages 785–792, 2007.

[19] N.N. Madras. Lectures on Monte Carlo Methods. American
Mathematical Society, 2002.

[20] Joris M. Mooij. libDAI: A free and open source C++ li-
brary for discrete approximate inference in graphical mod-
els. Journal of Machine Learning Research, 11:2169–2173,
August 2010.

[21] Radford M Neal. Annealed importance sampling. Statistics
and Computing, 11:125–139, 2001.

[22] Man-Suk Oh and James O. Berger. Adaptive importance
sampling in monte carlo integration. Journal of Statistical
Computation and Simulation, 41:143–168, 1992.

[23] Dan Roth. On the hardness of approximate reasoning. Arti-
ficial Intelligence, 82(1):273–302, 1996.

[24] Ruslan Salakhutdinov and Geoffrey E. Hinton. Deep Boltz-
mann machines. In Proc. of the 12th International Con-
ference on Artificial Intelligence and Statistics (AISTATS),
2009.

[25] Ruslan Salakhutdinov and Iain Murray. On the quantitative
analysis of deep belief networks. In Proc. of the 25th Inter-
national Conference on Machine Learning (ICML), 2008.

[26] Sunita Sarawagi and Rahul Gupta. Accurate max-margin
training for structured output spaces. In Proceedings of the
25th international conference on Machine learning, pages
888–895. ACM, 2008.

[27] Dale Schuurmans. Greedy importance sampling. In Ad-
vances in Neural Information Processing Systems (NIPS),
2000.

[28] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hof-
mann, and Yasemin Altun. Large margin methods for struc-
tured and interdependent output variables. In Journal of Ma-
chine Learning Research, pages 1453–1484, 2005.

[29] Martin J. Wainwright and Michael I. Jordan. Graphi-
cal models, exponential families, and variational inference.
Foundations and Trends in Machine Learning, 1(1-2):1–
305, 2008.

[30] Chun-Nam John Yu and Thorsten Joachims. Learning struc-
tural svms with latent variables. In Proceedings of the
26th Annual International Conference on Machine Learn-
ing, pages 1169–1176. ACM, 2009.

364

Progressive Abstraction Refinement for Sparse Sampling

Jesse Hostetler and Alan Fern and Thomas Dietterich
Department of Electrical Engineering and Computer Science

Oregon State University
{hostetje, afern, tgd}@eecs.oregonstate.edu

Abstract

Monte Carlo tree search (MCTS) algorithms can
encounter difficulties when solving Markov de-
cision processes (MDPs) in which the outcomes
of actions are highly stochastic. This stochas-
tic branching can be reduced through state ab-
straction. In online planning with a time budget,
there is a complex tradeoff between loss in per-
formance due to overly coarse abstraction versus
gain in performance from reducing the problem
size. Coarse but unsound abstractions often out-
perform sound abstractions for practical budgets.
Motivated by this, we propose a progressive ab-
straction refinement algorithm that refines an ini-
tially coarse abstraction during search in order to
match the abstraction to the sample budget. Our
experiments show that the algorithm combines
the strong performance of coarse abstractions at
small sample budgets with the ability to exploit
larger budgets for further performance gains.

1 INTRODUCTION

When solving planning problems with a time budget,
choosing the right representation is crucial. The native rep-
resentation is often too detailed. It may treat many situa-
tions as distinct that are actually similar, causing the plan-
ner to spend its limited budget planning for irrelevant con-
tingencies and fail to discover the long term consequences
of actions. We should ignore details when deliberation time
is limited, but given more time we should increase the level
of detail to make better decisions. We consider how to de-
sign online planning algorithms that benefit from this type
of progressive attention to detail.

Our approach is based on the Monte Carlo tree search
(MCTS) paradigm. MCTS methods [Browne et al., 2012]
select an action in a given state by constructing a looka-
head search tree using a domain simulator. Because MCTS

methods plan for only one state at a time, their asymptotic
sample complexity is generally independent of the size of
the state space. Rather, they are limited by the search depth
achievable with a given time budget, which must be deep
enough to estimate the quality of actions in the current
state.

A full expectimax tree of depth d has of the order O(|A| ·
B)d nodes, where |A| is the size of the action set and B
is the number of possible outcomes per action. To achieve
a larger value of d, it is necessary to limit branching in
the tree. One way is to reduce |A|, an approach taken in
previous works such as [Pinto and Fern, 2014]. The other
approach, and the one we consider, is to reduce B.

MCTS algorithms limit B by selective sampling. Sparse
sampling (SS) algorithms [Kearns et al., 2002] limit B to
a constant. Trajectory sampling (TS) algorithms like UCT
[Kocsis and Szepesvári, 2006] focus exploration toward ac-
tions with higher estimated values, so that B and d are
small in non-optimal subtrees. In this paper, we investigate
a version of sparse sampling that employs state abstraction
to further reduce B.

We limit ourselves to state aggregation abstractions, in
which the ground states are partitioned into a set of ag-
gregate states. Classes of aggregation abstractions that
guarantee bounded performance loss in tree search algo-
rithms have been constructed based on the value func-
tion [Hostetler et al., 2014] and on bisimilarity [Jiang
et al., 2014]. But while performance loss bounds guarantee
asymptotic accuracy, practical time budgets may preclude
running a search to convergence. Thus the accuracy and
size of the abstraction interact in a complex way to deter-
mine the actual search performance. Small budgets call for
coarser abstractions, while large budgets can support finer
abstractions [Jiang et al., 2014].

Our observation from experience with state abstraction in
MCTS has been that search with the coarsest possible ab-
straction — the abstraction that maps all states to a single
equivalence class — often substantially outperforms search
in the ground state space for moderate search budgets. Yet

365

the optimal policy is seldom representable in this abstract
space, and there comes a point at which search with such an
abstraction cannot exploit further increases in the budget.

Our main contribution is an algorithm — PARSS — that
exploits the strengths of coarse abstractions while retain-
ing the convergence and optimality guarantees of search in
the ground state space. We achieve this by beginning with
a coarse abstraction and refining it during search to cre-
ate a more detailed abstraction, thus allowing performance
to continue to improve after the point where search with
the starting abstraction would have reached a plateau. We
prove that with suitable implementation choices, PARSS
converges to the same result and with the same worst-
case sample complexity as a sparse sampling search over
the ground state space. Finally, we conduct experiments
demonstrating the strength of very coarse abstractions in
anytime online planning and the ability of PARSS to fur-
ther improve upon their performance.

2 BACKGROUND

We consider a Monte Carlo tree search (MCTS) algorithm
for online planning in Markov decision processes (MDPs).
A discounted MDP is a 5-tuple M = 〈S,A, P,R, γ〉,
where S and A are finite sets of states and actions,
P (s′|s, a) is the transition function, R(s) gives the instan-
taneous reward in s, and γ ∈ [0, 1] is the discount factor.
Note that undiscounted problems (ie. γ = 1) pose no prob-
lem in our online planning setting.

Tree search algorithms construct sampled approximations
of the expectimax tree overM rooted at the current state s0.
The expectimax tree itself defines an MDP over state-action
histories as follows. LetH(M, s0) = {s0} ×A× S × · · ·
be the set of state-action histories in M starting in s0. We
write Hn for the set of histories of length n. Given a
history h = s0a1s1 . . . ansn ∈ Hn, we write s(h) ≡
sn and a(h) ≡ an for the final state and final action
in the history, p(h) ≡ s0a1s1 . . . an−1sn−1 for the pre-
fix of the history, and `(h) ≡ n for the length of the
history. Using this notation, we overload the P and R
functions to apply to histories by defining P (h′|h, a) =
1p(h′)=h1a(h′)=aP (s′|s(h), a) and R(h) = R(s(h)). The
Tree MDP induced by a general MDP M and rooted at
h0 = s0 is the tuple T (M, s0) = 〈H,A, P,R, h0, γ〉.
A solution of a Tree MDP is a policy π : H 7→
A mapping histories to actions. The value of a pol-
icy is given by the value function V π(h) = R(h) +∑
h′∈H P (h′|h, π(h))V π(h′). A policy is optimal if

V π(h) = V ∗(h), where V ∗(h) is the optimal value func-
tion, V ∗(h) = R(h) + maxa∈A

∑
h′∈H P (h′|h, a)V ∗(h′).

Equivalently, an optimal policy π∗ is such that π∗(h) =
arg maxa∈AQ

∗(h, a), where Q∗(h, a) = R(h) +∑
h′∈H P (h′|h, a) maxa′∈AQ∗(h′, a′).

2.1 SPARSE SAMPLING

Our propsed algorithm derives from the sparse sampling
(SS) algorithm [Kearns et al., 2002]. SS estimates
Q∗(h0, a) by constructing a sampled approximation of the
Tree MDP rooted at h0. An SS tree of depth d and
width C defines a finite horizon estimate Qd(h, a) =
R(h) + γ

C

∑
h′∈k(h,a) maxa′∈AQd−1(h′, a′) of Q∗, with

terminal values Q0(h, a) = R(h). Each k(h, a) is a col-
lection of C iid samples h′ ∼ P (·|h, a), possibly con-
taining duplicates. The greedy policy with respect to Qd,
πSS(h) = arg maxa∈AQ

d(h, a), achieves bounded subop-
timality with sample complexity independent of the size of
the state space. Our algorithm (Section 4) is based on For-
ward Search Sparse Sampling (FSSS) [Walsh et al., 2010],
an SS algorithm that incorporates pruning.

2.2 STATE ABSTRACTION

We consider the simplest form of state abstraction — state
aggregation — in which the abstract states are the mem-
bers of a partition of the ground state space. Given a Tree
MDP T = 〈H,A, P,R, h0, γ〉, a state abstraction of T is
an equivalence relation χ on the set H. The abstraction
relation induces an abstract state space H/χ whose mem-
bers are the equivalence classes ofH with respect to χ. We
will write T/χ as shorthand for 〈H/χ,A, P,R, h0, γ〉. The
equivalence class of hwith respect to χ is denoted [h]χ, and
we say that two states h and g are equivalent with respect to
χ, denoted h 'χ g, if [h]χ = [g]χ. The abstraction relation
for a Tree MDP must be such that h 'χ g ⇒ p(h) 'χ p(g)
to ensure that T/χ is also a Tree MDP.

An abstraction χ is sound if there is an optimal policy
π∗ over T such that h 'χ g ⇒ π∗(h) = π∗(g) for
all h, g ∈ H. Classes of aggregation abstractions that
are sound or that guarantee bounded performance loss in
MCTS algorithms have been studied by Hostetler et al.
[2014] and Jiang et al. [2014].

2.3 ABSTRACTION REFINEMENT

State equivalence abstractions form a complete lattice or-
dered by abstraction granularity.

Definition 1. Abstractionψ is finer than χ, denotedψ � χ,
if h 'ψ g ⇒ h 'χ g. If in addition ψ 6= χ, then ψ is
strictly finer than χ, denoted ψ ≺ χ.

The finest abstraction is the bottom or ground abstraction
⊥, which maps all states to singleton sets, [h]⊥ = {h} ∀h.
The coarsest abstraction is the top abstraction >, which
maps all ground states of the same length to the same ab-
stract state, [h]> = H`(h) ∀h. Searching in the abstract
problem T/> amounts to searching for the best open-loop
policy in T , while searching in T/⊥ is equivalent to search-
ing in the ground space.

366

The lattice structure of equivalence abstractions ensures
that by iteratively constructing strict refinements of any ini-
tial abstraction we will eventually reach the bottom abstrac-
tion⊥, which is trivially sound. Furthermore, this property
does not depend on how the refinements are chosen.

3 MOTIVATING EXAMPLE: THE
SAVING PROBLEM

To illustrate the type of problem structure that motivates
our approach to state abstraction, we created a toy problem
called the Saving problem (Figure 1). The Saving prob-
lem is an episodic task in which the agent must accumulate
wealth by choosing to either save, invest, or borrow at each
time step. The save action always yields an immediate re-
ward of 1. The borrow action takes out a “loan”, which
gives an immediate reward of 2 and starts a countdown
timer tb from Tb to 0. The agent cannot borrow again while
tb > 0. When tb reaches 0, the agent receives a reward of
−3, representing repaying the loan with interest. Thus the
true value of borrow is −1, unless the episode will end be-
fore the loan is repaid. The invest action gives 0 immediate
reward, but gives the agent the right to take the sell action
sometime during the next Ti time steps. The sell action
gives a reward price(t) if executed at time t, where each
price(t)∼ DiscreteUniform{pmin, pmax} for pmin, pmax ∈ Z.
The agent can have only one investment at a time.

We instantiate the Saving problem with pmin = −4, pmax =
4, Ti = 4, and Tb = 4. With these parameters, invest is
nearly always optimal, but only if the agent takes advantage
of the investment period Ti in order to sell the investment
for more than E

[
price

]
= 0. Borrow is almost always the

worst action, but the agent must search to a depth of at least
Tb to discover its negative consequences.

Let us consider how the two extremes of state abstrac-
tion interact with the Saving problem, beginning with the
ground abstraction⊥. To avoid falling into the borrow trap,
the search must reach a depth of at least Tb. A full expec-
timax tree of depth Tb has size of the order O((|A|B)Tb),
where B = pmax − pmin + 1 is the stochastic branching due
to the random fluctuation of price. If we are restricted to
a sample budget k � (|A|B)Tb , then the constructed tree
will be very incomplete, and the agent may accidentally
choose to borrow or not to invest due to sampling variance.

At the other extreme, when searching with the top ab-
straction >, the size of the abstract tree is of the order
O(|A|Tb). This tree is much smaller in practical terms, so
searches will tend to give lower-variance estimates and bor-
row should be chosen less often. On the other hand, since
search with> cannot discriminate between states, the value
of invest will be estimated as E

[
price

]
= 0. This estimate

is less than 2, which is the opportunity cost of doing invest
and sell instead of doing save twice. Thus search with >

ti = Ti ti = Ti − 1

· · ·
ti = 0

invest / 0

sell / price(t)

¬ sell / 0

tb = Tb tb = Tb − 1

· · ·
tb = 0

borrow / 2

r = −3

Figure 1: Schematic diagram of the invest and borrow ac-
tions in the Saving problem. Edges labeled with an action
show its immediate reward.

will incorrectly choose to save rather than invest. This fail-
ure mode of open loop replanning was noted by Weinstein
and Littman [2012].

These two extremes illustrate an important point: the ap-
propriate abstraction depends on the sample budget. The
top abstraction > is superior for small budgets. Although
> is unsound in this domain, the search is operating in a
much smaller state space, resulting in lower variance and
less chance of incorrectly choosing borrow. Conversely,
⊥ is best with a large sample budget, since ⊥ is sound
whereas coarser abstractions might not be sound. With in-
termediate sample budgets, it is not clear how to determine
the appropriate abstraction granularity.

4 PROGRESSIVE ABSTRACTION
REFINEMENT

The difficulties illustrated in the Saving problem motivate
our proposed algorithm. We construct an abstract sparse
sampling algorithm that begins with the coarsest abstrac-
tion > and progressively refines the abstraction during
search. If the algorithm is interrupted early in the search, it
gives an answer based on a coarse but inaccurate abstrac-
tion. As more samples accumulate, the abstraction is re-
fined and the abstract search transforms smoothly into a
search over the ground state space.

The algorithm is built on top of the Forward Search Sparse
Sampling (FSSS) algorithm of Walsh et al. [2010]. We
first describe how to modify FSSS to construct a search
tree over the abstract state space induced by a fixed abstrac-
tion. We then “wrap” the abstract search in a progressive
abstraction refinement procedure.

In our algorithm descriptions, we treat each history h as
an object, in the sense that two histories h and g are dis-

367

tinct even if they describe the same sequence of states and
actions. Abstract states H are collections of ground his-
tories h, and may contain duplicates. The immediate re-
ward for an abstract state is denoted R(H) and is equal
to the average reward over its constituent ground states,
R(H) = 1

|H|
∑
h∈H R(h). We also assume the availabil-

ity of admissible value bounds Vmin and Vmax such that
Vmin ≤ V π(h) ≤ Vmax for all ground states h ∈ H and for
all policies π overH.

4.1 ABSTRACTION IN SPARSE SAMPLING

Forward Search Sparse Sampling (FSSS) [Walsh et al.,
2010] is an enhancement of ordinary sparse sampling (SS)
that incorporates pruning based on upper and lower bounds
on the values of subtrees. It provides the same performance
guarantees as SS and often does less computation.

Abstract FSSS (AFSSS; Algorithm 1) is a straightforward
extension of FSSS. AFSSS constructs an FSSS tree over
abstract states. The abstract tree encapsulates a tree of
ground states, whose structure is defined by collections of
ground successors k(h, a). Each abstract state node is a
collection H = {hi} of ground states. Associated with
each abstract state node are an upper and a lower value
bound U(H) and L(H)1 and a visit count n(H). Each
state node H such that n(H) > 0 has an action node suc-
cessor Ha for each a ∈ A. Action nodes have associated
value bounds U(H, a) and L(H, a), abstraction relations
χ(H, a), and abstract successor sets K(H, a). The visit
count n(H, a) for an action nodeHa is equal to the number
of ground successors of Ha, n(H, a) =

∑
h∈H |k(h, a)|.

The inputs to AFSSS are an abstract FSSS tree T , sam-
pling widthC, and maximum depth d. Like FSSS, AFSSS
proceeds in a series of top-down trials that each traverse a
path from the root node to a leaf state node. When extend-
ing a path, the algorithm chooses action nodes optimisti-
cally (Line 11), and chooses state nodes with the largest gap
betweenU andL (Line 12). If the path reaches an unvisited
state node (Line 9), that node is expanded by initializing
and sampling its action node successors. The backup op-
eration (Line 28) combines the average immediate reward
over ground states with the discounted future return bounds
over abstract states weighted by their empirical frequency.

When sampling an action node Ha (Line 22), the algo-
rithm must ensure that n(H, a) ≥ C to satisfy the sparse
sampling property. We accomplish this by sampling ground
successors h′ ∼ P (·|h, a) for each ground state h ∈ H and
adding them to the ground successor collections k(h, a) un-
til |k(h, a)| = dC/|H|e for all h ∈ H . Note that this sam-
pling method will sometimes draw more than C samples

1As in FSSS, these quantities bound the value estimate of the
full SS tree conditioned on the samples so far. The value of an
abstract state is a particular weighted average of ground values.
See [Hostetler et al., 2014] for details.

Algorithm 1 Abstract Forward Search Sparse Sampling
1: procedure AFSSS(T = 〈K,L,U,H0, χ〉, C, d, χ0)
2: global K,L,U,H0, χ, C, χ0

3: while time remains and not converged do
4: VISIT(H0, d)
5: procedure VISIT(H , d)
6: if H is terminal or d = 0 then
7: L(H)← R(H), U(H)← R(H)
8: else
9: if n(H) = 0 then EXPAND(H , χ0)

10: n(H)← n(H) + 1
11: a∗ ← arg maxa U(H, a)
12: H∗ ← arg maxH′∈K(H,a∗)[U(H ′)− L(H ′)]
13: VISIT(H∗, d− 1)
14: BACKUP(H , a∗)
15: BACKUP(H)
16: procedure EXPAND(H)
17: for all a ∈ A do
18: χ(H, a)← χ0(H, a)
19: (L(H, a), U(H, a))← (Vmin, Vmax)
20: SAMPLE(H , a)
21: (L(H ′), U(H ′))← (Vmin, Vmax) ∀H ′ ∈ K(H, a)

22: procedure SAMPLE(H , a)
23: for all h ∈ H do
24: while |k(h, a)| < dC/|H|e do
25: h′ ∼ P (·|h, a)
26: k(h, a)← k(h, a) ∪ {h′}.
27: K(H, a)← [

⋃
h∈H k(h, a)]/χ(H, a)

28: procedure BACKUP(H , a)
29: L(H, a)← R(H) + γ

∑
H′∈K(H,a)

|H′|
n(H,a)L(H ′)

30: U(H, a)← R(H) + γ
∑
H′∈K(H,a)

|H′|
n(H,a)U(H ′)

31: procedure BACKUP(H)
32: L(H)← maxa L(H, a)
33: U(H)← maxa U(H, a)

for an abstract action node Ha. It is crucial that sampling
is done in this way to allow the abstraction refinement algo-
rithm we will build on top of AFSSS (Section 4.2) to have
the same performance guarantees as FSSS.

AFSSS terminates when the time budget is exceeded or the
tree has converged (Line 3). The tree has converged if

L(H0, a
∗) ≥max

a6=a∗
U(H0, a)

where a∗ = arg max
a∈A

L(H0, a).
(1)

4.2 PROGRESSIVE ABSTRACTION
REFINEMENT FOR SPARSE SAMPLING

Our proposed algorithm (Algorithm 3) begins by building
an abstract FSSS tree with respect to >. After building the
abstract tree, it begins to refine the abstraction, and contin-

368

Algorithm 2 A generic abstraction refinement procedure
1: procedure PAR(T = 〈K,L,U,H0, χ〉)
2: Let Ha = SELECT(T)
3: if Ha 6= ∅ then
4: χ(H, a)← REFINE(χ(H, a))
5: SPLIT(H , a, χ)
6: UPDATETREE(H , a)

ues until there are no more useful refinements to perform.
We call the algorithm Progressive Abstraction Refinement
for Sparse Sampling (PARSS).

PARSS combines AFSSS with an instantiation of the
generic refinement procedure PAR described in Algo-
rithm 2. The PAR procedure consists of four steps. The
SELECT function either returns an action node Ha whose
associated abstraction relation χ(H, a) should be refined,
or indicates that no refinement is to be done. The REFINE
procedure is then called on the selected abstraction relation.
After refinement, the tree is SPLIT recursively to respect
the new abstraction. Finally, UPDATETREE re-computes
the tree statistics as necessary. The implementations of
SPLIT (Line 10) and UPDATETREE (Line 20) for AFSSS
are straightforward. The remaining operations, SELECT
and REFINE, are described in the next two sections.

After each PAR operation, PARSS calls AFSSS on the re-
fined tree. This is necessary because refinement may have
changed the value bounds of the root node such that the tree
no longer satisfies the convergence criterion.

4.2.1 Implementing SELECT

To ensure soundness, the SELECT operation must eventu-
ally select all action nodes Ha such that refining Ha could
change the root action choice. A selection mechanism that
guarantees this is said to be complete.

Definition 2. A SELECT mechanism is complete if it re-
turns an action nodeHa, whenever such anHa exists, such
that:

1. χ(H, a) �⊥.

2. U(H, a) < Vmax

These conditions ensure that refining χ(H, a) could poten-
tially alter the choice of root action. Condition (2.2) ex-
cludes action nodes in whichU(H, a) = Vmax, since in this
case refining below Ha cannot increase U(H, a) and thus
cannot affect the root action choice. This situation arises
when nodes have been generated by the EXPAND operation
in AFSSS, but have not been visited yet.

The requirements of Definition 2 place few constraints on
the order in which nodes are selected. There are several
heuristic reasons to prefer refining near the root first. The

Algorithm 3 Progressive Abstraction Refinement for SS
1: procedure PARSS(h0, C, d)
2: Let T = 〈K,L,U,H0, χ〉 where
3: K(H0, a) = ∅ ∀a ∈ A,
4: L(H0) = Vmin, U(H0) = Vmax,
5: H0 = {h0}, χ = >.
6: AFSSS(T , C, d, >)
7: while time remains and some χ(H, a) �⊥ do
8: PAR(T)
9: AFSSS(T , C, d, >)

10: procedure SPLIT(H , a, χ)
11: if H is a leaf then return
12: Let K ′ = ∅ . New abstract successor set
13: for all H ′ ∈ K(H, a) do
14: Let G′ = H ′/χ(H, a) . Refined partition
15: for all 〈G′, a′〉 ∈ G′ ×A do
16: K ′ ← K ′ ∪ {G′}
17: χ(G′, a′)← χ(H ′, a′) . Copy old relation
18: SPLIT(G′, a′, χ)
19: K(H, a)← K ′ . Overwrite old successor set
20: procedure UPDATETREE(H , a)
21: for all H ′ ∈ K(H, a) do
22: UPSAMPLE(H ′)
23: for t from 0 to `(H) do . Backup path to root
24: for all a ∈ A do BACKUP(H , a)
25: BACKUP(H)
26: Let H = p(H)

27: procedure UPSAMPLE(H)
28: if H is a leaf then
29: L(H)← R(H), U(H)← R(H)
30: else if n(H) > 0 then
31: for all a ∈ A do
32: SAMPLE(H , a)
33: for all H ′ ∈ K(H, a) do UPSAMPLE(H ′)
34: BACKUP(H , a)
35: BACKUP(H)

most important is that actions near the root are part of more
different policies than actions near the leaves. Since the
value of an action node only affects the root value if that
action is part of the optimal policy, refining nodes that are
members of more policies makes it more likely that the re-
finement will affect the root value. In discounted problems,
nodes at shallow depths are also less affected by discount-
ing. These observations suggest that a breadth-first order-
ing is a reasonable choice.

In our experiments, we used a randomized breadth-first
strategy to choose the next node to refine. Our SELECT im-
plementation is divided into subtree selection and node se-
lection phases. First, a subtree H0a that is not fully refined
is chosen uniformly at random. Then we find the shallow-
est depth d at which some descendent of H0a satisfies the

369

conditions of Definition 2, and return one such descendent
at depth d uniformly at random.

4.2.2 Implementing REFINE

Due to the lattice structure of partition abstractions, re-
peated refinements will eventually yield the ground ab-
straction ⊥, provided the refinements are strict. Thus, we
require that REFINE produces strict refinements, to guaran-
tee that the refinement process continues to make progress.
Definition 3. REFINE is a strict refinement function if
REFINE(χ) ≺ χ.

The best choice of REFINE implementation will depend on
the problem being solved. In our experiments, we tried the
following two variations.

Random Refinement. The simpler approach,
REFINERANDOM, first chooses the largest set H ′ in
the partition induced by χ(H, a). It then randomly
permutes the equivalence classes in H ′/⊥ and greedily
divides them into two sets of approximately equal size.
This option is fast to compute but does not exploit structure
in the ground state space.

Tree-based Refinement. If we have access to a set of
features {φi(h)} for each state, we can take a more
sophisticated approach. REFINEDT is based on an
incrementally-constructed decision tree. Each abstraction
relation χ(H, a) is defined by a decision treeD. The leaves
of D define the members of a partition of the successors of
Ha. Interior nodes are labeled with a feature i and a thresh-
old θ. The refinement operation chooses the largest leaf
node N of D and adds a new split to D dividing N into
two new sets X and Y , choosing splits greedily to maxi-
mize an evaluation function f(X,Y).

The evaluation function f can be designed to encourage de-
sired properties in the partitions. For example, if χ is such
that for all H ∈ H/χ, all members of H have the same
optimal action and the same optimal value, then χ is sound
in sparse sampling [Hostetler et al., 2014]. This condition
is called a∗-irrelevance [Li et al., 2006]. We define an eval-
uation function that encourages a∗-irrelevance using upper
bounds u(h) and u(h, a) for ground state values. These can
be computed along with the bounds for the abstract states
during the BACKUP step (Algorithm 1, Line 28).

Using these bounds on the ground states, we define the
evaluation function

f(X,Y) = |ū(X)− ū(Y, a∗)|+ |ū(Y)− ū(X, b∗)|,
where ū(H) = 1

|H|
∑
h∈H u(h), ū(H, a) =

1
|H|
∑
h∈H u(h, a), a∗ = arg maxa∈A ū(X, a) and

b∗ = arg maxb∈A ū(Y, b). Splits that maximize f will
tend to put ground states that have different optimal actions
or different optimal values into different abstract states.

4.3 ANALYSIS OF PARSS

The PARSS algorithm can be viewed as a different way of
orchestrating the sampling of a sparse tree. If run to termi-
nation, it provides the same performance guarantees with
the same sample complexity as ordinary sparse sampling.

Definition 4. An abstract search tree T = 〈K,L,U,H0〉
is an abstract FSSS tree with respect to χ, or an AFSSS(χ)
tree in shorthand, if

1. For each abstract state node H , ∀h, g ∈ H , h 'χ g;

2. For every abstract state node H such that n(H) > 0,
n(H, a) ≥ C for all a ∈ A,

3. All value bounds L and U are admissible (Sec-
tion 4.1),

4. T satisfies the AFSSS convergence criterion (1).

One can easily verify that the output of AFSSS is an ab-
stract FSSS tree.

Proposition 1. Consider a PARSS implementation where
the SELECT and REFINE operations satisfy the conditions
of Definitions 2 and 3. If the current search tree T is an
abstract FSSS tree with respect to abstraction χ, then af-
ter one iteration of the loop in Algorithm 3, Line 7, the
resulting tree T ′ is an abstract FSSS tree with respect to
an abstraction ψ such that ψ ≺ χ.

Proof. By assumption, REFINE(χ(H, a)) returns a new ab-
straction ψ such that ψ(H, a) ≺ χ(H, a), and therefore
ψ ≺ χ. The SPLIT operation partitions the subtree Ha ac-
cording to ψ, establishing condition (4.1). The UPSAMPLE
loop in UPDATETREE (Line 21) adds samples and performs
backups in the subtree Ha to establish (4.2) and (4.3) for
the subtree. Then values are backed up from Ha to the
root node (Line 23), which establishes (4.3) for the rest of
the tree. Finally, the call to AFSSS (Line 9) establishes
convergence (4.4).

Proposition 2. If PARSS does not exhaust its time budget,
it terminates after drawing at most (|A| ·C)d samples from
the transition function P , and the resulting search tree is
an abstract FSSS tree with respect to ⊥.

Proof. By Proposition 1, each iteration of the loop in Algo-
rithm 3, Line 7 produces a strictly refined AFSSS tree. Due
to the lattice structure of aggregation abstractions (Sec-
tion 2.3), the abstraction relations χ(H, a) will be equal to
⊥ for all H, a after a finite number of iterations. The tree
at this point is an abstract FSSS tree with respect to⊥. The
worst-case sample complexity occurs if all abstract nodes
H in the fully-refined tree are singletons.

Proposition 3. PARSS achieves the same error bounds
and sample complexity as ordinary sparse sampling.

370

Proof. Proposition 2 establishes that PARSS yields an
AFSSS(⊥) tree T with the same worst-case sample com-
plexity as SS (ie. O((|A| · C)d)). T is different from
a ground FSSS tree in that states that are equal in the
ground representation are aggregated in T . Because the
FSSS pruning mechanism is sound [Walsh et al., 2010],
T achieves the same error bounds as an SS tree in which
identical states are aggregated. The error bounds for sparse
sampling remain valid in this case [Kearns et al., 2002],
thus the conclusion follows.

5 RELATED WORK

The PARSS algorithm begins with an abstract tree search
under abstraction >, which as we have noted is equiva-
lent to searching for an open loop policy. Several works
have explored the use of open loop policies for value esti-
mation. Weinstein and Littman [2012] applied this idea in
continuous action MDPs, drawing on theory developed by
Bubeck and Munos [2010]. Weinstein and Littman [2013]
later developed a related algorithm with a different opti-
mization mechanism and applied it to legged locomotion
tasks. Hauser [2011] used forward search with open loop
policies to plan in partially observable continuous spaces.

Incremental construction of state space partitions starting
from the top abstraction > has been a common approach
to abstraction discovery in MDPs, in algorithms such
as the G algorithm [Chapman and Kaelbling, 1991], the
PARTI-GAME algorithm [Moore and Atkeson, 1995], and
the UTREE algorithm [McCallum, 1996]. The REFINEDT
operation (Section 4.2.2) is similar to UTREE.

One closely related work is the Tree Learning Search (TLS)
algorithm of Van den Broeck and Driessens [2011]. TLS
contains all of the main ideas we use in PARSS, but ap-
plied in the UCT algorithm and targeted at continuous ac-
tion spaces. Each state node of a TLS tree has an asso-
ciated decision tree that represents a discretization of the
action space. The decision trees are grown incrementally
when data indicate that an existing action equivalence class
leads to states with large variation in their values.

Another closely related work is that of Jiang et al. [2014],
which describes a different abstraction refinement proce-
dure for UCT. Their search proceeds in “batches” of sam-
ples. In between each batch, all of the abstraction relations
are recomputed to satisfy a local approximate homomor-
phism criterion with respect to the sampled tree, and then
the next batch of samples is drawn via search in the new
abstract state space. A key difference from our approach is
that their algorithm computes a particular abstraction with
specified approximation bounds. With more samples, the
computed abstraction becomes a better estimate of the tar-
get abstraction. In contrast, our method computes progres-
sively finer abstractions as the sample budget increases.

Table 1: Best parameters for each algorithm. Parameter
quality is measured by AUAC(wmag).

Domain Saving Racetrack (S) Racetrack (L)
Algorithm B C d B C d B C d
PARSS+DT - 5 5 - 10 5 - 20 4
PARSS+RAND - 5 5 - 10 5 - 20 4
TOP - 5 5 - 20 5 - 20 4
GROUND - 2 5 - 10 4 - 10 4
RANDOM 2 5 5 2 20 4 2 10 4

Domain Blackjack Advising 1 Advising 2
PARSS+DT - 50 2 - 5 2 - 5 2
PARSS+RAND - 50 2 - 5 2 - 5 2
TOP - 50 2 - 5 2 - 5 2
GROUND - 50 2 - 2 2 - 2 2
RANDOM 2 50 2 2 5 2 2 5 2

6 EXPERIMENTS

We evaluated PARSS with both REFINEDT and
REFINERANDOM refinement procedures (“PARSS+DT”
and “PARSS+RAND”; Section 4.2.2) in comparison to
flat FSSS (“GROUND”), AFSSS with the top abstraction
(“TOP”), and AFSSS with random abstractions of differ-
ent fixed branching factors (“RANDOM”). We compared
the anytime performance of the algorithms with both
sample budgets and time budgets.

6.1 DOMAINS

Our test domains included the Saving problem described
earlier (Section 3) as well as several other benchmark do-
mains. We chose domains that exhibit varying amounts of
stochastic branching and on which we suspected that the
top abstraction would not be optimal.

Racetrack. Racetrack is the classic RL domain of Barto
et al. [1995]. The agent controls a car in a grid world. The
state specifies the car’s position and velocity, and the ac-
tions apply an acceleration a ∈ {−1, 0, 1} × {−1, 0, 1} to
the car. The objective is to reach a goal state in as few steps
as possible without crashing into a wall. We incorporate
stochasticity by making both components of the accelera-
tion action subject independently to a random “slip” with
probability 0.2, which causes 0 acceleration to be applied
in that direction rather than the intended amount. We used
both the “small” and “large” circuits of Barto et al. [1995].

Spanish Blackjack. Spanish Blackjack is a more com-
plicated variation of the casino game Blackjack (or “21”).
In Spanish Blackjack, the player may split to a total of up
to 4 hands, may double down after splitting, may re-double
the same hand up to a total of three times, and may hit after
doubling. There are also bonuses for making 21 in 5 cards,
6 cards, or 7 or more cards, or with either 7,7,7 or 6,7,8.

Academic Advising. The Academic Advising domain
[Guerin et al., 2012] was featured at the International Plan-
ning Competition at ICAPS in 2014. The agent must take

371

●

●

●

●

●
●

● ● ●

20

24

28

32

36

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

Sample budget

R
et

ur
n

Algorithm

●

PARSS + DT
PARSS + Random
Ground
Top
Random

Saving

● ● ●

●

●

●

●

●

● ● ●

−40

−35

−30

−25

−20

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

50
00

00

10
00

00
0

20
00

00
0

Sample budget

R
et

ur
n

Algorithm

●

PARSS + DT
PARSS + Random
Ground
Top
Random

Racetrack Small

● ● ●

●

●

●
●

●

● ●
●

−60

−50

−40

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

50
00

00

10
00

00
0

Sample budget

R
et

ur
n

Algorithm

●

PARSS + DT
PARSS + Random
Ground
Top
Random

Racetrack Large

●

●

● ●
● ● ● ● ● ● ●

●

−1.5

−1.0

−0.5

0.0

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

50
00

00

10
00

00
0

Sample budget

R
et

ur
n

Algorithm

●

PARSS + DT
PARSS + Random
Ground
Top
Random

Spanish Blackjack

● ●

●

● ● ● ● ● ● ● ● ● ●

−500

−400

−300

−200

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

50
00

00
10

00
00

0
20

00
00

0

Sample budget

R
et

ur
n

Algorithm

●

PARSS + DT
PARSS + Random
Ground
Top
Random

Advising 1

●

●

●

● ● ● ● ● ● ● ● ● ●

−1000

−800

−600

−400

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

50
00

00
10

00
00

0
20

00
00

0

Sample budget

R
et

ur
n

Algorithm

●

PARSS + DT
PARSS + Random
Ground
Top
Random

Advising 2

Figure 2: Performance vs. sample budget. Results are for the parameters that maximized AUAC(wmag). Confidence
intervals are shown, but are mostly smaller than the marker shapes except for Spanish Blackjack.

and pass all of the required courses in an academic pro-
gram. The courses are linked by prerequisite relationships,
and the chance of passing a course depends on how many of
its prerequisites have been passed. We used MDP instances
1 and 2 from the IPC 2014.

In the IPC version of Advising, the agent can either pass
or fail a course. We implemented a generalized problem
that has integer grades in the range {0, . . . , g} to increase
stochastic branching. We set g = 4 and set 2 as the mini-
mum passing grade for required courses.

6.2 METHODOLOGY

We evaluated each algorithm for several combinations of
the C and d parameters. The range of d spanned 3 - 4 con-
secutive integers for each problem andC spanned 3 - 4 con-
secutive values in the sequence {5, 10, 20, 50, 100, 200}.
Specific ranges were chosen based on pilot experiments.

For the sample budget experiments, we restricted the algo-
rithms to a maximum number of samples from the transi-
tion function. We evaluated sample budgets in the sequence
{200, 500, 1000, 2000, . . .} for each parameter combina-
tion. For each budget, we measured average return over
2000 to 10000 episodes, depending on the domain.

We report results for the combinations of parameters that
maximized the weighted area under the anytime curve.
Given a budget sequence B = {b1, . . . , bn}, we calculate
AUAC as

AUAC(w)(B) =

n∑

i=2

w(bi, bi−1)
ρ(bi) + ρ(bi−1)

2
, (2)

where ρ(b) is the sample average of the return of the algo-
rithm with budget b and w : B × B 7→ R≥0 is a weight
function. In our main experiment, we use the weight func-
tion wmag(bi, bi−1) = log bi − log bi−1, which reflects a
preference for good performance across orders of magni-
tude of budget.

Performance comparisons based on sample budgets can be
misleading, since more-sophisticated algorithms do more
work per sample. For those domains in which PARSS
showed superior performance, we ran experiments with a
time budget using the same parameters that achieved the
best sample budget performance. The time budgets were
measured in milliseconds and were drawn from the se-
quence {10, 16, 25, 40, 63, 100, . . .}.

6.3 RESULTS

The two variations of PARSS had superior anytime perfor-
mance with a sample budget in Saving and in both Race-
tracks (Figure 2), and were equal to TOP on the other do-
mains. TOP outperformed GROUND in all domains except
Saving but it plateaued at a suboptimal value in Saving and
Racetrack Large. The pattern of performance on Saving
was as expected, with TOP plateauing while both variants
of PARSS continued to improve and equaled the best per-
formance of GROUND.

In Blackjack and both Advising domains, the AUAC(wmag)
performance measure emphasized quick convergence, and
the best C and d parameters were at the small end of their
ranges (Table 6.1). TOP (and thus PARSS) converged
more quickly than GROUND, and in both Advising domains
also converged to a better value. PARSS did not diverge

372

● ● ●
● ● ● ● ● ●

20

24

28

32

36

10 16 25 40 63 10
0

16
0

25
0

40
0

Time budget (ms)

R
et

ur
n

Algorithm

●

PARSS + DT
PARSS + Random
Ground
Top
Random

Saving (time budget)

● ●

●

●

●

●
●

●

●

● ●

−40

−35

−30

−25

−20

10 16 25 40 63 10
0

16
0

25
0

40
0

63
0

10
00

Time budget (ms)

R
et

ur
n

Algorithm

●

PARSS + DT
PARSS + Random
Ground
Top
Random

Racetrack Small (time budget)

● ●

●
●

●
●

●

●

●

●
●

−60

−50

−40

10 16 25 40 63 10
0

16
0

25
0

40
0

63
0

10
00

Time budget (ms)

R
et

ur
n

Algorithm

●

PARSS + DT
PARSS + Random
Ground
Top
Random

Racetrack Large (time budget)

Figure 3: Performance vs. time budget. Parameter settings are the same as for the sample budget experiments.

● ● ●

●

●

●

●

●

● ● ●

−40

−35

−30

−25

−20

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

50
00

00

10
00

00
0

20
00

00
0

Sample budget

R
et

ur
n

Algorithm

●

PARSS + DT
PARSS + Random
Ground
Top
Random

Racetrack Small (w_flat)

●
● ●

●

●

●

●

●

● ● ● ● ●

−500

−400

−300

−200

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

50
00

00
10

00
00

0
20

00
00

0

Sample budget

R
et

ur
n

Algorithm

●

PARSS + DT
PARSS + Random
Ground
Top
Random

Advising 1 (w_flat)

● ● ●

●

●
●

● ● ● ● ● ● ●

−1200

−1000

−800

−600

−400

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

50
00

00
10

00
00

0
20

00
00

0

Sample budget

R
et

ur
n

Algorithm

●

PARSS + DT
PARSS + Random
Ground
Top
Random

Advising 2 (w_flat)

Figure 4: Selected results with best parameters according to AUAC(wflat).

from TOP in these domains, indicating that abstraction re-
finement was not beneficial.

The RANDOM abstraction, which is a compromise between
TOP and GROUND, tended to fall in between those two ab-
stractions, although RANDOM performed poorly on Saving
for small budgets.

The results with time budgets were qualitatively similar to
the sample budget results (Figure 3).

To examine the sensitivity of our results to the choice of
anytime performance measure, we also evaluated the al-
gorithms with the parameters that maximized AUAC with
respect to the alternative weight function wflat(bi, bi−1) =
bi − bi−1. Weighting with wflat gives equal weight to all
budgets in the range, and thus gives greater emphasis to
large budgets compared to wmag. In the domains shown
(Figure 4), the different budget weighting resulted in some
qualitative changes to the results, but the relative ranking of
the algorithms remained the same. Note that the divergence
between PARSS and TOP in Advising 2 is due to noise in
parameter selection. There were no noteworthy differences
in the domains not shown.

There was no difference in performance between
PARSS+DT and PARSS+RAND. It appears that ei-
ther REFINEDT does not find better refinements than
REFINERANDOM, or else the quality of refinements does
not matter much to overall performance. We expected
the simpler REFINERANDOM mechanism to have an
advantage under a time budget, but this was not the case.

To summarize, our main experimental findings were:

• TOP was clearly superior to GROUND overall;

• PARSS equaled the performance of TOP, or sur-
passed TOP through abstraction refinement;

• The two refinement mechanisms — REFINERANDOM
and REFINEDT — had identical performance;

• Relative performance results with time budgets were
qualitatively similar to those with sample budgets.

7 SUMMARY

We have described an extension of sparse sampling called
Progressive Abstraction Refinement for Sparse Sampling
(PARSS) that adapts the granularity of its state represen-
tation to the available planning budget. PARSS exploits
the benefits of coarse, unsound abstractions for small bud-
gets while transitioning smoothly to more accurate abstrac-
tions when given a larger budget. We proved that PARSS
has the same sample complexity and accuracy guarantees
as SS. Our experiments demonstrated that planning with
the coarsest abstraction, equivalent to open loop planning,
yields strong anytime performance on several benchmark
domains, and confirmed that PARSS can improve upon
that strong performance as budgets increase.

Acknowledgements

This research was supported by NSF grant IIS 1320943.

373

References
Barto, A. G., Bradtke, S. J., and Singh, S. P. (1995). Learn-

ing to act using real-time dynamic programming. Artifi-
cial Intelligence, 72(1-2):81–138.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M.,
Cowling, P. I., Rohlfshagen, P., Tavener, S., Perez, D.,
Samothrakis, S., and Colton, S. (2012). A survey of
Monte Carlo tree search methods. IEEE Transactions on
Computational Intelligence and AI in Games, 4(1):1–43.

Bubeck, S. and Munos, R. (2010). Open loop optimistic
planning. In Conference on Learning Theory (COLT).

Chapman, D. and Kaelbling, L. P. (1991). Input general-
ization in delayed reinforcement learning: An algorithm
and performance comparisons. In International Joint
Conference on Artificial Intelligence (IJCAI).

Guerin, J. T., Hanna, J. P., Ferland, L., Mattei, N., and
Goldsmith, J. (2012). The academic advising planning
domain. In Workshop on the International Planning
Competition (WS-IPC) at ICAPS.

Hauser, K. (2011). Randomized belief-space replanning in
partially-observable continuous spaces. In Algorithmic
Foundations of Robotics IX, pages 193–209. Springer.

Hostetler, J., Fern, A., and Dietterich, T. (2014). State ag-
gregation in Monte Carlo tree search. In AAAI Confer-
ence on Artificial Intelligence.

Jiang, N., Singh, S., and Lewis, R. (2014). Improving UCT
planning via approximate homomorphisms. In Interna-
tional Conference on Autonomous Agents and Multia-
gent Systems (AAMAS).

Kearns, M., Mansour, Y., and Ng, A. Y. (2002). A sparse
sampling algorithm for near-optimal planning in large
Markov decision processes. Machine Learning, 49(2-
3):193–208.

Kocsis, L. and Szepesvári, C. (2006). Bandit based Monte-
Carlo planning. In European Conference on Machine
Learning (ECML).

Li, L., Walsh, T. J., and Littman, M. L. (2006). Towards a
unified theory of state abstraction for MDPs. In Interna-
tional Symposium on Artificial Intelligence and Mathe-
matics.

McCallum, A. K. (1996). Reinforcement learning with se-
lective perception and hidden state. PhD thesis, Univer-
sity of Rochester.

Moore, A. W. and Atkeson, C. G. (1995). The parti-game
algorithm for variable resolution reinforcement learning
in multidimensional state-spaces. Machine Learning,
21(3):199–233.

Pinto, J. and Fern, A. (2014). Learning partial policies to
speedup MDP tree search. In Conference on Uncertainty
in Artificial Intelligence (UAI).

Van den Broeck, G. and Driessens, K. (2011). Automatic
discretization of actions and states in Monte-Carlo tree
search. In ECML/PKDD Workshop on Machine Learn-
ing and Data Mining in and around Games.

Walsh, T. J., Goschin, S., and Littman, M. L. (2010). In-
tegrating sample-based planning and model-based rein-
forcement learning. In AAAI Conference on Artificial
Intelligence.

Weinstein, A. and Littman, M. L. (2012). Bandit-based
planning and learning in continuous-action Markov de-
cision processes. In International Conference on Auto-
mated Planning and Scheduling (ICAPS).

Weinstein, A. and Littman, M. L. (2013). Open-loop plan-
ning in large-scale stochastic domains. In AAAI Confer-
ence on Artificial Intelligence.

374

Zero-Truncated Poisson Tensor Factorization for Massive Binary Tensors

Changwei Hu∗

ECE Department
Duke University

Durham, NC 27708

Piyush Rai∗

ECE Department
Duke University

Durham, NC 27708

Lawrence Carin
ECE Department
Duke University

Durham, NC 27708

Abstract

We present a scalable Bayesian model for low-
rank factorization of massive tensors with binary
observations. The proposed model has the fol-
lowing key properties: (1) in contrast to the mod-
els based on the logistic or probit likelihood, us-
ing a zero-truncated Poisson likelihood for bi-
nary data allows our model to scale up in the
number of ones in the tensor, which is espe-
cially appealing for massive but sparse binary
tensors; (2) side-information in form of binary
pairwise relationships (e.g., an adjacency net-
work) between objects in any tensor mode can
also be leveraged, which can be especially use-
ful in “cold-start” settings; and (3) the model ad-
mits simple Bayesian inference via batch, as well
as online MCMC; the latter allows scaling up
even fordense binary data (i.e., when the num-
ber of ones in the tensor/network is also mas-
sive). In addition, non-negative factor matrices in
our model provide easy interpretability, and the
tensor rank can be inferred from the data. We
evaluate our model on several large-scale real-
world binary tensors, achieving excellent compu-
tational scalability, and also demonstrate its use-
fulness in leveraging side-information provided
in form of mode-network(s).

1 INTRODUCTION

With the recent surge in multiway, multirelational, or “ten-
sor” data sets (Nickel et al., 2011; Kang et al., 2012), learn-
ing algorithms that can extract useful knowledge from such
data are becoming increasingly important. Tensor decom-
position methods (Kolda and Bader, 2009) offer an attrac-
tive way to accomplish this task. Among tensor data, of
particular interest are real-worldbinary tensors, which are
now ubiquitous in problems involving social networks, rec-

∗Equal contribution

ommender systems, and knowledge bases, etc. For in-
stance, in a knowledge base, predicate relations defined
over the tuples (subjects, objects,verbs) can be represented
in form of a binary three-way tensor (Kang et al., 2012).

Usually, real-world binary tensors are massive (each di-
mension can be very large) but extremely sparse (very few
ones in the tensor). For example, in a recommender system,
each positive example (e.g., an item selected a set) implic-
itly creates several negative examples (itemsnot chosen).
Likewise, in a knowledge base, the validity of one rela-
tion automatically implies invalidity of several other rela-
tions. In all these settings, the number of negative examples
greatly overwhelms the number of positive examples.

Unfortunately, binary tensor factorization meth-
ods (Nickel et al., 2011; Xu et al., 2013; Rai et al.,
2014), based on probit or logistic likelihood, scale poorly
for massive binary tensors because these require evaluating
the likelihood/loss-function onboth ones as well as zeros
in the tensor. One possibility is to use heuristics such
as undersampling the zeros, but such heuristics usually
result in less accurate solutions. Another alternative is to
use thesquared loss (Hidasi and Tikk, 2012; Nickel et al.,
2012) as the model-fit criterion, which facilitates linear
scalability in the number of ones in the tensor. How-
ever, such an approach can often lead to suboptimal
results (Ermis and Bouchard, 2014) in practice.

It is therefore desirable to have methods that can perform
efficient tensor decomposition for such data, ideally with a
computational-complexity that depends only on the num-
ber of nonzeros (i.e., the ones) in the tensor, rather than
the “volume” of the tensor. Motivated by this problem,
we present a scalable Bayesian model for the Canonical
PARAFAC (CP) tensor decomposition (Kolda and Bader,
2009), with an inference-complexity that scales linearly in
the number of ones in the tensor. Our model uses a zero-
truncated Poisson likelihood for each binary observation in
the tensor; this obviates the evaluation of the likelihoodsfor
the zero entries. At the same time, the significant speed-up
is not at the cost of sacrificing on the quality of the solu-
tion. As our experimental results show, the proposed like-

375

lihood model yields comparable or better results to logistic
likelihood based models, while being an order of magni-
tude faster in its running-time on real-world binary tensors.
Note that replacing the zero-truncated Poisson by the stan-
dard Poisson makes our model also readily applicable for
count-valued tensors (Chi and Kolda, 2012); although, in
this exposition, we will focus exclusively on binary tensors.

Often, side-information (Acar et al., 2011; Beutel et al.,
2014), e.g., pairwise relationships (partially/fully ob-
served), may also be available for objects in some of the
tensor dimensions. For example, in addition to a binary
tensor representingAUTHORS× WORDS× VENUES asso-
ciations, theAUTHOR × AUTHOR co-authorship network
may be available (at least for some pairs of authors). Such
a network may be especially useful in “cold-start” settings
where there is no data for some of the entities of a mode
in the tensor (e.g., for some authors, there is no data in the
tensor), but a network between entities in that mode may be
available (See Fig 1 for an illustration). Our model allows
leveraging such network(s), without a significant compu-
tational overhead, using the zero-truncated Poisson likeli-
hoodalso to model these binary pairwise relationships.

To facilitate efficient fully Bayesian inference, we develop
easy-to-implement batch as well asonline MCMC infer-
ence; the latter is especially appealing for handlingdense
binary data, i.e., when the number of ones in the tensor
and/or the network is also massive. Another appealing as-
pect about the model is its interpretability; a Dirichlet prior
on the columns of each factor matrix naturally imposes
non-negativity. In addition, the rank of decomposition can
be inferred from the data.

2 CANONICAL PARAFAC (CP) TENSOR
DECOMPOSITION

The Canonical PARAFAC (CP) decomposi-
tion (Kolda and Bader, 2009) offers a way to express
a tensor as a sum of rank-1 tensors. Each rank-1 tensor
corresponds to a specific “factor” in the data. More
specifically, the goal in CP decomposition is to decompose
a tensorY of sizen1 × n2 × · · · × nK , with nk denoting
the size ofY along thekth mode (or “way”) of the tensor,
into a set ofK factor matricesU(1), . . . ,U(K) where
U(k) = [u

(k)
1 , . . . , u

(k)
R], k = {1, . . . , K}, denotes the

nk × R factor matrix associated with modek.

In its most general form, CP decomposition expresses the
tensorY via a weighted sum ofR rank-1 tensors as

Y ∼ f(

R∑

r=1

λr.u
(1)
r ⊙ . . . ⊙ u(K)

r) (1)

In the above, the form of the link-functionf depends on
the type of data being modeled (e.g.,f can be Gaussian for
real-valued, Bernoulli-logistic for binary-valued, Poisson
for count-valued tensors). Hereλr is the weight associated

with the rth rank-1 component, thenk × 1 column vec-
tor u

(k)
r represents therth latent factor of modek, and⊙

denotes vector outer product.

We use subscripti = {i1, . . . , iK} to denote theK-
dimensional index of thei-th entry in the tensorY. Using
this notation, thei-th entry of the tensorY can be written
asyi ∼ f(

∑R
r=1 λr

∏K
k=1 u

(k)
ikr).

3 TRUNCATED POISSON TENSOR
DECOMPOSITION FOR BINARY DATA

Our focus in this paper is on developing a probabilistic,
fully Bayesian method for scalable low-rank decomposi-
tion of massivebinary tensors. As opposed to tensor de-
composition models based on the logistic likelihood for bi-
nary data (Xu et al., 2013; Rai et al., 2014), which require
evaluation of the likelihood for both ones as well as zeros
in the tensor, and thus can be computationally infeasible
to run on massive binary tensors, our proposed model only
requires the likelihood evaluations on thenonzero (i.e., the
ones) entries in the tensor, and can therefore easily scale
to massive binary tensors. Our model is applicable to ten-
sors of any orderK ≥ 2 (the caseK = 2 being a binary
matrix).

Our model is based on a decomposition of the form given in
Eq. 1; however, instead of using a Bernoulli-logistic linkf
to generate each binary observationyi in Y, we assume an
additional layer (Eq. 2) which takes alatent count-valued
yi in Y and thresholds this latent count at one to gener-
ate the actualbinary-valued entrybi in the observed binary
tensor, which we will denote byB:

bi = 1(yi ≥ 1) (2)

Y ∼ Pois(
R∑

r=1

λr.u
(1)
r ⊙ . . . ⊙ u(K)

r) (3)

u(k)
r ∼ Dir(a(k), . . . , a(k)) (4)

λr ∼ Gamma(gr,
pr

1 − pr
) (5)

pr ∼ Beta(cǫ, c(1 − ǫ)) (6)

Marginalizing outyi from Eq. 2 leads to the following
(equivalent) likelihood model

bi ∼ Bernoulli(1 − exp(−
R∑

r=1

λr

K∏

k=1

u
(k)
ikr)) (7)

Note that the thresholding in (2) looks similar to a probit
model for binary data (which however thresholds anormal
at zero); however, the probit model (just like the logistic
model) also needs to evaluate the likelihood at the zeros,
and can therefore be slow on massive binary data with lots
of zeros. Likelihood models of the form (Eq. 7) have pre-
viously also been considered in work on statistical models
of undirected networks (Morup et al., 2011; Zhou, 2015).

376

Interestingly, the form of the likelihood in 7 also resem-
bles the complementary log-log function Collett (2002);
Piegorsch (1992), which is known to be a better model for
imbalanced binary data than the logistic or probit likeli-
hood, making it ideal for handling sparse binary tensors.

The conditional posterior of the latent countyi is given by

yi|bi, λ, {u
(k)
ikr}K

k=1 ∼ bi · Pois+(

R∑

r=1

λr

K∏

k=1

u
(k)
ikr) (8)

where Pois+(·) is zero truncated Poisson distribution. Eq.
(8) suggests that ifbi = 0, then yi = 0 almost surely
with probability one, which can lead to significant compu-
tational savings, if the tensor has a large number of zeros.
In addition, our model also enables leveraging a reparame-
terization (Section 3.2) of the Poisson distribution in terms
of a multinomial, which allows us to obtain very simple
Gibbs-sampling updates for the model parameters.

Note that the Dirichlet prior on the latent factorsu
(k)
r nat-

urally imposes non-negativity constraints (Chi and Kolda,
2012) on the factor matricesU(1), . . . ,U(K). Moreover,
since the columnsu(k)

r of these factor matrices sums to 1,
eachu

(k)
r can also be interpreted as adistribution (e.g., a

“topic”) over thenk entities in modek. Furthermore, the
gamma-beta hierarchical construction (Zhou et al., 2012)
of λr (Eq 5 and 6) allows inferring the rank of the ten-
sor by setting an upper boundR on the number of factors
and inferring the appropriate number of factors by shrink-
ing the coefficientsλr ’s to close to zero for the irrelevant
factors. These aspects make our model interpretable as well
as provide it the ability to do model selection (i.e., inferring
the rank), in addition to being computationally efficient by
focusing the computations only on the nonzero entries in
the tensorB.

3.1 LEVERAGING MODE NETWORKS

Often, in addition to the binary tensorB, pairwise rela-
tionships between entities in one or more tensor modes
may be available in form of a symmetric binary network
or an undirected graph. Leveraging such forms of side-
information can be beneficial for tensor decomposition, es-
pecially if the amount of missing data in the main ten-
sor B is very high (Acar et al., 2011; Beutel et al., 2014;
Rai et al., 2015), and, even more importantly, in “cold-
start” settings, where there is no data in the tensor for enti-
ties along some of the tensor mode(s), as shown in Fig 1. In
the absence of any side-information, the posterior distribu-
tion of the latent factorsu(k)

r of such entities in that tensor
mode would be the same as the prior (i.e., just a random
draw). Leveraging the side-information (e.g., a network)
helps avoid this.

For entities of thek-th mode of tensorB, we assume a sym-
metric binary networkA(k) ∈ {0, 1}nk×nk , whereA

(k)
ikjk

Figure 1: Binary tensor with an associated binary network be-
tween objects in mode-1 of the tensor (in general, network for
other modes may also be available). In the “cold-start”setting as
shown above, data along some of the tensor dimensions will be
completely missing

denotes the relationship between mode-k entitiesik andjk.

Just like our tensor decomposition model, we model the
mode-k networkA(k) as a weighted sum of rank-1 sym-
metric matrices, with a similar likelihood model as we use
for the tensor observations. In particular, we assume a la-
tent countX(k)

ikjk
for each binary entryA(k)

ikjk
, and threshold

it at one to generateA(k)
ikjk

A
(k)
ikjk

= 1(X
(k)
ikjk

≥ 1) (9)

X(k) ∼ Pois(
R∑

r=1

βr.u
(k)
r ⊙ u(k)

r) (10)

βr ∼ Gamma(fr,
hr

1 − hr
) (11)

hr ∼ Beta(dα, d(1 − α)) (12)

Note that sinceA(k) is symmetric, only the upper (or
lower) triangular portion needs to be considered, and more-
over, just like in the case of the tensorB, due to the
truncated Poisson construction, the likelihood at only the
nonzero entries needs to be evaluated for this part as well.

3.2 REPARAMETERIZED POISSON DRAWS

To simplify posterior inference (Section 4), we make use
of two re-parameterizations of a Poisson draw (Zhou et al.,
2012). The first parameterization is to express each latent
count variableyi andX

(k)
ikjk

as a sum of another set ofR

latent counts{ỹir}R
r=1 and{X̃

(k)
ikjkr}R

r=1, respectively

yi =

R∑

r=1

ỹir, ỹir ∼ Pois(λr

K∏

k=1

u
(k)
ikr) (13)

X
(k)
ikjk

=

R∑

r=1

X̃
(k)
ikjkr, X̃

(k)
ikjkr ∼ Pois(βru

(k)
ikru

(k)
jkr) (14)

The second parameterization assumes that the latent counts
{ỹir} andX̃

(k)
ikjkr are drawn from a multinomial

ỹi1, . . . , ỹiR ∼ Mult(yi; ζi1, . . . , ζiR)

ζir =
λr

∏K
k=1 u

(k)
ikr∑R

r=1 λr

∏K
k=1 u

(k)
ikr

(15)

377

X̃
(k)
ikjk1, . . . , X̃

(k)
ikjkR ∼ Mult(X(k)

ikjk
; κ

(k)
ikjk1, . . . , κ

(k)
ikjkR)

κ
(k)
ikjkr =

βru
(k)
ikru

(k)
jkr∑R

r=1 βru
(k)
ikru

(k)
jkr

(16)

As we show in Section 4, these parameterizations en-
able us to exploit the gamma-Poisson as well as the
Dirichlet-multinomial conjugacy to derive simple, closed-
form Gibbs sampling updates for the model parameters.

4 INFERENCE

Exact inference in the model is intractable and we resort
to Markov Chain Monte Carlo (MCMC) (Andrieu et al.,
2003) inference. In particular, the reparameterization dis-
cussed in Section 3.2 allows us to derive simple Gibbs sam-
pling updates for all the latent variables, except for the la-
tent countsyi, which are drawn from a truncated Poisson
distribution via rejection sampling. As discussed earlier,
the computational-cost for our inference method scales lin-
early w.r.t. the number of ones in the tensor (plus the num-
ber of nonzeros in the network, if side-information is used).
This makes our method an order of magnitude faster than
models based on logistic or probit likelihood for binary
data (Rai et al., 2014; Xu et al., 2013), without sacrificing
on the quality of the results. The relative speed-up depends
on the ratio of total volume of the tensor to the number of
ones, which is given by(

∏K
k=1 nk)/nnz(B); here nnz(B)

denotes the number of nonzeros in the tensor.

In this section, we present both batch MCMC (Section 4.1)
as well as an online MCMC (Section 4.2) method for in-
ference in our model. The online MCMC algorithm is
based on the idea of Bayesian Conditional Density Fil-
tering (CDF) (Guhaniyogi et al., 2014), and can lead to
further speed-ups over the batch MCMC if the number
of nonzeros in the tensor is also massive. The CDF
algorithm provides an efficient way to perform online
MCMC sampling using surrogate conditional sufficient
statistics (Guhaniyogi et al., 2014).

For both batch MCMC and CDF based online MCMC,
we provide the update equations, with and without the
side-information, i.e., the mode network(s). For what fol-
lows, we define four quantities:s(k)

j,r =
∑

i:ik=j ỹir, sr =
∑

i ỹi,r, vik,r =
∑nk

jk
X̃

(k)
ikjkr andvr =

∑nk

ik

∑nk

jk
X̃

(k)
ikjkr,

which denote aggregates computed using the latent counts
ỹir and X̃

(k)
ikjkr. These quantities will be used at various

places in the description of the inference algorithms that
we present here.

4.1 BATCH MCMC INFERENCE

4.1.1 Tensor without Mode Network(s)

Sampling yi: For each observationbi in the tensor, the
latent countyi is sampled as

yi ∼ bi · Pois+(

R∑

r=1

λr

K∏

k=1

u
(k)
ikr) (17)

where Pois+(·) is zero truncated Poisson distribution. Eq.
(17) suggests that ifbi = 0, thenyi = 0 almost surely; and
if bi = 1, thenyi ∼ Pois+(

∑R
r=1 λr

∏K
k=1 u

(k)
ikr). There-

fore theyi’s only need to be sampled for the nonzerobi’s.
Sampling ỹir: The latent counts{ỹir} are sampled from
a multinomial as Eq. (15). Note that this also needs to be
done only for the nonzerobi’s.
Sampling u

(k)
r : The columns of each factor matrix have a

Dirichlet posterior, and are sampled as

u(k)
r ∼ Dir(a(k)+s

(k)
1,r , a(k)+s

(k)
2,r , . . . , a(k)+s(k)

nk,r) (18)

Sampling pr: Using the fact thatsr =
∑

i ỹi,r and

marginalizing over theu(k)
ikr ’s in (13), we havesr ∼

Pois(λr). Using this, along with (5), we can expresssr us-
ing a negative binomial distribution, i.e.,sr ∼ NB(gr, pr).
Due to the conjugacy between negative binomial and beta,
we can then samplepr as

pr ∼ Beta(cǫ + sr, c(1 − ǫ) + gr) (19)

Samplingλr: Again using the fact thatsr ∼ Pois(λr) and
(5), we have

λr ∼ Gamma(gr + sr, pr) (20)

As can be observed, when updatingu
(k)
r , pr andλr, the

latent countsyi’s andỹir corresponding to zero entries inB
are all equal to zero, and have no contribution to sufficient
statisticss(k)

j,r andsr. Therefore, only the nonzero entries
in tensor need to be considered in the computations.

4.1.2 Tensor with Mode Network(s)

In the presence of mode network(s), the update equations
for the latent variablespr, λr, ỹir and yi, that are asso-
ciated solely with the binary tensorB, remain unchanged,
and can be sampled as described in Section 4.1.1. We how-
ever need to sample the additional latent variables associ-
ated with mode-k networkA(k), and the latent factorsu(k)

r

of mode-k that are shared by the binary tensorB as well as
the mode-k network.

SamplingX
(k)
ikjk

: The latent countsX(k)
ikjk

are sampled as

X
(k)
ikjk

∼ A
(k)
ikjk

· Pois+(
R∑

r=1

βru
(k)
ikru

(k)
jkr) (21)

This only needs to be done for the nonzero entries inA(k).

Sampling X̃ikjkr: The latent counts̃Xikjkr are sampled
from a multinomial as equation (16). This also only needs
to be done for the nonzero entries inA(k).

378

Sampling u
(k)
r : The columns of each factor matrix have a

Dirichlet posterior, and are sampled as

u(k)
r ∼ Dir(a(k) + s

(k)
1,r + v1,r, . . . , a

(k) + s(k)
nk,r + vnk,r)

(22)
Note that in the absence of the mode-k network, the terms
v.,r go away and Eq. 22 simply reduces to Eq. 18.

Samplinghr: hr ∼ Beta(dα + vr, d(1 − α) + fr).

Samplingβr: βr ∼ Gamma(fr + vr, hr).

4.1.3 Per-iteration time-complexity

For the binary tensorB, computing eachζir (Eq. 15) takes
O(K) time and therefore computing all the{ζir} takes
O(nnz(B)RK) time. Likewise, for the binary mode-k

networkA(k), computing all the{κ
(k)
ikjkr} (Eq. 16) takes

O(nnz(A(k))R) time. These are the most dominant com-
putations in each iteration of our MCMC procedure; updat-
ing eachu(k)

r takesO(nk) time and updating{pr, hr}R
r=1

and{λr, βr}R
r=1 takesO(R) time each. Therefore, the per-

iteration time-complexity of our batch MCMC method is
O(nnz(B)RK + nnz(A(k))R). The linear dependence on
nnz(B), nnz(A(k)), R andK suggests that even massive,
sparse binary tensors and mode network(s) can be han-
dled easily even by our simple batch MCMC implemen-
tation. Also note that our model scales linearly even w.r.t.
R, unlike most other methods (Ermis and Bouchard, 2014;
Rai et al., 2014) that havequadratic dependence onR.

The above computations can be further accelerated us-
ing a distributed/multi-core setting; we leave this for fu-
ture work. In Section 4.2, however, we present anonline
MCMC method based on the idea of Bayesian Conditional
Density Filtering (Guhaniyogi et al., 2014), which leads to
further speed-ups, even in single-machine settings.

4.2 ONLINE MCMC INFERENCE

We develop an efficient online MCMC sampler for the
model, leveraging ideas from the Conditional Density Fil-
tering (CDF) Guhaniyogi et al. (2014). The CDF algorithm
for our model selects a minibatch of the tensor (and mode
network, if the side-information is available) entries at each
iteration, samples the model parameters from the posterior,
and updates the sufficient statisticss

(k)
j,r , sr, vik,r andvr

using the data from the current minibatch.

4.2.1 Tensor without Mode Network(s)

We first provide the update equations for the case when
there is no side-information (mode network). DenoteIt as
indices of entries of tensorB from the minibatch selected
at iterationt. The CDF algorithm at iterationt proceeds as:

Sampling yi: For all i ∈ It, sampleyi according to equa-
tion (17); like in the batch MCMC case, the sampling only

needs to be done for the nonzerobi’s.

Sampling ỹir: For all i ∈ It, sample the latent counts
ỹir(i∈It) using (15), again only for the nonzerobi’s.

Updating the conditional sufficient statistics:Update the
conditional sufficient statisticss(k)

j,r ass
(k,t)
j,r = s

(k,t−1)
j,r +

∑
i∈It:ik=j ỹir and updatesr ass(t)

r = s
(t−1)
r +

∑
i∈It

ỹi,r.
These updates basically add to the old sufficient statistics,
the contributions from the data in the current minibatch. In
practice, we alsoreweight these sufficient statistics by the
ratio of the total number of ones inB and the minibatch
size, so that they represent the average statistics over the
entire tensor. This reweighting is akin to the way average
gradients are computed in stochastic variational inference
methods (Hoffman et al., 2013).

Updating u
(k)
r , pr, λr: Using the following conditionals,

drawM samples{u
(k,m)
r , p

(m)
r , λ

(m)
r }M

m=1

u(k)
r ∼ Dir(a(k) + s

(k,t)
1,r , . . . , a(k) + s(k,t)

nk,r) (23)

pr ∼ Beta(cǫ + s(t)
r , c(1 − ǫ) + gr) (24)

λr ∼ Gamma(gr + s(t)
r , pr) (25)

and either store the sample averages ofu
(k)
r , pr, andλr,

or their analytic means to use for the next CDF itera-
tion (Guhaniyogi et al., 2014).

4.2.2 Tensor with Mode Network(s)

For all the latent variables associated solely with the ten-
sorB, the sampling equations for the CDF algorithm in the
presence of mode network(s) remain unchanged as the pre-
vious case with no network. In the presence of the mode
network, the additional latent variables include the suffi-
cient statisticsvik,r andvr, and these need to be updated in
each CDF iteration.

DenoteJt as indices of entries selected from the mode-k
networkA(k) in iterationt. The update equations for the
latent variables that depend onA(k) are as follows:

Sampling Xikjk
: For (ik, jk) ∈ Jt, latent countXikjk

is
sampled using Eq. (21).

Sampling X̃ikjkr: For (ik, jk) ∈ Jt, latent countsX̃ikjkr

are sampled from a multinomial using Eq. (16).

Updating the conditional sufficient statistics:Update the
sufficient statistics associated with the mode-k network as
v
(t)
ik,r = v

(t−1)
ik,r +

∑nk

jk,(ik,jk)∈Jt
X̃ikjkr andv

(t)
r = v

(t−1)
r +∑nk

ik

∑nk

jk,(ik,jk)∈Jt
X̃ikjkr. Just like the way we update

the tensor sufficient statisticss(k)
j,r andsr, we reweight these

mode-k sufficient statistics by the ratio of the total number
of ones inA(k) and the minibatch size, so that they repre-
sent the average statistics over the entire mode-k network.

Updating u
(k)
r , hr, βr: Using the following condition-

379

als, drawM samples{u
(k,m)
r , h

(m)
r , β

(m)
r }M

m=1. We draw
u

(k)
r ∼ Dir(a(k) + s

(k,t)
1,r + v

(t)
1,r, . . . , a

(k) + s
(k,t)
nk,r + v

(t)
nk,r),

andhr andβr as

hr ∼ Beta(dα + v(t)
r , d(1 − α) + fr)

βr ∼ Gamma(fr + v(t)
r , hr) (26)

and either store the sample averages ofu
(k)
r , hr, βr, or their

analytic means to use for the next CDF iteration.

4.2.3 Per-iteration time-complexity

The per-iteration time-complexity of the CDF based online
MCMC is linear in the number of nonzeros in each mini-
batch (as opposed to the batch MCMC where it depends on
the number of nonzeros in theentire tensor and network).
Therefore the online MCMC is attractive fordense binary
data, where the number of nonzeros in the tensor/network
is also massive; using a big-enough minibatch size (that fits
in the main memory and/or can be processed in each iter-
ation in a reasonable amount of time), the online MCMC
inference allows applying our model on such dense binary
data as well, which may potentially have several billions of
nonzero entries.

5 RELATED WORK

With the increasing prevalence of structured databases, so-
cial networks, and (multi)relational data, tensor decompo-
sition methods are becoming increasingly popular for ex-
tracting knowledge and doing predictive analytics on such
data (Bordes et al., 2011; Nickel et al., 2012; Kang et al.,
2012). As the size of these data sets continues to grow,
there has been a pressing need to design tensor factoriza-
tion methods that can scale to massive tensor data.

For low-rank factorization ofbinary tensors, methods
based on logistic and probit likelihood for the binary data
have been proposed (Jenatton et al., 2012; London et al.,
2013; Rai et al., 2014; Xu et al., 2013). However, these
methods are not suited for massive binary tensors where
the number of observations (which mostly consist of zeros,
if the tensor is also sparse) could easily be millions or even
billions (Inah et al., 2015). As a heuristic, these methods
rely on subsampling (Rai et al., 2014) or partitioning the
tensor (Zhe et al., 2015), to select a manageable number
entries before performing the tensor decomposition, or al-
ternatively going for a distributed setting (Zhe et al., 2013).

In the context of tensor factorization, to the best of
our knowledge, the only method (and one that is clos-
est in spirit to our work) that scales linearly w.r.t. the
number of ones in the tensor is (Ermis and Bouchard,
2014). Their work explored quadratic loss (and its vari-
ations) as a surrogate to the logistic loss and proposed a
method (Quad-Approx) with a per-iteration complexity
O(nnz(B)R + R2

∑K
k=1 nk). Note that its dependence on

R is quadratic as opposed to our method which is also lin-
ear inR. They also proposed variations based on piece-
wise quadratic approximations; however, as reported in
their experiments (Ermis and Bouchard, 2014), these vari-
ations were found to be about twice as slow than their ba-
sic Quad-Approx method (Ermis and Bouchard, 2014).
Moreover, their methods (and the various other methods
discussed in this section) have several other key differences
from our proposed model: (1) our model naturally imposes
non-negativity on the factor matrices; (2)R can be inferred
from data; (3) our method provides a fully Bayesian treat-
ment; (4) in contrast to their method, which operates in
a batch setting, the online MCMC inference allows our
model to scale to even bigger problems, where the number
of nonzeros could also be massive; and (5) our model also
allows incorporating (fully or partially observed) mode-
networks as a rich source of side-information.

In another recent work (Zhou, 2015), a similar zero-
truncated Poisson construction, as ours, was proposed for
edge-partioning based network clustering, allowing the
proposed model to scale in terms of the number of edges in
the network. Our model, on the other hand, is more general
and can be applied to multiway binary tensor data, with an
optionally available binary network as a potential source of
side-information. Moreover, the Dirichlet prior on the fac-
tor matrices, its reparametrizations (Section 3.2), and the
online MCMC inference lead to a highly scalable frame-
work for tensor decomposition with side-information.

Another line of work on scaling up tensor factorization
methods involves developing distributed and parallel meth-
ods (Kang et al., 2012; Inah et al., 2015; Papalexakis et al.,
2012; Beutel et al., 2014). Most of these methods, how-
ever, have one or more of the following limitations: (1)
these methods lack a proper generative model of the data,
which is simply assumed to be real-valued and the opti-
mization objective is based on minimizing the Frobenius
norm of the tensor reconstruction error, which may not be
suitable for binary data; (2) these methods usually assume
a parallel or distributed setting, and therefore are not feasi-
ble to run on a single machine; (3) missing data cannot be
easily handled/predicted; and (4) the rank of the decompo-
sition needs to be chosen via cross-validation.

Leveraging sources of side-information for tensor factor-
ization has also been gaining a lot of attention recently.
However, most of these methods cannot scale easily to mas-
sive tensors (Acar et al., 2011; Rai et al., 2015), or have
to rely on parallel or distributed computing infrastruc-
tures (Beutel et al., 2014). In contrast, our model, by the
virtue of its scalability that only depends on the number
of nonzero entries in the tensor and/or the mode network,
easily allows it to scale to massive binary tensors, with or
without mode-network based side-information.

380

6 EXPERIMENTS
We report experimental results for our model on a wide
range of real-world binary tensors (with and without mode-
network based side-information), and compare it with sev-
eral baselines for binary tensor factorization. We use the
following data sets for our experiments:

• Kinship: This is a binary tensor of size104 × 104 ×
26, representing 26 types of relationships between 104
members of a tribe (Nickel et al., 2011). The tensor
has about 3.8% nonzeros.

• UMLS: This is a binary tensor of size135×135×49
representing 56 types of verb relations between 135
high-level concepts (Nickel et al., 2011). The tensor
has about 0.8% nonzeros.

• Movielens: This is a binarymatrix (two-way tensor)
of size 943 × 1682 representing the binary ratings
(thumbs-up or thumbs-down) by 943 users on 1682
movies1. This data set has a total of 100,000 ones.

• DBLP: This is a binary tensor of size10, 000×200×
10, 000 representing (author-conference-keyword) re-
lations (Zhe et al., 2015). This tensor has only about
0.001% nonzeros, and is an ideal example of a mas-
sive but sparse binary tensor.

• Scholars:This is a binary tensor of size2370×8663×
4066, constructed from a database of research paper
abstracts published by researchers at Duke University;
the three tensor modes correspond to authors, words,
and publication venues, respectively. Just like the
DBLP data, this tensor is also massive but extremely
sparse with only about 0.002% nonzeros. In addition,
the co-authorship network (i.e., who has written pa-
pers with whom) is also available, which we use as
a source of side-information, and use this network to
experiment with thecold-start setting (i.e., when the
main tensor has no information about some authors).

• Facebook: The Facebook data is a binary ten-
sor of size 63731 × 63730 × 1837 with the
three modes representing wall-owner, poster, and
days (Papalexakis et al., 2013). This tensor has only
737498 nonzeros. In addition to the binary tensor, the
social network (friendship-links) between users is also
given in form of a symmetric binary matrix of size
63731×63731, which has 1634180 nonzeros. We use
the network to experiment with the cold-start setting.

We use all the 6 data sets for the tensor completion ex-
periments (Section 6.1). We also use the Scholars and
Faceboook data in the cold-start setting, where we exper-
iment on the tensor completion task, leveraging the mode-
network based side-information (Section 6.4).

1http://grouplens.org/datasets/movielens/

The set of experiments we perform includes: (1) binary
tensor completion (Section 6.1) using only the tensor data;
(2) scalability behavior of our model (both batch as well
as online MCMC) in terms of tensor completion accuracy
vs run-time (Section 6.2); we compare our model with
Bayesian CP based on logistic-likelihood (Rai et al., 2014);
(3) a qualitative analysis of our results using amultiway
topic modeling experiment (Section 6.3) on the Scholars
data, with the entities being authors, words, and publica-
tion venues; and (4) leveraging the mode network for ten-
sor completion in the cold-start setting (Section 6.4); for
this experiment, we also demonstrate how leveraging the
network leads to improved qualitative results in the multi-
way topic modeling problem.

In the experiments, we refer to our model asZTP-
CP (Zero-Truncated Poisson based CP decomposition).
We compareZTP-CP (using both batch MCMC as well
as online MCMC inference) with the following base-
lines: (1) the quadratic loss minimization (Quad-App)
proposed in (Ermis and Bouchard, 2014); (2) the re-
fined piecewise quadratic approximation algorithm (PW-
QuadApp) (Ermis and Bouchard, 2014); and (3)Bayesian
CP decomposition based on logistic likelihood for binary
data (Rai et al., 2014).

Experimental settings: All experiments are done on a
standard desktop computer with Intel i7 3.4GHz processor
and 24GB RAM. Unless specified otherwise, the MCMC
inference was run for 1000 iterations with 500 burn-in it-
erations. The online MCMC algorithm was also run for
the same number of iterations, with minibatch size equal to
one-tenth of the number of nonzeros in the training data.
For all the data sets, except Scholars and Facebook, we use
R = 20 (also note that our model has the ability to prune
the unnecessary factors by shrinking the correspondingλr

to zero). For Scholars and Facebook data, we setR = 100.
The hyperparametersgr, fr were set to 0.1, andǫ andα are
set to1/R, which worked well in our experiments.

6.1 TENSOR COMPLETION

In Table 1, we report the results on the tensor completion
task (in terms of the AUC-ROC - the area under the ROC
curve). For this experiment, although available, we do not
use the mode network for the Scholars and the Facebook
data; only the binary tensor is used (the results when also
using the network are reported in Section 6.4). For each
data set, we randomly select 90% of the tensor observa-
tions as the training data and evaluate each model on the
remaining 10% observations used as the held-out data.

Since the code forQuad-App and PW-QuadApp base-
lines (both proposed in (Ermis and Bouchard, 2014)) is not
publicly available, we are only able to report the results
for the Kinship, UMLS, and MovieLens data set (using
the results reported in (Ermis and Bouchard, 2014)). For
Bayesian CP (Rai et al., 2014), we use the code provided

381

Table 1:Tensor completion accuracies in terms of AUC-ROC scores. Results areaveraged over 10 splits of training and test data. Note:
(1) Bayesian CP was infeasible to run on the Scholars and Facebook data; (2) Due to the lack of publicly available code forQuad-App
andPQ-QuadApp, we only report its results on Kinship, UMLS, and MovieLens data (resultstaken from (Ermis and Bouchard, 2014)).

Kinship UMLS Movielens DBLP Scholars Facebook
Quad-App (Ermis and Bouchard, 2014) 0.8193 0.8205 0.8511 - - -

PW-QuadApp (Ermis and Bouchard, 2014) 0.9213 0.9387 0.9490 - - -
Bayesian-Logistic-CP (Rai et al., 2014) 0.9865 0.9965 0.9799 0.9307 - -

ZTP-CP (Batch MCMC) 0.9674 0.9938 0.9895 0.9759 0.9959 0.9830
ZTP-CP (Online MCMC) 0.9628 0.9936 0.9841 0.9743 0.9958 0.9844

by the authors. Moreover, the Bayesian CP baseline was
found infeasible to run on the Scholars and Facebook data
(both of which are massive tensors), so we are unable to
report those results. For fairness, on Kinship, UMLS, and
MovieLens data, we use the same experimental settings for
all the methods as used by (Ermis and Bouchard, 2014).

As shown in Table 1, our model outperformsQuad-App
andPW-QuadApp in terms of the tensor-completion ac-
curacies, and performs comparably or better thanBayesian
CP, while being an order of magnitude faster (Section 6.2
shows the results on running times).

6.2 SCALABILITY
We next compare our model with Bayesian CP (Rai et al.,
2014) in terms of the running times vs tensor comple-
tion accuracy on Kinship and UMLS data sets. As shown
in Fig. 2 (top-row), our model (batch as well as online
MCMC) runs/converges an order of magnitude faster than
Bayesian CP in terms of running time. On Scholars and
Facebook, since Bayesian CP was infeasible to run, we are
only able to show the results (Fig. 2, bottom-row) for our
model, with batch MCMC and online MCMC inference.
On all the data sets, the online MCMC runs/converges
faster than the batch MCMC.

We would like to note that, although the model proposed
in (Ermis and Bouchard, 2014) also scales linearly2 in
the number of ones in the tensor, the per-iteration time-
complexity of our model, which is linear inboth nnz(B)
as well as rankR, is better than the model proposed
in (Ermis and Bouchard, 2014) (which hasquadratic de-
pendence onR). Moreover, the tensor completion results
of our model (shown in Table 1) on these data sets are better
than the ones reported in (Ermis and Bouchard, 2014).

6.3 MULTIWAY TOPIC MODELING

We also apply our model for amultiway topic modeling
task on the Scholars data. The binary tensor represents
AUTHORS × WORDS× VENUES relationships. We apply
our model (with batch MCMC) and examine the latent fac-
tors of each of the three dimensions. Since each factor is
drawn from a Dirichlet, it is non-negative and naturally cor-

2Although (Ermis and Bouchard, 2014) reported run times on
Kinship and UMLS data sets, those number are not directly com-
parable with our run times reported here (due to possibly different
machine configuration, which they do not specify in the paper).

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Kinship Data

Time in seconds (on log scale)

A
U

C
−

R
O

C

Bayesian−Logistic−CP
ZTP−CP (Batch MCMC)
ZTP−CP (Online MCMC)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
UMLS Data

Time in seconds (on log scale)

A
U

C
−

R
O

C

Bayesian−Logistic−CP
ZTP−CP (Batch MCMC)
ZTP−CP (Online MCMC)

10
0

10
1

10
2

10
3

10
4

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1
Scholar Data

Time in seconds

A
U

C
−

R
O

C

ZTP−CP (Batch MCMC)
ZTP−CP (OnlineMCMC)

10
0

10
1

10
2

10
3

0.95

0.96

0.97

0.98

0.99

1
Facebook Data

Time in seconds

A
U

C
−

R
O

C

ZTP−CP (Batch MCMC)
ZTP−CP (OnlineMCMC)

Figure 2:Running time (log-scale) comparison of various meth-
ods on Kinship (top left), UMLS (top right), Scholars (bottom
left), and Facebook (bottom right) datasets.

responds to a “topic”. In Table 2, after examining the words
factor matrix, we show the top-10 words for four of the fac-
tors (topics) inferred by our model; these factors seem to
represent topics Evolutionary Biology, Medical Imaging,
Machine Learning/Signal Processing, and Oncology. For
the Machine Learning/Signal Processing topic, we also ex-
amine the corresponding topic in the venues factor matrix
and show the top-10 venues in that topic (based on their
factor scores in that factor). In Fig. 3, we also show the
histograms of authors’ department affiliations for each of
the four topics and the results make intuitive sense. The re-
sults in Table 2 and Fig. 3 demonstrate the usefulness of our
model for scalable topic modeling of such multiway data.

6.4 LEVERAGING THE MODE NETWORK

Finally, to investigate the usefulness of leveraging the mode
network, we experiment with using both the tensorand the
mode network on Scholars and Facebook data sets. For
each data set, we report the AUC-ROC (area under the ROC
curve) and AUC-PR (area under the precision-recall curve)
on the tensor completion task, with and without network.
For both data sets, we experiment with the more challeng-
ing cold-start setting. In particular, for the Facebook data,
we hold out all the entries of the tensor slices after the first
50,000 wall-owners and predict those entries(using only
the rest of the tensor, and using the rest of the tensor as
well as the friendship network). We run the experiment
with R = 20 and minibatch size of 50,000 for the online

382

Table 2: For the Scholars data, the most probable words in topics related to evolutionary biology (Evo Bio), medical imaging (Med
Imag), machine learning/signal processing(ML/SP) and oncology, and top ranked venues in ML/SP

EVO BIO MED IMAG ML/SP ONCOLOGY TOP VENUES IN ML/SP
SPECIES IMAGING BAYESIAN RADIATION ICASSP
SELECTION CONTRAST ALGORITHM RADIOTHERAPY JASA
GENETIC COMPUTED SAMPLING STAGE ICML
EVOLUTION RESONANCE FEATURES TUMOR IEEE TRANS IMG PROC

POPULATIONS DOSE PROCESS SURVIVAL NIPS
EVOLUTIONARY TOMOGRAPHY SPARSE LUNG COMPU STAT DATA ANALY

GENE MAGNETIC NONPARAMETRIC CHEMOTHERAPY BIOMETRICS

VARIATION IMAGE GIBBS TREATED BAYESIAN ANALYSIS

PLANTS QUALITY PARAMETERS TOXICITY JMLR
NATURAL DIAGNOSTIC INFERENCE ONCOLOGY IEEE TRANS. INF. THEORY

Bio
log

y

Ne
uro

bio
log

y

An
thr

op
olo

gy

Sta
tis
tic
s

En
v S

ci

Bio
me

d E
ng0

2

4

6

8

10

12

14

N
u
m
b
e
r
o
f
A
u
th
o
rs

Ra
dio

Bio
sta

ts

Pe
dia

t R
ad
io

Ne
uro

rad
io

Int
erv

 Ra
dio

Ca
rdi
olo

gy

Ca
rdi
o I
ma

g

Ab
do
mi
 Im

ag0

1

2

3

4

5

6

7

N
u
m
b
e
r
o
f
A
u
th
o
rs

Me
d

Bio
sta

ts

Ec
on
om

ics

Sta
tis
tic
s

EC
E

Co
mp

 Sc
i
Ma

th

Sc
h o

f B
usi0

1

2

3

4

5

6

N
u
m
b
e
r
o
f
A
u
th
o
rs

Ra
dia

t O
nc
ol

Bio
sta

ts

Su
rgi
c O

nc
ol

Me
d O

nc
ol0

2

4

6

8

10

12

14

16

N
u
m
b
e
r
o
f
A
u
th
o
rs

Figure 3: Histogram of the department-affiliations for the top
20 authors in factors related to evolutionary biology (top left),
medical imaging (top right), machine learning/signal process-
ing(bottom left) and oncology (bottom right).

MCMC. The results in Table 3 show that using the network
leads to better tensor completion accuracies.

We also perform a similar experiment on the Scholars data
where we hold out all the entries in tensor slices after the
first 1000 authors and predict those entries (using only the
rest of the tensor, and using the rest of the tensor as well as
the co-authorship network). We run the experiment with
R = 100 and minibatch size of 50,000 for the online
MCMC. The results shown in Table 3 again demonstrate
the benefit of using the network.

Table 3:Cold-start setting

Facebook Scholars
AUC-ROC AUC-PR AUC-ROC AUC-PR

Without network 0.8897 0.6076 0.8051 0.5763
With network 0.9075 0.7255 0.8124 0.6450

In Fig. 4, we show another result demonstrating the benefit
of using the co-authorship network for the Scholars data.
Note that in the cold-start setting, there is no information
in the tensor for theheld-out authors. Therefore the top-
ics associated with such authors are expected to be roughly
uniformly random. As shown in Fig. 4 (left column), the set
of held-out authors assigned to the topics medical imaging
and oncology seem very random andarbitrary (we only
show the aggregate department-affiliations). Using side-
information (in form of the co-authorship network), how-
ever, the model sensibly assigns authors who are indeed
related to these topics, as shown in right column of Fig. 4.

Ph
ilo

sop
hy

Ra
dia

t O
nc

ol
Ra

dio

Bio
med

 En
g

Ec
on

om
ics

Nurs
ing

Med
 Onc

ol

Be
ha

v H
ea

lth

Lit
era

tur
e

Glob
al

Hea
lth

Pu
bli

c P
oli

cy

Pa
tho

log
y

Ph
ysi

cs

En
v S

ci0.0

0.5

1.0

1.5

2.0

N
u
m

b
e
r
o
f
A
u
th

o
rs

Ra
dio

Card
io

Im
ag

Neu
ror

ad
io

Int
erv

 Ra
dio EC

E

Med
 Onc

ol

Bios
tat

s
Ra

dio

Su
rge

ry0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
u
m

b
e
r
o
f
A
u
th

o
rs

Me
d

Cri
tic

 Ca
re

Me
d

Ma
rro

w T
ran

spl
an

t

Ne
uro

bio
log

y

Mo
lec

u G
en

e

Me
d O

nc
ol

Ca
rdi

o T
ho

ra
Su

rg

En
vir

 En
g

Pu
bli
c P

oli
cy

Pe
dia

t G
en

e

Ca
nc
er

Bio

Pa
tho

log
y

Ch
em

ist
ry

Sc
h o

f B
usi0.0

0.5

1.0

1.5

2.0

N
u
m
b
e
r
o
f
A
u
th
o
rs

Bio
sta

ts

Pa
tho

log
y

Ra
dia

t O
nc

ol

Su
rgi

c O
nc

ol

Med
 Onc

ol

Cri
tic

 Ca
re

Su
rg

Su
rge

ry

Hea
d N

ec
k S

urg
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
u
m

b
e
r
o
f
A
u
th

o
rs

Figure 4:Histogram of the department-affiliations of the top 15
held-out authors associated with the factors of medical imaging
(top) and oncology (bottom). The left column is obtained using
no co-authorship information, and the right column is obtained
using co-authorship information.

7 CONCLUSION

We have presented a scalable Bayesian model for binary
tensor factorization. In contrast to the models based on pro-
bit or logistic likelihood for binary tensor decomposition,
the time-complexity of our model depends only in the num-
ber of ones in the tensor. This aspect of our model allows
it to easily scale up to massive binary tensors. The simplic-
ity of our model also leads to simple batch as well as on-
line MCMC inference; the latter allows our model to scale
up even when the number of ones could be massive. Our
experimental results demonstrate that the model leads to
speed-ups of an order of magnitude when compared to bi-
nary tensor factorization models based on the logistic like-
lihood, and also outperforms various other baselines. Our
model also gives interpretable results which helps qualita-
tive analysis of results. In addition, the ability to leverage
mode networks (fully or partially observed) leads to im-
proved tensor decomposition in cold-start problems.

Acknowledgments

The research reported here was supported in part by ARO,
DARPA, DOE, NGA and ONR.

383

References

Acar, E., Kolda, T. G., and Dunlavy, D. M. (2011). All-at-
once optimization for coupled matrix and tensor factor-
izations.arXiv preprint arXiv:1105.3422.

Andrieu, C., De Freitas, N., Doucet, A., and Jordan, M. I.
(2003). An introduction to mcmc for machine learning.
Machine learning, 50(1-2):5–43.

Beutel, A., Kumar, A., Papalexakis, E. E., Talukdar, P. P.,
Faloutsos, C., and Xing, E. P. (2014). Flexifact: Scalable
flexible factorization of coupled tensors on hadoop. In
SDM.

Bordes, A., Weston, J., Collobert, R., and Bengio, Y.
(2011). Learning structured embeddings of knowledge
bases. InAAAI.

Chi, E. C. and Kolda, T. G. (2012). On tensors, sparsity,
and nonnegative factorizations.SIAM Journal on Matrix
Analysis and Applications, 33(4):1272–1299.

Collett, D. (2002).Modelling binary data. CRC press.

Ermis, B. and Bouchard, G. (2014). Iterative splits of
quadratic bounds for scalable binary tensor factorization.
In UAI.

Guhaniyogi, R., Qamar, S., and Dunson, D. B. (2014).
Bayesian conditional density filtering.arXiv preprint
arXiv:1401.3632.

Hidasi, B. and Tikk, D. (2012). Fast ALS-based tensor fac-
torization for context-aware recommendation from im-
plicit feedback. InECML PKDD.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J.
(2013). Stochastic variational inference.The Journal of
Machine Learning Research, 14(1):1303–1347.

Inah, J., Papalexakis, E., Kang, U., and Faloutsos, C.
(2015). Haten2: Billion-scale tensor decompositions. In
ICDE. IEEE.

Jenatton, R., Le Roux, N., Bordes, A., and Obozinski, G.
(2012). A latent factor model for highly multi-relational
data. InNIPS.

Kang, U., Papalexakis, E., Harpale, A., and Faloutsos, C.
(2012). Gigatensor: scaling tensor analysis up by 100
times-algorithms and discoveries. InKDD.

Kolda, T. G. and Bader, B. W. (2009). Tensor decomposi-
tions and applications.SIAM review, 51(3):455–500.

London, B., Rekatsinas, T., Huang, B., and Getoor, L.
(2013). Multi-relational learning using weighted ten-
sor decomposition with modular loss.arXiv preprint
arXiv:1303.1733.

Morup, M., Schmidt, M. N., and Hansen, L. K. (2011). In-
finite multiple membership relational modeling for com-
plex networks. InMLSP. IEEE.

Nickel, M., Tresp, V., and Kriegel, H. (2011). A three-way
model for collective learning on multi-relational data. In
ICML.

Nickel, M., Tresp, V., and Kriegel, H.-P. (2012). Factoriz-
ing YAGO: scalable machine learning for linked data. In
WWW.

Papalexakis, E., Faloutsos, C., and Sidiropoulos, N. (2012).
Parcube: Sparse parallelizable tensor decompositions.
In Machine Learning and Knowledge Discovery in
Databases, pages 521–536. Springer.

Papalexakis, E. E., Mitchell, T. M., Sidiropoulos, N. D.,
Faloutsos, C., Talukdar, P. P., and Murphy, B. (2013).
Scoup-smt: Scalable coupled sparse matrix-tensor fac-
torization.arXiv preprint arXiv:1302.7043.

Piegorsch, W. W. (1992). Complementary log regression
for generalized linear models.The American Statisti-
cian.

Rai, P., Wang, Y., and Carin, L. (2015). Leveraging features
and networks for probabilistic tensor decomposition. In
AAAI.

Rai, P., Wang, Y., Guo, S., Chen, G., Dunson, D., and
Carin, L. (2014). Scalable Bayesian low-rank decom-
position of incomplete multiway tensors. InICML.

Xu, Z., Yan, F., and Qi, Y. (2013). Bayesian nonparametric
models for multiway data analysis.IEEE Transactions
on Pattern Analysis and Machine Intelligence.

Zhe, S., Qi, Y., Park, Y., Molloy, I., and Chari, S. (2013).
Dintucker: Scaling up gaussian process models on mul-
tidimensional arrays with billions of elements.arXiv
preprint arXiv:1311.2663.

Zhe, S., Xu, Z., Chu, X., Qi, Y., and Park, Y. (2015). Scal-
able nonparametric multiway data analysis. InAISTATS.

Zhou, M. (2015). Infinite edge partition models for over-
lapping community detection and link prediction. In
AISTATS.

Zhou, M., Hannah, L. A., Dunson, D., and Carin, L. (2012).
Beta-negative binomial process and poisson factor anal-
ysis. InAISTATS.

384

Computing Optimal Bayesian Decisions for Rank Aggregation via MCMC
Sampling

David Hughes and Kevin Hwang and Lirong Xia
Rensselaer Polytechnic Institute, Troy, NY, USA
{hughed2,hwangk2}@rpi.edu, xial@cs.rpi.edu

Abstract

We propose two efficient and general MCMC
algorithms to compute optimal Bayesian deci-
sions for Mallows’ model and Condorcet’s model
w.r.t. any loss function and prior. We show that
the mixing time of our Markov chain for Mal-
lows’ model is polynomial in ϕ−kmax , dmax, and
the input size, where ϕ is the dispersion of the
model, kmax measures agents’ largest total bias
in bipartitions of alternatives, and dmax is the
maximum ratio between prior probabilities. We
also show that in some cases the mixing time is at
least Θ(ϕ−kmax/2). For Condorcet’s model, our
Markov chain is rapid mixing for moderate prior
distributions. Efficiency of our algorithms are il-
lustrated by experiments on real-world datasets.

1 INTRODUCTION

In many social choice (a.k.a. rank aggregation) problems
we want to compute an objectively optimal joint decision
based on agents’ preferences. For example, the Condorcet
Jury Theorem (Condorcet, 1785) studies how to select a
“correct” leader in political elections when the votes are
noisy perceptions of the ground truth. Principles and al-
gorithms for social choice have also been used to aggre-
gate rankings in meta-search engines (Dwork et al., 2001),
recommender systems (Ghosh et al., 1999), crowdsourc-
ing (Mao et al., 2013), semantic webs (Porello and Endriss,
2013), and peer grading for MOOC (Raman and Joachims,
2014).

In these social choice applications it is natural to take a
Bayesian approach. Given a statistical model that describes
agents’ noisy perception of the ground truth, a prior distri-
bution, and a loss function that evaluates the joint decision
w.r.t. the ground truth, we compute an optimal joint deci-
sion that has the minimum Bayesian expected loss w.r.t. the
posterior distribution. This was recently formalized as a

statistical decision-theoretic framework for social choice
by Azari Soufiani et al. (2014).

A major challenge in previous research, especially in the
Bayesian approaches, is the high computational complex-
ity of decision making. For example, the maximum likeli-
hood estimator (MLE) of a popular ranking model called
Mallows’ model (Mallows, 1957) is NP-hard to com-
pute (Bartholdi et al., 1989). Computing optimal Bayesian
decisions for rank aggregation is a hard combinatorial opti-
mization problem because the parameter space is often dis-
crete and its size is often exponential. Most previous work
focused on designing efficient case-by-case algorithms for
computing MLEs and MAPs of popular ranking models.
However, the following question is left unanswered:

Are there general and efficient algorithms that compute op-
timal Bayesian decisions for a wide range of rank aggrega-
tion problems?

Our contributions. We give positive answers to this
question for two popular ranking models: Mallows’
model (Mallows, 1957) and Condorcet’s model (Condorcet,
1785; Young, 1988) by proposing two general Markov
chain Monte Carlo (MCMC) algorithms. Our algorithms
work for any prior distribution, any decision space, and any
loss function. In both algorithms, we first generate multiple
samples by a Markov chain whose stationary distribution
is the posterior distribution, which are used to compute the
optimal decision that minimizes the empirical loss. Our
Markov chains for both models are Metropolis-Hastings
samplers (Metropolis et al., 1953; Hastings, 1970). For
Mallows’ model, we apply a random transposition on adja-
cent pairs of alternatives in each step, and for Condorcet’s
model, we adopt an independent sampler, which samples a
candidate parameter with probability that is proportional to
its likelihood in each step.

We prove that our Markov chains have good theoretical
guarantees on the mixing time, which measures the rate of
convergence to the stationary distribution and is closely re-
lated to the overall running time of the algorithms (The-
orem 1). For Mallows’ model, we show that the mixing

385

time of our Markov chain is polynomial in ϕ−kmax , dmax,
and the input size, where ϕ is the dispersion of the model,
kmax measures agents’ largest total bias in bipartitions of
alternatives (Theorem 3), and dmax is the maximum ra-
tio between prior probabilities. We also show that in some
cases the mixing time is at least Θ(ϕ−kmax/2) (Proposi-
tion 1). For Condorcet’s model, our Markov chain is rapid
mixing for moderate prior distributions—its mixing time
is polynomial in the input size and (ln dmax

dmax−1)−1 (The-
orem 5). Therefore, we can efficiently generate samples
to estimate the Bayesian expected loss with high accuracy,
for Mallows’ model when ϕ−kmax and dmax are not too
large, and for Condorcet’s model when dmax is not too
large, for a wide range of social choice problems includ-
ing those that are provably NP-hard to compute or even
approximate (Theorem 2 and 4).

Computational and statistical efficiency of our algorithms
are shown in preliminary experiments using real-world
election data from Preflib (Mattei and Walsh, 2013) (www.
Preflib.org). The key observation is that for Mallows’
model, when the number of alternatives is at least 11 the
brute-force search takes much more time than generating
10 million samples, based on which we can achieve a high
precision for estimating the Bayesian loss and making the
optimal Bayesian decision.

Related Work and Discussions. MCMC methods have
been widely applied in Bayesian statistics (Smith and
Roberts, 1993). However, obtaining non-trivial bounds on
the mixing time is a “considerable challenge” (Jerrum and
Sinclair, 1996). Our proofs involve novel applications of a
wide range of analytical tools, which we believe to have in-
dependent interest. To the best of our knowledge, this is the
first time that MCMC methods for Bayesian inference for
ranking models have been analytically studied. The theo-
retical bounds on the mixing time of the proposed Markov
chains are our main theoretical contribution.

Practically, the main advantage of our algorithms is their
generality because they work for any decision space, any
loss function, and any prior distribution. For many nat-
ural loss functions (e.g. those in Definition 4), no effi-
cient algorithm was previously known. There have been
much work on computing MLE and MAP for Mallows’
model and Condorcet’s model in (computational) social
choice (Bartholdi et al., 1989; Hemaspaandra et al., 2005;
Betzler et al., 2008), theory (Ailon et al., 2005; Kenyon-
Mathieu and Schudy, 2007), and machine learning (Kuo
et al., 2009; Long et al., 2010; Lu and Boutilier, 2011; Liu,
2011; Negahban et al., 2012; Azari Soufiani et al., 2012,
2013a,b; Raman and Joachims, 2015). Also see the exper-
imental study by Ali and Meila (2012) for a comparison of
104 algorithms and combinations. Our algorithms are more
general, as MLEs and MAPs are special combinations of
decision space and loss function.

Specifically, we have not seen much work on MCMC al-
gorithms for rank aggregation. The work that is closest
to ours is by Raman and Joachims (2015), who proposed a
different Markov chain for Mallows’ model and tested it on
MOOC grading data. However, their paper did not analyze
the mixing time. Diaconis and Hanlon (1992) proposed
a Metropolis-Hastings algorithm to generate data accord-
ing to a Mallows-like model that is based on the Cayley
distance, which is different from both models studied in
this paper. Moreover, it is not clear whether the algorithm
by Diaconis and Hanlon can be leveraged to generate sam-
ples from the posterior distribution.

2 PRELIMINARIES

Let C denote a set of m alternatives. Let L(C) denote the
set of linear orders over C, that is, the set of all transitive,
antisymmetric, and total binary relations. Let B(C) denote
the set of all possibly cyclic orders over C, that is, all ir-
reflexive, antisymmetric, and total binary relations over C.
Clearly L(C) ⊆ B(C). Each agent uses a (possibly cyclic)
order over C to represent her preferences. Let R denote the
(preference) profile containing preferences from n agents.
Given R, we want to make a joint decision from a decision
space D, which can be different from C.

For any profile R, its weighted majority graph, denoted by
WMG(R), is a weighted directed graph whose vertices are
C, and there is an edge between each pair of alternatives
(a, b) with weight wR(a, b) = #{V ∈ R : a �V b} −
#{V ∈ R : b �V a}. Clearly wR(a, b) + wR(b, a) = 0.

For any V,W ∈ B(C), we let KT(V,W) denote the
Kendall-tau distance between V and W , that is, the num-
ber of different pairwise comparisons in V and W . In this
paper, we focus on the following two ranking models.

Definition 1 (Mallows’ model with fixed dispersion). The
parameter space is ΘM = L(C), the sample space SM is
composed of n i.i.d. generated data in L(C), and for any
W ∈ L(C) and any profile R, we have PrM (R|W) =∏
V ∈R

(
1
ZM

ϕKT(V,W)
)

, where ZM is the normalization

factor such that ZM =
∑
U∈L(C) ϕ

KT(U,W).

Definition 2 (Condorcet’s model with fixed dispersion).
The parameter space is ΘC = B(C), the sample space
SC is composed of n i.i.d. generated data in B(C), and for
any W ∈ B(C) and any profile R, we have PrC(R|W) =∏
V ∈R

(
1
ZC
ϕKT(V,W)

)
, where ZC is the normalization

factor such that ZC =
∑
U∈B(C) ϕ

KT(U,W).1

In the above two definitions, the normalization factors ZM
and ZC are independent of the selection of W . We now re-
call the statistical decision-theoretic framework for social

1Our results also work for the variant where the sample space
is (L(C))n.

386

choice defined by Azari Soufiani et al. (2014) to formulate
the computational problem.

Definition 3 ((Azari Soufiani et al., 2014)). A statisti-
cal decision-theoretic framework for social choice (SDT
framework for short) is a tuple F = (MC ,D, L), where
C is the set of alternatives,MC = (Θ,Pr,S) is a ranking
model, D is the decision space, and L : Θ × D → R≥0 is
a loss function that is easy to compute.

In this paper, we focus on computing the Bayesian estima-
tors fB of a SDT framework that minimizes the expected
Bayesian loss for any prior and profile. More precisely,
given a SDT framework F , a prior over Θ, and a profile
R, fB(R) ∈ mind∈D Eθ∼Pr(·|R)L(θ, d). For example, the
maximum a posteriori (MAP) is the Bayesian estimator for
the SDT framework with D = Θ and the 0-1 loss function.

Natural choices of the decision space for ranking models
are: (1) D = C, and fB is called a resolute voting rule. (2)
D = 2C−{∅}, and fB is called a irresolute voting rule. (3)
D = L(C), and fB is called a preference function or social
welfare function.

In this paper, we focus on case (1) D = C and the exact
Top-k loss functions defined below. The proposed algo-
rithms and theorems on the mixing time work for any SDT
framework.

Definition 4. Let D = C. For any k ≤ m − 1, the exact
Top-k loss function LETop-k is defined as: for any W ∈
B(C) and d ∈ C, LETop-k(W,d) = 0 if there exits A ⊆ C
such that |A| = k, d ∈ A, and for all a ∈ A, b ∈ C −A we
have a �W b; otherwise LETop-k(W,d) = 1.

In words, the loss of an alternative d under the exact Top-k
loss function is 0 if d is clearly ranked within top k posi-
tions in the ground truth; otherwise the loss is 1.2

A Markov chain over a state space Θ is characterized by a
transition matrix P such that for any V,W ∈ Θ, P (V,W)
is the probability for the next state to be W given that
the current state is V . Therefore, for any V ∈ Θ, we
have

∑
W∈Θ P (V,W) = 1. In this paper, the state space

is the parameter space because we want to sample from
the posterior distribution. The stationary distribution π
of a Markov chain with transition matrix P is a probabil-
ity distribution over Θ such that for any V ∈ Θ we have∑
W∈Θ π(W)P (W,V) = π(V), that is, π (as a row vec-

tor) is a left eigenvector of P with eigenvalue 1.

Given a Markov chain with transition matrix P (V,W) and
a unique stationary distribution π(·), the variation distance
at time t w.r.t. starting state V is defined to be

∆V (t) = max
S⊆Θ
|P t(V, S)− π(S)|

2We note that for some W ∈ B(C) no alternative is clearly
ranked within top k. For any W ∈ L(C), there are always k
alternatives clearly ranked in top k.

where P t(V, S) is the probability for the Markov chain
starting at V to end in a state in S after t steps.

The convergence rate of a Markov chain to the stationary
distribution is measured by its mixing time τV (ε), which
is the number of steps that guarantee a variation distance
below ε. Formally, we define

τV (ε) = min{t : ∆V (t′) ≤ ε for all t′ ≥ t}

Let τ(ε) denote the maximum mixing time for all starting
states, that is, τ(ε) = maxV τV (ε).

Our algorithms first use a Markov chain sampler M that
runs a Markov chain for multiple steps to generate samples
from the parameter space Θ, then compute the optimal de-
cision w.r.t. these samples. Formally, we use Algorithm 1
to estimate the expected Bayesian loss of all decisions, then
choose one with minimum expected loss.

Algorithm 1 CompBayesianLoss
1: Input: a profile R, a SDT framework F =

(MC ,D, L) with prior Pr(·), a Markov chain sampler
M over Θ whose stationary distribution is Pr(·|R), and
a decision d ∈ D.

2: Use M to generate N independent samples, denoted
by Q.

3: return
∑
W∈Q L(W,d)/|Q|.

It is well-known that the mixing time is closely related to
the running time of approximate algorithms based on sam-
ples generated from the Markov chain. For SDT frame-
works, this relation is formalized in Theorem 1. For com-
pleteness we include a short proof.

Theorem 1. For any d ∈ D and any ε > 0, δ > 0, Algo-
rithm 1 can compute the expected Bayesian loss of d with
no more than ε additive error with probability at least 1−δ
in O(

l2max
ε2 ln δ−1τ(ε

2lmax
)η) time, where lmax is the maxi-

mum loss in L, τ(·) is the mixing time of the Markov chain
used by M, and η is running time for one step in M.

Proof: Let π denote the posterior distribution over Θ given
R and let π∗ denote the distribution by the Markov chain
sampler. We first prove that usingO(

l2max
ε2 ln δ−1) indepen-

dent samples, the output of Algorithm 1 is no more than ε/2
away from EV∼π∗L(V, d). We then choose a sampler M
with mixing time ε

2lmax
and show that |EV∼π∗L(V, d) −

EV∼πL(V, d)| ≤ ε
2 .

Let X1, . . . , XN denote N i.i.d. random variables dis-
tributed as L(V, d), where V is generated from π∗. Let
Y N = (

∑N
i=1X

i)/N . Because for any θ ∈ Θ and
d ∈ D, 0 ≤ L(θ, d) ≤ lmax, we have Var(X1) ≤ l2max
and Var(Y N) ≤ l2max/N . Also it is easy to check that
EV∼π∗L(V, d) = E(X1) = E(Y N). Therefore, by
Chebyshev’s inequality we have: Pr(|Y N − E(Y N)| ≥

387

ε
2) ≤ 4Var(Y N)

ε2 ≤ 4l2max
ε2N . When N ≥ 16

3
l2max
ε2 we have

Pr(|Y N − E(Y N)| ≥ ε
2) ≤ 3

4 . This can be leveraged to
an algorithm that outputs an estimation to E(X1) with no
more than ε

2 additive error with probability at least 1 − δ,

using O(
l2max
ε2 ln δ−1) calls to the sampler M. For any M

with mixing time τ(ε
2lmax

), we have |EV∼π∗L(V, d) −
EV∼πL(V, d)| ≤ ∑

V ∈Θ L(V, d)|π(V) − π∗(V)| ≤
lmax

ε
2lmax

= ε
2 .

Therefore, the total running time of Algorithm 1 is
O(

l2max
ε2 ln δ−1τ(ε

2lmax
)η). 2

In the remainder of this paper we focus on the Markov
chains for Mallows’ model and Condorcet’s model. For
both models, we will design Metropolis-Hastings sampling
algorithms (Metropolis et al., 1953; Hastings, 1970), which
work as follows. For each state V we first generate a can-
didate W for the next state from a proposal distribution
pV (·). Then, with probability min{1, π(W)pW (V)

π(V)pV (W) } the next
state is W ; otherwise the next state remains at V .

3 MARKOV CHAIN FOR MALLOWS’
MODEL

To motivate the study, we first prove that the expected
Bayesian loss is hard to approximate for Mallows’ model
w.r.t. the exact Top-1 loss function and uniform prior. In the
BAYESIANLOSS problem, we are given a SDT framework,
a prior, and a decision d ∈ D. We are asked to compute the
expected Bayesian loss of d.3

Theorem 2. If BAYESIANLOSS for Mallows’ model
w.r.t. the exact Top-1 loss function and the uniform prior
has a polynomial-time approximation algorithm with con-
stant approximation ratio, then P = NP = PNP

|| .

PNP
|| is the class of problems that can be computed by a P

oracle machine using polynomial number of parallel access
to NP oracles. PNP

|| contains NP and co-NP.

Proof: The hardness is proved by a reduction from the
KEMENYWINNER problem, which is NP-hard (Bartholdi
et al., 1989) and PNP

|| -complete (Hemaspaandra et al.,
2005). Given a profile R, for any alternative c, the Kemeny
score of c is the smallest Kendall-tau distance between the
profile and any linear order where c is ranked at the top.
An alternative with the minimum Kemeny score is called a
Kemeny winner. In a KEMENYWINNER problem, we are
given a profile R and an alternative c, and we are asked if c
is a Kemeny winner.

Given a KEMENYWINNER instance (R, c), we construct
a BAYESIANLOSS instance where there is a new alterna-
tive d and the profile R′ satisfies that WMG(R′) equals
to WMG(R) plus the edges d → a for all a 6= c, whose

3This problem is known to be NP-hard and PNP
|| -hard to com-

pute exactly (Procaccia et al., 2012; Azari Soufiani et al., 2014).

weights are 1 (if weights on edges in WMG(R) are odd)
or 2 (if weights on edges in WMG(R) are even). Given
any constant α > 1, we let ϕ = α2

2(m!)2 . We note that ϕ
can be represented using polynomial number of bits. This
instance can be constructed in polynomial time using Mc-
Garvey’s trick (McGarvey, 1953).

Clearly d is a Kemeny winner in R′. If the KEMENYWIN-
NER is a “yes” instance, then c is also a Kemeny winner in
R′ (where d is ranked in the second place in the winning
ranking). The Bayesian expected loss of d is at least 1

m!
because in at least one ranking d is not at the top.

If the KEMENYWINNER is a “no” instance, then d is the
unique Kemeny winner. Let V denote a ranking where d
is ranked in the top and KT(V,R′) equals to the Kemeny
score of d. It is easy to check that for any rankingW where
d is not ranked in the top, KT(V,R′) ≤ KT(W,R′) − 1,
which means that Pr(W |R′)

Pr(V |R′) ≤ ϕ. Therefore, the posterior
probability that d is not ranked in the top, which equals
to the expected Bayesian loss of d, is at most (m!−1)ϕ

1+(m!−1)ϕ .

When ϕ = α2

2(m!)2 , we have (m!−1)ϕ
1+(m!−1)ϕ <

α2

m! .

It follows that if there exists a polynomial-time α-
approximation algorithm for BAYESIANLOSS, then we can
use this algorithm to solve KEMENYWINNER in polyno-
mial time: if the output of the algorithm is no more than α

m!
then the KEMENYWINNER instance is a “no” instance; oth-
erwise the KEMENYWINNER instance is a “yes” instance.
This means that P = NP = PNP

|| . 2

We now present the Markov chain MM for Mallows’
model in Algorithm 2, which runs MM for N steps. In
each step, we first apply a random transposition of adja-
cent alternatives in the current state V (changing d � c to
c � d) to obtain a candidate ranking W , then with prob-
ability 1

2 min{PrM (W)
PrM (V) ϕ

R[d�c]−R[c�d], 1} we let V = W ,
otherwise the next state stays at V , where R[c � d] is the
number of times c � d in R. The 1

2 factor is a popular trick
to prove bounds on the mixing time in Lemma 2.

Algorithm 2 Markov chain MM for Mallows’ model.
1: Inputs: a profile R, a prior PrM , an initial ranking V ,

and the number of iterations N .
2: for t =1 to N do
3: Switch a pair of adjacent alternatives uniformly at

random (from d � c to c � d). Let W denote the
new ranking.

4: With probability 1
2 min{PrM (W)

PrM (V) ϕ
R[d�c]−R[c�d], 1}

let V = W .
5: end for
6: return V .

For any profile R, let kmax denote the max cut
of the undirected WMG(R). That is, kmax =
maxA⊆C

∑
a∈A,b∈C−A |wR(a, b)|. Let dmax denote the

388

maximum ratio between prior probabilities. That is,
dmax = maxV,W∈Θ

PrM (V)
PrM (W) .

Theorem 3. The mixing time of the Markov
chain in Algorithm 2 for any starting state is
O(m4d3

maxϕ
−kmax(nm3 logm lnϕ−1 + ln ε−1)).

Proof: It is easy to check that the Markov chain MM in
Algorithm 2 is finite, ergodic, reversible and the transition
matrix PM (V,W) is diagonally dominant. Therefore, all
eigenvalues of PM (V,W) are real and positive, and the
largest one is 1. The following lemma shows that the mix-
ing time is closely related to the spectral gap 1 − λmax,
where λmax is the second largest eigenvalue of PM (V,W).
It is easy to verify that the stationary distribution πM equals
to the posterior distribution PrM (·|R).

Lemma 1 (e.g. (Sinclair, 1992)).
(i) τV (ε) ≤ (1− λmax)−1(lnπ(V)−1 + ln ε−1);

(ii) maxV ∈Θ τV (ε) ≥ 1
2 (1− λmax)−1 ln(2ε)−1.

It is often hard to directly obtain lower bounds on the spec-
tral gap. We will take the canonical path approach, whose
idea is the following. Any reversible Markov chain can
be visualized as an undirected graph G where the ver-
tices are Θ and the weight on the edge between V and
W is Q(V,W) = π(V)P (V,W). For each pair of states
V,W ∈ Θ, we fix a directed path (canonical path) from V
to W in G, denoted by γVW . Let |γVW | denote the length
of γVW . Let Γ denote the set of all canonical paths defined
above, one for each pair (V,W). The maximum loading of
a single edge in Γ provides a lower bound on the spectral
gap, thus it can be used to upper-bound the mixing time.
Formally, this was proved by Sinclair (1992) in the follow-
ing Lemma.

Lemma 2 ((Sinclair, 1992; Jerrum and Sinclair, 1996)).
Let M be a finite, reversible, and ergodic Markov chain
with loop probabilities P (V, V) ≥ 1

2 for all states V . Let
Γ be a set of canonical paths with maximum edge loading

ρ = max
e

1

Q(e)

∑

γVW3e
π(V)π(W)|γVW |

Then the mixing time satisfies τV (ε) ≤ ρ(lnπ(V)−1 +
ln ε−1) for all V ∈ Θ.

To apply Lemma 2, we consider the following canonical
paths ΓM for MM . We note that the graph G for canoni-
cal paths, whose vertices are rankings over alternatives, is
different from the weighted majority graph, whose vertices
are the alternatives.

Definition 5. In the canonical paths ΓM , for any pair of
different rankings V,W ∈ L(C), γVW contains the rank-
ings obtained in m − 1 stages of adjacent transpositions,
where in stage k, the alternative ranked at the k-th position
in W is moved up to the k-th position in V .

W.l.o.g. letW = [a1 � · · · � am]. In stage 1, we apply the
minimum number of adjacent transpositions on V to move
a1 to the top position. This process passes through no more
than m − 1 rankings, and let V1 denote the ranking at the
end of the process, where a1 is ranked at the top position
and the other part of V1 is the same as in V . In stage 2, if
a2 is not already ranked at the second position of V1, then
we apply the minimum number of adjacent transpositions
on V1 to move a2 to the second position. The process con-
tinues until we reach W . For example, when m = 4, V =
[a4 � a1 � a3 � a2], and W = [a1 � a2 � a3 � a4], we
have γVW = V → [a1 � a4 � a3 � a2] → [a1 � a4 �
a2 � a3]→ [a1 � a2 � a4 � a3]→W .

It is not hard to see that |γVW | ≤ m2. For any edge
e = E → E′ in a canonical path, we have QM (E,E′) =
πM (E)PM (E,E′) = πM (E′)PM (E′, E) ≥

1
2(m−1) min{πM (E), πM (E′)}. Therefore, we have

ρ ≤ max
e=E→E′

(
2m2(m− 1)

min{πM (E), πM (E′)}
∑

γVW3e
πM (V)πM (W))

(1)

Lemma 3. Given the canonical paths ΓM defined in Defi-
nition 5 and any edge e = E → E′, we have:

(i)
∑

V,W :γVW3e
πM (V)πM (W)/πM (E) ≤ mϕ−kmax , and

(ii)
∑

V,W :γVW3e
πM (V)πM (W)/πM (E′) ≤ mϕ−kmax .

Proof: Let E = [T � d � c � B] and E′ = [T � c �
d � B]. For any 0 ≤ k ≤ |T |, we let Tk denote the top
k ordering of T and let T ∗k denote the remaining ordering.
That is, for any k ≤ |T | we have T = [Tk � T ∗k]. It
is easy to check that e ∈ γVW if and only if there exists
0 ≤ k ≤ |T | ≤ m − 2 such that the following conditions
hold.

(1) T ∗k � d � B and d � c hold in V . Let Vk denote the
set of all such V ’s.

(2) The top k+ 1 alternatives in W are ranked as [Tk � c].
LetWk denote the set of all such W ’s.

We first prove the inequality for E. Let Ak denote the al-
ternatives in Tk, let A∗k denote the alternatives in T ∗k plus
d, let S denote the alternatives in B, and let Āk = C −Ak.
For each pairwise comparison a �E b in E, either we have
(1) a �V b for all V ∈ VK or (2) a �W b for all W ∈ VK .
This relationship is shown in Table 1.

For example, “W ” at (Ak, Ak) in Table 1 means that for all
W ∈ Wk, (a, b) ∈ Ak × Ak, a �W b if and only if a �E
b. (c, c) is marked N/A because the pairwise comparison
between c and c is not well defined.

For any J ⊆ L(C) × L(C) and V,W ∈ L(C), we let
DJ(V,W) denote the number of different pairwise com-
parisons between V and W for all paris {a, b} such that

389

Ak A∗k c S
Ak W W W W
A∗k W V V V
c W V N/A W
S W V W V

Table 1: Pairwise comparisons in E that are the same as in
V ∈ Vk or W ∈ Wk.

(a, b) ∈ J or (b, a) ∈ J . Formally, DJ(V,W) =
#{{a, b} : [(a, b) ∈ J or (b, a) ∈ J] and [[a �V
b and b �W a] or [a �W b and b �V a]]}. In other words,
DJ(V,W) is the Kendall-tau distance between the restric-
tion of V on J and the restriction of W on J . We note
that any unordered pair of alternatives {a, b} is counted
only once in J . In particular, for any a ∈ C and A ⊂ C,
D{a}×{a}(V,W) = 0 and D({a}∪A)×({a}∪A)(V,W) =
DA×({a}∪A)(V,W) = D({a}∪A)×A(V,W). We have

∑

V,W :γVW3e
πM (V)πM (W)/πM (E)

=
∑

0≤k≤|T |

∑

V ∈Vk,W∈Wk

πM (V)πM (W)/πM (E)

≤
∑

0≤k≤|T |

∑

V ∈Vk,W∈Wk

d3
max

PrM (R|V) PrM (R|W)

PrM (R|E)
∑
U∈L(C) PrM (R|U)

(2)

=
∑

0≤k≤|T |

∑

V ∈Vk,W∈Wk

d3
maxf1(V,E)f2(W,E)∑

U∈L(C) ϕ
KT(U,R)

(3)

where f1(V,E) = ϕDAk×C(V,R)+D{c}×S(V,R) and
f2(W,E) = ϕ

DA∗
k
×Āk (W,R)+DS×S(W,R). (2) is due to the

following lemma.

Lemma 4. For any ranking model, any V ∈ Θ, and
any profile R, we have Pr(V |R)

dmax
≤ Pr(R|V)∑

U∈Θ Pr(R|U) ≤
dmax Pr(V |R).

For (3), according to Table 1, we have (for all grids with
“V ” in Table 1)

DA∗k×Āk(E,R) +DS×S(E,R)

= DA∗k×Āk(V,R) +DS×S(V,R)

and (for all grids with “W ” in Table 1)

DAk×C(E,R) +D{c}×S(E,R)
= DAk×C(W,R) +D{c}×S(W,R)

We note that for any U ∈ L(C), Pr(R|U) ∝ ϕKT(U,R) and

KT(U,R) = DAk×C(U,R) +DA∗k×Āk(U,R)

+D{c}×S(U,R) +DS×S(U,R)

Therefore,

KT(E,R) =DA∗k×Āk(V,R) +DS×S(V,R)

+DAk×C(W,R) +D{c}×S(W,R)
(4)

(3) follows after substituting (4) into (2).

We next prove that
∑

V ∈Vk,W∈Wk

f1(V,E)f2(W,E)∑
U∈L(C) ϕ

KT(U,R) ≤

ϕ−kmax . To do so, we define a function g : Vk × Wk →
L(C) as follows: for any (V,W) ∈ Vk ×Wk, g(V,W) is
obtained from V by applying a permutation over A∗k ∪ S
so that the preferences of g(V,W) over A∗k ∪ S become
the preferences of W over A∗k ∪ S, while the other pair-
wise comparisons stay the same as in V . This means that
the positions of Ak ∪ {c} in g(V,W) are the same as in
V . It is not hard to verify that for all pairs (V1,W1) 6=
(V2,W2), we have g(V1,W1) 6= g(V2,W2), which means
that {g(V,W) : V ∈ Vk,W ∈ Wk} ⊆ L(C).

Claim 1. For any (V,W) ∈ Vk × Wk,
f1(V,E)f2(W,E) ≤ ϕKT(g(V,W),R)−kmax .

Proof: By the definition of g(V,W) we have
DAk×(Ak∪{c})(V,R) = DAk×(Ak∪{c})(g(V,W), R)
and DA∗k×(A∗k∪S)(W,R) = DA∗k×(A∗k∪S)(g(V,W), R).
Therefore,

f1(V,E)f2(W,E)/ϕg(V,W)

=
ϕ
DAk×(A∗

k
∪S)(V,R)+D{c}×S(V,R)+D{c}×A∗

k
(W,R)

ϕ
D(Ak∪{c})×(A∗

k
∪S)(g(V,W),R)

≤ϕ−
∑
a∈Ak∪{c},b∈A∗k∪S

|wR(a,b)| ≤ ϕ−kmax

2

By Claim 1 we have

∑

0≤k≤|T |

∑

V ∈Vk,W∈Wk

f1(V,E)f2(W,E)∑
U∈L(C) ϕ

KT(U,P)

≤
∑

0≤k≤|T |

∑
V ∈Vk,W∈Wk

f1(V,E)f2(W,E)

∑
V ∈Vk,W∈Wk

ϕKT(g(V,W),R)

≤
∑

0≤k≤|T |
max

V ∈Vk,W∈Wk

f1(V,E)f2(W,E)/ϕKT(g(V,W),R)

≤mϕ−kmax

This proves the inequality for E. The inequality for E′ is
proved similarly by lettingA∗k denote the alternatives in T ∗k
and letting S denote the alternatives in B plus d. 2

Combining Lemma 3 and inequality (1), we have ρ ≤
2m4d3

maxϕ
−kmax . We also note that for any state V ,

π(V) ≥ ϕnm
2

/m!, which means that lnπ(V)−1 is
O(nm3 logm lnϕ−1). The theorem follows after applying
Lemma 2. 2

390

Remarks: The upper bound proved in Theorem 3 is poly-
nomial in m,n, dmax, ln ε−1, and is exponential in kmax
(with base ϕ−1). Therefore, the algorithm is efficient if
dmax and ϕ−kmax are small, that is, either ϕ is close to
1 or kmax is small. The next proposition shows that the
mixing time of MM is sometimes Ω(mϕ−kmax/2).
Proposition 1. There exists a constant α so that for any
m ≥ 3, there exists a profile R and the mixing time of MM

is at least αmϕ−kmax/2 ln(2ε)−1.

Proof: For any m ≥ 3 and any even number l we can con-
struct a profile Rl with polynomial many votes using Mc-
Garvey’s trick (McGarvey, 1953) such that the WMG(Rl)
contains only three edges: a1 → a2, a2 → a3, a3 → a1,
and the weight on all three edges is l.

It is easy to check that kmax = 2l. We prove the lower
bound on the mixing time by applying Lemma 2(ii) and the
conductance approach.
Definition 6 (Sinclair and Jerrum (1989)). The conduc-
tance of a Markov chain M is defined as

Φ(M) = min
S⊂Θ:π(S)≤1/2

Q(S,S̄)
π(S) ,

where Q(S, S̄) =
∑
V ∈S,W∈S̄ Q(V,W).

The spectral gap is related to the conductance in the follow-
ing lemma proved by Sinclair and Jerrum (1989).
Lemma 5 ((Sinclair and Jerrum, 1989)). For any reversible
Markov chain whose conductance is Φ, the second eigen-
value λ1 satisfies 1− 2Φ ≤ λ1 ≤ 1− Φ2

2 .

We recall that all eigenvalues of MM are non-negative.
Therefore, the spectral gap of MM is 1 − λ1, which is at
most 2Φ. The following claim gives an upper bound on the
conductance for all Rl.
Claim 2. There exists β > 0 so that for all even number l,
Φ(MM) ≤ β 1

mϕ
kmax/2 for all Rl.

Proof: We let S ⊆ Θ denote the set of rankings where
a1 � a2 � a3. For any V ∈ S and W ∈ S̄, if P (V,W) >
0 then either a2 �W a1 �W a3 or a1 �W a3 �W a2,
which means that Q(V, S̄)/π(V) ≤ 1

m−1ϕ
kmax/2. There-

fore, Q(S,S̄)
π(S) =

∑
V∈S Q(V,S̄)∑
V∈S π(V) ≤ 1

m−1ϕ
kmax/2. It is easy

to check that 1/6 ≤ π(S) ≤ 1/3, which means that there
exists β > 0 so that Φ(MM) ≤ Q(S,S̄)

π(S) ≤ β 1
mϕ

kmax/2. 2

Combining Lemma 5 and Claim 2 we have 1 − λmax =
1 − λ1 ≤ β 1

mϕ
kmax/2. It follows from Lemma 1(ii) that

maxV τV (ε) ≥ β
2mϕ

−kmax/2 ln(2ε)−1. 2

4 MARKOV CHAIN FOR
CONDORCET’S MODEL

For Condorcet’s model it has been shown by Young (1988)
that for any W ∈ B(C) and any profile R, PrC(R|W) ∝

∏
a�W b(

ϕ
1−ϕ)R[a�b], where we recall that R[a � b] is the

number of times a � b in R. This leads to the following
observation.
Proposition 2. Let R denote a profile of binary re-
lations. V ∈ B(C) maximizes the likelihood if and
only if for any pair of alternatives (a, b), we have
(R[a � b] > R[b � a])⇒ (a �V b).

An immediate corollary is that for any profileR, computing
the MLE is in P. While computing the expected Bayesian
loss w.r.t. the exact Top-1 loss function is in P (Young,
1988; Elkind and Shah, 2014; Azari Soufiani et al., 2014),
for some natural loss functions computing the minimum
expected Bayesian loss is NP-hard. Formally, in a MIN-
BAYESIANLOSS problem, we are given a SDT framework,
a prior, a decision d ∈ D, and a number l. We are asked
whether there exists a decision whose expected Bayesian
loss is no more than l.
Theorem 4. MINBAYESIANLOSS can be computed in
polynomial time for Condorcet’s model w.r.t. LETop-k and
the uniform prior for any fixed k. It is NP-hard to compute
MINBAYESIANLOSS for Condorcet’s model w.r.t. LETop-m2
and the uniform prior for even m.

Proof: For any fixed k, the Bayesian loss of any decision
can be computed by enumerating all combinations of alter-
natives ranked at top k positions in the ground truth, the
probability of which can be computed by Claim 3 below.

We prove the NP-hardness of MINBAYESIANLOSS for
Condorcet’s model w.r.t. LETop-m2 by a reduction from an
NP-hard problem called ONEWAYBISECTION (Feige and
Yahalom, 2003). In a ONEWAYBISECTION instance, we
are given an oriented graph G = (V, E) with m vertices,
where m is even, and we asked whether there exists a par-
tition of V = S ∪ T so that |S| = |T | = m

2 and there is no
edge from T to S. For any ONEWAYBISECTION instance,
we construct a MINBAYESIANLOSS instance as follows.

The alternatives are the vertices. The preferences R are
obtained by McGarvey’s trick (McGarvey, 1953) so that
the positive edges in WMG(R) are the same as in G, and
all positive weights are 2. ϕ = 2−m

2

. l = 1− 2−m
2/4.

For any A ⊆ C, we let Pr(A � Ā|R) denote the poste-
rior probability that all alternatives in A are preferred to all
alternatives in Ā. That is, h(A) =

∑
W :A�W Ā Pr(W |R).

The next claim follows after calculations in (Elkind and
Shah, 2014; Azari Soufiani et al., 2014).
Claim 3. Pr(A � Ā|R) =

∏
a∈A,b∈Ā F (a, b), where

F (a, b) =

1
1+ϕ2 if wR(a, b) = 2
ϕ2

1+ϕ2 if wR(a, b) = −2

1/2 if wR(a, b) = 0

Therefore, if the ONEWAYBISECTION instance has a so-
lution A, then the expected Bayesian loss for any alterna-
tive in A is at most 1 − Pr(A � Ā|R) ≤ 1 − 2−m

2/4,

391

which means that the MINBAYESIANLOSS instance is a
“yes” instance. If the ONEWAYBISECTION instance does
not have a solution, then for any alternative a ∈ C, the
expected Bayesian loss is at least 1 −

(
m
m/2

)
ϕ2

1+ϕ2 > 1 −
2m logm ϕ2

1+ϕ2 > 1 − 2−m
2/4, which means that the MIN-

BAYESIANLOSS instance is a “no” instance. 2

We now present the Markov chain MC for Condorcet’s
model in Algorithm 3, which runs MC for N steps. MC

is an independent sampler and starts at an arbitrary state
that maximizes the likelihood. In each step, a candidate
next state is drawn independent of the current state, which
means that pX(·) is the same for all X . We let p(·) denote
this proposal distribution.

In MC , p(·) is the posterior probability assuming that the
prior is uniform. In other words, for any W ∈ B(C), p(W)
is proportional to Pr(R|W). A binary relation in B(C) can
be efficiently generated from p(·) by generating pairwise
comparisons between alternatives independently, such that
for each pair of alternatives (a, b), Pr(a�W b)

Pr(b�W a) = ϕR[b�a]

ϕR[a�b] =

ϕR[b�a]−R[a�b].

Algorithm 3 Markov chain MC for Condorcet’s model.
1: Inputs: a profile R, a prior PrC over L(C), and the

number of iterations N .
2: Let V ∈ B(C) denote a binary relation with the maxi-

mum likelihood computed by Proposition 2.
3: for t =1 to N do
4: Generate W ∈ B(C) where all pairwise compar-

isons are generated independently such that for any
(a, b), Pr(a�b)

Pr(b�a) = ϕR[b�a]−R[a�b].

5: With probability min{PrC(W)
PrC(V) , 1} let V = W .

6: end for
7: return V .

Theorem 5. The mixing time of MC in Algorithm 3 is
O((ln dmax

dmax−1)−1(ln dmax +m lnm+ ln ε−1)).

Proof: We apply a result by Liu (1996) to prove the upper
bound on the variation distance.

Lemma 6 ((Liu, 1996)). For any independent sampler
starting at V , we have

∆V (t) ≤ (1−minW {p(W)/π(W)})t
2
√
π(V)

For any W , we have p(W) = Pr(R|W)∑
U∈B(C) Pr(R|U)

and π(W) = Pr(W |R) = Pr(R|W)·Pr(W)∑
U∈B(C) Pr(R|U)·Pr(U) .

Therefore p(W)
π(W) = 1

Pr(W) ·
∑
U∈B(C) Pr(R|U)·Pr(U)∑

U∈B(C) Pr(R|U) ≥
minU{Pr(U)

Pr(Y)} ≥ 1
dmax

. By Lemma 6 we have
∆V (t) ≤ 1

2
√
π(V)

· (1 − 1
dmax

)t. Therefore, τV (ε) is

O((ln dmax
dmax−1)−1(lnπ(V)−1 + ln ε−1)). When V maxi-

mizes the likelihood, we have π(V) ≥ 1
dmaxm! . Apply-

ing Stirling’s formula we have lnπ(V)−1 is O(ln dmax +
m lnm), which proves the theorem. 2

5 EXPERIMENTS

Most theoretical results in this paper are based on worst-
case analysis. In this section we present some preliminary
experimental results to illustrate the efficiency of our algo-
rithms for real-world ranking data.

Dataset: We use the weighted majority graph dataset from
Preflib (Mattei and Walsh, 2013) (www.Preflib.org).
Most of these datasets are collected from political elections.
For each WMG, we normalize the weights to [−1, 1] by
dividing all weights by the heaviest one. This is without
loss of generality because we can set ϕ appropriately.

All experiments were run on a laptop with Intel i7-4600U
processor, 8GB memory, and 256 GB SSD hard drive, run-
ning Windows 8.1 (64bit) and Python 2.7.9 (32bit).

5.1 MALLOWS’ MODEL

We tested Algorithm 1 with Algorithm 2 for the decision
problem with Mallows’ model, ϕ = 0.9, D = C, uniform
prior, and the exact Top-1 loss function for m = 5 through
11. We use brute-force enumeration to compute the optimal
decision and discard the first 1/8 samples in our MCMC
algorithm as burn-in. The average running time and con-
vergence of Bayesian loss computed for all datasets with
the same number of alternatives are shown in Figure 1.4

In Figure 1 (a) we observe that the running time of brute-
force search grows exponentially in m (because the num-
ber of parameters is m!) while the running time for our
MCMC algorithm grows linearly in m. Figure 1 (b) shows
the reduction of the total difference between the estimated
Bayesian loss via MCMC and the ground truth computed
by brute-force search w.r.t. the number of samples. We note
that this is not the variance distance. The average is taken
over all datasets with the same number of alternatives. We
observe that the total difference can be effectively reduced
by increasing the number of samples. Moreover, when we
use 10 million samples, the optimal Bayesian decision is
correct in 109 out of 115 datasets (≈ 95%) as shown in
Table 2.

m = 5 6 7 8 9 10 11 Total
correct 18 13 18 11 17 20 12 109

incorrect 0 0 2 1 3 0 0 6

Table 2: The number of correct and incorrect Bayesian decisions
for Mallows’ model.

4We have also tested the efficiency of the algorithm with larger
N in Algorithm 2, and observe that the efficiency is in general
lower than the efficiency when all samples are used.

392

(a)Average running time. (b)Average total difference.

Figure 1: The average running time and average total difference of our algorithm for Mallows’ model.

5.2 CONDORCET’S MODEL

We tested Algorithm 1 with Algorithm 3 for the decision
problem with Condorcet’s model, ϕ = 0.9, D = C, uni-
form prior, and the exact Top-bm2 c loss function for m = 5
through 11. Given a binary relation W ∈ B(C) and an al-
ternative d, the exact Top-k loss can be computed by the
following polynomial-time algorithm. We say an alterna-
tive a dominates another alternative b in W , if there is a
directed path from a to b in W . For each alternative c, we
first compute the set of all alternatives that dominate c, de-
noted by Dc. By definition we have c ∈ Dc. Then, the loss
of d is 0 if and only if there exists an alternative c such that
(1) |Dc| = k and (2) d ∈ Dc; otherwise the loss of d is 1.

By Theorem 4, when k is small there exists a polynomial-
time algorithm to compute the Bayesian losses. This makes
experiments on Preflib data hard because the algorithm can
efficiently compute the optimal Bayesian losses for reason-
ably large m (for example m = 20), and there are not
enough datasets with m > 20. Therefore, we only show
the reduction in average total difference in Figure 2. Ex-
tensive experimental studies on real-world datasets are left
for future work.

In Figure 2 we observe that (i) for the same number of sam-
ples the total difference for Condorcet’s model is smaller
than the total difference for Mallows’ model, and (ii) with
the same number of samples, larger m corresponds to
smaller total difference. (The total difference for m = 11
is too small to be seen clearly in Figure 2.) This may be due
to two reasons. First, MC has a better theoretical guarantee
(that it is fast mixing) than MM . Second, for Condorcet’s
model the probability for the loss of any decision (alterna-
tive) to be 0 w.r.t. the exact Top-bm2 c loss function is small,
which means that for most generated samples the loss of all
alternatives is 1.

Figure 2: The average total difference for Condorcet’s model.

6 SUMMARY AND FUTURE WORK

We have proposed and analyzed two MCMC algorithms for
making optimal Bayesian decisions for two popular rank-
ing models w.r.t. any prior and loss function. There are
many open questions and future directions. Can we im-
prove the analysis to show that the Markov chain for Mal-
lows’ model is rapid mixing or prove that the Bayesian de-
cision problems are hard to approximate by efficient ran-
domized algorithms? Can we design and analyze other
Markov chain samplers? How to further improve the per-
formance of the Markov chain sampler in practice? How
does the Markov chain approach compare to other popu-
lar statistical and machine learning techniques, for example
importance sampling?

ACKNOWLEDGMENTS

We thank Zhibing Zhao and anonymous reviewers of UAI-
15 for helpful comments. This work is supported in part by
NSF CAREER under award number IIS-1453542.

393

References

Nir Ailon, Moses Charikar, and Alantha Newman. Aggregat-
ing inconsistent information: Ranking and clustering. In
Proc. STOC, pages 684–693, 2005.

Alnur Ali and Marina Meila. Experiments with Kemeny ranking:
What works when? Mathematical Social Sciences, 64(1):28–
40, 2012.

Hossein Azari Soufiani, David C. Parkes, and Lirong Xia. Ran-
dom utility theory for social choice. In Proc. NIPS, pages 126–
134, 2012.

Hossein Azari Soufiani, William Chen, David C. Parkes, and
Lirong Xia. Generalized method-of-moments for rank aggre-
gation. In Proc. NIPS, 2013a.

Hossein Azari Soufiani, Hansheng Diao, Zhenyu Lai, and
David C Parkes. Generalized random utility models with mul-
tiple types. In Proc. NIPS, 2013b.

Hossein Azari Soufiani, David C. Parkes, and Lirong Xia. Statisti-
cal decision theory approaches to social choice. In Proc. NIPS,
2014.

John Bartholdi, III, Craig Tovey, and Michael Trick. Voting
schemes for which it can be difficult to tell who won the elec-
tion. Social Choice and Welfare, 6:157–165, 1989.

Nadja Betzler, Michael R. Fellows, Jiong Guo, Rolf Niedermeier,
and Frances A. Rosamond. Fixed-Parameter Algorithms for
Kemeny Scores. In Algorithmic Aspects in Information and
Management, volume 5034 of Lecture Notes in Computer Sci-
ence, pages 60–71, 2008.

Marquis de Condorcet. Essai sur l’application de l’analyse à la
probabilité des décisions rendues à la pluralité des voix. Paris:
L’Imprimerie Royale, 1785.

Persi Diaconis and Phil Hanlon. Eigenanalysis for some examples
of the Metropolis algorithm. Contemporary Mathematics, 138:
99–117, 1992.

Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar.
Rank aggregation methods for the web. In Proc. WWW, pages
613–622, 2001.

Edith Elkind and Nisarg Shah. How to Pick the Best Alternative
Given Noisy Cyclic Preferences? In Proc. UAI, 2014.

Uriel Feige and Orly Yahalom. On the Complexity of Finding
Balanced Oneway Cuts. Information Processing Letters, 87
(1):1–5, 2003.

Sumit Ghosh, Manisha Mundhe, Karina Hernandez, and Sandip
Sen. Voting for movies: the anatomy of a recommender sys-
tem. In Proc. AGENTS, pages 434–435, 1999.

W. Keith Hastings. Monte Carlo Sampling Methods Using
Markov Chains and Their Applications. Biometrika, 57(1):97–
109, 1970.

Edith Hemaspaandra, Holger Spakowski, and Jörg Vogel. The
complexity of Kemeny elections. Theoretical Computer Sci-
ence, 349(3):382–391, December 2005.

Mark Jerrum and Alistair Sinclair. The Markov chain Monte
Carlo method: an approach to approximate counting and in-
tegration. In Dorit S. Hochbaum, editor, Approximation algo-
rithms for NP-hard problems, pages 482–519. PWS Publishing
Company, 1996.

Claire Kenyon-Mathieu and Warren Schudy. How to Rank with
Few Errors: A PTAS for Weighted Feedback Arc Set on Tour-
naments. In Proc. STOC, pages 95–103, 2007.

Jen-Wei Kuo, Pu-Jen Cheng, and Hsin-Min Wang. Learning to
Rank from Bayesian Decision Inference. In Proc. CIKM, pages
827–836, 2009.

Jun S. Liu. Metropolized independent sampling with comparisons
to rejection sampling and importance sampling. Statistics and
Computing, 6(2):113–119, 1996.

Tie-Yan Liu. Learning to Rank for Information Retrieval.
Springer, 2011.

Bo Long, Olivier Chapelle, Ya Zhang, Yi Chang, Zhaohui Zheng,
and Belle Tseng. Active Learning for Ranking Through Ex-
pected Loss Optimization. In Proc. SIGIR, pages 267–274,
2010.

Tyler Lu and Craig Boutilier. Learning mallows models with pair-
wise preferences. In Proc. ICML, pages 145–152, 2011.

Colin L. Mallows. Non-null ranking model. Biometrika, 44(1/2):
114–130, 1957.

Andrew Mao, Ariel D. Procaccia, and Yiling Chen. Better human
computation through principled voting. In Proc. AAAI, 2013.

Nicholas Mattei and Toby Walsh. PrefLib: A Library of Prefer-
ence Data. In Proc. ADT, 2013.

David C. McGarvey. A theorem on the construction of voting
paradoxes. Econometrica, 21(4):608–610, 1953.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosen-
bluth, Augusta H. Teller, and Edward Teller. Equation of State
Calculations by Fast Computing Machines. Journal of Chemi-
cal Physics, 21(6):1087–1092, 1953.

Sahand Negahban, Sewoong Oh, and Devavrat Shah. Iterative
ranking from pair-wise comparisons. In Proc. NIPS, pages
2483–2491, 2012.

Daniele Porello and Ulle Endriss. Ontology Merging as Social
Choice: Judgment Aggregation under the Open World As-
sumption. Journal of Logic and Computation, 2013.

Ariel D. Procaccia, Sashank J. Reddi, and Nisarg Shah. A maxi-
mum likelihood approach for selecting sets of alternatives. In
Proc. UAI, 2012.

Karthik Raman and Thorsten Joachims. Methods for Ordinal Peer
Grading. In Proc. SIGKDD, pages 1037–1046, 2014.

Karthik Raman and Thorsten Joachims. Bayesian Ordinal Peer
Grading. In Proc. L@S, 2015.

Alistair Sinclair. Improved Bounds for Mixing Rates of Markov
Chains and Multicommodity Flow. Combinatorics, Probabil-
ity and Computing, 1(4):351–370, 1992.

Alistair Sinclair and Mark Jerrum. Approximate counting, uni-
form generation and rapidly mixing Markov chains. Informa-
tion and Computation, 82(1):93–133, 1989.

A. F. M. Smith and G. O. Roberts. Bayesian Computation Via
the Gibbs Sampler and Related Markov Chain Monte Carlo
Methods. Journal of the Royal Statistical Society. Series B, 55
(1):3–23, 1993.

H. Peyton Young. Condorcet’s theory of voting. American Politi-
cal Science Review, 82:1231–1244, 1988.

394

Do-calculus when the True Graph Is Unknown

Antti Hyttinen
HIIT, Dept. Computer Science

University of Helsinki
Finland

Frederick Eberhardt
Humanities and Social Sciences

California Institute of Technology
Pasadena, CA, USA

Matti Järvisalo
HIIT, Dept. Computer Science

University of Helsinki
Finland

Abstract

One of the basic tasks of causal discovery is to
estimate the causal effect of some set of variables
on another given a statistical data set. In this
article we bridge the gap between causal struc-
ture discovery and the do-calculus by proposing
a method for the identification of causal effects
on the basis of arbitrary (equivalence) classes of
semi-Markovian causal models. The approach
uses a general logical representation of the equiv-
alence class of graphs obtained from a causal
structure discovery algorithm, the properties of
which can then be queried by procedures im-
plementing the do-calculus inference for causal
effects. We show that the method is more ef-
ficient than determining causal effects using a
naive enumeration of graphs in the equivalence
class. Moreover, the method is complete with
respect to the identifiability of causal effects for
settings, in which extant methods that do not re-
quire knowledge of the true graph, offer only in-
complete results. The method is entirely modular
and easily adapted for different background set-
tings.

1 INTRODUCTION

The theory of causal learning is aimed at finding ways to
estimate causal effects in a variety of different settings. In
the most basic setting the starting point is a statistical data
set of measurements over the variables of interest. In this
article we explore how quantitative causal effects can be es-
timated from such data alone, that is, without the additional
knowledge of the causal structure.

When the true causal structure (the causal graph) is known,
the well-known do-calculus enables the complete inference
(i.e., the identification) of causal effects from the passive
observational distribution over the variables (Pearl, 2000;

Shpitser and Pearl, 2006b). However, full knowledge of the
true graph requires a rather extensive understanding of the
system under investigation. Data alone is in general insuf-
ficient to uniquely determine the true causal graph. Even
complete discovery methods will usually leave the graph
underdetermined (Spirtes et al., 1993).

Here we develop a general method for the combined task
of causal structure discovery and the inference about causal
effects.1 Leveraging a constraint satisfaction approach to
connect the output of causal discovery algorithms to the do-
calculus, our method enables the identification of causal ef-
fects for arbitrary (equivalence) classes of semi-Markovian
causal models (DAGs with latent variables). The primary
advantages of the approach are that (i) it does not assume a
unique true causal structure, (ii) it is not restricted to partic-
ular types of equivalence classes of causal structures, such
as partial ancestral graphs (PAGs), (iii) it provides an algo-
rithm that outputs (when possible) at least one estimator of
the causal effect, rather than only specifying rules of a cal-
culus, (iv) it considers all do-calculus inferences, not just
e.g. the so-called backdoor conditions, and (v) it gives the
user flexibility e.g. in how statistical conflicts in the data are
handled and how the possibility of multiple estimators of a
causal effect is addressed. To simplify notation we will,
throughout this article, describe our method using a single
observational data set as input. However, we emphasize
that the method is extremely general, so, where relevant,
we will indicate how the approach is extended or adapted
to other scenarios.

Figure 1 gives an overview of the computational flow of the
proposed method. The method determines whether a causal
effect of the form P (y | do(x), w) is identified given a data
set as input, and if so, provides a numerical estimate. We
use a (complete) causal discovery method to extract from
the data as much information as possible about the true
causal graph in terms of so-called d-separation/connection
constraints. We encode these constraints in the language
of propositional logic for the constraint solving compo-
nent, thereby implicitly representing the equivalence class

1See Section 5 for a discussion of related approaches.

395

DATA

 Eq. Class

of Graphs

CONSTRAINT SOLVER
(e.g. SAT-solver)

P(y|do(x),w)=P(y|x)

INPUT OUTPUT

P(y|do(x),w)=?

P(x,y,z,…)

CAUSAL
STRUCTURE

SEARCH
(e.g. FCI)

INFERENCE BY
 DO-CALCULUS

Figure 1: Overall structure of the system.

of causal structures (Hyttinen et al., 2013, 2014). This
enables the application of modern constraint solving tech-
niques, such as Boolean satisfiability (SAT) solvers (Biere
et al., 2009). We can then use the do-calculus to determine
whether the causal effect P (y | do(x), w) is identified by
alternating between do-calculus inferences and constrain-
ing the equivalence class to graphs for which no estimator
of the causal effect has been found yet. If the causal ef-
fect is identifiable, we obtain a formula and a numerical
estimate of the causal effect from the joint probability dis-
tribution over the variables.

Our method enables considerable flexibility in address-
ing the identification problem: The representation of the
candidate causal structures in terms of a logical formula
frees us from the restriction to settings where standard
graphical representations of equivalence classes of causal
graphs apply. We can include a wide variety of back-
ground constraints or additional knowledge, e.g., from ex-
periments. We can leverage the full inferential power of
the do-calculus without having to explicitly enumerate ev-
ery causal structure consistent with the data. Nevertheless,
we can (and do) instantiate an implicit exhaustive search
that ensures that we preserve the completeness guarantees
of both the causal discovery procedure and the do-calculus.

The paper is structured as follows: In Section 2 we de-
scribe the model space and assumptions used and give a
concise problem statement. Section 3 explains the infer-
ence algorithms, whose completeness properties are dis-
cussed in Section 4. In Section 5 we describe known re-
sults and approaches that are closely related to ours or that
provide context. Section 6 provides simulated results illus-
trating our main points.

2 PROBLEM SETUP

Following the standard set-up of the do-calculus, we as-
sume that the causal system can be represented by a semi-
Markovian causal model (SMCM). In other words, the un-

a) H

""

<<

||
W oo // X // Z // Y

b)

X
�� ��

// Y

Figure 2: a) Example of a SMCM graph for which the
causal effect P (y|do(x)) is identifiable even when the
graph is unknown. b) Example of a SMCM graph for which
the causal effect P (y|do(x)) is not identifiable even when
the graph is known (since the graph includes a hedge).

derlying causal structure over a set of causal variables V is
described by a directed acyclic graph G, in which the di-
rected edges correspond to direct causal relations between
the variables (relative to V), and confounding of any two
observed variables by some unobserved common cause U
is represented by a bi-directed edge between the variables
(thereby omitting U for simplicity in the graph; see Fig-
ure 2). The causal structure gives rise to a probability dis-
tribution that is assumed to be Markov and faithful to the
graph. No further parametric assumption about the distri-
bution is made. Importantly, Markov and faithfulness en-
sure that the probabilistic (in)dependencies of the distribu-
tion correspond to d-separation/connection relations in the
causal graph.2

Under specific d-separation conditions on the underlying
causal structure, the rules of the do-calculus (see Figure 3)
license inferences between the passive observational dis-
tribution P (V) and the corresponding (conditional) inter-
ventional distributions P (y | w, do(x)), where one or more
variables x ⊂ V have been subject to intervention and vari-
ables w ⊂ V are conditioned on. By using an additional
exogenous intervention variable IX with IX → X for each
variable X , the d-separation conditions of the do-calculus
can be stated as in Figure 3 (see Pearl (1995, p. 686) for the

2See Spirtes et al. (1993) for a precise statement of the as-
sumptions and for a definition of d-separation.

396

Rule 1 (Insertion/deletion of observations):

P (y|do(x), z, w) = P (y|do(x), w) if Y ⊥⊥ Z|X,W ||X

Rule 2 (Action/observation exchange):

P (y|do(x), do(z), w) = P (y|do(x), z, w) if Y ⊥⊥ IZ |X,Z,W ||X

Rule 3 (Insertion/deletion of actions):

P (y|do(x), do(z), w) = P (y|do(x), w) if Y ⊥⊥ IZ |X,W ||X

Rule 4 (Marginalization/sum-rule):

P (y|do(x), w) =∑z P (y, z|do(x), w)

Rule 5 (Conditioning):

P (y|do(x), z, w) = P (y, z|do(x), w)∑
y P (y, z|do(x), w)

Rule 6 (product/chain-rule):

P (y, z|do(x), w) = P (y|do(x), w, z)P (z|do(x), w)

Figure 3: Rules of the do-calculus.

proof of equivalence to the standard conditions; see also
Spirtes et al. (1993, p. 79)). The d-separation conditions of
each rule have the general form of ‘Y ⊥⊥ Z | X,W || X’,
where W,X, Y, Z are disjoint sets of variables in the graph
(including intervention variables), and ‘ || X’ denotes an
intervention on X: any edges with arrowheads into the
variables in X are cut.

Given a graphG, the identifiability of a causal effect is now
defined as follows (see Pearl (2000), Def. 3.2.4, p. 77): a
causal effect is identifiable if and only if it can be uniquely
computed from G and any positive input distribution P ()
that is Markov to G, i.e., there are no two causal models
with structure G that are Markov to P () but have different
numerical values for the causal effect.

An algorithm to apply the do-calculus when the true graph
is known was developed by Tian and Pearl (2002), which
with some modifications was shown to be complete for the
identification of (conditional) causal effects by Shpitser and
Pearl (2006b) (see also Huang and Valtorta (2006)). The
Shpitser algorithm provides (given the graph and the ob-
servational distribution) one estimator of the causal effect,
if such an estimator exists. When the causal effect is non-
identifiable, it returns a feature of the graph, known as a
hedge, that proves non-identifiability (see Figure 2b for an
example; see Shpitser and Pearl (2006b) for the exact defi-
nition).

Since we do not assume that the true graph G is known, we
take a causal effect to be identifiable given the equivalence
class of causal structures deemed consistent with the input
data if and only if the causal effect is (Pearl-) identifiable
by the same estimator for each member of the equivalence
class.

As shown in the simulations in Section 6, the causal ef-
fect is very often not uniquely identifiable from data when
the true graph is unknown. So, instead of outputting only
whether an effect is identifiable, and the estimate if it is,
we follow Maathuis et al. (2009), who output a (multi)set
of causal effect estimates that in some cases can be used to
obtain bounds on the true causal effect. This leads to the
following problem statement.

Problem Statement
INPUT: Data set D generated from an SMCM over

variables V and a query about a causal effect
P (y | do(x), w).

TASK: Output a set of causal effect estimates S such
that it includes an estimate for P (y | do(x), w)
for any causal structure that is consistent with D.
Include ‘NA’ in S, if the causal effect is not iden-
tifiable for some causal structure consistent with
D.

3 THE APPROACH

We proceed by describing the main contribution of this
work: a general method for the estimation of causal ef-
fects. In the following, we will specify the main compo-
nents (recall Figure 1) of our approach. First, we give de-
tails on how we connect the causal structure discovery al-
gorithm of choice with the constraint solving component
that maintains a logical representation of the equivalence
class of models under consideration. Then, we describe the
do-calculus inference component and its iterative interac-
tions with the constraint solver.

3.1 Querying the Equivalence Class

We use (for purposes of illustration) the FCI-algorithm
(Spirtes et al., 1993) to determine the equivalence class
of candidate causal structures from the data set. The FCI-
algorithm considers the same class of causal models as the
do-calculus: acyclic causal structures with latent variables.
It is complete with respect to knowledge about the underly-
ing causal structure that can be obtained from conditional
independence tests. Most importantly, FCI achieves this
d-separation completeness while performing very few re-
dundant tests. It thus also lends itself to the efficient char-
acterization of the equivalence class in terms of a small set
of d-separation constraints that can be fed to the constraint
solver.

397

Algorithm 1 Do-calculus Inference.

Input: P (y|do(x), w), an equivalence class E of SMCM
graphs.

Initialize the set S of causal effect estimates as empty.

While E is nonempty:

Find a graph G from the equivalence class E.
Find a formula F by calling Shpitser’s algorithm for graph
G. If the algorithm does not find a formula but returns a
hedge H, restrict eq. class E not to include H, add NA to
S and continue the loop from the beginning.
Find a derivation for F by calling Algorithm 2 for graph G
and the input distributions used in F .
Using F and the (estimated) P (V), compute the estimate
for the causal effect and add it to S.
Restrict the eq. class E to not satisfy at least one of the
required d-separations in derivation D.

Return a set S of numerical causal effect estimates.

We translate the d-separation constraints of the equivalence
class into a logical representation using the ASP-encoding
of Hyttinen et al. (2014). We can then query the con-
straint solver to obtain graphs from the equivalence class
or to check whether any graphical conditions, such as d-
separations or ancestral relations, apply to all, some or none
of the members in the equivalence class, and we can further
restrict the equivalence class with additional constraints.

For other settings or different background assumptions, the
FCI algorithm can be substituted with any other structure
discovery method. If one has reason to think that there are
no latent variables, we would recommend using an exact
Bayesian search algorithm, or the PC- or GES-algorithms
if something more scalable is required (Spirtes et al., 1993;
Chickering, 2002). If the causal constraints are to be ob-
tained from heterogeneous data sets, possibly including ex-
perimental data or background knowledge, then a search
algorithm such as GIES, IOD or a SAT-based procedure
may be better (Hauser and Bühlmann, 2012; Tillman and
Spirtes, 2011; Triantafillou and Tsamardinos, 2014; Hytti-
nen et al., 2014). The overall completeness of our method
depends in part, of course, on whether the causal discovery
method is complete.

3.2 Identifying Causal Effects

Algorithm 1 instantiates the do-calculus inference on a
given equivalence class. It queries the constraint solver for
a graph G in the equivalence class (one truth-value assign-
ment to the logical formula) and calls Shpitser’s algorithm
on G to identify the desired causal effect.

If Shpitser’s algorithm fails to identify the effect and re-
turns a hedge H , then the causal effect is non-identifiable
for G. Consequently, Algorithm 1 adds ‘NA’ to the set

Algorithm 2 Do-calculus Derivation.

Input: P (y|do(x), w), a SMCM graph G, and a set of distri-
butions P = {P1, . . .}.

For each Pi in P :

Derive the distributions computable from Pi using the
rules of the do-calculus such that:
• The required d-separation conditions are satisfied by
G.

• All variables appearing in the derived distributions are
ancestors of Y ∪W (see Shpitser and Pearl (2006a)).

• For an application of the product rule, both required
distributions are in P .

Add the new distributions to P and record the used rules
and the required d-separations.
If P (y|do(x), w) was derived, return the formula, the
rules, and the d-separations used on the way.

Return “the effect is not identifiable”.

S of causal effect estimates to mark the non-identifiability.
In addition, we restrict the equivalence class to not include
any graphs that have the hedge H , as the causal effect is
unidentifiable for such graphs as well.

If Shpitser’s algorithm returns a formula F , then the causal
effect is identifiable on the basis of the (marginal condi-
tional) distributions {P1, . . .} used in F . Algorithm 2 is
then called with the causal effect query, the graph G and
the list of distributions {P1, . . .} to obtain a ‘derivation’
for the formula. This derivation specifies the rules of the
do-calculus used to derive the formula F and consequently
the set of d-separation constraints C that warrant the use
of this estimate. The numerical estimate is added to S.
This estimate is now valid for all graphs that satisfy the
d-separation constraints in C. Then, the equivalence class
is again restricted to disregard such graphs by ensuring that
at least one of the constraints in C is no longer satisfied,
i.e., we add the negation of the conjunction of constraints
in C to the constraint solver. We repeatedly solve for a new
graphG from the restricted equivalence class until the class
becomes empty, at which time we have the solution to the
Problem Statement. Note that the repeated restrictions of
the equivalence class avoid an explicit enumeration of all
the members of the equivalence class, allowing for faster
operation.

Algorithm 2 implements the search for a valid do-calculus
derivation for a formula. We need such a derivation as Sh-
pitser’s algorithm does not output the set of d-separations
needed for the validity of the formula. Algorithm 2 does
an exhaustive breadth-first-search, producing computable
distributions that are warranted by the input graph and do-
calculus. It stops when a derivation for the causal effect
is found. The algorithm can be made sufficiently efficient
because 1) we only input the distributions that are used in

398

the formula given by Shpitser’s algorithm, 2) we use the
fact that only variables that are ancestors of Y ∪W can be
helpful in determining the causal effect (Shpitser and Pearl,
2006b), and 3) causal structures usually permit the identifi-
cation of fairly few distributions.

Figure 9 at the end of the paper shows an example run of
Algorithm 1 for one particular equivalence class.

4 COMPLETENESS RESULTS

The completeness properties of our method are derivative
of the completeness properties of the causal discovery al-
gorithm of choice and the do-calculus. Given a complete
structure search algorithm, such as FCI, we obtain in the
large sample limit the Markov equivalence class of the true
causal structure. If the causal effect in this equivalence
class is non-identifiable, it is either because one graph in
the equivalence class contains a hedge, which proves non-
identifiability, or because there are two graphs which have
different estimators for the causal effect. Algorithm 1 re-
peatedly performs the (complete) Shpitser algorithm on
members of the equivalence class, each time restricting
the equivalence class to graphs for which the discovered
derivations of an estimator do not hold. Consequently, its
output must eventually identify a graph with a hedge if
there is one, since implicitly the entire set of graphs in the
equivalence class is enumerated. If no graph with a hedge
is found, then Algorithm 1 only terminates once there is
a derivation of an estimator of the causal effect for each
graph in the equivalence class. A check whether these for-
mulas are the same determines the identifiability. (In the
presented version of the algorithms we only output the nu-
merical estimates, but the formulas could easily be added
to avoid any formal concern that there could be coinciden-
tally identical numerical values of the causal effect derived
from two different estimators.)

We note that the FCI algorithm is not complete with regard
to so-called Verma constraints that can further restrict the
equivalence class of causal structures (Shpitser and Pearl,
2008). We are not aware of any search algorithm that is
complete in this regard. However, any specific Verma con-
straint that may be established for a particular case, can eas-
ily be included and the set of estimators our method returns
will be complete with regard to that additional constraint.

For settings involving multiple data sets or experimental
data sets, there exist d-separation complete structure search
algorithms, but it is not known whether the do-calculus is
complete for these settings. Certainly, Shpitser’s algorithm
is restricted to the passive observational distribution. For
the restricted experimental settings described in Barein-
boim and Pearl (2012), we could replace Shpitser’s algo-
rithm with Bareinboim’s method in Algorithm 1 and re-
tain completeness, since Bareinboim shows completeness
for the identification problem in these so-called “surrogate

experiments”. In the future, we hope our approach can aid
the identification of causal effects from multiple data sets
of non-identical populations (Bareinboim and Pearl, 2013).

5 RELATED WORK

Building the connection between causal structure discovery
and causal effect inference seems essential if one wants to
complete the aim of causal learning from data sets to causal
effects. We consider it all the more important given that
significant parts of the causal literature regard the problem
of identifying the causal effect given the causal structure
as entirely separate from the problem of discovering the
causal structure in the first place. For example, the entire
literature on algorithms applying the do-calculus assumes
— generally without further discussion — that the causal
graph is known (Tian and Pearl, 2002; Huang and Valtorta,
2006; Shpitser and Pearl, 2006b; Bareinboim and Pearl,
2012). In the general model space that the do-calculus al-
lows for, the causal structure can hardly ever be uniquely
determined from the passive observational distribution or
even from the experimental distributions that Bareinboim
and Pearl (2012) consider. Still, the algorithms rely on be-
ing able to check complicated features of the causal struc-
ture. Similarly, the methods of causal structure discovery
often remain silent on how exactly one should determine
the causal effects given their output equivalence class.3

There need not be any harm in this division of labor if there
is an obvious and satisfactory answer of how to connect
the two. We assume that the standard proposal would be
to take the equivalence class of causal structures output by
a search algorithm, enumerate each member of the equiva-
lence class, and perform the do-calculus algorithm on each
member to determine (the identifiability of) the causal ef-
fect. Effectively, this is what is done in the IDA-algorithm
which returns (multi-sets of) estimates of the causal ef-
fects of variables from an equivalence class of causal struc-
tures under the assumption that there are no latent vari-
ables (Maathuis et al., 2009). However, such an explicit
enumeration of the members of an equivalence class can
very quickly become unwieldy (see also (Malinsky, 2015)).
In our simulations (Section 6) we show that our approach
is more efficient than a naive enumeration combined with
the do-calculus inference.

Zhang (2008), instead, developed a do-calculus directly
for the equivalence classes represented by partial ancestral
graphs (PAGs; see also Richardson and Spirtes (2003)). As
he explains, the calculus is not complete and no inference
algorithm to apply the calculus is given (although Zhang
notes that his results could be used to improve on the ear-

3The same is not true for methods of causal discovery that
include a parametric assumption (e.g. linearity, additive noise,
non-Gaussianity, etc), since in these cases the identification of
the qualitative causal effect generally corresponds to providing
a quantitative estimate of it.

399

a)
2 4 6 8 10

0
20

40
60

80
10

0

number of edges

nu
m

be
r

of
 in

st
an

ce
s

No restrictions

Id. given G (=No hedge in G)
No x−...−>y in G
No hedge in eq. class
no x−...−>y in eq. class

b)
2 4 6 8 10

0
20

40
60

80
10

0

number of edges

nu
m

be
r

of
 in

st
an

ce
s

X−...−>Y in the true model

Id. given G (=No hedge in G)
No hedge in eq. class

c)
2 4 6 8 10

0
20

40
60

80
10

0

number of edges

id
en

tif
ie

d
%

Causal order known

Id. given G (=No hedge in G)
No x−...−>y in G
No hedge in eq. class
no x−...−>y in eq. class

d)
2 4 6 8 10

0
20

40
60

80
10

0

number of edges

nu
m

be
r

of
 in

st
an

ce
s

Causal order known, X−...−>Y in the true model

Id. given G (=No hedge in G)
No hedge in eq. class

Figure 4: Identifiability of the causal effect P (y|do(x)) over random 5-variable graphs.

H ◦

Y◦
~~

a) X

P (y|do(x)) = P (y)

H ◦

##
X // Y // Z

W
◦

;;

b)

P (y|do(x)) = P (y|x)
P (z|do(y)) = P (z|y)
P (z|do(x)) = P (z|x)

c) H ◦

""

◦

||
W ◦ // X // Z // Y

P (y|do(x)) =∑h P (y|h, x)P (h)
=
∑
z[
∑
x′ P (y|z, x′)P (x′)]P (z|x)

d) X
◦

◦

W◦

◦
Y ◦ ◦
◦

◦

Z
◦

◦

◦

◦

P (w|do(x), y, z) = P (w|y, z)

Figure 5: Some examples of graph equivalence classes where causal effects can be identified. The circles on the edges can
be edge heads or tails (or both), as long as no new unshielded colliders are formed.

400

lier Prediction Algorithm by Spirtes et al. (1993)). His ap-
proach is closely related to ours, with the main difference
that we do not restrict ourselves to equivalence classes of
SMCMs that are PAGs and that our procedure is complete
for his setting.

Also relying on PAGs, Maathuis and Colombo (2015) fo-
cus on a subset of Zhang’s invariance principles (which
themselves are implied by the do-calculus) in order to spec-
ify conditions on a PAG that allow for the identification
of an adjustment set, i.e., a set of variables W that block
all so-called “backdoor paths” between X and Y , and al-
low for the causal effect P (y | do(x)) to be estimated us-
ing P (y | w, x). In our approach their “generalized back-
door criterion” corresponds to the simple and intuitive d-
separation conditions that are required for the estimation
of the causal effect (w ⊥⊥ Ix and y ⊥⊥ Ix | x,w). These
we can directly query on any class of SMCMs, not just on
PAGs (or MAGs or DAGs).

More data-driven methods to find adjustment sets have also
been developed (De Luna et al., 2011; Entner et al., 2013;
VanderWeele and Shpitser, 2011). These do not rely ex-
plicitly on a graphical representation of the causal knowl-
edge, but specify independence conditions that can be di-
rectly checked in the data. This is a very attractive direction
of research, since it cuts out the graph from the inference
procedure altogether. However, extant methods rely on a
variety of general background assumptions about how the
causal variables may be related (e.g. order assumptions)
that we do not require. More generally, methods for the
identification of adjustment sets obviously do not exhaust
the identifiability conditions for causal effects for which the
do-calculus was shown to be complete. Most prominently,
the so-called “front-door” criterion for identifiability is not
considered. Thus, one of the contributions of our method
is to enable the full identification power of the do-calculus
in settings when the causal structure is underdetermined.

6 SIMULATIONS

These simulations explore the identifiability of the causal
effects when the true causal graph is unknown, the scala-
bility of the methods presented in this paper, and, finally,
the accuracy of different causal effect estimates when mul-
tiple estimators can be calculated. We implemented the
algorithms using R with various packages (Tikka, 2014;
Kalisch et al., 2012). Following Hyttinen et al. (2014) for
the implementation of the constraint solving component,
we employed the off-the-shelf state-of-the-art answer set
programming (ASP) solver Clingo version 4.4.0, which at
its core uses modern SAT solving techniques to perform a
complete search for solutions, and at the same time allows
for a natural high-level representation of the structural con-
straints in logical form (Gebser et al., 2011).

Figure 4 compares the identifiability of the basic causal ef-

fect P (y|do(x)) when the graph is known vs. when only its
equivalence class is known. Figure 4a shows the number of
identified causal effects in random 5-variable graphs with-
out any restrictions, as density increases. When only the
equivalence class is known, the causal effect is almost al-
ways either trivially identified as X is discovered not to be
an ancestor of Y in any member of the equivalence class, or
trivially unidentifiable due to a possible hedge in the equiv-
alence class. When the graph is known, a significant num-
ber of causal effects are identified even when X is an an-
cestor of Y . This is further highlighted in Figure 4b where
X is required to be an ancestor of Y in the true graph. Al-
most no causal effects are identified when only the equiva-
lence class is known. Only in very rare cases can one ori-
ent enough edges to deduce the absence of hedges from the
equivalence class. This seems to happen when 4-7 edges
are present; additional edges often prevent the determina-
tion of the orientation. Figure 4c and 4d consider the same
comparison with the modification that the true causal order
is known by the causal discovery algorithm, and thus fixed
in the equivalence class. A few more effects are identified,
but since the fixed causal order does not prevent bidirected
edges, the improvement on non-trivial instances is limited
in Figure 4d.

Figure 5 shows equivalence classes of graphs for which the
causal effect is identified even when the true graph is un-
known. In each case, we are able to deduce enough edge
orientations to prevent the presence of a hedge, and to fix
the orientation of the paths from X to Y . Note that Fig-
ure 5d shows an example for which the do-calculus for-
mulation of Zhang (2008) over PAGs is incomplete. Our
approach is complete here and can hence identify the con-
ditional causal effect.

We also compared the running times of Algorithm 1 against

Algo. 1
n=5, 4 edges

Enum.
n=5, 4 edges

Algo. 1
n=5, 5 edges

Enum.
n=5, 5 edges

0
1

2
3

4
m

ed
. s

ec
s

pe
r

ru
n

ov
er

 2
0

ru
ns

●

●

●

●

●

Other ops.
Algorithm 2
SAT−solver ops.
Shpitser's
FCI

Figure 6: Algorithm 1 vs. Enumeration approach.

401

trivially enumerating all graphs in the equivalence class and
running Shpitser’s algorithm on all of them. Figure 6 shows
the median times spent by the different parts of the algo-
rithms. Algorithm 1 is much faster. In addition to the time
spent on enumerating the whole equivalence class by the
ASP constraint solver used here, running Shpitser’s algo-
rithm on so many graphs also takes a considerable amount
of time.

Figure 7 shows the median of the time spent during the dif-
ferent operations of Algorithm 1 on larger instances. FCI
was run using an independence oracle. Algorithm 1 spends
the majority of its time finding graphs for which the for-
mulas obtained in previous iteration rounds are not war-
ranted. For some outlier instances not visible in the median
here, Algorithm 2 also needs a considerable amount of time
when finding the derivation for a particularly complicated
formula. Note that we undergo here a rather heavy task of
finding estimates for all graphs in the equivalence class. If
we were content to just decide whether the effect is identi-
fiable, the total running times would be considerably lower.
However, as shown in Figure 4, the results of that kind of
an algorithm would be quite uninformative.

Finally, we examined the benefits of finding more esti-
mators for the causal effect using Algorithm 2 in cases
where multiple different estimators exist. We drew ran-
dom parameters for a binary SMCM with the graph in Fig-
ure 2. Given the equivalence class (shown in Figure 5c), the
causal effect P (y|do(x = 0)) can be calculated from the
passively observed distribution P (h,w, x, y, z) either by
the backdoor formula adjusting for h, or by the front-door
formula relative to z (see Figure 5c). We also estimated the
causal effect by directly sampling from the model when x
is surgically fixed to 0. Figure 8 shows the average KL-
divergence of the different estimators. The distributions

0
10

20
30

40
50

7 8 9 10 11 12 13 14 15 16 17 18 19 20

m
ed

. s
ec

s
pe

r
ru

n
ov

er
 1

00
 r

un
s

number of variables (= number of edges)

●

●

●

●

●

Other ops.
Algorithm 2
SAT−solver ops.
Shpitser's
FCI

Figure 7: Time spent by Algorithm 1.

1000 2000 3000 4000 5000

0e
+

00
4e

−
04

8e
−

04

0
*

c(
1,

 1
)

samples

bi
ts

 o
f a

ve
ra

ge
 K

L−
di

v

●

●

●

●
●

● backdoor
frontdoor
intervention

Figure 8: Average KL-divergence for different estimates of
P (y|do(x)) for the equivalence class of Figure 2. Median,
33% and 66% quantiles are plotted.

needed for the estimators were estimated directly (with reg-
ularization to avoid zero probabilities). In these simulations
the front-door estimator seems to offer better accuracy than
the backdoor estimator. By intervention we can obtain still
higher accuracy than either of the estimates obtained from
passively observed data. Shpitser’s algorithm gives here
only the backdoor formula. This simulation shows that it
may be beneficial to consider many estimators of a causal
effect instead of using only a single consistent formula.

7 CONCLUSION

In this work we explored the possibilities of estimating
causal effects from data. We have considerably relaxed
the assumption of the known true graph, which has been
standard in the literature on the do-calculus. Although
causal effects are rarely identified when the true graph is
unknown, our approach can still generate informative out-
put in terms of a set of estimates. Unlike other approaches
that perform only a limited set of causal effect inferences,
our method retains the completeness properties of the used
causal discovery algorithm and the do-calculus inference.
We hope that the flexible machinery presented in this paper
can be used to obtain further graphical criteria for identi-
fiability, and will help in achieving more completeness re-
sults.

Acknowledgements This work was supported in part by
the Finnish Foundation for Technology Promotion TES
(A.H.), and by the Academy of Finland (grants 251170
COIN Centre of Excellence in Computational Inference
Research, 276412 and 284591) and Research Funds of the
University of Helsinki (M.J.).

402

Constraint Solver Shpitser’s
algorithm

Algorithm 2
(derivation)

Algorithm 1
(inference)

User

Eq. class E:
causal order Z<X<Y,
no pass. obs. indep.

Eq. class E

Get graph

X Y

Z G2:

Get graph

G2,Q
F2=P(y)

Q, G2,{P(y)}

X Y

Z G3:

Get graph

G3,Q

NOT X Y OR NOT X Y

Get graph

UNSAT

X Y

Z G1:

G1,Q
F1=Σz P(y|x,z)P(z)

Q, G1,{P(y|x,z),P(z)}

X Y

Z G4:

G4,Q
F3=P(y|x)

Q, G4,{P(y|x)}

S={F1,F2,NA,F3}

Get graph

 Y IX|X
 Y IX|X

 Y IX
 Y IX

 Z IX AND Y IX|X,Z
 Z IX OR Y IX|X,Z

Hedge H1: X Y, X Y

Query Q: P(y|do(x))

…Other hedges are found…

Iter. 1

Iter. 2

Iter. 3

Iter. 8

Iter. 9

Figure 9: An example run of Algorithm 1 that estimates P (y|do(x)) given the input equivalence class consisting of all
SMCM graphs with three variables, no passively observed independencies, and the causal order Z < X < Y .

403

References

Bareinboim, E. and Pearl, J. (2012). Causal inference by
surrogate experiments: z-identifiability. In Proc. UAI,
pages 113–120. AUAI Press.

Bareinboim, E. and Pearl, J. (2013). A general algo-
rithm for deciding transportability of experimental re-
sults. Journal of Causal Inference, 1(1):107–134.

Biere, A., Heule, M., van Maaren, H., and Walsh, T., ed-
itors (2009). Handbook of Satisfiability, volume 185 of
Frontiers in Artificial Intelligence and Applications. IOS
Press.

Chickering, D. M. (2002). Optimal structure identification
with greedy search. Journal of Machine Learning Re-
search, 3:507–554.

De Luna, X., Waernbaum, I., and Richardson, T. S. (2011).
Covariate selection for the nonparametric estimation of
an average treatment effect. Biometrika, 98(4):861–875.

Entner, D., Hoyer, P., and Spirtes, P. (2013). Data-
driven covariate selection for nonparametric estimation
of causal effects. In Proc. AISTATS, volume 31 of JMLR
Workshop and Conference Proceedings, pages 256–264.
JMLR.org.

Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M.,
Schaub, T., and Schneider, M. T. (2011). Potassco: The
Potsdam answer set solving collection. AI Communica-
tions, 24(2):107–124.

Hauser, A. and Bühlmann, P. (2012). Characterization and
greedy learning of interventional markov equivalence
classes of directed acyclic graphs. Journal of Machine
Learning Research, 13:2409–2464.

Huang, Y. and Valtorta, M. (2006). Identifiability in causal
Bayesian networks: a sound and complete algorithm. In
Proc. AAAI, pages 1149–1154. AAAI Press.

Hyttinen, A., Eberhardt, F., and Järvisalo, M. (2014).
Constraint-based causal discovery: Conflict resolution
with answer set programming. In Proc. UAI, pages 340–
349. AUAI Press.

Hyttinen, A., Hoyer, P. O., Eberhardt, F., and Järvisalo,
M. (2013). Discovering cyclic causal models with latent
variables: A general SAT-based procedure. In Proc. UAI,
pages 301–310. AUAI Press.

Kalisch, M., Mächler, M., Colombo, D., Maathuis, M. H.,
and Bühlmann, P. (2012). Causal inference using graph-
ical models with the R package pcalg. Journal of Statis-
tical Software, 47(11):1–26.

Maathuis, M. H. and Colombo, D. (2015). A generalized
backdoor criterion. Annals of Statistics, pages 1060–
1088.

Maathuis, M. H., Kalisch, M., Bühlmann, P., et al.
(2009). Estimating high-dimensional intervention ef-
fects from observational data. The Annals of Statistics,
37(6A):3133–3164.

Malinsky, D. (2015). Estimating intervention effects in sys-
tems with unmeasured confounding. Technical report,
Carnegie Mellon University.

Pearl, J. (1995). Causal diagrams for empirical research.
Biometrika, 82(4):669–688.

Pearl, J. (2000). Causality: Models, Reasoning, and Infer-
ence. Cambridge University Press.

Richardson, T. and Spirtes, P. (2003). Causal inference
via ancestral graph models. In Green, P., Hjort, N.,
and Richardson, S., editors, Highly Structured Stochastic
Systems, pages 83–105. Oxford University Press.

Shpitser, I. and Pearl, J. (2006a). Identification of condi-
tional interventional distributions. In Proc. UAI, pages
437–444. AUAI Press.

Shpitser, I. and Pearl, J. (2006b). Identification of joint
interventional distributions in recursive semi-markovian
causal models. In Proc. AAAI, pages 1219–1226. AAAI
Press.

Shpitser, I. and Pearl, J. (2008). Dormant independence. In
Proc. AAAI, pages 1081–1087. AAAI Press.

Spirtes, P., Glymour, C., and Scheines, R. (1993). Causa-
tion, Prediction, and Search. Springer-Verlag. (2nd ed.
MIT Press 2000).

Tian, J. and Pearl, J. (2002). A general identification con-
dition for causal effects. In Proc. AAAI, pages 567–573.
AAAI Press.

Tikka, S. (2014). Package ‘causaleffect’.

Tillman, R. E. and Spirtes, P. (2011). Learning equiva-
lence classes of acyclic models with latent and selection
variables from multiple datasets with overlapping vari-
ables. In Proc. AISTATS, volume 15 of JMLR Proceed-
ings. JMLR.org.

Triantafillou, S. and Tsamardinos, I. (2014). Constraint-
based causal discovery from multiple interventions over
overlapping variable sets. arXiv:1403.2150.

VanderWeele, T. J. and Shpitser, I. (2011). A new criterion
for confounder selection. Biometrics, 67(4):1406–1413.

Zhang, J. (2008). Causal reasoning with ancestral graphs.
The Journal of Machine Learning Research, 9:1437–
1474.

404

Kernel-Based Just-In-Time Learning for
Passing Expectation Propagation Messages

Wittawat Jitkrittum,1 Arthur Gretton,1 Nicolas Heess,∗ S. M. Ali Eslami∗
Balaji Lakshminarayanan,1 Dino Sejdinovic2 and Zoltán Szabó1

Gatsby Unit, University College London1

University of Oxford2

{wittawatj, arthur.gretton}@gmail.com, nheess@gmail.com
ali@arkitus.com, balaji@gatsby.ucl.ac.uk,

dino.sejdinovic@gmail.com, zoltan.szabo@gatsby.ucl.ac.uk

Abstract

We propose an efficient nonparametric strategy
for learning a message operator in expectation
propagation (EP), which takes as input the set
of incoming messages to a factor node, and pro-
duces an outgoing message as output. This
learned operator replaces the multivariate inte-
gral required in classical EP, which may not have
an analytic expression. We use kernel-based re-
gression, which is trained on a set of probabil-
ity distributions representing the incoming mes-
sages, and the associated outgoing messages.
The kernel approach has two main advantages:
first, it is fast, as it is implemented using a novel
two-layer random feature representation of the
input message distributions; second, it has prin-
cipled uncertainty estimates, and can be cheaply
updated online, meaning it can request and in-
corporate new training data when it encounters
inputs on which it is uncertain. In experiments,
our approach is able to solve learning problems
where a single message operator is required for
multiple, substantially different data sets (logis-
tic regression for a variety of classification prob-
lems), where it is essential to accurately assess
uncertainty and to efficiently and robustly update
the message operator.

1 INTRODUCTION

An increasing priority in Bayesian modelling is to make
inference accessible and implementable for practitioners,
without requiring specialist knowledge. This is a goal

∗Currently at Google DeepMind.

sought, for instance, in probabilistic programming lan-
guages (Wingate et al., 2011; Goodman et al., 2008), as
well as in more granular, component-based systems (Stan
Development Team, 2014; Minka et al., 2014). In all cases,
the user should be able to freely specify what they wish
their model to express, without having to deal with the
complexities of sampling, variational approximation, or
distribution conjugacy. In reality, however, model con-
venience and simplicity can limit or undermine intended
models, sometimes in ways the users might not expect. To
take one example, the inverse gamma prior, which is widely
used as a convenient conjugate prior for the variance, has
quite pathological behaviour (Gelman, 2006). In general,
more expressive, freely chosen models are more likely
to require expensive sampling or quadrature approaches,
which can make them challenging to implement or imprac-
tical to run.

We address the particular setting of expectation propaga-
tion (Minka, 2001), a message passing algorithm wherein
messages are confined to being members of a particular
parametric family. The process of integrating incoming
messages over a factor potential, and projecting the result
onto the required output family, can be difficult, and in
some cases not achievable in closed form. Thus, a num-
ber of approaches have been proposed to implement EP
updates numerically, independent of the details of the fac-
tor potential being used. One approach, due to Barthelmé
and Chopin (2011), is to compute the message update via
importance sampling. While these estimates converge to
the desired integrals for a sufficient number of importance
samples, the sampling procedure must be run at every iter-
ation during inference, hence it is not viable for large-scale
problems.

An improvement on this approach is to use importance
sampled instances of input/output message pairs to train
a regression algorithm, which can then be used in place

405

of the sampler. Heess et al. (2013) use neural networks
to learn the mapping from incoming to outgoing messages,
and the learned mappings perform well on a variety of prac-
tical problems. This approach comes with a disadvantage:
it requires training data that cover the entire set of possible
input messages for a given type of problem (e.g., datasets
representative of all classification problems the user pro-
poses to solve), and it has no way of assessing the uncer-
tainty of its prediction, or of updating the model online in
the event that a prediction is uncertain.

The disadvantages of the neural network approach were the
basis for work by Eslami et al. (2014), who replaced the
neural networks with random forests. The random forests
provide uncertainty estimates for each prediction. This al-
lows them to be trained ‘just-in-time’, during EP inference,
whenever the predictor decides it is uncertain. Uncertainty
estimation for random forests relies on unproven heuris-
tics, however: we demonstrate empirically that such heuris-
tics can become highly misleading as we move away from
the initial training data. Moreover, online updating can re-
sult in unbalanced trees, resulting in a cost of prediction of
O(N) for training data of size N , rather than the ideal of
O(log(N)).

We propose a novel, kernel-based approach to learning a
message operator nonparametrically for expectation prop-
agation. The learning algorithm takes the form of a distri-
bution regression problem, where the inputs are probability
measures represented as embeddings of the distributions to
a reproducing kernel Hilbert space (RKHS), and the out-
puts are vectors of message parameters (Szabó et al., 2014).
A first advantage of this approach is that one does not need
to pre-specify customized features of the distributions, as in
(Eslami et al., 2014; Heess et al., 2013). Rather, we use a
general characteristic kernel on input distributions (Christ-
mann and Steinwart, 2010, eq. 9). To make the algorithm
computationally tractable, we regress directly in the pri-
mal from random Fourier features of the data (Rahimi and
Recht, 2007; Le et al., 2013; Yang et al., 2015). In par-
ticular, we establish a novel random feature representation
for when inputs are distributions, via a two-level random
feature approach. This gives us both fast prediction (linear
in the number of random features), and fast online updates
(quadratic in the number of random features).

A second advantage of our approach is that, being an in-
stance of Gaussian process regression, there are well es-
tablished estimates of predictive uncertainty (Rasmussen
and Williams, 2006, Ch. 2). We use these uncertainty es-
timates so as to determine when to query the importance
sampler for additional input/output pairs, i.e., the uncertain
predictions trigger just-in-time updates of the regressor. We
demonstrate empirically that our uncertainty estimates are
more robust and informative than those for random forests,
especially as we move away from the training data.

−5 0 5 10 15 20 25

−4

−2

0

2

4

6

Mean

Lo
g

pr
ec

is
io

n

Banknote
Blood
Fertility
Ionosphere

Figure 1: Distributions of incoming messages to logistic
factor in four different UCI datasets.

Our paper proceeds as follows. In Section 2, we introduce
the notation for expectation propagation, and indicate how
an importance sampling procedure can be used as an ora-
cle to provide training data for the message operator. We
also give a brief overview of previous learning approaches
to the problem, with a focus on that of Eslami et al. (2014).
Next, in Section 3, we describe our kernel regression ap-
proach, and the form of an efficient kernel message oper-
ator mapping the input messages (distributions embedded
in an RKHS) to outgoing messages (sets of parameters of
the outgoing messages). Finally, in Section 4, we describe
our experiments, which cover three topics: a benchmark of
our uncertainty estimates, a demonstration of factor learn-
ing on artificial data with well-controlled statistical prop-
erties, and a logistic regression experiment on four differ-
ent real-world datasets, demonstrating that our just-in-time
learner can correctly evaluate its uncertainty and update
the regression function as the incoming messages change
(see Fig. 1). Code to implement our method is avail-
able online at https://github.com/wittawatj/
kernel-ep.

2 BACKGROUND

We assume that distributions (or densities) p over a set of
variables x = (x1, . . . xd) of interest can be represented as
factor graphs, i.e. p(x) = 1

Z

∏J
j=1 fj(xne(fj)). The fac-

tors fj are non-negative functions which are defined over
subsets xne(fj) of the full set of variables x. These vari-
ables form the neighbors of the factor node fj in the factor
graph, and we use ne(fj) to denote the corresponding set
of indices. Z is the normalization constant.

We deal with models in which some of the factors have
a non-standard form, or may not have a known analytic
expression (i.e. “black box” factors). Although our ap-
proach applies to any such factor in principle, in this pa-
per we focus on directed factors f(xout|xin) which spec-
ify a conditional distribution over variables xout given xin

(and thus xne(f) = (xout,xin)). The only assumption
we make is that we are provided with a forward sam-
pling function f : xin 7→ xout, i.e., a function that maps
(stochastically or deterministically) a setting of the input
variables xin to a sample from the conditional distribution

406

over xout ∼ f(·|xin). In particular, the ability to evaluate
the value of f(xout|xin) is not assumed. A natural way to
specify f is as code in a probabilistic program.

2.1 EXPECTATION PROPAGATION

Expectation Propagation (EP) is an approximate iterative
procedure for computing marginal beliefs of variables by
iteratively passing messages between variables and factors
until convergence (Minka, 2001). It can be seen as an alter-
native to belief propagation, where the marginals are pro-
jected onto a member of some class of known parametric
distributions. The message mf→V (xV) from factor f to
variable V ∈ ne(f) is

proj
[
´

f(xne(f))
∏
V ′∈ne(f)mV ′→f (xV ′)dxne(f)\V

]

mV→f (xV)
,

(1)
where mV ′→f are the messages sent to factor f
from all of its neighboring variables xV ′ , proj [p] =
argminq∈QKL [p||q], and Q is typically in the exponential
family, e.g. the set of Gaussian or Beta distributions.

Computing the numerator of (1) can be challenging, as it
requires evaluating a high-dimensional integral as well as
minimization of the Kullback-Leibler divergence to some
non-standard distribution. Even for factors with known
analytic form this often requires hand-crafted approxima-
tions, or the use of expensive numerical integration tech-
niques; for “black-box” factors implemented as forward
sampling functions, fully nonparametric techniques are
needed.

Barthelmé and Chopin (2011); Heess et al. (2013); Eslami
et al. (2014) propose an alternative, stochastic approach to
the integration and projection step. When the projection is
to a member q(x|η) = h(x) exp

(
η>u(x)−A(η)

)
of an

exponential family, one simply computes the expectation
of the sufficient statistic u(·) under the numerator of (1).
A sample based approximation of this expectation can be
obtained via Monte Carlo simulation. Given a forward-
sampling function f as described above, one especially
simple approach is importance sampling,

Exne(f)∼b [u(xV)] ≈ 1

M

M∑

l=1

w(xlne(f))u(xlV), (2)

where xlne(f) ∼ b̃, for l = 1, . . . ,M and on the left hand
side,

b(xne(f)) = f(xne(f))
∏

W∈ne(f)
mW→f (xW).

On the right hand side we draw samples xlne(f) from some

proposal distribution b̃ which we choose to be b̃(xne(f)) =
r(xin)f(xout|xin) for some distribution r with appropriate

support, and compute importance weights

w(xne(f)) =

∏
W∈ne(f)mW→f (xW)

r(xin)
.

Thus the estimated expected sufficient statistics provide us
with an estimate of the parameters η of the result q of the
projection proj [p], from which the message is readily com-
puted.

2.2 JUST-IN-TIME LEARNING OF MESSAGES

Message approximations as in the previous section could
be used directly when running the EP algorithm, as in
Barthelmé and Chopin (2011), but this approach can suf-
fer when the number of samples M is small, and the im-
portance sampling estimate is not reliable. On the other
hand, for large M the computational cost of running EP
with approximate messages can be very high, as impor-
tance sampling must be performed for sending each outgo-
ing message. To obtain low-variance message approxima-
tions at lower computational cost, Heess et al. (2013) and
Eslami et al. (2014) both amortize previously computed ap-
proximate messages by training a function approximator to
directly map a tuple of incoming variable-to-factor mes-
sages (mV ′→f)V ′∈ne(f) to an approximate factor to vari-
able message mf→V , i.e. they learn a mapping

Mθ
f→V : (mV ′→f)V ′∈ne(f) 7→ mf→V , (3)

where θ are the parameters of the approximator.

Heess et al. (2013) use neural networks and a large, fixed
training set to learn their approximate message operator
prior to running EP. By contrast, Eslami et al. (2014) em-
ploy random forests as their class of learning functions,
and update their approximate message operator on the fly
during inference, depending on the predictive uncertainty
of the current message operator. Specifically, they endow
their function approximator with an uncertainty estimate

Vθ
f→V : (mV ′→f)V ′∈ne(f) 7→ v, (4)

where v indicates the expected unreliability of the pre-
dicted, approximate message mf→V returned by Mθ

f→V .
If v = Vθ

f→V
(
(mV ′→f)V ′∈ne(f)

)
exceeds a pre-

defined threshold, the required message is approximated
via importance sampling (cf. (2)) and Mθ

f→V is up-
dated on this new datapoint (leading to a new set
of parameters θ′ with Vθ′

f→V
(
(mV ′→f)V ′∈ne(f)

)
) <

Vθ
f→V

(
(mV ′→f)V ′∈ne(f)

)
.

Eslami et al. (2014) estimate the predictive uncertainty
Vθ
f→V via the heuristic of looking at the variability of the

forest predictions for each point (Criminisi and Shotton,
2013). They implement their online updates by splitting the
trees at their leaves. Both these mechanisms can be prob-
lematic, however. First, the heuristic used in computing un-
certainty has no guarantees: indeed, uncertainty estimation

407

for random forests remains a challenging topic of current
research (Hutter, 2009). This is not merely a theoretical
consideration: in our experiments in Section 4, we demon-
strate that uncertainty heuristics for random forests become
unstable and inaccurate as we move away from the initial
training data. Second, online updates of random forests
may not work well when the newly observed data are from
a very different distribution to the initial training sample
(e.g. Lakshminarayanan et al., 2014, Fig. 3). For large
amounts of training set drift, the leaf-splitting approach of
Eslami et al. can result in a decision tree in the form of
a long chain, giving a worst case cost of prediction (com-
putational and storage) of O(N) for training data of size
N , vs the ideal of O(log(N)) for balanced trees. Finally,
note that the approach of Eslami et al. uses certain bespoke
features of the factors when specifying tree traversal in the
random forests, notably the value of the factor potentials
at the mean and mode of the incoming messages. These
features require expert knowledge of the model on the part
of the practitioner, and are not available in the “forward
sampling” setting. The present work does not employ such
features.

In terms of computational cost, prediction for the random
forest of Eslami et al. costs O(KDrDt log(N)),
and updating following a new observation costs
O(KD3

rDt log(N)), where K is the number of trees
in the random forest, Dt is the number of features used
in tree traversal, Dr is the number of features used in
making predictions at the leaves, and N is the number of
training messages. Representative values are K = 64,
Dt = Dr ≈ 15, and N in the range of 1,000 to 5,000.

3 KERNEL LEARNING OF OPERATORS

We now propose a kernel regression method for jointly
learning the message operator Mθ

f→V and uncertainty esti-
mate Vθ

f→V . We regress from the tuple of incoming mes-
sages, which are probability distributions, to the parameters
of the outgoing message. To this end we apply a kernel over
distributions from (Christmann and Steinwart, 2010) to the
case where the input consists of more than one distribution.

We note that Song et al. (2010, 2011) propose a related re-
gression approach for predicting outgoing messages from
incoming messages, for the purpose of belief propagation.
Their setting is different from ours, however, as their mes-
sages are smoothed conditional density functions rather
than parametric distributions of known form.

To achieve fast predictions and factor updates, we follow
Rahimi and Recht (2007); Le et al. (2013); Yang et al.
(2015), and express the kernel regression in terms of ran-
dom features whose expected inner product is equal to the
kernel function; i.e. we perform regression directly in the
primal on these random features. In Section 3.1, we de-

fine our kernel on tuples of distributions, and then derive
the corresponding random feature representation in Sec-
tion 3.2. Section 3.3 describes the regression algorithm, as
well as our strategy for uncertainty evaluation and online
updates.

3.1 KERNELS ON TUPLES OF DISTRIBUTIONS

In the following, we consider only a single factor, and
therefore drop the factor identity from our notation. We
write the set of c incoming messages to a factor node as a
tuple of probability distributions R := (r(l))cl=1 of random
variables X(l) on respective domains X (l). Our goal is to
define a kernel between one such tuple, and a second one,
which we will write S := (s(l))cl=1.

We define our kernel in terms of embeddings of the tuples
R,S into a reproducing kernel Hilbert space (RKHS). We
first consider the embedding of a single distribution in the
tuple: Let us define an RKHS H(l) on each domain, with
respective kernel k(l)(x(l)1 , x

(l)
2). We may embed individual

probability distributions to these RKHSs, following (Smola
et al., 2007). The mean embedding of r(l) is written

µr(l)(·) :=

ˆ

k(l)(x(l), ·) dr(l)(x(l)). (5)

Similarly, a mean embedding may be defined on the prod-
uct of messages in a tuple r = ×cl=1r

(l) as

µr :=

ˆ

k([x(1), . . . , x(c)], ·) dr(x(1), . . . , x(c)), (6)

where we have defined the joint kernel k on the product
space X (1)× · · · ×X (c). Finally, a kernel on two such em-
beddings µr, µs of tuples R,S can be obtained as in Christ-
mann and Steinwart (2010, eq. 9),

κ(r, s) = exp

(
−‖µr − µs‖2H

2γ2

)
. (7)

This kernel has two parameters: γ2, and the width parame-
ter of the kernel k defining µr = Ex∼rk(x, ·).

We have considered several alternative kernels on tuples
of messages, including kernels on the message parameters,
kernels on a tensor feature space of the distribution em-
beddings in the tuple, and dot products of the features (6).
We have found these alternatives to have worse empirical
performance than the approach described above. We give
details of these experiments in Section C of the supplemen-
tary material.

3.2 RANDOM FEATURE APPROXIMATIONS

One approach to learning the mappingMθ
f→V from incom-

ing to outgoing messages would be to employ Gaussian
process regression, using the kernel (7). This approach is

408

not suited to just-in-time (JIT) learning, however, as both
prediction and storage costs grow with the size of the train-
ing set; thus, inference on even moderately sized datasets
rapidly becomes computationally prohibitive. Instead, we
define a finite-dimensional random feature map ψ̂ ∈ RDout

such that κ(r, s) ≈ ψ̂(r)>ψ̂(s), and regress directly on
these feature maps in the primal (see next section): stor-
age and computation are then a function of the dimension
of the feature map Dout, yet performance is close to that
obtained using a kernel.

In Rahimi and Recht (2007), a method based on Fourier
transforms was proposed for computing a vector of ran-
dom features ϕ̂ for a translation invariant kernel k(x, y) =
k(x− y) such that k(x, y) ≈ ϕ̂(x)>ϕ̂(y) where x, y ∈ Rd
and ϕ̂(x), ϕ̂(y) ∈ RDin . This is possible because of
Bochner’s theorem (Rudin, 2013), which states that a con-
tinuous, translation-invariant kernel k can be written in the
form of an inverse Fourier transform:

k(x− y) =

ˆ

k̂(ω)ejω
>(x−y) dω,

where j =
√
−1 and the Fourier transform k̂ of the kernel

can be treated as a distribution. The inverse Fourier trans-
form can thus be seen as an expectation of the complex ex-
ponential, which can be approximated with a Monte Carlo
average by drawing random frequencies from the Fourier
transform. We will follow a similar approach, and derive a
two-stage set of random Fourier features for (7).

We start by expanding the exponent of (7) as

exp

(
− 1

2γ2
〈µr, µr〉+

1

γ2
〈µr, µs〉 −

1

2γ2
〈µs, µs〉

)
.

Assume that the embedding kernel k used to define the
embeddings µr and µs is translation invariant. Since
〈µr, µs〉 = Ex∼rEy∼sk(x − y), one can use the result of
Rahimi and Recht (2007) to write

〈µr, µs〉 ≈ Ex∼rEy∼sϕ̂(x)>ϕ̂(y)

= Ex∼rϕ̂(x)>Ey∼sϕ̂(y) := φ̂(r)>φ̂(s),

where the mappings φ̂ are Din standard Rahimi-Recht ran-
dom features, shown in Steps 1-3 of Algorithm 1.

With the approximation of 〈µr, µs〉, we have

κ(r, s) ≈ exp

(
−‖φ̂(r)− φ̂(s)‖2Din

2γ2

)
, (8)

which is a standard Gaussian kernel on RDin . We can thus
further approximate this Gaussian kernel by the random
Fourier features of Rahimi and Recht, to obtain a vector
of random features ψ̂ such that κ(r, s) ≈ ψ̂(r)>ψ̂(s) where
ψ̂(r), ψ̂(s) ∈ RDout . Pseudocode for generating the ran-
dom features ψ̂ is given in Algorithm 1. Note that the sine

Algorithm 1 Construction of two-stage random features
for κ

Input: Input distribution r, Fourier transform k̂ of the em-
bedding translation-invariant kernel k, number of in-
ner features Din, number of outer features Dout, outer
Gaussian width γ2.

Output: Random features ψ̂(r) ∈ RDout .
1: Sample {ωi}Din

i=1
i.i.d∼ k̂.

2: Sample {bi}Din
i=1

i.i.d∼ Uniform[0, 2π].

3: φ̂(r) =
√

2
Din

(
Ex∼r cos(ω>i x+ bi)

)Din

i=1
∈ RDin

If r(x) = N (x;m,Σ),

φ̂(r) =

√
2

Din

(
cos(ω>i m+ bi) exp

(
−1

2
ω>i Σωi

))Din

i=1

.

4: Sample {νi}Dout
i=1

i.i.d∼ k̂gauss(γ
2) i.e., Fourier transform of a

Gaussian kernel with width γ2.
5: Sample {ci}Dout

i=1

i.i.d∼ Uniform[0, 2π].

6: ψ̂(r) =
√

2
Dout

(
cos(ν>i φ̂(r) + ci)

)Dout

i=1
∈ RDout

component in the complex exponential vanishes due to the
translation invariance property (analogous to an even func-
tion), i.e., only the cosine term remains. We refer to Sec-
tion B.3 in the supplementary material for more details.

For the implementation, we need to pre-compute
{ωi}Din

i=1 , {bi}
Din

i=1 , {νi}
Dout

i=1 and {ci}Dout

i=1 , where Din and
Dout are the number of random features used. A more ef-
ficient way to support a large number of random features is
to store only the random seed used to generate the features,
and to generate the coefficients on-the-fly as needed (Dai
et al., 2014). In our implementation, we use a Gaussian
kernel for k.

3.3 REGRESSION FOR OPERATOR
PREDICTION

Let X = (x1| · · · |xN) be the N training samples of
incoming messages to a factor node, and let Y =(
ExV ∼q1f→V

u(xV)| · · · |ExV ∼qNf→V
u(xV)

)
∈ RDy×N be

the expected sufficient statistics of the corresponding out-
put messages, where qif→V is the numerator of (1). We
write xi = ψ̂(ri) as a more compact notation for the ran-
dom feature vector representing the ith training tuple of
incoming messages, as computed via Algorithm 1.

Since we require uncertainty estimates on our predictions,
we perform Bayesian linear regression from the random
features to the output messages, which yields predictions
close to those obtained by Gaussian process regression with
the kernel in (7). The uncertainty estimate in this case will

409

be the predictive variance. We assume prior and likelihood

w ∼ N
(
w; 0, IDout

σ2
0

)
, (9)

Y | X, w ∼ N
(
Y;w>X, σ2

yIN
)
, (10)

where the output noise variance σ2
y captures the intrinsic

stochasticity of the importance sampler used to generate Y.
It follows that the posterior of w is given by (Bishop, 2006)

p(w|Y) = N (w;µw,Σw), (11)

Σw =
(
XX>σ−2y + σ−20 I

)−1
, (12)

µw = ΣwXY
>σ−2y . (13)

The predictive distribution on the output y∗ given an obser-
vation x∗ is

p(y∗|x∗,Y) =

ˆ

p(y∗|w, x∗,Y)p(w|Y) dw (14)

= N
(
y∗; x∗>µw, x

∗>Σwx
∗ + σ2

y

)
. (15)

For simplicity, we treat each output (expected sufficient
statistic) as a separate regression problem. Treating all out-
puts jointly can be achieved with a multi-output kernel (Al-
varez et al., 2011).

Online Update We describe an online update for Σw and
µw when observations (i.e., random features representing
incoming messages) xi arrive sequentially. We use ·(N) to
denote a quantity constructed from N samples. Recall that
Σ
−1(N)
w = XX>σ−2y + σ−20 I . The posterior covariance

matrix at time N + 1 is

Σ(N+1)
w = Σ(N)

w − Σ
(N)
w xN+1x

>
N+1Σ

(N)
w σ−2y

1 + x>N+1Σ
(N)
w xN+1σ

−2
y

, (16)

meaning it can be expressed as an inexpensive update of the
covariance at time N . Updating Σw for all the Dy outputs
costs O((DinDout + D2

out)Dy) per new observation. For
µw = ΣwXY

>σ−2y , we maintain XY> ∈ RDout×Dy , and
update it at cost O(DinDoutDy) as

(
XY>

)(N+1)
=
(
XY> + xN+1y

>
N+1

)
. (17)

Since we have Dy regression functions, for each tuple of
incoming messages x∗, there are Dy predictive variances,
v∗1 , . . . , v

∗
Dy

, one for each output. Let {τi}Dyi=1 be pre-
specified predictive variance thresholds. Given a new input
x∗, if v∗1 > τ1 or · · · or v∗Dy > τDy (the operator is uncer-
tain), a query is made to the oracle to obtain a ground truth
y∗. The pair (x∗, y∗) is then used to update Σw and µw.

4 EXPERIMENTS

We evaluate our learned message operator using two differ-
ent factors: the logistic factor, and the compound gamma

factor. In the first and second experiment we demonstrate
that the proposed operator is capable of learning high-
quality mappings from incoming to outgoing messages,
and that the associated uncertainty estimates are reliable.
The third and fourth experiments assess the performance
of the operator as part of the full EP inference loop in two
different models: approximating the logistic, and the com-
pound gamma factor. Our final experiment demonstrates
the ability of our learning process to reliably and quickly
adapt to large shifts in the message distribution, as encoun-
tered during inference in a sequence of several real-world
regression problems.

For all experiments we used Infer.NET (Minka et al., 2014)
with its extensible factor interface for our own operator. We
used the default settings of Infer.NET unless stated other-
wise. The regression target is the marginal belief (numer-
ator of (1)) in experiment 1,2,3 and 5. We set the regres-
sion target to the outgoing message in experiment 4. Given
a marginal belief, the outgoing message can be calculated
straightforwardly.

xi

dot

w

zi
logistic (f)

pi
Bernoulli

yi

i = 1, . . . , N

Figure 2: Factor graph for binary logistic regression.
The kernel-based message operator learns to approximate
the logistic factor highlighted in red. The two incom-
ing messages are mzi→f = N (zi;µ, σ

2) and mpi→f =
Beta(pi;α, β).

Experiment 1: Batch Learning As in (Heess et al.,
2013; Eslami et al., 2014), we study the logistic factor
f(p|z) = δ

(
p− 1

1+exp(−z)

)
, where δ is the Dirac delta

function, in the context of a binary logistic regression
model (Fig. 2). The factor is deterministic and there are
two incoming messages: mpi→f = Beta(pi;α, β) and
mzi→f = N (zi;µ, σ

2), where zi = w>xi represents the
dot product between an observation xi ∈ Rd and the coef-
ficient vector w whose posterior is to be inferred.

In this first experiment we simply learn a kernel-based
operator to send the message mf→zi . Following Eslami
et al. (2014), we set d to 20, and generated 20 different
datasets, sampling a different w ∼ N (0, I) and then a
set of {(xi, yi)}ni=1 (n = 300) observations according to
the model. For each dataset we ran EP for 10 iterations,
and collected incoming-outgoing message pairs in the first
five iterations of EP from Infer.NET’s implementation of
the logistic factor. We partitioned the messages randomly
into 5,000 training and 3,000 test messages, and learned
a message operator to predict mf→zi as described in Sec-
tion 3. Regularization and kernel parameters were chosen

410

by leave-one-out cross validation. We set the number of
random features to Din = 500 and Dout = 1, 000; em-
pirically, we observed no significant improvements beyond
1,000 random features.

−16 −14 −12 −10 −8 −6 −4
0

100

200

300

400

500

600

F
re

qu
en

cy

Mean: −8.974, SD: 1.573

(a) KL errors

−5 0 5
0

0.2

0.4
Best log div: −17.288

predicted

ground truth

0 5 10
0

0.5

1
Median log div (1): −8.780

0 5 10
0

0.5

1
Median log div (2): −8.779

−5 0 5
0

1

2
99th percentile: −5.458

(b) Examples of predictions

Figure 3: Prediction errors for predicting the projected be-
liefs to zi, and examples of predicted messages at different
error levels.

We report log KL[qf→zi‖q̂f→zi] where qf→zi is the
ground truth projected belief (numerator of (1)) and q̂f→zi
is the prediction. The histogram of the log KL errors is
shown in Fig. 3a; Fig. 3b shows examples of predicted
messages for different log KL errors. It is evident that the
kernel-based operator does well in capturing the relation-
ship between incoming and outgoing messages. The dis-
crepancy with respect to the ground truth is barely visible
even at the 99th percentile. See Section C in the supple-
mentary material for a comparison with other methods.

Experiment 2: Uncertainty Estimates For the approx-
imate message operator to perform well in a JIT learning
setting, it is crucial to have reliable estimates of opera-
tor’s predictive uncertainty in different parts of the space
of incoming messages. To assess this property we com-
pute the predictive variance using the same learned oper-
ator as used in Fig. 3. The forward incoming messages
mzi→f in the previously used training set are shown in
Fig. 4a. The backward incoming messages mpi→f are not
displayed. Shown in the same plot are two curves (a blue
line, and a pink parabola) representing two “uncertainty
test sets”: these are the sets of parameter pairs on which
we wish to evaluate the uncertainty of the predictor, and
pass through regions with both high and low densities of
training samples. Fig. 4b shows uncertainty estimates of
our kernel-based operator and of random forests, where we
fix mpi→f := Beta(pi; 1, 2) for testing. The implemen-
tation of the random forests closely follows Eslami et al.
(2014).

From the figure, as the mean of the test message moves
away from the region densely sampled by the training
data, the predictive variance reported by the kernel method
increases much more smoothly than that of the random
forests. Further, our method clearly exhibits a higher un-
certainty on the test set #1 than on the test set #2. This

−10 −5 0 5 10
−2

−1

0

1

2

3

4

Mean

Lo
g

pr
ec

is
io

n

Training set

Uncertainty test #1

Uncertainty test #2

(a) Parameters of mzi→f

−10 −5 0 5 10

−4

−2

0

2

4

6

8

Mean

Lo
g

un
ce

rt
ai

nt
y

Random forests: #1

Random forests: #2

Kernel: #1

Kernel: #2

(b) Uncertainty estimates

Figure 4: (a) Incoming messages from z to f from 20 EP
runs of binary logistic regression, as shown in Fig. 2. (b)
Uncertainty estimates of the proposed kernel-based method
(predictive variance) and Eslami et al.’s random forests
(KL-based agreement of predictions of different trees) on
the two uncertainty test sets shown. For testing, we fix the
other incoming message mpi→f to Beta(pi; 1, 2).

behaviour is desirable, as most of the points in test set #1
are either in a low density region or an unexplored region.
These results suggest that the predictive variance is a ro-
bust criterion for querying the importance sampling ora-
cle. One key observation is that the uncertainty estimates
of the random forests are highly non-smooth; i.e., uncer-
tainty on nearby points may vary wildly. As a result, a
random forest-based JIT learner may still query the impor-
tance sampler oracle when presented with incoming mes-
sages similar to those in the training set, thereby wasting
computation.

We have further checked that the predictive uncertainty of
the regression function is a reliable indication of the error in
KL divergence of the predicted outgoing messages. These
results are given in Figure 10 of Appendix C.

Experiment 3: Just-In-Time Learning In this experi-
ment we test the approximate operator in the logistic re-
gression model as part of the full EP inference loop in
a just-in-time learning setting (KJIT). We now learn two
kernel-based message operators, one for each outgoing di-
rection from the logistic factor. The data generation is the
same as in the batch learning experiment. We sequentially
presented the operator with 30 related problems, where a
new set of observations {(xi, yi)}ni=1 was generated at the
beginning of each problem from the model, while keeping
w fixed. This scenario is common in practice: one is of-
ten given several sets of observations which share the same
model parameter (Eslami et al., 2014). As before, the infer-
ence target was p(w|{(xi, yi)}ni=1). We set the maximum
number of EP iterations to 10 in each problem.

We employed a “mini-batch” learning approach in which
the operator always consults the oracle in the first few hun-
dred factor invocations for initial batch training. In princi-
ple, during the initial batch training, the operator can per-
form cross validation or type-II maximum likelihood esti-

411

1000 2000 3000 4000 5000 6000 7000

−9

−8.8

−8.6

−8.4

−8.2

Lo
g

pr
ed

ic
tiv

e
va

ria
nc

e

Factor invocations

Predictive variance
Moving average
Threshold

Figure 5: Uncertainty estimate of KJIT in its prediction of outgoing messages at each factor invocation, for the binary
logistic regression problem. The black dashed lines indicate the start of a new inference problem.

mation for parameter selection; however for computational
simplicity we set the kernel parameters according to the
median heuristic (Schölkopf and Smola, 2002). Full detail
of the heuristic is given in Section A in the supplementary
material. The numbers of random features wereDin = 300
and Dout = 500. The output noise variance σ2

y was fixed
to 10−4 and the uncertainty threshold on the log predictive
variance was set to -8.5. To simulate a black-box setup, we
used an importance sampler as the oracle rather than In-
fer.NET’s factor implementation, where the proposal dis-
tribution was fixed to N (z; 0, 200) with 5× 105 particles.

Fig. 5 shows a trace of the predictive variance of KJIT in
predicting the mean of each mf→zi upon each factor in-
vocation. The black dashed lines indicate the start of a
new inference problem. Since the first 300 factor invoca-
tions are for the initial training, no uncertainty estimate is
shown. From the trace, we observe that the uncertainty
rapidly drops down to a stable point at roughly -8.8 and
levels off after the operator sees about 1,000 incoming-
outgoing message pairs, which is relatively low compared
to approximately 3,000 message passings (i.e., 10 itera-
tions × 300 observations) required for one problem. The
uncertainty trace displays a periodic structure, repeating it-
self in every 300 factor invocations, corresponding to a full
sweep over all 300 observations to collect incoming mes-
sages mzi→f . The abrupt drop in uncertainty in the first
EP iteration of each new problem is due to the fact that In-
fer.NET’s inference engine initializes the message from w
to have zero mean, leading to mzi→f also having a zero
mean. Repeated encounters of such a zero mean incom-
ing message reinforce the operator’s confidence; hence the
drop in uncertainty.

Fig. 6a shows binary classification errors obtained by using
the inferred posterior mean ofw on a test set of size 10000
generated from the true underlying parameter. Included in
the plot are the errors obtained by using only the impor-
tance sampler for inference (“Sampling”), and using the
Infer.NET’s hand-crafted logistic factor. The loss of KJIT
matches well with that of the importance sampler and In-
fer.NET, suggesting that the inference accuracy is as good
as these alternatives. Fig. 6b shows the inference time re-
quired by all methods in each problem. While the inference
quality is equally good, KJIT is orders of magnitude faster

0 5 10 15 20 25 30
0.04

0.06

0.08

0.1

0.12

Problems seen

C
la

ss
ifi

ca
tio

n
er

ro
r

Infer.NET

Sampling

Sampling + KJIT

(a) Binary classification error

0 5 10 15 20 25 30
6

8

10

12

14

16

T
im

e
in

 lo
g(

m
s)

Problems seen

(b) Inference time

Figure 6: Classification performance and inference times
of all methods in the binary logistic regression problem.

than the importance sampler.

2 2.5 3 3.5

2

2.5

3

3.5

Inferred by Infer.NET + KJIT

In
fe

rr
ed

 b
y

In
fe

r.
N

E
T

Correlation: 1

Log shape

(a) Inferred shape

0 5 10

0

5

10

Infered by Infer.NET + KJIT

In
fe

rr
ed

 b
y

In
fe

r.
N

E
T

Correlation: 0.999895

Log rate

(b) Inferred rate

0 500 1000 1500
0

2

4

6

8

10

T
im

e
in

 lo
g(

m
s)

Problems seen

Inference time

Infer.NET
Infer.NET + KJIT

(c) Inference time

Figure 7: Shape (a) and rate (b) parameters of the inferred
posteriors in the compound gamma problem. (c) KJIT is
able to infer equally good posterior parameters compared
to Infer.NET, while requiring a runtime several orders of
magnitude lower.

Experiment 4: Compound Gamma Factor We next
simulate the compound gamma factor, a heavy-tailed prior
distribution on the precision of a Gaussian random vari-
able. A variable τ is said to follow the compound gamma
distribution if τ ∼ Gamma(τ ; s2, r2) (shape-rate parame-
terization) and r2 ∼ Gamma(r2; s1, r1) where (s1, r1, s2)
are parameters. The task we consider is to infer the pos-
terior of the precision τ of a normally distributed variable
x ∼ N (x; 0, τ) given realizations {xi}ni=1. We consider
the setting (s1, r1, s2) = (1, 1, 1) which was used in Heess
et al. (2013). Infer.NET’s implementation requires two
gamma factors to specify the compound gamma. Here, we
collapse them into one factor and let the operator learn to

412

1000 2000 3000 4000 5000 6000

−9.2

−9

−8.8

−8.6

−8.4

Banknote Blood Fertility Ionosphere

Lo
g

pr
ed

ic
tiv

e
va

ria
nc

e

Factor invocations

Predictive variance
Moving average
Threshold

Figure 8: Uncertainty estimate of KJIT for outgoing messages on the four UCI datasets.

directly send an outgoing messagemf→τ givenmτ→f , us-
ing Infer.NET as the oracle. The default implementation
of Infer.NET relies on a quadrature method. As in Eslami
et al. (2014), we sequentially presented a number of prob-
lems to our algorithm, where at the beginning of each prob-
lem, a random number of observations n from 10 to 100,
and the parameter τ , were drawn from the model.

Fig. 7a and Fig. 7b summarize the inferred posterior param-
eters obtained from running only Infer.NET and Infer.NET
+ KJIT, i.e., KJIT with Infer.NET as the oracle. Fig. 7c
shows the inference time of both methods. The plots collec-
tively show that KJIT can deliver posteriors in good agree-
ment with those obtained from Infer.NET, at a much lower
cost. Note that in this task only one message is passed to
the factor in each problem. Fig. 7c also indicates that KJIT
requires fewer oracle consultations as more problems are
seen.

Experiment 5: Classification Benchmarks In the fi-
nal experiment, we demonstrate that our method for learn-
ing the message operator is able to detect changes in the
distribution of incoming messages via its uncertainty es-
timate, and to subsequently update its prediction through
additional oracle queries. The different distributions of in-
coming messages are achieved by presenting a sequence of
different classification problems to our learner. We used
four binary classification datasets from the UCI repository
(Lichman, 2013): banknote authentication, blood transfu-
sion, fertility and ionosphere, in the same binary logistic
regression setting as before. The operator was required to
learn just-in-time to send outgoing messages mf→zi and
mf→pi on the four problems presented in sequence. The
training observations consisted of 200 data points subsam-
pled from each dataset by stratified sampling. For the fer-
tility dataset, which contains only 100 data points, we sub-
sampled half the points. The remaining data were used
as test sets. The uncertainty threshold was set to -9, and
the minibatch size was 500. All other parameters were the
same as in the earlier JIT learning experiment.

Classification errors on the test sets and inference times are
shown in Fig. 9a and Fig. 9b, respectively. The results
demonstrate that KJIT improves the inference time on all
the problems without sacrificing inference accuracy. The
predictive variance of each outgoing message is shown in

Banknote Blood Fertility Ionosphere
0

0.2

0.4

0.6

E
rr

or

Infer.NET

Sampling

Sampling + KJIT

(a) Binary classification error
Banknote Blood Fertility Ionosphere

0.5

1

1.5

2

2.5

x 10
5

T
im

e
in

 m
s

Sampling

Sampling + KJIT

(b) Inference time

Figure 9: Classification performance and inference times
on the four UCI datasets.

Fig. 8. An essential feature to notice is the rapid increase of
the uncertainty after the first EP iteration of each problem.
As shown in Fig. 1, the distributions of incoming messages
of the four problems are diverse. The sharp rise followed
by a steady decrease of the uncertainty is a good indica-
tor that the operator is able to promptly detect a change in
input message distribution, and robustly adapt to this new
distribution by querying the oracle.

5 CONCLUSIONS AND FUTURE WORK

We have proposed a method for learning the mapping be-
tween incoming and outgoing messages to a factor in ex-
pectation propagation, which can be used in place of com-
putationally demanding Monte Carlo estimates of these up-
dates. Our operator has two main advantages: it can re-
liably evaluate the uncertainty of its prediction, so that it
only consults a more expensive oracle when it is uncertain,
and it can efficiently update its mapping online, so that it
learns from these additional consultations. Once trained,
the learned mapping performs as well as the oracle map-
ping, but at a far lower computational cost. This is in large
part due to a novel two-stage random feature representation
of the input messages. One topic of current research is hy-
perparameter selection: at present, these are learned on an
initial mini-batch of data, however a better option would be
to adapt them online as more data are seen.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their constructive
comments. WJ, AG, BL, and ZSz thank the Gatsby Chari-
table Foundation for the financial support.

413

References
M. A. Alvarez, L. Rosasco, and N. D. Lawrence. Ker-

nels for vector-valued functions: a review. 2011. URL
http://arxiv.org/abs/1106.6251.

S. Barthelmé and N. Chopin. ABC-EP: Expectation prop-
agation for likelihood-free Bayesian computation. In
ICML, pages 289–296, 2011.

C. M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2006.

A. Christmann and I. Steinwart. Universal kernels on non-
standard input spaces. In NIPS, pages 406–414, 2010.

A. Criminisi and J. Shotton. Decision Forests for Computer
Vision and Medical Image Analysis. Springer Publishing
Company, Incorporated, 2013.

B. Dai, B. Xie, N. He, Y. Liang, A. Raj, M. Balcan, and
L. Song. Scalable kernel methods via doubly stochastic
gradients. In NIPS, pages 3041–3049, 2014.

S. M. A. Eslami, D. Tarlow, P. Kohli, and J. Winn. Just-In-
Time Learning for Fast and Flexible Inference. In NIPS,
pages 154–162, 2014.

A. Gelman. Prior distributions for variance parameters in
hierarchical models. Bayesian Analysis, 1:1–19, 2006.

N. Goodman, V. Mansinghka, D. Roy, K. Bonawitz, and
J. Tenenbaum. Church: A language for generative mod-
els. In UAI, pages 220–229, 2008.

N. Heess, D. Tarlow, and J. Winn. Learning to pass expec-
tation propagation messages. In NIPS, pages 3219–3227.
2013.

F. Hutter. Automated Configuration of Algorithms
for Solving Hard Computational Problems. PhD
thesis, University of British Columbia, Department
of Computer Science, Vancouver, Canada, Octo-
ber 2009. http://www.cs.ubc.ca/~hutter/
papers/Hutter09PhD.pdf.

B. Lakshminarayanan, D. Roy, and Y.-W. Teh. Mondrian
forests: Efficient online random forests. In NIPS, pages
3140–3148, 2014.

Q. Le, T. Sarlós, and A. Smola. Fastfood - approximat-
ing kernel expansions in loglinear time. ICML, JMLR
W&CP, 28:244–252, 2013.

M. Lichman. UCI machine learning repository, 2013. URL
http://archive.ics.uci.edu/ml.

T. Minka, J. Winn, J. Guiver, S. Webster, Y. Zaykov,
B. Yangel, A. Spengler, and J. Bronskill. Infer.NET
2.6, 2014. Microsoft Research Cambridge. http://
research.microsoft.com/infernet.

T. P. Minka. A Family of Algorithms for Approximate
Bayesian Inference. PhD thesis, Massachusetts In-
stitute of Technology, 2001. http://research.

microsoft.com/en-us/um/people/minka/
papers/ep/minka-thesis.pdf.

A. Rahimi and B. Recht. Random features for large-scale
kernel machines. In NIPS, pages 1177–1184, 2007.

C. E. Rasmussen and C. K. I. Williams. Gaussian Pro-
cesses for Machine Learning. MIT Press, Cambridge,
MA, 2006.

W. Rudin. Fourier Analysis on Groups: Interscience Tracts
in Pure and Applied Mathematics, No. 12. Literary Li-
censing, LLC, 2013.

B. Schölkopf and A. J. Smola. Learning with kernels : sup-
port vector machines, regularization, optimization, and
beyond. Adaptive computation and machine learning.
MIT Press, 2002.

A. Smola, A. Gretton, L. Song, and B. Schölkopf. A Hilbert
space embedding for distributions. In ALT, pages 13–31,
2007.

L. Song, A. Gretton, and C. Guestrin. Nonparametric tree
graphical models. AISTATS, JMLR W&CP, 9:765–772,
2010.

L. Song, A. Gretton, D. Bickson, Y. Low, and C. Guestrin.
Kernel belief propagation. AISTATS, JMLR W&CP, 10:
707–715, 2011.

Stan Development Team. Stan: A C++ library for prob-
ability and sampling, version 2.4, 2014. URL http:
//mc-stan.org/.

Z. Szabó, B. Sriperumbudur, B. Póczos, and A. Gretton.
Learning theory for distribution regression. Technical
report, Gatsby Unit, University College London, 2014.
(http://arxiv.org/abs/1411.2066).

D. Wingate, N. Goodman, A. Stuhlmueller, and J. Siskind.
Nonstandard interpretations of probabilistic programs
for efficient inference. In NIPS, pages 1152–1160, 2011.

Z. Yang, A. J. Smola, L. Song, and A. G. Wilson. Á la
carte - learning fast kernels. In AISTATS, 2015. http:
//arxiv.org/abs/1412.6493.

414

Averaging of Decomposable Graphs
by Dynamic Programming and Sampling

Kustaa Kangas Teppo Niinimäki Mikko Koivisto
University of Helsinki, Department of Computer Science,

Helsinki Institute for Information Technology HIIT, Finland
{jwkangas,tzniinim,mkhkoivi}@helsinki.fi

Abstract

We give algorithms for Bayesian learning of de-
composable graphical models from complete data.
We build on a recently proposed dynamic pro-
gramming algorithm that finds optimal graphs of
n nodes in O(4n) time and O(3n) space (Kangas
et al., NIPS 2014), and show how it can be turned
into accurate averaging algorithms. Specifically,
we show that certain marginals of the posterior
distribution, like the posterior probability of an
edge, can be computed inO(n33n) time, provided
that the prior over the graphs is of an appropri-
ate form. To overcome some limitations of the
exact approach, we also give sampling schemes
that—using essentially no extra space—can draw
up to 3n independent graphs from the posterior
in O(n4n) time. Through importance sampling,
this enables accurate Bayesian inference with a
broader class of priors. Using benchmark datasets,
we demonstrate the method’s performance and the
advantage of averaging over optimization when
learning from little data.

1 INTRODUCTION

A decomposable graphical model represents conditional
independence relations between a set of variables by an
undirected graph that is decomposable, or equivalently, tri-
angulated or chordal. Due to their various nice properties—
in particular, convenient parameterization, straightforward
parameter learning from complete data, and computation-
ally efficient inference—decomposable models have played
a central role in both methodological and applied works
(Lauritzen and Spiegelhalter 1988, Dawid and Lauritzen
1993, Abel and Thomas 2011).

It is common that the modeller hesitates to fix any specific
graph, and would rather like to learn the graph from data.
Learning the graph has, however, proved to be computation-
ally very challenging (Srebro 2003, Corander et al. 2013).

The Bayesian approach, in particular, requires us to turn a
prior into a posterior over all possible decomposable graphs.
Or more practically, the interest is in drawing a representa-
tive (random) sample from the posterior or summarizing the
posterior by some of its marginals. Solving these tasks by
exhaustive enumeration of all graphs is feasible only up to
about eight nodes. To manage with larger graphs, several
Markov chain Monte Carlo (MCMC) methods have been
proposed (Madigan and York 1995, Giudici and Green 1999,
Tarantola 2004, Corander et al. 2006, Green and Thomas
2013). While these methods may work well in many cases,
they offer essentially no guarantees concerning the accuracy
of the produced estimates.

In this paper, we present exact averaging and sampling al-
gorithms that admit Bayesian learning of decomposable
graphs up to about 20 nodes. We build on the recent dy-
namic programming (DP) algorithm of Kangas et al. (2014).
Their algorithm finds a decomposable graph that maximizes
a given decomposable scoring function, for example, the
posterior probability. For graphs with n nodes the algo-
rithm takes O(4n) time and O(3n) space. Generally, it is
straightforward to turn a DP algorithm, designed for an op-
timization problem, into a “corresponding” averaging or
sampling algorithm (and vice versa). At first glance, our
result may thus look nothing but a rephrasing of the result
of Kangas et al.

However, this view turns out to be only partial. Indeed,
replacing maximization by averaging opens new algorith-
mic opportunities, which allow us to give an asymptotically
faster,O(n33n)-time algorithm (Sect. 3). On the other hand,
the averaging viewpoint also brings new difficulties: First, it
turns out that the particular DP treatment applies to Bayesian
model averaging only when the prior over the graphs is of
a specific form; for example, the form cannot express the
uniform prior over all decomposable graphs, whereas it
can express the prior that is proportional to the number of
so-called rooted junction trees of the graph. Second, it ap-
pears that exact computations are feasible only for marginal
posterior probabilities of small subgraphs, like of an individ-
ual edge, but not of large subgraphs, not to mention more

415

complicated graph features. We overcome these difficulties
by designing schemes that, using the computed DP tables,
can efficiently generate large numbers of random samples
from the posterior or its computationally convenient proxy
(Sect. 4). We then feed the samples to usual Monte Carlo
estimators of the quantities of interest (Sect. 5).

We demonstrate the performance of the methods using
benchmark datasets (Sect. 6). First, we investigate whether
averaging over graphs yields significantly better prediction
results as compared to using a single maximum-a-posteriori
graph. Second, we study the accuracy of the sampling based
estimators for edge posterior probabilities.

Finally, we discuss straightforward ways to further enhance
the presented methods, and also mention some major open
questions (Sect. 7).

2 PRELIMINARIES

We review some fundamentals of decomposable models.
For a more thorough treatment, see Lauritzen (1996).

2.1 DECOMPOSABILITY AND LEARNING

Consider an undirected graph G on a set of nodes V =
{1, . . . , n}. We call a subset of nodes complete if it induces
a complete subgraph. Further, we call a complete set a
clique if it is maximal, that is, not a subset of any other
complete set. We denote the set of cliques of G simply by
C, assuming there is no ambiguity about the referred graph.

We call G decomposable if it has the running intersec-
tion property, that is, there is an ordering of its cliques,
C1, . . . , Ck, such that for each i = 2, . . . , k we have that
Si = (C1 ∪ · · · ∪ Ci−1) ∩ Ci ⊂ Cj for some j < i. The
sets Si are called the separators and they form a multiset,
which we denote by S . We note that S is uniquely specified
by G and does not depend on the ordering of the cliques.

Suppose G is decomposable and with each node v ∈ V
associate a random variable xv . The graph G together with
a joint distribution p over the variables form a decomposable
graphical model if p factorizes as

p(xV) =

∏
C∈C p(xC)∏
S∈S p(xS)

,

where we write xS for the tuple (xv : v ∈ S). The factoriza-
tion plays a central role in probabilistic inference in a given
decomposable model, and in learning a model for a fixed
graph from data, that is, multiple records over the variables.

The factorization is central also when learning the graph. In
the Bayesian approach to learning we turn a prior ρ over
the graphs into a posterior π by multiplying the prior by
the (marginal) likelihood `, and dividing by the normalizing
constant of the function ρ`, given as Zρ` =

∑
G ρ(G)`(G).

The likelihood `(G) is the probability (density) of the data,
givenG. It is obtained by integrating out the parameters that
specify the distribution p above. Under commonly adopted
parameter priors (Dawid and Lauritzen 1993), the likeli-
hood function factorizes into a product of local marginal
likelihoods, one term per clique and separator. Thus the like-
lihood function is an example of a decomposable function:
Definition 1 (decomposable function). Let V be a finite set
and let ϕ be a function from the decomposable graphs on V
to real numbers. We say that ϕ is decomposable over V if

ϕ(G) =

∏
C∈C ϕc(C)∏
S∈S ϕs(S)

for some functions ϕc and ϕs, we call the local components.

Clearly the product of two decomposable functions is also
decomposable. It can also be shown that any constant func-
tion is decomposable. In particular, if the prior is a decom-
posable function, so is the posterior.

We illustrate the notion of decomposable functions by two
further examples. Here and henceforth we use the Iverson
bracket [Q] to denote 1 when Q is true, and 0 otherwise.
Example 1 (uniform prior). Let w be a number. Let ρ be
the decomposable function over V defined by

ρc(X) = [|X| ≤ w] and ρs(X) = 1 for X ⊆ V .
We observe that ρ(G) = 1 if G contains only cliques of size
at most w, and 0 otherwise. Thus the normalized function
ρ/Zρ is the uniform distribution over the decomposable
graphs on V whose cliques are of size at most w.
Example 2 (absence of an edge). Let e ⊆ V , |e| = 2. Let
ϕe be the decomposable function over V defined by

ϕec (X) = [e 6⊆ X] and ϕes (X) = 1 for X ⊆ V .
We observe that ϕe(G) = 1 if the edge e is absent in G, and
0 otherwise. Thus ϕe is the indicator function of the set of
decomposable graphs that do not contain the edge e.

Note also that the indicator function for the presence of an
edge is not decomposable.

2.2 COMPUTATIONAL TASKS

We will consider two classes of computational problems:
(1) computing the marginal of a given function ϕ of de-
composable graphs, defined as Zϕ =

∑
G ϕ(G); and (2)

generating random samples of decomposable graphs from
a distribution that is proportional to a given function. The
first class includes the important task of computing poste-
rior expectations of graph features, in particular, marginal
posterior probabilities of edges (cf. Corollary 2 in Sect. 3).
In the second class the distribution of interest is usually
the posterior distribution. The input in these problems is
always specified by decomposable functions, like a prior
and a likelihood function. Thus we may assume an efficient
access to these functions through their local components.

416

2.3 ROOTED JUNCTION TREES

It is convenient to represent a decomposable graph as a
junction tree. Consider an undirected graph G and a tree J
that has the cliques ofG as its vertices. We call J a junction
tree of G if it satisfies the junction property, that is, for any
cliques C,C ′ the intersection C ∩ C ′ is contained within
every clique on the unique path between C and C ′ in J . A
graph has a junction tree if and only if it is decomposable.
Importantly, the representation is in general not unique, as a
graph may have multiple junction trees; we denote by τ(G)
the number of junction trees of G. In contrast, for each
junction tree J the represented graph, G(J), is unique.

For our purposes it will be convenient to work with rooted
junction trees. Specifically, we make use of the following
recursive characterization of junction trees, adopted from
the work of Kangas et al. (2014):
Definition 2 (recursive partition tree, RPT). A recursive
partition tree over a finite ground set V is a triplet
(C, {R1, . . . , Rk}, {T1, . . . , Tk}) such that

1. C is a non-empty subset of V , called the root;

2. {R1, . . . , Rk} is a partition of V \ C;

3. each Ti is an RPT over C ∪Ri rooted at Ci such that
C ∩ Ci is a proper subset of both C and Ci.

Note that the implicit base case of the definition is when
C = V and there are thus no subtrees.

An RPT T rooted at C can be viewed as a directed tree,
where C1, . . . , Ck are the children and T1, . . . , Tk the sub-
trees of C. Such a tree is a junction tree and, conversely, any
junction tree can be represented as an RPT, which is unique
up to the choice of the root (Kangas et al. 2014). Denoting
by κ(G) the number of cliques of a decomposable graph G,
we have that G has exactly τ(G)κ(G) distinct RPTs.

2.4 DYNAMIC PROGRAMMING

Kangas et al. considered the problem of maximizing a given
decomposable function, and gave a DP algorithm that stems
from the recursive definition of RPTs. We next adapt the
DP algorithm to the problem of summing up the values of
a given function, that is, to compute the marginal. Due to
the many-to-one relationship of RPTs and decomposable
graphs, each value gets multiplied by the corresponding
number of RPTs. Put otherwise, for any function ϕ we have

∑

T
ϕ (G(T)) =

∑

G

ϕ(G)τ(G)κ(G) , (1)

where T runs through all RPTs over V and G runs through
all decomposable graphs on V . Since our DP treatment re-
lies on the decomposability of the function ϕ, the computed
sum will not be the marginal of the decomposable ϕ, but of
the function ϕτκ, that we shall call RPT-decomposable:

Definition 3 (RPT-decomposable function). Let V be a fi-
nite set and let ϕ′ be a function from the decomposable
graphs on V to real numbers. We say that ϕ′ is RPT-
decomposable over V if ϕ′(G) = ϕ(G)τ(G)κ(G) for some
decomposable function ϕ over V .

Example 3 (RPT-uniform prior). Let ρ be as defined in
Example 1. Then ρτκ is a RPT-decomposable function that
is proportional to the uniform distribution on all RPTs over
V whose cliques are of size at most w.

We are ready to present the DP algorithm for computing the
sum (1) for a given a decomposable function ϕ. To this end,
we denote by RPT(S,R) the set of all RPTs over S ∪ R
rooted at a proper superset of S, and let

f(S,R) =
∑

T ∈RPT(S,R)

ϕ(G(T)) .

In particular, f(∅, V) equals the desired sum (1). Following
Kangas et al. we obtain the following recurrence system:

f(S,R) =
∑

S⊂C⊆S∪R
ϕc(C) g(C,R \ C) , (2)

g(C,U) =
∑

minU∈R⊆U
h(C,R) g(C,U \R) , (3)

h(C,R) =
∑

S⊂C
f(S,R)

/
ϕs(S) , (4)

with the base case g(C,∅) = 1. Each recurrence is defined
for all disjoint pairs of subsets of V such that C and R are
non-empty. A straightforward evaluation of f , g, and h by
using these recurrences takes O(4n) time and O(3n) space.
These bounds and the correctness of the recurrences can be
verified essentially by taking the proof of Kangas et al. and
replacing maximization with summation.

The intuition here is that f considers all possible choices for
the root clique C and factors in the ϕc(C). For each C it
then invokes g, which considers partitions {R1, . . . , Rk} of
the remaining nodes U by calling itself recursively. For each
part R it also calls h, which considers possible separators S
between C and the subtree in R and factors in the reciprocal
of the marginals ϕs(S). Finally, h calls f again to consider
possible root cliques of the subtree. In (3), the least element
of U , denoted minU , is always placed in the next part R
so as not to consider different permutations of the same
partition. The base case corresponds to the case where all
nodes have been assigned to some Ri and there are none
left to partition.

3 EXACT AVERAGING

In this section we show:

Theorem 1. The marginal of a given RPT-decomposable
function over a set of n nodes can be computed in O(n33n)
time and O(n3n) space.

417

In effect, we show that the recurrence system (2–4) can be
solved in the claimed time. Asymptotically, this is signifi-
cantly faster than the O(4n) time obtained by a straightfor-
ward evaluation. We achieve the improvement by computing
the exponential-size summations for each of the functions f ,
g, and h simultaneously for several pairs of arguments. Our
algorithms for f and h apply as well to the maximization
variant of the recurrence. In contrast, our algorithm for g
relies crucially on subtraction (i.e., the existence of additive
inverses), and thus does not apply to maximization.

Before we proceed to the proof (in Sections 3.1–3.5), let us
note the following implication:

Corollary 2. Suppose the probability distribution over de-
composable graphs on a set of n nodes is proportional to
a given RPT-decomposable function. Then the probability
that the graph contains k specified edges can be computed
in O(2kn33n) time and O(n3n) space.

Proof. Let e1, . . . , ek be distinct edges on the node set V =
{1, . . . , n}. Let Aj denote the event that the graph does not
contain the edge ej . By the inclusion–exclusion principle,
the probability that the graph contains the k edges is

Pr
[
Ā1 ∩ · · · ∩ Āk

]
=

∑

J⊆{1,...,k}
(−1)|J| Pr

⋂

j∈J
Aj

 .

Now, let ϕ′ be the given RPT-decomposable function. It
remains to observe that

Pr

⋂

j∈J
Aj

 =

∑
G ϕ
′(G)

∏
j∈J ϕ

ej (G)∑
G ϕ
′(G)

,

where each ϕej is the decomposable function that indicates
whether ej is absent in the graph, as defined in Example 2.
Thus each of the 2k probabilities is obtained as a ratio of
two marginals of RPT-decomposable functions.

3.1 ZETA TRANSFORM AND SUBSET
CONVOLUTION

Our algorithms employ the so-called fast zeta transform,
FZT (Yates 1937, Kennes and Smets 1990, Björklund et al.
2012). The zeta transform of a function α from the subsets
of a ground set {1, . . . , n} to real numbers is the set function
defined by α̂(Y) =

∑
X⊆Y α(X) for each subset Y of the

ground set. FZT computes the zeta transform of a given
function in O(n2n) time, as follows: Let α0 = α and for
i = 1, . . . , n let

αi(Y) = αi−1(Y) + [i ∈ Y] · αi−1(Y \ {i}) .

It follows that αn = α̂. Note that there are two different
ways to organize the computations: either compute the n
steps one after another, which requires onlyO(2n) space; or

compute all the n functions for each set Y one after another
in increasing order by the size |Y |, which requires O(n2n)
space. We will need the latter “level-wise” implementation.

Another tool we use is known as the fast subset convolution,
FSC (Björklund et al. 2007). The subset convolution of
two functions α and β from the subsets of a ground set
{1, . . . , n} to real numbers is the set function defined by
(α ∗ β)(Y) =

∑
X⊆Y α(X)β(Y \ X) for each subset Y

of the ground set. FSC computes the subset convolution in
O(n22n) time and O(n2n) space. We refer to Björklund
et al. (2007) for details.

3.2 COMPUTING h

Consider first the recurrence for h. For a moment, fix a set
R ⊆ V and define the functions hR and fR by

hR(C) = h(C,R) and fR(S) = f(S,R)/ϕs(S) ,

where C and S are subsets of V \R. By the recurrence (4)
we have that hR(C) =

∑
S⊂C fR(S) = f̂R(C) − fR(C).

Using FZT we can compute hR in O(k2k) time for each
R, where k = n − |R|. Note that we use the level-wise
implementation and evaluate the k steps of the transform
for one C in turn. Thus computing h takes O(n3n) time
in total. (While we here used subtraction, it is not difficult
to see how FZT can be modified to avoid that, and that the
result thus applies to the maximization variant as well.)

3.3 COMPUTING f

Consider then the recurrence for f . It might be tempting to
try the above trick also in this case, that is, to fix either R
or S, and then employ a suitable fast zeta transform variant.
However, that approach fails because now the involved three
sets S, R, and C have more intricate dependencies. Instead,
we define the function g′ by

g′(C,R \ C) = ϕc(C) g(C,R \ C) ,

for C ⊆ R ⊆ V . The idea is to extend FZT to pairs of
disjoint sets and transform g′ into f by computing the sum
(2) in n steps: Let g′0 = g′ and for i = 1, . . . , n let

g′i(S,R) = g′i−1(S,R)+[i ∈ R] · g′i−1(S ∪ {i}, R \ {i}) .

It can be shown by simple induction that g′n(S,R) =
f(S,R) + g′(S,R \ S) (see the supplement). Thus, given
g′, we can compute f in O(n3n) time. Note that we use
the level-wise approach to compute the values f(S,R) in
decreasing order of |S| and in increasing order of |R|.

3.4 COMPUTING g

Finally consider the recurrence for g. Now we fix a C ⊆ V
for a moment and, for convenience, write gC(U) for g(C,U)

418

and hC(R) for h(C,R). We will show that the values

gC(U) =
∑

minU∈R⊆U
hC(R) gC(U \R)

can be computed for all U ⊆ V of size |U | = u in O(n22n)
time, assuming the values hC(R) and gC(U ′) are available
for all R,U ′ ⊆ V of sizes |R| ≤ u and |U ′| < u. This then
implies that computing g takes O(n33n) time in total (by
summing over u and C).

To compute the values gC(U), we break the computations
further into n separate subtasks. For each s ∈ V , define the
function gs by

gs(U) =
∑

s∈R⊆U
h(R) g(U \R) ,

where U ⊆ V such that |U | = u and minU = s. Note
that each such U is of the form {s} ∪ X with X ⊆ V \
{1, . . . , s}. We observe that for each s the task can be solved
using FSC inO(n22n−s) time, implying a time requirement
of O(n22n) in total. It remains to observe that g(U) is
obtained as gminU (U).

3.5 SPACE REQUIREMENT

The level-wise computations of h and f assume that the
intermediate values of the transforms are stored in memory.
This incurs a space requirement of (n3n) in total.

The computation of g, instead, uses FSC in a black-box
fashion and computes a bunch of values g(C,U) for a fixed
C and several sets U of a fixed size u, assuming only that
the values h(C,R) and g(C,U ′) are available for all R and
U ′ such that |R| ≤ u and |U ′| < u. Because the same space
can be reused for different C, the “extra” space requirement
is only that of FSC, O(n2n).

4 SAMPLING

We now turn to the task of sampling decomposable graphs
from the posterior. Specifically, we extend the DP algorithm
of Sect. 2 with a natural backtracking procedure that draws
an RPT by choosing its cliques, partitions, and separators
according to their conditional marginal probabilities, and
returns the corresponding graph. Since each graph G has
τ(G)κ(G) distinct RPTs, the resulting graph sample follows
the RPT-decomposable distribution π ∝ ϕτκ, where ϕ
is the decomposable function that the DP algorithm was
applied to. By employing importance sampling (Sect. 5)
that weights each graph sample G by (τ(G)κ(G))−1, we
are able to target the distribution proportional to ϕ instead.

For the remainder of this section we focus on sampling from
π ∝ ϕτκ. Given the DP tables for f , g, and h (for ϕ), the
backtracking procedure to sample from π works as follows.

Algorithm: Sampling a decomposable graph

Begin by visiting f(∅, V) and recursively visit f , g and
h as follows: In f(S,R), choose the root clique C of the
subtree over S ∪R randomly according to its marginal
distribution Pr(C) ∝ ϕc(C) g(C,R \ C) and proceed
to corresponding g(C,R \ C). In g(C,U), choose the
first part R of the partition according to its marginal
distribution Pr(R) ∝ h(C,R) g(C,U \ R) and recur-
sively proceed to h(C,R) and g(C,U \R). In h(C,R),
choose a separator S according to its marginal proba-
bility Pr(S) ∝ f(S,R)/ϕs(S) and proceed to f(S,R).
Continue the recursion until all branches terminate at a
visit to g(C,∅). Then, from the resulting recursion tree,
obtain the cliques C and return the corresponding graph.

The efficiency of this backtracking procedure depends on
how much time is spent on choosing random sets C, R, and
S during the visits. Consider the general problem of drawing
a sample from a discrete distribution over s elements. A
naive method is to pick a number r from the continuous
uniform distribution on [0, 1), then iterate the elements in
a predefined order and select the first item for which the
cumulative probability exceeds r. The method uses O(s)
time and O(1) space. It can be shown that, if the sets C,
R, and S are sampled using this naive method, sampling
a single graph requires O(2n) time. (In fact, this result is
proved as a special case in the next subsection.) Next we
introduce a more general sampling scheme that allows us to
spend less time in sampling by using more space.

4.1 TRADING TIME FOR SPACE

We can avoid spending exponential time per sample by first
preprocessing the probabilities so that the sets can thereafter
be chosen much faster. First, it should be noted that it is
not possible to just precompute the cumulative probabilities
and use, for example, binary search to find the item that
corresponds to r, without increasing the asymptotic space
requirement. On the other hand, if we allow additional space
usage, then it is better to use the alias method (Vose 1991),
which requires O(s) additional space and O(s) preprocess-
ing time but allows us to draw samples in O(1) time per
sample. Moreover, it turns out we obtain a tunable tradeoff
between sampling time and extra space. Specifically, we
propose the following algorithm:

Subroutine: Parameterized sampling

Let b ∈ {0, ..., n} be a tradeoff parameter that is chosen
beforehand. As preprocessing, divide the s elements
into bins of size 2b (at most, the last bin can be smaller),
and for each bin, compute and store the sum of the
probabilities of its elements. This requires space that is
linear in the number of bins.

Now a new sample can be drawn in two phases: first a
bin is selected according to its precomputed total proba-

419

bility and then a term is selected from the bin according
to its relative probability in the bin. We apply the alias
method to the first phase, and the naive sampling to the
second phase. Thus, the first phase requires O(1) time
per sample. The additional space requirement is linear
in the number of bins. The second phase uses O(2b)
time and no additional space. The total space require-
ment is thus O(s/2b) and time requirement is O(s) for
preprocessing and O(2b) per sample.

By selecting a fixed b and applying the above algorithm to
each (nonterminating) f(S,R), g(C,U), and h(C,R) we
get the following theorem:

Theorem 3. For any b ∈ {0, . . . , n} we can draw T inde-
pendent graphs from π in O(4n + T · 2b(1 + n− b)) time
and O(4n/2b + 3n) space.

In order to prove the theorem, we first bound the number of
visits to f , g, and h by the following lemma:

Lemma 4. The sampling procedure makes at most n non-
terminating visits to functions f , g, and h each.

The proof of Lemma 4 is given in the supplement.

Now, by using Lemma 4 and the fact that on each visit to
f , g or h, the time required to choose the set C, R or S
correspondingly is at most O(2b), we get a bound O(2bn)
for the time consumption per sample. However, in order to
get the bound down toO(2b(1+n−b)) as in Theorem 3, we
need to bound the amount of work done on each visit more
carefully. To this end, observe that each nonterminating
visit to f(S,R), g(C,U), and h(C,R) involves drawing a
random set from a discrete distribution over 2|R| − 1 <
2|S|+|R|, 2|U |/2 < 2|C|+|U |, and 2|C| − 1 < 2|C|+|R| sets
respectively. The following lemma bounds |S|+ |R|, |C|+
|U |, and |C|+ |R| on different steps of the backtracking.

Lemma 5. For f , g, and h let (S1, R1), . . . , (Sdf , Rdf),
(C1, U1), . . . , (Cdg , Udg), and (C1, R1), . . . , (Cdh , Rdh)
be all the set pairs visited during backtracking. Then there
exist orderings of those set pairs such that,

|Si|+ |Ri| ≤ n− i+ 1 for all i = 1, . . . , df ,

|Ci|+ |Ui| ≤ n− i+ 1 for all i = 1, . . . , dg ,

|Ci|+ |Ri| ≤ n− i+ 1 for all i = 1, . . . , dh .

The proof of Lemma 5 is given in the supplement.

Now we are ready to prove the theorem presented above.

Proof of Theorem 3. Consider the space and time needed
for f (respectively: g, h).

Space: For each R (respectively: U , C) of size k there are
2n−k ways to choose S (respectively: C, R). The space
needed by the alias method for each such set pair is less

than max{2k/2b, 1}. Thus the total space requirement for
all set pairs of all sizes is
∑

k

(
n

k

)
2n−k max{2k−b, 1} ≤

∑

k

(
n

k

)
(2n−b+ 2n−k)

= 4n/2b + 3n .

Time: The preprocessing requires enumeration over all
terms of the sums in the recurrences for all entries of f ,
g, and h. Like computing f , g, and h, this consumes O(4n)
time. It remains to analyze the time needed to draw a sin-
gle graph sample. Let (S1, R1), . . . , (Sd, Rd) (respectively:
(R1, U1), . . . , (Rd, Ud), (C1, R1), . . . , (Cd, Rd)) be the d
visited set pairs for f (respectively: g, h). In each visit
the algorithm first chooses a bin in constant time and then
chooses one of its elements in time linear in its size but at
most 2b. Therefore, the backtracking requires at most time

d∑

i=1

min{2b, 2ki} ,

where ki = |Ri| (respectively: ki = |Ui|, ki = |Ci|). By
Lemma 5, there exists an ordering of the set pairs such that
ki ≤ n− i+ 1. By Lemma 4, d ≤ n. We get

n∑

j=1

min{2b, 2j} ≤
n∑

j=b+1

2b +
b∑

j=1

2j

≤ (n− b)2b + 2b+1

= (2 + n− b)2b .
The claim thus follows.

Theorem 3 has, for example, the following corollaries. Set-
ting b = 0 allows us to draw each sample in linear time but
using O(4n) extra space, while setting b = n effectively
yields the naive method. From an asymptotical viewpoint,
it makes sense to set b ≤ n log2(4/3) ' 0.42n, since for
larger b the 3n term dominates the space requirement. Since
the DP phase requires O(4n) time, we can in a sense draw
O(4n/2n log2(4/3)n) = O(2n/n) samples for “free.”

4.2 ADAPTIVE SAMPLING

Usually most of the probability mass is concentrated on a
small set of graphs. Thus, when sampling graphs, some
of the indexing set pairs for f , g, and h are visited rarely
if at all. The additional space that is used by the alias
method for such set pairs may outweigh the gain in speed.
As an alternative, we propose the following approach that
periodically draws and caches multiple samples at once on
those indices that are visited more often.

Subroutine: Adaptive sampling

On the first visit to any f(S,R), g(C,U), or h(C,R),
draw and consume one set from the corresponding dis-
crete distribution using the naive method. On any sub-
sequent visit: If there are no cached samples left from

420

the previous visits, then use the alias method to draw
twice as many sets as the last time on the same index,
consume one and cache the rest. Otherwise, consume
one set from the cache.

The following lemma characterizes the space consumption
of the graph sampler that uses the above adaptive sampling
subroutine.

Lemma 6. After T sampled graphs, adaptive sampling
consumes at most O(nT) extra space.

Proof. A cache of size s is constructed when the correspond-
ing set pair is visited for the (s+ 1)th time. By Lemma 4
the total number of visits to all set pairs is at most nT . The
claim then trivially follows.

Furthermore, we get the following special case bounds for
space and time consumption:

Theorem 7. We can draw 3n independent samples from π
in O(n4n) time and O(n3n) space.

Proof. The space complexity follows from Lemma 6.

Consider then the time used on visits to f .

Without rebuilding the caches, the time per sample is O(n),
or O(n3n) in total. In order to analyze the time needed for
cache rebuilds, consider an arbitrary disjoint set pair (S,R)
and let k = |R|.
Let t be the number of visits to the set pair in question. Then
its cache is rebuilt blog2(t) + 1c times. As rebuilding the
cache the ith time requires O(2k + 2i) time (the first term
comes from constructing the distribution and initializing the
alias method, the second term comes from drawing the sets),
in total this requires time

blog2(t)+1c∑

i=1

O(2k + 2i) = O((log(t) + 1)2k) +O(t) .

To get the total time used to rebuild caches, we must sum
these for all set pairs (S,R). Since each backtracking visits
at most n set pairs (Lemma 4), the sum over the last term
O(t) results in O(n3n). It remains to analyze the first term.

For k = 1, . . . , n, let Lk consist of all the set pairs (S,R)
such that |R| = k. For a fixed k, there are |Lk| =

(
n
k

)
2n−k

such pairs, and each may be visited at most once per
sample, that is, at most 3n times in total. Thus, the
sum of the first term over all pairs in Lk amounts to
O
(
|Lk|(log(3n) + 1)2k

)
= O

(
n
(
n
k

)
2n
)
. Summing over

k yields the claimed running time bound.

The time used on visits to g and h can be bounded analo-
gously (selecting k = |U | and k = |C|, respectively).

5 MONTE CARLO ESTIMATION

We have observed in Sections 2 and 3 that the posterior
probabilities of some graph properties can be computed
exactly in O(4n) time, and asymptotically even faster in
O(n33n) time. However, we had to assume (i) that the
properties can be expressed by decomposable functions
(e.g., in terms of forbidden cliques), and (ii) that the prior,
and hence the posterior, is RPT-decomposable, ruling out
the natural uniform prior.

In this section, we employ Monte Carlo methods to relax
these restrictive assumptions and still obtain good approxi-
mations. Throughout the section, we consider an arbitrary
function ψ from decomposable graphs to {0, 1}. Our inter-
est is in estimating the quantity

Zπψ =
∑

G

π(G)ψ(G) ,

where π is the posterior distribution.

5.1 RPT-DECOMPOSABLE PRIOR

Consider first relaxing only the first assumption (i). Since
we keep the assumption that the prior is RPT-decomposable,
we can draw T independent graphs G1, . . . , GT from the
posterior π, using the methods described in Sect. 4. The
estimate

Ẑπψ =
1

T

T∑

i=1

ψ(Gi)

is unbiased and, by the law of large numbers, it concentrates
around Zπψ as T grows.

5.2 DECOMPOSABLE PRIOR

Consider then relaxing also the second assumption (ii). For
convenience, assume however that the prior is decompos-
able, for example, the uniform distribution over all decom-
posable graphs on the node set V . Now, we can draw T
independent graphs G1, . . . , GT from a distribution propor-
tional to πτκ, using the methods described in Sect. 4. In
this case, we need to correct the deviance of the sampling
distribution from the posterior. We do this by using the
self-normalized importance sampling estimate

Z̃πψ =

∑T
i=1 wiψ(Gi)∑T

i=1 wi
, wi =

1

τ(Gi)κ(Gi)
.

This estimate concentrates around Zπψ as T grows.

To make this method practical, we need an efficient way to
count the number of junction trees τ(Gi) and the number of
cliques κ(Gi) of a given decomposable graph Gi. The latter
problem is easy, as the cliques are readily available in the
RPT (or junction tree) representation. For counting junction

421

Table 1: Benchmark datasets on n variables and m records.
Dataset n m
Asia 8 10000
Bridges 12 108
Flare 13 1066
House-votes 17 435

Table 2: The running time of our algorithm on the bench-
mark datasets. We measure in seconds the time spent on
the dynamic programming phase (DP) as well as sampling
of 105, 106, and 107 graphs. These include the time spent
finding the number of junction trees per sample.

Dataset DP 105 106 107

Asia 0.018 0.32 3.2 33
Bridges 5.6 0.66 5.5 54
Flare 24 1.5 8.8 77
House-votes 7497 16 40 167

trees, a method described by Thomas and Green (2009) has,
to our knowledge, the best worst case guarantees, running
in time O(n2). It also starts by finding a single junction tree
of the graph, which in our case is already given.

6 EXPERIMENTS

We report experimental results on the proposed sampling
and estimation methods, using benchmark datasets (Table 1).
Asia is sampled from a network defined by Lauritzen and
Spiegelhalter (1988) and others are from the UCI repository
(Bache and Lichman 2013). For all datasets we use the
Dirichlet–multinomial model with the equivalent sample
size parameter 1 (Dawid and Lauritzen 1993, Heckerman
et al. 1995). Our C++ implementation1 uses the straight-
forward O(4n) time dynamic programming (Sect. 2) and
the adaptive variant of the sampling phase (Sect. 4). The
running times are detailed in Table 2.

6.1 PREDICTION

We first study how well averaging over graphs using our sam-
pling method performs on a prediction task, as compared
to using a single maximum-a-posteriori graph. Specifically,
we split each dataset into a fixed test set and a training set.
From the training data we then learn both a maximum-a-
posteriori graph and the full posterior given a uniform prior
over decomposable graphs and measure how the probability
of the test data given the training data behaves under these
models as the size of the training set varies.

The maximum-a-posteriori graph is obtained using the

1Our implementation is available at
www.cs.helsinki.fi/u/jwkangas/junctor.

method of Kangas et al. (2014). The full posterior model
is approximated by sampling 2n graphs, where n is the
number of variables in the dataset, and then measuring the
average probability of the test data over the sampled graphs
(weighting each graph by the number of its RPTs).

Intuitively, the full posterior should in general yield better
results, as the maximum-a-posteriori graph has a tendency
to overfit the training data, especially for a small training set.
Our results (Fig. 1) conform to this expectation. We observe
that the probability of the test data under the full posterior
model tends to be significantly higher for small training sets
and the gap diminishes as the size of the training set grows.

6.2 EDGE POSTERIOR PROBABILITIES

In the second set of experiments we apply the Monte Carlo
methods described in Sect. 5 to estimating the posterior
probabilities of individual edges under the uniform prior
over decomposable models.

For each dataset, we use the method from Sect. 5.2 to esti-
mate the posterior probability of each edge. We compute
the estimation error, i.e., the difference between an edge’s
estimated probability and our best available estimate for
the probability. Ideally, we would like the best available
estimate to be the true posterior probability of the edge.
For Asia we are able to obtain the true probability by enu-
merating all decomposable graphs up to 8 nodes. As this
task comes infeasible for larger n, for other datasets we
instead compare to the best estimate given by our method
after drawing one million samples. Such “self-comparison”
is still useful for studying the rate of convergence.

To quantify convergence, we measure how the maximum
estimation error over edges develops as we draw more sam-
ples (Fig. 2). We also study the distribution of the error in a
more refined way by counting the number of edges whose
error exceeds 10−k for k ∈ {1, . . . , 4} (Fig. 3). We observe
that the rate of convergence remains steady for each dataset.
In all cases we reach a maximum error of about 0.01 or less
after 105 samples and a lot sooner for smaller datasets.

7 CONCLUDING REMARKS

We have presented algorithms for Bayesian learning of
moderate-size decomposable graphical models. Unlike the
recent related algorithm that finds a single optimal model
(Kangas et al. 2014), our algorithm enables more principled
treatment of the posterior uncertainty. Unlike the brute-force
approach, our algorithm scales well beyond 8 variables, up
to about 20 variables. Unlike the popular MCMC methods,
our algorithm enjoys accuracy guarantees (see also below).
We believe our algorithms can be valuable for solving ac-
tual data-analysis instances, for testing the performance of
other (approximate) methods, and as a building block for
developing new methods that scale to larger instances.

422

Asia Bridges Flare

100 101 102 103
−155
−150
−145
−140
−135
−130
−125
−120
−115
−110

full posterior averaging
maximum-a-posteriori

100 101 102
−760
−740
−720
−700
−680
−660
−640
−620
−600

100 101 102 103 104
−550

−500

−450

−400

−350

−300

−250

Figure 1: The (log unnormalized) probability of the test data given the training data (y-axis) as an average under sampled
graphs and under the maximum-a-posteriori model for various sizes of the training set (x-axis).

Asia Bridges Flare House-votes

100 101 102 103 104 105
10-3

10-2

10-1

100

100 101 102 103 104 105
10-3

10-2

10-1

100

100 101 102 103 104 105
10-3

10-2

10-1

100

100 101 102 103 104 105
10-3

10-2

10-1

100

Figure 2: The maximum error of the estimate over all edges (y-axis) as the number of samples (x-axis) grows.

Asia Bridges Flare House-votes

100 101 102 103 104 105

5
10
15
20
25

100 101 102 103 104 105

45

50

55

60

65

100 101 102 103 104 105
30

40

50

60

70

100 101 102 103 104 105
70
80
90
100
110
120
130

Figure 3: The number of edges (y-axis) with an estimation error less than 10−k as the number of samples (x-axis) grows.
The curves represents k = 1, . . . , 4 from top to down.

While this work has touched several aspects of accurate
Bayesian learning of decomposable graphs, it also leaves
many questions for future work. Some are rather straightfor-
ward extension and implementation issues: From a practical
point of view, the most important one is to make the algo-
rithms accommodate a user-specified upper bound on the
clique sizes, and thereby expedite computations and reduce
memory requirements. Another issue is to tune the recur-
sive sampling schemes so as to fully exploit the (typical)
low entropy of the distributions. Conceptually, the biggest
shortcoming in our current importance sampling implemen-
tation is the lack of controllable approximation guarantees.
However, we believe this gap can be closed in an efficient
and practical way by using the so-called optimal Monte

Carlo algorithms (Cheng 2001, Dagum et al. 2000), as the
sampled graphs tend to have relatively few junction trees.

The main open research questions are: Can the asymptot-
ically faster algorithm be implemented to run fast also in
practice? Are there significantly faster and, particularly,
more space-efficient algorithms for Bayesian learning of
decomposable graphs, with good accuracy guarantees?

Acknowledgements

The authors thank the anonymous reviewers for valuable
suggestions to improve the presentation. This work was
supported in part by the Academy of Finland, Grant 276864
“Supple Exponential Algorithms” (M.K.).

423

References

H. Abel and A. Thomas. Accuracy and computational ef-
ficiency of a graphical modeling approach to linkage
disequilibrium estimation. Statistical Applications in Ge-
netics and Molecular Biology, 10:1–15, 2011.

K. Bache and M. Lichman. UCI machine learning repository,
2013.

A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto.
Fourier meets Möbius: fast subset convolution. In Pro-
ceedings of the 39th Annual ACM Symposium on Theory
of Computing (STOC), pages 67–74. ACM, 2007.

A. Björklund, M. Koivisto, T. Husfeldt, J. Nederlof, P. Kaski,
and P. Parviainen. Fast zeta transforms for lattices with
few irreducibles. In Proceedings of the 23rd Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages
1436–1444. SIAM, 2012.

J. Cheng. Sampling algorithms for estimating the mean of
bounded random variables. Computational Statistics, 16:
1–23, 2001.

J. Corander, M. Gyllenberg, and T. Koski. Bayesian model
learning based on a parallel MCMC strategy. Statistics
and Computing, 16(4):355–362, 2006.

J. Corander, T. Janhunen, J. Rintanen, H. Nyman, and J. Pen-
sar. Learning chordal Markov networks by constraint sat-
isfaction. In Advances in Neural Information Processing
Systems 26 (NIPS), pages 1349–1357. Curran Associates,
Inc., 2013.

P. Dagum, R. M. Karp, M. Luby, and S. M. Ross. An optimal
algorithm for Monte Carlo estimation. SIAM Journal on
Computing, 29(5):1484–1496, 2000.

A. P. Dawid and S. L. Lauritzen. Hyper Markov laws in
the statistical analysis of decomposable graphical models.
The Annals of Statistics, 21(3):1272–1317, 1993.

P. Giudici and P. J. Green. Decomposable graphical Gaus-
sian model determination. Biometrika, 86(4):785–801,
1999.

P. J. Green and A. Thomas. Sampling decomposable graphs
using a Markov chain on junction trees. Biometrika, 100
(1):91–110, 2013.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning
Bayesian networks: The combination of knowledge and
statistical data. Machine Learning, 20:197–243, 1995.

K. Kangas, M. Koivisto, and T. Niinimäki. Learning chordal
Markov networks by dynamic programming. In Advances
in Neural Information Processing Systems 27 (NIPS),
pages 2357–2365. Curran Associates, Inc., 2014.

R. Kennes and P. Smets. Computational aspects of the
Mobius transformation. In Proceedings of the Sixth An-
nual Conference on Uncertainty in Artificial Intelligence
(UAI), pages 401–416. Elsevier, 1990.

S. L. Lauritzen. Graphical Models. Oxford University Press,
1996.

S. L. Lauritzen and D. J. Spiegelhalter. Local computations
with probabilities on graphical structures and their appli-
cation to expert systems. Journal of the Royal Statistical
Society. Series B (Methodological), 50(2):157–224, 1988.

D. Madigan and J. York. Bayesian graphical models for
discrete data. International Statistical Review, 63:215–
232, 1995.

N. Srebro. Maximum likelihood bounded tree-width
Markov networks. Artificial Intelligence, 143(1):123–
138, 2003.

C. Tarantola. MCMC model determination for discrete
graphical models. Statistical Modelling, 4(1):39–61,
2004.

A. Thomas and P. J. Green. Enumerating the junction trees
of a decomposable graph. Journal of Computational and
Graphical Statistics, 18:930–940, 2009.

M. Vose. A linear algorithm for generating random numbers
with a given distribution. IEEE Transactions on Software
Engineering, 17:972–975, 1991.

F. Yates. The design and analysis of factorial experiments.
Imperial Bureau of Soil Science. Harpenden, 1937.

424

Novel Bernstein-like Concentration Inequalities for the Missing Mass

Bahman Yari Saeed Khanloo Gholamreza Haffari
Monash University Monash University

bahman.khanloo@monash.edu gholamreza.haffari@monash.edu

Abstract

We are concerned with obtaining novel concen-
tration inequalities for the missing mass, i.e. the
total probability mass of the outcomes not ob-
served in the sample. We not only derive - for
the first time - distribution-free Bernstein-like
deviation bounds with sublinear exponents in de-
viation size for missing mass, but also improve
the results of McAllester and Ortiz (2003) and
Berend and Kontorovich (2013, 2012) for small
deviations which is the most interesting case in
learning theory. It is known that the majority of
standard inequalities cannot be directly used to
analyze heterogeneous sums i.e. sums whose
terms have large difference in magnitude. Our
generic and intuitive approach shows that the
heterogeneity issue introduced in McAllester and
Ortiz (2003) is resolvable at least in the case of
missing mass via regulating the terms using our
novel thresholding technique.

1 INTRODUCTION

Missing mass is the total probability associated to the
outcomes that have not been seen in the sample which is
one of the important quantities in machine learning and
statistics. It connects density estimates obtained from a
given sample to the population for discrete distributions:
the less the missing mass, the more useful the information
that can be extracted from the dataset. Roughly speaking,
the more the missing mass is the less we can discover about
the true unknown underlying distribution which would im-
ply the less we can statistically generalize to the whole
population. In other words, missing mass measures how
representative a given dataset is assuming that it has been
sampled according to the true distribution.

Often, one is interested in understanding the behaviour
of the missing mass as a random variable. One of the

important approaches in such studies involves bounding
the fluctuations of the random variable around a certain
quantity namely its mean. Concentration inequalities are
powerful tools for performing analysis of this type. Let X
be any non-negative real-valued random variable with finite
mean. The goal is to establish for any ε > 0, probability
bounds of the form

P(X − E[X] ≤ −ε) ≤ exp(−ηl(ε)),
P(X − E[X] ≥ ε) ≤ exp(−ηu(ε)), (1)

where ηl(ε) and ηu(ε) are some non-decreasing functions
of ε and where it is desirable to find the largest such func-
tions for variable X and for the ‘target’ interval of ε. These
bounds are commonly called lower and upper deviations
bounds respectively. In most practical scenarios, we are in
a non-asymptotic setting where we have access to a sam-
ple X1, ..., Xn and we would like to derive concentration
inequalities that explicitly describe dependence on sample
size n. Namely, we would like to obtain bounds of the form

P(X − E[X] ≤ −ε) ≤ exp(−ηl(ε, n)),

P(X − E[X] ≥ ε) ≤ exp(−ηu(ε, n)), (2)

where ηl(ε, n) and ηu(ε, n) are both non-decreasing func-
tions of ε and n. Many of such bounds are distribution-free
i.e. they hold irrespective of the underlying distribution.

McAllester and Schapire (2000) established concentration
inequalities for the missing mass for the first time. A
follow-up work by McAllester and Ortiz (2003) pointed out
inadequacy of standard inequalities, developed a thermo-
dynamical viewpoint for addressing this issue and sharp-
ened these bounds. Berend and Kontorovich (2013) fur-
ther refined the bounds via arguments similar to Kearns-
Saul inequality (Kearns and Saul (1998)) and logarith-
mic Sobolev inequality (Boucheron et al. (2013)). These
previous works, however, not only involve overly specific
approaches to concentration and handling heterogeneity
issue but also do not yield sharp bounds for small devia-
tions which is the most interesting case in learning theory.

In this paper, we shall derive distribution-free concentra-
tion inequalities for missing mass in a novel way. The

425

primary objective of our approach is to introduce a no-
tion of heterogeneity control which allows us to regulate
the magnitude of bins in histogram of the discrete distri-
bution being analyzed. This mechanism in turn enables us
to control the behaviour of central quantities such as the
variance or martingle differences of the random variable in
question. These are the main quantities that appear in stan-
dard concentration inequalities such as Bernstein, Bennett
and McDiarmid just to name a few. Consequently, instead
of discovering a new method for bounding fluctuations of
each random variable of interest, we will be able to directly
apply standard inequalities to obtain probabilistic bounds
on many discrete random variables including missing mass.

The rest of the paper is structured as follows. Section 2 con-
tains the background information and introduces the nota-
tions. Section 3 outlines motivations and the main con-
tributions. In Section 4, we explain negative dependence,
information monotonicity and develop a few fundamental
tools whereas Section 5 presents the proofs of our upper
and lower deviation bounds based on these tools. Finally,
Section 6 concludes the paper and compares our bounds
with existing results for small deviations.

2 PRELIMINARIES

In this section, we will provide definitions, notations and
and other background material.
Consider P : I → [0, 1] to be a fixed but unknown discrete
distribution on some finite or countable non-empty set I
with |I| = N . Let {wi : i ∈ I} be the probability (or
frequency) of drawing the i-th outcome. Moreover, sup-
pose that we observe an i.i.d. sample {Xj}nj=1 from this
distribution with n being the sample size. Now, missing
mass is defined as the total probability mass corresponding
to the outcomes that are not present in our sample. Namely,
missing mass is a random variable that can be expressed as:

Y :=
∑

i∈I
wiYi, (3)

where we define each {Yi : i ∈ I} to be a Bernoulli
variable that takes on 0 if the i-th outcome exists in the
sample and 1 otherwise. Namely, we have

Yi = 1[(X1 6=i)∧(X2 6=i)∧···∧(Xn 6=i)]. (4)

We assume that for all i ∈ I, wi > 0 and
∑
i∈I wi = 1.

Denote P (Yi = 1) = qi and P (Yi = 0) = 1 − qi and let
us suppose that Yis are independent: as we will see later in
this section, such an assumption will not impose a burden
on our proof structure and flow. Hence, we will have that
qi = E[Yi] = (1 − wi)

n ≤ e−nwi where qi ∈ (0, 1).
Namely, defining f : (1, n) → (e−n, 1

e) ⊂ (0, 1) where
f(θ) = e−θ with θ ∈ Df and taking wi > θ

n amounts to
qi(wi) ≤ f(θ). This provides a basis for our ‘thresholding’
technique that we will employ in our proof.

Choosing the representation (3) for missing mass, one has

E[Y]I =
∑

i∈I
wiqi =

∑

i∈I
wi(1− wi)n, (5)

V [Y]I =
∑

i∈I
w2
i VAR [Yi], (6)

σ2
I :=

∑

i∈I
wiVAR [Yi], (7)

where we have introduced the weighted variance notation
σ2 and where each quantity is attached to a set over which
it is defined. Note that VAR [Yi] is the individual variance
corresponding to Yi which is defined as

VAR [Yi] = qi(1− qi) = (1− wi)n
(
1− (1− wi)n

)
. (8)

One can define the above quantities not just over the set I
but on some (proper) subset of it that may depend on or be
described by some variable(s) of interest. For instance, in
our proofs the variable θ may be responsible for choosing
Iθ ⊆ I over which the above quantities will be evaluated.
For lower deviation and upper deviation, we find it conve-
nient to refer to the associated set by L and U respectively.
Likewise, we will use subscripts l and u to refer to ob-
jects that characterize lower deviation and upper deviation
respectively. Also, we use the notation Y ij = Yi, ..., Yj
to refer to sequence of variables whose index starts at i-th
variable and ends at j-th variable. Finally, other notation or
definitions may be introduced within the body of the proof
when required.

We will encounter Lambert W -function - also known as
product logarithm function - in this paper which describes
the inverse relation of f(x) = xex and which cannot be
expressed in terms of elementary functions. This func-
tion is double-valued when x ∈ R. However, it becomes
invertible in restricted domain. The lower branch of it is
denoted by W−1(.), which is the only branch that will
prove beneficial in this paper. The reader is advised to refer
to Corless et al. (1996) for a detailed treatment.

Throughout the paper, we shall use the convention that
capital letters refer to random variables whereas lower case
letters correspond to realizations thereof.

We will utilize Bernstein’s inequality in our derivation.
Suitable representations of this result are outlined below
without the proof.

Theorem. [Bernstein] Let Z1, ..., ZN be independent
zero-mean random variables such that one has |Zi| ≤ α
almost surely for all i. Then, using Bernstein’s inequality
(Bernstein (1924)) one obtains for all ε > 0:

P(

N∑

i=1

Zi > ε) ≤ exp
(
− ε2

2(V + 1
3αε)

)
, (9)

where V =
∑N
i=1 E[Zi

2].

426

Now, consider the sample mean Z̄ = n−1
∑n
i=1 Zi

and let σ̄2 be the sample variance, namely
σ̄2 := n−1

∑n
i=1 VAR [Zi] = n−1

∑n
i=1 E[Zi

2]. So,
using (9) with n · ε in the role of ε, we get

P(Z̄ > ε) ≤ exp
(
− nε2

2(σ̄2 + 1
3αε)

)
. (10)

If Z1, ..., Zn are, moreover, not just independent but also
identically distributed, then σ̄2 is equal to σ2 i.e. the
variance of each Zi. The latter presentation makes explicit:
(1) the exponential decay with n; (2) the fact that for σ̄2 ≤ ε
we get a tail probability with exponent of order nε rather
than nε2 (Lugosi (2003); Boucheron et al. (2013)) which
has the potential to yield stronger bounds for small ε.

3 MOTIVATIONS AND MAIN RESULTS

In this section, we motivate this work by pointing out the
heterogeneity challenge and how we approach it. Our
bounds also improve the functional form of the exponent,
which is of independent significance. In the final part of
this section, we summarize our main results.

3.1 The Challenge and the Remedy

McAllester and Ortiz (2003) point out that for highly
heterogeneous sums of the form (3), the standard form of
Bernstein’s inequality (9) does not lead to concentration in-
equalities of form (10): at least for the upper deviation of
the missing mass, (9) does not imply any non-trivial bounds
of the form (2). The reason is basically the fact that the wi
can vary wildly: some can be of order O(1/n), other may
be constants independent of n. For similar reasons, other
standard inequalities such as Bennett, Angluin-Valiant and
Hoeffding cannot be used to get bounds on the missing
mass of the form (2) either (McAllester and Ortiz (2003)).

Having pointed out the deficiency of these standard in-
equalities, McAllester and Ortiz (2003) succeed in giving
bounds of the form (2) on the missing mass, for a func-
tion η(ε, n) ∝ nε2, both with a direct argument and us-
ing the Kearns-Saul inequality (Kearns and Saul (1998)).
Recently, the constants appearing in the bounds were
refined by Berend and Kontorovich (2013). The bounds
proven by McAllester and Ortiz (2003) and Berend and
Kontorovich (2013) are qualitatively similar to Hoeffding
bounds for i.i.d. random variables: they do not improve the
functional form from nε2 to nε for small variances.

This leaves open the question whether it is also possi-
ble to derive bounds which are more reminiscent of the
Bernstein bound for i.i.d. random variables (10) which
does exploit variance. In this paper, we show that the
answer is a qualified yes: we give bounds that depend on
weighted variance σ2 defined in (7) rather than sample
variance σ̄2 as in (10) which is tight exactly in the

important case when σ2 is small, and in which the
denominator in (10) is specified by a factor depending on
ε; in the special case of the missing mass, this factor turns
out to be logarithmic in ε and a free parameter γ as it will
become clear later.

We derive - using Bernstein’s inequality - novel bounds
on missing mass that take into account explicit variance
information with more accurate scaling and demonstrate
their superiority for small deviations.

3.2 Main Results

Consider the following functions

γε = −2W−1

(
− ε

2
√
e

)
, (11)

c(ε) =
3(γε − 1)

5γ2
ε

. (12)

Let Y denote the missing mass, n the sample size and ε the
deviation size.

Theorem 1. For any 0 < ε < 1 and any n ≥ dγεe − 1, we
obtain the following upper deviation bound

P(Y − E[Y] ≥ ε) ≤ e−c(ε)·nε. (13)

Theorem 2. For any 0 < ε < 1 and any n ≥ dγεe − 1, we
obtain the following lower deviation bound

P(Y − E[Y] ≤ −ε) ≤ e−c(ε)·nε. (14)

Corollary 1. For any 0 < ε < 1 and any n ≥ dγεe − 1,
using union bound we obtain the following deviation bound

P(|Y − E[Y]| ≥ ε) ≤ 2 e−c(ε)·nε. (15)

The proof of the above theorems is provided in Section 5.
However, let us develop a few tools in Section 4 which will
be used later in our proofs.

4 NEGATIVE DEPENDENCE AND
INFORMATION MONOTONICITY

Probabilistic analysis of most random variables and specif-
ically the derivation of the majority of probabilistic bounds
rely on independence assumption between variables which
offers considerable simplification and convenience. Many
random variables including the missing mass, however,
consist of random components that are not independent.

Fortunately, even in cases where independence does not
hold, one can still use some standard tools and methods
provided variables are dependent in specific ways. The
following notions of dependence are among the common
ways that prove useful in these settings: negative
association and negative regression.

427

4.1 Negative Dependence and Chernoff’s Exponential
Moment Method

Our proof involves variables with a specific type of
dependence known as negative association. One can
infer concentration of sums of negatively associated ran-
dom variables from the concentration of sums of their
independent copies in certain situations. In exponential
moment method, this property allows us to treat such
variables as independent in the context of probability
inequalities as we shall elaborate later in this section.

In the sequel, we present negative association and
regression and supply tools that will be essential in proofs.

Negative Association: Any real-valued random variables
X1 and X2 are negatively associated if

E[X1X2] ≤ E[X1] · E[X2]. (16)

More generally, a set of random variables X1, ..., Xm are
negatively associated if for any disjoint subsets A and B of
the index set {1, ...,m}, we have

E[XiXj] ≤ E[Xi] · E[Xj] for i ∈ A, j ∈ B. (17)

Stochastic Domination: Assume that X and Y are real-
valued random variables. Then, X is said to stochastically
dominate Y if for all a in the range of X and Y we have

P (X ≥ a) ≥ P (Y ≥ a). (18)

We use the notation X � Y to reflect (18) in short.

Stochastic Monotonicity: A random variable Y is
stochastically non-decreasing in random variable X if

x1 ≤ x2 =⇒ P (Y |X = x1) ≤ P (Y |X = x2). (19)

Similarly, Y is stochastically non-increasing in X if

x1 ≤ x2 =⇒ P (Y |X = x1) ≥ P (Y |X = x2). (20)

The notations (Y |X = x1) � (Y |X = x2) and
(Y |X = x1) � (Y |X = x2) represent the above
definitions using the notion of stochastic domination. Also,
we will use shorthands Y ↑ X and Y ↓ X to refer to the
relations described by (19) and (20) respectively.

Negative Regression: Random variables X and Y have
negative regression dependence relation if X ↓ Y .

Dubhashi and Ranjan (1998) as well as Joag-Dev and
Proschan (1983) summarize numerous notable properties
of negative association and negative regression. Specifi-
cally, the former provides a proposition that indicates that
Hoeffding-Chernoff bounds apply to sums of negatively as-
sociated random variables. Further, McAllester and Ortiz
(2003) generalize these observations to essentially any con-
centration result derived based on the exponential moment

method by drawing a connection between deviation proba-
bility of a discrete random variable and Chernoff’s entropy
of a related distribution.

We provide a self-standing account by presenting the proof
for some of these existing results as well as developing
several generic tools that are applicable beyond missing
mass problem.
Lemma 1. [Binary Stochastic Monotonicity] Let Y be
a binary random variable (Bernoulli) and let X take on
values in a totally ordered set X . Then, one has

Y ↓ X =⇒ X ↓ Y. (21)

Proof. For any x, we have

P (Y = 1| X ≤ x) ≥ inf
a≤x

P (Y = 1| X = a)

≥ sup
a>x

P (Y = 1| X = a)

≥ P (Y = 1| X > x). (22)

The above argument implies that random variables Y
and 1X>x are negatively associated and since the
expression P (X > x| Y = 1) ≤ P (X > x| Y = 0)
holds for all x ∈ X , it follows that X ↓ Y .

Lemma 2. [Independent Binary Negative Regression]
Let X1, ..., Xm be negatively associated random variables
and Y1, ..., Ym be binary random variables (Bernoulli) such
that either Yi ↓ Xi or Yi ↑ Xi holds for all i ∈ {1, ...,m}.
Then Y1, ..., Ym are negatively associated.

Proof. For any disjoint subsets A and B of {1, ...,m},
taking i ∈ A and j ∈ B we have

E[YiYj] = E
[
E[YiYj |X1, ..., Xm]

]
(23)

= E
[
E[Yi|Xi] · E[Yj |Xj]

]
(24)

≤ E
[
E[Yi|Xi]

]
· E
[
E[Yj |Xj]

]
(25)

= E[Yi] · E[Yj]. (26)

Here, (24) holds since each Yi only depends on Xi.
Inequality (25) follows because Xi and Xj are negatively
associated and we have E[Yi|Xi] = P (Yi|Xi).

Lemma 3. [Chernoff] For any real-valued random vari-
able X with finite mean E[X] and for any x > 0, we have:

DP (X,x) ≤ exp(−S(X,x)), (27)
S(X,x) = sup

λ
{λx− ln(Z(X,λ))}, (28)

Z(X,λ) = E[eλX]. (29)

The lemma follows from the observation that for λ ≥ 0, we
have the following

P (X ≥ x) = P (eλX ≥ eλx) ≤ inf
λ

E[eλX]

eλx
. (30)

This approach is known as exponential moment method
(Chernoff (1952)) because of the inequality in (30).

428

Lemma 4. [Negative Association] In the exponential
moment method, concentration of sums of negatively
associated random variables can be deduced from the
concentration of sums of their independent copies.

Proof. Let X1, ..., Xm be any set of negatively
associated variables. Let X ′1, ..., X

′
m be independent

shadow variables, i.e., independent variables such that each
X ′i is distributed identically to Xi. Let X =

∑m
i Xi and

X ′ =
∑m
i X

′
i . For any set of negatively associated random

variables, one has S(X, ε) ≥ S(X ′, ε) since:

Z(X,λ) = E[eλX] = E[
m∏

i

eλXi]

≤
m∏

i

E[eλXi] = E[eλX
′
] = Z(X ′, λ). (31)

The lemma is due to McAllester and Ortiz (2003) which
follows from definition of entropy function S given by (28).

This lemma is very helpful in the context of large deviation
bounds: it implies that one can treat negatively associated
variables as if they were independent (McAllester and Ortiz
(2003); Dubhashi and Ranjan (1998)).

Lemma 5. [Balls and Bins] Let S be any sample
comprising n items drawn i.i.d. from a fixed distribution
on integers N = {1, ..., N} (bins). Define Ci to be the
number of times that integer i occurs in S. The random
variables C1, ..., CN are negatively associated.

Proof. Let f and g be non-decreasing and non-increasing
functions respectively. We have

(
f(x)− f(y)

)(
g(x)− g(y)

)
≤ 0. (32)

Further, assume that X is a real-valued random variable
and Y is an independent shadow variable corresponding to
X . Exploiting (32), we obtain

E[f(X)g(X)] ≤ E[f(X)] · E[g(X)], (33)

which implies that f(X) and g(X) are negatively
associated. Inequality (33) is an instance of Chebychev’s
fundamental association inequality.

Now, suppose without loss of generality that N = 2. Take
X ∈ [0, n], and consider the following functions

{
f(X) = X,
g(X) = n−X, (34)

where n = Ci + Cj is the total counts. Since f and
g are non-decreasing and non-increasing functions of X ,
choosing X = f(Ci) = Ci we have for all i, j ∈ N that

E[Ci · Cj] ≤ E[Ci] · E[Cj], (35)

which concludes the proof for N = 2. Now, tak-
ing f(Ci) = Ci and g(Ci) = n − ∑j 6=i Cj where

n =
∑N
k=1 Ck, for N > 2 the same argument implies

that Ci and Cj are negatively associated for all i ∈ N and
j ∈ N \ i. That is to say, any increase in Ci will cause
a decrease in some or all of Cj variables with j 6= i and
vice versa. It is easy to verify that the same is true for any
disjoint subsets of the set {C1, ..., CN}.

Lemma 6. [Monotonicity] For any negatively
associated random variables X1, ..., Xm and any
non-decreasing functions f1, ..., fm, we have that
f1(X1), ..., fm(Xm) are negatively associated. The same
holds if the functions f1, ..., fm were non-increasing.

Remark: The proof is in the same spirit as that of associa-
tion inequality (33) and motivated by composition rules for
monotonic functions that one can repeatedly apply to (32).

Lemma 7. [Union] The union of independent sets of
negatively associated random variables yields a set of
negatively associated random variables.

Suppose that X and Y are independent vectors each of
which comprising a negatively associated set. Then, the
concatenated vector [X,Y] is negatively associated.

Proof. Let [X1, X2] and [Y1, Y2] be some arbitrary
partitions of X and Y respectively and assume that f and
g are non-decreasing functions. Then, one has

E[f(X1, Y1) · g(X2, Y2)] =

E
[
E[f(X1, Y1) · g(X2, Y2) | Y1, Y2]

]
≤

E[E[f(X1, Y1) | Y1] · E[g(X2, Y2) | Y2]] ≤
E[E[f(X1, Y1) | Y1]] · E[E[g(X2, Y2) | Y2]] =

E[f(X1, Y1)] · E[g(X2, Y2)]. (36)

The first inequality is due to independence of [X1, X2]
from [Y1, Y2] which results in negative association being
preserved under conditioning and the second inequality
follows because [Y1, Y2] are negatively associated (Joag-
Dev and Proschan (1983)). The same holds if f and g were
non-increasing functions.

Lemma 8. [Splitting] Splitting an arbitrary subset of bins
of any fixed discrete distribution yields a set of negatively
associated random bins.

Proof. Let w = (w1, ..., wm) be a discrete distribution and
W = {W1, ...,Wm} be the associated set of random bins.
Assume that wi is split into k binsWS

i = {Wi1, ...,Wik}
such that wi =

∑k
j=1Wij . Then, by Lemma 5 members

of split setWS
i are negatively associated. Clearly, the same

holds for all 1 ≤ i ≤ m as well as any other subset of set
W . Moreover, for all 1 ≤ i ≤ m the setsWS

i andW \Wi

are negatively associated by Lemma 5 and Lemma 7.

429

Lemma 9. [Absorption] Absorbing any subset of bins of
a discrete distribution yields negatively associated bins.

Proof. Let w = (w1, ..., wN) be a discrete distribution
and let W = {W1, ...,WN} be the associated set of
random bins. Assume without loss of generality that
WA = {WA

1 , ...,W
A
N−1} is the absorption-induced

set of random bins where wN is absorbed to produce
wA = (wA1 , ..., w

A
N−1) and where wAi = wi + wN

N−1
for i = 1, ..., N − 1. So, wN is discarded and we have∑N−1
i=1 WA

i = 1 − wN . The rest of the proof concerns
applying Lemma 5 to the absorb setWA. The same holds
if we absorb wN to a subset ofW \WN .

4.2 Negative Dependence and the Missing Mass

For missing mass, the variables Wi = Ci
n are negatively

associated owing to Lemma 5 and linearity of expectation.
Also, one has ∀i : Yi ↓ Wi. So, by Lemma 1 we infer that
∀i : Wi ↓ Yi. Now, Y1, ..., YN are negatively associated
because they are a set of independent binary variables with
negative regression dependence (Lemma 2). Thus, con-
centration variables Zi = wiYi − E[wiYi] := ζ(Yi) are
negatively associated by Lemma 6 since we have

ζ(Yi) =

{
−wiqi if Yi = 0,
wi(1− qi) if Yi = 1.

(37)

For all i, ζ is a non-decreasing function of Yi. Likewise,
concentration variables −Zi are negatively associated.

4.3 Information Monotonicity and Partitioning

Lemma 10. [Information Monotonicity] Let
p = (p1, ..., pN) be a discrete distribution on
X = (x1, .., xN) such that for 1 ≤ i ≤ N we have
P (X = xi) = pi. Suppose we partition X into m ≤ N
non-empty disjoint groups G1, ..., Gm, namely

X = ∪ Gi,
∀i 6= j : Gi ∩Gj = ∅. (38)

This is called coarse binning since it generates a new dis-
tribution with groups Gi whose dimensionality is less than
that of the original distribution. Note that once the distribu-
tion is transformed, considering any outcome xi from the
original distribution we will only have access to its group
membership information; for instance, we can observe that
it belongs to Gj but we will not be able to recover pi.

Let us denote the induced distribution over the partition
G = (G1, ..., Gm) by pG = (pG1 , ..., p

G
m). Clearly, we have

pGi = P (Gi) =
∑

j∈Gi
P (xj). (39)

Now, consider the f -divergence Df (pG|| qG) between
induced probability distributions pG and qG. Information

monotonicity states that information is lost as we partition
elements of p and q into groups to produce pG and qG

respectively. Namely, for any f -divergence one has

Df (pG|| qG) ≤ Df (p || q), (40)

which is due to Csiszár (Csiszár (1977, 2008); Amari
(2009)). This inequality is tight if and only if for any out-
come xi and partition Gj , we have p(xi|Gj) = q(xi|Gj).

Lemma 11. [Partitioning] In the exponential moment
method, one can establish a deviation bound for any dis-
crete random variable X by invoking Chernoff’s method
on the associated discrete partition random variable XG.

Formally, assume X and Xλ are discrete random variables
defined on the setX endowed with probability distributions
p and pλ respectively. Further, suppose that XG and XG

λ

are discrete variables on a partition set XG endowed with
pG and pGλ that are obtained from p and pλ by partitioning
using some partition G. Then, we have

∀x > 0 : DP (X,x) ≤ exp(−S(XG, x)). (41)

Proof. Let λ(x) be the optimal λ in (28). Then, we have

S(X,x) = xλ(x)− ln(Z(X,λ(x)))

= DKL(pλ(x)|| p)
≥ DKL(pGλ(x)|| pG)

= S(XG, x), (42)

where we have introduced the λ-induced distribution

Pλ(X = x) =
eλx

Z(X,λ)
P (X = x). (43)

The inequality step in (42) follows from (40) and the
observation thatDKL is an instance of f -divergence where
f(v) = v ln(v) with v ≥ 0.

5 PROOF OF THE MAIN RESULTS

The central idea of the proof is to regulate the terms in
the sum given by (3) via controlling the magnitude of bins
of the distribution using operations that preserve negative
association. This mechanism will help defeat the hetero-
geneity issue leading to the failure of standard probability
inequalities described by McAllester and Ortiz (2003).

5.1 Proof of Theorem 1: Upper Deviation Bound

We consider the thresholds τ = θ
n and τ ′ = 2θ

n and reduce
the problem to one in which all bins that are larger than
τ are eliminated, where θ ∈ R will depend on the target
deviation size ε.

The reduction is performed by splitting the bins that are
larger than τ and then absorbing the bins that are smaller

430

than τ . This is followed by choosing a threshold that yields
the sharpest bound for the choice of ε. It turns out that the
optimal threshold will too be a function of ε.

Let Iτ ⊆ I denote the subset of bins that are at most
as large as τ , Iθ the subset of bins whose magnitude is
between τ and τ ′, Iτ ′ the subset of bins larger than τ ′

and I ′θ and I ′τ ′ the set of bins that we obtain after splitting
members of Iθ and Iτ ′ respectively.

Now, for each i ∈ I \Iτ = {Iθ ∪Iτ ′} and for some k ∈ N
that depends on i (but we suppress that notation below), we
will have that k ·τ ≤ wi < (k+1) ·τ . For all such i, we de-
fine extra independent Bernoulli random variables Yij with
j ∈ Ji := {1, . . . , k} and their associated bins wij . For
j ∈ {1, . . . , k − 1}, wij = τ and wik = wi − (k − 1) · τ .
In this way, all bins that are larger than τ are split up into
k bins, each of which is in-between τ and τ ′; more pre-
cisely, the first k − 1 are exactly τ and the last one may
be larger. Therefore, we consider the split random variable
Y ′ =

∑
i∈Iτ wiYi +

∑
i∈{I′

τ′∪I
′
θ}
∑
j∈Ji wijYij and the

set U ′ = {i| wi < τ ′} = {Iτ ∪ I ′θ ∪ I ′τ ′}. Furthermore,
we introduce the random variable Y ′′ =

∑
i∈U ′′ wiYi on

the absorption-induced set U ′′ = {i| τ ≤ wi < τ ′}.
The set U ′′ is generated from U ′ as follows: we take the
largest element j ∈ U ′ with wj < τ , update wl using
wl ← wl +

wj
|U ′|−1 for {l ∈ U ′ : l 6= j, wl < τ} and

discard wj . Repeating this procedure gives a set of bins
whose sizes are in-between τ and τ ′ plus a single bin of size
smaller than τ ; absorbing the latter into one of the members
of the former with size τ yields U ′′.
Now, by choosing θ such that f(θ) = e−θ = ε

γ and
θ = f−1(εγ) = ln(γε) for any 0 < ε < 1 and eε < γ < enε
as generic domain for γ, we derive the upper deviation
bound for missing mass as follows

P(Y − E[Y] ≥ ε) ≤ (44)
P(Y ′ − E[Y] ≥ ε) = (45)
P(Y ′ − E[Y ′] + (E[Y ′]− E[Y]) ≥ ε) ≤ (46)
P(Y ′ − E[Y ′] + f(θ) ≥ ε) = (47)

P
(
Y ′ − E[Y ′] ≥ (

γ − 1

γ
)ε
)

= (48)

exp

−

(γ−1
γ)

2
ε2

2(VU ′′ + αu
3 · (

γ−1
γ) · ε)

 ≤ (49)

exp

−

(γ−1
γ)

2
ε2

2(θn · ε+ 2θ
3n · (

γ−1
γ) · ε)

 ≤ (50)

inf
γ

{
exp

(
−3nε(γ − 1)2

10γ2 ln(γε)

)}
= (51)

e−c(ε)·nε. (52)

Clearly, we will have that τ∗ = θ∗

n where θ∗ = ln(γεε).

Inequality (45) follows because the splitting procedure can-
not decrease deviation probability of missing mass.

Formally, assume without loss of generality that I \ Iτ
has only one element corresponding to Y1, J1 = {1, 2}
and k1 = 1 i.e. w1 is split into two parts. Then,
deviation probability of Y can be thought of as the total
probability mass associated to independent Bernoulli
variables Y1, ..., YN whose weighted sum is bounded
below by some tail t > 0. Hence, we have

P(Y ≥ t) =
∑

Y 1N ; Y≥t
P (Y1, ..., YN)

=
∑

Y 1N ; Y̊≥t

R(Y1) ·
N∏

i=2

R(Yi)

+
∑

Y 1N ; Y̊ <t; Y≥t

R(Y1) ·
N∏

i=2

R(Yi)

=
∑

Y 1N ; Y̊≥t

R(Y1) ·
N∏

i=2

R(Yi)

+
∑

Y 1N ; Y̊ <t; Y≥t, Y1=1

R(Y1) ·
N∏

i=2

R(Yi)

=
∑

Y 2N ; Y̊≥t

N∏

i=2

R(Yi)

+
∑

Y 2N ; Y̊ <t; Y≥t

q1 ·
N∏

i=2

R(Yi), (53)

where Y̊ =
∑
i≥2 wiYi and R(Yi) = qi if Yi = 1 and

R(Yi) = 1 − qi otherwise. Likewise, one can express the
upper deviation probability of Y ′ as follows

P(Y ′ ≥ t) =
∑

Y1N ; Y̊≥t

R(Y1) ·
N∏

i=2

R(Yi)

+
∑

Y11,Y12,Y 2N ; Y̊ <t; Y ′≥t

(
R(Y11) ·R(Y12)

) N∏

i=2

R(Yi)

=
∑

Y2N ; Y̊≥t

N∏

i=2

R(Yi)

+
∑

Y11,Y12,Y 2N ; Y̊ <t; Y ′≥t

(
R(Y11) ·R(Y12)

) N∏

i=2

R(Yi)

≥
∑

Y 2N ; Y̊≥t

N∏

i=2

R(Yi)

+
∑

Y 2N ; Y̊ <t; Y ′≥t

(q11 · q12)

N∏

i=2

R(Yi), (54)

431

where R(Yij) = qij if Yij = 1 and R(Yij) = 1 − qij
otherwise. Thus, combining (53) and (54) we have

P(Y ′ ≥ t)− P(Y ≥ t) ≥
∑

Y 2N ; Y̊ <t; Y ′≥t; Y≥t

(q11 · q12 − q1)

N∏

i=2

R(Yi) =

∑

Y 2N ; Y̊ <t; Y ′≥t

(q11 · q12 − q1)

N∏

i=2

R(Yi). (55)

To complete the proof for (45), we require the expression
for the difference between deviation probabilities in (55) to
be non-negative for all t > 0 which holds if q1 ≤ q11 · q12.
For the missing mass, this condition holds. Without loss of
generality, assume that wi is split into two terms; namely,
we have wi = wij + wij′ . Then, we can check the above
condition as follows

qi = (1− wi)n ≤ (1− wij)n · (1− wij′)n

=
(

1− (wij + wij′)︸ ︷︷ ︸
wi

+wij · wij′︸ ︷︷ ︸
≥0

)n
. (56)

One can verify using induction that (56) holds also for
cases where the split operation produces more than two
terms. Now, choosing tail size t = ε+ EY implies (45).

Inequality (47) follows because the gap between the expec-
tations will be negligible. Denoting E[Y ′i] = q′i, we have

q′i =

qi if i ∈ Iτ ,
qij if i ∈ {I ′τ ′ ∪ I ′θ},
0 otherwise.

(57)

Namely, we can write

gu(θ) = E[Y ′]− E[Y] =
∑

i∈I
wi(q

′
i − qi)

=
∑

i∈Iτ
wiqi +

∑

i∈{I′
τ′∪I

′
θ}

∑

j∈Ji
wijqij −

∑

i∈I
wiqi

=
∑

i∈{I′
τ′∪I

′
θ}

∑

j∈Ji
wijqij −

∑

i∈{Iτ′∪Iθ}
wiqi

≤
∑

i∈{I′
τ′∪I

′
θ}

∑

j∈Ji
wijqij

≤
∑

i∈{I′
τ′∪I

′
θ}

∑

j∈Ji
wijf(θ) ≤ f(θ). (58)

The expression in (49) is Bernstein’s inequality applied
to the random variable Zu =

∑
i∈U ′′ Zi relying upon

Lemma 11. Here, the concentration variables are
Zi = wiYi − E[wiYi] with i ∈ U ′′ and we set αu = τ ′.

Let VU ′′ be variance proxy term V in Bernstein’s inequal-
ity as defined in (9) attached to U ′′. The functions f, g :
(0, 1)×N→ (0, 1) with f(x, n) = x(1−x)n(1−(1−x)n)

and g(x, n) = x2(1−x)n(1−(1−x)n) are non-increasing
with respect to x on (1

n+1 , 1) and (2
n+2 , 1) respectively. We

obtain for 1 < θ < n, an upperbound on VU ′′ as follows:

VU ′′ =
∑

i: wi∈U ′′
w2
i (1− wi)n

(
1− (1− wi)n

)

≤ τ ·
∑

i: wi∈U ′′
wi(1− wi)n

(
1− (1− wi)n

)

= τ · σ2
U ′′

≤ τ ·
∑

i: τ≤wi<τ ′;
∑
i wi=1

wi(1− wi)n

≤ |I(θ,n)|︸ ︷︷ ︸
≤nθ

·
(θ
n

)2 ·
(

1− θ

n

)n

≤ θ

n
· e−θ < θ

n
· ε. (59)

In order to see why (52) holds, consider c(γ, ε) = ε(γ−1)2

γ2 ln(γε)

and let us examine the derivatives as follows

∂c(γ, ε)

∂γ
= −ε

2(γ − 1)(γ − 1− 2 ln (γε))

γ3 ln2 (γε)
, (60)

∂2c(γ, ε)

∂γ2 =
ε2

γ4 ln3 (γε)

[
(6− 4γ) ln2 (

γ

ε
)+

(γ2 − 6γ + 5) ln (
γ

ε
) + 2(γ − 1)2

]
. (61)

Solving for the first derivative using (60), we obtain

γε = −2W−1

(
− ε

2
√
e

)
. (62)

Inspecting the second derivative given by (61), we can see
that the function c(γ, ε) is concave with respect to γ for
any γ > 2. Recall, moreover, that there are interrelated
restrictions on γ, ε and n in derivation of (51) and (52)
which are collectively expressed as

max{e · ε, 1, 2, γ(1)} < γ < en, n ≥ dγεe − 1. (63)

5.2 Proof of Theorem 2: Lower Deviation Bound

The proof for lower deviation bound proceeds in the same
spirit as section 5.1. The idea is again to reduce the problem
to one in which all bins that are larger than the threshold τ
are eliminated.

We split large bins and then absorb small bins to enable
us shrink the variance while controlling the magnitude of
terms (and consequently the key quantities α and V) before
applying Bernstein’s inequality.

By choosing θ such that f(θ) = e−θ so that θ = ln(γε), for
any 0 < ε < 1 with eε < γ < enε being generic domain

432

for γ we obtain a lower deviation bound as follows

P(Y − E[Y] ≤ −ε) ≤ (64)
P(Y ′ − E[Y] ≤ −ε) = (65)
P(Y ′ − E[Y ′] + (E[Y ′]− E[Y]) ≤ −ε) ≤ (66)
P(Y ′ − E[Y ′]− f(θ) ≤ −ε) = (67)

P
(
Y ′ − E[Y ′] ≤ −(

γ − 1

γ
)ε
)
≤ (68)

≤ exp

−

(γ−1
γ)

2
ε2

2(VL′′ + αl
3 · (

γ−1
γ) · ε)

 ≤ (69)

≤ exp

−

(γ−1
γ)

2
ε2

2(θn · ε+ 2θ
3n · (

γ−1
γ) · ε)

 ≤ (70)

inf
γ

{
exp

(
− 3nε(γ − 1)2

10γ2 ln(γε)

)}
= (71)

e−c(ε)·nε, (72)

where c(ε) and τ∗ are as before and domain restrictions are
determined similar to (63).

The variables Y ′ and Y ′′, and the setsL′ andL′′ are defined
in the same fashion as Section 5.1.

The first inequality is proved in the same way as (45). Now,
we set E[Y ′i] = q′i such that

q′i =

{
qi if wi < τ ′,
0 otherwise. (73)

Inequality (67) follows because the compensation gap will
remain small since we have

gl(θ) = E[Y ′]− E[Y] =
∑

i∈I
wi(q

′
i − qi)

=
∑

i:wi<τ ′

wiqi −
∑

i∈I
wiqi = −

∑

i:wi≥τ ′
wiqi

≥ −
∑

i:wi≥τ ′
wif(θ) ≥ −f(θ). (74)

The expression given by (69) is Bernstein’s inequality
applied to random variable Zl =

∑
i∈L′′ Zi where we have

defined Zi = wi(µ−wiYi)−E[wi(µ−wiYi)] with µ being
the upper bound on the value of the wiYi terms.

Further, we choose αl = τ ′. Observe that Zl = −Zu and
µ = αl. Finally, an upperbound on VL′′ can be determined
with arguments identical to that of VU ′′ .

The rest of the proof proceeds in an analogous manner to
the proof of upper deviation bound.

6 CONCLUSIONS

We proposed a new technique for establishing concentra-
tion inequalities and applied it to the missing mass using

Bernstein’s inequality. Along the way, we introduced a
collection of concepts and tools in the intersection of prob-
ability theory and information theory that have the potential
to be advantageous in more general settings.

Recall that Bernstein’s inequality hinges on establishing an
upperbound on Z(X,λ) given by (29) in a particular way.
Clearly, this choice is not unique and one can choose any
other upperbound (e.g. c.f. Lugosi (2003)) and apply the
same technique to derive potentially tight bounds achiev-
able within the framework of exponential moment method.

Our bounds sharpen the leading results for missing mass
in the case of small deviations. These inequalities hold
subject to the mild condition that the sample size is large
enough, namely n ≥ dγεe − 1.

We select the best known bounds in Berend and
Kontorovich (2013) for the comparison. Our lower devi-
ation and upper deviation bounds improve state-of-the-art
for any 0 < ε < 0.021 and any 0 < ε < 0.045 respectively.

Plugging in the definitions, we can see that the
compensation gap can be expressed as a function of ε and
show that the following holds

|g(ε)| ≤ √e · exp
(
W−1(

−ε
2
√
e

)
)
, (75)

where we have dropped the subscript of gap g. Note that
the gap is negligible for small ε compared to large values
of ε for both (52) and (72). This observation supports the
fact that we obtained sharper bounds for small deviations.

Mathematical analysis of missing mass via concentration
inequalities has various important applications including
density estimation, generalization bounds and handling
missing data just to name a few. Needless to say that any
refinement in bounds or tools developed for the former may
directly contribute to advancement in those applications.

Acknowledgements

The authors are grateful to National ICT Australia (NICTA)
for generous funding, as part of collaborative machine
learning research projects. We would like to thank
Peter Grünwald, Aryeh Kontorovich, Thijs van Ommen
and Mark Schmidt for feedback and helpful discussions,
and anonymous reviewers for their constructive comments.

References
Shun-ichi Amari. Divergence function, information mono-

tonicity and information geometry. Workshop on Infor-
mation Theoretic Methods in Science and Engineering
(WITMSE), 2009.

Daniel Berend and Aryeh Kontorovich. The missing mass
problem. Statistics & Probability Letters, 2012.

433

Daniel Berend and Aryeh Kontorovich. On the concentra-
tion of the missing mass. Electronic Communications in
Probability, 18:no. 3, 1–7, 2013.

S. N. Bernstein. On a modification of Chebyshev’s inequal-
ity and of the error formula of Laplace. Annals Science
Institute SAV. Ukraine, 1924.

S. Boucheron, G. Lugosi, and P. Massart. Concentration
Inequalities: A Nonasymptotic Theory of Independence.
Oxford University Press, 2013.

H. Chernoff. A measure of the asymptotic efficiency of
tests of a hypothesis based on the sum of observations.
Annals of Mathematical Statistics, 23:493–507, 1952.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey,
and D. E. Knuth. On the Lambert W function. In Ad-
vances in Computational Mathematics, 1996.

Imre Csiszár. Information measures: a critical survey. 7th
Prague Conference on Information Theory, pages 73–
86, 1977.

Imre Csiszár. Axiomatic characterizations of information
measures. Entropy, 10:261–273, 2008.

Devdatt Dubhashi and Desh Ranjan. Balls and bins: A
study in negative dependence. Random Structures and
Algorithms, 13:99–124, 1998.

Kumar Joag-Dev and Frank Proschan. Negative associa-
tion of random variables with applications. Annals of
Statistics, 11:286–295, 1983.

Michael Kearns and Lawrence Saul. Large deviation meth-
ods for approximate probabilistic inference. In Proceed-
ings of Uncertainty in Artificial Intelligence (UAI), 1998.

Gábor Lugosi. Concentration of measure inequali-
ties, 2003. URL http://www.econ.upf.es/

˜lugosi/anu.ps.

David McAllester and Luis Ortiz. Concentration inequal-
ities for the missing mass and for histogram rule error.
Journal of Machine Learning Research (JMLR), 4, 2003.

David McAllester and Robert E. Schapire. On the conver-
gence rate of Good-Turing estimators. Conference on
Learning Theory (COLT), 2000.

Robin Pemantle. Towards a theory of negative dependence.
Journal of Mathematical Physics, 41:1371–1390, 1999.

434

Minimizing Expected Losses in Perturbation Models
with Multidimensional Parametric Min-cuts

Adrian Kim, Kyomin Jung
Seoul National University

Seoul, South Korea
{adkim955, kjung}@snu.ac.kr

Yongsub Lim
KAIST

Daejeon, South Korea
ddiyong@kaist.ac.kr

Daniel Tarlow, Pushmeet Kohli
Microsoft Research

Cambridge, UK
{dtarlow, pkohli}@microsoft.com

Abstract

We consider the problem of learning
perturbation-based probabilistic models by
computing and differentiating expected losses.
This is a challenging computational problem
that has traditionally been tackled using Monte
Carlo-based methods. In this work, we show
how a generalization of parametric min-cuts can
be used to address the same problem, achieving
higher accuracy and faster performance than a
sampling-based baseline. Utilizing our proposed
Skeleton Method, we show that we can learn the
perturbation model so as to directly minimize
expected losses. Experimental results show
that this approach offers promise as a new way
of training structured prediction models under
complex loss functions.

1 INTRODUCTION

Many problems in machine learning can be formulated as
structured-output prediction, such as pixel labelling prob-
lems in computer vision and protein side-chain predic-
tion in bio-informatics. A key challenge in the solution
of these problems is to build structured prediction mod-
els that capture key correlations within the outputs and to
learn these models from data. There are a range of ap-
proaches to this problem, including training a determinis-
tic predictor to minimize (regularized) empirical risk (e.g.,
structural SVMs (Taskar et al., 2003; Tsochantaridis et al.,
2005)), PAC Bayesian-based approaches where the goal is
to train a randomized predictor to minimize a regularized
empirical risk (Keshet et al., 2011), and probabilistic mod-
elling paired with Bayesian decision theory (Schmidt et al.,
2010).

Perturbation models (Papandreou & Yuille, 2011; Tarlow
et al., 2012; Hazan & Jaakkola, 2012) are an approach that
have been a focus of interest in recent years, and are closely

related to both PAC-Bayesian approaches and probabilis-
tic modelling. The idea is to build a probabilistic model
over structured outputs by drawing a random energy func-
tion and then returning the argmin of the random energy
function as a sample from the model. These models can
then be trained under maximum likelihood-like objectives
(Papandreou & Yuille, 2011; Tarlow et al., 2012; Hazan &
Jaakkola, 2012) or to minimize expected loss (Keshet et al.,
2011; Hazan et al., 2013). Typically the distribution over
energy functions is restricted so that the optimization step
is tractable (e.g., it is a min-cut problem). When this is the
case, perturbation models have the desirable property that
exact samples can be drawn efficiently with a single call to
an efficient optimization procedure.

Our aim in this work is to revisit the problem of training
perturbation models to minimize expected losses. Previous
works (Keshet et al., 2011; Hazan et al., 2013) have used
Monte Carlo-based methods to estimate the needed gradi-
ents. A concern with these approaches is that the gradient
estimates can have high variance, as is the case with the
well-known REINFORCE algorithm (Williams, 1992). In-
stead, our approach here is to explore combinatorial meth-
ods that take advantage of the structure of the optimization
problem in order to more efficiently make use of optimizer
runs. As a first foray into this approach, we restrict atten-
tion to the case where the perturbation model takes the form
of a uniform distribution over model parameters followed
by a call to a min-cut/maxflow routine.

Our method is based on a generalization of the paramet-
ric min-cut algorithm (Gallo et al., 1989) which in the
1-dimensional case is able to efficiently compute all pa-
rameter values (breakpoints) where the minimum energy
(MAP) solution changes. To demonstrate the efficacy of
our method, we compare estimated expected losses and
their gradients computed by our method with those ob-
tained from a sampling-based scheme. Experimental re-
sults show that we get more accurate solutions with fewer
calls to the optimization procedure and less overall wall
time.

As a full application, we also show that our method is use-

435

ful towards training structured prediction models to min-
imize expected losses. The method is indifferent to the
loss function used, so there is potential to use the same
method for loss functions that are typically difficult to work
with. Experimentally, we compare our method to learn-
ing using Perturb-and-MAP (a.k.a. P&M) (Papandreou &
Yuille, 2011) to learn a probabilistic model, then making
loss-aware predictions using Bayesian Decision theory. We
also show that the Skeleton method can be used in place of
sampling within the training procedure from (Papandreou
& Yuille, 2011) to give gradients with lower variance.

2 BACKGROUND: PERTURBATIONS,
EXPECTED LOSSES

We will focus on the case where perturbation models are
used to define a conditional probability model P (y |x; θ),
where x is an input (e.g., an image), y ∈ {0, 1}n is a struc-
tured output (e.g., a foreground-background image seg-
mentation), and θ ∈ Rm is a real-valued vector of parame-
ter values. We additionally assume access to a feature vec-
tor φ(x, y) ∈ Rm which contains unary and pairwise po-
tentials. Perturbation models begin by defining an energy
functionE(y |x; θ) = 〈θ, φ(x, y)〉. The second component
to a perturbation model is the noise distributionP (γ) which
is a distribution over noise vectors γ ∈ Rm. The probabil-
ity model P (y |x; θ) can then be defined as follows:

γ ∼ P (γ) (1)
y = argmin

y′
E(y′ |x; θ + γ). (2)

It will be useful to define minimizer f(θ) =
argminy E(y |x; θ), dual function g(θ) =
miny E(y |x; θ), and inverse set f−1(y) = {θ :
f(θ) = y}. Under this definition, the proba-
bility of a configuration y can be expressed as
P (y |x; θ) =

∫
1{θ+γ∈f−1(y)}P (γ)dγ. We are inter-

ested in expected losses under perturbation models. The
expected loss (or risk) is a function of a given y∗ (in our
case, the ground truth configuration) and parameters θ. It
is defined as

R(y∗, θ) =
∑

y∈{0,1}n
P (y |x; θ)L(y∗, y) (3)

=
∑

y∈{0,1}n

∫
1{θ+γ∈f−1(y)}P (γ)L(y∗, y)dγ,

(4)

where L(y∗, y) assigns a loss value for predicting y when
the ground truth is y∗. The ultimate goal we are working
towards is to learn parameters θ so as to minimizeR(y∗, θ).
First, we focus on the prerequisite tasks of computing and
differentiating R(y∗, θ). We will use deterministic update
rules to calculate gradients with the Skeleton method to
learn the model.

3 ALGORITHM: SKELETON METHOD

We begin by making some assumptions. First, let P (γ)
be a uniform distribution such that θ + γ is distributed
uniformly over a m-dimensional hyperrectangular region
Sθ =

∏m
i=1[θi, θi +wi], where γi ∈ [0, wi] and wi ∈ R>0.

Also assume that the minimizer f(θ) is unique for all θ ex-
cept for a set with measure zero, so f(θ) can be treated as
having a unique value. Finally, assume that for all θ ∈ S,
E(y |x; θ) is submodular and can be optimized efficiently.

In the following, it will be convenient for us to re-
define the inverse set f−1(y) so that only regions in
S are included. That is, f−1(y) = {θ : f(θ) =
y ∧ θ ∈ S}. Then from above, we have that
R(y∗, θ) =

∑
y∈{0,1}n

∫
1{θ+γ∈f−1(y)}P (γ)L(y∗, y)dγ.

Noting that L(y∗, y) is not a function
of γ and that

∫
1{θ+γ∈f−1(y)}P (γ)dγ =

Volume(f−1(y))/Volume(S), we can rewrite R(·)
as
∑
y∈YS L(y∗, y) Volume(f−1(y))/Volume(S), where

YS = {y : ∃θ, θ ∈ S ∧ f(θ) = y} is the set of
configurations that are minimizers for some θ ∈ S.

In this paper, we introduce a novel method to find the min-
imizers y ∈ YS and their inverse sets by iteratively updat-
ing a graph structure that we call a skeleton. Note that for
a fixed y, E(y |x; θ) is a linear function of θ, which im-
plies that the dual function g(θ) = miny E(y |x; θ) is a
piecewise concave function, where pieces are hyperplanes
corresponding to minimizers y. Let hy be the correspond-
ing hyperplane for some fixed minimizer y. Intuitively, the
skeleton GY = (VY , EY) is a graphical representation of
the dual g(θ) over S. The skeleton will be constructed on
the given parameter space S by finding new minimizers, or
hyperplanes, at each iteration until there are no more min-
imizers. At each iteration, the growing skeleton represents
an upper bound on the dual g, which we call the subset
dual.

Definition 1 (Subset dual gY) For some given minimizer
set Y ⊆ YS , let gY (θ) = miny∈Y E(y |x; θ) be the subset
dual, which is a piecewise concave function.

For some given subset dual gY (·), each hyperplane hy has a
corresponding graph which we refer as a facet Gy . A facet
Gy = (Vy, Ey) is defined as the smallest convex hull made
by the intersections of hy and other hyperplanes, where
Vy, Ey are boundary vertices and edges of the convex hull.
Let θv be the parameter value and zv = gY (θv) be the sub-
set dual value corresponding to the vertex v. Note that a
facet can be cut because of the boundaries the given pa-
rameter space makes. A skeleton is defined using the union
of these facets as follows.

Definition 2 (Skeleton of gY over S) For some given
subset dual gY , the skeleton of gY on S can be represented
by the following structure GY = (VY , EY). Let (u, v) be

436

an edge between u and v, where u, v ∈ VY .

• VY =
⋃
y∈Y {v : Boundary vertices ofGy , where θv ∈

S, zv = gY (θv)}

• EY =
⋃
y∈Y {(u, v) : Boundary edges of Gy ,

where u, v ∈ VY } ∪ {(u, v) : u ∈ VY , θu ∈
Πm
i=0{w−i , w+

i }, v = (θu,−∞)}

For example, Figure 1 is a skeleton over some parame-
ter space S ∈ R2 given a subset dual gY , where Y =
{y1, ..., y5}. There are five facets on the skeleton, where
four are cut by the boundaries of S.

From the given definitions, it is clear that an inverse set
f−1Y (y) = {θ : y = argminy′∈Y fθ(y

′) ∧ θ ∈ S} of
y defined on a subset dual gY directly corresponds to the
projection of the facet Gy . Thus, in order to calculate the
volume of θY (y), we can use the projected vertices of Gy
on S. One of the main points of our method is that we are
able to track every facet with every iteration, so that we
can calculate the approximate expected loss every time we
update the skeleton.

We now describe our Skeleton method and how it works.
Figure 1 describes a visual example on how a skeleton is
constructed and updated by a single iteration of our algo-
rithm. Algorithm 1 is the pseudo code of the algorithm.

3.1 INITIALIZATION

The initial skeleton GY = (VY , EY) is given by the fol-
lowing.

• Y = φ

• VY = {(θvn , zvn) : θvn = Πm
i=0{w−i , w+

i }, zvn =
∞}

• EY = {(u, v) : u ∈ VY , v = (θu,−∞)}

3.2 FINDING A NEW FACET

In order to find a new facet, the algorithm first picks some
vertex u = (θu, zu) ∈ VY . Using graph cut, a new solution
yu = f(θu) can be found. The first step is to determine
whether the new solution improves the current dual in any
region. This can be checked by hyu(θu) < zu. If this is the
case, we say that a cut is made, and yu is added to Y .

Next, we must find new intersection points where hyu inter-
sects other hyperplanes defining the subset dual. The key
property of the new intersection points is that they will ei-
ther appear at existing vertices v ∈ VY , or they appear on
an edge (ph, pt) ∈ EY that “crosses” the new hyperplane;
that is hyph (θph) < zph and hypt (θpt) > zpt . The set of
vertices where hyv (θv) < zv , form a connected component

Algorithm 1 Skeleton Method

Input: Oracle f , Loss function L(y∗, y)
(Y,GY)← InitSkeleton()
for all u = (θu, zu) ∈ Vi do
yu = f(θu)
if hyu(θu) < zu then

Add yu to Y
(I,H)← FindIntersection(GY , hyu)
Add fyu = (yu, I) to FY
VY = (VY ∪ I)−H
for all Intersection vertices p ∈ I do

if p is a new vertex then
Add p to all Gy ∈ {Facets sharing (pt, ph),
where ph is above and pt is below hyu}
Append new edge (pt, p) to EY

end if
end for
Remove vertices r ∈ H above hyu from all facets
Remove E− = {(u, v) : u or v ∈ H} from EY
Append E+ = {Boundary edges of Gyu} to EY
R =

∑
y∈Y V olumef−1(y)L(y∗, y)

end if
end for

H ⊂ GY , and the crossing edges are the boundary edges
of this connected component. Thus, the intersection points
can be found by exploring a search tree outwards from u.
When a vertex v is encountered such that hyv (θv) < zv , the
intersection point between v and its parent is computed by
finding some point p where hyp(θp) = zp, and the search
tree is not searched further down that path. Upon termina-
tion, vertices of the connected component H are removed
from VY , and the new intersection points, notated as I , are
added. A step of this procedure is illustrated in Figure 1(b),
where there is a cut after selecting vertex ui, colored in red.

3.3 UPDATING THE SKELETON GY

When a cut is done in the skeleton, it should be updated
with the new upper bound made by hyu . The nontrivial
case is when some intersection point p ∈ I is a new point
made on some edge (ph, pt) ∈ EY , which is (u1, v1) for p1
in Figure 1b. The new vertex p is added to all facets which
share the edge (ph, pt). Also, a new edge (pt, p) should
be added to the skeleton. Boundary edges made from the
convex hull of the new polytope Gyu are also added to EY .
Finally, the skeleton update is done when all vertices r ∈ H
are deleted from every facet and all edges including r are
removed from EY .

3.4 CALCULATING EXPECTED LOSS R

At this point, the skeleton is fully updated. To compute
expected loss R(y∗, θ), we use an off-the-shelf subroutine

437

for computing the volume of each inverse set f−1Y (y) for
y ∈ Y . The volumes are multiplied by the loss value for
each y, and the products are summed to get the full ex-
pected loss. For normalization, the value is divided by the
volume of S.

3.5 EXAMPLE : TWO PARAMETERS

Figure 1 describes a single iteration of the Skeleton Method
on a perturbation model having two parameters, θ1, θ2.
Note that the leftside represents the subset dual gY and
that the right image isthe projection of facets on the given
parameter space S. The iteration starts from a skele-
ton which has already done five iterations by the algo-
rithm (Y = {y1...y5}). There are five facets on the pa-
rameter space so that the expected loss is R(y∗, θ) =∑5
n=1 Volume(f−1Y (yn))L(y∗, yn)/Volume(S). Sup-

pose we take some unused vertex u1. In this case, we
can see that the hyperplane hy6 makes a cut in the skeleton
(Y ′ = Y ∪ {y6}). By updating the skeleton, a new facet
f6 is found. Since there is a unique loss value for each
facet, we can calculate the expected loss as R(y∗, θ) =∑6
n=1 Volume(f−1Y ′ (yn))L(y∗, yn)/Volume(S).

4 LEARNING

4.1 COMPUTING GRADIENTS: SLICING

Our main focus is not only computing expected losses; the
ultimate aim is to learn parameters that yield a perturba-
tion model that achieves low expected loss. In order to
update the perturbation model to minimize the expected
loss, we calculate the gradients by applying a simple finite-
differencing-based technique named slicing.

Before going through details, we add more assumptions
from the previous section. To be more flexible, let the
parameter space where θ + γ is sampled from notated as
Sθ = θ+ S = θ+ Πm

i γ, where γi ∈ [0, wi]. The expected
loss of the region which S creates on parameter θ will be
notated as RS(y∗, θ). The approximation we use is

∂R(y∗, θ)
∂θi

≈ RS(y∗, θ + δei)−RS(y∗, θ)
δ

, (5)

where δ is a small value and ei ∈ Rm is a unit vector with
1 in the ith coordinate and 0 elsewhere. Intuitively, this is
identical to the difference between expected losses of re-
gions shifted to the + direction of θi by a small distance of
δ. Therefore, we can use a Monte Carlo-based method or
the Skeleton method on these two regions and compute the
differences to find the gradients.

When shifting a region by δ, we see that the contribution
to the gradient comes just from the δ-width end-regions il-
lustrated in Figure 3 (b). We call these end regions slices.
Motivated by this, instead of computing expected losses of

𝜃1

𝑌 = {𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5}

𝑓−1 𝑦3

𝑓−1 𝑦1𝑓−1 𝑦2 𝑓−1(𝑦4)

𝑓−1 𝑦5

𝑆 = 𝜃1, 𝜃2

𝜃2

𝜃1 𝜃2

(a)

𝑢1

𝑢1
𝑢2

𝑣1

𝑣2

𝑣4 𝑣3

𝑣4
𝑣3

𝑣1 𝑣2

𝑝1

𝑝3 𝑝2

𝐻 = {𝑢1, 𝑢2}

𝐼 = {𝑝1, 𝑣2, 𝑝2, 𝑝3}

𝑌′ = 𝑌 ∪ {𝑦6}𝑦6 = 𝑓(𝜃𝑢1)

ℎ𝑦5

𝑢2

𝜃1

𝜃2

𝜃1 𝜃2

(b)

𝑌′ = {𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6}

𝜃1 𝜃2
𝜃1

𝜃2

𝑓−1 𝑦3

𝑓−1 𝑦1

𝑓−1 𝑦2 𝑓−1(𝑦4)

𝑓−1 𝑦5

𝑓−1(𝑦6)

(c)

Figure 1: Visual Example of the Skeleton Method with Two
Parameters.

the shifted and unshifted full regions, we compute expected
losses only on the slices. Intuitively, we expect the slices to
have fewer minimizers defining the Skeleton structure than
the full regions that include them, and we expect that fo-
cusing only on the regions of difference will lead to faster
and more accurate gradient estimates.

Let si = Πm
j γj be the size of the thin slice where γj =

[0, wj] except the ith range γi ∈ [0, δ]. From this setting,
Rsi(y

∗, θ) stands for the expected loss of the sliced region
of size si. Using this we can apply gradient descent up-
dates.

∂R(y∗, θ)
∂θi

≈ Rsi(y∗, θ + wi)−Rsi(y∗, θ) (6)

θi(t+ 1) = θi(t)− αi
∂R(y∗, θ)

∂θi
(7)

Each parameter θi in iteration t + 1 is updated with the
gradient value with a constant step size of αi, which is pro-
portional by the feature size of θi. One thing to be cau-
tious about when selecting a learning rate is, that if the

438

Figure 2: Comparisons between the Monte Carlo Estimator and the Skeleton Method. Using both methods we computed
expected Hamming losses to identical settings and compared by runtime. Images of size [90x120] taken from (Rother
et al., 2004) are used.

𝜃𝑖

(a) Sθ

𝛿

𝜃𝑖

(b) Sθ → Sθ+δei

Figure 3: Visual Discription of Slices. The Slicing method
computes the differences in gray regions in (b) to estimate
the gradient with respect to parameter θi.

learning rate is too large, then the parameters may make
the model jump to an unlearnable state (plateau in the ob-
jective), which is a state where Sθ holds only one inverse
set.

4.2 TRAINING

In order to learn the parameters for our perturbation model,
we exploit the Slicing method so that the model is trained
directly from minimizing expected loss. One main advan-
tage for our method is that we can use an arbitrary loss
function very easily in this process. Suppose we have a
training set with a size of N and have m parameters. For
each iteration, we make 2m slices from the model. Param-
eters are updated by using the mean value of gradients from
all training images like the following equation.

θi(t+ 1) = θi(t) + αi
1

N

N∑

n

∂R(y∗n, θ)
∂θi

(8)

Note that it is not necessary to evaluate the expected loss
objective at every step of the optimization.

4.3 EXPLOITING THE SKELETON METHOD

Previous approaches focus on how to use sampling meth-
ods to learn their models, which although many have well
understood theoretical convergence properties as the sam-
ple size goes to infinity, suffer from problems with high
variance in practice. In fact, the Skeleton method can be
used in place of sampling more generally; for example, the
P&M model in (Papandreou & Yuille, 2011) is trained us-
ing a moment-matching objective described in Eq. 9-11.

θi(t+ 1) = θi(t)− αi∆θi (9)
∆θi = ESθ [φi(y)]− E[φi(y

∗)] (10)

ESθ [φi(y)] =
1

M

M∑

j

φi(yj) (11)

To compute the expectations ESθ [φi(y)], where φi(y)
is a feature function, the standard approach is to use
sampling. However, we can replace the sampling-
based approach with a skeleton-based approach. Specif-
ically, we replace the term to be ESθ [φi(y)] =∑
y∈{0,1}n P (y |x, θ)LH(y∗, yj) and then use the method

described above to compute the quantities needed in Eq. 9-
11. This gives an alternative method for optimizing the
original P&M objective; we call this approach Skeleton
Perturb-and-MAP (Skeleton P&M).

5 EXPERIMENTS AND DISCUSSION

5.1 DATA AND SETUP

In this section, we apply the Skeleton Method to a
foreground-background image segmentation task, compar-
ing against Monte Carlo baselines which estimate expected
losses by drawing samples from the prior and reporting the
average incurred loss. All images used in experiments are

439

originally from the Berkeley image segmentation set by
(Rother et al., 2004). The energy function used is of the
following form:

E(y |x; θ) = 〈θ, φ(x, y)〉

= E(x) + θ1

n∑

i

xi

+ θ2
∑

(yi,yj)∈Ev
(yi 6= yj) + θ3

∑

(yi,yj)∈Eh
(yi 6= yj)

(12)

whereEv, Eh are each sets of neighboring vertical and hor-
izontal pairs of pixels respectively. xi is the ith pixel’s label
of the noised input, which is made by switching values of
ground truth labels with a uniform probability of 5%.

Expected losses were computed over a parameter space
Sθ = θ + γ ⊆ Rm defined from a uniform distribu-
tion γ ∼ P (γ) where γ ∈ [0, 1]3. Intuitively, Sθ is a
cube shaped region positioned by θ on the parameter space
where parameters are sampled from. Expected loss over
region Sθ will be notated as RS(y∗, θ).

In default, the loss function for the following experiments
will be defined as the Hamming distance, LH(y∗, y) =∑n
i=1(yi 6= y∗i). Note that this formulation supports ar-

bitrary loss functions other than the Hamming distance.

5.2 CALCULATING EXPECTED LOSSES

To evaluate the methods, it would be ideal to have a ground
truth value of expected losses for a given parameter setting.
Unfortunately this is hard to calculate accurately, because
the Skeleton method does not always run to termination
within practical time, and there is necessarily some vari-
ance in the estimates returned by the sampling estimate.
Thus, we report the estimates from each method along
with 95% confidence intervals derived from the sampling
method. For the sampling method, in each trial, parame-
ters were independently sampled 100k times, and this was
repeated 10 times.

Figure 2 shows plots of expected losses calculated by the
two methods versus runtime. The average sampling esti-
mate (across all trials) appear as red dashed lines in Fig-
ure 2(a) -2(c). Also shown are the cumulative averages for
three representative trials of the sampling (green to blue
curves), and the Skeleton method (magenta). The main
take-away is that the expected loss values of both methods
converge to similar values, but particularly with few sam-
ples, there is high variance in sampling. While the Monte
Carlo estimator has significant variance even after 1000
seconds, the Skeleton Method has essentially converged to
its final, accurate estimate after approximately 10 seconds.
This suggests that we can even stop running the method in
the middle of the algorithm to estimate the expected loss
with high accuracy. The reason such behavior appears is

(a) (b)

Figure 4: Gradients of Expected Hamming Loss for θ1.
(a) Sampling and Skeleton method on two full regions (b)
Skeleton method on full regions and Slicing method.

related to the high concentration of vertices in the later it-
erations of the algorithm. Many calculations made in later
iterations induce inverse sets which have very small vol-
umes, implying the low contribution to the expected loss.

5.3 CALCULATING GRADIENTS

We now turn attention to evaluating the Skeleton method
and Monte Carlo method for computing gradients of ex-
pected losses. For the Skeleton method, we evaluate our
recommended Slicing method, and also a variant that com-
putes expected losses over full regions that are shifted by
δ, which would be the more standard finite-difference ap-
proach. We use the thickness δ = 0.001 and parameter θ1,
which is for the unary term, for the experiments. A compar-
ison of the Monte Carlo approach (red) and the full-region
Skeleton method (magenta) appear in Figure 4 (a). The red
curve shows the cumulative average Monte Carlo estimate
averaged across 10 repetitions. Even with this averaging,
we see a great deal of variance in the estimates. The Skele-
ton method, by contrast, quickly converges to a value near
where the Monte Carlo estimator appears to be converging
to.

We then zoom in (note the y-axis scales) and consider the
recommended Slicing variant of the Skeleton method and
compare it to the full-region version shown in Figure 4 (a).
The result appears in Figure 4 (b). Here we see that the
Slicing variant is faster and much more stable than the full-
region variant. As mentioned above, we believe the rea-
son for the disparity is that number of unique inverse sets
in the Slicing variant is smaller, and there is no variance
that arises from the two runs computing slightly different
estimates of the expected loss in the middle region that is
contained by both the original and shifted full region.

5.4 MODEL LEARNING

Learning was done an image set including 30 images each
having approximately 2500 pixels. The data set was ran-
domly split into N = 24 training images and N ′ = 6 test

440

(a) (b)

(c) (d)

Figure 5: Parameter Learning with P&M and the Slicing
Method. (a)-(c): Parameter updates (d): Expected Ham-
ming Loss updates

images.

5.4.1 Learning

We performed learning with the Slicing method, where
gradients are computed with slices having a thickness of
δ = 0.001. The starting parameter is θ = (0, 0, 0), with a
uniform perturbation γ ∈ Π3

i [0, 1] defining a cube-shaped
region on the parameter space. Gradients are computed for
each parameter, which makes 6 slices to use. All slices
can be computed independently, where in most cases 1-3
seconds are enough to get significant accuracy. By every
iteration, the region will shift to a certain direction, and the
process is repeated. The orange plots of Figure 5 show how
the Slicing method learns the model for 60 iterations.

As a baseline for our method, we trained the P&M model
with the same settings. Note that the Slicing method and
P&M model have different behaviors, which are due to the
difference in objectives; our Slicing method directly tries
to minimize expected Hamming loss while the P&M model
uses a moment-matching rule to estimate the posterior. The
behavior of the learning P&M model is illustrated as the
solid blue line of Figure 5, with the Skeleton P&M model
being the dotted blue line. Take note that the Skeleton P&M
strongly resembles the original P&M trace, but its trajec-
tory is smoother, presumably due to lower variance in the
gradient estimates.

At test time, instead of computing expected losses accu-
rately, there may be a desire to sacrifice accuracy over run-
time in estimating the value. One easy example is to use a
finite number of samples such as 20 and compute the aver-
age of losses. Another approach is to sample a single output

Table 1: Expected Hamming Losses. Expected losses are
computed with three ways 1) Average loss of 20 samples
2) Skeleton method 3) Single sampled loss from center.
The performance for each model is described in each row,
where values were computed separately on the training set
and test set.

METHOD SAMPLED EXPECTED CENTER

P&M (Train) 1.694±.0011 1.812 .2369
Skel. P&M (Train) 1.764±.0017 1.816 .2369
Slicing (Train) 1.480±.0012 1.535 .2932
P&M (Test) 2.186±.0011 2.257 1.172
Skel. P&M (Test) 2.197±.0016 2.268 1.178
Slicing (Test) 2.048±.0043 2.134 1.391

from a moderate position such as the center of the param-
eter space. Table 1 shows the expected losses computed
from the mentioned methods. Each column represents the
method we choose to compute expected loss. Each row rep-
resents the selected model trained for 60 iterations. Both
from Figure 5(d) and Table 1, it is clear that our method
is superior to the P&M model in optimizing the expected
Hamming loss.

5.4.2 Other Loss Functions

With our method, it is possible to minimize an arbitrary loss
function’s expected value. In the following experiments we
try to minimize the following loss function.

- Boundary-only Pixel Loss LP : Hamming loss on only
pixels which have at least one neighbor with a different la-
bel in the ground truth

LP (y∗, y) =
∑

y∗i 6=y∗j

(yi 6= y∗i)

The solid lines of Figure 6 shows the expected losses
changing by the Slicing method in 60 iterations. The
dashed lines are loss values from a baseline where we
use the learned Skeleton P&M parameters to make loss-
directed predictions using an approximation of Bayesian
decision theory, similar to that used by (Premachandran
et al., 2014). approximation Bayesian Decision Theory
prediction framework. Specifically, we sample M = 100
segmentations Y = {y(1), . . . , y(M)} from the learned
model, then we make predictions by restricting possible
predictions to be one of the M sampled segmentations,
and we approximate expected losses by taking averages
over the M segmentations; specifically, we predict as
arg miny′∈Y

∑
y∈Y ∆(y′, y). Figure 6 shows the expected

boundary-only pixel loss being learned from the Slicing
method as solid lines and the approximate Minimum Bayes
Risk (MBR) prediction loss as dashed lines. This experi-
ment shows that our method gives better results than the
classical approach in minimizing expected losses.

441

Figure 6: Learning Other Expected Losses. Orange and
blue lines represent the values computed from the test set
and training set respectively. Dashed lines are Approxi-
mate MBR prediction loss values, while the solid lines are
learned from the Slicing method.

5.5 EXPECTED SEGMENTATIONS

To visualize how different parameters, or regions, effect the
expected loss, we can use a probabilistic image constructed
from every solution captured by our algorithm. This image
or expected segmentation is made by weighting each con-
figuration by the volume of its inverse set and summing
up to a gray scale image. Note that this implies that the
values of Table 1 are identical to the l1 distance between
the ground truth image and the expected segmentation. Ex-
amples are shown in Figure 7. The example images were
selected from the test set. From the figure, you can see
that expected segmentations made from our perturbation
model have higher quality, smoother segmentations than
those from the P&M models.

6 CONCLUSION

Our results show that the Skeleton method is a promising
alternative to Monte Carlo methods. The Skeleton method
converges in a nice deterministic behavior, which shows
higher accuracy than using samples. Another benefit of
the Skeleton method is that it is applicable for any loss
function. We have shown it applied to a boundary-only
pixel loss; in future work it would be interesting to apply
it to even more complicated loss functions. The Skeleton
method also appears to be a general drop-in replacement
for sampling-based computation of expectations in pertur-
bation models. We showed this by adapting the method to
the moment-matching objective that the original P&M pa-
per proposed, showing that the Skeleton method leads to
similar-but-smoother learning trajectories.

The idea of iteratively building piecewise linear approxi-

mations arises in many cases, such as when computing the
value function in POMDPs (Porta et al., 2006; Isom et al.,
2008; Brechtel et al., 2013). While the high level ideas are
similar to these and other methods, the details are quite dif-
ferent; for example, in the above works, no volume compu-
tations are required, whereas they are core to our method.

The primary challenge going forward is to broaden the ap-
plicability of the method, extending to higher dimensions
and enlarging the space of supported perturbation distribu-
tions. It is likely in these cases that exactness of the method
will need to be abandoned due to the fact that the number
of solutions will likely grow, and the computations of nec-
essary volumes will become computationally hard. Despite
this, we believe the algorithm presented here will be useful
going forward. There are two possibilities we are interested
in exploring: first, using a hybrid of the Skeleton and sam-
pling methods where some dimensions are sampled and
some are integrated analytically using the Skeleton method
(producing a Rao-Blackwellized sampler); second, we be-
lieve there to be opportunities for computing and differenti-
ating upper bounds based on the Skeleton structure, which
could lead to interesting new learning methods.

Acknowledgements

K.Jung is with ASRI, Seoul National University,and he
is funded by Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded
by the Ministry of Science, ICT & Future Planning
(2012R1A1A1014965).

References
Brechtel, Sebastian, Gindele, Tobias, et al. Solving contin-

uous pomdps: Value iteration with incremental learning
of an efficient space representation. In Proceedings of
the 30th International conference on machine learning,
pp. 370–378, 2013.

Gallo, Giorgio, Grigoriadis, Michael D, and Tarjan,
Robert E. A fast parametric maximum flow algorithm
and applications. SIAM Journal on Computing, 18(1):
30–55, 1989.

Hazan, Tamir and Jaakkola, Tommi S. On the Partition
Function and Random Maximum A-Posteriori Perturba-
tions. In ICML, pp. 991–998, 2012.

Hazan, Tamir, Maji, Subhransu, Keshet, Joseph, and
Jaakkola, Tommi. Learning efficient random max-
imum a-posteriori predictors with non-decomposable
loss functions. In Advances in Neural Information Pro-
cessing Systems, pp. 1887–1895, 2013.

Isom, Joshua D, Meyn, Sean P, and Braatz, Richard D.
Piecewise linear dynamic programming for constrained
pomdps. In AAAI, pp. 291–296, 2008.

442

(a) (b) (c) (d) (e) (f)

Figure 7: Expected Segmentations. (a) Ground Truth (b) Noised Input (c) Default (0,0,0) (d) P&M (e) Skeleton P&M (f)
Slicing Method

Keshet, Joseph, McAllester, David, and Hazan, Tamir.
Pac-bayesian approach for minimization of phoneme er-
ror rate. In Acoustics, Speech and Signal Processing
(ICASSP), 2011 IEEE International Conference on, pp.
2224–2227. IEEE, 2011.

Papandreou, G. and Yuille, A. Perturb-and-MAP Ran-
dom Fields: Using Discrete Optimization to Learn and
Sample from Energy Models. In ICCV, pp. 193–200,
Barcelona, Spain, November 2011. doi: 10.1109/ICCV.
2011.6126242.

Porta, Josep M, Vlassis, Nikos, Spaan, Matthijs TJ, and
Poupart, Pascal. Point-based value iteration for contin-
uous pomdps. The Journal of Machine Learning Re-
search, 7:2329–2367, 2006.

Premachandran, Vittal, Tarlow, Daniel, and Batra, Dhruv.
Empirical minimum bayes risk prediction: How to ex-
tract an extra few% performance from vision models
with just three more parameters. In Computer Vision and
Pattern Recognition (CVPR), 2014 IEEE Conference on,
pp. 1043–1050. IEEE, 2014.

Rother, Carsten, Kolmogorov, Vladimir, and Blake, An-
drew. Grabcut: Interactive foreground extraction using
iterated graph cuts. In ACM Transactions on Graphics
(TOG), volume 23, pp. 309–314. ACM, 2004.

Schmidt, Uwe, Gao, Qi, and Roth, Stefan. A generative
perspective on mrfs in low-level vision. In Computer Vi-
sion and Pattern Recognition (CVPR), 2010 IEEE Con-
ference on, pp. 1751–1758. IEEE, 2010.

Tarlow, Daniel, Adams, Ryan Prescott, and Zemel,
Richard S. Randomized Optimum Models for Structured
Prediction. In AISTATS, pp. 21–23, 2012.

Taskar, Ben, Guestrin, Carlos, and Koller, Daphne. Max-
margin markov networks. In Advances in Neural Infor-
mation Processing Systems, pp. None, 2003.

Tsochantaridis, Ioannis, Joachims, Thorsten, Hofmann,
Thomas, and Altun, Yasemin. Large margin methods
for structured and interdependent output variables. In
Journal of Machine Learning Research, pp. 1453–1484,
2005.

Williams, Ronald J. Simple statistical gradient-following
algorithms for connectionist reinforcement learning.
Machine learning, 8(3-4):229–256, 1992.

443

Population Empirical Bayes

Alp Kucukelbir
Data Science Institute & Computer Science

Columbia University
New York, NY 10027

David M. Blei
Data Science Institute & Computer Science & Statistics

Columbia University
New York, NY 10027

Abstract

Bayesian predictive inference analyzes a dataset to
make predictions about new observations. When a
model does notmatch the data, predictive accuracy
suffers. We develop population empirical Bayes
(pop-eb), a hierarchical framework that explicitly
models the empirical population distribution as
part of Bayesian analysis. We introduce a new
concept, the latent dataset, as a hierarchical vari-
able and set the empirical population as its prior.
This leads to a new predictive density that miti-
gates model mismatch. We efficiently apply this
method to complex models by proposing a stochas-
tic variational inference algorithm, called bump-
ing variational inference (bump-vi). We demon-
strate improved predictive accuracy over classical
Bayesian inference in three models: a linear re-
gression model of health data, a Bayesian mixture
model of natural images, and a latent Dirichlet
allocation topic model of scientific documents.

1 INTRODUCTION

Bayesian modeling is a powerful framework for analyzing
structured data. It covers many important methods in proba-
bilistic machine learning, such as regression, mixture mod-
els, hidden Markov models, and probabilistic topic mod-
els (Bishop, 2006; Murphy, 2012). Bayesian models pro-
vide an intuitive language to express assumptions about data,
as well as general-purpose algorithms (such as variational
methods) to reason under those assumptions.

Bayesian models describe data X as a structured probability
density with latent variables � , p.X;�/ D p.X j �/p.�/:
The first term is the likelihood, the second is the prior. We
use this joint density to both analyze data and form pre-
dictions. We analyze data through the posterior density of
the latent variables, p.� j X/. This conditional density de-
rives from the joint. We form predictions by combining the

likelihood and posterior density as

p.xnew j X/ D
Z
p.xnew j �/p.� j X/ d�: (1)

This is the Bayesian predictive density, the conditional den-
sity of a new observation given the dataset.

Frequentist statistics take a different perspective. Here we
analyze a set of observationsX to draw conclusions about the
mechanism F that gave rise to them. F.X/ is an unknown
distribution; it is called the population. Nonparametric fre-
quentist methods, like the bootstrap (Efron and Tibshirani,
1994), work directly with F while still respecting its un-
known nature. This leads to powerful tools that work well
across many statistical settings. One goal is to use a given
dataset to learn about F and predict new observations; this
is predictive inference (Young and Smith, 2005).

Main idea. We combine the flexibility of Bayesian model-
ing with the robustness of nonparametric frequentist statis-
tics. The issue is that Bayesian theory, under frequentist
scrutiny, assumes the model is correct (Bernardo and Smith,
2000). But this is rarely true; the model is almost always
mismatched, which can lead to brittle data analysis and poor
predictions. Our goal is to use the unknown population F to
improve a Bayesian model’s predictive performance.

We call our framework population empirical Bayes (pop-
eb). It describes a simple procedure. The input is a model
p.X;�/ and a dataset X of N observations. For example, a
mixture of Gaussians and a dataset of natural images.

1. Draw B bootstrap samples of the dataset,˚
X.1/; � � � ;X.B/

	
. Each sample is a dataset of

size N , drawn with replacement from the original
dataset (Efron and Tibshirani, 1994).

2. Compute the posterior for each bootstrapped dataset,
p
�
� j X.b/

�
. Evaluate the average predictive accuracy

of the original dataset with Equation (1).

3. Pick the bootstrapped dataset X.b�/ that best predicts
the original dataset. Use the corresponding predictive
density p

�
xnew j X.b�/

�
to form future predictions.

444

pop-eb applies to any Bayesian model and can improve
its predictive performance. Above we describe its simplest
form. Alternatives, which we discuss below, include one
that weights the bootstrapped datasets and another that em-
beds the population into a stochastic variational inference
algorithm (Hoffman et al., 2013).

In this paper, we develop, motivate, and study pop-eb. We
show that it yields a predictive density that incorporates the
unknown population distribution F in a type of empirical
Bayes model (Robbins, 1955, 1964). Compared to tradi-
tional Bayesian inference, it better predicts held-out data for
models such as regression (Table 1), mixtures of Gaussians
(Figure 5), and probabilistic topic models (Figure 7).

Related work. There are several running themes in this
paper. The first is Bayesian/frequentist compromise and
empirical Bayes. A rich literature relates Bayesian and
frequentist ideas. Bayarri and Berger (2004) and Aitkin
(2010) give thorough reviews. One thread of ideas around
combining these two schools of thought is empirical Bayes
(eb) (Robbins, 1955; Morris, 1983; Carlin and Louis, 2000).
Loosely, eb uses frequentist statistics to estimate prior spec-
ifications in Bayesian models. eb enjoys good statistical
properties (Efron, 2010); it can explain challenging concepts,
such as the James-Stein paradox (Berger, 1985).

The second theme is predictive inference. One approach
to Bayesian inference is to study the Bayesian predictive
density. The goal is to design models such that the predic-
tive density is high for new observations (Geisser, 1993).
Machine learning also strives to develop models that de-
liver high predictive accuracy (Bishop, 2006). Our method
explicitly optimizes the Bayesian predictive density.

A final theme is model misspecification. To paraphrase Box
and Draper (1987), the challenge of Bayesian statistics is
that while many models are useful, all of them are wrong.
Robust statistics offer some remedies (Berger, 1994), such
as using likelihoods and priors that are “insensitive to small
deviations from the assumptions” (Huber and Ronchetti,
2009). Our work uses empirical Bayes to induce a model
that is robust to misspecification.

2 POPULATION EMPIRICAL BAYES

Population empirical Bayes (pop-eb) incorporates the
model-independent population F into Bayesian analysis.
We first develop the structure of our framework and then
discuss the motivation behind it in Section 2.3.

2.1 EMPIRICAL BAYES

Let X D fxngN1 be a dataset with N observations. The
dataset is a sample from an unknown population distribution
F . The population is the “true” distribution of the data; it is
independent of any model (Shao, 2003).

� xn

xnew

p.�/

N

Figure 1: Graphical model for Bayesian predictive inference.
The likelihood relates the dataset X D fxngN1 , along with
the new observation xnew, to the latent variables � . Condi-
tioning on the observations and marginalizing over � gives
the Bayesian predictive density of Equation (1).

A Bayesian model has two parts. The first is the likelihood,
p.xn j �/. It relates an observation xn to a set of latent
random variables � . If the observations are independent and
identically distributed, the likelihood of the dataset becomes
p.X j �/ DQN

nD1 p.xn j �/.
The second is the prior density, p.�/. This induces the joint
density p.X;�/ D p.X j �/ p.�/. In predictive inference,
we additionally consider a new observation xnew. It shares
the same likelihood of the data, p.xnew j �/. This expands
the joint density to p.xnew;X;�/, shown in Figure 1.

A predictive density describes xnew given the observed
datasetX. A simple recipe supplies such a density: condition
on the observations and marginalize over the latent variables.
This gives the Bayesian predictive density in Equation (1).
It depends on the Bayesian posterior density,

p.� j X/ D p.X j �/ p.�/R
p.X j � 0/ p.� 0/ d� 0 ; (2)

which describes how the latent variables � vary conditioned
on a given dataset X.

The main idea behind Empirical Bayes (eb) is to build esti-
mates from the population into Bayesian inference (Robbins,
1955; Morris, 1983). eb uses the observed data to estimate
parts of a Bayesian model. There are many variants of eb.
Robbins (1955) proposed the following approach.

First, augment the model such that each observation xn gets
its own set of latent variables �n. This is sometimes called
the “compound sampling model” (Berger, 1985). It has
connections to robust inference (Berger and Berliner, 1986)
through an intuitive justification.1 Then, assume the latent
variables are exchangeable and distributed according to an
unknown prior density g. Figure 2 shows the eb frame-
work.

1When pondering outliers in Bayesian inference, de Finetti
explains: “We know that each observation is taken using an instru-
ment with [some] error, but each time chosen at random from a
collection of instruments of different precisions ” (de Finetti, 1961)

445

�ng xn

xnew�new

N

Figure 2: Graphical model for empirical Bayes (eb) predic-
tive inference. We augment the Bayesian model and estimate
the prior g from the dataset.

“Nonparametric eb” estimates the prior g using nonparamet-
ric statistics of the data (Robbins, 1955, 1964). The name
emphasizes its model-independent approach. “Parametric
eb” assumes a parametric family for g and estimates its
parameters from the data (Morris, 1983). The result is a
hierarchical Bayesian model whose top-level parameters are
determined by the observations. The name emphasizes its
model-based approach.

Both variants of eb introduce population information from
the dataset X. But neither directly builds the population F
into the analysis. How can we adapt eb to directly model
the population distribution of data?

2.2 POPULATION EMPIRICAL BAYES

We take a two-step approach. We first introduce an additional
latent variable into eb and then use it to define a conditional
density on � .

The new variable Z is a latent dataset. This is a hypothetical
dataset that we do not observe. It has the same size and
dimension as the observed dataset X, but with unknown
observations. It lives one level above the � variables.

Given the latent dataset, we then define a conditional density
on � . We choose a density that depends on the latent dataset,
p.� j Z/. Figure 3 shows the framework.

This is a valid eb model; we simply propose a conditional
density on � via a new latent variable Z. However, it is
incomplete. We must also choose a prior on Z and then
define the form of p.� j Z/.
We set the prior on the latent dataset Z to be the population
F . The unknown, model-independent distribution of data
acts as the prior on the latent dataset Z.
We match the conditional density on � to the Bayesian pos-
terior density of the original Bayesian model. Instead of
conditioning on the observed dataset X, we condition on the
latent dataset Z. This is how we interface the frequentist
population distribution with the Bayesian model.

This fully describes the pop-eb framework. (We motivate
these choices in Section 2.3.)

�nZ xnF

xnew�new

N

Figure 3: Graphical model for the population empirical
Bayes (pop-eb) framework. We introduce Z, the latent
dataset, and assign the population distribution F as its prior.

Definition. pop-eb defines the joint density

p.xnew;�new;X;�;Z/ D p.xnew j �new/ p.�new j Z/

�
NY

nD1

p.xn j �n/ p.�n j Z/

� F.Z/: (3)

To obtain a predictive density from the joint density, we fol-
low the same recipe as before: condition on the observations
X and marginalize over the latent variables.

Marginalizing over � is straightforward. In addition, we
marginalize over the latent dataset Z, which gives the pre-
dictive density

p.xnew j X/ D
Z
p.xnew j Z/ p.Z j X/ dZ: (4)

This is the pop-eb predictive density. It integrates the
Bayesian predictive density over the latent dataset Z using
the conditional density

p.Z j X/ D p.X j Z/ F.Z/R
p.X j Z0/ F.Z0/ dZ0 : (5)

This is a key conditional density in pop-eb. It describes
how the latent dataset varies given the observed dataset. The
original Bayesian model prescribes the form of p.X j Z)
and the population F.Z/ factors in as the prior.

Thus, pop-eb directly incorporates the population F as a
prior on the latent dataset. But the population is, by defini-
tion, unknown. We address this next.

Plug-in principle. The empirical population yF is the dis-
tribution that puts weight 1=N on each observation in the
observed dataset fxngN1 . The plug-in estimator of a function
of F is simply the same function evaluated with yF instead.
In the absence of any other information about the population,
the plug-in principle is asymptotically efficient (Efron and
Tibshirani, 1994).

The plug-in principle provides a nonparametric estimate of
F . It enjoys a tight connection to the bootstrap and related
techniques. We discuss computation in greater detail in Sec-
tion 3. But now, we owe the reader an explanation.

446

2.3 MOTIVATION

Here is the story so far. The population F is the model-
independent mechanism that generates X. Bayesian analysis
employs a model p.X;�/. The model is helpful; it gives
strength to the statistical analysis (Young and Smith, 2005).
However, Bayesian theory assumes the model is correct.2
This is not always true; the model is often misspecified.

We focus on predictive inference. Our goal is to help a
Bayesian model provide the best predictive accuracy, in spite
of model misspecification. So, we seek a way to incorporate
the model-independent population F into our model-based
Bayesian analysis.

This is why we set F as the prior on the latent dataset Z.
In principle, there is no obstacle in using any other prior
density. The prior on Z captures knowledge about the data
generating mechanism that might otherwise be difficult to
express in the model. In our case, this knowledge is precisely
the population distribution F .

Consistency motivates our design of the conditional density
on � . Any density that depends on Z would be valid. We
choose the Bayesian posterior density to mimic the original
Bayesian model. Consider the Bayesian predictive density
from Equation (1). It integrates the likelihood over the pos-
terior density of the latent variables. The pop-eb predictive
density of Equation (4) mirrors this form by integrating the
Bayesian predictive density over the posterior density of the
latent dataset.

3 COMPUTATION

We describe two empirical approximations to the pop-eb
predictive density, develop some insight through simulation,
and study a linear regression model with real data. More
results follow in the empirical study of Section 5.

3.1 BOOTSTRAP

The plug-in principle replaces the population F with its em-
pirical counterpart yF . However, direct computation with yF
is also challenging. The pop-eb predictive density requires
evaluating p.Z j X/. This involves considering all possible
datasets in the support of yF , an intractable task.

The bootstrap is a computational technique for approximat-
ing functions of yF . Define the bootstrapped dataset as
Z.b/ D fx.b/

n gN1 where each x.b/
n is uniformly sampled from

yF with replacement. The bootstrapped dataset Z.b/ con-
tains as many observations as X; some observations appear
multiple times, others not at all.

All boostrapped datasets are equally likely. So we can ap-
proximate calculations of yF with a uniform distribution.

2Bernardo and Smith (2000) identify this as the M-closed view.

Call this distribution yG; it is a discrete uniform distribution
over the B bootstrapped datasets fZ.b/gB1 . This reduces the
space of possible datasets to O.B/.

3.2 MAP APPROXIMATION

A simple way to approximate the pop-eb predictive density
is maximum a posteriori (map) estimation. In our setup, we
find the most likely latent dataset Z� from p.Z j X/ and
plug it into the Bayesian predictive density.

The pop-eb map predictive density is simply

pmap.xnew j X/ D p.xnew j Z�/;
where the most likely dataset is

Z� D argmax
Z

p.Z j X/

D argmax
Z

p.X j Z/ yF .Z/:

map estimation evades the intractable denominator in Equa-
tion (5), as the maximization only depends on Z. However,
the maximization is still intractable, so we replace yF with
yG to get

Z.b�/ � argmax
Z.b/ 2 yG

p
�
X j Z.b/

�
:

This turns out to be a special case of the bumping technique
(Tibshirani and Knight, 1999). Bumping is a bootstrap-
based method to fit arbitrary models to a dataset; it finds the
fit that minimizes some metric over bootstrapped datasets.
Our metric is the average predictive density evaluated on
the original dataset. Evaluating the metric on the original
dataset guards against overfitting; it includes both held-in
and held-out samples.

Enumeration spells the procedure out:

1. Draw B bootstrapped datasets. This gives a set of
datasets fZ.b/gB1 � yG.3

2. For each bootstrap index b D 1; � � � ; B:
Compute and evaluate the Bayesian predictive density
on the original dataset

p
�
X j Z.b/

� D NY
nD1

p
�
xn j Z.b/

�
:

3. Return the bootstrap index b� that maximizes the
Bayesian predictive density above.

We approximate the pop-eb map predictive density as

pmap.xnew j X/ �
Z
p.xnew j �new/ p

�
�new j Z.b�/

�
d�new:

(6)
3Tibshirani and Knight (1999) recommend including the ob-

served dataset. We follow their advice.

447

It has the same form as the Bayesian predictive density, but
integrates over the Bayesian posterior conditioned on the
bootstrapped dataset Z.b�/.

3.3 FULL BAYESIAN APPROXIMATION

We also consider directly evaluating the pop-eb predictive
density of Equation (4). In general, the posterior p.Z j X/
is intractable. Luckily, replacing yF with yG reduces the in-
tegral to a finite sum over B . We call this a full Bayes (fb)
approximation, as it is an exact evaluation of the pop-eb pre-
dictive density under the yG approximation of the empirical
population. (The supplement contains a derivation.)

The pop-eb fb predictive density is a weighted sum,

pfb.xnew j X/ D
BX

bD1

wb p
�
xnew j Z.b/

�
;

where the weights are

wb D
p.X j Z.b// yG.Z.b//P
b p.X j Z.b// yG.Z.b//

D p.X j Z.b//P
b p.X j Z.b//

;

and the Z.b/ and drawn from yG. The probabilities yG.Z.b//

are all equal to 1=B , and so they disappear. As with the
map case, the intractable denominator from Equation (5)
also drops out of the calculation.

3.4 SIMULATION STUDY

To investigate these pop-eb quantities, we construct a toy
example of model mismatch. The example is intentionally
simple; it provides insight into why and how pop-eb miti-
gates model misspecification.

Consider that we typically observe data from a Poisson
distribution with rate � D 5. (For instance, a router re-
ceives packets over a network; the wait-times are the mea-
surements.) We model the data using a Poisson likelihood
p.x j �/ D Poisson.�/, and center a Gamma prior at � D 5
as p.�/ D Gam.˛ D 2:5; ˇ D 0:5/.
Imagine that five percent of the time, the network fails. Dur-
ing these failures, the wait-times come from a different Pois-
son with rate � D 50. The population describes a mixture of
two Poisson distributions. But the single Poisson model like-
lihood does not. A good predictive density should accurately
describe the population.

Figure 4a shows the predictive densities. The Bayesian pre-
dictive density exhibits poor predictive accuracy; it describes
neither of the two Poisson distributions in the population. In
contrast, both pop-eb predictive densities match the domi-
nant Poisson distribution. pop-eb uses the empirical popu-
lation to focus on the observations in the dataset that give it
greater predictive power.

0 5 10 15 20 x

population
Bayesian predictive
pop-eb map
pop-eb fb

(a) Predictive densities

0 1 2 3 4 5 6 7 8 9 �

prior
Bayesian
posterior
pop-eb map
pop-eb fb

(b) Posterior densities

Figure 4: Gamma-Poisson simulation. The population in
subpanel (a) has an small extra bump at 50 (not shown).

Figure 4b shows the underlying posterior densities on the la-
tent variable � that describes the wait-time. For pop-eb map
this is the posterior density p.� j Z.b�//; a single Gamma
distribution that, when put through the Bayesian predictive
density, gives the highest accuracy. For the pop-eb fb case,
the posterior is a weighted sum of Gamma distributions.
Both pop-eb posterior densities sit closer to the dominant
rate of � D 5. This explains the behavior of the pop-eb
predictive densities in Figure 4a.

The pop-eb map predictive density is easy to compute; it is
a negative binomial distribution, like the Bayesian predictive
density. In contrast, the pop-eb fb predictive density must
be numerically calculated using all bootstrap samples; it has
no simple analytic form.

We generate these plots using B D 100 bootstrapped
datasets. The exact shape of the pop-eb densities depend on
the bootstrapped datasets, but they are reproducibly closer
to � D 5. The results are also insensitive to different prior
configurations, such as a sharp prior centered at � D 5. eb
is also of little use here; it estimates a nearly flat prior on �
from the data. (See supplementary note and code.)

3.5 BAYESIAN LINEAR REGRESSION

We now apply the pop-eb framework to a real-world dataset.
Consider a Bayesian linear regression model. The likelihood
is a Gaussian distribution and the latent random variables
are the regression coefficients ˇ and the variance �2. Using

448

Table 1: Bayesian linear regression predictive accuracy
results on random held-out splits of the bodyfat dataset.

Split #1 Split #2
logp mse mae logp mse mae

Bayes 0.67 5.2e-3 5.7e-2 0.83 7.6e-3 6.6e-2
pop-eb map 1.26 3.2e-3 4.3e-2 1.18 5.1e-3 5.4e-2
pop-eb fb 1.25 3.0e-3 4.2e-2 1.18 4.4e-3 5.2e-2

Split #3 Split #4
logp mse mae logp mse mae

Bayes 0.85 6.5e-3 5.4e-2 0.81 7.4e-3 6.7e-2
pop-eb map 1.24 4.0e-3 4.9e-2 1.21 5.1e-3 5.5e-2
pop-eb fb 1.23 3.3e-3 4.4e-2 1.19 4.2e-3 5.3e-2

Split #5 Split #6
logp mse mae logp mse mae

Bayes 0.82 7.2e-3 6.9e-2 0.44 3.1e-2 9.2e-2
pop-eb map 1.15 6.2e-3 6.1e-2 0.75 1.7e-2 7.1e-2
pop-eb fb 1.14 4.9e-3 5.2e-2 0.76 1.6e-2 6.6e-2

conjugate priors (Gaussian for the coefficients and inverse
Gamma for the variance) gives a Bayesian predictive density
that follows a t-distribution (Murphy, 2012). We posit an
uninformative prior.

We study the predictive performance of both pop-eb pre-
dictive densities on the bodyfat dataset (StatLib, 1995).
Accurate measurements of body fat are costly. The dataset
contains the body fat percentages of N D 252 men along
with 14 other features that are cheaper to measure. We want
to predict body fat percentage using these 14 features.

We randomly extract datasets of 200measurements and hold
the remaining 52 to evaluate predictive accuracy. Table 1 re-
ports the average logarithm of the predictive densities (logp),
along with mean squared error (mse) and mean absolute
error (mae). In all cases, the pop-eb predictive densities
reach higher predictive accuracy on held-out data. The pop-
eb fb density performs similarly to the pop-eb map density,
but exhibits slightly better mse and mae values. Since the
dataset is small, we split it six times. These results are repro-
ducible across a variety of splits. We use B D 25 bootstrap
samples. (See supplementary code.)

The pop-eb fb density is a better approximation to the pop-
eb predictive density than its map counterpart. The results
in Table 1 corroborate this. However, pop-eb fb density
lack an analytic form. In contrast, the pop-eb map predic-
tive density offers an attractive improvement in predictive
accuracy while maintaining the form of the Bayesian predic-
tive density. We now turn to approximating it for complex
Bayesian models.

4 POPULATION EMPIRICAL
VARIATIONAL INFERENCE

Modern Bayesian statistics and machine learning has moved
well past simple conjugate models like Bayesian linear re-

gression. In complex models, such as Bayesian mixture mod-
els (Bishop, 2006) or probabilistic topic models (Blei et al.,
2003), the posterior and predictive densities are intractable to
compute. Monte Carlo sampling and variational techniques
are two popular frameworks for approximation.

In this section, we develop an efficient variational approxi-
mation to the pop-eb map predictive density.

4.1 VARIATIONAL INFERENCE

Variational inference is an optimization-based approach to
approximate posterior computation in a Bayesian model
p.X;�/ (Jordan et al., 1999; Wainwright and Jordan, 2008).
The idea is to posit a simple parameterized density family
over the latent variables, q.� I �/. We then seek the mem-
ber of the family that is closest in Kullback-Leibler (kl)
divergence to the true posterior density p.� j X/. Minimiz-
ing KL .q k p/ is equivalent to maximizing a lower bound
on the marginal density of the data. This gives a varia-
tional objective function, called the evidence lower bound
(elbo)

L.X;�/ D Eq Œlogp.X;�/� � Eq Œlog q.� I �/� :

Variational inference maximizes this objective function with
respect to the set of parameters �.

In mean-field variational inference, we assume the varia-
tional density fully factorizes. This divides the variational
parameters into M parts, � D f�mgM1 . We then maxi-
mize the elbo using coordinate ascent (Jordan et al., 1999).
This means iteratively maximizing one variational param-
eter at a time, holding all others fixed. The separation of
latent variables leads to independent updates for each vari-
ational parameter. This coordinate ascent scheme guaran-
tees convergence to a local maximum of the elbo (Bishop,
2006).

4.2 APPROXIMATING THE POP-EB MAP
PREDICTIVE DENSITY

Our aim is to employ variational inference to approximate
the pop-eb map predictive density. It shares the same form
as the Bayesian predictive density, but integrates over the
Bayesian posterior density evaluated on a particular boot-
strapped dataset. To that end, consider the elbo evaluated
on a bootstrapped dataset, L.Z.b/;�/.

The variational objective becomes a joint optimization of
the variational parameters and the bootstrap index

�
.b�/
�
D argmax

�

L.Z.b�/;�/

b� D argmax
b

NY
nD1

Z
p.xn j �n/ q

�
�n I �.b/

�

�
d�n:

449

The two optimization problems are coupled: the first seeks
the best approximation to the Bayesian posterior density
while the second seeks the latent dataset index that gives
the highest predictive accuracy. The variational density
q.� I �.b�/

� / is the closest kl approximation to the Bayesian
posterior density inside the pop-eb map predictive density
of Equation (6).

The naïve way to solve the joint optimization above is to
adapt our earlier technique from Section 3.2. Bootstrap the
dataset B times, maximize the elbo for each dataset, and
choose the one that gives the best predictive performance.
This is a costly procedure. It requires multiple maximiza-
tions of the elbo, which we wish to avoid.

4.3 BUMPING VARIATIONAL INFERENCE

We propose a stochastic optimization algorithm that maxi-
mizes the elbo once. We weave bumping into each iteration
of the optimization. We call this method bumping varia-
tional inference (bump-vi) (Algorithm 1). At a high level,
the algorithm works as follows.

Consider a single iteration. We bootstrap the datasetB times.
For each bootstrapped dataset, we compute a gradient g.b/

�

in the parameters �. These gradients are noisy estimates of
the “true” gradient, had we taken the naïve approach above
and determined which bootstrapped dataset Z.b�/ led to the
best predictive performance. The cost of computing B gra-
dients is small in many Bayesian models. (The supplement
describes an efficient implementation.)

Then, we employ the bumping procedure from Section 3.2.
This means taking a step in the parameters for each boot-
strapped dataset and evaluating the Bayesian predictive den-
sity on the original dataset. This evaluation is the main added
cost of bump-vi over classical variational methods. We pick
the index b.�/ that gives the highest predictive performance
and take a step in the direction it indexes.

bump-vi is a stochastic optimization method; the step-
size sequence matters for establishing convergence guar-
antees (Robbins and Monro, 1951). We use a constant step-
size as it isolates the performance of the algorithm from
any sequence-related effects and provides quantifiable er-
ror bounds (Nemirovski et al., 2009). Code is available at
https://github.com/Blei-Lab/lda-bump-cpp.

5 EMPIRICAL STUDY

We apply bump-vi to two complex tasks: Bayesian mixture
modeling of image histograms and latent Dirichlet alloca-
tion (lda) topic modeling of a scientific text corpus. We
compare bump-vi to coordinate ascent variational inference.
In both examples, bump-vi uniformly reaches higher predic-
tive accuracy. We first present both sets of results and then
discuss performance.

Algorithm 1: Bumping Variational Inference

Input: Model p.X;�/, variational family q.� I �/
Result: Optimized q.� I �.b�/

�
/ approximation

Choose the number of bootstraps B
Choose a step-size sequence f�.i/g11
Initialize parameters �.0/, iteration i D 0
while k�.iC1/ � �.i/k is above some threshold do

for b D 1 to B do
Draw a bootstrap sample Z.b/ � yG
Calculate gradient of parameters �

g
.b/
�
 � r�L

�
Z.b/;�

�
end
Choose the bootstrap index that maximizes the
Bayesian predictive density on the dataset

b� � argmaxb

QN
nD1

R
p.xn j �n/

q.�n I �.i/ C �.i/g
.b/
�
/

d�n

Take a step in direction indexed by b�

�.iC1/ � �.i/ C �.i/g
.b�/
�

Update iteration counter
i � i C 1

end
Return variational parameters

�
.b�/
�
 � �.iC1/

5.1 BAYESIAN MIXTURE MODEL

Consider a Gaussian mixture model (gmm) with a Gaussian-
Gamma prior on the mixture component means and preci-
sions, and a Dirichlet prior on the proportions. These are
conditionally conjugate priors that lead to straightforward
coordinate ascent update equations (Bishop, 2006).

The imageclef dataset has 576-dimensional color his-
tograms of natural images (Villegas et al., 2013). We ran-
domly select 5 000 images as our dataset and choose another
1 000 images for predictive accuracy tests. We standardize
the mean and variance of the set of histograms. Thus, the
hyperparameters for the Gaussian-Gamma prior are zero on
the component means and one on the precisions. The hyper-
parameter on the Dirichlet is 1=K where K is the number
of components. We set the number of bootstrap samples to
B D 10 and the step-size to � D 0:1.
We compare coordinate ascent to bump-vi across a range
of components. Figure 5 displays these results. bump-vi
attains a higher average log predictive evaluated on the held-
out set. We run each algorithm ten times per configuration
to account for random initialization of the initial parameters.

450

20 25 30 35 40 45 50 55 60

�1:3

�1:2

�1:1

Number of Components (K)

Av
er

ag
e

Lo
g

Pr
ed

ic
tiv

e

Figure 5: Average log-predictive density of 1 000 held-out
images. bump-vi (orange) reaches a higher predictive accu-
racy than coordinate ascent (green) across a range of con-
figurations. Boxplots show the median, quartiles, and 1:5
interquartile range of ten repeats per configuration.

(a) Coordinate ascent (b) bump-vi

Figure 6: The “blue-purple” gmm (K D 40) coordinate as-
cent component has some extraneous images. The bumping
component is qualitatively more uniform.

Both algorithms converge in fewer than 75 iterations.

Figure 6 presents the effect of reaching higher predictive
accuracy. We assign each image to its most probable mix-
ture component and pick the one with “blue-purple” images.
Though this is a subjective matter, the bump-vi component
appears more uniform than its counterpart. The coordinate
ascent component seems to have red-toned images that might
belong in a different component.

5.2 LATENT DIRICHLET ALLOCATION

We study lda with a corpus of 5 000 randomly selected
abstracts from the arXiv repository. The abstracts are short
(�150 words) and the vocabulary is large (�12 000 unique
words). The arXiv exhibits jargon-heavy abstracts, which
leads to a large vocabulary. This makes for a challenging
dataset; because of the vocabulary size, we only expect to
identify a few topics in a corpus of size 5 000.

lda has two Dirichlet priors. We set the hyperparameter on
the topics distributions to be 1=K where K is the number
of topics. The hyperparameter on the topics is 0:005, which
is approximately 60=V where V is the vocabulary size. We
set the number of bootstrap samples to B D 10 and the

2 4 6 8 10 12

�8:5

�8:4

�8:3

Number of Topics (K)

Av
er

ag
e

Lo
g

Pr
ed

ic
tiv

e

Figure 7: Average per-word log-predictive density of 1 000
held-out abstracts. bump-vi (orange) reaches a higher pre-
dictive accuracy than coordinate ascent (green) across a
range of model configurations.

step-size to � D 0:05.
We study bump-vi across a range of topics. Figure 7 plots a
comparison to coordinate ascent. bump-vi attains a higher
average per-word log predictive evaluated on the held-out set.
Tables 3 and 4 show how this difference affects the topics.
While six of the topics are similar, bump-vi finds two topics
with higher predictive power. As with mixture components,
examining topics is a subjective activity. Both algorithms
converged in fewer than 150 iterations.

5.3 MITIGATING MODEL MISMATCH

There is no reason to believe that natural images are truly
distributed as a mixture of Gaussians. The same holds for
the “bag of words” assumption that underlies lda. With real
data, there is always some level of inherent model mismatch.
bump-vi attempts to mitigates this effect.

The performance gap widens with the number of compo-
nents. We might expect a simpler model to be more severely
mismatched. This demonstrates that pop-eb cannot rectify
the choice of an inappropriate model. For example, two top-
ics are simply too few to accurately model our arXiv corpus;
both algorithms do poorly. However, with twelve topics,
coordinate ascent does even worse. This may be due to other
effects, such as local maxima in the variational objective
function (Wainwright and Jordan, 2008).

Does bump-vi outperform classical techniques because it
reaches a better local maximum of the elbo? The answer is
no. Evaluating the elbo on the observed dataset gives simi-
lar numerical values for both methods. (In our experiments,
coordinate ascent usually reaches a slightly higher number
than bump-vi.) This is not surprising, as bump-vi solves a
different optimization problem than coordinate ascent varia-
tional inference; it approximates the pop-eb map predictive
density instead of the Bayesian predictive density.

451

1 2 5 10 15 20 25 30

�1:3

�1:25

�1:2

�1:15

Number of Bootstrap Samples (B)

Av
er

ag
e

Lo
g

Pr
ed

ic
tiv

e

Figure 8: bump-vi sensitivity study with the gmm (K D
40) model. Average log-predictive density of 1 000 held-out
images, over ten repeats.

Table 2: Runtime ratios of bump-vi compared to coordinate
ascent. An efficient re-weighting strategy gives ratios that
are less than B . (See supplementary note.)

B 2 5 10 15 30

bump-vi 1.8� 3.2� 5.6� 7.7� 15.1�

5.4 SENSITIVITY TO BOOTSTRAP SAMPLES
AND COMPUTATIONAL COST

We also study the sensitivity of bump-vi to the number
of bootstrap samples B (Figure 8). Tibshirani and Knight
(1999) recommend using 20-30 bootstrap samples for bump-
ing, but as few as five appear to performwell. This is because
bump-vi, in a loose sense, re-samples the dataset B times
the number of iterations. For completeness, we also com-
pare the case of B D 1. This is equivalent to stochastic
variational inference (svi) with “minibatch” size equal to
N (Hoffman et al., 2013). This shows that the performance
gain in bump-vi is not due to stochastic escapes from local
maxima. (Though, it likely benefits from it.)

The pop-eb framework incurs a computational cost propor-
tional to the choice of B . bump-vi reduces this cost in two
ways. The first is due to the iterative resampling effect men-
tioned above. The second is due to an efficient calculation of
the B gradients at each iteration. (See supplementary note.)
Table 2 shows that bump-vi is less than B times the cost of
coordinate ascent variational inference.

6 CONCLUSION

Mismatched models exhibit poor predictive performance.
The pop-eb predictive density mitigates this effect by incor-
porating the population F into Bayesian analysis. The pop-
eb map predictive density is attractively simple; it explores
the space of bootstrapped dataset to find the one with highest
predictive power. bump-vi extends this idea to variational

inference; it delivers an efficient algorithm with promising
results on real-world datasets.

pop-eb, like eb, uses the dataset twice: once to estimate
the prior and again during inference. There are alternatives
to consider, such as cross-validation and bias correction
(Efron and Tibshirani, 1997; Gelman et al., 2013). Directly
modeling the expected predictive performance of future data
should also improve pop-eb.

Table 3: Coordinate ascent lda topics (K D 8).

Topic 1 Topic 2 Topic 3 Topic 4
charge gravitational et knowledge
ground dynamical al often
induced cosmological accurate introduced
regime physics test novel
length review extended among
leads black identified research

dependent background signal called
transport universe period easily

fluctuations gr during key
scattering gravity correlation processing
Topic 5 Topic 6 Topic 7 Topic 8
invariant quark algorithm galaxies
algebra cross random stars
operator production applications galaxy
theorem heavy efficient stellar
defined qcd finally gas

g collisions probability galactic
generalized predictions network sources
complex corrections optimal objects
explicit experiment gaussian source
infinite photon distributed sample

Table 4: bump-vi lda topics (K D 8).

Topic 1 Topic 2 Topic 3 Topic 4
induced cosmological accurate performance
charge universe test research
regime gravitational identified development

electronic review during novel
transport cosmic better key
length dark mostly developed
leads gravity errors processing

temperatures background scales called
frequency relativity though knowledge
influence physics sensitivity analyze
Topic 5 Topic 6 Topic 7 Topic 8
algebra quark algorithm galaxies
invariant production random stars
defined cross probability galaxy
operator heavy network stellar
theorem qcd applications galactic

g collisions quant gas
complex predictions complexity sample
construct momentum finally sources
conjecture photon problems objects
special detector optimal source

Acknowledgments

We thank Allison Chaney, Laurent Charlin, Stephan Mandt,
Kui Tang, Yixin Wang, and the reviewers for their in-
sightful comments. dmb is supported by NSF IIS-
1247664, ONR N00014-11-1-0651, and DARPA FA8750-
14-2-0009.

452

References

Aitkin, M. A. (2010). Statistical Inference: an Integrated
Bayesian/Likelihood Approach. Chapman & Hall/CRC.

Bayarri, M. J. and Berger, J. O. (2004). The interplay of
Bayesian and frequentist analysis. Statistical Science,
pages 58–80.

Berger, J. (1994). An overview of robust Bayesian analysis.
Test, 3(1):5–124.

Berger, J. and Berliner, L. M. (1986). Robust Bayes and
empirical Bayes analysis with "-contaminated priors. The
Annals of Statistics, pages 461–486.

Berger, J. O. (1985). Statistical decision theory and Bayesian
analysis. Springer.

Bernardo, J. M. and Smith, A. F. (2000). Bayesian Theory.
John Wiley & Sons.

Bishop, C. M. (2006). Pattern Recognition and Machine
Learning. Springer New York.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent
Dirichlet allocation. The Journal of Machine Learning
Research, 3:993–1022.

Box, G. E. and Draper, N. R. (1987). Empirical Model-
building and Response Surfaces. John Wiley & Sons.

Carlin, B. and Louis, T. (2000). Bayes and Empirical Bayes
Methods for Data Analysis, Second Edition. Chapman &
Hall/CRC. Taylor & Francis.

de Finetti, B. (1961). The Bayesian approach to the rejec-
tion of outliers. In Proceedings of the Fourth Berkeley
Symposium on Probability and Statistics, pages 199–210.

Efron, B. (2010). Large-scale inference: empirical Bayes
methods for estimation, testing, and prediction. Cam-
bridge University Press.

Efron, B. and Tibshirani, R. (1997). Improvements on cross-
validation: The. 632+ bootstrap method. Journal of the
American Statistical Association, pages 548–560.

Efron, B. and Tibshirani, R. J. (1994). An Introduction to
the Bootstrap. CRC Press.

Geisser, S. (1993). Predictive Inference. CRC Press.

Gelman, A., Hwang, J., and Vehtari, A. (2013). Understand-
ing predictive information criteria for Bayesian models.
Statistics and Computing, pages 1–20.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J.
(2013). Stochastic variational inference. The Journal
of Machine Learning Research, 14(1):1303–1347.

Huber, P. and Ronchetti, E. (2009). Robust Statistics. Wiley.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul,
L. K. (1999). An introduction to variational methods for
graphical models. Machine Learning, 37(2):183–233.

Morris, C. N. (1983). Parametric empirical Bayes infer-
ence: theory and applications. Journal of the American
Statistical Association, 78(381):47–55.

Murphy, K. P. (2012). Machine Learning: a Probabilistic
Perspective. MIT Press.

Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A.
(2009). Robust stochastic approximation approach to
stochastic programming. SIAM Journal on Optimization,
19(4):1574–1609.

Robbins, H. (1955). An empirical Bayes approach to statis-
tics. In Proceedings of the Third Berkeley Symposium on
Probability and Statistics, pages 157–164.

Robbins, H. (1964). The empirical Bayes approach to sta-
tistical decision problems. The Annals of Mathematical
Statistics, pages 1–20.

Robbins, H. and Monro, S. (1951). A stochastic approxi-
mation method. The Annals of Mathematical Statistics,
pages 400–407.

Shao, J. (2003). Mathematical Statistics. Springer.

StatLib (1995). http://lib.stat.cmu.edu/datasets/
bodyfat.

Tibshirani, R. and Knight, K. (1999). Model search by
bootstrap “bumping”. Journal of Computational and
Graphical Statistics, 8(4):671–686.

Villegas, M., Paredes, R., and Thomee, B. (2013). Overview
of the ImageCLEF 2013 Scalable Concept Image An-
notation Subtask. In CLEF 2013 Evaluation Labs and
Workshop, Online Working Notes.

Wainwright, M. J. and Jordan, M. I. (2008). Graphical
models, exponential families, and variational inference.
Foundations and Trends in Machine Learning, 1(1-2):1–
305.

Young, G. A. and Smith, R. L. (2005). Essentials of Statisti-
cal Inference. Cambridge University Press.

453

Encoding Markov Logic Networks in Possibilistic Logic

Ondřej Kuželka
School of CS & Informatics

Cardiff University
Cardiff, UK

Jesse Davis
Department of Computer Science

KU Leuven
Leuven, Belgium

Steven Schockaert
School of CS & Informatics

Cardiff University
Cardiff, UK

Abstract

Markov logic uses weighted formulas to com-
pactly encode a probability distribution over pos-
sible worlds. Despite the use of logical formu-
las, Markov logic networks (MLNs) can be diffi-
cult to interpret, due to the often counter-intuitive
meaning of their weights. To address this issue,
we propose a method to construct a possibilis-
tic logic theory that exactly captures what can
be derived from a given MLN using maximum
a posteriori (MAP) inference. Unfortunately, the
size of this theory is exponential in general. We
therefore also propose two methods which can
derive compact theories that still capture MAP
inference, but only for specific types of evidence.
These theories can be used, among others, to
make explicit the hidden assumptions underlying
an MLN or to explain the predictions it makes.

1 INTRODUCTION

Markov logic [22] and possibilistic logic [9] are two pop-
ular logics for modelling uncertain beliefs. Both logics
share a number of important characteristics. At the syn-
tactic level, formulas correspond to pairs (↵,�), consisting
of a classical formula ↵ and a certainty weight �, while at
the semantic level, sets of these formulas induce a mapping
from possible worlds to [0, 1], encoding the relative plausi-
bility of each possible world.

Despite their close similarities, however, Markov logic and
possibilistic logic have been developed in different commu-
nities and for different purposes: Markov logic has mainly
been studied in a machine learning context whereas possi-
bilistic logic has been studied as a knowledge representa-
tion language. This reflects the complementary strengths
and weaknesses of these logics. On the one hand, the qual-
itative nature of possibilistic logic makes it challenging to
use for learning; although a few interesting approaches for

learning possibilistic logic theories from data have been ex-
plored (e.g. [24]), their impact on applications to date has
been limited. On the other hand, the intuitive meaning of
Markov logic theories is often difficult to grasp, which lim-
its the potential of Markov logic for knowledge representa-
tion. The main culprit is that the meaning of a theory can
often not be understood by looking at the individual formu-
las in isolation. This issue, among others, has been high-
lighted in [26], where coherence measures are proposed
that evaluate to what extent the formulation of a Markov
logic theory is misleading.

Example 1. Consider the following Markov logic formu-
las:

+1 : antarctic-bird(X)! bird(X)

10 : bird(X)! flies(X)

5 : antarctic-bird(X)! ¬flies(X)

While the last formula might appear to suggest that antarc-
tic birds cannot fly, in combination with the other two for-
mulas, it merely states that antarctic birds are less likely to
fly than birds in general.

Possibilistic logic is based on a purely qualitative, compar-
ative model of uncertainty: while a Markov logic theory
compactly encodes a probability distribution over the set of
possible worlds, a possibilistic logic theory merely encodes
a ranking of these possible worlds. Even though a proba-
bility distribution offers a much richer uncertainty model,
many applications of Markov logic are based on MAP in-
ference, which only relies on the ranking induced by the
probability distribution.

In this paper, we first show how to construct a possibilistic
logic theory ⇥, given a Markov logic theory M, such that
the conclusions that we can infer from ⇥ are exactly those
conclusions that we can obtain from M using MAP infer-
ence. Our construction can be seen as the syntactic counter-
part of the probability-possibility transformation from [10].
In principle, it allows us to combine the best of both worlds,
using M for making predictions while using ⇥ for eluci-
dating the knowledge that is captured by M (e.g. to verify

454

that the theory M is sensible). However, the size of ⇥
can be exponential in the size of M, which is unsurprising
given that the computational complexity of MAP inference
is higher than the complexity of inference in possibilistic
logic. To overcome this problem, we begin by studying
ground (i.e. propositional) theories and propose two novel
approaches for transforming a ground MLN into a compact
ground possibilistic logic theory that still correctly captures
MAP inference, but only for specific types of evidence (e.g.
sets of at most k literals). Then we lift one of these ap-
proaches such that it can transform a first-order MLN into
a first-order possibilistic logic theory. Finally, we present
several examples that illustrate how the transformation pro-
cess can be used to help identify unintended consequences
of a given MLN, and more generally, to better understand
its behaviour.

The remainder of the paper is structured as follows. In
the next section, we provide some background on Markov
logic and possibilistic logic. In Section 3, we analyse the
relation between MAP inference in ground Markov logic
networks and possibilistic logic inference, introducing in
particular two methods for deriving compact theories. Sec-
tion 4 then discusses how we can exploit the symmetries
in the case of an ungrounded Markov logic network, while
Section 5 provides some illustrative examples. Finally, we
provide an overview of related work in Section 6.

Due to space limitations, some of the proofs have been
omitted from this paper. These proofs can be found in an
online appendix.1

2 BACKGROUND

2.1 MARKOV LOGIC

A Markov logic network (MLN) [22] is a set of pairs
(F, wF), where F is a formula in first-order logic and wF is
a real number, intuitively reflecting a penalty that is applied
to possible worlds (i.e. logical interpretations) that violate
F . In examples, we will also use the notation wF : F to
denote the formula (F, wF). An MLN serves as a template
for constructing a propositional Markov network. In par-
ticular, given a set of constants C, an MLN M induces the
following probability distribution on possible worlds !:

pM(!) =
1

Z
exp

0
@ X

(F,wF)2M
wF nF (!)

1
A , (1)

where nF (x) is the number of true groundings of F in the
possible world !, and Z is a normalization constant to en-
sure that pM can be interpreted as a probability distribu-
tion. Sometimes, formulas (F, wF) are considered where
wF = +1, to represent hard constraints. In such cases,

1http://arxiv.org/abs/1506.01432

we define pM(!) = 0 for all possible worlds that do not
satisfy all of the hard constraints, and only formulas with
a real-valued weight are considered in (1) for the possible
worlds that do. Note that a Markov logic network can be
seen as a weighted set of propositional formulas, which are
obtained by grounding the formulas in M w.r.t. the set of
constants C in the usual way. In the particular case that all
formulas in M are already grounded, M corresponds to a
theory in penalty logic [13].

One common inference task in MLNs is full MAP infer-
ence. In this setting, given a set of ground literals (the ev-
idence) the goal is to compute the most probable configu-
ration of all unobserved variables (the queries). Two stan-
dard approaches for performing MAP inference in MLNs
are to employ a strategy based on MaxWalkSAT [22] or to
use a cutting plane based strategy [23, 18]. Given a set of
ground formulas E, we write max(M, E) for the set of
most probable worlds of the MLN that satisfy E. For each
! 2 max(M, E),

P
(F,wF)2M wF nF (!) evaluates to the

same value, which we will refer to as sat(M, E). We de-
fine the penalty pen(M, E) of E as follows:

pen(M, E) = sat(M, ;)� sat(M, E)

We will sometimes identify possible worlds with the set of
literals they make true, writing pen(M,!). We will also
write pen(M,↵), with ↵ a ground formula, as a shorthand
for pen(M, {↵}). We will consider the following inference
relation, which has been considered among others in [13]:

(M, E) `MAP ↵ iff 8! 2 max(M, E) : ! |= ↵ (2)

with M an MLN, ↵ a ground formula and E a set of ground
formulas. It can be shown that checking (M, E) `MAP ↵
for a ground network M is �P

2 -complete2 [4].

2.2 POSSIBILISTIC LOGIC

A possibility distribution in a universe ⌦ is a mapping ⇡
from ⌦ to [0, 1], encoding our knowledge about the pos-
sible values that a given variable X can take; throughout
this paper, we will assume that all universes are finite. For
each x 2 ⌦, ⇡(x) is called the possibility degree of x.
By convention, in a state of complete ignorance, we have
⇡(x) = 1 for all x 2 ⌦; conversely, if X = x0 is known,
we have ⇡(x0) = 1 and ⇡(x) = 0 for x 6= x0. Possibility
theory [27, 12] is based on the possibility measure ⇧ and
dual necessity measure N , induced by a possibility distri-
bution ⇡ as follows (A ✓ ⌦):

⇧(A) = max
a2A

⇡(a)

N(A) = 1�⇧(⌦ \ A)

2The complexity class �P
2 contains those decision problems

that can be solved in polynomial time on a deterministic Turing
machine with access to an NP oracle.

455

Intuitively, ⇧(A) is the degree to which available evidence
is compatible with the view that X belongs to A, whereas
N(A) is the degree to which available evidence implies that
X belongs to A, i.e. the degree to which it is certain that X
belongs to A.

A theory in possibilistic logic [9] is a set of formulas of
the form (↵,�), where ↵ is a propositional formula and
� 2 [0, 1] is a certainty weight. A possibility distribution ⇡
satisfies (↵,�) iff N(J↵K) � �, with N the necessity mea-
sure induced by ⇡ and J↵K the set of propositional mod-
els of ↵. We say that a possibilistic logic theory ⇥ entails
(↵,�), written ⇥ |= (↵,�), if every possibility distribution
which satisfies all the formulas in ⇥ also satisfies (↵,�).
A possibility distribution ⇡1 is called less specific than a
possibility distribution ⇡2 if ⇡1(!) � ⇡2(!) for every !.
It can be shown that the set of models of ⇥ always has a
least element w.r.t. the minimal specificity ordering, which
is called the least specific model ⇡⇤ of ⇥. It is easy to see
that ⇥ |= (↵,�) iff ⇡⇤ satisfies (↵,�).

Even though the semantics of possibilistic logic is defined
at the propositional level, we will also use first-order for-
mulas such as (p(X)! q(X, Y),�) throughout the paper.
As in Markov logic, we will interpret these formulas as ab-
breviations for a set of propositional formulas, obtained us-
ing grounding in the usual way. In particular, we will al-
ways assume that first-order formulas are defined w.r.t. a
finite set of constants.

The �-cut ⇥� of a possibilistic logic theory ⇥ is defined as
follows:

⇥� = {↵ | (↵, µ) 2 ⇥, µ � �}
It can be shown that ⇥ |= (↵,�) iff ⇥� |= ↵, which means
that inference in possibilistic logic can straightforwardly be
implemented using a SAT solver.

An inconsistency-tolerant inference relation `poss for pos-
sibilistic logic can be defined as follows:

⇥ `poss ↵ iff ⇥con(⇥) |= ↵

where the consistency level con(⇥) of ⇥ is the lowest cer-
tainty level � for which ⇥� is satisfiable (among the cer-
tainty levels that occur in ⇥). Note that all formulas with a
certainty level below con(⇥) are ignored, even if they are
unrelated to any inconsistency in ⇥. This observation is
known as the drowning effect.

We will write (⇥, E) `poss ↵, with E a set of propositional
formulas, as an abbreviation for ⇥[{(e, 1) | e 2 E} `poss

↵. Despite its conceptual simplicity, `poss has many de-
sirable properties. Among others, it is closely related to
AGM belief revision [8] and default reasoning [2]. It can
be shown that checking ⇥ `poss (↵,�) is a ⇥P

2 complete
problem3 [17]. In this paper, `poss will allow us to capture
the non-monotonicity of MAP inference.

3The complexity class ⇥P
2 contains those decision problems

Example 2. Let ⇥ consist of the following formulas:

(penguin(X)! bird(X), 1)

(penguin(X)! ¬flies(X), 1)

(bird(X)! flies(X), 0.5)

Then we find:

(⇥, {bird(tweety)}) `poss flies(tweety)

(⇥, {bird(tweety), penguin(tweety)}) `poss ¬flies(tweety)

In general, `poss allows us to model rules with exceptions,
by ensuring that rules about specific contexts have a higher
certainty weight than rules about general contexts.

3 ENCODING GROUND NETWORKS

Throughout this section, we will assume that M is a ground
MLN in which all the weights are strictly positive. This can
always be guaranteed for ground MLNs by replacing for-
mulas (↵,�) with � < 0 by (¬↵,��), and by discarding
any formula whose weight is 0. For a subset X ✓ M,
we write X⇤ for the set of corresponding classical for-
mulas, e.g. for X = {(F1, w1), ..., (Fn, wn)} we have
X⇤ = {F1, ..., Fn}. In particular, M⇤ are the classical
formulas appearing in the MLN M.

The following transformation constructs a possibilistic
logic theory that is in some sense equivalent to a given
MLN. It is inspired by the probability-possiblity transfor-
mation from [10].

Transformation 1. We define the possibilistic logic theory
⇥M corresponding to an MLN M as follows:

{(
_

X⇤,�(¬
_

X⇤)) | X ✓M,�(¬
_

X⇤) > 0} (3)

where for a propositional formula ↵:

�(↵) =

(
K+pen(M,↵)

L if ↵ satisfies the hard constraints
1 otherwise

and the constants K and L are chosen such that 0 =
�(>) �(↵) < 1 for every ↵ that satisfies the hard con-
straints (i.e. the formulas with weight +1).

In the following we will use the notations �(!) for a pos-
sible world ! and �(E) for a set of formulas E, defined
entirely analogously. Throughout the paper we will also
write (�K < x < L�K):

�x =
K + x

L

The correctness of Transformation 1 follows from the next
proposition, which is easy to show.

that can be solved in polynomial time on a deterministic Turing
machine, by making at most a logaritmic number of calls to an
NP oracle.

456

Proposition 1. Let M be a ground MLN and ⇥M the cor-
responding possibilistic logic theory. Let ⇡ be the least spe-
cific model of ⇥M. It holds that:

⇡(!) = 1� �(!)

Corollary 1. Let M be a ground MLN and ⇥M the corre-
sponding possibilistic logic theory. It holds that for � < 1:

⇥M |= (↵,�) iff pen(M, ¬↵) � �L�K

and

⇥M |= (↵, 1) iff pen(M, ¬↵) = +1

Corollary 2. Let M be a ground MLN and ⇥M the corre-
sponding possibilistic logic theory. For pM the probability
distribution induced by M and ⇡ the least specific model
of ⇥M, it holds that

pM(!1) > pM(!2) iff ⇡(!1) > ⇡(!2)

for all possible worlds !1 and !2. In particular, it fol-
lows that for every propositional formula ↵ and every set
of propositional formulas E:

(M, E) `MAP ↵ iff (⇥, E) `poss ↵ (4)

Example 3. Consider the MLN M containing the follow-
ing formulas:

5 : a! x 5 : a! y 10 : a ^ b! ¬y

Then ⇥M contains the following formulas:

�5 : a! x �5 : a! y

�10 : a ^ b! ¬y �10 : a! x _ y

�15 : a ^ b! x _ ¬y

It can be verified that:

(⇥M, {a}) `poss x ^ y (⇥M, {a, b}) `poss x ^ ¬y

An important drawback of the transformation to possibilis-
tic logic is that the number of formulas in ⇥M is exponen-
tial in |M|. This makes the transformation inefficient, and
moreover limits the interpretability of the possibilistic logic
theory. In general, the exponential size of ⇥M cannot be
avoided if we want (4) to hold for any E and ↵. However,
more compact theories can be found if we focus on spe-
cific types of evidence. Sections 3.1 and 3.2 introduce two
practical methods to accomplish this.

3.1 SELECTIVELY AVOIDING DROWNING

In many applications, we are only interested in particu-
lar types of evidence sets E. For example, we may only

be interested in evidence sets that contain at most k lit-
erals, or in evidence sets that only contain positive liter-
als. In such cases, we can often derive a more compact
possibilistic logic theory ⇥E as follows. Let E be the
set of evidence sets that we wish to consider, where each
E 2 E is a set of ground formulas. Given E 2 E we
write SE for the set of all minimal subsets {F1, ..., Fl} of
M⇤

E = {F | F 2M⇤, pen(M, ¬F) < pen(M, E)} s.t.

pen(M,
^

E ^ ¬F1 ^ ... ^ ¬Fl) > pen(M, E) (5)

The following transformation constructs a possibilistic
logic theory that correctly captures MAP inference for ev-
idence sets in E . The basic intuition is that we want to
weaken the formulas in M⇤ just enough to ensure that
the resulting certainty level prevents them from drowning
when the evidence E becomes available.
Transformation 2. Given a ground MLN M and a set of
evidence sets E , we define the possibilistic logic theory⇥E

M
as follows:

{(F1,�(¬F1)) | F1 2M⇤} (6)

[{(¬
^

E _
_

Z,�(
^

E ^ ¬
^

Z)) | Z 2 SE , (7)

E 2 E} [{(¬
^

E,�(
^

E)) | E 2 E} (8)

If M is clear from the context, we will omit the subscript in
⇥E

M. The formulas in (6) are the direct counterpart of the
MLN. Intuitively, there are two reasons why these formulas
are not sufficient. First, due to the drowning effect, formu-
las F such that pen(M, ¬F) < pen(M, E) will be ignored
under the evidence E. In such cases we should look at min-
imal ways to weaken these formulas such that the certainty
level of the resulting formula is sufficient to avoid drown-
ing under the evidence E. This is accomplished by adding
the formulas in (7). Second, as ⇥E contains less informa-
tion than ⇥M, we need to ensure that the consistency level
for ⇥E is never lower than the consistency level for ⇥M,
given an evidence set E 2 E . To this end, ⇥E includes
the formulas in (8). The following example illustrates why
these formulas are needed.
Example 4. Consider the following MLN M:

3 : u 2 : a 10 : (a _ b) ^ (u _ v)! ¬x

2 : b 1 : v

and let E = {{x}}, i.e. the only evidence set in which we
are interested is {x}. It holds that

SE = {{a, u}, {b, u}, {a, v}, {b, v}} (9)

and ⇥E = ⇥ [[�, where:

⇥ = {(u,�3), (a,�2), ((a _ b) ^ (u _ v)! ¬x,�10),

(b,�2), (v,�1)}
 = {(a _ u _ ¬x,�6), (b _ u _ ¬x,�6),

(a _ v _ ¬x,�5), (b _ v _ ¬x,�5)

� = {(¬x,�4)}

457

It is easy to verify that (⇥ [, {x}) `poss u whereas
(M, {x}) 6`MAP u and (⇥ [[�, {x}) 6`poss u.

We now prove the correctness of Transformation 2.

Proposition 2. For any formula ↵ and any evidence set
E 2 E , it holds that (⇥M, E) `poss ↵ iff (⇥E , E) `poss ↵.

Proof. Let us introduce the following notation:

�E = con(⇥M [{(e, 1) | e 2 E})

�E
E = con(⇥E [{(e, 1) | e 2 E})

A = (⇥M [{(e, 1) | e 2 E})�E

AE = (⇥E [{(e, 1) | e 2 E})�E
E

We need to show that A is equivalent to AE , for any E 2 E .

By Corollary 1, we know that every formula (↵,�) in
⇥E

M is entailed by ⇥M, hence �E
E �E . Since �E

is the smallest certainty level from ⇥M which is strictly
higher than �(E), it follows that AE contains every for-
mula which appears in ⇥E with a weight that is strictly
higher than �(E). Moreover, since ⇥E by construction
contains (¬VE,�(

V
E)), we find that AE can only con-

tain such formulas:

AE = E [{↵ | (↵,�) 2 ⇥E ,� > �(E)} (10)

It follows that A |= AE .

Let G1 _ ... _ Gs be a formula from A. From Corollary 1
we know that:

pen(M, ¬G1 ^ ... ^ ¬Gs) > pen(M, E)

and a fortiori

pen(M, E ^ ¬G1 ^ ... ^ ¬Gs) > pen(M, E)

This means that for any formula G1 _ ... _Gs in A, either
pen(M, ¬Gi) > pen(M, E) for some i or SE contains
a subset {H1, ..., Hr} of {G1, ..., Gs}. Then ⇥E contains
either Gi or the formula ¬E _ H1... _ Hr with a weight
which is strictly higher than �(E) and thus either Gi or
¬E _ H1... _ Hr belongs to AE . In both cases we find
AE |= G1 _ ... _Gs. We conclude AE |= A.

An alternative, which would make the approach in this sec-
tion closer to the standard encoding in (1), is to define S 0E
as the set of minimal subsets {F1, ..., Fl} of M⇤

E such that

pen(M, ¬F1 ^ ... ^ ¬Fl) > pen(M, E) (11)

and then replace the formulas in (7) by

{(
_

Z,�(¬
^

Z)) | Z 2 S 0E} (12)

The advantage of (7), however, is that we can expect many
of the sets in SE to be singletons. To see why this is

the case, first note that for each world ! in max(M, E),
the set of formulas Y ✓ M⇤ satisfied by ! is such
that pen(M, ¬W(M⇤ \ Y)) is minimal among all sets
Y 0 ✓ M⇤ for which E ^ VY 0 is consistent. Let us write
ConsE(M) for the set of all these maximally consistent
subsets of M⇤. Note that max(M, E) = JW{VY | Y 2
ConsE(M)}K.

Lemma 1. For a set of formulas {F1, ..., Fl} ✓ M⇤ it
holds that pen(M, E ^ ¬F1 ^ ... ^ ¬Fl) > pen(M, E) iff
{F1, ..., Fl} \ Y 6= ; for every Y in ConsE(M).

Corollary 3. Let ConsE(M) = {Y1, ..., Ys}. It
holds that SE consists of the subset-minimal elements of
{{y1, ..., ys} | y1 2 Y1 \M⇤

E , ..., ys 2 Ys \M⇤
E}.

Example 5. Consider again the MLN M from Example 4
and let E = {x}. It holds that ConsE(M) = {Y1, Y2},
where

Y1 = {(a _ b) ^ (u _ v)! ¬x, a, b}
Y2 = {(a _ b) ^ (u _ v)! ¬x, u, v}

M⇤
E = {a, b, u, v}

From Corollary 3,it follows that SE is given by (9).

In practice, ConsE(M) will often contain a single element,
in which case all the elements of SE will be singletons.

3.2 MAP INFERENCE AS DEFAULT REASONING

A large number of approaches has been proposed for rea-
soning with a set of default rules of the form “if ↵ then
typically �” [15, 19, 14]. At the core, each of the proposed
semantics corresponds to the intuition that a set of default
rules imposes a preference order on possible worlds, where
“if ↵ then �” means that � is true in the most preferred
models of ↵. The approaches from [15] and [19] can be
elegantly captured in possibilistic logic [2], by interpreting
the default rule as the constraint⇧(↵^�) > ⇧(↵^¬�). In
Markov logic, the same constraint on the ordering of pos-
sible worlds can be expressed by imposing the constraint
(M,↵) `MAP �. In other words, we can view the MAP
consequences of an MLN as a set of default rules, and en-
code these default rules in possibilistic logic. The follow-
ing transformation is based on this idea.

Transformation 3. Given a ground MLN M and a posi-
tive integer k, we construct a possibilistic logic theory⇥k

M
as follows:

• For each hard rule F from M, add (F, 1) to ⇥k
M.

• For each set of literals E such that 0 |E| k, let
X = {x | (M, E) `MAP x} be the set of literals that
are true in all the most plausible models of E. Unless
there is a literal y 2 E such that

V
(E \ {y}) `MAP y,

add ⇣^
E !

^
X,�E

⌘

458

to ⇥k
M, where �E = �(

V
E). If pen(M, E) >

pen(M, ;), add also

(¬(
^

E ^
^

X),�0E) (13)

where �0E is the certainty level just below �E in ⇥k
M,

i.e. �E0 = max{�F |�F < �E , |F | k}.

If M is clear from the context, we will omit the subscript
in ⇥k

M. The possibilistic encoding of default rules used
in Transformation 3 is similar in spirit to the method from
[2], which is based on the Z-ranking from [19]. However,
because pM already provides us with a model of the default
rules, we can directly encode default rules in possibilistic
logic, without having to rely on the Z-ranking. Also note
that although the method is described in terms of an MLN,
it can be used for encoding any ranking on possible worlds
(assuming a finite set of atoms).

As illustrated in the following example, (13) is needed to
avoid deriving too much, serving a similar purpose to (8)
in the approach from Section 3.1.

Example 6. Consider the following MLN M:

2 : ¬a _ b 2 : a _ b 1 : a _ ¬b

Then ⇥1 = ⇥ [, where

⇥ = {(> ! a ^ b,�0), (¬a! b,�1), (¬b! >,�2)}
 = {(b,�1), (a _ ¬b,�0)}

We find (⇥, {¬b}) `poss a while (M, {¬b}) 6`MAP a. Ac-
cordingly, we have (⇥ [, {¬b}) 6`poss a.

Transformations 2 and 3 have complementary strengths.
For example, Transformation 2 may lead to more compact
theories for relatively simple MLNs, e.g. if for most of the
considered evidence sets, there is a unique set of formulas
from the MLN that characterizes the most probable models
of the evidence (cf. Lemma 1). On the other hand, Trans-
formation 3 may lead to substantially more compact theo-
ries in cases where the number of formulas is large relative
to the number of atoms.

We now show the correctness of Transformation 3.

Proposition 3. Let M be an MLN, k a positive integer
and ⇥k the proposed possibilistic logic encoding of M.
Furthermore, let E and C be sets of literals such that |E|+
|C| k + 1. It holds that (M, E) `MAP

W
C if and only if

(⇥k, E) `poss

W
C.

Before we prove Proposition 3, we present a number of
lemmas. In the lemmas and proofs below, M will always
be an MLN, ⇥k will be the corresponding possibilistic
logic theory and k will be the maximum size of the evi-
dence sets considered in the translation.

Lemma 2. If E is a set of literals, |E| k, � = �(E) and
(M, E) `MAP x then

n⇣^
E0 !

^
X
⌘
2 ⇥k

� s.t. |E0| |E|
o
`
^

E ! x

Lemma 3. If �(!) � then ! is a model of ⇥k
�.

Proof. If there were a formula F = (
V

E) ! (
V

X) in
⇥k
� that was not satisfied by !, then its body would have to

be true in ! but then necessarily

� �(E) �(!) �.

The first inequality follows from the fact that, by the con-
struction of ⇥k, if the certainty weight of F is at least �
then it must be the case that �(E) � �. The second in-
equality follows from the fact that ! was assumed to be a
model of

V
E. It follows that:

pen(M,!) = pen(M, E).

However, this would mean that ! is also a most probable
world of (M, E), but then ! |= F by construction of ⇥k.

If there were an unsatisfied formula F = ¬ (
V

E ^VX)
in ⇥k

� then by construction we would have �(E [X) > �.
However, from ! |= V

E ^ VX we find �(E [X)
�(!) �, a contradiction.

Since all formulas in ⇥k are of the two considered types, it
follows that all formulas from ⇥k whose certainty weight
is at least � must be satisfied in !.

Lemma 4. If (M, E) `MAP (y1 _ · · · _ ym) then

(i) for any i, either (M, E [{¬yi}) `MAP (y1 _ · · · _
yi�1 _ yi+1 _ · · · _ ym) or (M, E) `MAP yi,

(ii) there exist a j and a set {y01, . . . , y
0
m0} ✓

{y1, . . . , ym} \ {yj} such that (M, E [
{¬y01, . . . , ¬y0m0}) `MAP yj .

Lemma 5. If |C| + |E| k + 1, and � = �(E) then
⇥k
� [E ` WC if and only if (M, E) `MAP

W
C.

We now turn to the proof of Proposition 3.

Proof of Proposition 3. Let E be an evidence set such that
|E| k and let � = �(E). Given Lemma 5, it is sufficient
to show that con(⇥k, E) = �. It follows from Lemma 3
that con(⇥k, E) �. Let X = {x | (M, E) `MAP x} be
the set of literals which can be derived from (M, E) using
MAP inference. By construction, ⇥k contains a formula
¬(
V

E ^VX) with a certainty weight which is just below
�. Specifically, for �0 < � we either have ⇥k

� = ⇥k
�0 or

⇥k
�0 |= ¬VE, from which we find con(⇥k, E) = �.

459

It is of interest to remove any formulas in⇥k that are redun-
dant, among others because this is likely to make the theory
easier to interpret. Although we can use possibilistic logic
inference to identify redundant formulas, in some cases we
can avoid adding the redundant formulas altogether. For
example, in the transformation procedure, we do not add
any rules for E if it holds that E \ {y} `MAP y for some
y 2 E. This pruning rule is the counterpart of the cau-
tious monotonicity property, which is well-known in the
context of default reasoning [15]. Any ranking on possi-
ble worlds also satisfies the stronger rational monotonicity
property, which translated to our setting states that when
(M, E \ {y}) `MAP x and (M, E \ {y}) 6`MAP ¬y it holds
that (M, E) `MAP x. Accordingly, when processing the
evidence set E in the transformation procedure, instead of
(
V

E ! V
X,�E) it is sufficient to add the following rule:

(
^

E !
^

(X \ X0),�E)

where

X0 = {x | E \ {y} `MAP x and E \ {y} 6`MAP ¬y}

The correctness of this pruning step follows from the fol-
lowing proposition.

Proposition 4. Let x and y be literals. If |E| < k,
(M, E) `MAP x and (M, E) 6`MAP ¬y then:

⇥k \ {F} |=
�^

E ^ y ! x,�E[{y}
�

where F is the formula in⇥k corresponding to the evidence
set E [{y}, i.e.:

F =
^

(E [{y})!
^

{x | (M, E [{y}) `MAP x}

Proof. If (M, E) `MAP x and (M, E) 6`MAP ¬y then
(M, E [{y}) `MAP x and pen(M, E) = pen(M, E [
{y}) = pen(M, E [{x, y}). Therefore using Lemma 2,
we find that ⇥k

�E[{y}
` VE ! x. From Lemma 2, it

furthermore follows that
V

E ! x can be derived from
rules with antecedents of length at most |E|. In particular,
we find that

V
E ! x can be derived without using the

formula
V

E ^ y ! V
X .

Finally, note that formulas of the form (13) can be omitted
when �0E = �(E\{y}) for some y 2 E. Indeed, in such
a case we find from pen(M, E \ {y}) < pen(M, E) that
(M, E \ {y}) `MAP ¬y, hence (13) will be entailed by a
formula of the form

�V
(E \ {y})! V

X,�E\{y}
�

in ⇥k.

4 ENCODING NON-GROUND
NETWORKS

We now provide the counterpart to the construction from
Section 3.2 for non-ground MLNs. The first-order nature

of MLNs often leads to distributions with many symmetries
which can be exploited by lifted inference methods [20].
We can similarly exploit these symmetries for constructing
more compact possibilistic logic theories from MLNs.

For convenience, in the possibilistic logic theories, we will
use typed formulas. For instance, when we have the for-
mula ↵ = owns(person : X, thing : Y) and the set of
constants of the type person is {alice, bob} and the set of
constants of the type thing is {car} then ↵ corresponds to
the ground formulas owns(alice, car) and owns(bob, car).
In cases where there is only one type, we will not write it
explicitly.

Two typed formulas F1 and F2 are said to be isomorphic
when there is a type-respecting substitution ✓ of the vari-
ables of F1 such that F1✓ ⌘ F2 (where ⌘ denotes equiv-
alence of logical formulas). Two MLNs M1 and M2 are
said to be isomorphic, denoted by M1 ⇡M2, if there is a
bijection i from formulas of M1 to formulas of M2 such
that for i(F, w) = (F 0, w0) it holds that w = w0 and the
formulas F and F 0 are isomorphic. When j is a permuta-
tion of a subset of constants from M then j(M) denotes
the MLN obtained by replacing any constant c from the
subset by its image j(c).

Given a non-ground MLN M, we can first identify sets of
constants which are interchangeable, where a set of con-
stants Ct is said to be interchangeable if j(M) ⇡ M for
any permutation j of the constants in Ct. Note that to check
whether a set of constants Ct is interchangeable, it is suf-
ficient to check that j(M) ⇡ M for those permutations
which swap just two constants from Ct. For every max-
imal set Ct of interchangeable constants, we introduce a
new type t. For a constant c, we write ⌧(c) to denote its
type. When F is a ground formula, variabilize(F) denotes
the following formula:

^
{Vc 6= Vd | c, d 2 const(F), ⌧(c) = ⌧(d)}! F 0

where const(F) is the set of constants appearing in F and
F 0 is obtained from F by replacing all constants c by a new
variable Vc of type ⌧(c).

Transformation 4. Given an MLN M and a positive in-
teger k, we construct a possibilistic logic theory ⇥k

M as
follows:

• For each hard rule F from M, add (F, 1) to ⇥k
M.

• For each set of literals E such that 0 |E| k,
let X = {x | (M, E) `MAP x}. For all x 2 X , unless
there is a literal y 2 E such that (M, E\{y}) `MAP y
and unless ⇥k

M already contains a formula isomor-
phic to variabilize (

V
E ! x), add

⇣
variabilize

⇣^
E ! x

⌘
,�E

⌘

460

to ⇥k
M. If pen(M, E) > pen(M, ;) and ⇥k

M
does not already contain a formula isomorphic to
variabilize (¬ (

V
E ^VX)), add also

⇣
variabilize

⇣
¬
⇣^

E ^
^

X
⌘⌘

,�0E
⌘

(14)

where �0E is the certainty level just below �E in ⇥k
M.

As before, we will usually omit the subscript in ⇥k
M. We

can show that after grounding, ⇥k is equivalent to the the-
ory that would be obtained by first grounding the MLN and
then applying the method from Section 3.2. The correct-
ness proof is provided in the online appendix.

Our implementation4 of Transformation 4 relies on an effi-
cient implementation of inference in possibilistic logic and
Markov logic, efficient generation of non-redundant candi-
date evidence sets and efficient filtering of isomorphic for-
mulas. For MAP inference in MLNs, we used a cutting-
plane inference algorithm based on a SAT-based optimiza-
tion. For inference in possibilistic logic, we also used
cutting-plane inference in order to avoid having to ground
the whole theory. To find the ground rules that need to
be added by the cutting-plane method, we used a modified
querying system from [16]. For solving and optimizing the
resulting ground programs, we used the SAT4J library [3].

Note that to check whether ⇥k
� ` F , where F is a (not

necessarily ground) clause, it is sufficient to find one (type-
respecting) grounding ✓ of F , and check whether ⇥k

� [
{¬(F✓)} is inconsistent. In this way, we can check whether
a rule is implied by ⇥k without grounding the whole the-
ory because, as for MLNs, inference in non-ground pos-
sibilistic logic theories can be carried out by cutting-plane
inference methods.

We implemented the transformation as a modification of
the standard best-first search (BFS) algorithm which con-
structs incrementally larger candidate evidence sets, checks
their MAP consequences and adds the respective rules to
the possibilistic logic theory being constructed. Like the
standard BFS algorithm it uses a hash-table based data
structure closed, in which already processed evidence sets
are stored. In order to avoid having to check isomorphism
with every evidence set in closed, each time a new evidence
set is considered, the stored evidence sets are enriched by
fingerprints which contain some invariants, guaranteeing
that no two variabilized evidence sets with different fin-
gerprints are isomorphic. In this way, we can efficiently
check for a given evidence set E whether there is a previ-
ously generated evidence set E0 such that variabilize(E)
and variabilize(E0) are isomorphic.

As a final remark, we note that for the non-ground
transformation, it may be preferable to replace any

4The implementation can be downloaded from:
https://github.com/supertweety/mln2poss.

rule (variabilize (¬ (
V

E ^VX)) ,�0E) by the rule
(variabilize (¬VE) ,�0E). The reason is that the former
rules may often become too long in the non-ground case.
On the other hand, for the ground transformation, the
advantage of the longer rules is that they will often be
the same for different sets E, which, in effect, means a
smaller number of rules in the possibilistic logic theory.
The correctness of this alternative to Transformation 4 is
also shown in the online appendix.

5 ILLUSTRATIVE EXAMPLES

The first example is a variation on a classical problem from
non-monotonic reasoning. Here, we want to express that
birds generally fly, but heavy antarctic birds do not fly, un-
less they have a jet pack. The MLN which we will con-
vert into possibilistic logic contains the following rules:
10 : bird(X) ! flies(X), 1 : antarctic(X) ! ¬flies(X),
10 : heavy(X) ! ¬flies(X), 100 : hasJetPack(X) !
flies(X). When presented with this MLN, Transformation
4 produces the following possibilistic logic theory.

(¬antarctic(X) _ ¬flies(X),�0)

(¬bird(X) _ flies(X),�0)

(¬heavy(X) _ ¬flies(X),�0)

(flies(X) _ ¬hasJetPack(X),�0)

(¬bird(X) _ flies(X) _ hasJetPack(X),�1)

(¬heavy(X) _ antarctic(X) _ ¬flies(X),�1)

(¬bird(X) _ ¬heavy(X),�1)

(¬antarctic(X) _ ¬heavy(X) _ ¬flies(X),�10)

(flies(X) _ ¬hasJetPack(X) _ bird(X),�11)

(¬bird(X) _ flies(X) _ ¬hasJetPack(X),�100)

Let us consider the evidence set E =
{bird(tweety), heavy(tweety)}. Then the levels �0

and �1 drown because of the inconsistency with the rule
(¬bird(X) _ ¬heavy(X),�1) which was produced as one
of the rules (14). We can see from the rest of the possibilis-
tic logic theory that unless we add either antarctic(tweety)
or hasJetPack(tweety), we cannot say anything about
whether tweety flies or not. It can be verified that the same
is true also for the respective MLN.

The second example consists of formulas from a classical
MLN about smokers. There are three predicates in this
MLN: a binary predicate f(A, B) denoting that A and B
are friends, and two unary predicates s(A) and c(A) denot-
ing that A smokes and that A has cancer, respectively. The
MLN contains the following hard rules: ¬f(A, B) _ f(B, A)
and ¬f(A, A). In addition, we have two soft rules. The first
soft rule 10: ¬s(A)_¬f(A, B)_ s(B) states that if A and B
are friends and A smokes then B is more likely to smoke
too. The second rule 10: ¬s(A) _ c(A) states that smoking
increases the likelihood of cancer. The following possi-

461

bilistic logic theory was obtained using Transformation 4
with k = 4.

(s(B) _ ¬f(A, B) _ ¬s(A) _ ¬alldiff(A, B),�0)

(¬s(A) _ c(A),�0)

(¬f(C, B) _ ¬f(A, B) _ s(A) _ s(C)

_¬alldiff(A, B, C) _ ¬s(B),�10)

(¬f(C, B) _ ¬s(A) _ ¬f(A, C) _ s(C)

_¬alldiff(A, B, C) _ ¬s(B),�10)

(¬s(A) _ ¬f(C, A) _ s(C) _ c(B)

_¬alldiff(A, B, C) _ ¬s(B),�10)

(¬s(A) _ c(A) _ c(B) _ ¬s(B) _ ¬alldiff(A, B),�10)

(s(B) _ ¬f(A, B) _ ¬s(A) _ c(A) _ ¬alldiff(A, B),�10)

(¬f(A, B) _ f(B, A), 1)

(¬f(A, A), 1)

At the lowest level �0 we find the counterparts of the soft
rules from the MLN, whereas at level 1 we find the hard
rules. At the intermediate level we intuitively find weak-
ened rules from the MLN. For instance, the rule (¬s(A) _
c(A)_c(B)_¬s(B)_¬alldiff(A, B),�1) can be interpreted
as: if A and B smoke then at least one of them has cancer.
It is quite natural that this rule has higher certainty weight
than the rule: if A smokes then A has cancer.

A final, more elaborate example is provided in the online
appendix.

6 RELATED WORK

One line of related work focuses on extracting a compre-
hensible model from another learned model that is difficult
or impossible to interpret. A seminal work in this area is
the TREPAN [5] algorithm. Given a trained neural network
and a data set, TREPAN learns a decision tree to mimic the
predictions of the neural network. In addition to produc-
ing interpretable output, this algorithm was shown to learn
accurate models that faithfully mimicked the neural net-
work’s predictions. More recent research has focused on
approximating complex ensemble classifiers with a single
model. For example, Popovic et al. [21] proposed a method
for learning a single decision tree that mimics the predic-
tions of a random forest.

While, to the best of our knowledge, this is the first paper
that studies the relation between Markov logic and possi-
bilistic logic, the links between possibility theory and prob-
ability theory have been widely studied. For example, [10]
has proposed a probability-possibility transformation based
on the view that a possibility measure corresponds to a par-
ticular family of probability measures. Dempster-Shafer
evidence theory [25] has also been used to provide a prob-
abilistic interpretation to possibility degrees. In particular,
a possibility distribution can be interpreted as the contour

function of a mass assignment; see [11] for details. In [13]
it is shown how the probability distribution induced by a
penalty logic theory corresponds to the contour function of
a mass assignment, which suggests that it is indeed natu-
ral to interpret this probability distribution as a possibility
distribution. Several other links between possibility theory
and probability theory have been discussed in [6].

In this paper, we have mainly focused on MAP inference.
An interesting question is whether it would be possible to
construct a (possibilistic) logic base that captures the set
of accepted beliefs encoded by a probability distribution,
where A is accepted if P (A) > P (¬A). Unfortunately, the
results in [7] show that this is only possible for the limited
class of so-called big-stepped probability distributions. In
practice, this means that we would have to define a partition
of the set of possible worlds, such that the probability dis-
tribution over the partition classes is big-stepped, and only
capture the beliefs that are encoded by the latter, less in-
formative, probability distribution. A similar approach was
taken in [1] to learn default rules from data.

7 CONCLUSIONS

This paper has focused on how a Markov logic network M
can be encoded in possibilistic logic. We started from the
observation that it is always possible to construct a pos-
sibilistic logic theory ⇥M that is equivalent to M, in the
sense that the probability distribution induced by M is iso-
morphic to the possibility distribution induced by ⇥M. As
a result, applying possibilistic logic inference to⇥M yields
the same conclusions as applying MAP inference to M.
Although the size of ⇥M is exponential in the number of
formulas in M, we have shown how more compact theo-
ries can be obtained in cases where we can put restrictions
on the types of evidence that need to be considered (e.g.
small sets of literals).

Our main motivation has been to use possibilistic logic as
a way to make explicit the assumptions encoded in a given
MLN. Among others, the possibilistic logic theory could be
used to generate explanations for predictions made by the
MLN, to gain insight into the data from which the MLN
was learned, or to identify errors in the structure or weights
of the MLN. Taking this last idea one step further, our aim
for future work is to study methods for repairing a given
MLN, based on the mistakes that have thus been identified.

Acknowledgements

We would like to thank the anonymous reviewers for their
helpful comments. This work has been supported by a
grant from the Leverhulme Trust (RPG-2014-164). JD
is partially supported by the Research Fund KU Leuven
(OT/11/051), EU FP7 Marie Curie Career Integration Grant
(294068) and FWO-Vlaanderen(G.0356.12).

462

References

[1] S. Benferhat, D. Dubois, S. Lagrue, and H. Prade. A
big-stepped probability approach for discovering de-
fault rules. Int. Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 11:1–14, 2003.

[2] S. Benferhat, D. Dubois, and H. Prade. Nonmono-
tonic reasoning, conditional objects and possibil-
ity theory. Artificial Intelligence, 92(1-2):259–276,
1997.

[3] D. L. Berre and A. Parrain. The SAT4J library, release
2.2. Journal on Satisfiability, Boolean Modeling and
Computation, 7:50–64, 2010.

[4] C. Cayrol and M.-C. Lagasquie-Schiex. On the com-
plexity of non-monotonic entailment in syntax-based
approaches. In Proceedings of the 11th ECAI Work-
shop on Algorithms, Complexity and Commonsense
Reasoning, 1994.

[5] M. W. Craven and J. W. Shavlik. Extracting tree-
structured representations of trained networks. In
D. Touretzky, M. Mozer, and M. Hasselmo, editors,
Advances in Neural Information Processing Systems,
volume 8, pages 24–30. MIT Press, 1996.

[6] D. Dubois. Possibility theory and statistical rea-
soning. Computational statistics & data analysis,
51(1):47–69, 2006.

[7] D. Dubois, H. Fargier, and H. Prade. Ordinal and
probabilistic representations of acceptance. Journal
of Artificial Intelligence Research, 22:23–56, 2004.

[8] D. Dubois, J. Lang, and H. Prade. Automated reason-
ing using possibilistic logic: semantics, belief revi-
sion, and variable certainty weights. IEEE Trans. on
Knowledge and Data Engineering, 6(1):64–71, 1994.

[9] D. Dubois, J. Lang, and H. Prade. Possibilistic logic.
In D. N. D. Gabbay, C. Hogger J. Robinson, edi-
tor, Handbook of Logic in Artificial Intelligence and
Logic Programming, volume 3, pages 439–513. Ox-
ford University Press, 1994.

[10] D. Dubois and H. Prade. On several representations
of an uncertain body of evidence. In M. Gupta and
E. Sanchez, editors, Fuzzy Information and Decision
Processes, pages 167–181. North-Holland, 1982.

[11] D. Dubois and H. Prade. Fuzzy sets, probability and
measurement. European Journal of Operational Re-
search, 40(2):135–154, 1989.

[12] D. Dubois and H. Prade. Possibility theory: qual-
itative and quantitative aspects. In D. Gabbay and
P. Smets, editors, Handbook of Defeasible Reason-
ing and Uncertainty Management Systems, volume 1,
pages 169–226. Kluwer Academic, 1998.

[13] F. Dupin de Saint-Cyr, J. Lang, and T. Schiex. Penalty
logic and its link with Dempster-Shafer theory. In
Proc. of the 10th International Conference on Uncer-
tainty in Artificial Intelligence, pages 204–211, 1994.

[14] H. Geffner and J. Pearl. Conditional entailment:
Bridging two approaches to default reasoning. Ar-
tificial Intelligence, 53(2):209–244, 1992.

[15] S. Kraus, D. Lehmann, and M. Magidor. Nonmono-
tonic reasoning, preferential models and cumulative
logics. Artificial Intelligence, 44(1-2):167–207, 1990.

[16] O. Kuželka and F. Železný. A restarted strategy for
efficient subsumption testing. Fundamenta Informat-
icae, 89(1):95–109, 2008.

[17] J. Lang. Possibilistic logic: complexity and algo-
rithms. In J. Kohlas and S. Moral, editors, Algorithms
for Uncertainty and Defeasible Reasoning, volume 5
of Handbook of Defeasible Reasoning and Uncer-
tainty Management Systems, pages 179–220. Kluwer
Academic Publishers, 2001.

[18] J. Noessner, M. Niepert, and H. Stuckenschmidt.
RockIt: Exploiting parallelism and symmetry for map
inference in statistical relational models. In Proc. of
the 27th Conf. on Artificial Intelligence (AAAI), 2013.

[19] J. Pearl. System Z: A natural ordering of defaults with
tractable applications to nonmonotonic reasoning. In
Proc. of the 3rd Conference on Theoretical Aspects of
Reasoning about Knowledge, pages 121–135, 1990.

[20] D. Poole. First-order probabilistic inference. In Pro-
ceedings of IJCAI, volume 18, pages 985–991, 2003.

[21] D. Popovic, A. Sifrim, Y. Moreau, and B. D. Moor.
eXtasy simplified - towards opening the black box. In
Proc. of the IEEE International Conf. on Bioinformat-
ics and Biomedicine (BIBM), pages 24–28, 2013.

[22] M. Richardson and P. Domingos. Markov logic net-
works. Machine Learning, 62(1-2):107–136, 2006.

[23] S. Riedel. Improving the accuracy and efficiency of
MAP inference for Markov logic. In Proc. of the 24th
Conference on Uncertainty in Artificial Intelligence.

[24] M. Serrurier and H. Prade. Introducing possibilistic
logic in ILP for dealing with exceptions. Artificial
Intelligence, 171(16–17):939–950, 2007.

[25] G. Shafer. A mathematical theory of evidence. Prince-
ton University Press, 1976.

[26] M. Thimm. Coherence and compatibility of markov
logic networks. In Proc. of the 21st European Confer-
ence on Artificial Intelligence, pages 891–896, 2014.

[27] L. Zadeh. Fuzzy sets as a basis for a theory of possi-
bility. Fuzzy Sets and Systems, 1:3–28, 1978.

463

On the Computability of AIXI

Jan Leike
Australian National University

jan.leike@anu.edu.au

Marcus Hutter
Australian National University

marcus.hutter@anu.edu.au

Abstract

How could we solve the machine learning and
the artificial intelligence problem if we had in-
finite computation? Solomonoff induction and
the reinforcement learning agent AIXI are pro-
posed answers to this question. Both are known
to be incomputable. In this paper, we quantify
this using the arithmetical hierarchy, and prove
upper and corresponding lower bounds for in-
computability. We show that AIXI is not limit
computable, thus it cannot be approximated us-
ing finite computation. Our main result is a limit-
computable ε-optimal version of AIXI with infi-
nite horizon that maximizes expected rewards.

Keywords. AIXI, Solomonoff induction, general rein-
forcement learning, computability, complexity, arithmeti-
cal hierarchy, universal Turing machine.

1 INTRODUCTION

Given infinite computation power, many traditional AI
problems become trivial: playing chess, go, or backgam-
mon can be solved by exhaustive expansion of the game
tree. Yet other problems seem difficult still; for exam-
ple, predicting the stock market, driving a car, or babysit-
ting your nephew. How can we solve these problems in
theory? A proposed answer to this question is the agent
AIXI [Hut00, Hut05]. As a reinforcement learning agent,
its goal is to maximize cumulative (discounted) rewards ob-
tained from the environment [SB98].

The basis of AIXI is Solomonoff’s theory of learn-
ing [Sol64, Sol78, LV08], also called Solomonoff induc-
tion. It arguably solves the induction problem [RH11]: for
data drawn from a computable measure µ, Solomonoff in-
duction will converge to the correct belief about any hy-
pothesis [BD62, RH11]. Moreover, convergence is ex-
tremely fast in the sense that Solomonoff induction will
make a total of at most E+O(

√
E) errors when predicting

the next data points, where E is the number of errors of the
informed predictor that knows µ [Hut01]. While learning
the environment according to Solomonoff’s theory, AIXI
selects actions by running an expectimax-search for maxi-
mum cumulative discounted rewards. It is clear that AIXI
can only serve as an ideal, yet recently it has inspired some
impressive applications [VNH+11].

Both Solomonoff induction and AIXI are known to be in-
computable. But not all incomputabilities are equal. The
arithmetical hierarchy specifies different levels of com-
putability based on oracle machines: each level in the arith-
metical hierarchy is computed by a Turing machine which
may query a halting oracle for the respective lower level.

We posit that any ideal for a ‘perfect agent’ needs to be limit
computable (∆0

2). The class of limit computable functions
is the class of functions that admit an anytime algorithm. It
is the highest level of the arithmetical hierarchy which can
be approximated using a regular Turing machine. If this
criterion is not met, our model would be useless to guide
practical research.

For MDPs, planning is already P-complete for finite and in-
finite horizons [PT87]. In POMDPs, planning is undecid-
able [MHC99, MHC03]. The existence of a policy whose
expected value exceeds a given threshold is PSPACE-
complete [MGLA00], even for purely epistemic POMDPs
in which actions do not change the hidden state [SLR07].
In this paper we derive hardness results for planning in gen-
eral semicomputable environments; this environment class
is even more general than POMDPs. We show that find-
ing an optimal policy is Π0

2-hard and finding an ε-optimal
policy is undecidable.

Moreover, we show that by default, AIXI is not limit com-
putable. The reason is twofold: First, when picking the
next action, two or more actions might have the same value
(expected future rewards). The choice between them is
easy, but determining whether such a tie exists is difficult.
Second, in case of an infinite horizon (using discounting),
the iterative definition of the value function [Hut05, Def.
5.30] conditions on surviving forever. The first problem

464

Model γ Optimal ε-Optimal

Iterative AINU
DC ∆0

4, Σ0
3-hard ∆0

3, Π0
2-hard

LT ∆0
3, Π0

2-hard ∆0
2, Σ0

1-hard

Iterative AIXI
DC ∆0

4, Π0
2-hard ∆0

3, Π0
2-hard

LT ∆0
3, Σ0

1-hard ∆0
2, Σ0

1-hard

Iterative AIMU
DC ∆0

2 ∆0
1

LT ∆0
2 ∆0

1

Recursive AINU
DC ∆0

3, Π0
2-hard ∆0

2, Σ0
1-hard

LT ∆0
3, Π0

2-hard ∆0
2, Σ0

1-hard

Recursive AIXI
DC ∆0

3, Σ0
1-hard ∆0

2, Σ0
1-hard

LT ∆0
3, Σ0

1-hard ∆0
2, Σ0

1-hard

Recursive AIMU
DC ∆0

2 ∆0
1

LT ∆0
2 ∆0

1

Table 1: Computability results for different agent mod-
els derived in Section 3. DC means general discounting,
a lower semicomputable discount function γ; LT means fi-
nite lifetime, undiscounted rewards up to a fixed lifetime
m. Hardness results for AIXI are with respect to a specific
universal Turing machine; hardness results for AINU are
with respect to a specific environment ν ∈M.

can be circumvented by settling for an ε-optimal agent.
We show that the second problem can be solved by using
the recursive instead of the iterative definition of the value
function. With this we get a limit-computable agent with
infinite horizon. Table 1 and Table 3 summarize our com-
putability results.

2 PRELIMINARIES

2.1 THE ARITHMETICAL HIERARCHY

A setA ⊆ N is Σ0
n iff there is a computable relation S such

that

k ∈ A ⇐⇒ ∃k1∀k2 . . . Qnkn S(k, k1, . . . , kn) (1)

where Qn = ∀ if n is even, Qn = ∃ if n is odd [Nie09,
Def. 1.4.10]. A set A ⊆ N is Π0

n iff its complement N \ A
is Σ0

n. We call the formula on the right hand side of (1) a
Σ0
n-formula, its negation is called Π0

n-formula. It can be
shown that we can add any bounded quantifiers and du-
plicate quantifiers of the same type without changing the
classification of A. The set A is ∆0

n iff A is Σ0
n and A is

Π0
n. We get that Σ0

1 as the class of recursively enumerable
sets, Π0

1 as the class of co-recursively enumerable sets and
∆0

1 as the class of recursive sets.

We say the set A ⊆ N is Σ0
n-hard (Π0

n-hard, ∆0
n-hard) iff

for any set B ∈ Σ0
n (B ∈ Π0

n, B ∈ ∆0
n), B is many-one

reducible to A, i.e., there is a computable function f such
that k ∈ B ↔ f(k) ∈ A [Nie09, Def. 1.2.1]. We get Σ0

n ⊂

∆0
n+1 ⊂ Σ0

n+1 ⊂ . . . and Π0
n ⊂ ∆0

n+1 ⊂ Π0
n+1 ⊂

This hierarchy of subsets of natural numbers is known as
the arithmetical hierarchy.

By Post’s Theorem [Nie09, Thm. 1.4.13], a set is Σ0
n if and

only if it is recursively enumerable on an oracle machine
with an oracle for a Σ0

n−1-complete set.

2.2 STRINGS

Let X be some finite set called alphabet. The set X ∗ :=⋃∞
n=0 Xn is the set of all finite strings over the alphabet X ,

the set X∞ is the set of all infinite strings over the alphabet
X , and the set X] := X ∗ ∪ X∞ is their union. The empty
string is denoted by ε, not to be confused with the small
positive real number ε. Given a string x ∈ X ∗, we denote
its length by |x|. For a (finite or infinite) string x of length
≥ k, we denote with x1:k the first k characters of x, and
with x<k the first k− 1 characters of x. The notation x1:∞
stresses that x is an infinite string. We write x v y iff x is
a prefix of y, i.e., x = y1:|x|.

2.3 COMPUTABILITY OF REAL-VALUED
FUNCTIONS

We fix some encoding of rational numbers into binary
strings and an encoding of binary strings into natural num-
bers. From now on, this encoding will be done implicitly
wherever necessary.

Definition 1 (Σ0
n-, Π0

n-, ∆0
n-computable). A function f :

X ∗ → R is called Σ0
n-computable (Π0

n-computable, ∆0
n-

computable) iff the set {(x, q) ∈ X ∗ × Q | f(x) > q} is
Σ0
n (Π0

n, ∆0
n).

A ∆0
1-computable function is called computable, a Σ0

1-
computable function is called lower semicomputable, and
a Π0

1-computable function is called upper semicomputable.
A ∆0

2-computable function f is called limit computable,
because there is a computable function φ such that

lim
k→∞

φ(x, k) = f(x).

The program φ that limit computes f can be thought of as
an anytime algorithm for f : we can stop φ at any time k
and get a preliminary answer. If the program φ ran long
enough (which we do not know), this preliminary answer
will be close to the correct one.

Limit-computable sets are the highest level in the arithmeti-
cal hierarchy that can be approached by a regular Turing
machine. Above limit-computable sets we necessarily need
some form of halting oracle. See Table 2 for the defini-
tion of lower/upper semicomputable and limit-computable
functions in terms of the arithmetical hierarchy.

Lemma 2 (Computability of Arithmetical Operations). Let
n > 0 and let f, g : X ∗ → R be two ∆0

n-computable
functions. Then

465

f> f<
f is computable ∆0

1 ∆0
1

f is lower semicomputable Σ0
1 Π0

1

f is upper semicomputable Π0
1 Σ0

1

f is limit computable ∆0
2 ∆0

2

f is ∆0
n-computable ∆0

n ∆0
n

f is Σ0
n-computable Σ0

n Π0
n

f is Π0
n-computable Π0

n Σ0
n

Table 2: Connection between the computability of real-
valued functions and the arithmetical hierarchy. We use the
shorthand f> := {(x, q) | f(x) > q} and f< := {(x, q) |
f(x) < q}.

(i) {(x, y) | f(x) > g(y)} is Σ0
n,

(ii) {(x, y) | f(x) ≤ g(y)} is Π0
n,

(iii) f + g, f − g, and f · g are ∆0
n-computable, and

(iv) f/g is ∆0
n-computable if g(x) 6= 0 for all x.

2.4 ALGORITHMIC INFORMATION THEORY

A semimeasure over the alphabet X is a function ν : X ∗ →
[0, 1] such that (i) ν(ε) ≤ 1, and (ii) ν(x) ≥∑a∈X ν(xa)
for all x ∈ X ∗. A semimeasure is called (probabil-
ity) measure iff for all x equalities hold in (i) and (ii).
Solomonoff’s prior M [Sol64] assigns to a string x the
probability that the reference universal monotone Turing
machine U [LV08, Ch. 4.5.2] computes a string starting
with x when fed with uniformly random bits as input. The
measure mixture M [Gá83, p. 74] removes the contribu-
tion of programs that do not compute infinite strings; it is a
measure except for a constant factor. Formally,

M(x) :=
∑

p: xvU(p)

2−|p|, M(x) := lim
n→∞

∑

y∈Xn
M(xy)

Equivalently, the Solomonoff prior M can be defined
as a mixture over all lower semicomputable semimea-
sures [WSH11]. The function M is a lower semicom-
putable semimeasure, but not computable and not a mea-
sure [LV08, Lem. 4.5.3]. A semimeasure ν can be turned
into a measure νnorm using Solomonoff normalization:
νnorm(ε) := 1 and for all x ∈ X ∗ and a ∈ X ,

νnorm(xa) := νnorm(x)
ν(xa)∑
b∈X ν(xb)

. (2)

2.5 GENERAL REINFORCEMENT LEARNING

In general reinforcement learning the agent interacts with
an environment in cycles: at time step t the agent chooses
an action at ∈ A and receives a percept et = (ot, rt) ∈
E consisting of an observation ot ∈ O and a real-valued

reward rt ∈ R; the cycle then repeats for t + 1. A history
is an element of (A × E)∗. We use æ ∈ A × E to denote
one interaction cycle, and æ1:t to denote a history of length
t. The goal in reinforcement learning is to maximize total
discounted rewards. A policy is a function π : (A×E)∗ →
Amapping each history to the action taken after seeing this
history.

The environment can be stochastic, but is assumed to
be semicomputable. In accordance with the AIXI litera-
ture [Hut05], we model environments as lower semicom-
putable chronological conditional semimeasures (LSC-
CCSs). A conditional semimeasure ν takes a sequence of
actions a1:t as input and returns a semimeasure ν(· ‖ a1:t)
over E]. A conditional semimeasure ν is chronological iff
percepts at time t do not depend on future actions, i.e.,
ν(e1:t ‖ a1:k) = ν(e1:t ‖ a1:t) for all k > t. Despite
their name, conditional semimeasures do not specify con-
ditional probabilities; the environment ν is not a joint prob-
ability distribution on actions and percepts. Here we only
care about the computability of the environment ν; for our
purposes, chronological conditional semimeasures behave
just like semimeasures.

2.6 THE UNIVERSAL AGENT AIXI

Our environment class M is the class of all LSCCCSs.
Typically, Bayesian agents such as AIXI only function well
if the true environment is in their hypothesis class. Since
the hypothesis classM is extremely large, the assumption
that it contains the true environment is rather weak. We fix
the universal prior (wν)ν∈M with wν > 0 for all ν ∈ M
and

∑
ν∈M wν ≤ 1, given by the reference machine U .

The universal prior w gives rise to the universal mixture ξ,
which is a convex combination of all LSCCCSsM:

ξ(e<t ‖ a<t) :=
∑

ν∈M
wνν(e<t ‖ a<t)

It is analogous to the Solomonoff prior M but defined for
reactive environments. Like M , the universal mixture ξ is
lower semicomputable [Hut05, Sec. 5.10].

We fix a discount function γ : N→ R with γt := γ(t) ≥ 0
and

∑∞
t=1 γt <∞ and make the following assumptions.

Assumption 3. (a) The discount function γ is lower semi-
computable.

(b) Rewards are bounded between 0 and 1.

(c) The set of actions A and the set of percepts E are both
finite.

Assumption 3 (b) could be relaxed to bounded rewards be-
cause we can rescale rewards r 7→ cr + d for any c, d ∈ R
without changing optimal policies if the environment ν is a
measure. However, for our value-related results, we require
that rewards are nonnegative.

466

We define the discount normalization factor Γt :=∑∞
i=t γi. There is no requirement that Γt > 0. In fact,

we use γ for both, AIXI with discounted infinite horizon
(Γt > 0 for all t), and AIXI with finite lifetime m. In the
latter case we set

γLTm(t) :=

{
1 if t ≤ m
0 if t > m.

If we knew the true environment ν ∈M, we would choose
the ν-optimal agent known as AINU that maximizes ν-
expected value (if ν is a measure). Since we do not know
the true environment, we use the universal mixture ξ over
all environments in M instead. This yields the Bayesian
agent AIXI: it weighs every environment ν ∈ M accord-
ing to its prior probability wν .

Definition 4 (Iterative Value Function [Hut05, Def. 5.30]).
The value of a policy π in an environment ν given history
æ<t is

V πν (æ<t) :=
1

Γt
lim
m→∞

∑

et:m

R(et:m)ν(e1:m | e<t ‖ a1:m)

if Γt > 0 and V πν (æ<t) := 0 if Γt = 0 where ai := π(e<i)
for all i ≥ t and R(et:m) :=

∑m
k=t γkrk. The optimal

value is defined as V ∗ν (h) := supπ V
π
ν (h).

Let æ<t ∈ (A × E)∗ be some history. We extend the
value functions V πν to include initial interactions (in rein-
forcement learning literature on MDPs these are called Q-
values), V πν (æ<tat) := V π

′
ν (æ<t) where π′ is the policy π

except that it takes action at next, i.e., π′(æ<t) := at and
π′(h) := π(h) for all h 6= æ<t. We define V ∗ν (æ<tat) :=
supπ V

π
ν (æ<tat) analogously.

Definition 5 (Optimal Policy [Hut05, Def. 5.19 & 5.30]).
A policy π is optimal in environment ν (ν-optimal) iff
for all histories the policy π attains the optimal value:
V πν (h) = V ∗ν (h) for all h ∈ (A× E)∗.

Since the discount function is summable, rewards are
bounded (Assumption 3b), and actions and percepts spaces
are both finite (Assumption 3c), an optimal policy exists for
every environment ν ∈ M [LH14, Thm. 10]. For a fixed
environment ν, an explicit expression for the optimal value
function is

V ∗ν (æ<t) =
1

Γt
lim
m→∞

max
∑

æt:m

R(et:m)ν(e1:m | e<t ‖ a1:m),

(3)
where

∑
max denotes the expectimax operator:

max
∑

æt:m

:= max
at∈A

∑

et∈E
. . . max

am∈A

∑

em∈E

For an environment ν ∈ M (an LSCCCS), AINU is de-
fined as a ν-optimal policy π∗ν = arg maxπ V

π
ν (ε). To

Plain Conditional
M Σ0

1 \∆0
1 ∆0

2 \ (Σ0
1 ∪Π0

1)

Mnorm ∆0
2 \ (Σ0

1 ∪Π0
1) ∆0

2 \ (Σ0
1 ∪Π0

1)

M Π0
2 \∆0

2 ∆0
3 \ (Σ0

2 ∪Π0
2)

Mnorm ∆0
3 \ (Σ0

2 ∪Π0
2) ∆0

3 \ (Σ0
2 ∪Π0

2)

Table 3: The complexity of the set {(x, q) ∈ X ∗ × Q |
f(x) > q} where f ∈ {M,Mnorm,M,Mnorm} is one of
the various versions of Solomonoff’s prior. Lower bounds
on the complexity of M and Mnorm hold only for specific
universal Turing machines.

stress that the environment is given by a measure µ ∈ M
(as opposed to a semimeasure), we use AIMU. AIXI is de-
fined as a ξ-optimal policy π∗ξ for the universal mixture
ξ [Hut05, Ch. 5]. Since ξ ∈M and every measure µ ∈M
is also a semimeasure, both AIMU and AIXI are a spe-
cial case of AINU. However, AIXI is not a special case of
AIMU since the mixture ξ is not a measure.

Because there can be more than one optimal policy, the def-
initions of AINU, AIMU and AIXI are not unique. More
specifically, a ν-optimal policy maps a history h to

π∗ν(h) :∈ arg max
a∈A

V ∗ν (ha). (4)

If there are multiple actions α, β ∈ A that attain the opti-
mal value, V ∗ν (hα) = V ∗ν (hβ), we say there is an argmax
tie. Which action we settle on in case of a tie (how we
break the tie) is irrelevant and can be arbitrary.

3 THE COMPLEXITY OF AINU, AIMU,
AND AIXI

3.1 THE COMPLEXITY OF SOLOMONOFF
INDUCTION

AIXI uses an analogue to Solomonoff’s prior on all possi-
ble environmentsM. Therefore we first state computabil-
ity results for Solomonoff’s prior M and the measure mix-
tureM in Table 3 [LH15b]. Notably,M is lower semicom-
putable and its conditional is limit computable. However,
neither the measure mixture M nor any of its variants are
limit computable.

3.2 UPPER BOUNDS

In this section, we derive upper bounds on the computabil-
ity of AINU, AIMU, and AIXI. Except for Corollary 13,
all results in this section apply generally to any LSCCCS
ν ∈ M, hence they apply to AIXI even though they are
stated for AINU.

For a fixed lifetime m, only the first m interactions matter.
There is a finite number of policies that are different for

467

the first m interactions, and the optimal policy π∗ξ can be
encoded in a finite number of bits and is thus computable.
To make a meaningful statement about the computability of
AINULT, we have to consider it as the function that takes
the lifetime m and outputs a policy π∗ξ that is optimal in
the environment ξ using the discount function γLTm. In
contrast, for infinite lifetime discounting we just consider
the function π∗ξ : (A× E)∗ → A.

In order to position AINU in the arithmetical hierarchy, we
need to identify these functions with sets of natural num-
bers. In both cases, finite and infinite lifetime, we represent
these functions as relations over N × (A × E)∗ × A and
(A×E)∗×A respectively. These relations are easily iden-
tified with sets of natural numbers by encoding the tuple
with their arguments into one natural number. From now
on this translation of policies (and m) into sets of natural
numbers will be done implicitly wherever necessary.

Lemma 6 (Policies are in ∆0
n). If a policy π is Σ0

n or Π0
n,

then π is ∆0
n.

Proof. Let ϕ be a Σ0
n-formula (Π0

n-formula) defining π,
i.e., ϕ(h, a) holds iff π(h) = a. We define the formula ϕ′,

ϕ′(h, a) :=
∧

a′∈A\{a}
¬ϕ(h, a′).

The set of actions A is finite, hence ϕ′ is a Π0
n-formula

(Σ0
n-formula). Moreover, ϕ′ is equivalent to ϕ.

To compute the optimal policy, we need to compute the
value function. The following lemma gives an upper bound
on the computability of the value function for environments
inM.

Lemma 7 (Complexity of V ∗ν). For every LSCCCS ν ∈
M, the function V ∗ν is Π0

2-computable. For γ = γLTm the
function V ∗ν is ∆0

2-computable.

Proof. Multiplying (3) with Γtν(e<t ‖ a<t) yields
V ∗ν (æ<t) > q if and only if

lim
m→∞

max
∑

æt:m

ν(e1:m ‖ a1:m)R(et:m) > q Γt ν(e<t ‖ a<t).

(5)
The inequality’s right side is lower semicomputable, hence
there is a computable function ψ such that ψ(`) ↗
q Γt ν(e<t ‖ a<t) =: q′ for `→∞. For a fixed m, the left
side is also lower semicomputable, therefore there is a com-
putable function φ such that φ(m, k)↗ ∑

maxæt:mν(e1:m ‖
a1:m)R(et:m) =: f(m) for k →∞. We already know that
the limit of f(m) for m → ∞ exists (uniquely), hence we

can write (5) as

lim
m→∞

f(m) > q′

⇐⇒ ∀m0 ∃m ≥ m0. f(m) > q′

⇐⇒ ∀m0 ∃m ≥ m0 ∃k. φ(m, k) > q′

⇐⇒ ∀`∀m0 ∃m ≥ m0 ∃k. φ(m, k) > ψ(`),

which is a Π0
2-formula. In the finite lifetime case where m

is fixed, the value function V ∗ν (æ<t) is ∆0
2-computable by

Lemma 2 (iv), since V ∗ν (æ<t) = f(m)q/q′.

From the optimal value function V ∗ν we get the optimal pol-
icy π∗ν according to (4). However, in cases where there is
more than one optimal action, we have to break an argmax
tie. This happens iff V ∗ν (hα) = V ∗ν (hβ) for two potential
actions α 6= β ∈ A. This equality test is more difficult
than determining which is larger in cases where they are
unequal. Thus we get the following upper bound.

Theorem 8 (Complexity of Optimal Policies). For any en-
vironment ν ∈ M, if V ∗ν is ∆0

n-computable, then there is
an optimal policy π∗ν for the environment ν that is ∆0

n+1.

Proof. To break potential ties, we pick an (arbitrary) total
order � on A that specifies which actions should be pre-
ferred in case of a tie. We define

πν(h) = a :⇐⇒
∧

a′:a′�a
V ∗ν (ha) > V ∗ν (ha′)

∧
∧

a′:a�a′
V ∗ν (ha) ≥ V ∗ν (ha′).

(6)

Then πν is a ν-optimal policy according to (4). By as-
sumption, V ∗ν is ∆0

n-computable. By Lemma 2 (i) and (ii)
V ∗ν (ha) > V ∗ν (ha′) is in Σ0

n and V ∗ν (ha) ≥ V ∗ν (ha′) is
Π0
n. Therefore the policy πν defined in (6) is a conjunction

of a Σ0
n-formula and a Π0

n-formula and thus in ∆0
n+1.

Corollary 9 (Complexity of AINU). AINULT is ∆0
3 and

AINUDC is ∆0
4 for every environment ν ∈M.

Proof. From Lemma 7 and Theorem 8.

Usually we do not mind taking slightly suboptimal actions.
Therefore actually trying to determine if two actions have
the exact same value seems like a waste of resources. In
the following, we consider policies that attain a value that
is always within some ε > 0 of the optimal value.

Definition 10 (ε-Optimal Policy). A policy π is ε-optimal
in environment ν iff V ∗ν (h) − V πν (h) < ε for all histories
h ∈ (A× E)∗.

Theorem 11 (Complexity of ε-Optimal Policies). For any
environment ν ∈M, if V ∗ν is ∆0

n-computable, then there is
an ε-optimal policy πεν for the environment ν that is ∆0

n.

468

Proof. Let ε > 0 be given. Since the value function V ∗ν (h)
is ∆0

n-computable, the set Vε := {(ha, q) | |q−V ∗ν (ha)| <
ε/2} is in ∆0

n according to Definition 1. Hence we com-
pute the values V ∗ν (ha′) until we get within ε/2 for ev-
ery a′ ∈ A and then choose the action with the high-
est value so far. Formally, let � be an arbitrary total or-
der on A that specifies which actions should be preferred
in case of a tie. Without loss of generality, we assume
ε = 1/k, and define Q to be an ε/2-grid on [0, 1], i.e.,
Q := {0, 1/2k, 2/2k, . . . , 1}. We define

πεν(h) = a :⇐⇒
∃(qa′)a′∈A ∈ QA.

∧

a′∈A
(ha′, qa′) ∈ Vε

∧
∧

a′:a′�a
qa > qa′ ∧

∧

a′:a�a′
qa ≥ qa′

∧ the tuple (qa′)a′∈A is minimal with

respect to the lex. ordering on QA.
(7)

This makes the choice of a unique. Moreover, QA is finite
since A is finite, and hence (7) is a ∆0

n-formula.

Corollary 12 (Complexity of ε-Optimal AINU). For any
environment ν ∈ M, there is an ε-optimal policy for
AINULT that is ∆0

2 and there is an ε-optimal policy for
AINUDC that is ∆0

3.

Proof. From Lemma 7 and Theorem 11.

If the environment ν ∈ M is a measure, i.e., ν assigns
zero probability to finite strings, then we get computable
ε-optimal policies.

Corollary 13 (Complexity of AIMU). If the environment
µ ∈ M is a measure and the discount function γ is com-
putable, then and AIMULT and AIMUDC are limit com-
putable (∆0

2), and ε-optimal AIMULT and AIMUDC are
computable (∆0

1).

Proof. In the discounted case, we can truncate the limit
m → ∞ in (3) at the ε/2-effective horizon meff :=
min{k | Γk/Γt < ε/2}, since everything after meff
can contribute at most ε/2 to the value function. Any
lower semicomputable measure is computable [LV08,
Lem. 4.5.1]. Therefore V ∗µ as given in (3) is composed only
of computable functions, hence it is computable according
to Lemma 2. The claim now follows from Theorem 8 and
Theorem 11.

3.3 LOWER BOUNDS

We proceed to show that the bounds from the previous sec-
tion are the best we can hope for. In environment classes
where ties have to be broken, AIMUDC has to solve Σ0

3-
hard problems (Theorem 15), and AIMULT has to solve

Π0
2-hard problems (Theorem 16). These lower bounds are

stated for particular environments ν ∈M.

We also construct universal mixtures that yield bounds
on ε-optimal policies. In the finite lifetime case, there
is an ε-optimal AIXILT that solves Σ0

1-hard problems
(Theorem 17), and for general discounting, there is an
ε-optimal AIXIDC that solves Π0

2-hard problems (Theo-
rem 18). For arbitrary universal mixtures, we prove the
following weaker statement that only guarantees incom-
putability.
Theorem 14 (No AIXI is computable). AIXILT and
AIXIDC are not computable for any universal Turing ma-
chine U .

This theorem follows from the incomputability of
Solomonoff induction. Since AIXI uses an analogue of
Solomonoff’s prior for learning, it succeeds to predict the
environment’s behavior for its own policy [Hut05, Thm.
5.31]. If AIXI were computable, then there would be com-
putable environments more powerful than AIXI: they can
simulate AIXI and anticipate its prediction, which leads to
a contradiction.

Proof. Assume there is a computable policy π∗ξ that is op-
timal in ξ. We define a deterministic environment µ, the
adversarial environment to π∗ξ . The environment µ gives
rewards 0 as long as the agent follows the policy π∗ξ , and
rewards 1 once the agent deviates. Formally, we ignore ob-
servations by setting O := {0}, and define

µ(r1:t ‖ a1:t) :=

1 if ∀k ≤ t. ak = π∗ξ ((ar)<k) and rk = 0

1 if ∀k ≤ t. rk = 1k≥i
where i := min{j | aj 6= π∗ξ ((ar)<j)}

0 otherwise.

The environment µ is computable because the policy π∗ξ
was assumed to be computable. Suppose π∗ξ acts in µ, then
by [Hut05, Thm. 5.36], AIXI learns to predict perfectly on
policy:

V ∗ξ (æ<t) = V
π∗ξ
ξ (æ<t)→ V

π∗ξ
µ (æ<t) = 0 as t→∞,

since both π∗ξ and µ are deterministic. Therefore we find a
t large enough such that V ∗ξ (æ<t) < wµ (in the finite life-
time case we choose m > t) where æ<t is the interaction
history of π∗ξ in µ. A policy π with π(æ<t) 6= π∗ξ (æ<t),
gets a reward of 1 in environment µ for all time steps af-
ter t, hence V πµ (æ<t) = 1. With linearity of V πξ (æ<t) in
ξ [Hut05, Thm. 5.31],

V πξ (æ<t) ≥ wµ µ(e1:t‖a1:t)ξ(e1:t‖a1:t)V
π
µ (æ<t) ≥ wµ,

since µ(e1:t ‖ a1:t) = 1 (µ is deterministic), V πµ (æ<t) =
1, and ξ(e1:t ‖ a1:t) ≤ 1. Now we get a contradiction:

wµ > V ∗ξ (æ<t) = max
π′

V π
′

ξ (æ<t) ≥ V πξ (æ<t) ≥ wµ

469

For the remainder of this section, we fix the action space to
be A := {α, β} with action α favored in ties. The percept
space is fixed to a tuple of binary observations and rewards,
E := O × {0, 1} with O := {0, 1}.
Theorem 15 (AINUDC is Σ0

3-hard). If Γt > 0 for all t,
there is an environment ν ∈ M such that AINUDC is Σ0

3-
hard.

Proof. Let A be any Σ0
3 set, then there is a computable

relation S such that

n ∈ A ⇐⇒ ∃i ∀t ∃k S(n, i, t, k). (8)

We define a class of environments M′ = {ρ0, ρ1, . . .} ⊂
M where each environment ρi is defined by

ρi((or)1:t ‖ a1:t) :=

2−t, if o1:t = 1t and ∀t′ ≤ t. rt′ = 0

2−n−1, if ∃n. 1n0 v o1:t v 1n0∞ and an+2 = α

and ∀t′ ≤ t. rt′ = 0

2−n−1, if ∃n. 1n0 v o1:t v 1n0∞ and an+2 = β

and ∀t′ ≤ t. rt′ = 1t′>n+1

and ∀t′ ≤ t∃k S(n, i, t′, k)

0, otherwise.

Every ρi is a chronological conditional semimeasure by
definition, so M′ ⊆ M. Furthermore, every ρi is lower
semicomputable since S is computable.

We define our environment ν as a mixture overM′,

ν :=
∑

i∈N

2−i−1ρi;

the choice of the weights on the environments ρi is arbitrary
but positive. Let π∗ν be an optimal policy for the environ-
ment ν and recall that the action α is preferred in ties. We
claim that for the ν-optimal policy π∗ν ,

n ∈ A ⇐⇒ π∗ν(1n0) = β. (9)

This enables us to decide whether n ∈ A given the policy
π∗ν , hence proving (9) concludes this proof.

Let n, i ∈ N be given, and suppose we are in environment
i and observe 1n0. Taking action α next yields rewards 0
forever; taking action β next yields a reward of 1 for those
time steps t ≥ n + 2 for which ∀t′ ≤ t∃k S(n, i, t′, k),
after that the semimeasure assigns probability 0 to all next
observations. Therefore, if for some t0 there is no k such
that S(n, i, t0, k), then ρi(e1:t0 ‖ . . . β . . .) = 0, and hence

V ∗ρi(1
n0β) = 0 = V ∗ρi(1

n0α),

and otherwise ρi yields reward 1 for every time step after
n+ 1, therefore

V ∗ρi(1
n0β) = Γn+2 > 0 = V ∗ρi(1

n0α)

(omitting the first n+1 actions and rewards in the argument
of the value function). We can now show (9): By (8), n ∈ A
if and only if there is an i such that for all t there is a k
such that S(n, i, t, k), which happens if and only if there is
an i ∈ N such that V ∗ρi(1

n0β) > 0, which is equivalent to
V ∗ν (1n0β) > 0, which in turn is equivalent to π∗µ(1n0) = β
since V ∗ν (1n0α) = 0 and action α is favored in ties.

Theorem 16 (AINULT is Π0
2-hard). There is an environ-

ment ν ∈M such that AINULT is Π0
2-hard.

The proof of Theorem 16 is analogous to the proof of
Theorem 15. The notable difference is that we replace
∀t′ ≤ t ∃k S(n, i, t′, k) with ∃k S(n, i, k). Moreover,
we swap actions α and β: action α ‘checks’ the relation S
and action β gives a sure reward of 1.

Theorem 17 (Some ε-optimal AIXILT are Σ0
1-hard). There

is a universal Turing machine U ′ and an ε > 0 such that
any ε-optimal policy for AIXILT is Σ0

1-hard.

Proof. Let ξ denote the universal mixture derived from the
reference universal monotone Turing machine U . Let A be
a Σ0

1-set and S computable relation such that n+ 1 ∈ A iff
∃k S(n, k). We define the environment

ν((or)1:t ‖ a1:t) :=

ξ((or)1:n ‖ a1:n), if ∃n. o1:n = 1n−10

and an = α

and ∀t′ > n. et′ = (0, 12)

ξ((or)1:n ‖ a1:n), if ∃n. o1:n = 1n−10

and an = β

and ∀t′ > n. et = (0, 1)

and ∃k S(n− 1, k).

ξ((or)1:t ‖ a1:t), if @n. o1:n = 1n−10

0, otherwise.

The environment ν mimics the universal environment ξ un-
til the observation history is 1n−10. Taking the action α
next gives rewards 1/2 forever. Taking the action β next
gives rewards 1 forever if n ∈ A, otherwise the environ-
ment ν ends at some future time step. Therefore we want
to take action β if and only if n ∈ A. We have that ν is an
LSCCCS since ξ is an LSCCCS and S is computable.

We define the universal lower semicomputable semimea-
sure ξ′ := 1

2ν + 1
8ξ. Choose ε := 1/9. Let n ∈ A be given

and define the lifetime m := n + 1. Let h ∈ (A × E)n

be any history with observations o1:n = 1n−10. Since
ν(1n−10 | a1:n) = ξ(1n−10 | a1:n) by definition, the pos-
terior weights of ν and ξ in ξ′ are equal to the prior weights,
analogously to [LH15a, Thm. 7]. In the following, we use

the linearity of V
π∗
ξ′

ρ in ρ [Hut05, Thm. 5.21], and the fact
that values are bounded between 0 and 1. If there is a k

470

such that S(n− 1, k),

V ∗ξ′(hβ)− V ∗ξ′(hα)

= 1
2V

π∗
ξ′

ν (hβ)− 1
2V

π∗
ξ′

ν (hα) + 1
8V

π∗
ξ′

ξ (hβ)− 1
8V

π∗
ξ′

ξ (hα)

≥ 1
2 − 1

4 + 0− 1
8 = 1

8 ,

and similarly if there is no k such that S(n− 1, k), then

V ∗ξ′(hα)− V ∗ξ′(hβ)

= 1
2V

π∗
ξ′

ν (hα)− 1
2V

π∗
ξ′

ν (hβ) + 1
8V

π∗
ξ′

ξ (hα)− 1
8V

π∗
ξ′

ξ (hβ)

≥ 1
4 − 0 + 0− 1

8 = 1
8 .

In both cases |V ∗ξ′(hβ) − V ∗ξ′(hα)| > 1/9. Hence we
pick ε := 1/9 and get for every ε-optimal policy πεξ′ that
πεξ′(h) = β if and only if n ∈ A.

Theorem 18 (Some ε-optimal AIXIDC are Π0
2-hard).

There is a universal Turing machine U ′ and an ε > 0 such
that any ε-optimal policy for AIXIDC is Π0

2-hard.

The proof of Theorem 18 is analogous to the proof of The-
orem 17 except that we choose ∀m′ ≤ m ∃k S(x,m, k) as
a condition for reward 1 after playing action β.

4 ITERATIVE VS. RECURSIVE AINU

Generally, our environment ν ∈ M is only a semimeasure
and not a measure. I.e., there is a history æ<tat such that

1 >
∑

et∈E
ν(et | e<t ‖ a1:t).

In such cases, with positive probability the environment
ν does not produce a new percept et. If this occurs, we
shall use the informal interpretation that the environment ν
ended, but our formal argument does not rely on this inter-
pretation.

The following proposition shows that for a semimeasure
ν ∈ M that is not a measure, the iterative definition of
AINU does not maximize ν-expected rewards. Recall that
γ1 states the discount of the first reward. In the following,
we assume without loss of generality that γ1 > 0, i.e., we
are not indifferent about the reward received in time step 1.

Proposition 19 (Iterative AINU is not a ν-Expected Re-
wards Maximizer). For any ε > 0 there is an environment
ν ∈ M that is not a measure and a policy π that receives
a total of γ1 rewards in ν, but AINU receives only εγ1 re-
wards in ν.

Informally, the environment ν is defined as follows. In the
first time step, the agent chooses between the two actions
α and β. Taking action α gives a reward of 1, and sub-
sequently the environment ends. Action β gives a reward
of ε, but the environment continues forever. There are no

other rewards in this environment. From the perspective of
ν-expected reward maximization, it is better to take action
α, however AINU takes action β.

Proof. Let ε > 0. We ignore observations and set E :=
{0, ε, 1}, A := {α, β}. The environment ν is formally
defined by

ν(r1:t ‖ a1:t) :=

1 if a1 = α and r1 = 1 and t = 1

1 if a1 = β and r1 = ε and rk = 0 ∀1 < k ≤ t
0 otherwise.

Taking action α first, we have ν(r1:t ‖ αa2:t) = 0 for
t > 1 (the environment ν ends in time step 2 given history
α). Hence we use (3) to conclude

V ∗ν (α) =
1

Γt
lim
m→∞

∑

r1:m

ν(r1:m ‖ αa2:m)

m∑

i=1

ri = 0.

Taking action β first we get

V ∗ν (β) =
1

Γt
lim
m→∞

∑

r1:m

ν(r1:m ‖ βa2:m)

m∑

i=1

ri =
γ1
Γ1
ε.

Since γ1 > 0 and ε > 0, we have V ∗ν (β) > V ∗ν (α), and
thus AIMU will use a policy that plays action β first, re-
ceiving a total discounted reward of εγ1. In contrast, any
policy π that takes action α first receives a larger total dis-
counted reward of γ1.

Whether it is reasonable to assume that our environment
has a nonzero probability of ending is a philosophical de-
bate we do not want to engage in here. Instead, we have
a different motivation to use the recursive value function:
we get an improved computability result. Concretely, we
show that for all environments ν ∈ M, there is a limit-
computable ε-optimal policy maximizing ν-expected re-
wards using an infinite horizon. According to Theorem 18,
this does not hold for all V ∗ν -maximizing agents AINU.

In order to maximize ν-expected rewards in case ν is not
a measure, we need the recursive definition of the value
function (analogously to [Hut05, Eq. 4.12]). To avoid con-
fusion, we denote it Wπ

ν :

Wπ
ν (æ<t) =

1

Γt

∑

et

(
γtrt

+ Γt+1W
π
ν (æ1:t)

)
ν(et | e<t ‖ a1:t)

where at := π(æ<t). In the following we write it in non-
recursive form.

Definition 20 (ν-Expected Value Function). The ν-
expected value of a policy π in an environment ν given

471

history æ<t is

Wπ
ν (æ<t) :=

1

Γt

∞∑

m=t

∑

et:m

γmrmν(e1:m | e<t ‖ a1:m)

if Γt > 0 and Wπ
ν (æ<t) := 0 if Γt = 0 where ai :=

π(e<i) for all i ≥ t. The optimal ν-expected value is de-
fined as W ∗ν (h) := supπW

π
ν (h).

The difference between V πν and Wπ
ν is that for Wπ

ν all ob-
tained rewards matter, but for V πν only the rewards in time-
lines that continue indefinitely. In this sense the value func-
tion V πν conditions on surviving forever. If the environment
µ is a measure, then the history is infinite with probability
one, and so V πν and Wπ

ν coincide. Hence this distinction is
not relevant for AIMU, only for AINU and AIXI.

So why use V πν in the first place? Historically, this is how
infinite-horizon AIXI has been defined [Hut05, Def. 5.30].
This definition is the natural adaptation of (optimal) min-
imax search in zero-sum games to the (optimal) expecti-
max algorithm for stochastic environments. It turns out to
be problematic only because semimeasures have positive
probability of ending prematurely.

Lemma 21 (Complexity of W ∗ν). For every LSCCCS ν ∈
M, and every lower semicomputable discount function γ,
the function W ∗ν is ∆0

2-computable.

Proof. The proof is analogous to the proof of Lemma 7.
We expand Definition 20 using the expectimax operator
analogously to (3). This gives a quotient with numerator

lim
m→∞

max
∑

æt:m

m∑

i=t

γiriν(e1:i ‖ a1:i),

and denominator ν(e<t ‖ a<t) · Γt. In contrast to the it-
erative value function, the numerator is now nondecreasing
in m because we assumed rewards to be nonnegative (As-
sumption 3b). Hence both numerator and denominator are
lower semicomputable functions, so Lemma 2 (iv) implies
that W ∗ν is ∆0

2-computable.

Now we can apply our results from Section 3.2 to show that
using the recursive value function Wπ

ν , we get a universal
AI model with an infinite horizon whose ε-approximation
is limit computable. Moreover, in contrast to iterative
AINU, recursive AINU actually maximizes ν-expected re-
wards.

Corollary 22 (Complexity of Recursive AINU/AIXI). For
any environment ν ∈ M, recursive AINU is ∆0

3 and there
is an ε-optimal recursive AINU that is ∆0

2. In particular,
for any universal Turing machine, recursive AIXI is ∆0

3

and there is an ε-optimal recursive AIXI that is limit com-
putable.

Proof. From Theorem 8, Theorem 11, and Lemma 21.

Analogously to Theorem 14, Theorem 16, and Theorem 17
we can show that recursive AIXI is not computable, recur-
sive AINU is Π0

2-hard, and for some universal Turing ma-
chines, ε-optimal recursive AIXI is Σ0

1-hard.

5 DISCUSSION

We set out with the goal of finding a limit-computable
perfect agent. Table 3 on page 4 summarizes our com-
putability results regarding Solomonoff’s prior M : con-
ditional M and Mnorm are limit computable, while M
and Mnorm are not. Table 1 on page 2 summarizes our
computability results for AINU, AIXI, and AINU: itera-
tive AINU with finite lifetime is ∆0

3. Having an infinite
horizon increases the level by one, while restricting to ε-
optimal policies decreases the level by one. All versions
of AINU are situated between ∆0

2 and ∆0
4 (Corollary 9 and

Corollary 12). For environments that almost surely con-
tinue forever (semimeasure that are measures), AIMU is
limit-computable and ε-optimal AIMU is computable. We
proved that these computability bounds on iterative AINU
are generally unimprovable (Theorem 15 and Theorem 16).
Additionally, we proved weaker lower bounds for AIXI in-
dependent of the universal Turing machine (Theorem 14)
and for ε-optimal AIXI for specific choices of the universal
Turing machine (Theorem 17 and Theorem 18).

We considered ε-optimality in order to avoid having to
break argmax ties. This ε does not have to be constant
over time, instead we may let ε → 0 as t → ∞ at any
computable rate. With this we retain the computability re-
sults of ε-optimal policies and get that the value of the ε(t)-
optimal policy π

ε(t)
ν converges rapidly to the ν-optimal

value: V ∗ν (æ<t)− V π
ε(t)
ν

ν (æ<t)→ 0 as t→∞. Therefore
the limitation to ε-optimal policies is not very restrictive.

When the environment ν has nonzero probability of not
producing a new percept, the iterative definition (Defini-
tion 4) of AINU fails to maximize ν-expected rewards
(Proposition 19). We introduced a recursive definition of
the value function for infinite horizons (Definition 20),
which correctly returns ν-expected value. The difference
between the iterative value function V and recursive value
functionW is readily exposed in the difference betweenM
andM . Just like V conditions on surviving forever, so does
M eliminate the weight of programs that do not produce in-
finite strings. Both M and V are not limit computable for
this reason.

Our main motivation for the introduction of the recursive
value function W is the improvement of the computability
of optimal policies. Recursive AINU is ∆0

3 and admits a
limit-computable ε-optimal policy (Corollary 22). In this
sense our goal to find a limit-computable perfect agent has
been accomplished.

472

REFERENCES

[BD62] David Blackwell and Lester Dubins. Merging
of opinions with increasing information. The
Annals of Mathematical Statistics, pages 882–
886, 1962.

[Gá83] Péter Gács. On the relation between descrip-
tional complexity and algorithmic probability.
Theoretical Computer Science, 22(1–2):71 –
93, 1983.

[Hut00] Marcus Hutter. A theory of universal arti-
ficial intelligence based on algorithmic com-
plexity. Technical Report cs.AI/0004001,
2000. http://arxiv.org/abs/cs.
AI/0004001.

[Hut01] Marcus Hutter. New error bounds for
Solomonoff prediction. Journal of Computer
and System Sciences, 62(4):653–667, 2001.

[Hut05] Marcus Hutter. Universal Artificial Intelli-
gence: Sequential Decisions Based on Algo-
rithmic Probability. Springer, 2005.

[LH14] Tor Lattimore and Marcus Hutter. General
time consistent discounting. Theoretical Com-
puter Science, 519:140–154, 2014.

[LH15a] Jan Leike and Marcus Hutter. Bad universal
priors and notions of optimality. In Confer-
ence on Learning Theory, 2015.

[LH15b] Jan Leike and Marcus Hutter. On the
computability of Solomonoff induction and
knowledge-seeking. 2015. Forthcoming.

[LV08] Ming Li and Paul M. B. Vitányi. An Introduc-
tion to Kolmogorov Complexity and Its Appli-
cations. Texts in Computer Science. Springer,
3rd edition, 2008.

[MGLA00] Martin Mundhenk, Judy Goldsmith, Christo-
pher Lusena, and Eric Allender. Complex-
ity of finite-horizon Markov decision process
problems. Journal of the ACM, 47(4):681–
720, 2000.

[MHC99] Omid Madani, Steve Hanks, and Anne Con-
don. On the undecidability of probabilis-
tic planning and infinite-horizon partially ob-
servable Markov decision problems. In
AAAI/IAAI, pages 541–548, 1999.

[MHC03] Omid Madani, Steve Hanks, and Anne Con-
don. On the undecidability of probabilistic
planning and related stochastic optimization
problems. Artificial Intelligence, 147(1):5–34,
2003.

[Nie09] André Nies. Computability and Randomness.
Oxford University Press, 2009.

[PT87] Christos H Papadimitriou and John N Tsitsik-
lis. The complexity of Markov decision pro-
cesses. Mathematics of Operations Research,
12(3):441–450, 1987.

[RH11] Samuel Rathmanner and Marcus Hutter. A
philosophical treatise of universal induction.
Entropy, 13(6):1076–1136, 2011.

[SB98] Richard S. Sutton and Andrew G. Barto. Re-
inforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 1998.

[SLR07] Régis Sabbadin, Jérôme Lang, and Nasolo
Ravoanjanahry. Purely epistemic Markov de-
cision processes. In AAAI, volume 22, pages
1057–1062, 2007.

[Sol64] Ray Solomonoff. A formal theory of induc-
tive inference. Parts 1 and 2. Information and
Control, 7(1):1–22 and 224–254, 1964.

[Sol78] Ray Solomonoff. Complexity-based induction
systems: Comparisons and convergence theo-
rems. IEEE Transactions on Information The-
ory, 24(4):422–432, 1978.

[VNH+11] Joel Veness, Kee Siong Ng, Marcus Hutter,
William Uther, and David Silver. A Monte-
Carlo AIXI approximation. Journal of Ar-
tificial Intelligence Research, 40(1):95–142,
2011.

[WSH11] Ian Wood, Peter Sunehag, and Marcus Hut-
ter. (Non-)equivalence of universal priors. In
Solomonoff 85th Memorial Conference, pages
417–425. Springer, 2011.

473

Tracking with ranked signals

Tianyang Li† Harsh Pareek† Pradeep Ravikumar†
† Department of Computer Science, The University of Texas at Austin

{lty,harshp,pradeepr}@cs.utexas.edu
* Geophysical Fluid Dynamics Institute at Florida State University

{db10d,kspeer}@fsu.edu

Dhruv Balwada* Kevin Speer*

Abstract

We present a novel graphical model approach for
a problem not previously considered in the ma-
chine learning literature: that of tracking with
ranked signals. The problem consists of track-
ing a single target given observations about the
target that consist of ranked continuous signals,
from unlabeled sources in a cluttered environ-
ment. We introduce appropriate factors to handle
the imposed ordering assumption, and also incor-
porate various systematic errors that can arise in
this problem, particularly clutter or noise signals
as well as missing signals. We show that infer-
ence in the obtained graphical model can be sim-
plified by adding bipartite structures with appro-
priate factors. We apply a hybrid approach con-
sisting of belief propagation and particle filter-
ing in this mixed graphical model for inference
and validate the approach on simulated data. We
were motivated to formalize and study this prob-
lem by a key task in Oceanography, that of track-
ing the motion of RAFOS ocean floats, using
range measurements sent from a set of fixed bea-
cons, but where the identities of the beacons cor-
responding to the measurements are not known.
However, unlike the usual tracking problem in
artificial intelligence, there is an implicit rank-
ing assumption among signal arrival times. Our
experiments show that the proposed graphical
model approach allows us to effectively leverage
the problem constraints and improve tracking ac-
curacy over baseline tracking methods yielding
results similar to the ground truth hand-labeled
data.

1 INTRODUCTION
We consider the problem of tracking a single target where
the observations, concerning the position of the target, con-
sist of ranked continuous signals from unlabeled sources in

a cluttered environment. We allow for various types of er-
ror that may occur in these observations: (a) a recorded
signal may correspond to a spurious signal instead of a true
signal, and (b) a signal may be lost and never recorded. We
present a novel graphical model approach for this problem.
Our graphical model is a mixed or hybrid model with both
discrete and continuous components. To perform proba-
bilistic inference in this mixed graphical model, we use
particle filtering for the continuous component which rep-
resents the location of the target, and belief propagation for
the discrete component which represents the data associa-
tion between the signals and the signals’ sources.

We were motivated to study the above problem formal-
ism by a mathematical abstraction of a key problem in
Oceanography: that of tracking RAFOS floats using ranked
range measurements. RAFOS floats (Rossby et al. , 1986;
Hancock & Speer, 2013) are low cost acoustically tracked
subsurface floating devices used to study ocean currents by
measuring the paths taken by fluid parcels in the ocean.
They also measure temperature and pressure along the way.
The typical mission times for these floats are on the order of
a few months to a few of years during which they don’t sur-
face, and hence it is not possible to locate or track these
floats via satellite (GPS) position fixes. In order to solve
this location or tracking problem, a moored (fixed) array
of sound sources, also known as beacons are used. These
moored sound sources or beacons produce and transmit one
sound signal per tracking cycle. The floats then record the
arrival times of these signals transmitted from the bea-
cons. These arrival times depend on the distance from
the sound source and the velocity of sound in the ocean,
and thus provide information about the location of the float
(since the sound sources or beacons are fixed and their lo-
cations are known). At any given instant, if distances of the
float from three beacons are known, this suffices to deter-
mine the position of the float. Thus if we could identify the
beacons corresponding to the received signals, we can then
track the course of the float.

The caveat is that while the arrival times are stored, the bea-
cons from which the respective signals originated is not

474

known. In addition, the storage capacity of each float is
limited and it only records a small number of these signal
arrival times each day. These signals have a natural order-
ing in that the beacon signals most likely to be stored origi-
nate from the closest beacons and are received (and stored)
in distance order. We are interested in inferring the iden-
tity of the beacons at each time step corresponding to the
few received ordered or “ranked” signals. This is a chal-
lenging task and currently, this information is hand-labeled
by oceanography researchers, with many months of effort.
Our paper provides an automated solution for this inter-
esting problem, and moreover provides a novel machine
learning problem abstraction of tracking with ranked sig-
nals, which would be of interest even from a purely ma-
chine learning standpoint.

We will nonetheless anchor our discussion of the tracking
with ranked signals problem to the RAFOS float tracking
problem for presentational reasons. Let us consider the
setup and assumptions of the above RAFOS float tracking
problem in greater detail. Each float’s tracking data con-
sists of its initial and final positions, and a fixed number of
earliest signal arrival times for each day. Figure 1 shows
the observed signal arrival times for a particular float over
the entire tracking period. There are s fixed beacons with
known positions. Each float in the ocean is equipped with
a receiver. Every day at a specified time, a float starts lis-
tening for sound signals transmitted by the beacons. The
float stores the arrival times of the first r(< s) signals it
receives and a confidence value for each signal, then shuts
off its receiver. Our goal is to use these arrival times to
track the position of the float over time. The model we
present includes the following kinds of errors that capture
key characteristics of this problem:

• The arrival times are subject to noise due to environ-
mental factors and recording equipment

• Signals from a beacon may never reach or be dropped
by the receiver, we call these errors missing values.

• The receiver may erroneously record ambient noise
as a signal from a beacon, and store that value. We
call these errors junk values or clutter. Figure 1 and
our analysis in the experiments section show that junk
values are very common and outnumber true signals
in the data.

While our focus is on the beacon association problem, it
should be noted that there are additional sources of error
such as those due to the Doppler effect, variations in the
speed of sound due to temperature and beacon depth or
clock drift in the receiver which have been investigated in
prior work(Wooding et al. , 2005; Hancock & Speer, 2013).
These would change the conditional probability distribu-
tions in the model we introduce in Figure 2 and incorporat-
ing these in our model is left as future work.

Contributions The main contributions of this work are
as follows:

• Our setting differs from prior work from a machine
learning standpoint due to the ordering condition im-
posed on the received signals, as described earlier.
Our model introduces novel ranking based factors
to enforce this condition, and we present an equiva-
lent bipartite model similar in structure to that used
in the data association literature (Williams & Lau,
2010) which can then be used for inference via mes-
sage passing. This contribution should be valuable for
other graphical model problems where ranking based
factors are involved.

• RAFOS float tracking has not previously been con-
sidered from a graphical model perspective; indeed,
(Hancock & Speer, 2013; Wooding et al. , 2005) label
data by hand. Our model in Figure 2 captures several
important characteristics of this problem and is also of
practical importance from an application standpoint.

• We evaluate our algorithm on simulated data and show
that our algorithm performs better than a baseline
model which does not take the ranking of signal ar-
rival times into account. We also present the results
of our algorithm on real world RAFOS float data and
demonstrate good agreement with hand-labeled data.

1.1 RELATED WORK

We now review prior work on tracking, and specifically
contrast our problem with the classical tracking problem.
A tracking algorithm can be viewed as computing the prob-
ability distribution of a system’s state xt given observations
yt. A common model for this is a Hidden Markov model
with hidden states xt. Inference using message passing
for this model leads to the well known Kalman filtering
and smoothing algorithms or the forward-backward algo-
rithm under different distributional assumptions. Another
common class of approaches to perform inference on such
models are particle filtering and other MCMC-based ap-
proaches (Oh et al. , 2009; Chertkov et al. , 2010).

In the RAFOS float tracking problem, from the perspec-
tive of the float, the problem resembles a multi-target track-
ing or data association problem, where the beacons are the
targets. In multi-target tracking, we try to track a number
of moving targets over time given some noisy information
about the set of observed locations at each time step, and
the challenge is to link the locations over time to obtain the
trajectory for each target. Classical approaches to multi-
target tracking assign a probability to each possible asso-
ciation of targets across time steps. The inference prob-
lem p(xt|yt) then requires summing over all possible such
associations and reduces to computing the permanent of a
matrix (Oh et al. , 2009; Chertkov et al. , 2010), which is

475

0 200 400 600
3500

4000

4500

5000

5500

6000

6500

7000

7500

Day

S
ig

n
a

l
a

rr
iv

a
l
ti
m

e
 (

s
)

(a) float #767

0 100 200 300 400
3500

4000

4500

5000

5500

6000

6500

7000

7500

Day

S
ig

n
a

l
a

rr
iv

a
l
ti
m

e
 (

s
)

(b) float #811

Figure 1: Observed signal arrival times for float #767 and #811 over the entire tracking period

known to be #P-complete (Valiant, 1979). The probabilis-
tic data association filter (Bar-Shalom, 1987; Bar-Shalom
et al. , 2009) collapses this state into a single Gaussian
at each time step to make the problem tractable. An-
other interesting line of work is multiple hypothesis track-
ing (Blackman, 2004). At each time step the algorithm
maintains a mixture of Gaussians for each target represent-
ing a distribution over its possible positions, and updates
the state by summing over all possible associations while
discarding components with low probability to make com-
putation tractable. Message passing algorithms which have
been shown to converge (Vontobel, 2013; Huang & Jebara,
2009) have also been proposed. (Cevher et al. , 2006) de-
veloped a particle filtering approach which uses only range
measurements, while MCMC algorithms that are fully
polynomial-time randomized approximation schemes (Jer-
rum et al. , 2004) have also been studied. Other approaches
include greedy approaches widely used in robotics, which
include choosing the data association with the maximum
likelihood (Thrun et al. , 2005), and nearest-neighbor meth-
ods where observations “closest” to expected observations
are kept and others are discarded. While simple, such
greedy approaches work poorly under relatively high noise
levels (Bar-Shalom et al. , 2009). Yet another interesting
line of work represents the state xt of the system using
distributions over permutations and uses group-theoretic
methods to approximate these distributions (Kondor et al.
, 2007; Huang et al. , 2009). Such approaches have been
investigated in the contexts of radar tracking, computer vi-
sion, and robotics.

We cannot directly apply these methods to the RAFOS float
tracking problem because the number of observed targets
(beacon arrival times) is small compared to the number of
beacons and thus most beacons are unobserved at each time
step. This is because if we can identify the beacons corre-

sponding to each arrival time, only a small number (three
in 2D space) of beacons are required to track the float’s po-
sition, and thus the float need only store the first few arrival
times while the number of beacons may be much larger.
Further, there may be regime changes, where a beacon goes
out of range and a previously unobserved beacon appears
in range which these methods cannot directly handle. How-
ever, since the closest beacons are the ones most likely to
be recorded and their values are received in order, the pro-
vided information may be sufficient for tracking. We show
in this paper that explicitly modeling the ordering assump-
tion among beacon times and the fact that there is an under-
lying latent variable – the float’s position – which connects
the targets, allows us to track the float.

We also note that multiple hypothesis tracking approaches
which maintain a mixture over the potential associations
are not required for our model for tracking with ranked sig-
nals. In a sense, in the RAFOS float tracking problem the
only true latent variable is the float’s position and the oth-
ers such as the beacon arrival times are derived from this.
In particular, the additional ordering assumption provides
a strong helpful constraint, since the only way the closest
beacon’s signal is not received first is if two signals were
close together and their ordering was changed due to am-
bient noise, if that signal is lost or if a junk signal was
recorded as the first. The first possibility does not affect
tracking since the two signals were already close, while
the probabilities of the latter two systematic errors can be
modeled in a principled manner with a graphical model ap-
proach. Thus, in the RAFOS tracking problem knowing the
initial position allows us to continue tracking the float with-
out needing a mixture model and in this sense, our model
for tracking with ranked signals is (computationally and
statistically) easier than the standard multiple-target track-
ing problem.

476

T1 T2 · · · Tr

c1 c2
· · ·

crn1 n2 nr

t1 t2 · · ·
ts

m1 m2 mn

XtXt−1 Xt+1

Figure 2: Graphical Model for tracking with ranked signals

To investigate the question of the practical advantage of our
ordering constraint, which is a key difference from previ-
ous work, we consider a baseline model by dropping the
ranking assumption. Thus, any permutation is allowed as
a possible signal to signal source assignment, and is given
the same weight. This approach leads to a mixture over
possible assignments and we compare against this baseline
in our experiments.

2 GRAPHICAL MODEL
Our proposed graphical model for tracking with ranked
signals is shown in Figure 2. While Figure 2 expresses
our model as a directed graphical model (also known as a
Bayesian network), we will specify the probability distri-
bution not in terms of conditional probabilities but in terms
of local factors in the corresponding factor graph (see Fig-
ure 9 in appendix), since these will be used for inference
in the sequel. For simplicity of description, we assume that
target is in a 2-dimensional space, however it must be noted
that our model applies to the general case when the target
is in a d-dimensional space. We now describe each node
and factor in Figure 2.

At each time step, the target records the first r signals emit-
ted from s signal sources. It is possible that a signal from
a particular signal source may be lost and not detectable at
the target for the target to record. It is also possible that the
target may record a spurious signal if the spurious signal is
ranked higher than a true signal.

We indicate the position of the target by Xt ∈ R2. We
model the system’s dynamics as Xt+1 ∼ N (Xt, Σ), so
that we have the corresponding factor f(Xt, Xt+1) given
by

f(Xt, Xt+1) = (2π)−1|Σ|−1/2 exp

(
−1

2
∆T
t Σ−1∆t

)

(1)

where ∆t = Xt+1 −Xt.

We denote the signal characteristic (providing information
about the target) from signal source i by ti ∈ R, (1 ≤ i ≤
s). Note that in the context of RAFOS float tracking, this
would correspond to the arrival time of the sound signal
from beacon i. Some of these signals might be lost as noted
in the introduction, so that we use Bernoulli random vari-
ables mi ∈ {0, 1} to indicate whether or not the signal
from signal source i was lost. Thus, if mi = 1, the signal
was lost and ti is set to∞ (so that signal source iwill be ig-
nored in (3)). Otherwise, ti follows some given distribution
depending on signal source i and current the target loca-
tion Xt. For example, in the RAFOS tracking problem, ti
follows a Gaussian distribution centered on the time taken
for a sound signal to travel from location bi to location Xt,
given by ‖Xt−bi‖2vs

, where bi is the beacon’s location and vs
is the speed of sound. We capture this interaction between
the stateXt, the estimated arrival time ti, and the lost signal
indicator mi via the factors gi(Xt, ti,mi) (1 ≤ i ≤ s):

gi(Xt, ti,mi) =

1
σ
√

2π
e−

„
ti−
‖Xt−bi‖2

vs

«2
2σ2 if mi = 0

1 if mi = 1

(2)

Note that ti ∈ R, (1 ≤ i ≤ s) are not directly observed,
and hence latent variables in the model. Next, we consider
the observed signals which we denote by Ti(1 ≤ i ≤ r).
Since these signals are stored sequentially, we have that
T1 < T2 < · · · < Tr by our ranking assumption. But some
of these signals may not correspond to signals from actual
signal sources at all, and could be purely due to clutter, as
noted in the introduction. We thus use Bernoulli random
variables ci ∈ {0, 1} to indicate whether or not the signal
Ti corresponds to clutter. By the assumptions made in the
previous section, if the signal from the signal source that
is supposed to be recorded first is not lost, i.e. ti < ∞,
and moreover the value stored as Ti is not junk, i.e. ci = 1
then Ti must be the minimum of {tj}ij=1. Otherwise, a
junk clutter value is recorded. We assume these clutter val-
ues follow some fixed distribution, which we denote us-
ing the random variables ni. For instance, in the RAFOS
float tracking problem we assume junk clutter value are dis-
tributed uniformly over a specified interval.

We represent this interaction of Tj with the clut-
ter, lost/missing, and signal variables, via the factor
f(Tj , c1, c2, . . . , cj , nj , t1,m1, t2,m2, . . . , ts,ms):

f(Tj , c1, c2, . . . , cj , nj , t1,m1, t2,m2, . . . , ts,ms)

=

{
δ(Tj − t(j)) if cj = 0

δ(Tj − nj) if cj = 1
(3)

where we use t(j) to denote the (j −∑j−1
l=1 cl)

th smallest
element of the set {tl}. This is a degenerate conditional

477

probability distribution for Ti with mass only at the appro-
priate ti or ni. Recall that δ is the Dirac delta function,
which has the following properties:

δ(x) =

{
0 if x 6= 0

undefined if x = 0
,

∫
δ(x)dx = 1,

∫
f(x)δ(x)dx = f(0) (4)

2.1 INFERENCE WITH min FACTORS

The key novelty of our graphical model are the high order
factors fj ,which depend on the r first ranked signals. We
consider this model in the simplified case, with no missing
signals and no clutter, and show how inference via message
passing can be performed in this model. In this setting, the
factor fj(Tj , t1, t2, . . . , ts) is given by

fj(Tj , t1, t2, . . . , ts) = δ(Tj − t(j)) (5)

where t(j) is the jth minimum element of {t1, t2, . . . , ts}.
Direct computation of messages for high order factors in
general requires computing an s − 1-dimensional integral.
However, our fj , which correspond to the j-th minimum
function, can be rewritten as a sum of products as,

fj =
s∑

k=1

δ(tk − Tj)
∑

(A,B)∈Sk

∏

a∈A
1(ta < Tj)

∏

b∈B
1(tb > Tj) (6)

where Sk = {(A,B) ⊆ [s]× [s] : A ∪B = [s] \ {k}, A ∩
B = ∅, |A| = j − 1, |B| = s− j} and [s] = {1, 2, . . . , s}
Then, as we show in the appendix, the multidimensional in-
tegral, comprising messages in a message passing inference
algorithm, can be computed using only one-dimensional in-
tegrals and turn out to have the form:

µfj→ti(ti) =δ(ti − Tj)h1(Tj) + 1(ti < Tj)h2(Tj)

+ 1(ti > Tj)h3(Tj)
(7)

where each hj can be computed inO(sr) time via dynamic
programming. When r is fixed, as in the RAFOS float
tracking problem – since with r = 3 at most three known
nearest beacons we can obtain the floats position and the
overall number of beacons s is irrelevant – these messages
can effectively be computed in polynomial time. This result
is in the vein of previous work on reductions for high order
potentials such as (Tarlow et al. , 2010). Handling high or-
der min factors in this way is a novel result and can poten-
tially be applied to other problems where such ranking fac-
tors are involved. Due to their technical complexity how-
ever, we defer further discussion of these factors and the
details of the message passing algorithm to Appendix A.2.
Instead, in the next section, we consider a reduction of our

graphical model, with many such min factors, to an auxil-
iary model with a bipartite graph structure, which results in
easier to implement algorithms.

2.2 REDUCTION TO BIPARTITE FACTORS

In this section, we show that our Bayesian network can be
represented via a simpler conditional random field with fac-
tors that enforce a bipartite matching constraint. We do this
by introducing latent variables Si, Rj (Figure 3) to repre-
sent the association between signal sources and signals.

One large factor. First, consider the simplified case with
no clutter and no missing signals. In this case, our graph-
ical model is equivalent to one with the following large
factor f connecting the t1, t2, . . . , ts and T1, T2, . . . , Tr
(instead of the fj of (3) connecting tj to the {Ti}),
f(t1, t2, . . . , ts, T1, T2, . . . , Tr) as

f(t1, t2, . . . , ts, T1, T2, . . . , Tr)

=
∑

Π∈{r-permutations
of {1,2,...,s}}

r∏

j=1

δ(tΠ(j) − Tj)
∏

k 6∈Π

1(tk > Tr)

(8)
We prove this by showing that the factor f defined in (8)
above satisfies:

f =
r∏

j=1

fj (9)

where f1, f2, . . . , fj are the factors in eq (3). For
any {t1, t2, . . . , ts}, if the r smallest elements are not
T1, T2, . . . , Tr then we can see that f = 0 and

∏r
j=1 fj =

0. When the r smallest elements of {t1, t2, . . . , ts} are
T1, T2, . . . , Tr, where ti1 = T1, ti2 = T2, . . . , tir = Tr,
then we can see that f =

∏r
j=1 δ(tij − Tj) =

∏r
j=1 fj .

Auxiliary Bipartite Graph. f has a special structure in
that it sums over partial matchings and for each match-
ing, it can be written as a product of pairwise factors, rep-
resented by the snippet of a pairwise conditional random
field shown in Figure 3. To represent the matching, we use
variables Si (1 ≤ i ≤ s) corresponding to signal sources:
these take values in {1, 2, . . . , r,L}, indicating which of
the r received signals Si corresponds to, or a value of L
if the signal was late, i.e. not in the first r and was thus
not received. On the other side of the matching, we have
variables Rj (1 ≤ j ≤ r) corresponding to received sig-
nals Tj : these take values in {1, 2, . . . , s} indicating which
of the signal sources Tj originated from. Thus, Tj is the
signal corresponding to source Rj , while TSi is the signal
corresponding to source i.

The factors f(Si, Rj) enforce these bipartite matching con-

478

straint:

f(Si, Rj) =

0
if Si = j, Rj 6= i or
Si 6= j, Rj = i

1 otherwise
(10)

And the factor f(Si) is given by

f(Si) =

{
δ(ti − TSi) if Si 6= L

1(ti > Tr) if Si = L
(11)

Then, on marginalizing Si andRj , we obtain the factor f as
in equation (8). Thus, we can replace the factor f of equa-
tion (8) by this auxiliary graphical model and perform mes-
sage passing on this graphical model. This leads to a model
similar to the pairwise models proposed to approximate
the permanent, which shows up in the usual data associ-
ation problem (Pasula et al. , 1999; Huang & Jebara, 2009;
Oh et al. , 2009; Chertkov et al. , 2010; Vontobel, 2013).
We can now consider the difference between our bipartite
model and the one used to approximate the permanent (in
(Huang & Jebara, 2009)): the sum in eq (8) is over partial
permutations while that in (Huang & Jebara, 2009) involves
full permutations. Our model consequently involves an ad-
ditional value L to indicate that a signal is “late”, leading
to the node factors as shown in eq (11) which use indicator
functions to indicate that a sent signal may not be in the top
r ranked signals, and thus encodes the min factors required
by our model.

Generalization to Factors with Missing Values, Clut-
ter. We now generalize this argument to yield a simi-
lar conditional random field with pairwise factors for the
complete model with missing values and clutter. Each Si
(1 ≤ i ≤ s) takes values 1, 2, . . . , r,L,M, where a number
indicates which signal it corresponds to, L indicates that the
signal is ranked too low to be observed, and M indicates that
the signal is missing and undetectable at the receiver. Each
Rj (1 ≤ j ≤ r) takes values 1, 2, . . . , s,C, where a num-
ber indicates the signal’s source, and C indicates it’s clut-
ter. The factors f(Si, Rj) still enforce the bipartite match-
ing constraint of equation (10). The factors f(nj , Rj) are
given by

f(nj , Rj) =

{
PCδ(nj − Tj) if Rj = C

1− PC otherwise
(12)

where PN is the probability that the signal is clutter.

And the factor f(ti, Si) is given by

f(ti, Si) =

1− PD if Si = M

PD1(ti > Tr) if Si = L

PDδ(ti − TSi) otherwise
(13)

where PD is the probability that the signal can be detected

XtXt−1 Xt+1

S1 S2 Ss. . .

R1 R2 Rr. . .

Figure 3: A conditional random field representing the dis-
tribution of r earliest arriving signals

Finally, we marginalize out t1, t2, . . . , ts and
n1, n2, . . . , nr, so that we can represent the condi-
tional distribution as a simpler pairwise conditional
random field as in Figure 3, where no factor uses the delta
function, simplifying computation.

In the conditional random field shown in Figure 3, the fac-
tor f(Xt, Si) is given by

f(Xt, Si) =

1− PD if Si = M

PD
∫ +∞
Tr

pi(T |Xt) dT if Si = L

PDpi(TSi |Xt) otherwise
(14)

In the RAFOS tracking problem pi(T |Xt) =

1
σ
√

2π
exp

{
−
“
T− ‖Xt−bi‖2vs

”2

2σ2

}
is the distribution of

signal arrival time T given the location Xt of the target,
and the factor f(Xt, Rj) is given by

f(Rj) =

{
PCpN (Tj) if Rj = C

1− PC otherwise
(15)

where pN (T) is the distribution of clutter signal arrival
time.

Alternative Derivation of the Bipartite Model Here we
show an alternative and more intuitive derivation of the bi-
partite model assuming that the number of clutter signals
follows a Poisson distribution with parameter λ and clut-
ter signals are independent and identically distributed. We
also assume that the distribution of signals from different

479

signal sources are independent, and whether or not a signal
is missing and non-detectable at the target is independent
of all other signals.

Assume that the target’s location isX , and there areN clut-
ter signals, the likelihood of observing T1 ≤ T2 ≤ · · · ≤
Tr with labels S1, Sr, . . . , Ss and R1, R2, . . . , Rr is pro-
portional to

`N =
N !

(N −∑1(Rj = C))!
(1− PD)

P
1(Si=M)P

P
1(Si 6=M)

D

(∫ +∞

Tr

pN (t) dt

)N−P 1(Rj=C) ∏

Rj=C

pN (Tj)

∏

Si 6=L,M

pi(TSi |X)
∏

Si=L

∫ +∞

Tr

pi(t|X) dt (16)

Marginalizing out N we then have

∑

N

e−λ
λN

N !
`N ∝λ

P
1(Rj=C)(1− PD)

P
1(Si=M)

P
P

1(Si 6=M)
D

∏

Rj=C

pN (Tj)
∏

Si 6=L,M

pi(TSi |X)

∏

Si=L

∫ +∞

Tr

pi(t|X) dt (17)

Thus if we set

PC =
λ

1 + λ
(18)

then it is clear that we can represent this distribution using
the conditional random field shown in Figure 3.

2.3 INFERENCE

We use a hybrid particle filtering and belief propagation
approach. For propagating information across time steps,
i.e. between the nodes Xt−1 and Xt, we use particle fil-
tering (Doucet & Johansen, 2009). Particle based methods
are simple to implement for tracking with range measure-
ments (Cevher et al. , 2006). Such methods have also been
widely used in robotics (Thrun et al. , 2005).

The distribution for eachXt is represented by a set of parti-
cles, we use message passing in the graphical model shown
in Figure 3 to compute P (T1, T2, . . . , Tr|Xt), which is
given by the partition function and can be approximated
by the Bethe free energy (Huang & Jebara, 2009). In this
graphical model, message passing equations have a simple
form where each iteration isO(sr) (Huang & Jebara, 2009;
Williams & Lau, 2010), and message passing converges to
a unique fixed point (Huang & Jebara, 2009; Williams &
Lau, 2010; Vontobel, 2013). Previous work (Huang & Je-
bara, 2009; Williams & Lau, 2010; Chertkov et al. , 2010)
has shown this strategy to be very effective.

Algorithm 1 Algorithm for tracking with ranked signals

1: function TRACKWITHRANKEDSIGNALS(X0,
{T (i)

1 ≤ T (i)
2 ≤ · · · ≤ T (i)

r }ni=1)
2: Np ← number of particles to use
3: p[Np]← each particle is initialized to X0

4: w[Np] . each particle’s weight
5: for i = 1; i ≤ n; + + i do
6: for j = 0; j 6= Np; + + j do
7: p[j]← SAMPLE(P (Xt|Xt−1 = p[j]))
8: w[j]← P (T

(i)
1 , T

(i)
2 , . . . , T

(i)
r |p[j]) .

computed using belief propagation in the conditional
random field in Figure 3

9: end for
10: p←RESAMPLE(p,w) . particle filter

resampling
11: end for
12: end function

An implementation of the tracking algorithm to estimate
X1, X2, . . . , Xn where we are given the initial position of
the targetX0, and n observations of ranked signals {T (i)

1 ≤
T

(i)
2 ≤ · · · ≤ T (i)

r }ni=1 is given in Algorithm 1.

3 EXPERIMENTS
We present experiments on two kinds of datasets: simu-
lated data generated using our model (Figure 3) and real
world data from RAFOS floats.

3.1 SIMULATIONS

We simulate tracking RAFOS floats using ranked contin-
uous range measurements with our method. At each time
step, the target records the arrival times of the first 4 signals
emitted from 10 fixed beacons. There is a fixed probability
that a signal may not be detectable at the target, and the tar-
get may record the arrival time of a spurious signal (clutter)
if the spurious signal arrives before an actual signal.

3.1.1 SIMULATION OF TRACKING DIFFERENT
TRAJECTORIES

Figure 4a shows our algorithm tracking a target moving in
a straight line: the x and y axes correspond to the x and
y coordinates of the 2D location of the signal. The corre-
sponding signal arrival times are shown in Figure 4b. Simi-
larly, Figure 5a shows our algorithm tracking a target mov-
ing in a spiral, signal arrival times are shown in Figure 5b.
In the simulations, there are 10 signal sources and 4 sig-
nal arrival times. Clutter arrival times are uniformly dis-
tributed on a predefined interval, and the number of clutter
signals follows a Poisson distribution with parameter 4, so
that PC = 4

1+4 = 0.8. The signal arrival time distribu-
tion pi has parameter σ = 0.02, and PD = 0.7. We can
see that our algorithm correctly tracks the target when the

480

0 10 20
−5

0

5

10

15

20

beacons

true

estimated

(a) Our algorithm’s result

0 50 100
0

10

20

30

Time step

S
ig

n
a

l
a

rr
iv

a
l
ti
m

e

(b) Signal arrival times

Figure 4: Our algorithm tracking a target moving in a
straight line

−15 −10 −5 0 5 10

−5

0

5

10

beacons
true trajectory
estimated trajectory

(a) Our algorithm’s result

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

11

Time step

S
ig

n
a
l
a
rr

iv
a
l
ti
m

e

(b) Signal arrival times

Figure 5: Our algorithm tracking a target moving in a spiral

association between signal arrival times and signal sources
changes.

3.1.2 COMPARISON WITH THE BASELINE
ALGORITHM

We compare our algorithm against a baseline algorithm
which does not take into account that signal arrival times
are ranked. The overall structure of the baseline model is
the same as that of the graphical model shown in Figure 3,
however the factor f(Xt, Si) is given by

f(Xt, Si) =

{
PDpi(TSi |Xt) if Si 6= L and Si 6= M

1− PD if Si = L or Si = M
(19)

so that the implicit ranking of signal arrival times is not
taken into account.

Figure 6b shows the mean squared error against the noise
level when tracking the straight trajectory shown in Fig-
ure 6a. The noise level is indicated by a parameter λ such
that PC = λ

1+λ . The parameter λ corresponds to the Pois-
son parameter for the number of clutter signals (see Ap-
pendix). Signal arrival time distribution pi has parameter
σ = 0.02, and PD = 0.7. We can see that our algorithm
outperforms the baseline algorithm.

3.2 RAFOS FLOAT DATA

We present tracking results on real world RAFOS float data
which consists of ranked continuous signal arrival times.
We compare the results of our algorithm against hand la-
beled data where each signal is hand labeled with a par-

0 1 2 3 4
0

1

2

3

4

(a) A straight trajectory used
to compare our algorithm and
the baseline algorithm

1 2 3 4 5

2

4

6

8

10

M
e

a
n

 s
q

u
a

re
d

 e
rr

o
r

Noise level

proposed
baseline

(b) Mean squared error of our
algorithm and the baseline al-
gorithm for different noise
levels λ

Figure 6: Simulation comparing our proposed algorithm
and the baseline

ticular signal source or as clutter. In RAFOS float mis-
sions, after a float is released at a known location to start
its mission, it records a fixed number of arrival times from
a set of beacons whose positions are fixed and known. The
dataset presented here are collected in the DIMES (Di-
apycnal and Isopycnal Mixing Experiment in the Southern
Ocean) project (Hancock & Speer, 2013), which is aimed
at measuring diapycnal and isopycnal mixing in the South-
ern Ocean, along the tilting isopycnals of the Antarctic Cir-
cumpolar Current. In our dataset, the float records 4 earliest
signal arrival times, and there are 10 beacons. The floats are
first released off the western coast of South America. There
were just two floats — #767 and #811 — for which at least
three beacon signals were recorded at all time steps (note
that at least three beacon signals are required to uniquely
identify the 2D position of the float), and accordingly, we
present our results on tracking these two floats. Their sig-
nal arrival times are shown in Figure 1. We compare our
algorithm’s results to a manual tracking procedure where
each signal is hand labeled to its source or as noise based
on intuition and some apriori knowledge of the physical
factors (geometry of ocean basin and acoustic array, basic
knowledge of current directions etc.) at play.

Note that the true locations of the RAFOS floats are not
known and that the hand labeled data only contains the
associations between signal arrival times and their cor-
responding signal sources (or whether they are clutter).
Hence, we obtain a trajectory for the hand labeled data us-
ing a simple particle filter. At each time step T1 ≤ T2,≤
· · · ≤ Tr and R1, R2, . . . , Rr are known, so the weight of
a particle at X is given by

w(X) ∝
∏

1≤j≤r
pRj (Tj |X) (20)

When running our proposed algorithm and the one using
hand labeled data for RAFOS float tracking, we set PC =
0.5, PD = 0.9, σ = 5. Although in the real environment
the speed of sound depends on the depth of the RAFOS
float and other environmental factors, in our experiments
we set vs = 1.5 km/s across all cases.

481

0 200 400 600
−110

−105

−100

−95

−90

−85

−80

Day

L
o

n
g

it
u

d
e

hand labeled
proposed

(a) Longitude

0 200 400 600
−62

−61

−60

−59

−58

−57

−56

Day

L
a

ti
tu

d
e

hand labeled
proposed

(b) Latitude

Figure 7: Trajectory of float #767 estimated by our proposed algorithm versus using hand labeled data

0 100 200 300 400
−106

−104

−102

−100

−98

−96

Day

L
o

n
g

it
u

d
e

hand labeled
proposed

(a) Longitude

0 100 200 300 400
−60

−59.5

−59

−58.5

−58

−57.5

−57

−56.5

−56

Day

L
a

ti
tu

d
e

hand labeled
proposed

(b) Latitude

Figure 8: Trajectory of float #811 estimated by our proposed algorithm versus using hand labeled data

The results for longitude and latitude of float #767 and
#811 estimated by our algorithm versus using hand labeled
data are shown in Figure 7 and Figure 8 respectively. Ad-
ditional results for other floats in the DIMES project are
presented in the appendix. We observe good agreement
between the tracks estimated using hand labeled data and
using our method indicating that our method recovers the
associations. We can also see that our algorithm continues
to track the target when the set of associated signal sources
changes.

4 CONCLUSIONS
We have presented a novel graphical model approach for
the problem of tracking with ranked signals which was able
to capture certain problem specific features easily. The
key novelty in the model, from a machine learning point
of view, was the presence of ranking-based factors. We
have provided a novel bipartite construction which allows
for easy inference via message passing for such factors.
While our model and approach were motivated by a par-
ticular application, the contributions of this paper should

be applicable to other problems where ranking based high-
order factors are involved.

We experimentally showed that our method effectively
leverages the varied problem constraints to improve track-
ing accuracy over baseline tracking methods. We ap-
plied our method for tracking with ranked signals to a key
Oceanography problem of tracking RAFOS floats in the
ocean and thus provide an automated solution to a problem
which has previously required significant manual effort.

ACKNOWLEDGEMENTS

T.L., H.P., and P.R. acknowledge the support of ARO
via W911NF-12-1-0390 and NSF via IIS-1149803, IIS-
1320894, IIS-1447574, and DMS-1264033. K.S. and D.B.
acknowledge support from NSF OCE 1231803.

482

References
Bar-Shalom, Y., Daum, F., & Huang, J. 2009. The prob-

abilistic data association filter. Control Systems, IEEE,
29(6), 82–100.

Bar-Shalom, Yaakov. 1987. Tracking and data association.
Academic Press Professional, Inc.

Blackman, Samuel S. 2004. Multiple hypothesis tracking
for multiple target tracking. Aerospace and Electronic
Systems Magazine, IEEE, 19(1), 5–18.

Cevher, Volkan, Velmurugan, Rajbabu, & McClellan,
James H. 2006. A range-only multiple target particle
filter tracker. Pages IV–IV of: Acoustics, Speech and Sig-
nal Processing, 2006. ICASSP 2006 Proceedings. 2006
IEEE International Conference on, vol. 4. IEEE.

Chertkov, M, Kroc, L, Krzakala, F, Vergassola, M, &
Zdeborová, L. 2010. Inference in particle tracking ex-
periments by passing messages between images. Pro-
ceedings of the National Academy of Sciences, 107(17),
7663–7668.

Doucet, Arnaud, & Johansen, Adam M. 2009. A tutorial
on particle filtering and smoothing: Fifteen years later.
Handbook of Nonlinear Filtering, 12, 656–704.

Hancock, C., & Speer, K. 2013. Diapycnal and Isopyc-
nal Mixing Experiment in the Southern Ocean, RAFOS
Float Data Report, Marine Field Group, FSU, January
2013.

Huang, Bert, & Jebara, Tony. 2009. Approximating
the permanent with belief propagation. arXiv preprint
arXiv:0908.1769.

Huang, Jonathan, Guestrin, Carlos, & Guibas, Leonidas.
2009. Fourier theoretic probabilistic inference over per-
mutations. The Journal of Machine Learning Research,
10, 997–1070.

Jerrum, Mark, Sinclair, Alistair, & Vigoda, Eric. 2004. A
polynomial-time approximation algorithm for the per-
manent of a matrix with nonnegative entries. Journal
of the ACM (JACM), 51(4), 671–697.

Kondor, Risi, Howard, Andrew, & Jebara, Tony. 2007.
Multi-object tracking with representations of the sym-
metric group. Pages 211–218 of: International Confer-
ence on Artificial Intelligence and Statistics.

Oh, Songhwai, Russell, Stuart, & Sastry, Shankar. 2009.
Markov chain Monte Carlo data association for multi-
target tracking. Automatic Control, IEEE Transactions
on, 54(3), 481–497.

Pasula, Hanna, Russell, Stuart, Ostland, Michael, & Ritov,
Yaacov. 1999. Tracking many objects with many sen-
sors. Pages 1160–1171 of: IJCAI, vol. 99.

Rossby, T, Dorson, D, & Fontaine, J. 1986. The RAFOS
system. Journal of Atmospheric and Oceanic Technol-
ogy, 3(4), 672–679.

Tarlow, Daniel, Givoni, Inmar E, & Zemel, Richard S.
2010. Hop-map: Efficient message passing with high
order potentials. Pages 812–819 of: International Con-
ference on Artificial Intelligence and Statistics.

Thrun, Sebastian, Burgard, Wolfram, & Fox, Dieter. 2005.
Probabilistic robotics. MIT press.

Valiant, Leslie G. 1979. The complexity of computing the
permanent. Theoretical computer science, 8(2), 189–
201.

Vontobel, Pascal O. 2013. The Bethe permanent of a non-
negative matrix. Information Theory, IEEE Transactions
on, 59(3), 1866–1901.

Williams, Jason L, & Lau, Roslyn A. 2010. Convergence
of loopy belief propagation for data association. Pages
175–180 of: Intelligent Sensors, Sensor Networks and
Information Processing (ISSNIP), 2010 Sixth Interna-
tional Conference on. IEEE.

Wooding, Christine M, Furey, Heather H, & Pacheco, Mar-
guerite A. 2005. RAFOS float processing at the Woods
Hole Oceanographic Institution. Tech. rept. Woods Hole
Oceanographic Institution.

483

Classification of Sparse and Irregularly Sampled Time Series with
Mixtures of Expected Gaussian Kernels and Random Features

Steven Cheng-Xian Li Benjamin Marlin
College of Information and Computer Sciences

University of Massachusetts Amherst
Amherst, MA 01003

{cxl,marlin}@cs.umass.edu

Abstract

This paper presents a kernel-based framework for
classification of sparse and irregularly sampled
time series. The properties of such time series
can result in substantial uncertainty about the val-
ues of the underlying temporal processes, while
making the data difficult to deal with using stan-
dard classification methods that assume fixed-
dimensional feature spaces. To address these
challenges, we propose to first re-represent each
time series through the Gaussian process (GP)
posterior it induces under a GP regression model.
We then define kernels over the space of GP pos-
teriors and apply standard kernel-based classifi-
cation. Our primary contributions are (i) the de-
velopment of a kernel between GPs based on the
mixture of kernels between their finite marginals,
(ii) the development and analysis of extensions
of random Fourier features for scaling the pro-
posed kernel to large-scale data, and (iii) an ex-
tensive empirical analysis of both the classifica-
tion performance and scalability of our proposed
approach.

1 INTRODUCTION

In this paper, we address the problem of classification of
sparse and irregularly sampled time series. Irregularly sam-
pled (or non-uniformly sampled) time series are character-
ized by variable time intervals between successive obser-
vations. While all time series in a data set are typically de-
fined on the same continuous-time interval, the number of
observations per time series can vary. When the intervals
between successive observations are long, the time series
are said to be sparsely sampled.

Such time series data arise when sampling complex tempo-
ral processes in a number of important areas including cli-
mate science [Schulz and Stattegger, 1997], ecology [Clark

and Bjørnstad, 2004], biology [Ruf, 1999], medicine [Mar-
lin et al., 2012] and astronomy [Scargle, 1982]. In domains
including medicine, the data are both irregularly sampled
and sparsely sampled [Marlin et al., 2012]. Classification
in this setting is challenging both because the data cases are
not naturally defined in a fixed-dimensional feature space
due to irregular sampling and variable time series length,
and because there can be substantial uncertainty about the
underlying temporal processes due to the sparsity of obser-
vations.

To address these challenges, we begin by re-representing
each input time series using the Gaussian process (GP) pos-
terior it induces under a GP regression model [Rasmussen
and Williams, 2006]. We then define kernels over the space
of GP posteriors and apply standard kernel-based classifi-
cation methods [Cortes and Vapnik, 1995]. We propose a
kernel between GPs based on the mixture of kernels be-
tween finite dimensional GP marginal distributions defined
over sliding time windows. We refer to this as the mixture
of sliding GP marginal kernels (MSM) framework.

The MSM kernel framework requires a base kernel be-
tween finite-dimensional GP marginals, which are Gaus-
sian distributions. While the MSM framework can be used
with any valid base kernel between two Gaussian distri-
butions, we propose an uncertainty-aware base kernel that
we refer to as the expected Gaussian kernel to address the
uncertainty that results from sparse sampling. Using the
expected Gaussian kernel in the MSM framework yields a
kernel between Gaussian processes that we refer to as the
mixture of expected Gaussian kernels (MEG).

Next, we consider the problem of scaling our proposed
kernel-based time series classification framework to large-
scale data. Computing the exact Gram matrix for the pro-
posed MEG kernel with n time series takesO(n2d3k) time
when k sliding windows of length d are used. To ad-
dress this problem, we show how to extend the random
Fourier feature kernel approximation framework [Rahimi
and Recht, 2007] to the MEG kernel. Using our random
feature construction, it takes O(nMd2) time to compute
the random feature matrix using M random features for

484

each time series. We then show how to use Fastfood [Le
et al., 2013] to reduce the random feature computation time
toO(nMd log d) when the window size d is large. With an
extra rank-r covariance approximation, we can further re-
duce this time to O(nMr log d) for r � d. Finally, we
provide a convergence analysis of our proposed approxi-
mation based on the recently developed matrix Bernstein
inequality [Lopez-Paz et al., 2014; Tropp, 2012a].

The primary contributions of this paper are:

1. The development of an uncertainty-aware kernel for
GPs based on the mixture of kernels between their
finite-dimensional marginals (Section 3).

2. The development and analysis of an extension of ran-
dom Fourier features for scaling the proposed kernel
to large-scale data (Section 4).

3. An extensive empirical analysis of both the classifica-
tion performance and scalability of our proposed ap-
proach (Section 5).

In Section 2, we begin by describing how to represent
sparse and irregularly sampled time series using Gaussian
processes, which are a fundamental building block of our
proposed framework.

2 SPARSE AND IRREGULARLY
SAMPLED TIME SERIES

Our focus in this paper is classification of time series data
in the presence of sparse and irregular sampling. Consider
a data set of n independent time series D = {S1, . . . ,Sn},
where each time series Si is represented as a list of time
points ti = [ti1, . . . , ti|Si|]

>, and a list of corresponding
values yi = [yi1, . . . , yi|Si|]

>. We assume that each time
series is defined over a common continuous-time interval
[0, T]. However, for irregularly sampled time series we do
not assume that all of the time series are defined on the
same collection of time points (i.e., ti 6= tj in general), we
do not assume that the intervals between time points are
uniform, and we do not assume that the number of obser-
vations in different time series is the same (i.e., |Si| 6= |Sj |
in general).

Learning in this setting is challenging because the data
cases are not naturally defined in a fixed-dimensional fea-
ture space due to irregular sampling, and there can be
substantial uncertainty about the underlying temporal pro-
cesses due to the sparsity of observations.

To address these challenges, we begin by re-representing
each input time series using the Gaussian process (GP) pos-
terior it induces under a Gaussian process regression model
[Rasmussen and Williams, 2006]. This construction nat-
urally accommodates sparse and irregularly sampled time

series. To obtain the posterior GPs, we use a Gaussian like-
lihood function with noise variance σ2, and a zero-mean
GP prior with the squared exponential covariance function

KSE(ti, tj) = a exp(−b(ti − tj)2), for a, b > 0.

We learn the hyperparameters a, b, σ of the GP regression
model by maximizing the marginal likelihood of the data.1

Under this model, the posterior distribution induced by
each time series S is also a Gaussian process. By defini-
tion, any finite marginal of a GP is Gaussian distributed.
Let GP(u | S = {t,y}) = N (µ,Σ) denote the posterior
GP marginal of S over a collection of time points u. The
mean and covariance of the Gaussian posterior marginal
N (µ,Σ) is given below where [K(u, t)]ij = KSE(ui, tj).

µ = K(u, t)
(
K(t, t) + σ2I

)−1
y,

Σ = K(u,u)−K(u, t)
(
K(t, t) + σ2I

)−1
K(t,u).

(1)

Applying GP regression requires O(|S|3) time due to the
matrix inversion in (1). We note that efficient approxima-
tion algorithms are available when working with long time
series [Hensman et al., 2013; Quiñonero-Candela and Ras-
mussen, 2005].

In the next section, we describe our proposed framework
for defining kernels between time series based on Gaussian
processes.

3 KERNELS FOR TIME SERIES

In this section, we first introduce the general mixture of
sliding GP marginal kernels (MSM) framework for sparse
and irregularly sampled data. We then introduce the ex-
pected Gaussian kernel, which serves as an uncertainty-
aware base kernel within the MSM framework.

3.1 THE MIXTURE OF SLIDING GP MARGINAL
KERNELS

As described in Section 2, we represent each time series
S in a data set D using the posterior Gaussian process it
induces under a GP regression model. The proposed mix-
ture of sliding GP marginal kernels K(d)

MSM defines a ker-
nel between a pair of time series through a weighted av-
erage of a base kernel KB applied to a collection of fi-
nite posterior GP marginals. Specifically, let u1, . . . , uL
be a uniformly-spaced set of L time points on [0, T], and
u(s) = [us, . . . , us+d−1]> be a window of d time points
starting at us. The MSM kernel compares the posterior GP
marginals over the complete collection of valid sliding win-
dows u(1), ...,uL−d+1 as shown below, provided ws ≥ 0
for all s.

K(d)
MSM(Si,Sj) =

L−d+1∑

s=1

wsKB

(
GP(u(s)|Si),GP(u(s)|Sj)

)

1See Rasmussen and Williams [2006] for details.

485

The length of the windows d is a hyper-parameter of the
MSM kernel. In this work, we choose uniform kernel mix-
ture weights ws = 1/k. Alternatively, the kernel weights
can be learned from data using multiple kernel learning al-
gorithms [Bach et al., 2004].

The base kernelKB can be any valid kernel that takes as in-
put two d-dimensional Gaussians. Of particular interest are
uncertainty-aware base kernels that use the covariance in-
formation in the posterior marginals to modulate the simi-
larity between the distributions. We present an uncertainty-
aware expected Gaussian kernel in Section 3.3, but first de-
scribe a simpler kernel to highlight the trade-offs induced
by the window length parameter d.

3.2 GAUSSIAN KERNEL ON MARGINAL MEANS

The Gaussian kernel KG below is one of the most widely
used kernels in machine learning.

KG(xi,xj) = exp

(
− 1

2γ2
‖xi − xj‖2

)
(2)

The parameter γ controls the bandwidth of the kernel.
The Gaussian kernel KG provides a simple kernel KGµ be-
tween Gaussian distributions Ni = N (µi,Σi) and Nj =
N (µj ,Σj) when applied to their mean vectors as follows.

KGµ(Ni,Nj) = KG(µi,µj) (3)

Importantly, this kernel is not uncertainty aware as it dis-
cards the covariances from the posterior Gaussians. We use
the notation K(d)

MG to denote the use of KGµ as the base ker-
nel within the MSM framework. In the case where d = 1,
theK(d)

MG kernel corresponds to taking the average similarity
between the means of the two marginal posterior distribu-
tions as seen below.

K(1)
MG(Si,Sj) =

1

L

L∑

s=1

exp

(
− 1

2γ2
(µis − µjs)2

)

On the other hand, when d = L, the K(d)
MG kernel is equiv-

alent to a product of the similarities between the means of
the two marginal posterior distributions as seen below.

K(L)
MG(Si,Sj) = exp

(
− 1

2γ2

L∑

s=1

(µis − µjs)2
)

=
L∏

s=1

exp

(
− 1

2γ2
(µis − µjs)2

)

This comparison shows that K(1)
MG is much more likely to

be robust to the influence of noise and outliers due to the
use of averaging, but it ignores the broader structure across
time points. On the other hand, K(L)

MG captures the broader
structure across time points, but may be more sensitive to

the presence of noise and outliers due to the product from
of the kernel. Importantly, the MSM kernel framework is
able to balance these considerations by allowing for the se-
lection of intermediate window lengths d.

3.3 THE EXPECTED GAUSSIAN KERNEL

In this section, we present an uncertainty-aware base kernel
KEG, which we refer to as the expected Gaussian kernel.
This kernel is obtained as the expectation of the standard
Gaussian kernel shown in (2) under the two independent
Gaussians Ni and Nj

KEG(Ni,Nj) = Exi∼Ni,xj∼Nj
[
KG(xi,xj)

]
.

Importantly, the value of the expected Gaussian kernel can
be computed analytically as shown in (4) where µ̃ = µi −
µj and Σ̃ = Σi + Σj + γ2I. (see Appendix A for the
derivation).

KEG(Ni,Nj) =
√
|Σ|
|Σ̃|

exp

(
−1

2
µ̃>Σ̃

−1
µ̃

)
. (4)

The positive definiteness of the expected Gaussian kernel
follows from the fact that the Gaussian kernel is positive
definite and therefore there exists a map φ such that the
kernel acts as a dot product 〈φ(xi),φ(xj)〉. With the in-
dependence assumption, the expected Gaussian kernel also
acts as a dot product over the expected map [Smola et al.,
2007].

KEG(Ni,Nj) = Exi∼Ni,xj∼Nj 〈φ(xi),φ(xj)〉
= 〈Ex∼Ni [φ(x)],Ex∼Nj [φ(x)]〉.

Interestingly, the probability product kernel of Jebara et al.
[2004] applied to a pair of Gaussian distributions

KPP(Ni,Nj) =
∫
N (x;µi,Σi)

ρN (x;µj ,Σj)
ρ dx

when ρ = 1 (also known as the expected likelihood kernel)
is a limiting case of the expected Gaussian kernel as γ → 0.
In this case, the KG term inside KEG degenerates to the
Dirac delta function δ(xi−xj), and the expected Gaussian
kernel collapses to the probability product kernel with ρ =
1 by the sifting property of the delta function.

We refer to the use of the expected Gaussian kernel within
the MSM framework as the mixture of expected Gaussian
kernels (MEG). Similar to K(d)

MG, the MEG kernel is able to
strike a balance between the use of averaging to mitigate
noise and the use of higher-dimensional marginals to cap-
ture broader temporal structure under uncertainty through
the choice of d.

In terms of computational complexity, computing the ex-
pected Gaussian kernel (4) for d-dimensional Gaussians
takes O(d3) time because of the inversion of Σ̃ and the

486

computation of its determinant. As a result, for the MEG
kernel involving k GP marginals of d dimensions, it takes
O(kn2d3) time to compute the n× n kernel matrix over n
data cases. In the next section, we discuss scaling learning
with MEG kernels to large data sets using random feature
approximations.

4 RANDOM FOURIER FEATURES

The O(n2) kernel matrix computation time is a signifi-
cant limitation when working with large data sets. Random
Fourier feature approximation [Rahimi and Recht, 2007]
is a kernel approximation algorithm based on Bochner’s
theorem that maps the input data into a randomized low-
dimensional feature space to approximate a shift-invariant
kernel. In this section, we show how to extend this idea to
scale-up learning with expected Gaussian kernels and ap-
ply the result to the MEG kernel.

4.1 RANDOM FEATURES FOR EXPECTED
GAUSSIAN KERNELS

Following the construction presented by Rahimi and Recht
[2007], the Gaussian kernel KG defined in (2) can be ap-
proximated by an m-dimensional random vector

z(x) =

√
2

m

[
cos(w>1 x + b1), . . . , cos(w

>
mx + bm)

]>
,

where wi ∼ N (0, γ−2I),2 and bi ∼ uniform(0, 2π) so that
KG(xi,xj) ≈ z(xi)

>z(xj).

The analytic form of the expected Gaussian kernel given
in (4) is not shift invariant in terms of the means and co-
variances of the input Gaussians, and therefore we cannot
directly expand the kernel as in Rahimi and Recht [2007].
However, we can derive the random Fourier features for
the expected Gaussian kernel by taking the expectation af-
ter Gaussian kernel expansion. With the independence of
the input Gaussians, we have

Exixj [KG(xi,xj)] ≈ Exixj

[
z(xi)

>z(xj)
]

= Exi [z(xi)]
>Exj [z(xj)].

Next, we note that each entry of Ex∼N (µ,Σ)[z(x)] can be
obtained analytically as shown below. This result exploits
the fact that the expectation of the complex random feature
map exp(iw>x) derived from the Fourier expansion of the
kernel function is the characteristic function of the distri-
bution of x. A detailed derivation is given in Appendix B.

E[zi(x)] =
√

2

m
Ex∼N (µ,Σ)[cos(w

>
i x + bi)]

=

√
2

m
exp

(
−1

2
w>i Σwi

)
cos(w>i µ+ bi).

2 wi ∼ N (0, γ−2I) can be done with each entry drawn inde-
pendently fromN (0, γ−2).

Algorithm 1: Random Fourier Features for KEG

Input: A Gaussian N (µ,Σ) with mean µ and covariance
Σ. Width parameter γ2 of the Gaussian kernel.
Number of random features m.

w1, . . . ,wm
iid∼ N (0, γ−2I)

b1, . . . , bm
iid∼ uniform(0, 2π)

return
√

2

m

exp
(
− 1

2w>1 Σw1

)
cos(w>1 µ+ b1)

...
exp

(
− 1

2w>mΣwm

)
cos(w>mµ+ bm)

As we can see, each random feature for an expected Gaus-
sian kernel is the product of

√
2/m cos(w>i µ + bi) and

exp
(
− 1

2w>i Σwi

)
. The former is identical to the random

Fourier feature with the Gaussian mean as input. The latter
is an exponential decay term that decreases as uncertainty
in the distribution increases.

The complete procedure for obtaining a random features
approximation for the expected Gaussian kernel is given in
Algorithm 1.

For the d-dimensional case, approximating an expected
Gaussian kernel withm random features using Algorithm 1
requires O(md2) time as it takes O(d2) time to compute
the quadratic term w>Σw. As a result, given a data set
of size n, it takes O(nmd2) to compute the n ×m feature
matrix. This is more efficient compared to the O(n2d3)
time needed to compute the exact kernel, especially when
n� m.

4.2 ACCELERATION FOR HIGH-DIMENSIONAL
GAUSSIANS

The O(d2) time for computing the random features can
be computationally prohibitive when working with high-
dimensional Gaussians. Le et al. [2013] proposed Fast-
food to accelerate the computation of the original ran-
dom Fourier features of Rahimi and Recht [2007]. Fast-
food utilizes the fast Walsh-Hadamard transform to simu-
late a full Gaussian random matrix using a small portion of
i.i.d. Gaussian samples. Essentially, given a vector x ∈ Rd,
Fastfood approximates the matrix-vector product Vx in
O(m log d) time instead of O(md), where V is an m × d
random matrix with each entry drawn independently from
N (0, γ−2).

With Fastfood, computing the cos(w>i µ + bi) term for
the expected Gaussian kernel for all i = 1, . . . ,m can be
done by first generating the random vector Vµ as described
above. Allm entries cos([Vµ]i+bi) can then be computed
in O(m log d) time.

The bottleneck for the expected Gaussian kernel is the com-
putation of the exponential term exp

(
− 1

2w>i Σwi

)
, which

needs O(d2) time if computed naively. This can also be

487

accelerated by using the Fastfood trick twice:

exp

(
−1

2
w>i Σwi

)
= exp

(
−1

2
[V(VΣ)>]ii

)
. (5)

Following the stacking strategy in Le et al. [2013], we
choose V in (5) to be a d × d square matrix3, and re-
peat this step dm/de times to produce all m features. This
leads to an overall cost of O(md log d) as opposed to the
O(md2) time mentioned before to computem random fea-
tures for the expected Gaussian kernel taking on a single
d-dimensional Gaussian input.

We can further reduce the cost by approximating the co-
variance matrix with a low rank matrix Σ ≈ ΦΦ> using
truncated SVD where Φ ∈ Rd×r. There exists efficient al-
gorithms to compute top-r SVD such as randomized SVD
[Halko et al., 2011] that requires O(d2 log r) time in con-
trast with O(d3) for classical algorithms. With Fastfood,
the exponential term can be approximated in O(r log d)
time:

exp

(
−1

2
w>i Σwi

)
≈ exp

−1

2

r∑

j=1

[VΦ]2ij

 . (6)

This leads to O(mr log d) time for some r < d to compute
m random features for a single data case.

4.3 RANDOM FEATURES FOR THE MIXTURE
OF EXPECTED GAUSSIAN KERNELS

Let z(N) denote the random features for the expected
Gaussian kernel computed by Algorithm 1. As described
in Section 3.1, each time series Si is summarized by a col-
lection of k Gaussian marginals {N (1)

i , . . . ,N (k)
i } for all i.

The mixture of expected Gaussian kernels can be approxi-
mated by the random features of the base kernel applied to
each marginal:

k∑

s=1

wsKEG(N (s)
i ,N (s)

j) ≈
∑

s

wszs(N (s)
i)>zs(N (s)

j)

=
∑

s

(√
wszs(N (s)

i)
)> (√

wszs(N (s)
j)

)
.

Equivalently, each time series can be expressed as the com-
pound random feature map below to approximate the MEG
kernel.

ẑ(S) =
[√

w1z1(N (1))>, . . . ,
√
wkzk(N (k))>

]>
. (7)

In this work, we set ws = 1/k for all k marginals, that is,
the base kernels are weighted equally. Furthermore, each
marginalN (s) is approximated by the same number of ran-
dom features m. Therefore, ẑ(S) has mk random features

3 Assume Σ is properly padded so that the dimension becomes
d = 2` in order to perform Hadamard transform [Le et al., 2013].

in total. In Section 4.4, we will show that having the same
number of random features for each marginal will lead to
the lowest error bound under uniform weights.

In general, ws can be the coefficients of any non-negative
combination, either chosen according to domain knowl-
edge or learned from data. Learning the weights from data
with the random features given in (7) can be viewed as
an approximation to multiple kernel learning [Bach et al.,
2004]. Optimizing w1, . . . , wk is similar to Mahalanobis
metric learning [Xing et al., 2002] for the diagonal case
except that all random features come from the same base
kernel share a scaling factor.

4.4 APPROXIMATION GUARANTEES

In this section, we analyze the approximation quality of
the expected Gaussian kernel random features computed by
Algorithm 1 in terms of the concentration of the approxi-
mating kernel matrix. Using the Hermitian matrix Bern-
stein inequality [Tropp, 2012a,b] and following a deriva-
tion similar to [Lopez-Paz et al., 2014], we can bound the
spectral norm (denoted ‖ · ‖) of the difference between the
exact expected Gaussian kernel and its approximation.4

Theorem 1. Given a data set with each example repre-
sented as a single Gaussian, N1, . . . ,Nn, let K ∈ Rn×n
be the expected Gaussian kernel matrix. Let K̂ ∈ Rn×n,
with each entry [K̂]ij = z(Ni)>z(Nj), be the approxima-
tion matrix constructed using Algorithm 1 with m random
features. Then we have

E‖K̂−K‖ ≤ 2n

m

√
2 log n

m
+

2n log n

3m2
.

The proof of Theorem 1 is given in Appendix C. It states
that the error E‖K̂ − K‖ is bounded by O(n log n) for
n data cases with a fixed number of random features m.
On the other hand, for a fixed number of data cases n,
increasing the number of random features m induces an
O(m−3/2) reduction in error.

As for the high-dimensional case described in Section 4.2,
Le et al. [2013] have shown that the Fastfood feature map is
unbiased, and therefore Theorem 1 also holds for the ran-
dom features computed by Fastfood using (5). However,
with the low-rank approximation used in (6), K̂ no longer
converges to K but instead converges to K̃ where

[K̃]ij = KEG

(
N (µi,ΦiΦ

>
i),N (µj ,ΦjΦ

>
j)
)
.

Following the construction described in Section 4.3, the
mixture of k expected Gaussian kernels has a total of
M = |ẑ(S)| = mk features. Since ws = 1/k for
all s, each entry of the feature vector is in the form of

4 This bound can also be applied to the original random
Fourier feature approximation [Rahimi and Recht, 2007].

488

√
2/M E[cos(w>x+b)], whose absolute value is bounded

by
√
2/M . Following the proof of Theorem 1, we can

bound the error of using the proposed random feature ap-
proximation to the MEG kernel.

Corollary 1. Consider the MEG kernel consisting of k
base kernels. Let K ∈ Rn×n be the MEG kernel matrix,
and K̂ be the approximating matrix using M = mk ran-
dom features. Then,

E‖K̂−K‖ ≤ 2n

M

√
2 log n

M
+

2n log n

3M2
. (8)

The expected error bound in Corollary 1 has the same form
as that in Theorem 1 except the bound is determined by the
number of total random features M . When the number of
kernels k is large, even if each kernel is approximated by
only a few random features, a low error bound can still be
achieved if M = mk is sufficiently large.

As a matter of fact, for a convex combination of k expected
Gaussian kernels with unequal weights, choosing the num-
ber of random features proportional to the corresponding
kernel weight will achieve an error bound identical to (8)
for a total of M random features.

5 EXPERIMENTS

We evaluate the proposed MEG kernel and the correspond-
ing random feature approximation in terms of time series
classification in the presence of sparse and irregular sam-
pling. In the sections below, we describe the experimental
methodology and the results.

5.1 EXPERIMENTAL METHODOLOGY

Data. We conduct experiments on all 43 time series data
sets from the UCR time series classification archive [Keogh
et al., 2011]. The UCR archive contains a diverse collec-
tion of time series data sets that vary significantly in terms
of length, number of classes, and number of data cases.
However, all the data sets are densely and uniformly sam-
pled. This allows us to perform controlled experiments
where we decrease the sampling density and observe the
effect on the relative performance of different classifica-
tion methods. We consider ten different sampling densities
from 10% to 100% in steps of 10%.

Gaussian Process Representation. Following Section 2,
for each data set and each sampling density, we first learn
the hyperparameters of the GP regression model by opti-
mizing the log marginal likelihood over the observed data.
As described in Section 3.1, we compute the posterior GP
marginals over a uniformly-spaced grid of L points on
[0, T], where T is the common length of the fully observed
time series of each data set. We select L = min(3T, 500).

Kernel and Feature Normalization. We apply standard

10 20 30 40 50 60 70 80 90 100
sampling density (%)

0.80
0.85
0.90
0.95
1.00

ac
cu

ra
cy

ra
tio

KMLIN KMG K(1)
MEG K(10)

MEG

Figure 1: Comparing MSM kernel framework with differ-
ent base kernels.

kernel normalization to all kernel matrices before averag-
ing. We also normalize each random feature vector to have
unit length. Empirically, we found that normalization im-
proves the classification performance.

Base Classifiers and Hyperparameters. We use support
vector machines (SVMs) for classification. For kernel-
based methods we use libsvm [Chang and Lin, 2011] with
precomputed kernels. For random feature approximation,
we use liblinear [Fan et al., 2008], which is tailored for
linear models. We use five-fold stratified cross validation
to jointly select the SVM regularization parameter and the
parameter γ for the expected Gaussian kernels.

Accuracy Measures. We assess the performance of each
method in terms of classification accuracy using the bench-
mark train/test splits in the UCR archive. We report re-
sults in terms of average accuracy ratios over all 43 data
sets to emphasize the relative differences between methods
across different sampling densities. For a given data set and
sampling density, the accuracy ratio for a method is the ac-
curacy of the method divided by the accuracy of the best
performing method on that data set and sampling density.
We also report one-standard-error error bars.

5.2 EXPERIMENTS AND RESULTS

Comparing Base Kernels for MSM Framework. We
evaluate several instances of the MSM framework using
different base kernels. The linear MSM kernel KMLIN

uses the linear kernel on the univariate marginal means
KLIN(Ni,Nj) = µiµj as the base kernel. The Gaussian
MSM kernel KMG uses KGµ defined in (3) also on the uni-
variate marginal means. We compare these baseline meth-
ods to two expected Gaussian kernel based MSM kernels:
the MEG kernel K(1)

MEG on the univariate marginals, and the
MEG kernel K(10)

MEG with a sliding window size of 10.

Figure 1 shows the classification performance of these
methods on each sampling density. The Gaussian MSM
kernel KMG significantly outperforms the linear MSM ker-
nel KMLIN. However, K(1)

MEG and K(10)
MEG both outperform

KMG, particularly under high sparsity. This is expected
since K(1)

MEG and K(10)
MEG both capture posterior uncertainty

while KMG does not.

489

t∗ time
0.0

0.5

1.0

(a) window size d = 1

t∗ time
0.0

0.5

1.0

(b) window size d = 10

Figure 2: Comparison of different window size d. The
plot on the top of each panel shows two time series from
the ECG200 data set at 50% sampling density with visu-
alization of their posterior Gaussian process. The plot on
the bottom shows the value of the corresponding expected
Gaussian kernel at each time slice.

0 50 100 150 200 250 300
window size

0.84
0.86
0.88
0.90
0.92
0.94

ac
cu

ra
cy

Figure 3: Comparison of classification accuracy under dif-
ferent window sizes on ECG200 at 50% sampling density.

Effect of Sliding Window Size for MEG Kernel. Figure 2
illustrates how different window sizes affect the similar-
ity output by the expected Gaussian kernel on the ECG200
data set from the UCR archive at 50% sampling density.
The two time series intersect at around t∗; however, they
have opposite trends at this time point. Since K(1)

MEG does
not take local correlation structure into account at all, it
achieves the highest possible value at t∗. On the other hand,
K(10)

MEG outputs a low value at t∗ since a larger window cap-
tures the fact that the two processes are anti-correlated in
the neighborhood of t∗.

Figure 3 shows the classification performance across vari-
ous window sizes ranging from 1 to L on the ECG200 data
set at 50% sampling density. For this experiment, we fixed
the SVM regularization parameter to C = 2000, and the
covariance parameter of the expected Gaussian kernel to
γ = 0.01d, which grows linearly as the window size d in-
creases. Empirically, such choice of γ makes the values of
the expected Gaussian kernels numerically stable.

The results show that the classification accuracy on
ECG200 improves as the window size increases and peaks
at around 0.75L. We note that using larger window size is
computationally more expensive, and that not all data sets
show a benefit with increasing window size.

Comparing MEG to Existing Methods. We compare the
MEG kernel with two existing methods for time series clas-
sification. The reproducing kernel Hilbert space (RKHS)

0.80
0.85
0.90
0.95
1.00

ac
cu

ra
cy

ra
tio

KH DTW K(1)
MEG

10 20 30 40 50 60 70 80 90 100
sampling density (%)

0.6
0.7
0.8
0.9
1.0

ac
cu

ra
cy

ra
tio

Figure 4: Comparison with other time series classification
methods. The plot on the top corresponds to the 20 data
sets whose optimal warping window size is at most 12; the
plot on the bottom corresponds to the rest of 23 data sets
with optimal warping window size greater than 12.

kernel KH proposed by Lu et al. [2008] is a time series
kernel also designed for irregularly sampled time series.
The RKHS kernel is defined as the squared norm between
two posterior GP mean functions in the RKHS induced by
a common prior covariance function. The kernel can be
computed in closed form, but also discards posterior uncer-
tainty since it only depends on the posterior GP means. It is
also not possible to focus the kernel on assessing similarity
over a specific time interval.

Dynamic time warping [Berndt and Clifford, 1994; Sakoe
and Chiba, 1971] (DTW) is a widely used distance func-
tion for misaligned and warped time series. We compare to
the 1-nearest neighbor algorithm using DTW distance sub-
ject to the Sakoe-Chiba warping constraint using the opti-
mal window size published along with the UCR time series
archive. Since classic DTW is not designed for irregularly
sampled time series data, we also use GP regression to in-
terpolate each time series on the same set of reference time
points as the MSM kernels, and use the posterior means as
the input to DTW.

In this experiment, we split the data sets into two groups ac-
cording to their published optimal warping window sizes.
Smaller warping window size implies the corresponding
time series are almost aligned and have minimal warping.
The 23 data sets with optimal window size greater than 12
are selected as the warped group, which implies that the
corresponding time series require significant alignment or
warping before direct comparison. The need for alignment
and warping violates the assumptions of the MSM kernel
as well as the RKHS kernel, which does not explicitly take
warping or alignment into account. The rest of the 20 data
sets are regarded as the aligned group.

Figure 4 shows that the RKHS kernel KH consistently per-
forms the worst on both groups, because it fails to fo-
cus on a finite time interval of interest where data points
are observed and does not account for uncertainty. For

490

10 20 30 40 50 60 70 80 90 100
sampling density (%)

.90

.92

.94

.96

.98
1

KMG K(1)
MEG R(1)

MEG K(10)
MEG R(10)

MEG

Figure 5: Comparison of the classification accuracy ratio
of the exact time series expected Gaussian kernel against
the random Fourier feature approximation. The baseline
method KMG is included as a reference.

the aligned group, our method always outperforms DTW.
When the time series is more sparsely sampled, the advan-
tage of our uncertainty-aware framework becomes more
significant. For the warped group, DTW achieves better
classification accuracy under low sparsity, but our approach
achieves comparable or better accuracy under high sparsity
while the RKHS kernel does not.

Random Features for MEG Kernels. To evaluate the ran-
dom feature approximation to the MEG kernel in terms of
classification accuracy, we use m = b10,000/kc random
features to approximate the expected Gaussian kernel on
each of k marginals, so that the total number of random
features M = mk is at most 10,000. In the experiment,
R(1)

MEG andR(10)
MEG denote the random feature approximation

for K(1)
MEG and K(10)

MEG with window size 1 and 10.

Figure 5 shows that the random feature approximation pro-
duces similar classification results compared to the exact
kernels for both marginal window sizes. The baseline
method KMG is included to show that even when the ac-
curacy declines due to approximation, it still outperforms
the baseline method.

Table 1 shows the classification training and prediction
time on the four largest data sets in the UCR archive. We
divide the training and prediction task using either K(1)

MEG

or R(1)
MEG into two steps: first, computing the kernel matrix

for K(1)
MEG or the random feature matrix for R(1)

MEG, which
are shown as the 3rd and 5th column (denoted prep.) in Ta-
ble 1; second, training and prediction time spent solely in
the classifier, denoted train and test in the table.

The results in Table 1 show that computing the fea-
ture/kernel matrix dominates the entire training/prediction
task. It is consistent with the time and space complexity
analysis given in Table 2. In terms of the data size, com-
puting the exact kernel takesO(n2) time, while computing
the random feature matrix takesO(n) time. As the window
size d increases, computing the exact kernel takes O(d3)
time as oppose toO(d2) for random feature approximation.

As for the actual classifier learning and prediction time, we
can see thatR(1)

MEG takes longer thanK(1)
MEG. This is because

Table 1: Comparison of classification time (in seconds) on
the four largest data sets using exact expected Gaussian
kernels as opposed to random feature approximation under
window sizes 1 and 10. In the table, the MEG kernel sub-
scripts are dropped from the notation for brevity. The two
numbers (n,L) for each data set denote the number of ex-
amples and the number of reference time points. Note that
a MEG kernel with window size d consists of k = L−d+1
base kernels (see Section 3).

data meth. prep. train prep. test
K(1) 13.88 0.01 13.76 0.00

TwoLead. R(1) 0.91 1.44 0.37 0.01
(1162, 246) K(10) 754.05 0.01 743.41 0.00

R(10) 10.73 1.91 5.32 0.01
K(1) 143.11 0.25 144.67 0.01

yoga R(1) 2.30 33.56 1.09 0.02
(3300, 500) K(10) 10751.85 0.32 10620.35 0.01

R(10) 50.44 31.08 12.86 0.02
K(1) 650.98 0.15 652.41 0.03

wafer R(1) 4.88 8.65 2.27 0.06
(7164, 456) K(10) 50452.40 0.17 49159.89 0.05

R(10) 58.76 45.13 29.71 0.09
K(1) 1103.91 0.21 1119.40 0.05

StarLight. R(1) 5.97 55.42 2.63 0.12
(9236, 500) K(10) 86676.10 0.46 83357.72 0.15

R(10) 99.30 17.44 35.26 0.11

the final kernel matrix for K(1)
MEG can be stored in O(n2)

space, as oppose to O(nmk) for R(1)
MEG, which is notably

larger for our choice of m (mk ≈ 10,000). By adjusting
m, the total time using R(1)

MEG can be further reduced, but
it is already significantly faster overall with the value of m
used here.

Comparing Random Features to Nyström Method. The
Nyström method [Williams and Seeger, 2001] is a com-
monly used kernel approximation algorithm based on low-
rank approximation to the full kernel matrix computed us-
ing a subset of the training data. We compare the time ver-
sus kernel approximation error trade-off when approximat-
ing the MEG kernel by the Nyström method and random
features using window sizes 1 and 10. The experiment
is conducted on the largest data set in the UCR archive,
StarLightCurves, at 10% sampling density. For Nyström
method, we plot the results using s = 10, 20, . . . , 500 sam-
ples. For the random feature approximation, we plot the
results using m = 1, 2, . . . , 100 random features for each
expected Gaussian kernel (at most 50,000 total features for
the largest m). Note that the number of training cases used
for the Nyström method is at most the size of the training
data; however, the number of random features can exceed
the size of the training data.

The results show that the Nyström approximation can
achieve higher approximation accuracy than random fea-
tures when sufficient training data samples are used [Yang

491

10−1 100 101 102 103

time (log scale)

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

ap
pr

ox
im

at
io

n
er

ro
r Nyström

R(1)
MEG

(a) d = 1, n = 9236

10−1 100 101 102 103 104

time (log scale)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

ap
pr

ox
im

at
io

n
er

ro
r Nyström

R(10)
MEG

(b) d = 10, n = 1000

Figure 6: Comparing time versus approximation error (in
terms of the relative error E‖K̂ − K‖/‖K‖) of Nyström
method under various sizes of the subset of training data
and random feature approximation with various numbers
of random features.

Table 2: Comparing time and space complexity of the clas-
sification using the MEG kernel with window size d con-
structed from k expected Gaussian kernels, where n is the
training data size, n′ is the test data size. Nyström method
uses a subset of the training data of size s, and R(d)

MEG uses
a total of M = mk random features.

K(d)
MEG Nyström R(d)

MEG

train time O(d3n2k) O(d3nsk + s3) O(d2nM)
test time O(d3n′nk) O(d3n′sk + n′s2) O(d2n′M)
train space O(n2) O(ns) O(nM)
test space O(n′n) O(n′s) O(n′M)

et al., 2012]. However, for d-dimensional Gaussians (for
the MEG kernel with window size d), computing a single
entry of the expected Gaussian kernel takesO(d3) compar-
ing to O(d2) to compute a single random feature, as in the
case of comparing to exact kernel computation. The de-
tailed complexity analysis is given in Table 2. Figure 6(b)
shows that for window size 10, the random feature approx-
imation needs significantly less time to achieve an accept-
able error rate.

Fastfood Method for High-Dimensional Marginals. We
compare the straightforward random feature computation
to two acceleration methods using Fastfood as described in
Section 4.2. This experiment is conducted on the data set
StarLightCurves from the UCR archive at 10% sampling
density with the full window size L = 500. That is, there
is a single expected Gaussian kernel with d = 500 in the
MEG kernel. We use randomized truncated SVD [Halko
et al., 2011] for the low-rank approximation of covariance
matrices with rank r = 10.

Figure 7 shows the time-versus-error relationship using
three different methods with 2` random features for ` =
9, . . . , 13 (from top to bottom). It shows that all three meth-
ods achieve similar errors (relative error in terms of spec-
tral norms) when using the same feature size. However, the
Fastfood method using (5), denoted Fastfood in the figure,
is at least 14 times faster among five feature sizes than the

101 102 103 104

time (log scale)

0.02

0.04

0.06

0.08

0.10

0.12

ap
pr

ox
im

at
io

n
er

ro
r

standard computation
Fastfood
Fastfood + low-rank

Figure 7: Comparing time versus approximation error (rel-
ative error) of the standard feature computation and the two
Fastfood methods under d = 500 and n = 1000. The
five points for each method correspond to using 512, 1024,
2048, 4096, and 8192 features from top to bottom.

standard method, due to the O(nMd log d) time for Fast-
food as opposed to O(nMd2). With low-rank covariance
approximation, the running time can be improved signif-
icantly again, even if an extra truncated SVD is required.
The SVD overhead is roughly a constant of 2.7 seconds,
which accounts for 86% time in the smallest case (512 fea-
tures) and 42% in the largest case (8192 features).

6 CONCLUSIONS AND FUTURE WORK

We have proposed a kernel-based framework for classifi-
cation of sparse and irregularly sampled time series that
re-represents time series using Gaussian process and then
assesses the similarity between the GPs based on the sim-
ilarity between their finite marginals defined over sliding
time windows. Our results show that the proposed ap-
proach achieves better average accuracy on a large time se-
ries classification benchmark compared to all other meth-
ods considered when the time series are alignedor under
high sparsity. Further, our extension to random Fourier fea-
tures achieves significant speedups relative to exact kernel
computations as well as Nyström approximation on large
time series data sets. Our application of Fastfood and low-
rank covariance approximations yields further speedups in
the case where large-dimensional marginals are required.

Possible directions for future work include learning kernel
combination weights, extending the MSM framework to
multi-output Gaussian processes for multivariate time se-
ries, and the extension of this framework to distributions
other than Gaussians or different base kernels. Moreover,
instead of performing classification on the random features
using linear SVMs, we can use the random feature vector
as an uncertainty-aware embedding of the data in various
deep learning architectures, as well as unsupervised learn-
ing models for problems like clustering.

Acknowledgements

This material is based upon work supported by the National
Science Foundation under Grant No. 1350522.

492

References
Bach, F. R., Lanckriet, G. R., and Jordan, M. I. (2004).

Multiple kernel learning, conic duality, and the smo al-
gorithm. In Proceedings of the twenty-first international
conference on Machine learning, page 6. ACM.

Berndt, D. J. and Clifford, J. (1994). Using dynamic time
warping to find patterns in time series. In KDD work-
shop. Seattle, WA.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A li-
brary for support vector machines. ACM Transac-
tions on Intelligent Systems and Technology, 2:27:1–
27:27. Software available at http://www.csie.
ntu.edu.tw/˜cjlin/libsvm.

Clark, J. and Bjørnstad, O. (2004). Population time series:
process variability, observation errors, missing values,
lags, and hidden states. Ecology, 85(11):3140–3150.

Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine learning, 20(3):273–297.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and
Lin, C.-J. (2008). LIBLINEAR: A library for large linear
classification. Journal of Machine Learning Research,
9:1871–1874.

Halko, N., Martinsson, P.-G., and Tropp, J. A. (2011).
Finding structure with randomness: Probabilistic algo-
rithms for constructing approximate matrix decomposi-
tions. SIAM review, 53(2):217–288.

Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaus-
sian processes for big data. In Proceedings of the
Twenty-Ninth Conference on Uncertainty in Artificial In-
telligence, Bellevue, WA, USA, August 11-15, 2013.

Jebara, T., Kondor, R., and Howard, A. (2004). Probabil-
ity product kernels. The Journal of Machine Learning
Research, 5:819–844.

Keogh, E., Xi, X., Wei, L., and Ratanamahatana, C. A.
(2011). The UCR time series classification/clustering
homepage: www.cs.ucr.edu/˜eamonn/time_
series_data/.

Le, Q., Sarlós, T., and Smola, A. (2013). Fastfood–
approximating kernel expansions in loglinear time. In
ICML.

Lopez-Paz, D., Sra, S., Smola, A. J., Ghahramani, Z., and
Schölkopf, B. (2014). Randomized nonlinear component
analysis. In ICML.

Lu, Z., Leen, T. K., Huang, Y., and Erdogmus, D. (2008). A
reproducing kernel hilbert space framework for pairwise
time series distances. In Proceedings of the 25th interna-
tional conference on Machine learning, pages 624–631.
ACM.

Marlin, B. M., Kale, D. C., Khemani, R. G., and Wet-
zel, R. C. (2012). Unsupervised pattern discovery in
electronic health care data using probabilistic clustering

models. In Proceedings of the 2nd ACM SIGHIT Inter-
national Health Informatics Symposium, pages 389–398.

Quiñonero-Candela, J. and Rasmussen, C. E. (2005). A
unifying view of sparse approximate gaussian process
regression. The Journal of Machine Learning Research,
6:1939–1959.

Rahimi, A. and Recht, B. (2007). Random features for
large-scale kernel machines. In Advances in neural in-
formation processing systems, pages 1177–1184.

Rasmussen, C. and Williams, C. (2006). Gaussian pro-
cesses for machine learning.

Ruf, T. (1999). The lomb-scargle periodogram in biolog-
ical rhythm research: analysis of incomplete and un-
equally spaced time-series. Biological Rhythm Research,
30(2):178–201.

Sakoe, H. and Chiba, S. (1971). A dynamic programming
approach to continuous speech recognition. In Proceed-
ings of the Seventh International Congress on Acoustics,
volume 3, pages 65–69.

Scargle, J. D. (1982). Studies in astronomical time se-
ries analysis. ii-statistical aspects of spectral analysis
of unevenly spaced data. The Astrophysical Journal,
263:835–853.

Schulz, M. and Stattegger, K. (1997). Spectrum: Spectral
analysis of unevenly spaced paleoclimatic time series.
Computers & Geosciences, 23(9):929–945.

Smola, A., Gretton, A., Song, L., and Schölkopf, B. (2007).
A hilbert space embedding for distributions. In Algorith-
mic Learning Theory, pages 13–31. Springer.

Tropp, J. A. (2012a). User-friendly tail bounds for sums of
random matrices. Foundations of Computational Math-
ematics, 12(4):389–434.

Tropp, J. A. (2012b). User-friendly tools for random matri-
ces: An introduction. Technical report, DTIC Document.

Williams, C. and Seeger, M. (2001). Using the Nyström
method to speed up kernel machines. In Proceedings
of the 14th Annual Conference on Neural Information
Processing Systems.

Xing, E. P., Jordan, M. I., Russell, S., and Ng, A. Y. (2002).
Distance metric learning with application to clustering
with side-information. In Advances in neural informa-
tion processing systems, pages 505–512.

Yang, T., Li, Y.-F., Mahdavi, M., Jin, R., and Zhou, Z.-H.
(2012). Nyström method vs random fourier features: A
theoretical and empirical comparison. In Advances in
neural information processing systems, pages 476–484.

493

Complexity of the Exact Solution to the Test Sequencing Problem

Wenhao Liu
Management Science and Engineering Dept

Stanford University
Stanford, California 94305

owenliu@stanford.edu

Ross D. Shachter
Management Science and Engineering Dept

Stanford University
Stanford, California 94305

shachter@stanford.edu

Abstract

Consider a doctor choosing a treatment for an
uncertain disorder for which there are n costly
tests available. Based on the test results observed
so far, the doctor can either order another test or
proceed to the treatment decision. Although test
sequencing is a problem that arises frequently in
many decision situations, finding an exact solu-
tion is NP-hard with respect to n. In this pa-
per, we analyze the time complexity of classic
symmetric and asymmetric formulations, using
influence diagrams and decision trees, to the gen-
eral test sequencing problem, making no assump-
tions of conditional independence among the test
results. We develop an alternative influence di-
agram formulation that scales better, and show
how a decision circuit formulation improves even
more on the decision tree solution through recur-
sive coalescence. We prove that this decision cir-
cuit formulation achieves the lower bound com-
plexity for any method for the general test se-
quencing problem that examines the entire pol-
icy space. As a result, the problem is tractable
for much larger n than has been possible to date.

1 INTRODUCTION

Consider a doctor who must choose a treatment for an un-
certain disorder for which there are n costly tests available.
After each test is performed, the doctor can order another
test or proceed to the treatment decision. Therefore, the
doctor would like an optimal strategy for sequencing the
tests, taking into account the costs of the tests and all of the
test results observed so far. In this paper we examine the
computational time complexity of exact solution methods
for this problem.

The test sequencing problem is an asymmetric deci-
sion problem, where many combinations of uncertain vari-
able states given decision variables have zero probability

(Bielza and Shenoy, 1999). The problem arises frequently
in many practical decision situations and is of theoretical
interest in operations research, machine learning, and the
design of experiments. Although finding an exact solu-
tion is NP-hard with respect to the number of tests n (Pa-
padimitriou and Tsitsiklis, 1987), the complexity of stan-
dard algorithms for this problem has not been analyzed or
compared explicitly in the literature. Traditional graphical
models used to solve such problems include decision trees
(von Neumann and Morgenstern, 1944) and influence dia-
grams (Howard and Matheson, 1981; Shachter, 1986). De-
cision trees with limited coalescence (Howard, 1977; Olm-
sted, 1983) reuse some of the calculations to improve effi-
ciency. There are many other asymmetric decision model
representations, primarily designed to improve model for-
mulation, including asymmetric influence diagrams (Smith
et al., 1993), valuation networks (Shenoy, 2000), sequen-
tial decision diagrams (Covaliu and Oliver, 1995), sequen-
tial valuation networks (Demirer and Shenoy, 2006), and
unconstrained influence diagrams (Jensen and Vomlelová,
2002). See Bielza et al. (2011) for a review and comparison
of such models.

The test sequencing problem involves a decision maker
with one key high-stakes decision and a set of informa-
tion gathering activities. There has been rich and varied
research on this problem dating back to the initial work
on dynamic programming (Bellman, 1956), but due to the
complexity of the problem much subsequent work in this
area has focused on designing heuristic and approximate
solution methods. Some exact methods feature state vari-
ables representing the belief of the decision maker, instead
of maintaining all of the observations in the state, such as
in Ulu and Smith (2009). Bickel and Smith (2006) consider
a test sequencing problem in the context of oil exploration,
and advocate “recombining” decision tree models for effi-
cient computation, an example of the recursive coalescence
that we focus on in this paper. Despite all of the research in
this area, however, there had been no significant improve-
ments in computational complexity for exact solutions to
the general test sequencing problem.

494

Decision circuits, a generalization of decision trees,
were developed by Bhattacharjya and Shachter (2007) and
Bhattacharjya (2009) to efficiently evaluate influence di-
agrams with methods similar to arithmetic circuits for
Bayesian networks (Darwiche, 2003). Although decision
circuits share similar “tree-like” structures with decision
trees, especially decision trees with coalescence, they are
also as capable of exploiting conditional independence as
influence diagrams, and as able to decompose problems
as junction trees (Shachter and Peot, 1992; Jensen et al.,
1994).

In the next section we formally define the general test
sequencing problem, and in the following sections we for-
mulate and analyze the complexity of exact solutions us-
ing the symmetric approach of influence diagrams and the
asymmetric approaches of decision trees and decision cir-
cuits. We show that the decision circuit achieves the lower
bound complexity of any algorithm for the problem that
examines the entire policy space. We conclude with a com-
parison of the results and their implications.

2 NOTATION AND FRAMEWORK

In the general test sequencing problem, a doctor is treating
a patient who has an uncertain disorder D with b possible
states and probability distribution Pr{D}. The doctor will
choose a treatment Tx from among a alternatives in order to
maximize the expected dollar value V from the treatment.
Before making the treatment choice, there are n possible
tests available, each with at most c possible results. Al-
though we will evaluate the costs of the tests in dollars, the
costs could also arise in practice from the delay in treat-
ment or the side effects from performing the tests. At any
point in time the doctor can make the treatment decision
or order another test, knowing the results of all of the tests
that have been previously ordered. Because the choice the
doctor makes can depend on the results of those tests, the
policy space of the test sequencing problem is exponential
in the number of tests n, (c + 1)n, the number of possible
sets of observations available in the decision making pro-
cess.

Each test Tm has an associated cost Cm > 0, m =
1, . . . , n, and we assume that the time horizon is short
enough that its cost does not depend on when that partic-
ular test was performed. Therefore, the expected value of
the prospect of any scenario is the difference between the
dollar value of the treatment, E[V |Tx, T1, . . . , Tn], and the
costs of the tests ordered, C1 + · · · + Cn. Such a value
model is said to be separable, and we exploit that in our for-
mulations. We assume, without loss of generality, that the
same test will produce the same result if performed more
than once, so it would never be optimal to order the same
test twice. (A test that might be worth repeating could be
included as multiple available tests.) The test sequencing

problem is general as we impose no (conditional) inde-
pendence assumptions on the n-vector of observable test
results R conditioned on the disorder D, with probability
distribution Pr{R|D}.

D

T1 ……

V

Tx

C1 ...

Tn

Cn

R

……R1 Rn

Figure 1: Influence diagram for the general test sequencing
problem with n tests

An influence diagram for the general test sequencing
problem is shown in Figure 1. There are n testing deci-
sions, T1, . . . , Tn, each with n + 1 alternatives (including
not to test), and the treatment decision, Tx. Corresponding
to each of the testing decisions Tm there is a dollar cost
Cm of testing, depending on the test chosen, and an ex-
pected dollar value V that depends on both the disorder D
and the treatment decision Tx,E[V |D,Tx]. The potentially
observable test results, R, depends onD, and the actual test
result Rm observed after testing decision Tm is therefore a
deterministic function of Tm and R,

Rm =

{
RTm if Tm 6= 0

1 if Tm = 0
for m = 1, . . . , n. (1)

Earlier observations and decisions are known at the
time of later decisions (Howard, 1977). Therefore, at the
time of decision Tm the doctor will know which tests
were ordered, T1, . . . Tm−1, and their corresponding re-
sults, R1, . . . , Rm−1. At the time of the treatment deci-
sion Tx the doctor will know all tests that were ordered,
T1, . . . , Tn, and their results, R1, . . . , Rn. These defini-
tions are summarized in Table 1. In the following sections
we will consider different approaches to the exact solution
of this problem.

3 INFLUENCE DIAGRAM SOLUTIONS

In this section we formulate an influence diagram solution
to the general test sequencing problem and a more efficient
formulation based on a Markov Decision Process (MDP)
model. This method is symmetric in the sense that the
probability distributions are full arrays and all variables are
included in the formulations of every scenario.

495

Symbol Definition

Tx treatment decision
a number of treatment alternatives
D uncertain disorder
b number of disorder states
V expected dollar value of the treat-

ment Tx for the disorder D
n number of tests available
R n-vector of potentially observable

test results
c maximum number of possible re-

sults for each test
Tm decision which test to order mth,

m = 1, . . . , n
Rm results of the mth test ordered
Cm cost of the mth test ordered
Sm n-vector of test results observed af-

ter m decisions

Table 1: Symbol Definitions

We can solve the influence diagram shown in Figure
1 by constructing a rooted cluster tree, as shown in Fig-
ure 2 (Shachter and Peot, 1992), similar for our purposes
to a strong junction tree (Jensen et al., 1994), and minimal
because these cliques are necessary to represent the prob-
lem (Shachter, 1999). The computational time complexity
of the solution is determined by the total of the sizes of
cluster tables, abcn + ac2n(n + 1)n, recognizing that the
number of possible states for Tx, D, R, Tm, and Rm are
a, b, cn, n+ 1, and c, respectively.

R, T1, R1, T2, R2, …, Tn, Rn, Tx

D, R, Tx

Figure 2: Rooted cluster tree for the influence diagram in
Figure 1

Theorem 1. The computational complexity of the standard
influence diagram formulation of the general test sequenc-
ing problem is O(c2n(n+ 1)n).

An influence diagram formulation based on an MDP
model, however, is more efficient than the standard influ-
ence diagram model for large n. The key is to introduce
a Markov state variable, Sm, the observed test results af-
ter m testing decisions, which renders past observations
and decisions independent of future decisions. Sm is an
n-vector, with components corresponding to the different
possible test results, but with c + 1 possible values for

each component, including a new state “0” corresponding
to the “test results not yet observed”. Therefore, letting
S0 = 0 indicate that no tests have been performed before
the first testing decision, we can define Sm for each possi-
ble j,m = 1, . . . , n as a deterministic function of Sm−1,
Tm, and R by

(Sm)j =

{
RTm if Tm = j 6= 0

(Sm−1)j otherwise . (2)

With this definition of Sm we can formulate the influ-
ence diagram shown in Figure 3. Because of the Markov
state, the decisions T2, . . . , Tn and Tx depend only on
the corresponding state variables S1, . . . ,Sn, respectively,
rather than any of the past decisions and observations.
However, this is not yet an MDP and would not be efficient
to solve because of the role played by the uncertain poten-
tially observable test results R. Nevertheless, the definition
of Sm allows us to reformulate this influence diagram into
an MDP influence diagram without R, as shown in Figure
4, that is efficient to solve.

D

T1 ……

V

Tx

C1 ...

Tn

Cn

R

……S1 Sn

Figure 3: The influence diagram of the general test se-
quencing problem with Markov states

Theorem 2. The influence diagram shown in Figure 4 is
a valid representation of the general test sequencing prob-
lem.

Proof. Given the relationships represented by the influ-
ence diagram shown in Figure 3, D is conditionally
independent of T1, . . . , Tn,S1, . . . ,Sn given R. By
the definition of Sm, R is conditionally independent
of T1, . . . , Tn,S1, . . . ,Sn−1 given Sn. Therefore, it
follows that D must be conditionally independent of
T1, . . . , Tn,S1, . . . ,Sn−1 given Sn. Likewise, by the
definition of Sm, Sm+1 is conditionally independent of
T1, . . . , Tm,S1, . . . ,Sm−1 given Sm and Tm+1 for m =
1, . . . , n− 1, as shown in Figure 4.

Even though the earlier testing decisions and their re-
sults will be known at the time of later decisions, it is suffi-
cient to observe the Markov state Sm as shown in the MDP

496

D

T1 ……

V

Tx

……

C1 ...

Tn

Cn

S1 Sn

Figure 4: The MDP influence diagram for the general test
sequencing problem

influence diagram (Figure 4). Therefore, we can solve it
using the rooted cluster tree shown in Figure 5. As be-
fore, the computational time complexity of the solution
is determined by the total of the sizes of cluster tables,
(n+ 1)(c+ 1)n + (n− 1)(n+ 1)(c+ 1)2n + ab(c+ 1)n,
recognizing that the number of possible states for Tx, D,
Tm, and Sm are a, b, n + 1, and (c + 1)n, respectively.
We must also account for the cost of preprocessing to
reformulate the diagram to the MDP at a complexity of
bcn(c + 1)n + (n + 1)(c + 1)2n. Although this is dom-
inated by the expression above, we include it in our final
comparisons.

T1, S1 S1, T2, S2 Sn-1, Tn, Sn Sn, D, Tx…

Figure 5: The rooted cluster tree for the MDP influence
diagram

Theorem 3. The computational complexity of the MDP in-
fluence diagram formulation of the general test sequencing
problem is O(n2(c+ 1)2n).

4 PURE DECISION TREE SOLUTION

In this section we formulate and analyze the computational
complexity of the exact solution to the general test sequenc-
ing problem using an asymmetric pure decision analysis
decision tree without coalescence, the reuse of sub-tree
calculations. Such decision trees maintain the strict tree
structure in which each node has at most one parent. De-
spite the prevalence and usefulness of decision tree models,
there has been limited evaluation of their complexity when
applied to asymmetric decision problems.

A decision tree is a natural representation for the asym-
metry in the general test sequencing problem, recognizing
that after we have observed m test results, there are only
n−m remaining tests to consider and the choice of which
test to order, if any, can depend on the test results that we
have already observed. To build a decision tree we will

need to preprocess the probability distributions for D, R,
and R1, . . . , Rn from the assessed distributions as shown
in the influence diagram in Figure 1 to the inferential order
they need to appear in the decision tree, where D and R
are not observed before any of the decisions. The compu-
tational effort to perform this pre-processing is substantial,
O(bc(c+1)n), but dominated by the work needed to evalu-
ate the decision tree. Hence, we can ignore it in our analysis
but include it in our final comparisons.

For each possible sequence of m tests and their ob-
served test results, m = 0, . . . , n, there is a decision node
in the decision tree corresponding to the choice of treat-
ment or of another test. There are

(
n
m

)
m!cm such possible

sequences in the tree.

Proposition 1. The total number of decision nodes in a
pure decision tree without coalescence is

n∑

m=0

(
n

m

)
m!cm.

...

a

b

V

n-m

c

C1 Cm

+

... ...

......

Figure 6: A generic decision node in the pure decision tree
without coalescence, with m observed test results

The computational time complexity of the decision
tree solution is determined by the number of arcs (or nodes)
in the tree. Figure 6 shows a generic decision node within
the decision tree whose ancestors include exactly m tests
and their corresponding test results. There are a + n −m
alternatives, corresponding to choosing from one of the re-
maining n −m tests or choosing to stop testing and make
the treatment decision. For each of the test alternatives
there are c possible test results, each leading to a different
decision node in the tree, and for each of the a treatment
alternatives there are b possible disorder states. There-
fore, for each of the decision nodes in the tree there are

497

a+ ab+ (n−m)c arcs in the tree, and the total number of
arcs is given by

n∑

m=0

(
n

m

)
m!cm[(a+ ab) + (n−m)c]

= (a+ ab)
n∑

m=0

n!

(n−m)!
cm +

n∑

m=0

n!

(n−m− 1)!
cm+1

= (a+ ab)cnn!

n∑

m=0

c−m

m!
+ cnn!

n−1∑

m=0

c−m

m!

≈ (a+ ab)cnn!e1/c + cnn!e1/c

= (a+ ab+ 1)cnn!e1/c = O(cnn!)

Theorem 4. The computational complexity of the decision
tree formulation with no coalescence of the general test se-
quencing problem is O(cnn!).

We will see in the next section that we can improve
on the efficiency of the influence diagram and decision tree
by allowing recursive coalescence, reusing subtree calcula-
tions as much as possible. Coalescence has traditionally
been applied with decision trees in a limited fashion, at
most once for any path in the tree (Howard, 1977; Olm-
sted, 1983), but we will apply it much more extensively in
a generalization of decision trees called decision circuits.

5 DECISION CIRCUIT SOLUTION

In this section we formulate a decision circuit solution
to the general test sequencing problem and show that it
achieves the lower bound complexity of any algorithm for
the problem that examines the entire policy space. Al-
though this solution can be viewed as an extension of the
pure decision tree solution with recursive coalescence, the
decision circuit naturally integrates such coalescence and,
unlike decision trees, does not need the distributions to be
preprocessed.

5.1 INTRODUCTION TO DECISION CIRCUITS

Decision circuits are generalized decision trees that main-
tain their asymmetry while exploiting any conditional in-
dependence. They were developed by Bhattacharjya and
Shachter (2007) and Bhattacharjya (2009) to efficiently
evaluate influence diagrams with methods similar to arith-
metic circuits for Bayesian networks (Darwiche, 2003). A
decision problem represented by an influence diagram, or
an intermediate structure, a decision circuit backbone, can
be transformed into a decision circuit for efficient eval-
uation and sensitivity analysis (Shachter and Bhattachar-
jya, 2010; Bhattacharjya and Shachter, 2008, 2010). Al-
though decision circuits were not developed as a repre-

sentation for communication, Bhattacharjya and Shachter
(2012) showed how formulating asymmetric decision cir-
cuits directly, instead of formulating an influence diagram
and transforming it into a decision circuit, could be desir-
able in many applications. They also showed how to build
decision circuits in assessed form, avoiding the probabil-
ity distribution preprocessing effort (Bayes Theorem “tree
flipping”) needed for decision trees.

Decision circuits generalize decision trees in several
key ways. Both decision circuits and decision trees are nat-
ural representations for asymmetric problems. Extensive,
even recursive, coalescence is encouraged in the decision
circuit, by allowing nodes to have multiple parents. Be-
cause the expectation operation for an uncertain variable
in decision trees is represented as separate sum and prod-
uct operations in the decision circuit, the probability dis-
tribution corresponding to the variable can appear further
downstream (Shenoy, 1998). As a result, probability distri-
butions can be incorporated into the decision circuit as as-
sessed and there is no need for preprocessing the assessed
distributions. Decision circuits are also able to exploit sep-
arable problem structure as found in influence diagrams
and junction trees (Tatman and Shachter, 1990; Shachter
and Peot, 1992; Jensen et al., 1994). Finally, once the prob-
ability and value distributions are specified the decision cir-
cuit can be compiled for even greater efficiency.

5.2 DECISION CIRUIT FORMULATION

An example of our decision circuit formulation is shown
in Figure 7 for the general test sequencing problem with
a = b = c = n = 2, that is, there are two treatment al-
ternatives, two disorder states, and two tests available with
two test results each. Decision circuits can have “indicator
variables” λ to control and manage evidence and sensitivity
analysis, but we have omitted them to simplify the diagram.
Including the indicators would not significantly affect the
computational complexity for the test sequencing problem.

At the leaves of the decision circuit shown in Fig-
ure 7 are the expected dollar values for each prospect
E[V |D,Tx], the costs C for each type of test, the proba-
bilities Pr{D}, and the likelihoods Pr{R|D}. The sepa-
rable costs are incorporated using branching sum (“B+”)
nodes (Shachter and Bhattacharjya, 2010). The quantities
at the leaves are combined and reused throughout the cir-
cuit both as probabilities and as unnormalized probability-
value hybrids for decision making. For example, we can
marginalize for the case where some of the tests are not
performed. The decision circuit is evaluated by sweeping
up from the leaves to the root and, in the process, making
all of the decisions at max nodes and determining the op-
timal expected value (Darwiche, 2003; Bhattacharjya and
Shachter, 2007). A sweep down through the circuit com-
putes derivatives of the optimal value with respect to any

498

+

+

E[V|nd,NT]

*
p(nd)

max

T

+

NT

+

* *

p(d)

* *

+

Test A

ap an

max

B+

C(TA)

T NT

Test B

++
bp

+

max

bn

max

B+

T

+

NT

+

T

+

NT

+

max

T NT

++

B+ +
bp

max

max

+
NT

+

NT
+

bn

T

T

**

**

Test B
B+

C(TB)

+ bp bnmax

T NT Test A

max

T

+ +

+

Test A

+an

ap
an

p(ap,bp|d)

E[V|d,T]
p(ap,bp|nd)

E[V|nd,T]
E[V|d,NT)

p(ap,bn|d)

p(ap,bn|nd)

+ + + +

p(an,bp|d)

p(an,bp|nd)
p(an,bn|d)

p(an,bn|nd)

+ + + +

+
+ + +

B+B+

* * * *
* * * *

* * * * * * *

Test B
+

+

+ + +
ap

NT

Figure 7: The decision circuit for general test sequencing involving two treatment alternatives, two disorder states, and two
tests with two test results each

of the nodes and assessed parameters for use in sensitivity
analysis (Bhattacharjya and Shachter, 2008, 2010). There-
fore, we can compute the computational time complexity
of a decision circuit by counting the number of arcs.

The coalescence in the decision circuit allows us to
exploit essential properties of the general test sequencing
problem. For example, when the results from m tests have
been observed, the order those tests were performed does
not matter (Jaynes, 2003; Bickel and Smith, 2006). In our
decision circuit those m! different test sequences (corre-
sponding to m equivalent observed test results) all lead
to the same decision (max) node for the selection of an
(m+1)st test or to make the treatment decision. The struc-
ture of our circuit relies on the fact that the same choice will
be optimal regardless what order the observed tests were
performed, similar to the Markov state in our MDP for-
mulation or an “information set” in game theory (Shenoy,
1998).

5.3 THE COMPLEXITY OF THE DECISION
CIRCUIT FORMULATION

In our decision circuit formulation, for each possible set
of m tests and their observed test results, m = 0, . . . , n,
there is a decision node in the decision tree corresponding
to the choice of treatment or another test. There are

(
n
m

)
cm

such possible sets in the circuit. Note that, by contrast,
in the decision tree there was a distinction about the order
of the tests, increasing the number of decision nodes by a
factor ofm!. The binomial theorem provides a closed-form
expression for the number of decision nodes in the decision
circuit.
Proposition 2. The total number of decision nodes in the
decision circuit is

n∑

m=0

(
n

m

)
cm = (c+ 1)n.

The number of arcs in the decision circuit determines
the computational time complexity for the circuit. Figure
8 shows a generic decision node within the decision cir-
cuit whose ancestors include exactly m tests and their cor-

499

responding test results. There are m arcs into the node,
corresponding to the m different tests that could have been
observed last. There are a+n−m alternatives, correspond-
ing to choosing from one of the remaining n −m tests or
choosing to stop testing and make the treatment decision.
For each of the a treatment alternatives and b possible dis-
order states we marginalize over c possible test results (ex-
cept when m is either 0 or n) to compute the probabilities
and probability-value hybrids of the disease and observed
test results from those used by decisions withm+1 test re-
sults. For each of the n−m test alternatives there are three
arcs into or out of the branching sum node used to regis-
ter the separable cost of the test, followed by c test results,
each leading to a different decision node in the circuit, and
counted as incoming arcs for those nodes. Therefore, for
each of the decision nodes in the circuit there are less than
m+ (a+ab+abc) + 3(n−m) arcs in the decision circuit.
We will compute the complexity from each of these three
terms separately.

max

+

+
Ct(T)

m

a
n-m

b
+

c

B+

Figure 8: A generic decision node in the decision circuit
with m observed test results

The first term corresponds to the m arcs directed into
the decision node. The total for all decision nodes is

n∑

m=0

(
n

m

)
mcm =

n∑

m=1

(
n

m

)
mcm

=

n∑

m=1

n!

(m− 1)!(n−m)!
cm

=nc

n∑

m=1

(n− 1)!

(m− 1)!(n−m)!
cm−1

=nc(c+ 1)n−1.

(3)

The second term is the less than abc arcs correspond-
ing to the treatment alternatives. The total for all decision

nodes is less than

(a+ ab+ abc)
n∑

m=0

(
n

m

)
cm =(a+ ab+ abc)(c+ 1)n.

(4)

The third term is the 3(n −m) arcs corresponding to
the next tests and the arcs needed to register the cost of the
test. The total for all decision nodes is

3
n−1∑

m=0

(
n

m

)
(n−m)cm =3

n−1∑

m=0

n!

m!(n−m)!
(n−m)cm

=3n
n−1∑

m=0

(n− 1)!

m!(n− 1−m)!
cm

=3n(c+ 1)n−1.
(5)

Finally, including the 2ab(cn + 1) arcs at the bot-
tom of the decision circuit that incorporate the E[V |D,Tx],
Pr{D}, and Pr{R|D} tables, the total number of arcs is less
than

2ab(cn+1)+n(c+3)(c+1)n−1 +(a+ab+abc)(c+1)n,

and we have shown the following result.

Theorem 5. The computational complexity of the decision
circuit formulation of the general test sequencing problem
is O(n(c+ 1)n−1).

In general the test sequencing problem can have an
arbitrary optimal policy for any of the (c + 1)n possible
sets of observations. Given m tests have been performed
and any of the cm possible test results, the corresponding
policy is determined by comparing the net expected values
among the remaining n−m tests that could be performed.
The number of such comparisons is

∑n−1
m=0

(
n
m

)
(n−m)cm,

similar to Equation 5, and this provides a lower bound on
the complexity of any algorithm for the general problem
that examines the entire policy space, O(n(c+1)n−1). Be-
cause the decision circuit formulation achieves this bound,
the bound must be tight.

Theorem 6. Any algorithm for the general test sequencing
problem that examines the entire policy space of test re-
sults must have time complexity with lower bound Ω(n(c+
1)n−1), as achieved by the decision circuit formulation.

We compare the computational complexity of the four
models with the parameters a = b = c set to 2 and 3. The
results as a function of the number of tests available, n, are
displayed in Table 2, and the logs of the complexities are
shown in Figure 9 for a = b = c = 2. The plots would
appear similar, but with greater slopes, if we increased the
values of the parameters a, b, and/or c.

500

Number of Tests Available (n)
0 5 10 15 20 25 30 35 40 45 50

L
o
g
 o

f
th

e
C

o
m

p
u

ta
ti

o
n

a
l

C
o
m

p
le

x
it

y

0

50

100

150

200

250

300

Influence Diagram
Decision Tree without Coalescence
MDP Influence Diagram
Decision Circuit

Figure 9: Log of the computational complexity of different formulations with model parameters a = b = c = 2

State Space Formulation 5 Tests 10 Tests 15 Tests 20 Tests 25 Tests

a = b = c = 2

Decision Tree without Coalescence 4.43× 104 4.29× 1010 4.95× 1017 2.94× 1025 6.00× 1033

Standard Influence Diagram 1.59× 107 5.44× 1016 2.48× 1027 6.12× 1038 5.33× 1050

MDP Influence Diagram 1.79× 106 3.84× 1011 4.94× 1016 5.11× 1021 4.67× 1026

Decision Circuit 5.69× 103 1.82× 106 5.60× 108 1.65× 1011 4.72× 1013

a = b = c = 3

Decision Tree without Coalescence 5.29× 105 3.89× 1012 3.40× 1020 1.54× 1029 2.38× 1038

Standard Influence Diagram 1.38× 109 2.71× 1020 7.12× 1032 1.01× 1046 5.10× 1059

MDP Influence Diagram 3.22× 107 1.21× 1014 2.77× 1020 5.08× 1026 8.24× 1032

Decision Circuit 5.20× 104 5.77× 107 6.63× 1010 7.59× 1013 8.61× 1016

Table 2: Computational complexity of different formulations with model parameters a = b = c

6 CONCLUSIONS

The general test sequencing problem has been known to be
NP-hard with respect to the number of tests available, so
most past research efforts have searched for approximate
solution methods, heuristics, simulations, and simplifying
assumptions.

In this paper, we develop a decision circuit formula-
tion for the general test sequencing problem that solves the
problem exactly without imposing any additional assump-
tions. We analyze its computational complexity and com-
pare it with other frequently used sequential decision mak-
ing models, pure decision trees and influence diagrams, and
we develop a more efficient influence diagram model based
on an MDP. In our comparison, the decision circuit model
significantly outperforms the others. In fact, it achieves

the lower bound on the computational complexity for any
method for the general test sequencing problem that exam-
ines the entire policy space.

We could have obtained this same order of compu-
tational complexity by implementing decision trees with
recursive coalescence. To construct such decision trees
would have required explicit preprocessing of the assessed
distributions, which is more efficiently done implicitly
within our decision circuit formulation. It would also have
used coalescence in a recursive manner natural in decision
circuits but not common for decision trees.

In a similar fashion, we could have obtained a more
efficient MDP formulation by recognizing the structural
asymmetry in the problem. Because we observe at most
one test result in each time period we could prune from

501

the state space those paths with more observations. This
would improve the run-time computational complexity of
the MDP and lead to a problem structure quite similar to
the decision circuit.

Another advantage of using decision circuits is the effi-
cient sensitivity analysis available on the assessed problem
parameters, the probabilities and costs. The decision circuit
formulation developed here allows us to solve the general
test sequencing problem exactly for much larger values of
n than has been possible before.

Information gathering decisions are strategic compo-
nents in many decision problems in medicine, engineer-
ing, and other domains where they can significantly im-
prove performance (Bickel and Smith, 2006). This paper
has focused on the general test sequencing problem, with
no assumptions, such as probabilistic independence. We
realize that this is a specific class of problems, but we have
used its structure to analyze and compare different exact
techniques, and to demonstrate that a relatively new ap-
proach, decision circuits, allows us to achieve the com-
plexity lower bound. This suggests that well-crafted de-
cision circuits might perform relatively well on more gen-
eral problems, such as troubleshooting, where observations
and actions are interspersed and actions affect both the state
of the system and future observations (Breese and Hecker-
man, 1996).

Acknowledgements

We thank the anonymous referees for their suggestions and
Yuval Shahar for inspiring the research.

References

Richard Bellman. A problem in the sequential design of
experiments. Sankhyā: The Indian Journal of Statistics
(1933-1960), 16(3/4):221–229, 1956.

Debarun Bhattacharjya. Decision circuits: A graphical rep-
resentation for efficient decision analysis computation.
PhD thesis, Stanford University, 2009.

Debarun Bhattacharjya and Ross D Shachter. Evaluating
influence diagrams with decision circuits. In Proceed-
ings of the Twenty-Third Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI-07), pages 9–16,
2007.

Debarun Bhattacharjya and Ross D Shachter. Sensitiv-
ity analysis in decision circuits. In Proceedings of the
Twenty-Fourth Conference Annual Conference on Un-
certainty in Artificial Intelligence (UAI-08), pages 34–
42, 2008.

Debarun Bhattacharjya and Ross D Shachter. Three new
sensitivity analysis methods for influence diagrams. In
Proceedings of the Twenty-Sixth Annual Conference on

Uncertainty in Artificial Intelligence (UAI-10), pages
56–64, 2010.

Debarun Bhattacharjya and Ross D Shachter. Formulating
Asymmetric Decision Problems as Decision Circuits.
Decision Analysis, 9(2):138–145, 2012.

Eric J Bickel and James E Smith. Optimal sequential ex-
ploration: A binary learning model. Decision Analysis,
3(1):16–32, 2006.

Concha Bielza and Prakash P Shenoy. A Comparison of
Graphical Techniques for Asymmetric Decision Prob-
lems. Management Science, 45(11):1552–1569, 1999.

Concha Bielza, Manuel Gómez, and Prakash P Shenoy. A
review of representation issues and modeling challenges
with influence diagrams. Omega, 39(3):227–241, 2011.

John S Breese and David Heckerman. Decision-theoretic
troubleshooting: A framework for repair and experi-
ment. In Proceedings of the Twelfth Annual Conference
on Uncertainty in Artificial Intelligence (UAI-96), 1996.

Zvi Covaliu and Robert M. Oliver. Representation and so-
lution of decision problems using sequential decision di-
agrams. Management Science, 41(12):pp. 1860–1881,
1995.

Adnan Darwiche. A differential approach to inference in
Bayesian networks. J. ACM, 50(3):280–305, 2003.

Riza Demirer and Prakash P Shenoy. Sequential valua-
tion networks for asymmetric decision problems. Euro-
pean Journal of Operational Research, 169(1):286–309,
2006.

Ronald A Howard. The used car buyer. In Readings in
Decision Analysis. Stanford Research Institute, Menlo
Park, CA, 1977.

Ronald A Howard and James E Matheson. Influence Di-
agrams. R. A. Howard, J. E. Matheson, eds. The Prin-
ciples and Applications of Decision Analysis. 1984, 2:
719–762, 1981.

Edwin T Jaynes. Probability Theory: The Logic of Science.
Cambridge University Press, 2003.

Finn V Jensen and Marta Vomlelová. Unconstrained in-
fluence diagrams. In Proceedings of the Eighteenth An-
nual Conference on Uncertainty in Artificial Intelligence
(UAI-02), pages 234–241, 2002.

Frank Jensen, Finn V Jensen, and Søren L Dittmer. From
influence diagrams to junction trees. In Proceedings of
the Tenth international conference on Uncertainty in ar-
tificial intelligence, pages 367–373. Morgan Kaufmann
Publishers Inc., 1994.

Scott M Olmsted. On Representing and Solving Decision
Problems. PhD thesis, Stanford University, 1983.

Christos H Papadimitriou and John N Tsitsiklis. The Com-
plexity of Markov Decision Processes. Mathematics of
Operations Research, 12:441–450, 1987.

502

Ross D Shachter. Evaluating influence diagrams. Opera-
tions Research, 34(6):871–882, 1986.

Ross D. Shachter. Efficient value of information computa-
tion. In Proceedings of the Fifteenth Conference on Un-
certainty in Artificial Intelligence (UAI-99), pages 594–
601, 1999.

Ross D Shachter and Debarun Bhattacharjya. Dynamic
programming in influence diagrams with decision cir-
cuits. In Proceedings of the Twenty-Sixth Annual Confer-
ence on Uncertainty in Artificial Intelligence (UAI-10),
pages 509–516, 2010.

Ross D. Shachter and Mark A. Peot. Decision making us-
ing probabilistic inference methods. In Proceedings of
the Eighth Conference on Uncertainty in Artificial Intel-
ligence (UAI-92), pages 276–283, 1992.

Prakash P Shenoy. Game Trees For Decision Analysis.
Theory and decision, 44(2):149–171, 1998.

Prakash P Shenoy. Valuation network representation
and solution of asymmetric decision problems. Euro-
pean Journal of Operational Research, 121(3):579–608,
2000.

James E Smith, Samuel Holtzman, and James E Mathe-
son. Structuring conditional relationships in influence
diagrams. Operations Research, 41(2):280–297, 1993.

Joseph A Tatman and Ross D Shachter. Dynamic program-
ming and influence diagrams. Systems, Man and Cyber-
netics, IEEE Transactions on, 20(2):365–379, 1990.

Canan Ulu and James E Smith. Uncertainty, information
acquisition, and technology adoption. Operations Re-
search, 57(3):740–752, 2009.

John von Neumann and Oskar Morgenstern. Theory of
Games and Economic Behavior. Princeton University
Press, Princeton, NJ, 1944.

503

Finite-Sample Analysis of Proximal Gradient TD Algorithms

Bo Liu
UMass Amherst

boliu@cs.umass.edu

Ji Liu
University of Rochester
jliu@cs.rochester.edu

Mohammad Ghavamzadeh
Adobe & INRIA Lille

Mohammad.ghavamzadeh@inria.fr

Sridhar Mahadevan
UMass Amherst

mahadeva@cs.umass.edu

Marek Petrik
IBM Research

marekpetrik@gmail.com

Abstract

In this paper, we show for the first time how gra-
dient TD (GTD) reinforcement learning methods
can be formally derived as true stochastic gradi-
ent algorithms, not with respect to their original
objective functions as previously attempted, but
rather using derived primal-dual saddle-point ob-
jective functions. We then conduct a saddle-point
error analysis to obtain finite-sample bounds on
their performance. Previous analyses of this class
of algorithms use stochastic approximation tech-
niques to prove asymptotic convergence, and no
finite-sample analysis had been attempted. Two
novel GTD algorithms are also proposed, namely
projected GTD2 and GTD2-MP, which use prox-
imal “mirror maps” to yield improved conver-
gence guarantees and acceleration, respectively.
The results of our theoretical analysis imply that
the GTD family of algorithms are comparable
and may indeed be preferred over existing least
squares TD methods for off-policy learning, due
to their linear complexity. We provide exper-
imental results showing the improved perfor-
mance of our accelerated gradient TD methods.

1 INTRODUCTION

Obtaining a true stochastic gradient temporal difference
method has been a longstanding goal of reinforcement
learning (RL) [Bertsekas and Tsitsiklis, 1996; Sutton and
Barto, 1998], ever since it was discovered that the orig-
inal TD method was unstable in many off-policy scenar-
ios where the target behavior being learned and the ex-
ploratory behavior producing samples differ. Sutton et al.
[2008, 2009] proposed the family of gradient-based tem-
poral difference (GTD) algorithms which offer several in-
teresting properties. A key property of this class of GTD
algorithms is that they are asymptotically off-policy con-
vergent, which was shown using stochastic approximation

[Borkar, 2008]. This is quite important when we notice
that many RL algorithms, especially those that are based
on stochastic approximation, such as TD(�), do not have
convergence guarantees in the off-policy setting. Unfortu-
nately, this class of GTD algorithms are not true stochastic
gradient methods with respect to their original objective
functions, as pointed out in Szepesvári [2010]. The reason
is not surprising: the gradient of the objective functions
used involve products of terms, which cannot be sampled
directly, and was decomposed by a rather ad-hoc splitting
of terms. In this paper, we take a major step forward in
resolving this problem by showing a principled way of de-
signing true stochastic gradient TD algorithms by using a
primal-dual saddle point objective function, derived from
the original objective functions, coupled with the princi-
pled use of operator splitting [Bauschke and Combettes,
2011].

Since in real-world applications of RL, we have access to
only a finite amount of data, finite-sample analysis of gra-
dient TD algorithms is essential as it clearly shows the
effect of the number of samples (and the parameters that
play a role in the sampling budget of the algorithm) in
their final performance. However, most of the work on
finite-sample analysis in RL has been focused on batch
RL (or approximate dynamic programming) algorithms
(e.g., Kakade and Langford 2002; Munos and Szepesvári
2008; Antos et al. 2008; Lazaric et al. 2010a), especially
those that are least squares TD (LSTD)-based (e.g., Lazaric
et al. 2010b; Ghavamzadeh et al. 2010, 2011; Lazaric et
al. 2012), and more importantly restricted to the on-policy
setting. In this paper, we provide the finite-sample anal-
ysis of the GTD family of algorithms, a relatively novel
class of gradient-based TD methods that are guaranteed to
converge even in the off-policy setting, and for which, to
the best of our knowledge, no finite-sample analysis has
been reported. This analysis is challenging because 1) the
stochastic approximation methods that have been used to
prove the asymptotic convergence of these algorithms do
not address convergence rate analysis; 2) as we explain in
detail in Section 2.1, the techniques used for the analysis
of the stochastic gradient methods cannot be applied here;

504

3) finally, the difficulty of finite-sample analysis in the off-
policy setting.

The major contributions of this paper include the first finite-
sample analysis of the class of gradient TD algorithms, as
well as the design and analysis of several improved GTD
methods that result from our novel approach of formulating
gradient TD methods as true stochastic gradient algorithms
w.r.t. a saddle-point objective function. We then use the
techniques applied in the analysis of the stochastic gradi-
ent methods to propose a unified finite-sample analysis for
the previously proposed as well as our novel gradient TD
agorithms. Finally, given the results of our analysis, we
study the GTD class of algorithms from several different
perspectives, including acceleration in convergence, learn-
ing with biased importance sampling factors, etc.

2 PRELIMINARIES

Reinforcement Learning (RL) [Bertsekas and Tsitsiklis,
1996; Sutton and Barto, 1998] is a class of learning prob-
lems in which an agent interacts with an unfamiliar, dy-
namic and stochastic environment, where the agent’s goal
is to optimize some measure of its long-term performance.
This interaction is conventionally modeled as a Markov
decision process (MDP). A MDP is defined as the tuple
(S, A, P a

ss0 , R, �), where S and A are the sets of states and
actions, the transition kernel P a

ss0 specifying the probabil-
ity of transition from state s 2 S to state s0 2 S by taking
action a 2 A, R(s, a) : S ⇥A! R is the reward function
bounded by Rmax., and 0 � < 1 is a discount factor.
A stationary policy ⇡ : S ⇥ A ! [0, 1] is a probabilistic
mapping from states to actions. The main objective of a RL
algorithm is to find an optimal policy. In order to achieve
this goal, a key step in many algorithms is to calculate the
value function of a given policy ⇡, i.e., V ⇡ : S ! R, a
process known as policy evaluation. It is known that V ⇡ is
the unique fixed-point of the Bellman operator T⇡ , i.e.,

V ⇡ = T⇡V ⇡ = R⇡ + �P⇡V ⇡, (1)

where R⇡ and P⇡ are the reward function and transition
kernel of the Markov chain induced by policy ⇡. In Eq. 1,
we may imagine V ⇡ as a |S|-dimensional vector and write
everything in vector/matrix form. In the following, to sim-
plify the notation, we often drop the dependence of T⇡ ,
V ⇡ , R⇡ , and P⇡ to ⇡.

We denote by ⇡b, the behavior policy that generates the
data, and by ⇡, the target policy that we would like to eval-
uate. They are the same in the on-policy setting and dif-
ferent in the off-policy scenario. For each state-action pair
(si, ai), such that ⇡b(ai|si) > 0, we define the importance-
weighting factor ⇢i = ⇡(ai|si)/⇡b(ai|si) with ⇢max � 0
being its maximum value over the state-action pairs.

When S is large or infinite, we often use a linear ap-
proximation architecture for V ⇡ with parameters ✓ 2

Rd and L-bounded basis functions {'i}d
i=1, i.e., 'i :

S ! R and maxi ||'i||1 L. We denote by �(·) =�
'1(·), . . . ,'d(·)

�>
the feature vector and by F the lin-

ear function space spanned by the basis functions {'i}d
i=1,

i.e., F =
�
f✓ | ✓ 2 Rd and f✓(·) = �(·)>✓

. We may

write the approximation of V in F in the vector form as
v̂ = �✓, where � is the |S| ⇥ d feature matrix. When
only n training samples of the form D =

��
si, ai, ri =

r(si, ai), s
0
i

� n

i=1
, si ⇠ ⇠, ai ⇠ ⇡b(·|si), s0i ⇠

P (·|si, ai), are available (⇠ is a distribution over the state
space S), we may write the empirical Bellman operator T̂
for a function in F as

T̂ (�̂✓) = R̂ + ��̂0✓, (2)

where �̂ (resp. �̂0) is the empirical feature matrix of
size n ⇥ d, whose i-th row is the feature vector �(si)

>

(resp. �(s0i)
>), and R̂ 2 Rn is the reward vector, whose i-

th element is ri. We denote by �i(✓) = ri + ��
0>
i ✓� �>i ✓,

the TD error for the i-th sample (si, ri, s
0
i) and define

��i = �i � ��0i. Finally, we define the matrices A and
C, and the vector b as

A := E
⇥
⇢i�i(��i)

>⇤, b := E [⇢i�iri] , C := E[�i�
>
i], (3)

where the expectations are w.r.t. ⇠ and P⇡b . We also denote
by ⌅, the diagonal matrix whose elements are ⇠(s), and
⇠max := maxs⇠(s). For each sample i in the training set
D, we can calculate an unbiased estimate of A, b, and C as
follows:

Âi := ⇢i�i��
>
i , b̂i := ⇢iri�i, Ĉi := �i�

>
i . (4)

2.1 GRADIENT-BASED TD ALGORITHMS

The class of gradient-based TD (GTD) algorithms were
proposed by Sutton et al. [2008, 2009]. These algorithms
target two objective functions: the norm of the expected
TD update (NEU) and the mean-square projected Bellman
error (MSPBE), defined as (see e.g., Maei 2011)1

NEU(✓) = ||�>⌅(T v̂ � v̂)||2 , (5)

MSPBE(✓) = ||v̂ �⇧T v̂||2⇠ = ||�>⌅(T v̂ � v̂)||2C�1 , (6)

where C = E[�i�
>
i] = �>⌅� is the covariance matrix

defined in Eq. 3 and is assumed to be non-singular, and
⇧ = �(�>⌅�)�1�>⌅ is the orthogonal projection oper-
ator into the function space F , i.e., for any bounded func-
tion g, ⇧g = arg minf2F ||g � f ||⇠. From (5) and (6), it
is clear that NEU and MSPBE are square unweighted and
weighted by C�1, `2-norms of the quantity �>⌅(T v̂� v̂),
respectively, and thus, the two objective functions can be
unified as

J(✓) = ||�>⌅(T v̂� v̂)||2M�1 = ||E[⇢i�i(✓)�i]||2M�1 , (7)
1It is important to note that T in (5) and (6) is T⇡ , the Bellman

operator of the target policy ⇡.

505

with M equals to the identity matrix I for NEU and to
the covariance matrix C for MSPBE. The second equality
in (7) holds because of the following lemma from Section
4.2 in Maei [2011].
Lemma 1. Let D =

��
si, ai, ri, s

0
i

� n

i=1
, si ⇠ ⇠, ai ⇠

⇡b(·|si), s0i ⇠ P (·|si, ai) be a training set generated by
the behavior policy ⇡b and T be the Bellman operator of
the target policy ⇡. Then, we have

�>⌅(T v̂ � v̂) = E
⇥
⇢i�i(✓)�i

⇤
= b�A✓.

Motivated by minimizing the NEU and MSPBE objective
functions using the stochastic gradient methods, the GTD
and GTD2 algorithms were proposed with the following
update rules:

GTD: yt+1 = yt + ↵t

�
⇢t�t(✓t)�t � yt

�
, (8)

✓t+1 = ✓t + ↵t⇢t��t(y
>
t �t),

GTD2: yt+1 = yt + ↵t

�
⇢t�t(✓t)� �>t yt

�
�t, (9)

✓t+1 = ✓t + ↵t⇢t��t(y
>
t �t).

However, it has been shown that the above update rules do
not update the value function parameter ✓ in the gradient di-
rection of NEU and MSPBE, and thus, NEU and MSPBE
are not the true objective functions of the GTD and GTD2
algorithms [Szepesvári, 2010]. Consider the NEU objec-
tive function in (5). Taking its gradient w.r.t. ✓, we obtain

�1

2
rNEU(✓) = �

�
rE

⇥
⇢i�i(✓)�

>
i

⇤�
E
⇥
⇢i�i(✓)�i

⇤

= �
�
E
⇥
⇢ir�i(✓)�>i

⇤�
E
⇥
⇢i�i(✓)�i

⇤

= E
⇥
⇢i��i�

>
i

⇤
E
⇥
⇢i�i(✓)�i

⇤
. (10)

If the gradient can be written as a single expectation, then
it is straightforward to use a stochastic gradient method.
However, we have a product of two expectations in (10),
and unfortunately, due to the correlation between them, the
sample product (with a single sample) won’t be an unbiased
estimate of the gradient. To tackle this, the GTD algorithm
uses an auxiliary variable yt to estimate E

⇥
⇢i�i(✓)�i

⇤
, and

thus, the overall algorithm is no longer a true stochastic
gradient method w.r.t. NEU. It can be easily shown that the
same problem exists for GTD2 w.r.t. the MSPBE objective
function. This prevents us from using the standard con-
vergence analysis techniques of stochastic gradient descent
methods to obtain a finite-sample performance bound for
the GTD and GTD2 algorithms.

It should be also noted that in the original publications of
GTD/GTD2 algorithms [Sutton et al., 2008, 2009], the au-
thors discussed handling the off-policy scenario using both
importance and rejected sampling. In rejected sampling
that was mainly used in Sutton et al. [2008, 2009], a sample
(si, ai, ri, s

0
i) is rejected and the parameter ✓ does not up-

date for this sample, if ⇡(ai|si) = 0. This sampling strat-
egy is not efficient since a lot of samples will be discarded
if ⇡b and ⇡ are very different.

2.2 RELATED WORK

Before we present a finite-sample performance bound for
GTD and GTD2, it would be helpful to give a brief
overview of the existing literature on finite-sample anal-
ysis of the TD algorithms. The convergence rate of the
TD algorithms mainly depends on (d, n, ⌫), where d is
the size of the approximation space (the dimension of the
feature vector), n is the number of samples, and ⌫ is the
smallest eigenvalue of the sample-based covariance matrix
Ĉ = �̂>�̂, i.e., ⌫ = �min(Ĉ).

Antos et al. [2008] proved an error bound of O(d log d
n1/4) for

LSTD in bounded spaces. Lazaric et al. [2010b] proposed
a LSTD analysis in leaner spaces and obtained a tighter

bound of O(
q

d log d
n⌫) and later used it to derive a bound for

the least-squares policy iteration (LSPI) algorithm [Lazaric
et al., 2012]. Tagorti and Scherrer [2014] recently proposed
the first convergence analysis for LSTD(�) and derived a
bound of Õ(d/⌫

p
n). The analysis is a bit different than

the one in Lazaric et al. [2010b] and the bound is weaker in
terms of d and ⌫. Another recent result is by Prashanth
et al. [2014] that use stochastic approximation to solve
LSTD(0), where the resulting algorithm is exactly TD(0)
with random sampling (samples are drawn i.i.d. and not
from a trajectory), and report a Markov design bound (the
bound is computed only at the states used by the algorithm)

of O(
q

d
n⌫) for LSTD(0). All these results are for the on-

policy setting, except the one by Antos et al. [2008] that
also holds for the off-policy formulation. Another work
in the off-policy setting is by Ávila Pires and Szepesvári
[2012] that uses a bounding trick and improves the result
of Antos et al. [2008] by a log d factor.

The line of research reported here has much in common
with work on proximal reinforcement learning [Mahade-
van et al., 2014], which explores first-order reinforcement
learning algorithms using mirror maps [Bubeck, 2014; Ju-
ditsky et al., 2008] to construct primal-dual spaces. This
work began originally with a dual space formulation of
first-order sparse TD learning [Mahadevan and Liu, 2012].
A saddle point formulation for off-policy TD learning was
initially explored in Liu et al. [2012], where the objective
function is the norm of the approximation residual of a lin-
ear inverse problem [Ávila Pires and Szepesvári, 2012]. A
sparse off-policy GTD2 algorithm with regularized dual av-
eraging is introduced by Qin and Li [2014]. These studies
provide different approaches to formulating the problem,
first as a variational inequality problem [Juditsky et al.,
2008; Mahadevan et al., 2014] or as a linear inverse prob-
lem [Liu et al., 2012], or as a quadratic objective function
(MSPBE) using two-time-scale solvers [Qin and Li, 2014].
In this paper, we are going to explore the true nature of
the GTD algorithms as stochastic gradient algorithm w.r.t
the convex-concave saddle-point formulations of NEU and
MSPBE.

506

3 SADDLE-POINT FORMULATION OF
GTD ALGORITHMS

In this section, we show how the GTD and GTD2 algo-
rithms can be formulated as true stochastic gradient (SG)
algorithms by writing their respective objective functions,
NEU and MSPBE, in the form of a convex-concave saddle-
point. As discussed earlier, this new formulation of GTD
and GTD2 as true SG methods allows us to use the con-
vergence analysis techniques for SGs in order to derive
finite-sample performance bounds for these RL algorithms.
Moreover, it allows us to use more efficient algorithms that
have been recently developed to solve SG problems, such
as stochastic Mirror-Prox (SMP) [Juditsky et al., 2008], to
derive more efficient versions of GTD and GTD2.

A particular type of convex-concave saddle-point formula-
tion is formally defined as

min
✓

max
y

�
L(✓, y) = hb�A✓, yi+ F (✓)�K(y)

�
, (11)

where F (✓) is a convex function and K(y) is a smooth
convex function such that

K(y)�K(x)� hrK(x), y � xi LK

2
||x� y||2. (12)

Next we follow Juditsky et al. [2008]; Nemirovski et al.
[2009]; Chen et al. [2013] and define the following error
function for the saddle-point problem (11).
Definition 1. The error function of the saddle-point prob-
lem (11) at each point (✓0, y0) is defined as

Err(✓0, y0) = max
y

L(✓0, y)�min
✓

L(✓, y0). (13)

In this paper, we consider the saddle-point problem (11)
with F (✓) = 0 and K(y) = 1

2 ||y||2M , i.e.,

min
✓

max
y

⇣
L(✓, y) = hb�A✓, yi � 1

2
||y||2M

⌘
, (14)

where A and b were defined by Eq. 3, and M is a positive
definite matrix. It is easy to show that K(y) = 1

2 ||y||2M
satisfies the condition in Eq. 12.

We first show in Proposition 1 that if (✓⇤, y⇤) is the saddle-
point of problem (14), then ✓⇤ will be the optimum of NEU
and MSPBE defined in Eq. 7. We then prove in Proposi-
tion 2 that GTD and GTD2 in fact find this saddle-point.
Proposition 1. For any fixed ✓, we have 1

2J(✓) =
maxy L(✓, y), where J(✓) is defined by Eq. 7.

Proof. Since L(✓, y) is an unconstrained quadratic pro-
gram w.r.t. y, the optimal y⇤(✓) = arg maxy L(✓, y) can
be analytically computed as

y⇤(✓) = M�1(b�A✓). (15)

The result follows by plugging y⇤ into (14) and using the
definition of J(✓) in Eq. 7 and Lemma 1.

Proposition 2. GTD and GTD2 are true stochastic gradi-
ent algorithms w.r.t. the objective function L(✓, y) of the
saddle-point problem (14) with M = I and M = C =
�>⌅� (the covariance matrix), respectively.

Proof. It is easy to see that the gradient updates of the
saddle-point problem (14) (ascending in y and descending
in ✓) may be written as

yt+1 = yt + ↵t (b�A✓t �Myt) , (16)
✓t+1 = ✓t + ↵tA

>yt.

We denote M̂ := 1 (resp. M̂ := Ĉ) for GTD (resp.
GTD2). We may obtain the update rules of GTD and
GTD2 by replacing A, b, and C in (16) with their unbi-
ased estimates Â, b̂, and Ĉ from Eq. 4, which completes
the proof.

4 FINITE-SAMPLE ANALYSIS

In this section, we provide a finite-sample analysis for a
revised version of the GTD/GTD2 algorithms. We first de-
scribe the revised GTD algorithms in Section 4.1 and then
dedicate the rest of Section 4 to their sample analysis. Note
that from now on we use the M matrix (and its unbiased
estimate M̂t) to have a unified analysis for GTD and GTD2
algorithms. As described earlier, M is replaced by the iden-
tity matrix I in GTD and by the covariance matrix C (and
its unbiased estimate Ĉt) in GTD2.

4.1 THE REVISED GTD ALGORITHMS

The revised GTD algorithms that we analyze in this pa-
per (see Algorithm 1) have three differences with the stan-
dard GTD algorithms of Eqs. 8 and 9 (and Eq. 16). 1) We
guarantee that the parameters ✓ and y remain bounded by
projecting them onto bounded convex feasible sets ⇥ and
Y defined in Assumption 2. In Algorithm 1, we denote
by ⇧⇥ and ⇧Y , the projection into sets ⇥ and Y , respec-
tively. This is standard in stochastic approximation algo-
rithms and has been used in off-policy TD(�) [Yu, 2012]
and actor-critic algorithms (e.g., Bhatnagar et al. 2009). 2)
after n iterations (n is the number of training samples in D),
the algorithms return the weighted (by the step size) aver-
age of the parameters at all the n iterations (see Eq. 18).
3) The step-size ↵t is selected as described in the proof
of Proposition 3 in the supplementary material. Note that
this fixed step size of O(1/

p
n) is required for the high-

probability bound in Proposition 3 (see Nemirovski et al.
2009 for more details).

4.2 ASSUMPTIONS

In this section, we make several assumptions on the MDP
and basis functions that are used in our finite-sample anal-
ysis of the revised GTD algorithms. These assumptions are

507

Algorithm 1 Revised GTD Algorithms
1: for t = 1, . . . , n do
2: Update parameters

yt+1 = ⇧Y

⇣
yt + ↵t(b̂t � Ât✓t � M̂tyt)

⌘

✓t+1 = ⇧⇥

⇣
✓t + ↵tÂ

>
t yt

⌘
(17)

3: end for
4: OUTPUT

✓̄n :=

Pn
t=1 ↵t✓tPn
t=1 ↵t

, ȳn :=

Pn
t=1 ↵tytPn
t=1 ↵t

(18)

quite standard and are similar to those made in the prior
work on GTD algorithms [Sutton et al., 2008, 2009; Maei,
2011] and those made in the analysis of SG algorithms [Ne-
mirovski et al., 2009].
Assumption 2. (Feasibility Sets) We define the bounded
closed convex sets ⇥ ⇢ Rd and Y ⇢ Rd as the feasible sets
in Algorithm 1. We further assume that the saddle-point
(✓⇤, y⇤) of the optimization problem (14) belongs to ⇥⇥Y .
We also define D✓ :=

⇥
max✓2⇥ ||✓||22�min✓2⇥ ||✓||22

⇤1/2
,

Dy :=
⇥
maxy2Y ||y||22 � miny2Y ||y||22

⇤1/2
, and R =

max
�

max✓2⇥ ||✓||2, maxy2Y ||y||2

.
Assumption 3. (Non-singularity) We assume that the
covariance matrix C = E[�i�

>
i] and matrix A =

E
⇥
⇢i�i(��i)

>⇤ are non-singular.
Assumption 4. (Boundedness) Assume the features
(�i,�

0
i) have uniformly bounded second moments. This

together with the boundedness of features (by L) and im-
portance weights (by ⇢max) guarantees that the matrices A
and C, and vector b are uniformly bounded.

This assumption guarantees that for any (✓, y) 2 ⇥ ⇥ Y ,
the unbiased estimators of b�A✓ �My and A>y, i.e.,

E[b̂t � Ât✓ � M̂ty] = b�A✓ �My,

E[Â>t y] = A>y, (19)

all have bounded variance, i.e.,

E
⇥
||b̂t � Ât✓ � M̂ty � (b�A✓ �My)||2

⇤
 �2

1 ,

E
⇥
||Â>t y �A>y||2

⇤
 �2

2 , (20)

where �1 and �2 are non-negative constants. We further
define

�2 = �2
1 + �2

2 . (21)

Assumption 4 also gives us the following “light-tail” as-
sumption. There exist constants M⇤,✓ and M⇤,y such that

E[exp{ ||b̂t � Ât✓ � M̂ty||2
M2

⇤,✓

}] exp{1},

E[exp{ ||Â>
t y||2

M2
⇤,y

}] exp{1}. (22)

This “light-tail” assumption is equivalent to the assumption
in Eq. 3.16 in Nemirovski et al. [2009] and is necessary for
the high-probability bound of Proposition 3. We will show
how to compute M⇤,✓, M⇤,y in the Appendix.

4.3 FINITE-SAMPLE PERFORMANCE BOUNDS

The finite-sample performance bounds that we derive for
the GTD algorithms in this section are for the case that the
training set D has been generated as discussed in Section 2.
We further discriminate between the on-policy (⇡ = ⇡b)
and off-policy (⇡ 6= ⇡b) scenarios. The sampling scheme
used to generate D, in which the first state of each tuple,
si, is an i.i.d. sample from a distribution ⇠, also considered
in the original GTD and and GTD2 papers, for the anal-
ysis of these algorithms, and not in the experiments [Sut-
ton et al., 2008, 2009]. Another scenario that can motivate
this sampling scheme is when we are given a set of high-
dimensional data generated either in an on-policy or off-
policy manner, and d is so large that the value function of
the target policy cannot be computed using a least-squares
method (that involves matrix inversion), and iterative tech-
niques similar to GTD/GTD2 are required.

We first derive a high-probability bound on the error func-
tion of the saddle-point problem (14) at the GTD solution
(✓̄n, ȳn). Before stating this result in Proposition 3, we re-
port the following lemma that is used in its proof.
Lemma 2. The induced `2-norm of matrix A and the `2-
norm of vector b are bounded by

||A||2 (1 + �)⇢maxL
2d, ||b||2 ⇢maxLRmax. (23)

Proof. See the supplementary material.

Proposition 3. Let (✓̄n, ȳn) be the output of the GTD algo-
rithm after n iterations (see Eq. 18). Then, with probability
at least 1� �, we have

Err(✓̄n, ȳn)
r

5

n
(8 + 2 log

2

�
)R2 (24)

⇥
✓
⇢maxL

⇣
2(1 + �)Ld +

Rmax

R

⌘
+ ⌧ +

�

R

◆
,

where Err(✓̄n, ȳn) is the error function of the saddle-point
problem (14) defined by Eq. 13, R defined in Assump-
tion 2, � is from Eq. 21, and ⌧ = �max(M) is the largest
singular value of M , which means ⌧ = 1 for GTD and
⌧ = �max(C) for GTD2.

Proof. See the supplementary material.

Theorem 1. Let ✓̄n be the output of the GTD algorithm
after n iterations (see Eq. 18). Then, with probability at
least 1� �, we have

1

2
||A✓̄n � b||2⇠ ⌧⇠max Err(✓̄n, ȳn). (25)

508

Proof. From Proposition 1, for any ✓, we have

max
y

L(✓, y) =
1

2
||A✓ � b||2M�1 .

Given Assumption 3, the system of linear equations A✓ = b
has a solution ✓⇤, i.e., the (off-policy) fixed-point ✓⇤ exists,
and thus, we may write

min
✓

max
y

L(✓, y) = min
✓

1

2
||A✓ � b||2M�1

=
1

2
||A✓⇤ � b||2M�1 = 0.

In this case, we also have2

min
✓

L(✓, y) max
y

min
✓

L(✓, y) min
✓

max
y

L(✓, y)

=
1

2
||A✓⇤ � b||2M�1 = 0. (26)

From Eq. 26, for any (✓, y) 2 ⇥ ⇥ Y including (✓̄n, ȳn),
we may write

Err(✓̄n, ȳn) = max
y

L(✓̄n, y)�min
✓

L(✓, ȳn) (27)

� max
y

L(✓̄n, y) =
1

2
||A✓̄n � b||2M�1 .

Since ||A✓̄n�b||2⇠ ⌧⇠max ||A✓̄n�b||2M�1 , where ⌧ is the
largest singular value of M , we have

1

2
||A✓̄n�b||2⇠

⌧⇠max

2
||A✓̄n�b||2M�1 ⌧⇠max Err(✓̄n, ȳn).

(28)
The proof follows by combining Eqs. 28 and Proposition 3.
It completes the proof.

With the results of Proposition 3 and Theorem 1, we are
now ready to derive finite-sample bounds on the perfor-
mance of GTD/GTD2 in both on-policy and off-policy set-
tings.

4.3.1 On-Policy Performance Bound

In this section, we consider the on-policy setting in which
the behavior and target policies are equal, i.e., ⇡b = ⇡, and
the sampling distribution ⇠ is the stationary distribution of
the target policy ⇡ (and the behavior policy ⇡b). We use
Lemma 3 to derive our on-policy bound. The proof of this
lemma can be found in Geist et al. [2012].

Lemma 3. For any parameter vector ✓ and corresponding
v̂ = �✓, the following equality holds

V � v̂ = (I � �⇧P)�1 ⇥(V �⇧V) + �C�1(b�A✓)
⇤
. (29)

Using Lemma 3, we derive the following performance
bound for GTD/GTD2 in the on-policy setting.

2We may write the second inequality as an equality for our
saddle-point problem defined by Eq. 14.

Proposition 4. Let V be the value of the target policy and
v̄n = �✓̄n, where ✓̄n defined by (18), be the value function
returned by on-policy GTD/GTD2. Then, with probability
at least 1� �, we have

||V�v̄n||⇠ 1

1� �

✓
||V �⇧V ||⇠ +

L

⌫

q
2d⌧⇠maxErr(✓̄n, ȳn)

◆

(30)

where Err(✓̄n, ȳn) is upper-bounded by Eq. 24 in Proposi-
tion 3, with ⇢max = 1 (on-policy setting).

Proof. See the supplementary material.

Remark: It is important to note that Proposition 4 shows
that the error in the performance of the GTD/GTD2 algo-

rithm in the on-policy setting is of O

✓
L2d
p
⌧⇠max log 1

�

n1/4⌫

◆
.

Also note that the term ⌧
⌫ in the GTD2 bound is the condi-

tioning number of the covariance matrix C.

4.3.2 Off-Policy Performance Bound

In this section, we consider the off-policy setting in which
the behavior and target policies are different, i.e., ⇡b 6= ⇡,
and the sampling distribution ⇠ is the stationary distribu-
tion of the behavior policy ⇡b. We assume that off-policy
fixed-point solution exists, i.e., there exists a ✓⇤ satisfying
A✓⇤ = b. Note that this is a direct consequence of As-
sumption 3 in which we assumed that the matrix A in the
off-policy setting is non-singular. We use Lemma 4 to de-
rive our off-policy bound. The proof of this lemma can be
found in Kolter [2011]. Note that (D̄) in his proof is equal
to
p
⇢max in our paper.

Lemma 4. If ⌅ satisfies the following linear matrix in-
equality

�>⌅� �>⌅P�

�>P>⌅� �>⌅�

�
⌫ 0 (31)

and let ✓⇤ be the solution to A✓⇤ = b, then we have

||V � �✓⇤||⇠
1 + �

p
⇢max

1� � ||V �⇧V ||⇠. (32)

Note that the condition on ⌅ in Eq. 31 guarantees that the
behavior and target policies are not too far away from each
other. Using Lemma 4, we derive the following perfor-
mance bound for GTD/GTD2 in the off-policy setting.

Proposition 5. Let V be the value of the target policy and
v̄n = �✓̄n, where ✓̄n is defined by (18), be the value func-
tion returned by off-policy GTD/GTD2. Also let the sam-
pling distribution ⌅ satisfies the condition in Eq. 31. Then,

509

with probability at least 1� �, we have

||V � v̄n||⇠
1 + �

p
⇢max

1� � ||V �⇧V ||⇠ (33)

+

s
2⌧C⌧⇠max

�min(A>M�1A)
Err(✓̄n, ȳn),

where ⌧C = �max(C).

Proof. See the supplementary material.

5 ACCELERATED ALGORITHM

As discussed at the beginning of Section 3, this saddle-
point formulation not only gives us the opportunity to use
the techniques for the analysis of SG methods to derive
finite-sample performance bounds for the GTD algorithms,
as we will show in Section 4, but also it allows us to use the
powerful algorithms that have been recently developed to
solve the SG problems and derive more efficient versions of
GTD and GTD2. Stochastic Mirror-Prox (SMP) [Juditsky
et al., 2008] is an “almost dimension-free” non-Euclidean
extra-gradient method that deals with both smooth and non-
smooth stochastic optimization problems (see Juditsky and
Nemirovski 2011 and Bubeck 2014 for more details). Us-
ing SMP, we propose a new version of GTD/GTD2, called
GTD-MP/GTD2-MP, with the following update formula:3

ym
t = yt + ↵t(b̂t � Ât✓t � M̂tyt), ✓m

t = ✓t + ↵tÂ
>
t yt,

yt+1 = yt + ↵t(b̂t � Ât✓
m
t � M̂ty

m
t), ✓t+1 = ✓t + ↵tÂ

>
t ym

t .

After T iterations, these algorithms return ✓̄T :=
PT

t=1 ↵t✓tPT
t=1 ↵t

and ȳT :=
PT

t=1 ↵tytPT
t=1 ↵t

. The details of the algorithm is shown
in Algorithm 2, and the experimental comparison study be-
tween GTD2 and GTD2-MP is reported in Section 7.

6 FURTHER ANALYSIS

6.1 ACCELERATION ANALYSIS

In this section, we are going to discuss the convergence
rate of the accelerated algorithms using off-the-shelf accel-
erated solvers for saddle-point problems. For simplicity,
we will discuss the error bound of 1

2 ||A✓� b||2M�1 , and the
corresponding error bound of 1

2 ||A✓� b||2⇠ and kV � v̄n||⇠
can be likewise derived as in above analysis. As can be
seen from the above analysis, the convergence rate of the
GTD algorithms family is

(GTD/GTD2) : O

✓
⌧ + ||A||2 + �p

n

◆
(35)

3For simplicity, we only describe mirror-prox GTD methods
where the mirror map is identity, which can also be viewed as
extragradient (EG) GTD methods. Mahadevan et al. [2014] gives
a more detailed discussion of a broad range of mirror maps in RL.

Algorithm 2 GTD2-MP
1: for t = 1, . . . , n do
2: Update parameters

�t = rt � ✓>t ��t

ym
t = yt + ↵t(⇢t�t � �>

t yt)�t

✓m
t = ✓t + ↵t⇢t��t(�

>
t yt)

�m
t = rt � (✓m

t)>��t

yt+1 = yt + ↵t(⇢t�
m
t � �>

t ym
t)�t

✓t+1 = ✓t + ↵t⇢t��t(�
>
t ym

t)

3: end for
4: OUTPUT

✓̄n :=

Pn
t=1 ↵t✓tPn
t=1 ↵t

, ȳn :=

Pn
t=1 ↵tytPn
t=1 ↵t

(34)

In this section, we raise an interesting question: what is the
“optimal” GTD algorithm? To answer this question, we
review the convex-concave formulation of GTD2. Accord-
ing to convex programming complexity theory [Juditsky et
al., 2008], the un-improvable convergence rate of stochas-
tic saddle-point problem (14) is

(Optimal) : O

✓
⌧

n2
+

||A||2
n

+
�p
n

◆
(36)

There are many readily available stochastic saddle-point
solvers, such as stochastic Mirror-Prox (SMP) [Juditsky et
al., 2008] algorithm, which leads to our proposed GTD2-
MP algorithm. SMP is able to accelerate the convergence
rate of our gradient TD method to:

(SMP) : O

✓
⌧ + ||A||2

n
+

�p
n

◆
, (37)

and stochastic accelerated primal-dual (SAPD) method
[Chen et al., 2013] which can reach the optimal conver-
gence rate in (36). Due to space limitations, we are un-
able to present a more complete description, and refer in-
terested readers to Juditsky et al. [2008]; Chen et al. [2013]
for more details.

6.2 LEARNING WITH BIASED ⇢t

The importance weight factor ⇢t is lower bounded by 0,
but yet may have an arbitrarily large upper bound. In real
applications, the importance weight factor ⇢t may not be
estimated exactly, i.e., the estimation ⇢̂t is a biased esti-
mation of the true ⇢t. To this end, the stochastic gradient
we obtained is not unbiased gradient of L(✓, y) anymore.
This falls into a broad category of learning with inexact
stochastic gradient, or termed as stochastic gradient meth-
ods with an inexact oracle [Devolder, 2011]. Given the
inexact stochastic gradient, the convergence rate and per-
formance bound become much worse than the results with

510

exact stochastic gradient. Based on the analysis by Juditsky
et al. [2008], we have the error bound for inexact estima-
tion of ⇢t.

Proposition 6. Let ✓̄n be defined as above. Assume at the
t-th iteration, ⇢̂t is the estimation of the importance weight
factor ⇢t with bounded bias such that E[⇢̂t � ⇢t] ✏. The
convergence rates of GTD/GTD2 algorithms with iterative
averaging is as follows, i.e.,

||A✓̄n � b||2M�1 O

✓
⌧ + ||A||2 + �p

n

◆
+ O(✏) (38)

This implies that the inexact estimation of ⇢t may cause
disastrous estimation error, which implies that an exact es-
timation of ⇢t is very important.

6.3 FINITE-SAMPLE ANALYSIS OF ONLINE
LEARNING

Another more challenging scenario is online learning sce-
nario, where the samples are interactively generated by
the environment, or by an interactive agent. The diffi-
culty lies in that the sample distribution does not follow
i.i.d sampling condition anymore, but follows an underly-
ing Markov chain M. If the Markov chain M’s mixing
time is small enough, i.e., the sample distribution reduces
to the stationary distribution of ⇡b very fast, our analy-
sis still applies. However, it is usually the case that the
underlying Markov chain’s mixing time ⌧mix is not small
enough. The analysis result can be obtained by extending
the result of recent work [Duchi et al., 2012] from strongly
convex loss functions to saddle-point problems, which is
non-trivial and is thus left for future work.

6.4 DISCUSSION OF TDC ALGORITHM

Now we discuss the limitation of our analysis with regard
to the temporal difference with correction (TDC) algorithm
[Sutton et al., 2009]. Interestingly, the TDC algorithm
seems not to have an explicit saddle-point representation,
since it incorporates the information of the optimal y⇤t (✓t)
into the update of ✓t, a quasi-stationary condition which
is commonly used in two-time-scale stochastic approxima-
tion approaches. An intuitive answer to the advantage of
TDC over GTD2 is that the TDC update of ✓t can be con-
sidered as incorporating the prior knowledge into the up-
date rule: for a stationary ✓t, if the optimal y⇤t (✓t) has a
closed-form solution or is easy to compute, then incorpo-
rating this y⇤t (✓t) into the update law tends to accelerate
the algorithm’s convergence performance. For the GTD2
update, note that there is a sum of two terms where yt ap-
pears, which are ⇢t(�t � ��0t)(y

T
t �t) = ⇢t�t(y

T
t �t) �

�⇢t�
0
t(y

T
t �t). Replacing yt in the first term with y⇤t (✓t) =

E[�t�
T
t
]�1E[⇢t�t(✓t)�t], we have the TDC update rule.

Note that in contrast to GTD/GTD2, TDC is a two-time
scale algorithm; Also, note that TDC does not minimize

any objective functions and the convergence of TDC re-
quires more restrictions than GTD2 as shown by Sutton et
al. [2009].

7 EMPIRICAL EVALUATION

In this section, we compare the previous GTD2 method
with our proposed GTD2-MP method using various do-
mains with regard to their value function approximation
performance capability. It should be mentioned that since
the major focus of this paper is on policy evaluation, the
comparative study focuses on value function approxima-
tion and thus comparisons on control learning performance
is not reported in this paper.

7.1 BAIRD DOMAIN

The Baird example [Baird, 1995] is a well-known example
to test the performance of off-policy convergent algorithms.
Constant stepsize ↵ = 0.005 for GTD2 and ↵ = 0.004 for
GTD2-MP, which are chosen via comparison studies as in
[Dann et al., 2014]. Figure 1 shows the MSPBE curve of
GTD2, GTD2-MP of 8000 steps averaged over 200 runs.
We can see that GTD2-MP has a significant improvement
over the GTD2 algorithm wherein both the MSPBE and the
variance are substantially reduced.

Figure 1: Off-Policy Convergence Comparison

7.2 50-STATE CHAIN DOMAIN

The 50 state chain [Lagoudakis and Parr, 2003] is a stan-
dard MDP domain. There are 50 discrete states {si}50

i=1

and two actions moving the agent left si ! smax(i�1,1) and
right si ! smin(i+1,50). The actions succeed with proba-
bility 0.9; failed actions move the agent in the opposite di-
rection. The discount factor is � = 0.9. The agent receives
a reward of +1 when in states s10 and s41. All other states
have a reward of 0. In this experiment, we compare the per-
formance of the value approximation w.r.t different set of
stepsizes ↵ = 0.0001, 0.001, 0.01, 0.1, 0.2, · · · , 0.9 using
the BEBF basis [Parr et al., 2007], and Figure 2 shows the
value function approximation result, where the cyan curve

511

Figure 2: Chain Domain

is the true value function, the red dashed curve is the GTD
result,and the black curve is the GTD2-MP result. From
the figure, one can see that GTD2-MP is much more robust
with stepsize choice than the GTD2 algorithm.

7.3 ENERGY MANAGEMENT DOMAIN

In this experiment we compare the performance of the al-
gorithms on an energy management domain. The decision
maker must decide how much energy to purchase or sell
subject to stochastic prices. This problem is relevant in the
context of utilities as well as in settings such as hybrid ve-
hicles. The prices are generated from a Markov chain pro-
cess. The amount of available storage is limited and it also
degrades with use. The degradation process is based on the
physical properties of lithium-ion batteries and discourages
fully charging or discharging the battery. The energy arbi-
trage problem is closely related to the broad class of in-
ventory management problems, with the storage level cor-
responding to the inventory. However, there are no known
results describing the structure of optimal threshold poli-
cies in energy storage.

Note that since for this off-policy evaluation problem, the
formulated A✓ = b does not have a solution, and thus the
optimal MSPBE(✓⇤) (resp. MSBE(✓⇤)) do not reduce to
0. The result is averaged over 200 runs, and ↵ = 0.001
for both GTD2 and GTD2-MP is chosen via comparison
studies for each algorithm. As can be seen from FIgure 3,
in the initial transit state, GTD2-MP performs much bet-
ter than GTD2 at the transient state. Then after reaching
the steady state, as can be seen from Table 1, we can see
that GTD2-MP reaches better steady state solution than the
GTD algorithm. Based on the above empirical results and
many other experiments we have conducted in other do-
mains, we can conclude that GTD2-MP usually performs
much better than the “vanilla” GTD2 algorithm.

Figure 3: Energy Management Example

Algorithm MSPBE MSBE
GTD2 176.4 228.7

GTD2-MP 138.6 191.4

Table 1: Steady State Performance Comparison

8 SUMMARY

In this paper, we showed how gradient TD methods can be
shown to be true stochastic gradient methods with respect
to a saddle-point primal-dual objective function, which
paved the way for the finite-sample analysis of off-policy
convergent gradient-based temporal difference learning al-
gorithms such as GTD and GTD2. Both error bound
and performance bound are provided, which shows that
the value function approximation bound of the GTD algo-
rithms family is O

�
d

n1/4

�
. Further, two revised algorithms,

namely the projected GTD2 algorithm and the accelerated
GTD2-MP algorithm, are proposed. There are many inter-
esting directions for future research. Our framework can be
easily used to design regularized sparse gradient off-policy
TD methods. One interesting direction is to investigate the
convergence rate and performance bound for the TDC al-
gorithm, which lacks a saddle-point formulation. The other
is to explore tighter value function approximation bounds
for off-policy learning.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant Nos. IIS-1216467. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the NSF.

512

References
A. Antos, Cs. Szepesvári, and R. Munos. Learning near-optimal

policies with Bellman-residual minimization based fitted pol-
icy iteration and a single sample path. Machine Learning Jour-
nal, 71:89–129, 2008.

B. Ávila Pires and C. Szepesvári. Statistical linear estimation with
penalized estimators: an application to reinforcement learning.
In Proceedings of the 29th International Conference on Ma-
chine Learning, pages 1535–1542, 2012.

L. C. Baird. Residual algorithms: Reinforcement learning with
function approximation. In International Conference on Ma-
chine Learning, pages 30–37, 1995.

H. H Bauschke and P. L Combettes. Convex analysis and mono-
tone operator theory in Hilbert spaces. Springer, 2011.

D. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Programming.
Athena Scientific, Belmont, Massachusetts, 1996.

S. Bhatnagar, R. Sutton, M. Ghavamzadeh, and M. Lee. Natural
actor-critic algorithms. Automatica, 45(11):2471–2482, 2009.

V. Borkar. Stochastic Approximation: A Dynamical Systems View-
point. Cambridge University Press, 2008.

S. Bubeck. Theory of convex optimization for machine learning.
arXiv:1405.4980, 2014.

Y. Chen, G. Lan, and Y. Ouyang. Optimal primal-dual methods
for a class of saddle point problems. arXiv:1309.5548, 2013.

C. Dann, G. Neumann, and J. Peters. Policy evaluation with tem-
poral differences: A survey and comparison. Journal of Ma-
chine Learning Research, 15:809–883, 2014.

O. Devolder. Stochastic first order methods in smooth convex op-
timization. Technical report, Université catholique de Louvain,
Center for Operations Research and Econometrics, 2011.

J. Duchi, A. Agarwal, M. Johansson, and M. Jordan. Ergodic
mirror descent. SIAM Journal on Optimization, 22(4):1549–
1578, 2012.

M. Geist, B. Scherrer, A. Lazaric, and M. Ghavamzadeh. A
Dantzig Selector approach to temporal difference learning. In
International Conference on Machine Learning, pages 1399–
1406, 2012.

M. Ghavamzadeh, A. Lazaric, O. Maillard, and R. Munos. LSTD
with Random Projections. In Proceedings of the International
Conference on Neural Information Processing Systems, pages
721–729, 2010.

M. Ghavamzadeh, A. Lazaric, R. Munos, and M. Hoffman.
Finite-sample analysis of Lasso-TD. In Proceedings of the 28th
International Conference on Machine Learning, pages 1177–
1184, 2011.

A. Juditsky and A. Nemirovski. Optimization for Machine Learn-
ing. MIT Press, 2011.

A. Juditsky, A. Nemirovskii, and C. Tauvel. Solving vari-
ational inequalities with stochastic mirror-prox algorithm.
arXiv:0809.0815, 2008.

S. Kakade and J. Langford. Approximately optimal approximate
reinforcement learning. In Proceedings of the Nineteenth In-
ternational Conference on Machine Learning, pages 267–274,
2002.

Z. Kolter. The fixed points of off-policy TD. In Advances in
Neural Information Processing Systems 24, pages 2169–2177,
2011.

M. Lagoudakis and R. Parr. Least-squares policy iteration. Jour-
nal of Machine Learning Research, 4:1107–1149, 2003.

A. Lazaric, M. Ghavamzadeh, and R. Munos. Analysis of a
classification-based policy iteration algorithm. In Proceedings
of the Twenty-Seventh International Conference on Machine
Learning, pages 607–614, 2010.

A. Lazaric, M. Ghavamzadeh, and R. Munos. Finite-sample anal-
ysis of LSTD. In Proceedings of 27th International Conference
on Machine Learning, pages 615–622, 2010.

A. Lazaric, M. Ghavamzadeh, and R. Munos. Finite-sample
analysis of least-squares policy iteration. Journal of Machine
Learning Research, 13:3041–3074, 2012.

B. Liu, S. Mahadevan, and J. Liu. Regularized off-policy TD-
learning. In Advances in Neural Information Processing Sys-
tems 25, pages 845–853, 2012.

H. Maei. Gradient temporal-difference learning algorithms. PhD
thesis, University of Alberta, 2011.

S. Mahadevan and B. Liu. Sparse Q-learning with Mirror Descent.
In Proceedings of the Conference on Uncertainty in AI, 2012.

S. Mahadevan, B. Liu, P. Thomas, W. Dabney, S. Giguere,
N. Jacek, I. Gemp, and J. Liu. Proximal reinforcement learn-
ing: A new theory of sequential decision making in primal-dual
spaces. arXiv:1405.6757, 2014.

R. Munos and Cs. Szepesvári. Finite time bounds for fitted value
iteration. Journal of Machine Learning Research, 9:815–857,
2008.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust
stochastic approximation approach to stochastic programming.
SIAM Journal on Optimization, 19:1574–1609, 2009.

R. Parr, C. Painter-Wakefield, L. Li, and M. Littman. Analyzing
feature generation for value function approximation. In Pro-
ceedings of the International Conference on Machine Learn-
ing, pages 737–744, 2007.

LA Prashanth, N. Korda, and R. Munos. Fast LSTD using
stochastic approximation: Finite time analysis and application
to traffic control. In Machine Learning and Knowledge Dis-
covery in Databases, pages 66–81. Springer, 2014.

Z. Qin and W. Li. Sparse Reinforcement Learning via Convex
Optimization. In Proceedings of the 31st International Confer-
ence on Machine Learning, 2014.

R. Sutton and A. G. Barto. Reinforcement Learning: An Intro-
duction. MIT Press, 1998.

R. Sutton, C. Szepesvári, and H. Maei. A convergent o(n) al-
gorithm for off-policy temporal-difference learning with lin-
ear function approximation. In Neural Information Processing
Systems, pages 1609–1616, 2008.

R. Sutton, H. Maei, D. Precup, S. Bhatnagar, D. Silver,
C. Szepesvári, and E. Wiewiora. Fast gradient-descent methods
for temporal-difference learning with linear function approx-
imation. In International Conference on Machine Learning,
pages 993–1000, 2009.

C. Szepesvári. Algorithms for reinforcement learning. Synthe-
sis Lectures on Artificial Intelligence and Machine Learning,
4(1):1–103, 2010.

M. Tagorti and B. Scherrer. Rate of convergence and error bounds
for LSTD (�). arXiv:1405.3229, 2014.

H. Yu. Least-squares temporal difference methods: An analysis
under general conditions. SIAM Journal on Control and Opti-
mization, 50(6):3310–3343, 2012.

513

Estimating the Partition Function by Discriminance Sampling

Qiang Liu∗
CSAIL, MIT & Computer Science, Dartmouth College

qliu@cs.dartmouth.edu

Jian Peng∗
Computer Science, UIUC

jianpeng@illinois.edu

Alexander Ihler
Information and Computer Science, UC Irvine

ihler@ics.uci.edu

John Fisher III
CSAIL, MIT

fisher@csail.mit.edu

Abstract

Importance sampling (IS) and its variant, an-
nealed IS (AIS) have been widely used for es-
timating the partition function in graphical mod-
els, such as Markov random fields and deep gen-
erative models. However, IS tends to underesti-
mate the partition function and is subject to high
variance when the proposal distribution is more
peaked than the target distribution. On the other
hand, “reverse” versions of IS and AIS tend to
overestimate the partition function, and degener-
ate when the target distribution is more peaked
than the proposal distribution. In this work, we
present a simple, general method that gives much
more reliable and robust estimates than either IS
(AIS) or reverse IS (AIS). Our method works by
converting the estimation problem into a simple
classification problem that discriminates between
the samples drawn from the target and the pro-
posal. We give extensive theoretical and empir-
ical justification; in particular, we show that an
annealed version of our method significantly out-
performs both AIS and reverse AIS as proposed
by Burda et al. (2015), which has been the state-
of-the-art for likelihood evaluation in deep gen-
erative models.

1 INTRODUCTION

Probabilistic graphical models, such as Markov random
fields, Bayesian networks, and deep generative models pro-
vide a powerful set of tools for machine learning (e.g., Lau-
ritzen, 1996, Salakhutdinov and Hinton, 2009). Bayesian
analysis utilizing graphical models often involves calcu-
lating the partition function, i.e. the normalizing constant
of the distribution. Unfortunately, such computations are
prohibitive (often intractable) for general loopy graphical

∗Both authors contributed equally.

models. As such, efficient approximations via variational
inference and Monte Carlo methods are of great interest.

Importance sampling (IS) and its variants, such as annealed
importance sampling (AIS) (Neal, 2001), are probably the
most widely used Monte Carlo methods for estimating the
partition function. IS works by drawing samples from a
tractable proposal (or reference) distribution p0(x), and es-
timates the target partition function Z =

∫
f(x) by averag-

ing the importance weights f(x)/p0(x) across the samples.
Unfortunately, the IS estimate often has very high variance
if the choice of proposal distribution is very different from
the target, especially when the proposal is more peaked or
has thinner tails than the target. In addition, in practice
IS often underestimates the partition function due to the
heavy-tailed nature of the importance weights, leading to
overly optimistic likelihood estimates when used for model
evaluation (e.g., Burda et al., 2015).

On the other hand, the weighted harmonic mean method
(Gelfand and Dey, 1994), which we refer to as a reverse
importance sampling (RIS), works in an opposite way from
IS. It draws samples from the target distribution p(x) =
f(x)/Z, and estimates Z by taking the harmonic mean of
the importance weights f(x)/p0(x) across these samples.
In contrast to IS, reverse IS tends to overestimate the par-
tition function, and gives a high variance when the target
distribution is more peaked than the proposal. A reverse
version of annealed importance sampling was recently pro-
posed by Burda et al. (2015) to give conservative estimates
of test likelihood, in contrast to standard AIS that (like IS)
tends to overestimate the likelihood.

Given the opposing properties of IS and RIS, a natural way
to improve both is to take the average, or weighted average,
of their estimates, in the hope of canceling their individual
biases. Unfortunately, the magnitude of bias in IS and RIS
can be extremely imbalanced, and it is difficult to decide
how much weight each should be given. What is worse,
the average would inherent the largest variance between IS
and RIS, making even more stringent requirements on the
proposal, which should then be neither more peaked nor
more flat than the target.

514

In this work, we study a more efficient and straightforward
method for estimating the partition function based on sam-
ples from both the target distribution and the proposal dis-
tribution. The idea is to re-frame estimation of Z as a sim-
ple classification problem that discriminates between the
two samples from the target p(x) and proposal p0(x), re-
spectively. Our method does not have the inherent biases
observed in IS and RIS, and is much more robust in that it
always has finite variance whenever the proposal and tar-
get distributions overlap, a far more mild condition that is
easy to satisfy in practice. We provide extensive theoretical
and empirical justification for our method. In addition, we
show that an annealed importance sampling (AIS) counter-
part of our method significantly outperforms AIS, reverse
AIS, and their average, which are currently state-of-the-art
for model evaluation in deep generative models (Salakhut-
dinov and Murray, 2008, Burda et al., 2015).

Outline The remainder of the paper is organized as fol-
lows. We discuss related work in Section 2 and introduce
background on IS and RIS in Section 3. Section 4 discusses
the proposed method followed by an annealed extension in
Section 5. We give experiments in Section 6. The conclu-
sion is provided in Section 7.

2 RELATED WORK

The same idea of estimating normalization constants by
discriminating between different samples was first pro-
posed independently by Geyer (1991, 1994), although it
seems not to be well known in the machine learning com-
munity;1 our work appears to be the first to apply the idea
in graphical models, and importantly, propose the annealed
version that we show is effective on challenging deep gen-
erative models. Another interesting connection can be
drawn with a recent noise-matching algorithm (Gutmann
and Hyvärinen, 2010) for learning graphical models with
intractable partition functions, which is based on a similar
idea of discriminating between the observed data (from a
unknown target distribution) and some artificially generated
noise (from the proposal distribution). In fact, our algo-
rithm can be treated as a special noise matching algorithm
on a graphical model with only a single unknown parame-
ter Z. This connection is surprising in part because a naı̈ve
likelihood-based or Bayesian inference procedure treating
Z as an unknown parameter fails to work, as discussed in
Wasserman (Example 11.10, page 188, 2011) and a thread
of related internet discussion (e.g., Wasserman, 2012, and
links therein). An intriguing open question is to under-
stand if there exists a principled procedure that turns any
partition function free learning algorithm, such as Hinton
(2002), Lyu (2011), Asuncion et al. (2010), Sohl-Dickstein
et al. (2011), into a corresponding partition function infer-
ence method.

1 This connection was found by the authors after acceptance.

Related to importance sampling, its use in graphical mod-
els almost always require certain variance reduction tech-
niques. Variants of annealed importance sampling based
approaches (e.g., Salakhutdinov and Murray, 2008, Theis
et al., 2011, Burda et al., 2015, Ma et al., 2013) have been
proposed, and are widely used for likelihood evaluation of
deep generative models. Other examples of variance re-
duction methods include adaptive improvement of the pro-
posal (e.g., Cheng and Druzdzel, 2000), and combining
with search based methods (e.g., Gogate, 2009, Gogate and
Dechter, 2012, 2011) or variational methods (e.g., Wexler
and Geiger, 2007). Note that our approach is orthogonal
to these developments, and can be combined with them to
achieve even better results. In fact, many of our experi-
ments are set up to demonstrate the advantages of combin-
ing our method with variational and annealing techniques.

There are also other algorithms that leverage samples from
the target distribution. For example, Chib (1995), Chib and
Jeliazkov (2001) calculate the marginal likelihood from the
output of Gibbs sampling or Metropolis-Hastings. Also
related are other generalizations of importance sampling,
such as bridge sampling and path sampling (Meng and
Wong, 1996, Gelman and Meng, 1998).

3 BACKGROUND

Assume we have a distribution p(x) = f(x)/Z, where
Z =

∫
f(x)dµ(x) is the partition function that we are in-

terested in calculating; here the base measure µ(x) can be
the counting measure for discrete variables, or Lebesgue
for continuous variables. We consider Monte Carlo meth-
ods for estimating Z. Two basic methods are the following:

Importance Sampling (IS) Assume we have a tractable
distribution p0(x) which has been properly normalized,
that is,

∫
p0(x)dµ(x) = 1. We draw samples {x10, . . . , xn0}

from p0(x), and estimate Z by

Ẑis =
1

n

n∑

i=1

f(xi0)

p0(xi0)
.

This is an unbiased estimator of Z, that is, E(Ẑis) = Z,
and its mean squared error is known to be

nE
[
(Ẑis − Z)2

Z2

]
= χ2(p||p0) =

∫
p2

p0
dµ(x)− 1, (1)

where χ2(·||·) represents the chi-square divergence.

Unfortunately, χ2(p||p0) is often impractically large, or
even infinite, especially when p0(x) is more peaked than
p(x). Additionally, despite the theoretical unbiasedness of
Ẑ, it often underestimates Z. This is due to the distribu-
tion of the weights f(x)/p0(x) being heavy-tailed with a
resulting propensity for outliers. Consequently, the results

515

using IS may be more properly viewed as a probabilistic
lower bound rather than an unbiased estimate (e.g., Burda
et al., 2015).

Reverse Importance Sampling (RIS) The weighted
harmonic mean method (Gelfand and Dey, 1994), which
we refer to as a reverse importance sampling method,
works in an opposite way to importance sampling. It draws
samples {x11, . . . , xn1} from the target distribution p(x)
(e.g., via MCMC when exact sampling is difficult for p(x)),
and estimates Z by

Ẑris =

[
1

n

n∑

i=1

p0(x
i
1)

f(xi1)

]−1
.

Note that 1/Ẑris can be viewed as a regular importance
sampling estimate for 1/Z, justifying Ẑris as a reasonable
estimate of Z. Under regularity conditions (Gelfand and
Dey, 1994), the asymptotic MSE of Ẑris (assuming it ex-
ists) is

nE
[
(Ẑris − Z)2

Z2

]
= χ2(p0||p) =

∫
p20
p
dµ(x)− 1.

The χ2-divergence here has the opposite order as that in
(1) for IS, and tends to be large or infinite when p(x) is
more peaked than p0(x). In addition, Ẑris often gives upper
bounds on Z (in contrast to lower bounds by IS), which can
be easily seen by viewing 1/Ẑ is a regular IS estimate for
1/Z. The special case when p0(x) is a uniform distribution
is called the harmonic mean method (Newton and Raftery,
1994), and sometimes the Ogata-Tanemura method (Ogata
and Tanemura, 1985).

The fact that IS and RIS give under- and over-estimates
respectively suggests the use of their average log Ẑavg =

(log Ẑis + log Ẑris)/2 with asymptotic MSE of

nE
[
(Ẑavg − Z)2

Z2

]
=

1

4
(χ2(p||p0) + χ2(p0||p)). (2)

Unfortunately, this is large whenever one of χ2(p||p0) or
χ2(p0||p) is large and thus imposes more stringent con-
straints on po such that (2) is finite, i.e. it can neither be
too peaked nor too flat compared to the target distribution.
This can be significant even for simple distributions as in
the following example.

Example 1. Consider normal distributions p(x) =
N (x; 0, σ2) and p0(x) = N (x; 0, σ2

0). One can show that
var(Ẑis) = +∞ if σ0 ≤ σ/

√
2 (p0 is much more peaked

than p). Conversely, var(Ẑris) = +∞ if σ ≤ σ0/
√
2 (p is

much more peaked than p0). Therefore, their average Zavg
has finite variance only when σ/

√
2 ≤ σ0 ≤

√
2σ.

More advanced combinations of IS and RIS can be ob-
tained by estimating their variances, and taking weighted

averages, or selecting the better one according to their vari-
ance. Unfortunately, the variance estimates themselves are
unreliable, often over- or under-estimated, making these
methods ineffective. We explore and compare several of
these options in our experiments; see Section 6 for details.

4 DISCRIMINANCE SAMPLING

Here we propose a new estimator of Z, termed discrimi-
nance sampling (evoking importance and disciriminative),
based on both {xi1} ∼ p(x) and {xi0} ∼ p0(x) jointly. The
idea is to reframe estimation of Z as a classification prob-
lem between {xi1} and {xi0}. To start, we assign a binary
label yi1 = 1 for each xi1 ∼ p(x), and correspondingly
yi0 = 0 for each xi0 ∼ p0(x). Putting these samples to-
gether we get {xi} = {xi1}∪{xi0} and {yi} = {yi1}∪{yi0}.
In this way, the conditional distribution of yi given xi is

p(yi = 0 | xi) = p0(x
i)

f(xi)/Z + p0(xi)
,

where Z can be treated as an unknown parameter. This
motivates a parameter estimation procedure where we con-
sider a family of conditional probabilities p(y = 1|x; c) =

p0(x)
f(x)/c+p0(x)

, indexed by a parameter c, and estimate c by
maximizing the conditional likelihood:

Ẑdis = argmax
c : c≥0

2n∑

i=1

log
yif(xi)/c+ (1− yi)p0(xi)

f(xi)/c+ p0(xi)
.

Calculating the zero-gradient equation of the objective
function, we see that the optimal c should satisfy the fol-
lowing ratio matching condition:

1

2n

2n∑

i=1

p0(x
i)

f(xi)/c+ p0(xi)
=

1

2
, (3)

that is, the proportion of y = 0 (and y = 1) predicted by the
model should equal 1/2, matching the label proportions in
the data. Because the LHS of (3) is an increasing function
on c, Eq. (3) yields a unique solution unless p(xi)p0(xi) =
0 for all i, that is, when p(x) and p0(x) do not overlap.
In practice, we can solve (3) efficiently using root finding
algorithms such as the fzero function in MATLAB.

Proposition 1. Assume {xi1}ni=1 and {xi0}ni=1 are i.i.d.
samples from p(x) and p0(x), respectively. Let e1 =√
2n(Ẑdis/Z−1) and e2 =

√
2n(log Ẑdis− logZ). Define

γ = E[var(y|x)] = 1

2

∫
p(x)p0(x)

p(x) + p0(x)
dµ(x), (4)

then if γ 6= 0, we have Ẑdis
a.s.→ Z as n → ∞, and e1 and

e2 have a normal distribution N (0, (14 − γ)/γ2).

516

Proof. Apply the standard asymptotic result in DasGupta
(Theorem 17.2, Page 264, 2008); the condition γ 6= 0 guar-
antees (3) has an unique solution as n → ∞. Note that e1
and e2 are asymptotically equivalent because log ε ≈ ε− 1
for ε ≈ 1.

Remarks. (i) Eq (4) above relates the accuracy of Ẑdis with
the variance of the label y given x, which is a measure of
distinguishability between the two samples {xi1} and {xi0}.
Ideally, we want to choose p0 so that it is hard to distin-
guish between {xi1} and {xi0}; when p0 = p, Ẑdis equals
Z exactly.

(ii) The variance of Ẑdis is infinite only if γ = 0, that is,∫
pp0
p+p0

= 0; this is possible only if p(x) and p0(x) do not
overlap, that is, p(x)p0(x) = 0 almost everywhere. Note
that this is a much milder condition compared to that for IS,
RIS and their average, since in practice it is usually easy to
choose a p0(x) that shares some support with p(x).

Example 2. To continue with Example 1, the MSE of Ẑdis

is finite for any σ0 > 0 and σ > 0, making it far more
robust than IS or reverse IS, which have finite MSE only
when σ0 > σ/

√
2 and σ0 <

√
2σ, respectively.

5 ANNEALED DISCRIMINANCE
SAMPLING

One advantage of our method is that it can be naturally ex-
tended to cases when we have more than two distributions,
in which case it is straightforward to frame a corresponding
multinomial classification problem. In this section, we con-
sider an improvement to our method by introducing a set
of auxiliary distributions that serve as intermediate points
between the target and reference distributions. This exten-
sion is analogous to annealed importance sampling (AIS)
(Neal, 2001, Salakhutdinov and Murray, 2008) and reverse
AIS (Burda et al., 2015), but with significantly better per-
formance.

Both AIS and reverse AIS are based on a set of distributions
{pk = fk(x)/Zk : k = 0, . . . ,m} where p0 is the normal-
ized reference distribution (Z0 = 1) and pm(x) = f(x)/Z
is the target distribution; the other distributions serves as
“intermediate points” between p0 and p. A typical choice
of the distributions is fk(x) = f(x)k/mf0(x)

1−k/m,
where k can be interpreted as a temperature parameter that
anneals between p and p0.

Now assume we drawm sets of samples {xik}ni=1 ∼ pk(x),
k = 0, . . . ,m. Similar to Section 4, we assign each xik with
a label yik = k, resulting a conditional likelihood of

p(yi = k|xi) = fk(x
i)/Zk∑m

k=0 fk(x
i)/Zk

.

We then treat {Zk : k = 1, . . .m} as a set of unknown pa-
rameters, and estimate them by performing maximum con-

Algorithm 1 Annealed Discriminace Sampling (Sequential
Binary Version)

Draw xi0 ∼ p0(x). Set wi0 = 1 and Z0 = 1.
for k = 1 to m do

Generate weighted sample {xik, wik}ni=1 by the AIS
update in (8).
update Ẑk = Zk−1r̂k, where r̂k maximizes the
weighted conditional likelihood (9).

end for
Return: Ẑm is an estimate of the partition function Z.

ditional likelihood:

{Ẑk}mk=0= argmax
c>0: c0=Z0

m∑

k=0

n∑

i=1

log
fk(x

i
k)/ck∑m

k=0 fk(x
i
k)/ck

, (5)

where c0 is fixed to its known value (Z0 = 1). Similar to
the binary case, it is easy to show that {Ẑk} forms a con-
sistent estimation of {Zk} (although we are only interested
in Ẑm).

Note that (5) is a convex optimization w.r.t. {log ck}, and
can be solved efficiently. A further simplification of (5)
is to construct and combine a sequence of binary classifi-
cations between the (pk, pk+1) pairs, instead of the joint
multinomial classification. To be specific, we sequentially
estimate the ratio rk+1 = Zk+1/Zk between pk and pk+1

by discriminating between {xik} and {xik+1}:

r̂k+1 = argmax
ck+1>0
ck=1

k+1∑

k′=k

n∑

i=1

log
fk′(x

i
k′)/ck′∑k+1

`=k f`(x
i
k′)/c`

(6)

and estimate Z = Zm by chaining the ratios together:

log Ẑ =

m∑

k=1

log r̂k ≈
m∑

k=1

log rk = logZ. (7)

Interestingly, we find that such sequential binary classifi-
cation works as well as the joint multinomial classifica-
tion in our experiments, possibly because the neighboring
{pk, pk+1} are close to each other and provide more accu-
rate estimates of their ratios.

Practical Implementation In practice, it is expensive to
sample from all pk(x) = fk(x)/Zk at each temperature in-
dependently, especially when the number of temperatures
is large. Instead, we use AIS (Neal, 2001) to sequentially
generate importance weighted samples for each pk(x): we
start with xi0 ∼ p0(x) and set wi0 = 1, and sequentially up-
date the samples using Markov chain transitions and adjust
the weights accordingly:

xik ∼ Tk(· |xik−1), wik = wik−1
fk(x

i
k−1)

fk−1(xik−1)
, (8)

517

Algorithm 2 Annealed Discriminace Sampling (Multino-
mial Version)

1. Use AIS to generate {xik, wik}ni=1 for ∀ 0 ≤ k ≤ m.
2. Estimate Ẑk by maximizing

{Ẑk}mk=0= argmax
c>0: c0=Z0

m∑

k=0

n∑

i=1

w̃ik log
fk(x

i
k)/ck∑m

k=0 fk(x
i
k)/ck

,

where w̃ik = wik/
∑
i w

i
k are the normalized weights.

Return: Ẑm is an estimate of the partition function Z.

for ∀ 1 ≤ k ≤ m, where Tk(·|·) is a Gibbs or Metropolis-
Hastings transition kernel of pk. By the augmented variable
space argument of Neal (2001), we can show the weighted
sample (xik, w

i
k)
n
i=1 follows pk(x) in the sense that

E(wikh(xik)) = const · Ex∼qk(h(x))

for any 0 ≤ k ≤ m and integrable function h(x);
this allows us to estimate the partition functions Zk us-
ing weighted versions of the multinomial (5) or sequen-
tial binary (6) classifications based on the weighted sam-
ples (xik, w

i
k). For example, we can estimate the ratio

rk+1 = Zk+1/Zk between pk+1 and pk by maximizing
a weighted version of the conditional likelihood in (6),

r̂k+1 = argmax
ck+1>0
ck=1

k+1∑

k′=k

n∑

i=1

w̃ik′ log
fk′(x

i
k′)/ck′∑k+1

`=k f`(x
i
k′)/c`

, (9)

where w̃ik = wik/
∑n
i=1 w

i
k are the normalized weights un-

der each temperature k. See Algorithm 1 for the full al-
gorithm of the sequential binary version of our method;
the corresponding multinomial version is shown in Algo-
rithm 2. Note that both Algorithm 1 and 2 can recycle the
samples and weights generated by AIS and can be imple-
mented conveniently based on AIS. Alternatively, we can
also base our estimator on other methods that draw sam-
ples jointly from different temperatures, such as simulated
tempering and parallel tempering (see Liu, 2008, and refer-
ences therein).

6 EXPERIMENTS

We present experimental results on a toy Gaussian exam-
ple, pairwise Markov random fields (10 × 10 grids), and
deep generative models trained on real world data. Our
contributions are threefold: (1) We demonstrate the advan-
tage of our method compared to IS, reverse IS and their
combinations, and show that our method yields signifi-
cantly smaller bias and variance across all our experiments.
(2) We illustrate the benefits of combining deterministic
variational methods and the Monte Carlo based methods
discussed in this paper; we show that Monte Carlo meth-
ods can provide tighter (but “probabilistic”) bounds than

deterministic variational methods, and can be further im-
proved by using variational methods to provide better ref-
erence distributions p0. (3) We test the annealed version of
our algorithm in real-world deep learning models, includ-
ing restricted Boltzmann machines (RBM) and deep Boltz-
mann machines (DBM), and show that it significantly out-
performs the state-of-the-art AIS and reverse AIS methods
(Burda et al., 2015).

Setting We compare our algorithm with IS, RIS and three
different methods that combine IS and RIS in hopes of off-
setting their relative biases:

(1) Naı̈ve Averaging:

log Ẑavg = (log Ẑis + log Ẑris)/2.

Here the average is taken on the log domain; note that av-
eraging in the Z domain, i.e., (Ẑis+ Ẑris)/2 does not make
sense since we almost always have Ẑis � Ẑris, and the
result will be dominated by Ẑris.

(2) Weighted Averaging:

log Ẑw = (v̂−1is log Ẑis + v̂−1ris log Ẑris)/(v̂
−1
is + v̂−1ris),

where v̂is, v̂ris are empirical estimates of var(log Ẑis) and
var(log Ẑris),

v̂is = v̂ar({ f(x
i
0)

p0(xi0)
})/Ẑ2

is,

v̂ris = v̂ar({p0(x
i
1)

f(xi1)
})Ẑ2

ris,

where v̂ar(·) represents the empirical variance estimate.
Note that the weights defined above should minimize the
variance of the combination if the variance estimates are ac-
curate. Unfortunately, variance estimates for the weighted
averaging approach are typically unreliable and have the
same under- / over-estimation problem as IS and RIS, caus-
ing the weighted average to perform poorly.

(3). Weighted Selection:

log Ẑs = [v̂is < v̂ris] log Ẑis + [v̂ris < v̂is] log Ẑris,

where we select the estimator with smaller estimated vari-
ance; here [·] is the indicator function.

Note that IS (resp. RIS) uses only {xi0}ni=1 ∼ p0(x) (resp.
{xi1}ni=1 ∼ p(x)), while our method uses both {xi0} and
{xi}. To make a conservative comparison, we use only
the first half of the samples {xi1}n/2i=1 and {xi0}n/2i=1 in our
method. However, we do not halve the samples when cal-
culating the averages Ẑavg, Ẑw and Ẑs, allowing them to
use exactly twice the information as our method. Despite
these unfavorable conditions, our method still consistently
outperforms IS, RIS and all the averaging based methods.

518

1/4 1/2 1 2 4

−0.2

0

0.2

E
st

im
at

ed
 lo

gZ

σ0
1/4 1/2 1 2 4
0

0.02

0.04

M
S

E
 o

n
lo

gZ

σ0

Ours
IS
Reverse IS
Weighted Selected (IS+RIS)

(a) (b)

Figure 1: Gaussian toy example. The estimated values (a)
and mean square errors (b) on logZ by different methods
(the true value is logZ = 0). IS performs poorly when σ0
is small (p0 is too peaked), while reverse IS is poor when
σ0 is large (p is too peaked). Our method performs much
better and is robust for all values of σ0. The result is aver-
aged over 1000 random trials.

Gaussian Toy Example As in Example 1, we consider
p(x) = N (x; 0, σ2) with fixed σ = 1 and p0(x) =
N (x; 0, σ2

0) with different values of σ0. We are interested
in calculating the normalization constant of p(x), which is
trivially Z = 1 in this case. We use n = 1000 samples
from both the target p(x) and reference p0(x).

Figure 1 reports the bias and MSE on logZ as returned
by our methods, IS, reverse IS, and the weighted selection
log Ẑs (the naı̈ve average log Ẑavg and weighted average
log Ẑw are worse than log Ẑs and not shown in the figure
for clarity). We find that our method significantly outper-
forms all the other algorithms, despite using fewer samples
than the averaging based methods.

The performance of IS and reverse IS in Figure 1(a) is
consistent with the theoretical analysis: IS tends to give
a lower bound, and degenerates quickly when σ0 is small
(p0 is more peaked than p), while reverse IS gives an upper
bound, and degenerates when σ0 is large (p is more peaked
than p0). In this case, it is interesting to see that the perfor-
mances of IS and reverse IS are extremely imbalanced and
anti-correlated (whenever IS performs well, RIS performs
poorly, and vice versa), which explains why weighted se-
lection is better than naı̈ve averaging in this case.

MRF on 10 × 10 Grid We consider Markov random
fields (MRFs) on a 10× 10 grid

p(x) =
1

Z
exp

(∑

ij

θij(xi, xj) +
∑

i

θi(xi)
)
,

where xi ∈ {0, 1}. We generate each θi(k) randomly by
N (0, σ2

s), with fixed σs = 0.1 and each θij(k, l) from
N (0, σ2

p), where σp characterizes the interaction strength
in the MRF. We also explore different choices of reference
distribution p0 for the MRF, including

(1) Uniform distribution as shown in Figure 2(a).

(2) Mean field approximation as shown in Figure 2(b).

(3) Mixture of trees constructed from the reparameteri-
zation obtained from tree reweighted belief propagation
(TRBP) (Wainwright et al., 2005) (Figure 2(c)). The edge
appearance probabilities in TRBP are set by assigning uni-
form weights to a random set of spanning trees.

The samples from p0 are drawn exactly, while those from
p are drawn using Gibbs sampling with 500 burn-in steps.
We use n = 1000 samples from each distribution in all
cases, and average the results over 500 random trials.

From Figure 2, we find our method significantly outper-
forms IS and reverse IS, and all the versions of their com-
binations under all three choices of p0. The determinis-
tic bounds returned by TRBP and MF are shown in Fig-
ure 2(a), and are significantly looser than the sampling
based bounds in these cases (which, however, provides
probabilistic, instead of deterministic bound guarantees as
the variational methods). We note that the proposal pro-
duced by MF is only as good as the uniform proposal. On
the other hand, the p0 produced by a mixture of TRBP trees
gives significantly better results (note that the y-axes are
not on the same scale). This result demonstrates the poten-
tial of combining variational methods and sampling meth-
ods, with carefully designed choices for p0 and estimation
methods (such as our method).

Interestingly, we find the performance of IS and reverse
IS are relatively balanced in the MRF examples, making
the naı̈ve average of IS and reverse IS outperform both the
weighted average and weighted selection. This is in con-
trast to the Gaussian toy example, where IS and reverse
IS are extremely imbalanced. Unfortunately, there is no
general method to tell whether IS and reverse IS will be
balanced or not beforehand.

Deep Generative Models We compare our annealed dis-
criminance sampling (ADS) with the AIS and reverse AIS
estimator (RAISE) as introduced in Burda et al. (2015)
for partition function estimation in deep generative mod-
els, including a restricted Boltzmann machine (RBM) and
a deep Boltzmann machine (DBM). We implement AIS and
RAISE following Algorithm 1 and Algorithm 32 in Burda
et al. (2015), respectively. We then take the samples and
weights generated by AIS and run our sequential binary
ADS in Algorithm 1 and multinomial ADS in Algorithm 2.
In principle, we can also reuse the same samples generated
by AIS to construct a version of a reverse AIS estimator.
Unfortunately, we find this works poorly in practice, and
it seems to be important to follow Algorithm 3 in Burda
et al. (2015) to generate new samples specifically for the

2 Algorithm 3 of Burda et al. (2015) was designed for calculat-
ing the testing likelihood; we adopt it for calculating the partition
function by replacing its conditional kernel T̃ (vtest)

k (·|h′k−1) in
the forward step with the unconditional kernel T̃k(·|x′k−1).

519

0.4 0.6 0.8 1
−10

−5

0

5

10

pairwise strength
0.4 0.6 0.8 1

−5

0

5

pairwise strength
0.4 0.6 0.8 1

−0.5

0

0.5

1

1.5

pairwise strength

0.4 0.6 0.8 1
0

1

2

3

4

5

pairwise strength
0.4 0.6 0.8 1
0

1

2

3

4

5

pairwise strength
0.4 0.6 0.8 1

1

2

3

pairwise strength

Ours
IS
Reverse IS
Average (IS+RIS)
Weighted Avg
Selected (IS+RIS)
Mean Field
TRBP

(a) Uniform proposal (b) Mean field proposal (c) Mixture of TRBP trees

lo
g
Ẑ
−

lo
g
Z

M
SE

on
lo
g
Z

Figure 2: MRFs on a 10 × 10 grid. The three columns represent the results when using different reference distributions
p0, including the uniform distribution (a), mean field approximation (b) and a mixture of trees constructed from TRBP (c).
Our algorithm consistently performs best. Note that the comparison is again in favor of the averaging methods since they
use twice as many samples as our method.

reverse AIS estimates. Note that implemented in this way,
the average of AIS and RAISE uses twice the number of
samples as our method. In addition, we emphasize that the
RAISE as proposed in Algorithm 3 in Burda et al. (2015)
includes both a forward and backward sampling step, re-
quiring twice the computational cost of AIS. In contrast,
our method has roughly the same time complexity as AIS,
because the cost of the discriminance analysis step in our
method, especially the sequential binary version, is negli-
gible compared to the sample generation steps of AIS as
used in Algorithm 1 in Burda et al. (2015).

In both our experiments for RBM and DBM and for all
the annealing-based algorithms, we use 21 ∼ 210 lin-
early spaced intermediate temperatures (or distributions)
and n = 1000 samples (corresponding to 1000 separate
MCMC chains in AIS). The reference distribution p0 is
taken to be the data base rate (DBR) distribution as sug-
gested by Salakhutdinov and Hinton (2009), which is con-
structed based the marginal statistics of the image dataset.
In all cases, we repeat the estimates 10 times and report the
average bias and MSE results.

To obtain the true partition function of both RBM and
DBM, we calculate the average of AIS and RAISE with an
extremely large number (in our case, 100,000) of tempera-
tures, until their estimates coincide to within 0.1 nats, i.e.,

0

100

200

300

Number of Temperatures

lo
g
Ẑ
−

lo
g
Z

21 25 210
0

0.5

1

1.5

2x 10
4

Number of Temperatures

M
S

E
 o

n
lo

g
Z

21 25 210

Ours (binary)
Ours (multi)
AIS
Reverse AIS
Average (AIS+RIS)

Figure 3: Estimates of log-partition function of a restricted
Boltzmann machine trained on MNIST with different num-
bers of intermediate temperatures. While all methods con-
verge to the same value, our method significantly outper-
forms other methods when the intermediate temperatures
are few.

| log Ẑis− log Ẑris| ≤ 0.1. This gives a high confidence es-
timate of the true partition function, since AIS and RAISE
are probabilistic lower and upper bounds, respectively.

We first consider a restricted Boltzmann machine (RBM)
with 500 hidden nodes trained on MNIST using contrastive
divergence with 25 steps. Figure 3 shows the results of
different algorithms. When there are many intermediate

520

−1000

−500

0

500

Number of Temperatures

lo
g
Ẑ
−

lo
g
Z

21 25 210

2

4

6

8

10

12

x 10
5

Number of Temperatures

M
S

E
 o

n
lo

g
Z

21 25 210

Ours
AIS
Reverse AIS
Average (AIS+RIS)

Figure 4: Estimates of log-partition function of a 784-500-
1000 deep Boltzmann machine trained on MNIST with dif-
ferent numbers of intermediate temperatures. While all
methods converge to the same value, our method outper-
forms both AIS and RAISE when the intermediate temper-
atures are few. Our multinomial ADS performs the same as
our binary version, and is omitted in the figure for clarity.

temperatures, all algorithms give accurate estimates. When
there are fewer intermediate temperatures, our ADS is able
to compute significantly more accurate estimates than AIS
and RAISE, or even their average. In addition, we find that
the binary and multinomial versions of our ADS algorithm
work similarly (almost identically) in all our experiments.

We then experiment on a more complex deep Boltzmann
machine, trained with a 784-500-1000 structure on MNIST
closely following the procedure in Salakhutdinov and Hin-
ton (2009): we initially train the first layer RBM for 100
epochs, then the second layer with 200 epochs and then
fine-tune the two layers jointly for 300 epochs. The results
of the different algorithms are shown in Figure 4. Similarly
to the results in the RBM experiment, ADS significantly
outperforms both AIS and RAISE when the number of tem-
peratures is small. In this case, we find that the average of
AIS and RAISE is quite accurate for this DBM model, al-
most as good as ADS. However, our algorithm still gives
significant advantages in practice: again, we use only half
the number of samples that are used by the average of AIS
and RAISE and have only 1/3 of the total computational
cost (because RAISE is twice as expensive as AIS or our
ADS method, as discussed previously).

7 CONCLUSION

In this paper, we introduced discriminance sampling, a
novel and efficient method for estimating log-partition
functions of probabilistic distributions. Using samples
drawn from both the target and proposal distributions, we
formulated the estimation problem into a discriminant anal-
ysis problem that classifies samples into their correspond-
ing distributions. Our approach does not under- / over-
estimate the true values like IS and reverse IS, and places
much less stringent requirements on the proposal distribu-

tions. In addition, we also extend our method to define
annealed discriminance sampling (ADS) and demonstrate
that ADS significantly outperform AIS, reverse AIS, and
performs as well or better than their average, which are
currently state-of-the-art methods for model evaluation in
deep generative models.

Acknowledgement This work is supported in part by VI-
TALITE, which receives support from Army Research Of-
fice (ARO) Multidisciplinary Research Initiative (MURI)
program (Award number W911NF-11-1-0391); NSF grants
IIS-1065618 and IIS-1254071; and by the United States
Air Force under Contract No. FA8750-14-C-0011 under
the DARPA PPAML program.

References
Asuncion, A., Liu, Q., Ihler, A., and Smyth, P. (2010).

Learning with blocks: Composite likelihood and con-
trastive divergence. In AISTATS.

Burda, Y., Grosse, R., and Salakhutdinov, R. (2015). Ac-
curate and conservative estimates of MRF log-likelihood
using reverse annealing. In AISTATS.

Cheng, J. and Druzdzel, M. (2000). AIS-BN: An adaptive
importance sampling algorithm for evidential reasoning
in large Bayesian networks. Journal of Artificial Intelli-
gence Research.

Chib, S. (1995). Marginal likelihood from the Gibbs out-
put. Journal of the American Statistical Association,
90(432):1313–1321.

Chib, S. and Jeliazkov, I. (2001). Marginal likelihood from
the Metropolis–Hastings output. Journal of the Ameri-
can Statistical Association, 96(453):270–281.

DasGupta, A. (2008). Asymptotic theory of statistics and
probability. Springer Science & Business Media.

Gelfand, A. and Dey, D. (1994). Bayesian model choice:
asymptotics and exact calculations. Journal of the Royal
Statistical Society. Series B (Methodological), pages
501–514.

Gelman, A. and Meng, X.-L. (1998). Simulating normaliz-
ing constants: From importance sampling to bridge sam-
pling to path sampling. Statistical science, pages 163–
185.

Geyer, C. (1991). Reweighting monte carlo mixtures.
Technical Report 568, School of Statistics, University of
Minnesota.

Geyer, C. (1994). Estimating normalizing constants and
reweighting mixtures in Markov chain Monte Carlo.
Technical Report 568, School of Statistics, University of
Minnesota.

Gogate, V. (2009). Sampling Algorithms for Probabilistic
Graphical Models with Determinism. PhD thesis, Uni-
versity of California, Irvine.

521

Gogate, V. and Dechter, R. (2011). SampleSearch: Im-
portance sampling in presence of determinism. Artificial
Intelligence, 175(2):694–729.

Gogate, V. and Dechter, R. (2012). Importance sampling-
based estimation over AND/OR search spaces for graph-
ical models. Artificial Intelligence, 184–185(0):38 – 77.

Gutmann, M. and Hyvärinen, A. (2010). Noise-contrastive
estimation: A new estimation principle for unnormalized
statistical models. In ICML.

Hinton, G. (2002). Training products of experts by min-
imizing contrastive divergence. Neural computation,
14(8):1771–1800.

Lauritzen, S. (1996). Graphical models. Oxford University
Press.

Liu, J. (2008). Monte Carlo strategies in scientific comput-
ing. Springer Science & Business Media.

Lyu, S. (2011). Unifying non-maximum likelihood learn-
ing objectives with minimum KL contraction. In NIPS.

Ma, J., Peng, J., Wang, S., and Xu, J. (2013). Estimating the
partition function of graphical models using Langevin
importance sampling. In AISTATS.

Meng, X. and Wong, W. (1996). Simulating ratios of nor-
malizing constants via a simple identity: a theoretical
exploration. Statistica Sinica, 6(4):831–860.

Neal, R. (2001). Annealed importance sampling. Statistics
and Computing, 11(2):125–139.

Newton, M. and Raftery, A. (1994). Approximate Bayesian
inference with the weighted likelihood bootstrap. Jour-
nal of the Royal Statistical Society. Series B (Method-
ological), pages 3–48.

Ogata, Y. and Tanemura, M. (1985). Estimation of interac-
tion potentials of marked spatial point patterns through
the maximum likelihood method. Biometrics, pages
421–433.

Salakhutdinov, R. and Hinton, G. (2009). Deep Boltzmann
machines. In AISTATS.

Salakhutdinov, R. and Murray, I. (2008). On the quantita-
tive analysis of deep belief networks. In ICML.

Sohl-Dickstein, J., Battaglino, P., and DeWeese, M. (2011).
Minimum probability flow learning. In ICML.

Theis, L., Gerwinn, S., Sinz, F., and Bethge, M. (2011). In
all likelihood, deep belief is not enough. The Journal of
Machine Learning Research, 12:3071–3096.

Wainwright, M., Jaakkola, T., and Willsky, A. (2005). A
new class of upper bounds on the log partition function.
Information Theory, IEEE Transactions on, 51(7):2313–
2335.

Wasserman, L. (2011). All of statistics. Springer Science
& Business Media.

Wasserman, L. (2012). The normal-
izing constant paradox. https://
normaldeviate.wordpress.com/2012/10/
05/the-normalizing-constant-paradox/.

Wexler, Y. and Geiger, D. (2007). Importance sampling via
variational optimization. In UAI.

522

A Finite Population Likelihood Ratio Test of the Sharp Null Hypothesis for
Compliers

Wen Wei Loh
Department of Statistics

University of Washington
wloh@u.washington.edu

Thomas S. Richardson
Department of Statistics

University of Washington
thomasr@u.washington.edu

Abstract

In a randomized experiment with noncompli-
ance, scientific interest is often in testing whether
the treatment exposure X has an effect on the fi-
nal outcome Y . We propose a finite-population
significance test of the sharp null hypothesis that
X has no effect on Y , within the principal stra-
tum of Compliers, using a generalized likelihood
ratio test. We present a new algorithm that solves
the corresponding integer programs.

1 INTRODUCTION

Randomized experiments are often employed in order to
determine whether a treatment X has a causal effect on an
outcome Y . For example, individuals may be randomly
assigned to either an active treatment group (X = 1) or to
the placebo or control group (X=0).

This problem may be formulated in terms of potential out-
comes. Denote Y (x = 1) as the outcome that the pa-
tient would have if assigned to the treatment arm, while
Y (x = 0) is the outcome that would arise under placebo.
The absence of an effect of X on Y when the sharp causal
null holds is formalized by Y (x = 1) = Y (x = 0), such
that every individual in the finite population has the same
outcome regardless of the treatment groupX to which they
were assigned [19].

Randomization of treatment implies that X ⊥⊥ {Y (x =
1), Y (x = 0)}. Under the sharp causal null, this then im-
plies X ⊥⊥ Y . Hence testing this latter independence may
thus be seen as a test of the sharp causal null. For the case
of binary outcomes Y , we may use Fisher’s exact test [5],
see for example [16, pg. 308].

A key feature of the potential outcome framework is that
the set of individuals in the population and the values of
their potential outcomes are regarded as fixed. Differences
between results over hypothetical replications arise only

due to different random assignments of this fixed set of in-
dividuals to treatment or control.

However, often we are interested in the effect of a treatment
X that was not randomized. In this paper we consider the
circumstance where, although X is not randomized, there
is another variableZ, called an ‘instrument’ that is random-
ized, and influences X , but does not influence Y directly;
see Figure 1.

H

Z X Y

Figure 1: Graphical Representation of the Instrumental
Variable Model, where H are unobserved confounding
variables.

A common example of this circumstance is a randomized
study with ‘noncompliance’. In this context Z represents
the assigned treatment, while X is the treatment that the
patient actually receives. X and Z may differ owing to
noncompliance.

Randomized experiments with treatment ‘noncompliance’
arise in many situations. For example, in a randomized psy-
chology experiment, whether or not participants adhere to
their assigned treatment depends on their personalities and
the type of manipulation (treatment). Patients in a random-
ized clinical trial may choose not to take their prescribed
treatment, possibly due to side-effects. In studies where a
randomly selected subset of subjects are offered an incen-
tive to avail themselves of a treatment, or ‘encouragement’
studies, the inducement may be sufficient for some but not
for others.

For each of these randomized experiments, every unit now
has a treatment actually received (X) that was not random-
ized, following an assigned treatment (Z) that was random-
ized. We will make the assumption that Z has no (direct)
effect on Y except through X , sometimes termed an ‘ex-
clusion restriction’.

523

In such studies with noncompliance with a binary treat-
ment, Angrist et al. [1] and Imbens and Rubin [8] among
others, propose to find the effect of treatment on the sub-
set of individuals who would conform with the assigned
treatment regardless of the arm to which they are assigned.
Sommer and Zeger [18] describe this subgroup of individ-
uals as ‘Compliers’: individuals who would take the treat-
ment only if assigned to do so and would not if assigned
not to do so. Balke and Pearl [2] used a symbolic linear
program to derive the bounds for counterfactual probabili-
ties, and the average causal effect of X on Y . Rubin [17]
uses randomization-based posterior-predictive p-values to
test a null treatment effect; Imbens and Rosenbaum [7] use
randomization-based inference to obtain valid confidence
intervals for the treatment effect under an additive struc-
tural model even when the instrument is ‘weak’.

In this paper we address the problem of testing the sharp
null hypothesis of no effect of X on Y for ‘Compliers’, the
subpopulation or principal stratum where X(z=0)=0 and
X(z = 1) = 1, where here X(z) indicates the treatment a
patient would receive if (counter to fact) assigned to Z=z.
Under the exclusion restriction, the null hypothesis within
this sub-population that X has no effect on Y is equivalent
to the null hypothesis that Z has no effect of Y . Under
random assignment for the whole population, each individ-
ual in the Complier subpopulation has the same probabil-
ity of being assigned to treatment. Thus we could use the
randomization distribution of the outcomes for Compliers
under the null hypothesis to carry out a significance test.

However, we face the obvious difficulty that membership
in the Complier subpopulation generally cannot be deter-
mined from the observed data alone. Although we know
that Compliers will have Z=X , this condition is necessary
but not sufficient. For example, in the Z = 1 arm individ-
uals with X = 1 may be either Compliers or ‘Always Tak-
ers’, where the latter subgroup are individuals who would
always take the active treatment even if (counter to fact)
they had been assigned to the placebo group (Z=0). Con-
versely, an individual withZ=X=0 may be either a Com-
plier or someone who refuses to take treatment regardless
of their assigned group, in other words a ‘Never Taker’.

If somehow we were told which individuals in the popula-
tion were Compliers, then we could simply test the sharp
null hypothesis by performing a significance test, such as
Fisher’s exact test, on the (X,Y) sub-table, or equivalently
the (Z, Y) subtable, for Compliers. One may circumvent
the problem of not knowing who the Compliers are by just
considering all logically possible values for the number of
Compliers in any given (Z,X, Y) stratum that may contain
them (in which Z =X), and then carrying out the signif-
icance test for the corresponding (X,Y) subtable for the
Compliers. Taking the maximum over all the resulting p-
values would then give a valid p-value for the null hypoth-
esis.

There are, however, two concerns with such an approach.
The first is that such a procedure will have no or very low
statistical power to reject the null hypothesis, since it is log-
ically possible (though extremely unlikely) that there are
no Compliers in a given stratum (in which Z = X). The
second is that such an approach ignores the information
provided by strata that do not contain Compliers, in which
Z 6=X .

We will assume that there are no patients who consistently
do the opposite of their assignment, sometimes called ‘De-
fiers’ [3], so for all individuals:

X(z=0) ≤ X(z=1). (1)

It follows from this assumption that all individuals in the
(Z = 1, X = 0) stratum are Never Takers. Under random
assignment of treatment (Z), the proportion of Never Tak-
ers in the Z = 1 arm should be approximately the same as
in the Z = 0 arm. This information then reduces the range
of probable values (under the randomization distribution)
for the number of Compliers in the (Z=X=0) stratum.

Loh and Richardson [10], following [11], use a pre-
specified significance level γ to construct a confidence set
of values for the number of Compliers in a given (Z,X)
stratum. Only values of the number of Compliers that do
not indicate large imbalance between the Z = 1 and Z = 0
arms, under the randomization distribution, are used to
carry out Fisher’s exact test in the implied (X,Y) table for
Compliers. Taking the maximum over these p-values and
adding γ then provides a valid but conservative p-value.

However, the procedure in [10] requires a pre-determined
(non-zero) value of γ to eliminate ‘unlikely’ values for the
number of Compliers from consideration when controlling
the Type I error rate in a hypothesis test. The resulting p-
value will hence always be greater than or equal to γ. This
is problematic if, as in a significance test, we wish to in-
terpret the p-value as measuring the strength of evidence
against the null hypothesis.

In this paper we consider an alternative approach whereby
we compare the ratio of the largest probability for the ob-
served data assuming that the sharp null hypothesis holds
among Compliers, with the largest probability in the case
where we allow a causal effect among Compliers. Such a
generalized likelihood ratio (GLR) criterion (see for exam-
ple [15]) lets us evaluate whether the alternative hypothesis
is a significantly better explanation for the observed dataset
than the null hypothesis, even when the number of Compli-
ers is unknown.

For a given number of Compliers, the relative frequency
with which, over hypothetical replications under the null
hypothesis, we would obtain a value of the GLR that is as
small or smaller than that which we observed, would then
be a p-value. Since this relative frequency will depend on
the number of Compliers, we maximize the p-value over

524

the number of Compliers. This results in a valid p-value
that is suitable to be used in a significance test since it can
be arbitrarily close to zero (it does not require specifica-
tion of some γ). Furthermore, the resulting test has power
against some alternatives in which there is a non-zero aver-
age causal effect among Compliers.

The remainder of the paper is organized as follows. Section
2 formalizes the potential outcome framework and sets up
the motivating examples. The steps to find the maximum
likelihood when the null hypothesis holds, and in general,
are detailed in Section 3. Section 4 presents the generalized
likelihood ratio (GLR) and describes how to find a valid
frequentist p-value. The results from applying the proce-
dure to the motivating examples are shown in Section 5.
Finally, in Section 6 we briefly describe the extension to
include Always Takers.

2 POTENTIAL OUTCOME
FRAMEWORK

We now formalize the foregoing development. Recall the
following:

• Z is the randomized treatment assignment, where 1 in-
dicates assignment to drug;

• X is the treatment exposure subsequent to assignment,
where 1 indicates drug received;

• Y is the final response, where 1 indicates a desirable out-
come, such as survival.

The potential outcome Xzi is the treatment X a patient
would be exposed to if assigned z = i. Using these po-
tential outcomes we may define four generic compliance
‘types’ tX listed in Table 1. We denote the set of such
types by DX .

The potential outcomes are linked to the observed out-
comes by the consistency axiom [14], which requires that
Z = z implies X = Xz .

Table 1: Compliance Types (tX) based on Potential Out-
comes Xz , [8].

Xz0 Xz1 Compliance Type tX
0 0 NT Never Taker
1 0 DE Defier
0 1 CO Complier
1 1 AT Always Taker

As stated above in (1) we will assume that there are no
Defiers. We will also focus on the case where there are no
Always Takers, so:

Z = 0 ⇒ X = 0. (2)

This assumption will hold in studies where individuals not
assigned to treatment are unable to obtain the active treat-

ment outside of the trial.

2.1 EXCLUSION RESTRICTION

The potential outcome for a given individual Yxjzi is the
subject’s response Y under exposure to treatment x = j,
and treatment assignment z = i. Without further assump-
tions there are 16 = 22

2

possible sets of values for the
variables (Yx0z0 , Yx1z0 , Yx0z1 , Yx1z1). However, we will
assume that there is no (individual-level) direct effect of
Z on Y relative X , so that for j, i, i′ ∈ {0, 1}, we have:

Yxjzi = Yxjzi′ ≡ Yxj . (3)

Assumption (3) is guaranteed to hold under double-blind
placebo-controlled trials in which the active treatment is
without side-effects and unavailable to patients in the con-
trol arm. The response type tY then simplifies to just four
types, with DY as the set of such types, shown in Table 2.

The potential outcomes for Y are again linked to the ob-
served outcomes via the consistency axiom, so that if X =
x then Y = Yx.

Table 2: Response Types (tY) under Exclusion Restriction
(3), [6].

Yx0· Yx1· Response Type tY
0 0 NR Never Recover
1 0 HU Hurt
0 1 HE Helped
1 1 AR Always Recover

2.2 RANDOMIZATION ASSUMPTION

We make the following assumption:

Z ⊥⊥ {Xz0 , Xz1 , Yx0
, Yx1
} (4)

The assumption states that the distribution of compliance
and response types (tX , tY) is the same in both the z = 1
and z=0 arms; in other words, that Z is (jointly) indepen-
dent of the potential outcomes. This will hold whenever
treatment assignment Z is physically randomized.

2.3 THE INSTRUMENTAL VARIABLE (IV)
MODEL

The model defined by (3) and (4) is known as the In-
strumental Variable (IV) model (see for example [1]). A
graph corresponding to the IV model given by (3) and (4)
is shown in Figure 1. The exclusion restriction (3) corre-
sponds to the absence of a Z → Y edge while the random-
ization assumption (4) is indicated by the absence of edges
directed into Z.

525

2.4 AVERAGE CAUSAL EFFECT OF X ON Y

The average causal effect (ACE) of treatment exposure X
on outcome Y is defined as:

ACE(X→Y) ≡ E[Yx1−Yx0]. (5)

The ACE for the sub-population of Compliers is:

ACECO(X→Y) ≡ E[Yx1−Yx0 | tX = CO]. (6)

Since for CompliersXz=z, it follows that YX=z ≡ YXz =
Yz so that

ACECO(X→Y)= ITTCO ≡ E[Yz1−Yz0 | tX=CO], (7)

or in words, the Average Causal Effect ofX on Y for Com-
pliers is equal to the Intent-to-Treat effect of Z on Y for
Compliers (ITTCO).

Under the assumption (1) that there are no Defiers, the
global null hypothesis ACE(X → Y) = 0 holds if and
only if all the principal stratum-specific null hypotheses
ACEtX (X → Y) = 0 for tX ∈ {NT,CO,AT} jointly
hold. Evidence against the (narrower) null hypothesis that
ACECO(X → Y) = 0 hence implies evidence against the
global null hypothesis ACE(X→Y)=0 as well.

By definition Never Takers and Always Takers always have
the same observed values of X=0 and X=1 respectively
(regardless of the Z arm they are assigned to). Conse-
quently without further experimentation (to change compli-
ance for these individuals), there is no test for the average
causal effect of X on Y in either of these principal strata.
Thus assuming (1) the only sub-population for which we
may observe evidence that ACEtX (X → Y) 6= 0 are the
Compliers (CO).1

Furthermore, with the added assumption that there are no
Always Takers, the ‘treated’ sub-population are simply the
Compliers, such that the test of ACECO(X→Y)=0 is the
same test for the effect of treatment on the treated, E[Yx1

−
Yx0 |X=1]=0.

2.5 MOTIVATING EXAMPLES

We consider two examples of randomized experiments with
noncompliance. The first dataset is from a psychology ex-
periment where individuals were randomly assigned to one
of two groups (Table 3). The treatment group was offered
a small cup of pop soda (Z = 1), while the placebo group
was offered a small cup of water (Z=0). Compliance was
whether the individual consumed the offered soda (X=1)
or not (X = 0). Individuals who were not offered soda in
the control group (Z=0) had no access to soda, as this was
a closed study. There are thus two structural zeros, since

1This is why, even though our procedure is a test of the global
null, we describe it as a test of the sharp null for Compliers.

Z = 0 implies X = 0. The response was a binary variable
of whether the subject disposed of the cup after the session
(Y = 1) or left the cup on the table (Y = 0). If we were to
test the null hypothesis of Z ⊥⊥ Y with Fisher’s Exact Test
for the corresponding 2×2 table, we would get a p-value
of 0.0085. However, if we disregarded the 30 individuals
in the (Z = 1, X = 0) stratum and just tested Z ⊥⊥ Y
among the (Z = X) stratum, we would get a p-value of
0.0546. Finally, Fisher’s Exact Test for the null hypothesis
that X ⊥⊥ Y gives a p-value of 0.2157.

Table 3: Psychology Data

z x y count z x y count
0 0 0 53 1 0 0 13
0 0 1 23 1 0 1 17
0 1 0 0 1 1 0 24
0 1 1 0 1 1 1 23

The second dataset is from a double-blind placebo-
controlled randomized trial of Cholestyramine [4]. Sub-
jects were randomly assigned to one of two arms: sub-
jects in the treatment arm were prescribed Cholestyramine
(Z = 1), and those in the other arm were given a placebo
(Z = 0). Compliance was a continuous measure track-
ing the quantity of prescribed dosage consumed, over sev-
eral years of treatment during the trial. The response was
the average post-treatment cholesterol level, and also a
continuous variable. Both continuous measures were di-
chotomized in [13], and the resulting counts are shown in
Table 4. There are also two structural zeros in this dataset,
since subjects who are not assigned treatment in the con-
trol arm (Z = 0) could not obtain the experimental drug
Cholestyramine.

Table 4: Cholestyramine/Lipid Data

z x y count z x y count
0 0 0 158 1 0 0 52
0 0 1 14 1 0 1 12
0 1 0 0 1 1 0 23
0 1 1 0 1 1 1 78

For both studies in terms of the compliance types, there
are no Defiers and no Always Takers, and both (1) and (2)
hold. Furthermore, since both studies were double-blind
randomized control trials, it may be safely assumed that
Z has no effect on Y other than through X , so that the
exclusion restriction (3) holds. Thus in this case, there
are four response types tY , but only two compliance types
tX , which gives us eight combinations for (tX , tY) ∈
{NT,CO}×{HE,HU,AR,NR}. We will consider this
simpler case during our main development, though the ap-
proach extends to the more general case in which there are
also Always Takers.

526

3 MAXIMIZING THE LIKELIHOOD
UNDER RANDOMIZATION

We first introduce the notation. Let nykxjzi be the observ-
able count of the number of individuals in the finite popu-
lation who are assigned to treatment z = i, with exposure
x = j and outcome y = k. We denote marginal tables
similarly, for example nyk and nzi .

Let ntXtY ,zi be the number of individuals in the finite pop-
ulation of compliance type tX and response type tY , who
are assigned to treatment z = i. Similarly, let ntXykzi be
the number of individuals of compliance type tX who are
observed to have outcome y = k in the z = i arm, and
ntXyk ≡ntXykz0 + ntXykz1 be the total number of individuals in
the finite population of compliance type tX with observed
outcome y = k. It should be noted that the counts ntXtY ,zi ,
ntXykzi and ntXyk are not all point-identified since they may
not be directly observable from the data.

Our interest lies in testing the individual level (or ‘sharp’)
causal null hypothesis that there is no effect of X on Y
amongst Compliers:

H0 : Yx0
= Yx1

. (8)

Under the sharp null hypothesis (8), within the Complier
sub-population, each individual would have the same ob-
served outcome Y regardless of whether they took the treat-
ment (X=Z=1) or did not do so (X=Z=0). Note that
if the individual level causal null hypothesis (8) holds, then
there is a zero average causal effect of X on Y for the sub-
population of Compliers (CO) and ACECO(X → Y) = 0.

Thus under the null (8), the number of Compliers with ob-
served responses y = 0 and y = 1 are just the number of
Compliers of types Never Recover (NR) and Always Re-
cover (AR) respectively:

nCOy0 =
H0

nCONR≡nCONR,z0 + nCONR,z1 ,

nCOy1 =
H0

nCOAR≡nCOAR,z0 + nCOAR,z1 .

If the number of Compliers assigned to z=1 vs. z=0 were
pre-specified in advance by the experimental design then,
over hypothetical replications, the margins of the 2×2 sub-
table for Compliers containing the four counts nCOtY ,zi for
tY ∈ {NR,AR}, i ∈ {0, 1} would be fixed. The resulting
distribution for one of the cells, for example nCOAR,z1 , would
be a hypergeometric distribution under the null hypothesis.

However, since we have no way to ensure a specific number
of Compliers are assigned to treatment (or control) this may
vary over hypothetical replications, hence none of the four
counts nCOtY ,zi in the subtable for Compliers will follow a
hypergeometric distribution. Further these counts are not
directly observable from the data.

3.1 NUISANCE PARAMETERS

Denote ψNTk as the total number of Never Takers with ob-
served outcome y= k, such that the bivariate parameter ψ
is:

ψ≡
(
ψNT0 ≡nNTy0 , ψNT1 ≡nNTy1

)
.

Figure 2 describes the sum relationships between the ob-
served dataset {nykxjzi} and counts ntXtY ,zi , n

tX
ykzi

and ntXyk
under the null (8).

The counts nCONR,z1 and nCOAR,z1 in the treatment arm (z =
1) are directly observable from the data as ny0x1z1 and
ny1x1z1 respectively. However, the presence of Never
Takers in the finite population prevents us from point-
identifying nCONR,z0 and nCOAR,z0 in the placebo arm (z=0).

The unknown number of Never Takers ψ ≡ (ψNT0 , ψNT1)
may thus be regarded as ‘nuisance parameters’, since if we
knew these quantities, we could simply determine the un-
observable counts for the Never Takers in the z0 arm:

nNTy0,z0≡ψNT0 − nNTy0,z1 = ψNT0 − ny0x0z1 ,

nNTy1,z0≡ψNT1 − nNTy1,z1 = ψNT1 − ny1x0z1 .

This in turn tells us what the exact values of nCONR,z0 and
nCOAR,z0 are, since nCONR,z0 and nNTy0,z0 add up to the observ-
able quantity ny0x0z0 , and similarly, nCOAR,z0 and nNTy1,z0 add
up to ny1x0z0 .

Since ψNT0 and ψNT1 are bounded by the observable quan-
tities in the data {nykxjzi}, the space of possible values for
the nuisance parameter ψ is the Cartesian product of the
respective one-dimensional ranges for ψ0 and ψ1:

ψNT0 ∈ [ny0x0z1 , ny0x0z1 + ny0x0z0] = Ψ0,

ψNT1 ∈ [ny1x0z1 , ny1x0z1 + ny1x0z0] = Ψ1,

Ψ = Ψ0 ×Ψ1. (9)

3.2 MAXIMIZING THE HYPERGEOMETRIC
PROBABILITY IN A 2×2 TABLE

Before analyzing the likelihood in our specific problem, we
review the following related result: Suppose an urn con-
tains N balls that are either red or green. N − k balls are
drawn from the urn, of which b balls are red. What is the
most likely number of red balls x remaining in the urn, or
equivalently, the most likely total number of red balls b+x
in the urn initially?

Table 5: 2×2 Table With Unknown Column Totals

Red Green Row
Not drawn x k − x k

Drawn b (N − k)− b N − k
Column b+ x N − (b+ x) N

527

ny0x0z0 ny0z0 nz0 ny1z0 ny1x0z0

nNTy0z0 nCONR,z0 nCOAR,z0 nNTy1z0

nNTy0 =ψNT0 nCONR nCOAR nNTy1 =ψNT1

nNTy0z1 nCONR,z1 nCOAR,z1 nNTy1z1

ny0x0z1 ny0x1z1 ny0z1 nz1 ny1z1 ny1x1z1 ny1x0z1

Figure 2: Sum Relationships between the Observed
Dataset {nykxjzi} and Possibly Unobserved Counts
ntXtY ,zi , n

tX
ykzi

, ntXyk , Assuming H0 (8); See Table 6.

ny0x0z0 ny0z0 nz0 ny1z0 ny1x0z0

nNTy0z0 nCONR,z0 nCOHE,z0 nCOHU,z0 nCOAR,z0 nNTy1z0

nNTy0 =ψNT0 nCONR nCOHE=τHE nCOHU =τHU nCOAR nNTy1 =ψNT1

nNTy0z1 nCONR,z1 nCOHU,z1 nCOHE,z1 nCOAR,z1 nNTy1z1

ny0x0z1 ny0x1z1 ny0z1 nz1 ny1z1 ny1x1z1 ny1x0z1

Figure 3: Sum Relationships between the Observed
Dataset {nykxjzi} and Possibly Unobserved Counts
ntXtY ,zi , n

tX
ykzi

, ntXyk , Without Assuming H0 (8); See Ta-
ble 7.

We would thus like to maximize the hypergeometric prob-
ability corresponding to Table 5 with respect to x:

Pr(x |(k, b,N)) =

(
b+ x

x

)(
N − (b+ x)

k − x

)
/

(
N

k

)
.

When b = 0, the most likely value of x would just be 0 as
well. So if all N −k balls drawn were green, then the most
likely number of red balls in the urn is 0.

Theorem 1. In a 2×2 table where the row totals (k,N−k)
and the counts in one row (b, (N − k) − b) are fixed, the
most likely value of x ∈ [0, k] under the randomization
assumption is:

x̂=arg max
x∈[0,k]

{
x<(k+1)

b

N−k

}
=

⌊⌊
(k+1)

b

N−k

⌋⌋
,

where the ‘basement’ function bbacc is defined as:

bbacc = max{0, dae − 1}.

Equivalently,

b+ x̂ =

⌊
b N
N−k

⌋
if bN+1

N−k ≤
⌈
b N
N−k

⌉
,

⌈
b N
N−k

⌉
otherwise.

The proof for Theorem 1 is given in the supplementary ma-
terial.

3.3 MAXIMUM LIKELIHOOD UNDER THE
NULL

For some given value of the nuisance parameters ψ = u,
the counts ntXtY ,zi , n

tX
ykzi

and ntXyk are all point-identified
from the observed dataset {nykxjzi}. We may hence de-
scribe the exact counts in a 2 × 4 full contingency table
such as Table 6.

When we fix the value ofψ at the value u, the total number
of Never Takers with observed outcomes y = 0 and y = 1
(uNT0 and uNT1 respectively), as well as the total number

of Compliers with observed responses y = 0 and y = 1
(ny0 −uNT0 and ny1 −uNT1 respectively) are fixed in the
population, and would not change under H0 as we vary
over all possible assignments of individuals to z = 0 and
z=1.

Given the fixed column and row totals in Table 6 over re-
peated samplings, the randomization distribution under the
null hypothesis (8) for the subjects assigned to the z = 1
arm is thus the multiple hypergeometric distribution [9,
Chapter 39]:

Pr({nykxjzi} | ψ = u, H0)

=

(
uNT0

ny0x0z1

)(
uNT1

ny1x0z1

)(
ny0−u

NT
0

ny0x1z1

)(
ny1−u

NT
1

ny1x1z1

)
(
N
nz0

) (10)

Note that the sharp null hypothesis for Compliers (8) hold-
ing places no restriction on the range of values for the nui-
sance parameter ψ. We shall thus consider the value of the
nuisance parameter that lends the strongest support under
H0 to the observed dataset {nykxjzi}, by finding the maxi-
mum likelihood with respect to ψ:

qH0({nykxjzi}) = max
ψ ∈ Ψ

Pr({nykxjzi} | ψ, H0). (11)

An exhaustive search over the two-dimensional discrete
grid of the parameter space Ψ would require calculating
|Ψ| = (ny0x0z0 + 1) × (ny1x0z0 + 1) different hypergeo-
metric probabilities. 2

Instead, we partition Table 6 into two variation-
independent 2×2 subtables: one for the Never Takers and
Compliers with observed y = 0 outcomes (types (NT, y0)
and (CO,NR) respectively), and another for the Compli-
ers and Never Takers with observed y = 1 outcomes (types
(CO,AR) and (NT, y1) respectively). The joint probabil-
ity (10) then factorizes into the corresponding functions of
ψNT0 and ψNT1 below:

2For example in the Lipid data, the search space would be of
size (158 + 1)× (14 + 1) = 2, 385.

528

Pr({nykxjzi} | ψ, H0) =

(
ny0

ny0x0z0

)(
ny1

ny1x0z0

)
(
N
nz0

)

×g0(ψNT0 |{nykxjzi})×g1(ψNT1 |{nykxjzi}); (12)

g0(ψNT0 |{nykxjzi}) =

(
ψNT0

ny0x0z1

)(
ny0−ψ

NT
0

ny0x1z1

)
(

ny0
ny0x0z0

) (13)

g1(ψNT1 |{nykxjzi}) =

(
ψNT1

ny1x0z1

)(
ny1−ψ

NT
1

ny1x1z1

)
(

ny1
ny1x0z0

) . (14)

In both subtables, the cell counts in the z = 1 arm are
fixed, while the row totals for the z = 0 arm are ny0x0z0

and ny1x0z0 respectively. We may then apply Theorem 1
directly to each subtable to find the following values of
ψNT0 and ψNT1 that maximise the respective hypergeomet-
ric probabilities (13) and (14).

ψ̂NT0 =

⌊
ny0ny0x0z1
ny0−ny0x0z0

⌋
if (ny0+1)ny0x0z1

ny0−ny0x0z0
≤
⌈
ny0ny0x0z1
ny0−ny0x0z0

⌉
,

⌈
ny0ny0x0z1
ny0−ny0x0z0

⌉
otherwise;

ψ̂NT1 =

⌊
ny1ny1x0z1
ny1−ny1x0z0

⌋
if (ny1+1)ny1x0z1

ny1−ny1x0z0
≤
⌈
ny1ny1x0z1
ny1−ny1x0z0

⌉
,

⌈
ny1ny1x0z1
ny1−ny1x0z0

⌉
otherwise.

The largest value of the probability of the observed dataset
under the null (11) is then:

qH0({nykxjzi}) = Pr({nykxjzi} | (ψ̂NT0 , ψ̂NT1), H0).

3.4 MAXIMUM LIKELIHOOD UNDER THE
ALTERNATIVE

When the null hypothesis does not hold, there may be in-
dividuals in the Complier sub-population whose treatment
exposure X = j has an effect on their observed outcome
Y = k. Compliers with observed responses y = 0 are no
longer limited to being only of response type Never Re-
cover (NR): they may also be of types Helped (in the z=0
arm) or Hurt (in the z= 1 arm). Similarly, Compliers with
observed responses y = 1 may also be one of three re-
sponse types: Always Recover (AR), Helped (in the z= 1
arm) or Hurt (in the z=0 arm).

Denote by τ tYi (ψ) the number of Compliers in the finite
population with response type tY assigned to treatment z=
i, for some fixed value of ψ. For example, τHE0 (ψ) is the
number of Compliers of type Helped in the z=0 arm. The
parameter vector τ (ψ) is then:

τ (ψ)≡
(
τHE0 (ψ)≡nCOHE,z0(ψ), τHU0 (ψ)≡nCOHU,z0(ψ),

τHE1 ≡nCOHE,z1 , τHU1 ≡nCOHU,z1
)
.

The sum relationships between the observed dataset
{nykxjzi} and counts ntXtY ,zi , n

tX
ykzi

and ntXyk may then be
described in Figure 3.

The space of possible values for the parameter τ (ψ) de-
pends on the fixed value of ψ and corresponds to a four-
dimensional discrete grid:

τHE0 (ψ) ∈ [0, ny0x0z0 − (ψNT0 −ny0x0z1)] ≡ THE0 (ψ),

τHU0 (ψ) ∈ [0, ny1x0z0 − (ψNT1 −ny1x0z1)] ≡ THU0 (ψ),

τHE1 ∈ [0, ny1x1z1] ≡ THE1 ,

τHU1 ∈ [0, ny0x1z1] ≡ THU1 ,

T(ψ) = THE0 (ψ)× THU0 (ψ)× THE1 × THU1 . (15)

For some given value of the nuisance parameters ψ =
u ≡

(
uNT0 , uNT1

)
, and the primary parameters τ (u) =

t(u) ≡
(
tHE0 (u), tHU0 (u), tHE1 , tHU1

)
, the counts ntXtY ,zi ,

ntXykzi and ntXyk are all point-identified from the observed
dataset {nykxjzi}. The exact counts may be summarized in
a 2× 6 full contingency table such as Table 7.

Given the fixed column and row totals in Table 7 over re-
peated samplings, the multiple hypergeometric probability
of the subjects assigned to the z = 1 arm, when we no
longer assume H0 to hold, is:

Pr({nykxjzi} | (ψ, τ (ψ)) = (u, t(u))

=
(uNT0
ny0x0z1

)(
tHE0 (u)+tHE1

tHE1
)(
tHU0 (u)+tHU1

tHU1
)(uNT1
ny1x0z1

)

(N
nz0

)

×
(ny0−tHE0 (u)−tHU1 −uNT0

ny0x1z1−tHU1

)(ny1−tHU0 (u)−tHE1 −uNT1

ny1x1z1−tHE1

)
. (16)

The maximum likelihood for the observed data {nykxjzi},
allowing for Compliers who are Helped and Hurt, is then:

qML({nykxjzi})
= max
ψ ∈ Ψ

max
τ (ψ) ∈ T(ψ)

Pr
(
{nykxjzi} | (ψ, τ (ψ))

)
.

Similar to the maximization procedure under the null,
we would like to circumvent an exhaustive search of the
parameter space {Ψ× T(Ψ)} by decomposing the joint
probability (16) into separate objective functions. How-
ever, unlike the full contingency table under H0 in Ta-
ble 6, we cannot simply partition Table 7 into variation-
independent subtables based only on the observed y = 0
and y = 1 outcomes. This is because if there was an effect
of the treatment X on Y , then there is a Complier individ-
ual of type Helped or Hurt who would have had a different
outcome Y had they been assigned to a different level of Z,
and hence received a different exposure level X .

However, when we fix the number of Compliers of types
Helped and Hurt in the z = 1 arm at some value
(τHE1 , τHU1) = (tHE1 , tHU1), all six counts in the z =
1 arm are now point-identified and fixed. Then Ta-
ble 7 may be partitioned into two variation-independent

529

Table 6: Full Contingency Table Under H0 with Cell Counts that are Point-Identified Given a Value of ψ = u.

NT, y0 ≡
NT, (NR/HE)

CO,NR CO,AR
NT, y1 ≡

NT, (AR/HU)
Row

z0 uNT0 −ny0x0z1 ny0x0z0−[uNT0 − ny0x0z1] ny1x0z0−[uNT1 − ny1x0z1] uNT1 − ny1x0z1 nz0

z1 ny0x0z1 ny0x1z1 ny1x1z1 ny1x0z1 nz1

Column uNT0 ny0−uNT0 ny1−uNT1 uNT1 N

Table 7: Full Contingency Table Allowing for Helped and Hurt with Cell Counts that are Point-Identified Given Values of
ψ = u and τ (u) = t(u) ≡

(
tHE0 (u), tHU0 (u), tHE1 , tHU1

)
.

NT, y0 ≡
NT, (NR/HE)

CO,NR CO,HE CO,HU CO,AR
NT, y1 ≡

NT, (AR/HU)
Row

z0 uNT0 −ny0x0z1
ny0x0z0−tHE0 (u)−

[uNT0 −ny0x0z1]
tHE0 (u) tHU0 (u)

ny1x0z0−tHU0 (u)−
[uNT1 −ny1x0z1]

uNT1 −ny1x0z1 nz0

z1 ny0x0z1 ny0x1z1−tHU1 tHE1 tHU1 ny1x1z1−tHE1 ny1x0z1 nz1

uNT0
ny0−tHE0 (u)−
tHU1 −uNT0

tHE0 (u) +
tHE1

tHU0 (u) +
tHU1

ny1−tHU0 (u)−
tHE1 −uNT1

uNT1 N

2× 3 subtables: one for individuals of types (NT, y0),
(CO,NR) and (CO,HE), and another for individuals of
types (CO,HU), (CO,AR) and (NT, y1).

Given a fixed value of (tHE1 , tHU1), the joint probabil-
ity (16) then decomposes into a product of functions of
(ψNT0 , τHE0) and (ψNT1 , τHU0); see (18) and (19) below.
For the given value of (tHE1 , tHU1), the cell counts in the
z=1 arm are fixed in each 2×3 variation-independent sub-
table, while the row totals for the z = 0 arms are ny0x0z0

and ny1x0z0 respectively.

Pr
(
{nykxjzi}

∣∣ψ, τHE0 (ψ), τHU0 (ψ), tHE1 , tHU1

)

=
(ny0+tHE1 −tHU1

ny0x0z0
)(ny1+tHU1 −tHE1

ny1x0z0
)

(N
nz0

)

×h0
(
ψNT0 , τHE0 (ψNT0)

∣∣ tHE1 , tHU1 , {nykxjzi}
)

×h1
(
ψNT1 , τHU0 (ψNT1)

∣∣ tHE1 , tHU1 , {nykxjzi}
)

;
(17)

h0
(
ψNT0 , τHE0 (ψNT0)

∣∣ tHE1 , tHU1 , {nykxjzi}
)

≡

(
ψNT0

ny0x0z1

)(τHE0 (ψNT0)+tHE1
tHE1

)(ny0−τ
HE
0 (ψNT0)−tHU1 −ψNT0
ny0x1z1

−tHU1

)

(
ny0

+tHE1 −tHU1
ny0x0z0

) , (18)

h1
(
ψNT1 , τHU0 (ψNT1)

∣∣ tHE1 , tHU1 , {nykxjzi}
)

≡
(ψNT1
ny1x0z1

)(
τHU0 (ψNT1)+tHU1

tHU1
)(
ny1−τ

HU
0 (ψNT1)−tHE1 −ψNT1

ny1x1z1
−tHE1

)

(ny1+tHU1 −tHE1
ny1x0z0

)
.

(19)

Since the 2×3 subtables are now variation-independent, we

may find the values of:
(
ψ̂NT0 (tHE1 , tHU1), τ̂HE0 (ψ̂NT0 ; tHE1 , tHU1)

)
,

(
ψ̂NT1 (tHE1 , tHU1), τ̂HU0 (ψ̂NT1 ; tHE1 , tHU1)

)

that maximise the respective conditional hypergeometric
probabilities (18) and (19).

For each fixed value of (tHE1 , tHU1), a naïve search over
the discrete parameter space in each induced 2× 3 sub-
table would involve maximizing over

(
ny0x0z0+2

2

)
and(

ny1x0z0+2
2

)
hypergeometric probabilities respectively. 3

Instead, we apply the result from [12], which provides an
algorithm to find the most likely values of the cells in the z0
arms of both subtables, without calculating any hypergeo-
metric probabilities. Finally, we need only maximize over
the parameter spaces for τHE1 and τHU1 , where there are
|THE1 | × |THU1 | = (ny1x1z1 + 1)× (ny0x1z1 + 1) possible
combinations for the point-identified counts in the Z = 1
arm. 4

Allowing Compliers who are Helped and Hurt, the maxi-
mum likelihood for the observed dataset {nykxjzi} is then:

qML({nykxjzi}) =

max
(τHE1 , τHU1)

∈ THE1 × THU1

Pr
(
{nykxjzi}

∣∣∣ ψ̂, τHE0 (ψ̂),

τHU0 (ψ̂), τHE1 , τHU1

)
.

(20)

3For example in the Lipid data, the search spaces would be of
sizes

(
158+2

2

)
= 12,720 and

(
14+2
2

)
= 120 respectively.

4In the Lipid data example, we would need to calculate only
(78 + 1)×(23 + 1)=1896 hypergeometric probabilities.

530

4 GLR AND P-VALUE

A generalized likelihood ratio (GLR) lets us assess the ev-
idence in the observed data both for and against the null
hypothesis (8) respectively, by comparing the best possible
fit of the observed data when H0 holds, against the best fit
without the constraint of H0. The generalized likelihood
ratio for the observed dataset {nykxjzi} is defined as:

G({nykxjzi}) =
qH0({nykxjzi})
qML({nykxjzi})

. (21)

However, the distribution of the test statistic (21) under H0

depends on the chosen values of the column totals in the
full contingency table (Table 6), which in turn correspond
to some value of the nuisance parameter ψ. Under H0 the
value of ψ = u is sufficient to determine the distribution
of (21) since the margin totals in the full contingency table
(Table 6) are now fixed.

We may then enumerate all possible assignments, and con-
solidate each assignment to obtain the associated possibly
observable dataset {ñykxjzi} based on the sum relation-
ships depicted in Figure 2:

ñy0x0z0 = ñNTy0,z0 +ñCONR,z0 ; ñy1x0z0 = ñNTy1,z0 +ñCOAR,z0 ;

ñy0x0z1 = uNT0 −ñNTy0,z0 ; ñy0x1z1 =
(
ny0−uNT0

)
−ñCONR,z0 ;

ñy1x0z1 = uNT1 −ñNTy1,z0 ; ñy1x1z1 =
(
ny1−uNT1

)
−ñCOAR,z0 .

For each of these possibly observable datasets {ñykxjzi},
we then find the corresponding generalized likelihood ratio
G({ñykxjzi}) = qH0({ñykxjzi})/qML({ñykxjzi}). Note
that the parameter space, which we denote as (Ψ̃, T̃(Ψ̃)),
is specific to each dataset {ñykxjzi}, and differs from the
parameter space for the actually observed data (Ψ,T(Ψ)).

Given a fixed value of the nuisance parameter ψ, the cor-
responding ψ-specific p-value is then the total probability
under H0 of all datasets {ñykxjzi} with generalized like-
lihood ratios G({ñykxjzi}) that are at least as extreme as
that for the observed data {nykxjzi}:

pH0({nykxjzi};ψ) =
∑

{ñykxjzi}:
G({ñykxjzi})≤G({nykxjzi})

Pr({ñykxjzi} | ψ, H0).

Since each fixed value ofψ corresponds to a different num-
ber of Compliers and hence a different instance of the null
hypothesis, we may report the maximum among all the ψ-
specific p-values as the p-value from our significance test:

pH0({nykxjzi}) ≡ max
ψ∈Ψ

pH0({nykxjzi};ψ). (22)

The probability of obtaining a value of the test statistic as
extreme as the one observed (21) will never be larger than
pH0({nykxjzi}), irrespective of the number of Compliers
in the population, and is thus a valid frequentist p-value.

5 APPLICATIONS

5.1 PSYCHOLOGY DATA EXAMPLE

For the observed dataset {nykxjzi} in the motivating ex-
ample from Table 3, the largest probability under H0 is
qH0({nykxjzi}) = 1×10−4; the maximum likelihood with-
out the constraint of no Compliers who were Helped or
Hurt in the population is qML({nykxjzi}) = 2.3×10−3.
The generalized likelihood ratio (21) for this dataset is:

G({nykxjzi}) =
qH0 ({nykxjzi})
qML({nykxjzi})

= 0.052.

There were 1296 = (23 + 1)× (53 + 1) possible values of
the nuisance parameter ψ, and the maximum among all the
ψ-specific p-values is:

pH0({nykxjzi})≡ max
ψ∈Ψ

{
pH0({nykxjzi};ψ)

}
=0.0137.

5.2 LIPID DATA EXAMPLE

For the observed dataset {nykxjzi} in the motivating ex-
ample from Table 4, the largest probability under H0 is
qH0({nykxjzi}) = 6× 10−23; the maximum likelihood
without the constraint of no Compliers who were Helped
or Hurt in the population is qML({nykxjzi}) = 0.0019.
The generalized likelihood ratio (21) for this dataset is then:

G({nykxjzi}) =
qH0 ({nykxjzi})
qML({nykxjzi})

= 3×10−20.

There were 2385 = (14 + 1) × (158 + 1) possible values
of the nuisance parameter ψ, and the maximum among all
the ψ-specific p-values is:

pH0({nykxjzi})≡ max
ψ∈Ψ

{
pH0({nykxjzi};ψ)

}
=2×10−21.

In comparison, using a pre-specified value of γ=0.01 gives
a p-value of 0.01+(1×10−21)≈0.01 [10].

6 CONCLUSIONS

We have proposed a finite population significance test of
the sharp null hypothesis for Compliers using the general-
ized likelihood ratio. The resulting p-value may be arbitrar-
ily close to zero and summarizes the strength of evidence
against the sharp null hypothesis for Compliers (8).

While our development has assumed that there are no Al-
ways Takers, the approach extends to the more general
case in which there are also Always Takers. However,
this would increase the dimension of the nuisance param-
eter and hence the size of the nuisance parameter space,
such that finding the generalized likelihood ratio test statis-
tic would be computationally more intensive. For exam-
ple, even when the sharp null hypothesis for Compliers (8)
holds, the number of Compliers in the z= 1 arm

(
nCONR,z1

and nCOAR,z1
)

would no longer be point-identified from the
observed counts ny0x1z1 and ny1x1z1 respectively.

531

References

[1] J D Angrist, G W Imbens, and D B Rubin. Identifi-
cation of causal effects using instrumental variables.
Journal of the American Statistical Association, 91
(434):444–455, 1996.

[2] A Balke and J Pearl. Counterfactual probabilities:
Computational methods, bounds and applications. In
Proceedings of the Tenth International Conference on
Uncertainty in Artificial Intelligence, pages 46–54.
Morgan Kaufmann Publishers Inc., San Francisco,
1994.

[3] D M Chickering and J Pearl. A clinician’s tool for an-
alyzing non-compliance. In Proceedings of the Thir-
teenth National Conference on Artificial Intelligence
- Volume 2, pages 1269–1276. AAAI Press, 1996.

[4] B Efron and D Feldman. Compliance as an explana-
tory variable in clinical trials. Journal of the American
Statistical Association, 86(413):9–17, 1991.

[5] R A Fisher. The design of experiments. Oliver &
Boyd, 1935.

[6] D Heckerman and R Shachter. Decision-theoretic
foundations for causal reasoning. Journal of Artifi-
cial Intelligence Research, 3:405–430, 1995.

[7] G W Imbens and P R Rosenbaum. Robust, accurate
confidence intervals with a weak instrument: quarter
of birth and education. Journal of the Royal Statistical
Society: Series A (Statistics in Society), 168(1):109–
126, 2005.

[8] G W Imbens and D B Rubin. Bayesian inference for
causal effects in randomized experiments with non-
compliance. Ann. Statist., 25(1):305–327, 1997.

[9] N L Johnson and S Kotz. Discrete distributions.
Houghton Mifflin, Boston, 1969.

[10] W W Loh and T S Richardson. A finite population
test of the sharp null hypothesis for compliers. UAI
Workshop on Approaches to Causal Structure Learn-
ing, 15 July, Bellevue, Washington, 2013.

[11] T L Nolen and M G Hudgens. Randomization-
based inference within principal strata. Journal of the
American Statistical Association, 106(494):581–593,
2011.

[12] W Oberhofer and H Kaufmann. Maximum likelihood
estimation of a multivariate hypergeometric distribu-
tion. Sankhya: The Indian Journal of Statistics, Series
B (1960-2002), 49(2):188–191, 1987.

[13] J Pearl. Causality: Models, reasoning, and inference.
Cambridge University Press, Cambridge, second edi-
tion, 2009.

[14] J Pearl. On the consistency rule in causal inference:
Axiom, definition, assumption, or theorem? Epidemi-
ology, 21(6):872, 2010.

[15] M D Perlman and L Wu. The emperor’s new tests.
Statistical Science, 14(4):355–369, 1999.

[16] K J Rothman, S Greenland, and T L Lash. Mod-
ern Epidemiology. Wolters Kluwer Health/Lippincott
Williams & Wilkins, Philadelphia, 2008.

[17] D B Rubin. More powerful randomization-based p-
values in double-blind trials with non-compliance.
Statistics in Medicine, 17(3):371–385, 1998.

[18] A Sommer and S L Zeger. On estimating efficacy
from clinical trials. Statistics in Medicine, 10(1):45–
52, 1991.

[19] J Spława-Neyman. On the application of proba-
bility theory to agricultural experiments. Essay on
principles. Section 9. Statist. Sci., 5(4):465–472,
1990. Translated from the Polish and edited by D M
Dąbrowska and T P Speed.

532

Structure Learning Constrained by Node-Specific Degree Distribution

 Jianzhu Ma
1
, Qingming Tang

1
, Sheng Wang, Feng Zhao, Jinbo Xu

 Toyota Technological Institute at Chicago

 Chicago, IL - 60637

 {majianzhu, qmtang, wangsheng, fzhao, j3xu}@ttic.edu

Abstract

We consider the problem of learning the structure
of a Markov Random Field (MRF) when a
node-specific degree distribution is provided. The
problem setting is inspired by protein contact map
(i.e., graph) prediction in which the contact
number (i.e., degree) of an individual residue (i.e.,
node) can be predicted without knowing the
contact graph. We formulate this problem using
maximum pseudo-likelihood plus a node-specific
ℓ1 regularization derived from the predicted
degree distribution. Intuitively, when a node have
𝑘 predicted edges, we dynamically reduce the
regularization coefficients of the 𝑘 most possible
edges to promote their occurrence. We then
optimize the objective function using ADMM and
an Iterative Maximum Cost Bipartite Matching
algorithm. Our experimental results show that
using degree distribution as a constraint may lead
to significant performance gain when the
predicted degree has good accuracy.

1. INTRODUCTION

Structure learning of a Markov Random Field (MRF) is an
important problem and has been applied to many
real-world problems which require study of conditional
independence between a set of objects. For example,
structure learning has been used

1
to derive gene expression

or regulatory network from gene expression levels [1, 6, 32,
36] and predict the contact map of a protein from a
multiple sequence alignment of a protein family [9, 15, 16,
23, 24]. Two major approaches and their variants have
been studied to learn the structure of a graphical model
from data: Gaussian Graphical Model (GGM) [11] and
maximum pseudo-likelihood [29]. Since many real-world

1 The first two authors contribute equally to the paper.

structures are usually sparse, ℓ1 regularization is usually
added to the objective function to generate a sparse
structure. Empirical studies indicate that the
pseudo-likelihood approach may have better prediction
accuracy and is also more efficient than GGM, by dropping
the Gaussian distribution assumption.

In real-world applications, the underlying structure (or
graph) usually has some special properties and must satisfy
some topological constraints. For example, a gene
expression network is scale-free. A protein contact graph
must satisfy some geometric constraints, e.g., the degree of
each node is upper bounded by a constant and also depends
on the properties of its corresponding amino acid. Only a
few structure-learning algorithms take into consideration
topological constraints of the underlying graph, which can
be used to reduce the feasible solution set of the problem.
From another perspective, predicted graphs without
considering these constraints might contain conflicts and
are physically infeasible. A predicted contact graph
violating the above-mentioned geometric constraints may
not correspond to a feasible protein structure. Several
papers [12, 17, 30, 35] have considered some very general
topological constraints describing the global properties of a
graph to improve structure learning. However, these
non-specific topological constraints do not help very much
in practice. The reason may be that they are too loose for
some nodes (graphs) and too restrictive for others and thus,
the overall performance gain is limited.

The problem addressed by this paper is inspired by protein
contact graph prediction. A protein sequence consists of a
string of amino acids (also called residues). In nature, a
protein sequence folds into a specific 3D shape to function
properly. Two residues are defined to form a contact if they
are close (distance≤8 Å) in the 3D space. Therefore, we can
use a contact map to model a protein 3D structure.
Predicting inter-residue contacts from sequence is an
important and challenging problem. Recent studies [22, 24,
25, 27] indicate that predicted inter-residue contacts could
be used as a valuable constraint to improve the folding of
some proteins. Baker group [16] shows that one correct
long-range contact for every 12 amino acids (AAs) in a

533

protein allows for accurate topology-level protein folding.
Recent breakthroughs [9, 15, 24] apply Gaussian Graphical
Model and maximum pseudo-likelihood to formulate
protein contact prediction as a structure learning problem.
In these formulations, a protein sequence is viewed as a
sample generated from a Markov Random Field (MRF), in
which an MRF node represents one AA (also called
residue) and an edge indicates a contact (i.e., strong
interaction) between two AAs.

Without knowing the actual contact graph of a protein, we
can use a supervised learning method to predict the number
of contacts (i.e., degree) of an AA from sequence
information. In particular, we use 2𝐿 different linear-chain
2

nd
-order Conditional Neural Fields (CNFs) [28] to predict

the degree distribution for a protein of length 𝐿. A CNF is
an integration of neural networks and Conditional Random
Field (CRF) [20]. CNF models the relationship between
the label at each node and input features by neural
networks and also correlation among neighboring labels.
Therefore, CNF can capture the complex relationship
between node labels and features as well as the
dependency between node labels. The predicted node
degree distribution is then used as a regularization to help
improve individual contact prediction.

2. RELATED WORK

To our best knowledge, there are very few published work
that uses node-specific degree distribution to help with
structure learning of MRFs. Motivated by the observation
that many social and biological networks follow a
power-law degree distribution [2, 5, 14], [21] proposed a
novel non-convex reweighted ℓ1 regularization by using a
log surrogate to approximate the power-law distribution.
The basic idea is to reduce the regularization coefficients
for hub nodes (i.e., nodes with a large degree) to promote
their occurrence. A convex variant of this work was
developed in [7], resulting in further performance
improvement. This work modeled the structure learning
problem as a set-function optimization problem and
approximated it by Lovasz extension [4]. The resultant
objective function is another kind of reweighed ℓ1
regularization. Although these methods result in a graph
following a power-law degree distribution, their accuracy
of the predicted edges is not much better than the simple ℓ1
regularization. A very recent work [37] obtained much
better accuracy by making use of a reweighted ℓ1
regularization accounting for not only global degree
distribution, but also the estimated degree of an individual
node and the relative strength of all the edges of the same
node.

Other work such as [10] takes into consideration
eigenvector centrality constraints and triangle-shaped local
motifs of the graph, which are properties of gene
regulatory networks and protein-protein interaction
networks. [33] presented a convex formulation that uses a
group-sparsity penalty on the rows and columns of the data
precision matrix, effectively selecting which nodes

connect with all the other nodes or no nodes at all. This
formulation also results in a graph following a power-law
distribution.

3. METHOD

3.1 NOTATIONS AND PRELIMINARIES

Given a protein sequence, we can run PSI-BLAST [3] to
find its sequence homologs (i.e., proteins in the same
family) and build a multiple sequence alignment (MSA) of
homologs. By examining this MSA, we can identify
evolution and co-evolution patterns in a protein family. By
co-evolution, we mean the evolution of one AA is strongly
impacted by the other. As shown in Figure 1, the AAs in
the two red MSA columns are co-evolved. It has been
observed that two co-evolved residues are likely to
form a contact in the 3D space since they strongly
interact with each other.

Figure 1. Two coevolved AAs (in red columns) may form a
contact in 3D space.

We can use Markov Random Fields (MRF) to model the
MSA and infer inter-residue contacts by structure
learning of the MRF. In the MRF model, a node
represents one MSA column and an edge represents
correlation between two MSA columns. Let 𝑋 =
{𝑋1, 𝑋2, … , 𝑋𝐿} be a protein sequence where 𝑋𝑖 represents
amino acid type (or gap) at column 𝑖. Let 𝑅 denote the
number of protein sequences (or rows) in the MSA. Let
𝑋𝑖𝑟 denote the amino acid type observed at row 𝑟
(1 ≤ 𝑟 ≤ 𝑅) and column 𝑖 (1 ≤ 𝑖 ≤ 𝐿). The probability
of observing 𝑋 can be defined as follows.

 𝑃(𝑋) = ∏
exp (∑ 𝑏𝑖

𝐿
𝑖=1 (𝑋𝑖𝑟)+∑ 𝑤𝑖𝑗(𝑋𝑖𝑟, 𝑋𝑗𝑟)𝑖<𝑗)

𝑍
𝑅
𝑟=1 (1)

Here 𝑏𝑖 and 𝑤𝑖𝑗 denote the unary and binary potential

functions for nodes 𝑖 and 𝑗 , respectively. 𝑍 is the

partition function, summing over all the possible label

combinations. If nodes 𝑖 and 𝑗 share an edge in the

graph, they are correlated given all the other nodes,

indicating that their corresponding AAs form a contact

and interact with each other in the 3D space. Therefore,

the contact number of one AA corresponds to the node

degree in the graph. Both training and inference by

maximizing (1) over a general graph are NP-hard.

Pseudo-likelihood approximation [9, 29] is proposed to

534

deal with this. Substituting the original likelihood

function, we have,

 𝑃(𝑋𝑖) = ∏ 𝑃(𝑋𝑖,𝑟|𝑋\𝑖,𝑟)𝑅
𝑟=1 (2)

= ∏
exp (𝑏𝑖(𝑋𝑖,𝑟) + ∑ 𝑤𝑖,𝑗(𝑋𝑖,𝑟 , 𝑋𝑗,𝑟)𝐿

𝑗=1,𝑗≠𝑖)

∑ exp (𝑏𝑖(𝑋𝑖,𝑟) + ∑ 𝑤𝑖,𝑗(𝑋𝑖,𝑟 , 𝑋𝑗,𝑟)𝐿
𝑗=1,𝑗≠𝑖)𝑋𝑖,𝑟

𝑅

𝑟=1

Each binary potential function 𝑤𝑖𝑗 is a 21×21 matrix.

We can estimate all 𝑤𝑖𝑗 by maximizing (2). We can use

∑ |𝑤𝑖,𝑗(𝑎, 𝑏)|20
𝑎,𝑏=1 to measure the interaction strength

between two nodes 𝑖 and 𝑗. A pair of nodes with strong

interaction is predicted to share an edge or form a

contact.

3.2 NODE-SPECIFIC DEGREE

REGULARIZATION

In this section we introduce how to add a node-specific

degree distribution as a prior to the above

pseudo-likelihood function. Let 𝑃𝑖(𝑘) be the predicted

probability of node 𝑖 having 𝑘 contacts. Let

𝑊𝑖𝑗=∑ |𝑤𝑖,𝑗(𝑎, 𝑏)|20
𝑎,𝑏=1 , which indicates the interaction

strength between two AAs 𝑖 and 𝑗 . Given a 𝑖 , we

exclude 𝑊𝑖𝑖 and denote the t-th largest 𝑊𝑖𝑗 as 𝑊𝑖,(𝑡). We

use the following penalty term Ω𝑖 for AA 𝑖.

 Ω𝑖 = ∑ 𝑃𝑖(𝑘)(− ∑ 𝑊𝑖,(𝑡)
𝑘
𝑡=1 + ∑ 𝑊𝑖,(𝑡)

𝐿−1
𝑡=𝑘+1)𝐿−1

𝑘=1 (3)

Eq. (3) implies that if the degree of AA 𝑖 is 𝑘, its 𝑘 largest

𝑊𝑖,(1), 𝑊𝑖,(2), … , 𝑊𝑖,(𝑘) shall be big and the remaining

𝑊𝑖,(𝑘+1), 𝑊𝑖,(𝑘+2), … shall be very small. The outer

summation ranges from 1 to 𝐿 − 1 since the contact

number is less than 𝐿. Regrouping Eq. (3) by each 𝑊𝑖,(𝑘)

we have,

 Ω𝑖 = ∑ 𝑔𝑖,𝑘𝑊𝑖,(𝑘)
𝐿−1
𝑘=1 (4)

where 𝑔𝑖,𝑘 = − ∑ 𝑃𝑖(𝑡)𝐿−1
𝑡=𝑘 + ∑ 𝑃𝑖(𝑡)𝑘−1

𝑡=1 . Notice that the

coefficient 𝑔𝑖,𝑘 for 𝑊𝑖,(𝑘) can be negative, which will lead

the optimization problem to be unbounded, so empirically

we add a constant 𝛽 (0.2 by default) to each 𝑔𝑖,𝑘 to make it

positive. Figure 2 shows two examples. For node 𝑖 , its

degree is most likely to be either 1 or 3, so the coefficient

for the largest interaction strength 𝑊𝑖,(1) should be reduced.

For node 𝑗, its degree is most likely to be zero, so all the

coefficients are increased to drive its interaction strengths

to zero.

The reweighted ℓ1 regularized pseudo-likelihood function

is defined as,

 min𝑊 𝐿(𝑊) + ∑ Ω𝑖
𝐿
𝑖=1 (𝑊) (5)

Where 𝐿(𝑊) is the negative log of Eq. (2) and Ω𝑖 is a

special ℓ1 penalty defined in Eq. (4). To optimize (5), we

use Alternating Direction Method of Multipliers (ADMM)

[13] to separate the pseudo-likelihood function and the ℓ1

penalty term. ADMM alternatively solves the following

three sub-problems.

 𝑍𝑛+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑍𝐿(𝑍) +
𝜌

2
‖𝑍 − 𝑊𝑛 + 𝑈𝑛‖2

2 (6)

 𝑊𝑛+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑊
∑ Ω𝑖

𝐿
𝑖=1 (𝑊) +

𝜌

2
‖𝑍𝑛 − 𝑊 + 𝑈𝑛‖2

2 (7)

 𝑈𝑛+1 = 𝑈𝑛 + 𝑍𝑛+1 − 𝑊𝑛+1 (8)

Figure 2. Node-specific degree-based ℓ1 penalty. This figure

shows how the regularizers are different based on the predicted

degree distribution. The X-axis is the probability and the Y-axis

is the degree. The colorful arrows represent the change of

coefficient for the ℓ1-norm. The warmer the color the smaller the

value is. Down arrows represent negative value and up arrows

represent positive value.

where 𝜌 > 0 is a fixed step-size parameter (we used

𝜌 = 0.01) and 𝑈 is the dual variable passing information

between sub-problems (6) and (7). Problem (6) can be

solved using conjugate gradient decent. Since the order of

𝑊𝑖,∗ for each 𝑖 is unknown in problem (7), it is challenging

to solve (7). We need to consider their order so that 𝑔𝑖,𝑘

can be used to weight the 𝑘𝑡ℎ largest 𝑊𝑖,(𝑘). Let 𝑀 = 𝑍 +

𝑈 and 𝑔𝑖,𝑘 = 𝑔𝑖,𝑘/𝜌. We may further divide problem (7)

into 𝐿 sub-problems; the 𝑖𝑡ℎ sub-problem is as follows.

 𝑚𝑖𝑛 𝑊𝑖

1

2
‖ 𝑊𝑖 − |𝑀𝑖| ‖2

2 + Ω𝑖(𝑊𝑖) (9)

To solve problem (9), we need a mapping between original

 {𝑊𝑖,𝑘} and {𝑔𝑖,𝑘}, as different mappings lead to different

optimization problems. For a given mapping, we need to

minimize the corresponding function subject to the

constraints provided by the mapping. We want the

mapping with the smallest optimal value. However, there

are an exponential number of mappings between {𝑊𝑖,𝑘}

and {𝑔𝑖,𝑘}, which makes it impossible to enumerate all the

possible mappings. To make it easy, we assume 𝑊𝑖,(𝑘) >

535

 𝑊𝑖,(𝑘+1) for all 𝑘. That is, we only want to find a solution

satisfying this condition. Next we will introduce how to

use an Iterative Maximum Cost Bipartite Matching

algorithm to solve the relaxation problem.

3.2.1 Iterative Maximum Cost Bipartite Matching

Algorithm

Theorem 1. Let 𝑊𝑖,(1) > 𝑊𝑖,(1) > ⋯ > 𝑊𝑖,(𝐿−1) be the

ranking of { 𝑊𝑖,𝑘} . The optimal solution 𝑊𝑖,(𝑘)
∗ =

 ∑ |𝑤𝑖,(𝑘)
∗ (𝑎, 𝑏)|20

𝑎,𝑏=1 of problem (9) always has the form,

 |𝑤𝑖,(𝑘)
∗ (𝑎, 𝑏)| = 𝑚𝑎𝑥 {|𝑀𝑖,(𝑘)(𝑎, 𝑏)| − 𝑔𝑖,𝑘, 0} (10)

Proof. By taking the sub-gradient with respect to each

|𝑤𝑖,(𝑘)(𝑎, 𝑏)| and setting it to zero we obtain Eq. (10). If

the optimal solution |𝑤𝑖,(𝑘)
∗ (a, b)| of (9) does not satisfy

Eq. (10), we can always decrease the objective function

by adding or subtracting a small constant to (10) so that

 𝑊𝑖,(𝑘−1) > 𝑊𝑖,(𝑘) > 𝑊𝑖,(𝑘+1) still holds. This contradicts

with our assumption that |𝑤𝑖,(𝑘)
∗ (𝑎, 𝑏)| is the optimal

solution. ☐

Based on Theorem 1, given a ranking of { 𝑊𝑖,𝑘}, we can

substitute { 𝑊𝑖,𝑘} of (9) by Eq. (10) to obtain the below

equation.

 ∑ ∑ 𝑀𝑖,(𝑘)(𝑎, 𝑏)2 − 𝑤𝑖,(𝑘)
∗ (𝑎, 𝑏)220

𝑎,𝑏=1
𝐿−1
𝑘=1 (11)

Now we need to minimize (11). Notice that the summation

of all the 𝑀𝑖,(𝑘)(𝑎, 𝑏)2 is a constant, so minimizing (11) is

equivalent to the following optimization problem.

 𝑚𝑎𝑥 ∑ ∑ 𝑤𝑖,(𝑘)
∗ (𝑎, 𝑏)220

𝑎,𝑏=1
𝐿−1
𝑘=1 (12)

Substituting (9) into (12) and considering the constraints of

the mapping, we have the following optimization problem.

 𝑚𝑎𝑥 ∑ ∑ 𝑚𝑎𝑥 {|𝑀𝑖,(𝑘)(𝑎, 𝑏)| − 𝑔𝑖,𝑘, 0}220
𝑎,𝑏=1

𝐿−1
𝑘=1 (13)

 s.t. ∀𝑘 𝑊𝑖,(𝑘)
∗ > 𝑊𝑖,(𝑘+1)

∗

where 𝑊𝑖,(𝑘)
∗ = ∑ max {|𝑀𝑖,(𝑘)(𝑎, 𝑏)| − 𝑔𝑖,𝑘, 0}20

𝑎,𝑏=1 . Note

that in this problem we are looking for a one-to-one

matching between 𝑀𝑖,(𝑘) and 𝑔𝑖,𝑘, which can be modeled

as an Integer Linear Problem (ILP) defined on variable

𝐸 = {𝑒𝑘,𝑙} as follows,

 𝑚𝑎𝑥 ∑ 𝜃𝑘,𝑙𝑒𝑘,𝑙𝑘,𝑙 + ∑ 𝜃𝑘,𝑞,𝑙,𝑙+1𝑘≠𝑞,𝑙 𝑒𝑘,𝑙𝑒𝑞,𝑙+1 (14)

 s.t. ∀𝑘, 𝑙 ∑ 𝑒𝑘,𝑙𝑘 = 1 , ∑ 𝑒𝑘,𝑙𝑙 = 1

Here 𝑒𝑘,𝑙 = 1 if 𝑀𝑖,𝑘 is assigned to 𝑔𝑖,𝑙 ; otherwise 0. Let

Λ𝑖,𝑘,𝑙(𝑎, 𝑏)=𝑚𝑎𝑥 {|𝑀𝑖,𝑘(𝑎, 𝑏)| − 𝑔(𝑖, 𝑙), 0}, then each 𝜃𝑘,𝑙

and 𝜃𝑘,𝑞,𝑙,𝑙+1 can be computed as follows.

 𝜃𝑘,𝑙 = ∑ 𝛬𝑖,𝑘,𝑙(𝑎, 𝑏) 220
𝑎,𝑏=1 (15)

 𝜃𝑘,𝑞,𝑙,𝑙+1 = {
0 ∑ 𝛬𝑖,𝑘,𝑙(𝑎, 𝑏) 20

𝑎,𝑏=1 > ∑ 𝛬𝑖,𝑞,𝑙+1(𝑎, 𝑏) }20
𝑎,𝑏=1

−∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Each 𝜃𝑘,𝑙 reflects the preference of mapping 𝑀𝑖,𝑘 to 𝑔𝑖,𝑙

while 𝜃𝑘,𝑞,𝑙,𝑙+1reflects the constraints to be satisfied. With

these definitions, we can use the ADMM algorithm by

introducing an auxiliary variable 𝑣𝑘,𝑙 for each 𝑒𝑘,𝑙 and

solving (14) using the following iterative procedure,

 𝑉𝑛+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑌 ∑ 𝐶𝑞,𝑙𝑣𝑞,𝑙𝑞,𝑙 (16)

 𝐸𝑛+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐸 ∑ 𝐷𝑘,𝑙𝑒𝑘,𝑙𝑘,𝑙 (17)

 𝜂𝑛+1 = 𝜂𝑛+1 + (𝐸𝑛+1 − 𝑉𝑛+1) (18)

Each 𝐶𝑞,𝑙 and 𝐷𝑘,𝑙 can be computed as,

 𝐶𝑞,𝑙 = −𝜂𝑞,𝑙 + (∑ 𝜃𝑘,𝑞,𝑙−1,𝑙𝑘{𝑘≠𝑞} 𝑒𝑘,𝑙−1) + 𝛾𝑒𝑞,𝑙 (19)

 𝐷𝑘,𝑙 = 𝜃𝑘,𝑙 + ∑ 𝜃𝑘,𝑞,𝑙,𝑙+1𝑣𝑞,𝑙+1𝑞{𝑞≠𝑘} + 𝜂𝑘,𝑙 + 𝛾𝑣𝑘,𝑙 (20)

Here 𝛾 > 0 is a fixed step-size parameter (we used

𝛾 = 0.5) and 𝜂 (we used 0.1) is the dual variable passing

information between sub-problems (16) and (17). Both (16)

and (17) can be viewed as a bipartite matching problem,

which can be solved by the Hungarian algorithm [19].

Using the above algorithm (steps 16-18), we can find a

permutation of {𝑊𝑖,𝑘} ; |𝑤𝑖,(𝑘)
∗ (𝑎, 𝑏)| is then given by

(10). Notice that in order to minimize (9), if

|𝑤𝑖,(𝑘)
∗ (𝑎, 𝑏)| ≠ 0 , then 𝑤𝑖,(𝑘)

∗ (𝑎, 𝑏) and 𝑀𝑖,𝑘(𝑎, 𝑏)

should have the same sign. The final solution of

𝑤𝑖,(𝑘)
∗ (𝑎, 𝑏) is therefore given by,

 𝑤𝑖,(𝑘)
∗ (𝑎, 𝑏) (21)

= { 𝑀𝑖,(𝑘)(𝑎, 𝑏) − 𝑠𝑖𝑔𝑛 (𝑀𝑖,(𝑘)(𝑎, 𝑏)) 𝑔
𝑖,𝑘

|𝑀𝑖,(𝑘)(𝑎, 𝑏)| > 𝑔
𝑖,𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

3.3 ESTIMATE NODE-SPECIFIC DEGREE

DISTRIBUTION

Here we introduce how to predict the degree distribution of

each node. Notice that in a protein sequentially-adjacent

AAs must be close in the 3D space so their corresponding

MRF nodes are connected. We introduce a concept called

Partial Contact Number (PCN) denoted by 𝛣𝑖,𝑗 for each

node pair 𝑖 and 𝑗, which is defined as the number of edges

formed by node 𝑖 with nodes 𝑖 + 1, 𝑖 + 2, ... , 𝑗 (if 𝑗 > 𝑖)
or nodes 𝑖 − 1, 𝑖 − 2, ... , 𝑗 (if 𝑗 < 𝑖). Each 𝛣𝑖,𝑗 has 15

labels indicating the degree from 0 to 13 and ≥ 14. We set

the maximum degree to 14 since the contact number of an

AA is upper bounded by a small constant. Since 𝐵𝑖,𝑗 is

correlated with its nearest neighbors 𝐵𝑖,𝑗−1 and 𝐵𝑖,𝑗+1, we

apply a Conditional Neural Field (CNF) to predict 𝐵𝑖,𝑗 .

Each node 𝑖 is associated with two 2
nd

-order CNFs, as

536

shown in Figure 3. A protein with 𝐿 nodes (AAs) has 2𝐿

different 2
nd

-order CNFs.

Let 𝐹𝑖,𝑗 denote the feature vector extracted from two AAs 𝑖

and 𝑗 , we use one CNF is to estimate

𝑃(𝛣𝑖,𝑖+6~𝛣𝑖,𝐿|𝐹𝑖,𝑖+6~𝐹𝑖,𝐿) and the other for

𝑃(𝛣𝑖,1~𝛣𝑖,𝑖−6|𝐹𝑖,𝑖+6~𝐹𝑖,𝐿) . We ignore very short-range

contacts (sequence distance<6) as they are less informative

for structure prediction. We train CNFs by maximum

likelihood. We use a ℓ2 regularization to avoid over-fitting

and 5-fold cross validation to choose the hyper parameters.

Since CNF is non-convex, we train it starting from 5

different initial solutions and pick the best one. See [28] for

more details of CNF.

After training the CNF models, we calculate the marginal

probabilities 𝑃(𝛣𝑖,𝑗) using the standard forward-backward

algorithm [20] independently on each CNF. Finally, we

calculate the probability of node 𝑖 having degree 𝐾 as

follows.

 ∑ (𝑃(𝛣𝑖,1 = 𝐾1) +𝐾1+𝐾2=𝐾 𝑃(𝛣𝑖,𝐿 = 𝐾2)) (22)

4. EXPERIMENTS

4.1 TRAINING AND TEST DATA

We use a subset of the PDB25 dataset, generated by the

PISCES server [34], to train and validate our CNF models.

Any two proteins in this dataset share <25% sequence

identity. In total we used 3118 proteins with length

between 40 and 500, among which 3/4 are randomly

chosen for training and the remaining 1/4 for validation. To

test the performance, we evaluate our results on CASP10

[18] and CASP11 [26] datasets. We rule out short proteins

with fewer than 70 amino acids since they have relatively

low contact number prediction accuracy. This leads to 109

test proteins in the CASP10 set and 99 proteins in the

CASP11 dataset. We use the CASP official domain

boundary definition for each test protein. For each test

protein, we run PSI-BLAST [3] with 5 iterations and

E-value 0.001 to generate sequence profile, from which we

extract 𝐹𝑖,𝑗 . All the native structures of our training and

validation proteins are solved before CASP10 and

CASP11 and do not share high sequence identify with the

CASP test proteins.

4.2 EVALUATION CRITERIA AND PROGRAMS

TO COMPARE

Depending on the sequence distance (i.e., the number of

AAs between the two ends of a contact along the protein

sequence), we divide contacts into 3 categories: [6,12) for

short-range contacts, [12,24) for medium-range contacts

and ≥ 24 for long-range contacts. Generally speaking,

medium- and long-range contacts are more important for

structure prediction, but more challenging to predict. We

evaluate only top 𝐿/5, 𝐿/10, and 𝐿/2 predicted contacts.

The accuracy is calculated as the percentage of the

correctly predicted contacts. The ground truth is calculated

from the experimental structure. When more predicted

contacts are evaluated, the difference among methods

becomes smaller since it is more likely to pick a native

contact by chance. We compare our method to three other

structure learning methods: PSICOV [15], plmDCA [9],

and CCMpred [31]. PSICOV uses Graphical Lasso for

contact prediction while plmDCA and CCMpred use

maximum pseudo-likelihood with ℓ2 regularization.

These programs are run with their default parameters.

When node-specific degree distribution is no used, our

method is exactly the same as CCMpred, so we can

calculate performance gain by examining the

improvement of our method over CCMpred.

Figure 3. A Conditional Neural Field model for the prediction of

Partial Contact Numbers.

4.3 PRE-PROCESSING AND POST-PROCESSING

We employ the same pre- and post-processing procedures

as plmDCA and CCMpred to ensure our comparison with

them is fair. To reduce the impact of redundant sequences,

we apply the same sequence weighting method as

plmDCA. In particular, duplicate sequences are removed

and MSA columns containing more than 90% of gaps are

deleted. The sequence is weighted using a threshold of 62%

sequence identity. Similar to plmDCA and CCMpred,

average-product correction (APC) [8] is applied to

post-process predicted contacts.

4.4 PERFORMANCE

4.4.1 Overall Performance

As shown in Tables 1 and 2, on both CASP10 and CASP11
test proteins, our method significantly outperforms the
others in terms of the accuracy of the top L/10, L/5 and L/2
predicted contacts. plmDCA and CCMpred achieve better

537

results than PSICOV because they drop the Gaussian
distribution assumption. Our method differs from plmDCA
and CCMpred in that we use a separate ℓ1 regularization
term for every pair of AAs instead of a universal
regularization on all the AA pairs.

Table 1. Contact prediction accuracy on the 109 CASP10
targets

 Short-range Medium-range Long-range

 L/10 L/5 L/2 L/10 L/5 L/2 L/10 L/5 L/2

Our Method

method

0.32 0.33 0.19 0.39 0.34 0.28 0.37 0.34 0.25

PSICOV 0.23 0.19 0.14 0.31 0.26 0.19 0.28 0.23 0.17

plmDCA 0.26 0.22 0.15 0.34 0.29 0.21 0.33 0.28 0.21

CCMpred 0.28 0.29 0.16 0.36 0.30 0.22 0.33 0.30 0.22

Table 2. Contact prediction accuracy on the 99 CASP11
targets

 Short-range Medium-range Long-range

 L/10 L/5 L/2 L/10 L/5 L/2 L/10 L/5 L/2

Our method 0.25 0.22 0.15 0.27 0.22 0.16 0.28 0.25 0.19

PSICOV 0.19 0.14 0.11 0.20 0.16 0.12 0.20 0.17 0.13

plmDCA 0.19 0.14 0.11 0.21 0.17 0.13 0.23 0.23 0.17

CCMpred 0.21 0.17 0.12 0.24 0.19 0.13 0.24 0.22 0.17

4.4.2 Impact of Predicted Contact Number

Distribution

First we evaluate the accuracy of contact number
prediction. The contact number is predicted by picking the
label with the maximum marginal probability computed by
(22). The 15-label accuracy calculated on the CASP10 and
CASP11 datasets are both 0.30 while random guess (i.e.,
predicting all the labels to be the one with the largest
background probability) is 0.21. The average Pearson
correlations between the ground truth and our prediction
are 0.71 and 0.74, respectively. In addition, we can predict
small- or large-valued contact number labels very
accurately. These two properties help suppress the contacts
of those AAs with very few contacts from showing up in
the final prediction and thus, decrease the false positives.

Now we evaluate the impact of contact number prediction
on individual contact prediction. We compare our method
(i.e., predicted contact number used) with CCMpred (i.e.,
predicted contact number not used) in terms of the
accuracy of the top L/10 predicted long-range contacts.
The top L/10 predicted contacts cover only a small number
of AAs, so for each protein we only calculate the contact
number accuracy on the AAs covered by the top L/10
predicted contacts. We group the test proteins into seven
bins according to their accuracy of predicted contact
number. For each bin we calculate the average accuracy
improvement of individual contact prediction by our
method over CCMpred. As shown in Figure 4, the
improvement is positively correlated with the accuracy of
contact number prediction on both CASP10 and CASP11
datasets. That is, the more accurately we can predict the

contact number, the more performance gain can be
obtained for individual contact prediction. In particular,
when the accuracy of contact number prediction is low
(<0.1), our method cannot improve individual contact
prediction accuracy because the predicted contact number
has too much noise. When the accuracy of contact number
prediction is above 0.5, the performance gain from the
predicted contact number information is large (≥0.05).
This implies that our method makes a good use of
predicted contact number information.

Figure 4. Relationship between top 𝐿/10 long-range contact

prediction accuracy gain and the accuracy of contact number

prediction. The accuracy gain is calculated as the performance

difference between our method and CCMpred.

4.4.3 Case Study

Here we use two specific examples to further demonstrate
the strength of our method. In particular, we want to study
how the predicted contact number distribution helps with
individual contact prediction. One example is a CASP10
target T0758 (PDB ID 4RM7). The other is a CASP11
target T0813 (PDB ID 4WJI). They have 366 and 302 AAs,
respectively, and 9572 and 4177 similar sequences. As
shown in Tables 3 and 4, our method significantly
outperforms the others by at least 0.2 on the top 𝐿/10
long-range contact predictions. plmDCA and CCMpred
have similar results since they use the same loss function.
PSICOV yields relatively low performance on T0813,
most likely attributing to the default sparsity setting being
too aggressive.

Table 3. Contact prediction accuracy of T0758 (4RM7)

 Short-range Medium-range Long-range

 L/10 L/5 L/2 L/10 L/5 L/2 L/10 L/5 L/2

Our method 0.62 0.39 0.26 0.67 0.55 0.28 0.76 0.64 0.50

PSICOV 0.50 0.31 0.19 0.55 0.41 0.19 0.50 0.47 0.40

plmDCA 0.44 0.30 0.20 0.61 0.42 0.26 0.56 0.56 0.45

CCMpred 0.42 0.32 0.19 0.64 0.56 0.30 0.53 0.48 0.45

Table 4. Contact prediction accuracy of T0813 (4WJI)

 Short-range Medium-range Long-range

 L/10 L/5 L/2 L/10 L/5 L/2 L/10 L/5 L/2

538

Our method 0.43 0.32 0.16 0.60 0.44 0.25 0.73 0.60 0.50

PSICOV 0.30 0.20 0.11 0.43 0.28 0.19 0.50 0.40 0.31

plmDCA 0.37 0.27 0.14 0.57 0.40 0.20 0.53 0.47 0.40

CCMpred 0.37 0.28 0.13 0.53 0.42 0.23 0.47 0.50 0.45

adfas

dfdfs

adf

Now for each target we examine two AA pairs not in
contact. Our method can correctly predict that they are not
in contact, but the other three methods predict they are in
contact. Figures 5 and 6 show the predicted contact number
distributions for the eight AAs of the two targets. Most of
these AAs are predicted to have very few contacts.
Especially the 137th AA of T0758 and the 268th AA of
T0813; the predicted probability of the contact number
being zero are both over 0.5, which means all the
parameters associated with these two AAs shall be forced
to zero.

Figure 5. Predicted contact number distributions of 4 AAs of T0758

(4RM7) shown in Figure 7.

Figure 6. Predicted contact number distributions of 4 AAs of T0813

(4WJI) shown in Figure 8.

As shown in Figures 7 and 8, these two AAs are exposed at
the protein surface and they do not form any long-range
contacts. Similarly, for the other 6 AAs, the mass of
predicted contact number distribution are all concentrated
around 3 or 4, which means our model most likely can only
allow 3 or 4 contacts for each AA. The top predicted
contacts of these AAs are all short- and medium-range.
That is why our method does not predict any long-range
contacts for these AAs.

Figure 7. Two long-range false positives predicted by PSICOV, plmDCA

and CCMpred for Target T0758 (4RM7): one false contact between the

146th AA and 202nd AA and the other between the 137th AA and 207th

AA. Their true distances are 20.7 Å and 14.2 Å, respectively.

Figure 8. Two false positives predicted by PSICOV, plmDCA and

CCMpred for T0813 (4WJI): one false contact between the 244th AA and

268th AA and the other between the 231st AA and 277th AA. Their true

distances are 35.9 Å and 29.3 Å, respectively.

5. DISCUSSION AND FUTURE WORK

We have presented a new structure learning method that
can make use of the predicted node-specific degree
distribution to improve prediction accuracy of edges. The
predicted degree distribution is used as a kind of soft
topological constraints to restrict the solution space and
avoid “unreasonable” predictions. Experimental results
show that by using the degree distribution we can
significantly improve protein contact prediction over
current state-of-the-art structure learning methods.

From a computational perspective, our method provides
a new framework to integrate orthogonal information
into structure learning. That is, we first use supervised
learning to learn node-specific local topological

539

constraints and then add it as a prior to learn the whole
network structure. In many real-world applications, the
connections of the graph are more or less influenced by the
properties of nodes, so a node-specific degree distribution
can be learned from local features without knowing the
whole network structure. The contact number prediction is
a very challenging supervised learning problem. In this
work, we use multiple linear-chain graphical models to
circumvent the difficulty of training and inference on
loopy graphs. In the future, we will extend CNF by adding
a deep learning module to further improve it.

For protein contact prediction, adding AA-specific
topological constraint is only our first step. We are
considering other AA- and segment-specific topological
constraints, such as some geometric constraints imposed
by a single secondary structure segment, two correlated
secondary structure segments, or even the global structure
of a protein.

Acknowledgements

We thank Payman Yadollahpour for useful discussions.
This work is financially supported by the NIH grant
R01GM089753 the NSF grant DBI-1262603 (to J.X.) and
the NSF CAREER award CCF-1149811 (to J.X.). The
authors are also grateful to the computational resources
provided by the University of Chicago RCC.

References

1. Ahmed A, Song L, Xing EP (2008) Time-varying

networks: Recovering temporally rewiring genetic

networks during the life cycle of drosophila

melanogaster. arXiv preprint arXiv:0901.0138

2. Albert R, Barabási A-L (2002) Statistical mechanics of

complex networks. Reviews of modern physics 74:47

3. Altschul SF, Madden TL, Schäffer AA et al. (1997)

Gapped BLAST and PSI-BLAST: a new generation of

protein database search programs. Nucleic acids

research 25:3389-3402

4. Bach FR (2010) Structured sparsity-inducing norms

through submodular functions. In: Advances in Neural

Information Processing Systems. p 118-126

5. Barabási A-L, Albert R (1999) Emergence of scaling in

random networks. science 286:509-512

6. Celik S, Logsdon B, Lee S-I (2014) Efficient

Dimensionality Reduction for High-Dimensional

Network Estimation. In: Proceedings of the 31st

International Conference on Machine Learning

(ICML-14). p 1953-1961

7. Defazio A, Caetano TS (2012) A convex formulation

for learning scale-free networks via submodular

relaxation. In: Advances in Neural Information

Processing Systems. p 1250-1258

8. Dunn SD, Wahl LM, Gloor GB (2008) Mutual

information without the influence of phylogeny or

entropy dramatically improves residue contact

prediction. Bioinformatics 24:333-340

9. Ekeberg M, Lövkvist C, Lan Y et al. (2013) Improved

contact prediction in proteins: using pseudolikelihoods

to infer Potts models. Physical Review E 87:012707

10. Fiori M, Musé P, Sapiro G (2012) Topology constraints

in graphical models. In: Advances in Neural

Information Processing Systems. p 791-799

11. Friedman J, Hastie T, Tibshirani R (2008) Sparse

inverse covariance estimation with the graphical lasso.

Biostatistics 9:432-441

12. Hayat S, Elofsson A (2012) BOCTOPUS: improved

topology prediction of transmembrane β barrel proteins.

Bioinformatics 28:516-522

13. Hestenes MR (1969) Multiplier and gradient methods.

Journal of optimization theory and applications

4:303-320

14. Jeong H, Mason SP, Barabási A-L et al. (2001)

Lethality and centrality in protein networks. Nature

411:41-42

15. Jones DT, Buchan DW, Cozzetto D et al. (2012)

PSICOV: precise structural contact prediction using

sparse inverse covariance estimation on large multiple

sequence alignments. Bioinformatics 28:184-190

16. Kamisetty H, Ovchinnikov S, Baker D (2013)

Assessing the utility of coevolution-based residue–

residue contact predictions in a sequence-and

structure-rich era. Proceedings of the National

Academy of Sciences 110:15674-15679

17. Klepeis J, Floudas C (2003) ASTRO-FOLD: a

combinatorial and global optimization framework for

ab initio prediction of three-dimensional structures of

proteins from the amino acid sequence. Biophysical

Journal 85:2119-2146

18. Kryshtafovych A, Barbato A, Fidelis K et al. (2014)

Assessment of the assessment: evaluation of the model

quality estimates in CASP10. Proteins: Structure,

Function, and Bioinformatics 82:112-126

19. Kuhn HW (1955) The Hungarian method for the

assignment problem. Naval research logistics quarterly

2:83-97

20. Lafferty J, Mccallum A, Pereira FC (2001) Conditional

random fields: Probabilistic models for segmenting and

labeling sequence data.

21. Liu Q, Ihler AT (2011) Learning scale free networks by

reweighted l1 regularization. In: International

Conference on Artificial Intelligence and Statistics. p

40-48

22. Ma J, Wang S, Wang Z et al. (2014) MRFalign: protein

homology detection through alignment of Markov

random fields. PLoS computational biology

10:e1003500

540

23. Ma J, Wang S, Xu J (2013) Protein contact prediction

by joint evolutionary coupling analysis across multiple

families. arXiv preprint arXiv:1312.2988

24. Marks DS, Colwell LJ, Sheridan R et al. (2011) Protein

3D structure computed from evolutionary sequence

variation. PloS one 6:e28766

25.Michel M, Hayat S, Skwark MJ et al. (2014) PconsFold:

improved contact predictions improve protein models.

Bioinformatics 30:i482-i488

26. Moult J, Fidelis K, Kryshtafovych A et al. (2014)

Critical assessment of methods of protein structure

prediction (CASP)—round x. Proteins: Structure,

Function, and Bioinformatics 82:1-6

27. Nugent T, Jones DT (2012) Accurate de novo structure

prediction of large transmembrane protein domains

using fragment-assembly and correlated mutation

analysis. Proceedings of the National Academy of

Sciences 109:E1540-E1547

28. Peng J, Bo L, Xu J (2009) Conditional neural fields. In:

Advances in neural information processing systems. p

1419-1427

29. Ravikumar P, Wainwright MJ, Lafferty JD (2010)

High-dimensional Ising model selection using

ℓ1-regularized logistic regression. The Annals of

Statistics 38:1287-1319

30.Savojardo C, Fariselli P, Martelli PL et al. (2013) BCov:

a method for predicting β-sheet topology using sparse

inverse covariance estimation and integer

programming. Bioinformatics:btt555

31. Seemayer S, Gruber M, Söding J (2014)

CCMpred—fast and precise prediction of protein

residue–residue contacts from correlated mutations.

Bioinformatics 30:3128-3130

32. Sharan R, Ulitsky I, Shamir R (2007) Network‐based

prediction of protein function. Molecular systems

biology 3

33. Tan KM, London P, Mohan K et al. (2014) Learning

graphical models with hubs. The Journal of Machine

Learning Research 15:3297-3331

34. Wang G, Dunbrack RL (2003) PISCES: a protein

sequence culling server. Bioinformatics 19:1589-1591

35. Wang Z, Xu J (2013) Predicting protein contact map

using evolutionary and physical constraints by integer

programming. Bioinformatics 29:i266-i273

36. Wei Z, Li H (2007) A Markov random field model for

network-based analysis of genomic data.

Bioinformatics 23:1537-1544

37. Xu J, Com G Learning Scale-Free Networks by

Dynamic Node-Specific Degree Prior.

541

Active Search and Bandits on Graphs Using Sigma-Optimality

Yifei Ma
Machine Learning Department

Carnegie Mellon University
yifeim@cs.cmu.edu

Tzu-Kuo Huang∗
Microsoft Research

tkhuang@microsoft.com

Jeff Schneider
Robotics Institute

Carnegie Mellon University
schneide@cs.cmu.edu

Abstract

Many modern information access problems in-
volve highly complex patterns that cannot be
handled by traditional keyword based search.
Active Search is an emerging paradigm that helps
users quickly find relevant information by effi-
ciently collecting and learning from user feed-
back. We consider active search on graphs,
where the nodes represent the set of instances
users want to search over and the edges encode
pairwise similarity among the instances. Existing
active search algorithms are either short of theo-
retical guarantees or inadequate for graph data.
Motivated by recent advances in active learning
on graphs, namely the Σ-optimality selection cri-
terion, we propose new active search algorithms
suitable for graphs with theoretical guarantees
and demonstrate their effectiveness on several
real-world datasets.

We relate our active search setting to multi-armed
bandits whose rewards are binary values indi-
cating search hits or misses and arms cannot be
pulled more than once. We also discussed the-
oretical guarantees for applying Σ-optimality as
the exploration term for bandits on graphs.1

1 INTRODUCTION

As the world gets increasingly digitized and electronically
recorded, how to quickly identify relevant pieces of infor-
mation becomes a major issue. Internet search engines are

∗ Part of this work was done while the author was with
Carnegie Mellon University.

1An earlier version of this paper included results on bandit cu-
mulative regrets with improved rates (originally Section 4.2.2).
These results depended on proof strategies from Contal et al.
(2014) (originally in Appendix C) which were found to be in-
correct. Therefore, these results have been removed in the current
version of the paper.

an integral part of modern life, serving as a probe into the
diverse, complex and expanding space of human digital
traces. Despite being successful in many information re-
trieval tasks, the keyword-based query mechanism in most
search engines may fall short when targets are character-
ized by complex patterns or signatures beyond keywords.
For example, financial transactions associated with illegal
activities bear signatures involving multiple factors such as
time, location, occupation of the account owner, etc. In the
investigation of organizational misconduct, such as the En-
ron scandal, the important leads or evidences, oftentimes
buried in a sea of diverse electronic and paper trails, usu-
ally involve information exchange among key individuals
and their relationship. To fully understand the users’ intent
in these cases, keyword-based search may serve as a good
starting point, but is certainly far from completing the task.

Such needs of more general search paradigms have recently
motivated several efforts Garnett et al. (2012); Wang et al.
(2013); Vanchinathan et al. (2013), most of which are re-
lated to the Active Search framework proposed by Garnett
et al. (2012). It is an interactive search mechanism that
begins with a full set of instances without supervision and
a given task/keyword-specific similarity measure between
these instances. Based on the similarity measure and an
optional initial set of suggestions from the user, an algo-
rithm figures out what instances the user should examine
next and presents it to the user, who then decides whether
the presented instance is relevant or not. Upon receiving
this feedback, the algorithm updates its search strategy ac-
cordingly and selects the next instance to present. The loop
continues until the user quits, and the goal is to maximize
the total number of relevant instances found.

As one can see, Active Search has close connections to
some well-studied machine learning paradigms. At a first
glance, Active Learning (Settles, 2010) seems the most re-
lated because they both ask for user feedback incrementally
and adaptively. However, Active Learning aims at improv-
ing generalization performances with as few label queries
as possible, while Active Search is evaluated by how many
relevant instances it found along the way, and therefore

542

must carefully balance exploitation and exploration. This
trade-off relates Active Search to stochastic optimization
in the Multi-Armed Bandit setting (Robbins, 1985; Dani
et al., 2008; Kleinberg et al., 2008; Bubeck et al., 2009),
where the goal is to find the maximum of an unknown func-
tion using as few function evaluations as possible. How-
ever, Active Search deviates from this setting in that it se-
lects instances without replacement and is competing with
the best subset of instances rather than the single best.

We investigate Active Search when the instances are repre-
sented by the nodes on a graph whose edges encode pair-
wise similarity among the instances. For a toy example,
please see Figure 1. Many real-world datasets are of this
type, such as web pages, citation networks, and e-mail cor-
respondences. For data that are not naturally represented as
graphs, a graph representation based on pairwise similarity
can still be beneficial because it may reveal useful mani-
fold structures (Tenenbaum et al., 2000; Belkin and Niyogi,
2001). Existing active search approaches (Wang et al.,
2013; Garnett et al., 2012; Vanchinathan et al., 2013) either
lack theoretical guarantees or ignore certain graph proper-
ties, thereby degrading empirical performances. By draw-
ing ideas from recent advances in active learning on graphs
(Ma et al., 2013), we proposed new active search algo-
rithms with theoretical guarantees, and empirically demon-
strate their advantages over existing methods. In particular,
our new exploration criteria, motivated by Σ-optimality cri-
terion (Ma et al., 2013) for active learning on graphs, favor
nodes with not only high uncertainty, but also high influ-
ence on the other nodes.

?
?

?

?

?

?

?

? ??

?

?

?
?

?

?
?

×X
×X

×
×X

1
2

3

4

5

6

7

8 910

11

12

13

14

15

16
17

Figure 1: A toy examples for active search where the goals
are “ X ” nodes. Suppose the yellow nodes are observed in
previous rounds, which node should be searched next?

The rest of the paper is organized as follows. We describe
related work in Section 2, and introduce the problem setup
in Section 3. We then present our new methods in Section 4
along with theoretical guarantees, followed by experimen-
tal results in Section 5.

2 RELATED WORK

Wang et al. (2013) proposed an active search algo-
rithm for graphs, building on label propagation and semi-
supervised learning using Gaussian random fields (Zhu

et al., 2003a,b). Despite decent empirical performances,
this approach does not have any theoretical guarantee.
Vanchinathan et al. (2013) proposed a Gaussian-Process
(GP) based algorithm, GP-SELECT, for sequentially se-
lecting instances with high user scores or ratings (rewards).
This algorithm extends the popular GP-UCB algorithm
(Cox and John, 1997; Auer, 2003) for stochastic optimiza-
tion and inherits nice theoretical guarantees (Srinivas et al.,
2012). When applied to graphs, however, it tends to select
nodes at the periphery of the graph because they have large
predictive variances, leading to large exploration factors in
the GP-UCB selection rule. Yet the rewards of these nodes
reveal little information about the reward distribution over
the whole graph.

Similar issues have been observed in active learning on
graphs as well. In their experiments, Ma et al. (2013)
found that selection rules based on mutual information gain
(Krause et al., 2008), which is closely related to per-node
predictive variances, usually end up selecting nodes at the
periphery of a graph. Ji and Han (2012) proposed a selec-
tion criterion based on one-step lookahead decrease of the
average variance of all remaining nodes, which effectively
considers not only the predictive variance of the search
node itself, but also its covariances with all remaining
nodes. This criterion corresponds to standard V-optimality
in experiment design. Ma et al. (2013) further improved the
state of the art by using the Σ-optimality criterion, which
demonstrates greater robustness against outliers and better
empirical performances than V-optimality. Motivated by
these recent advances, we propose new active search algo-
rithms that combine GP-UCB with Σ-optimality.

Valko et al. (2014) considered bandit problems where arms
correspond to nodes on a graph and the reward is a smooth
function over the graph. Their algorithm can be viewed
as a special case of GP-UCB with a kernel defined by the
inverse of a graph Laplacian (augmented with an identity
matrix). To analyze the performance of their UCB-style
algorithm, they propose the notion of effective dimension of
a graph, which can be viewed as a measure of the spectral
decay of the kernel, thereby determining the performance
of the algorithm (Srinivas et al., 2012). We also use the
effective dimension to analyze our proposed methods.

3 PROBLEM SETUP

The database where active search is performed is given as
a graph G with known structure (edge connections). The
edge connections are nonnegative and we use A to repre-
sent the adjacency matrix of G, such thatAij ≥ 0,∀i, j. Let
V = {v1, . . . , vn} denote the set of all nodes in G. From
A we can derive a graph Laplacian matrix, L = D − A,
where D = diag(A · 1) = diag(deg(v1), . . . ,deg(vn)).

Every node v in our graph holds one reward value we de-
note as f(v), indicating whether the node is the search tar-

543

get. The reward is unknown at first and can be revealed
only when it is queried explicitly. For mathematical bene-
fits, we relax the reward to be a real value and introduce a
Gaussian noise to its observation, as

y(v) = f(v) + ε, where ε ∼ N (0, σ2
n). (1)

Similar to bandit problems, querying a node also means
collecting the true reward of that node. Our goal is to de-
sign a query strategy, which interactively generates a query
sequence vt = (v1, . . . , vt)

> without any repeated selec-
tions, in order to maximize the cumulative reward

FT =
T∑

t=1

f(vt). (2)

The cumulative reward is always upper-bounded by the op-
timal strategy with full knowledge of the true rewards on
all the nodes. Let v∗t = (v∗1 , . . . , v

∗
t) to be the optimal

query sequence (without repeated selections), our analysis
in Theorem 2 (Section 4.2) bounds the cumulative regret
between our strategy and the optimal strategy,

RT =
T∑

t=1

f(v∗t)− f(vt). (3)

The above characterizes an active search problem, provided
that the values of f(v) are binary and the sequences vt and
v∗t do not allow repeated selections. Otherwise, the above
can also model a multi-armed bandit problem if we relax
f(v) to be real and vt and v∗t to allow repeated selections.
In fact, our formulation discusses them together, providing
analysis to the slightly more rigorous active search model-
ing except that f(v) is relaxed to real values.

In our notations, bold letters indicate vectors or matrices,
while light letters without subscripts mean functions and
light letters with subscripts represent scalars or specific el-
ements. t, τ , and T are time indices, which when applied
as subscripts, always mean the selection or model at that
time step. Other letters as subscripts, such as i, j, n, always
mean the natural indices.

3.1 GAUSSIAN RANDOM FIELD PRIOR

A key assumption in this work is that the reward values,
or the target labels, are constrained by the graph structure
in a non-trivial way. Otherwise, the input graph provides
little information about the reward function, making active
search extremely difficult. More specifically, we assume
that the reward values of all the nodes in the graph, collec-
tively denoted as a vector f ∈ RN , are random variables

distributed jointly as

log p(f) ' −
N∑

i=1

N∑

j=1

Aij(fi − fj)2

2
−

N∑

j=1

ω0(fj − µ0)2

2
,

i.e., f ∼ N
(
µ0 = µ0 · 1, C0 = (L + ω0I)

−1
)
, (4)

where µ0 is a prior mean, and ω0 > 0 is a regulariza-
tion parameter. According to this probabilistic model, it
is more likely for connected nodes to share similar values
than not. Define the initial covariance matrix as, C0 =
(L + ω0I)

−1, and denote L̃0 = L + ω0I. The above prior
model is also known as Gaussian random fields (GRFs).

3.2 POSTERIOR INFERENCE

Assume the nature draws one sample from the prior model,
(4), and we use query observations, (1), to converge to that
particular draw by performing posterior inference condi-
tioned on the history,

Ht = {(vτ , yτ)}tτ=1 = {vt,yt},

which allows us to update the posterior distribution as,

log p(f | Ht) ' −
1

2
(f−µ0)>L̃0(f−µ0)−

t∑

τ=1

(yτ − fvτ)2

2σ2
n

.

Notice that the prior distribution and likelihood model form
Gaussian conjugate pairs. Denote the posterior distribution
as, f | Ht ∼ N (µt,Ct). To some readers, it is easier to
express µt and Ct using the prior precision matrix, as

µt = Ct

(
L̃0µ0+

t∑

τ=1

yτevτ
σ2
n

)
, C−1

t = L̃0+
1

σ2
n

Ht (5)

where evτ = (0, . . . , 0, 1, 0, . . . , 0)> is an indicator vector
of index vτ and Ht is a diagonal matrix of index counts
from vt, whose kth diagonal element is

∑t
τ=1 evτ (vk).

However, for convenience in later descriptions and to con-
nect to Gaussian Process (GP) literature (Rasmussen and
Williams, 2006), we also use the prior covariance matrix to
express the posterior distribution, as,

µt(v) = µ0(v) + c>vtv(Cvtvt + σ2
nI)
−1(yt − µvt),

Ct(v, v
′) = C0(v, v′)− c>vtv(Cvtvt + σ2

nI)
−1cvtv′ ,

(6)

where the matrices can all be defined in terms of the prior:

cvtv = (C0(v1, v), · · · , C0(vt, v))>

Cvtvt =
(
C0(vτ , vτ ′)

)t
τ,τ ′=1

µvt = (µ0(v1), · · · , µ0(vt))
>.

The above update rules also applies to any time interval
that starts with t0, by replacing prior models (variables with
subscript “0”) with the model at time t0.

544

Define simple notations for correlation coefficients
and standard deviations from the covariance matrix,
Ct(v, v

′) = ρt(v, v
′)σt(v)σt(v

′), which implies that
σ2
t (v) = Ct(v, v). Define ct(v) to be the column of Ct

corresponding to node v.

4 METHOD

Algorithm 1 GP-SOPT and its variants

input µ0, A, ω0, σn, αt, T ; if warm start, {vτ , y(vτ)}t0τ=1

1: Obtain initial N (µ0,C0) // (4)
2: for t = t0, . . . , T − 1, do
3: Update to posterior N (µt,Ct) // (6)
4: vt+1 ← arg maxv∈V \St µt(v) + αt+1st(v)

// (9.a, 9.b, or 9.c)
5: Observe y(vt+1); include St+1 ← St ∪ {vt+1}
6: end for

output ST .

Our proposed active search algorithms are described in Al-
gorithm 1. They resemble general exploration-exploitation
style algorithms with GPs. Here we focus on binary func-
tions that assign value 1 to relevant or target nodes, and 0
to all other nodes. At iteration t + 1, Algorithm 1 selects
the next node to query based on a deterministic selection
rule of the form:

arg max
v∈V \St

µt(v) + αt+1 · st(v), (7)

where µt(v) is the usual exploitation term and st(v) en-
courages exploration, with the two being balanced by a
possibly iteration-dependent parameter at+1 > 0.

Examples from existing literature like the popular GP-
UCB algorithm and its extension to Active Search, GP-
SELECT (Vanchinathan et al., 2013), amount to setting
st(v)2 = σt(v)2, the posterior (as well as predictive) vari-
ance of the reward value at node v. Although this is a very
reasonable choice in many situations, it may lead to unde-
sirable exploration behaviors on graphs. Under our model
assumption, low-degree nodes, which usually lie at the pe-
riphery of a graph, tend to have high predictive variances.
Direct applications of GP-UCB may result in the selection
of many such outliers, which fail to reveal much informa-
tion about the reward values of most other nodes at the core
of the graph (Figure 2(a)).

Intuitively, a good exploration criterion should favor nodes
that have high influences on other parts of the graph. That
is, the knowledge of the function values at these nodes
should reveal a lot about the function values at other nodes.
Under our model assumption, this principle naturally con-
nects with the predictive covariances of a node with others.
Research in active learning on graphs has already made use
of predictive covariances to construct better selection rules.

Ji and Han (2012) proposed to select nodes based on their
sums of squares of predictive covariances with other nodes,
which is derived from the minimization of squared predic-
tion error, known as V-optimality in experiment design. Ma
et al. (2013) observed that V-optimality can still be unde-
sirably sensitive to outliers and used Σ-optimality crite-
rion instead, which by itself selects a set of nodes vt to
minimize the following Bayes survey risk on the posterior
model after the selection,

RΣ
t|vt = E

(∑

v′∈V
ft|vt(v

′)−
∑

v′∈V
µt|vt(v

′)

)2

= 1>Ct|vt1.

For active search, we use this criterion in a greedy sequen-
tial selection manner for exploration scoring, as

st(v) =
√
RΣ
t|St −R

Σ
t+1|St∪{v} =

∑
v′ Ct(v, v

′)√
Ct(v, v) + σ2

n

=
1√

1 + σ2
n/σ2

t (v)
·
∑

v′∈V
ρt(v, v

′)σt(v
′), (8)

where the second equality is easily derived from (6). If we
ignore σn (set it to 0), the Σ-optimality criterion (8) consid-
ers the sum of a node’s correlation times standard deviation
of all nodes on the graph. High score nodes by this criterion
are likely to provide rich information for exploration.

We propose three exploitation-exploration style algorithms
with exploration criteria motivated by Σ-optimality, which
are vanilla Σ-optimality and its two variants with an ad-
ditional parameter k that we will describe next. All algo-
rithms select the next node to query by the general rule (7),
but use different exploration terms:

GP-SOPT (Vanilla Σ-Optimality):

st(v) =
1√

1 + σ2
n/σ2

t (v)
·
∑

v′∈V
ρt(v, v

′)σt(v
′). (9.a)

GP-SOPT.TT (Thresholded Total Covariance):

st(v) = min

(
kσt(v),

∑

v′∈V
ρt(v, v

′)σt(v
′)

)
. (9.b)

GP-SOPT.TOPK (Top-k Covariance):

st(v) := max
B⊂V,|B|=k

∑

v′∈B
ρt(v, v

′)σt(v
′). (9.c)

As one can see in Figure 2(b), the nodes selected by vanilla
GP-SOPT indeed reside in more central parts of the toy
graph than the nodes selected by its competitor. In a large
graph with many peripheral nodes, we believe that the im-
proved exploration criteria of GP-SOPT and its variants
contribute to a better recall rate of search targets in real
graphs in Section 5.

545

×

×

×

×X
×X

1
2

3

4

5

6

7

8 910

11

12

13

14

15

16
17

(a) Choices from UCB

×X

×X
×X

×

×X
1

2

3

4

5

6

7

8 910

11

12

13

14

15

16
17

(b) Choices by our algorithm

Figure 2: For the toy graph example, choices from (a) direct application of UCB (Vanchinathan et al., 2013; Valko et al.,
2014) versus (b) our vanilla GP-SOPT. We observe that our method (b) tends to select more from cluster centers, which
helps reduce variance of the unobserved values/rewards, whereas previous literature (a) tends to select the graph periphery.

The reason we propose the latter two variants, (9.b) and
(9.c), is to both address proof difficulties and increase prac-
tical robustness. By Lemma 3 in Appendix A, we have that
st(v) ≥ σt(v) for both criteria, meaning that st(v) main-
tains the UCB property. Note that the observation noise,
σn, is also dropped from (9.b) and (9.c). As we will show in
our theoretical analysis, we put a threshold in (9.b) against
kσt(v), where k is a tuning parameter, in order to explicitly
control the regret of the algorithm. As implied by Lemma 4
in Appendix A, the Top-k Covariance criterion (9.c) is also
always upper-bounded by kσt(v).

In the next two subsections we discuss in more details the
properties of various exploration criteria, and present our
theoretical analysis.

4.1 DISCUSSIONS

Our approach and two other popular criteria, information
gain from Srinivas et al. (2012) and V-optimality of Ji and
Han (2012), can also be connected by functions of the
eigenvalues of the covariance matrix at each iteration.

To see this connection, assume the updated covariance ma-
trix at iteration (t + 1) has eigen-decomposition Ct =∑n
j=1 λt,(j)qt,(j)q

>
t,(j), where λt = (λt,(1), . . . , λt,(n))

>

represents the eigenvalues and {qt,(j) : j = 1, . . . , n} is
the set of corresponding eigenvectors. Assume the eigen-
values are sorted by λt,(1) ≥ . . . ≥ λt,(n) ≥ 0. We hope to
connect st(v) to the following spectral difference,

∆ht(v) = h
(
λt
)
− h
(
λt+1|v

)
(10)

where h(λ) : Rn → R is a multivariate function defined on
the eigenvalues. Further, by the one-step update rule of (6),
Ct has Loewner order as C0 � C1 � . . . � CT � 0. It
is thus often desirable to require h(·) to be monotone with
respect to this ordering, i.e. Ct � Ct′ ⇒ h(λt) ≥ h(λt′).

Case 1. h(λ) =
∑
j log(λ(j)). Then, ∆ht(v) =

2It(f ; y(v)) = log(1 +
σ2
t (v)
σ2
n

), twice the information gain
from f ∼ N (µt,Ct) to N (µt+1|v,Ct+1|v). This metric

is important to GP-UCB (Srinivas et al., 2012), which set
st(v) = σt(v) and used the inequality, log(1+

σ2
m

σ2
n

)
σ2
t (v)
σ2
m
≤

log(1 +
σ2
t (v)
σ2
n

), where σm = maxv,t σt(v), in its proofs.

Case 2. h(λ) =
∑
j λ(j) gives ∆ht(v) = tr(Ct) −

tr(Ct+1|v) = ‖ct(v)‖22/(σ2
t (v)+σ2

n). For σn = 0, ∆ht(v) is
used as the greedy V-optimal criterion for design of exper-
iments by Ji and Han (2012).

Case 3. h(λ) = λ(1) connects to the greedy design for
E-optimality (Pukelsheim, 1993). To some extent, it is
also related to greedy Σ-Optimality. First, approximate
∆ht(v) by ∂λ(j) = q>(j)∂(C)q(j) around C = Ct, as

∆ht(v) ≈ q>t,(1)(Ct−Ct+1|v)qt,(1) =

(|ct(v)>qt,(1)|√
σt(v)2 + σ2

n

)2

The above resembles (8) if qt,(1) ∝ 1, which holds true for
t = 0 and ω0 = 0 and approximately so for small ts.

In all these cases, exploration is measured by how much the
objective, h(λT), is eventually decreased after T iterations.
Each definition of h(λt) aggregates the eigenvalues of the
posterior covariance matrices in a different way, which af-
fects the relative importance of large and small eigenvalues.
In Case 1, since ∂ log(λ)

∂λ = 1
λ , the same change introduced

to a smaller λ will have a relatively larger impact on the
objective. Such an effect is not evident in the other two
cases. Particularly in Case 3, changes to small eigenvalues
are ignored unless they become the largest eigenvalue.

Establishing biases to penalize larger eigenvalues more has
the benefit of improving global robustness because the pos-
terior marginal variance of every node is upper-bounded by
λt,(1). Compared with Cases 2 and 3, Case 1 is more sensi-
tive to changes in small eigenvalues, which may be another
explanation of GP-UCB’s strong tendency to select periph-
eral nodes, as seen in Figure 4 of Krause et al. (2008) or
Figure 1(d) of Gotovos et al. (2013).

Although Algorithm 1 is not built around the concept of
functions on eigenvalues, it still establishes strong biases
to penalize large eigenvalues in its initial explorations, per

546

analysis in Case 3. Note that Σ-optimality achieves a more
complex goal than E-optimality; exact execution of E-
optimality may over-simplify the model and select nodes
between clusters for separation rather than inside them.

4.2 REGRET ANALYSIS

We present an UCB-style analysis for GP-SOPT.TT and
GP-SOPT.TOPK. We combine several results on GP opti-
mization (Srinivas et al., 2012; Vanchinathan et al., 2013)
and the spectral bandit analysis (Valko et al., 2014). As in
these results, our regret bounds depend on the mutual in-
formation between f and the observed values yS at a set S
of nodes:

I(yS ; f) := H(yS)−H(yS | f), (11)

where H(·) denotes the entropy. If f is drawn from a
GP with observation noise distributed independently as
N (0, σn), the mutual information has the following ana-
lytical form:

I(yS ; f) = I(yS ; fS) =
1

2
log |I+σ−2

n CvSvS |. (12)

Let

γT := max
S∈V,|S|=T

1

2
log |I + σ−2

n CvSvS |, (13)

i.e., the maximum information about f gained by observ-
ing T function evaluations. The regrets of our algorithms
depend on the growth rate of γT , which can be linear in
T for arbitrary graphs. However, real-world graphs often
possess rich structures, such as clusters or communities,
and practical measures of relevance are often highly corre-
lated with these structures, resulting in slowly-growing γT .
To formalize this intuition, we follow Valko et al. (2014) to
consider the effective dimension:

d∗T := max

{
i | λi ≤

σ−2
n T

(i− 1) log(1 + T
σ2
nω0

)

}
, (14)

where λi is the ith smallest eigenvalue of L̃0 and λ1 = ω0.
The effective dimension is small when the first few λi’s
are small and the rest increase rapidly, as is often the case
for graphs with community or cluster structures. On the
contrary, if all the eigenvalues are close to ω0, then d∗T may
be linear in T . The following lemma bounds γT in terms
of d∗T :

Lemma 1. Let T be the total number of rounds. Then

γT ≤ 2d∗T log

(
1 +

T

σ2
nω0

)
.

Proof. By Lemma 7.6 of Srinivas et al. (2012) and the fact
that λ−1

i is the ith largest eigenvalue of the kernel C0 =

L̃−1

0 , we have

γT ≤ max
{mi}Ti=1,mi≥0,∑T

i=1mi=T

T∑

i=1

log

(
1 +

mi

σ2
nλi

)
. (15)

Then by applying the same argument that proves Lemma 6
of Valko et al. (2014), we obtain the desired result.

We will then derive regret bounds in terms of γT .

Recall the cumulative regret of an active search algorithm
is defined as RT :=

∑T
t=1 f(v∗t) − f(vt), where {vt}Tt=1

is the sequence of unique nodes selected by the algorithm.
For the two proposed UCB-style algorithms, GP-SOPT.TT
(9.b) and GP-SOPT.TOPK (9.c), we give the following
bounds on their cumulative regrets.
Theorem 2. Pick δ ∈ (0, 1). Assume the vector of true
node values, f , has bounded quadratic norm, ‖f‖L̃0

=√
f>L̃0f ≤ B,2 and the observation noise εt is zero-mean

conditioned on the past and is bounded by σn almost surely.
If GP-SOPT.TT and GP-SOPT.TOPK use GRF prior (4) with
zero-mean and graph Laplacian L̃0, the observation noise

modelN (0, σ2
n), and αt :=

√
2B + 300γt log3(t/δ), then

their cumulative regrets will satisfy

Pr({RT ≤ k
√
c1TαT γT ∀T ≥ 1}) ≥ 1− δ,

where the randomness is over the observation noise and
c1 := 8/ω0

log(1+σ−2
n)

. This implies that with high probability,

RT = O(k
√
T (B

√
d∗T + d∗T)).

This result is easily derived from the regret analysis of the
GP-SELECT algorithm proposed by Vanchinathan et al.
(2013) because the exploration terms used by GP-SOPT.TT
and GP-SOPT.TOPK both satisfy σt(v) ≤ st(v) ≤ kσt(v),
thereby maintaining the UCB property. Although our regret
bound is k times worse than the GP-SELECT bound, the
actual regret tends to behave more favorably as we observe
in our experiments that after a few tens of rounds, st(v) be-
comes smaller than kσt(v) for almost all unqueried nodes,
and the two proposed algorithm usually outperforms GP-
SELECT. We give the proof in Appendix B for complete-
ness.3

5 EXPERIMENTS

We conduct experiments on three graph data sets that were
studied by Wang et al. (2013) and a version of the Enron
e-mail data by Priebe et al..

2This is similar to a bounded RKHS norm with kernel C0 in
Srinivas et al. (2012).

3An earlier version of this paper follows on to discuss bounds
on vanilla GP-SOPT. These proofs used strategies from Contal
et al. (2014) which were found to be incorrect. Therefore, they
have been removed in the current version of the paper.

547

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

R
ec

al
l

Fraction of data queried

GP−SELECT
GP−SOPT.TT
GP−SOPT
GP−SOPT.TOPK
Wang et al., 2013
Random

(a) 5000 Populated Places

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

R
ec

al
l

Fraction of data queried

GP−SELECT
GP−SOPT.TT
GP−SOPT
Wang et al., 2013
Random

(b) Wikipedia

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
ec

al
l

Fraction of data queried

GP−SELECT
GP−SOPT.TT
GP−SOPT
Wang et al., 2013
Random

(c) Citation Network

Figure 3: Recall vs. fraction of data queried

5.1 Three Graph Datasets of Wang et al. (2013)

We briefly summarize the datasets below.

5000 Populated Places. The nodes of this graph are 5000
concepts in the DBpedia4 ontology marked as populated
places. Each place is supported by a Wikipedia page, and
an undirected edge is created between two places if either
one of their two Wikipedia pages links to the other. There
can be multiple edges between two places. The DBpedia
ontology divides populated places into five categories: ad-
ministrative regions, countries, cities, towns and villages.
The 725 administrative regions are selected as our target
class while all the others are considered to be in null class.

Citation Network. This dataset consists of 14,117 papers
in top Computer Science venues available on citeseer. The
graph is created by adding an undirected edge between two
papers if either one cites the other. The 1844 NIPS papers
are chosen as our target class.

Wikipedia Pages on Programming Languages. A to-
tal of 5,271 Wikipedia pages related to programming lan-
guages are the nodes of this graph, and an undirected edge
exists between two pages if they are linked together. Wang
et al. (2013) performed topic modeling and chose the 202
pages related to objective oriented programming as our tar-
get class.

As demonstrated by Wang et al. (2013), the three graphs
and their target label distributions exhibit qualitative differ-
ences and thus serve as good benchmarks. The citation net-
work has many small components and target nodes appear
in many of them, while the Wikipedia graph has large hubs
and most target nodes reside in one of them. The graph of
populated places lies in between these two extremes, with
components of various sizes containing target nodes.

On all of the three data sets we compare two of the pro-
posed methods: GP-SOPT.TT and GP-SOPT against GP-
SELECT (GP-UCB without replacement) and the active

4www.dbpedia.org

search algorithm (AS-on-Graph) by Wang et al. (2013).
We only evaluate GP-SOPT.TOPK on the 5000 popu-
lated places data due to its heavy computation. For
each dataset we perform 5 independent runs, each with
a randomly chosen target node as the warm start seed.
For the proposed methods and GP-SELECT, the main
tuning parameters are the exploration-exploitation trade-
off parameter αt and the observation noise variance σ2.
For GP-SOPT.TT and GP-SOPT.TOPK there is addition-
ally the thresholding parameter k. We consider the
following values for them. Populated Places: αt ∈
{4, 2, 1, 0.1, 0.01, 0.001}, σ2 ∈ {1, 0.5, 0.25, 0.1} and k ∈
{200, 400, 800}. Wikipedia: αt ∈ {0.1, 0.01, 0.001},
σ2 ∈ {1, 0.5, 0.25, 0.1} and k ∈ {200, 400, 800}. Cita-
tion Network: αt ∈ {1, 10−1, 10−2, 10−3, 10−4}, σ2 ∈
{1, 0.5, 0.25, 0.1} and k ∈ {400, 800, 1600}. Although
in theory αt should be iteration-dependent, we find that a
fixed value often performs well in practice. On all data
sets we set the kernel regularization parameter ω0 = 0.01.
Wang et al. (2013) algorithm has several parameters, and
we only tune the exploration-exploitation trade-off param-
eter α. It is set to 0.1 on Populated Places and Citation
Network, and 0.0001 on Wikipedia, which are the best per-
forming values. Other parameters are set based on Wang
et al. (2013).

Results are in Figure 3, where we plot the recall, i.e., the
fraction of targets found by the algorithms, versus the frac-
tion of the whole data set queried. More specifically, for
each algorithm we obtain its mean recall curve over the top
15% (except for Wang et al. (2013)) parameter combina-
tions in each experiment, as judged by the area under the
recall curve. We then plot the median, maximum and min-
imum over the five runs in Figure 3.

The three proposed methods clearly outperform Wang et al.
(2013) and GP-SELECT on Populated Places, while all
methods perform equally well on Wikipedia. We think this
has to do with the underlying graph structure and target
distribution. As mentioned before, target nodes in the Pop-
ulated Places graph are spread over sub-graphs of various

548

sizes, and therefore exploration strategies do make a dif-
ference. We observe that the proposed methods tend to se-
lect high-degree nodes in the first few iterations, thereby
gaining much information, while GP-SELECT initially se-
lects low-degree nodes. In contrast, most target nodes in
the Wikipedia graph reside in one large component, and
therefore less exploration is needed. In fact, the best values
for αt are very small, suggesting that an exploitation-only
strategy is good enough for this data. On Citation Network,
most methods perform well except that GP-SELECT per-
forms quite poorly in one run. This may again indicate
GP-SELECT is less robust against low-degree nodes.

5.2 Enron E-mails

We experimented on the Enron e-mail data set5 with topics
assigned by Priebe et al. based on the annotations by Berry
and Browne. We further processed the dataset into a format
suitable for active search experiments as detailed below.
Each e-mail i is represented by a unique Unix time stamp
ti, a unique sender index and the set of receiver (excluding
self-copying) indices, which are collectively denoted as Ui.
Between e-mails i and j, we created an edge with the fol-
lowing weight:
Aij := exp

(
−(ti − tj)2/τ2

)
· |Ui ∩ Uj |/

√
|Ui||Uj |,

where τ = 12 weeks in seconds and |Ui| denotes the size
of Ui. We thus measure pairwise similarity among e-mails
by the product of nearness in time and degree of overlap
between users involved. The resulting e-mail graph has
20,112 nodes, and we chose the subset of 803 e-mails that
are assigned topic 16 in LDC topics5, which is related to the
downfall of Enron, to be the target class in this experiment.

Due to the size of the dataset, we only compared three
methods: GP-SOPT.TT, GP-SELECT and Wang et al.
(2013) in three independent runs each initialized with a tar-
get node chosen uniformly at random. We also limited the
tuning parameters to be the following fixed values across
the three runs: (k, α, σ2, ω0) = (800, 0.001, 0.05, 0.01)
for GP-SOPT.TT, (α, σ2, ω0) = (0.01, 0.05, 0.01) for GP-
SELECT, and α = 0.001 for Wang et al. (2013). These val-
ues were chosen based on a coarse parameter search to be
indicative of the performance of each method on this data
set. Results are in Figure 4, which shows GP-SOPT.TT is
more stable across initial seeds than the other methods, and
outperforms Wang et al. (2013) significantly at early itera-
tions.

6 CONCLUSION AND DISCUSSIONS

In this paper, we discuss active search on a graph with
known structure. Each node bears a reward, which is un-
known at first but can be noisily observed upon query. An

5Available at http://cis.jhu.edu/˜parky/Enron/
execs.email.linesnum.ldctopic

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
ec

al
l

Fraction of data queried

GP−SELECT
GP−SOPT.TT
Wang et al., 2013
Random

Figure 4: Enron: recall vs. fraction of data queried

active search algorithm aims to accumulate as large a sum
of rewards from the queried nodes as possible under limited
budgets. We assume that the node rewards vary smoothly
along the graph.

Popular Bayesian UCB-style algorithms (Srinivas et al.,
2012; Vanchinathan et al., 2013; Valko et al., 2014) use the
marginal standard deviation as their exploration criterion,
leading to the undesirable tendency of selecting peripheral
nodes on a graph. Instead, we consider Σ-optimality on
graphs, which can more efficiently reduce the variance of
the reward function estimate by sampling cluster centers.
We show the advantage of our method in experiments with
real graphs and provide a theoretical guarantee on the cu-
mulative regret.

One interesting future direction is deriving tighter regret
bounds for the proposed methods that match their empirical
performances. We imagine it may be possible to bound
the regret directly by the difference in Σ-optimality (Bayes
survey risks, RΣ), which may have better properties than
differential information gain, γT on graphs.

An equally interesting question is the selection of graph
kernels. Our discussions and experiments mainly con-
sider Gaussian random fields with unnormalized Laplacian,
which is a very popular kernel choice. It is worthwhile to
explore active search with other graph kernels, such as the
ones discussed in Smola and Kondor (2003).

Acknowledgement

This work was funded in part by DARPA grant
FA87501220324.

A Predictive Covariance Matrix

Lemma 3. For augmented graph Laplacian, the posterior
covariance matrix, Ct(v, v′) ≥ 0,∀v, v′.

Proof. Let hk =
∑t
τ=1 evτ (vk) to be the count of queries

on node k; further define its diagonal matrix, H =

549

diag(h1, . . . , hn). We rewrite (5) as,

(Ct)
−1 = (C0)−1 + σ−2

n H = D−A + ω0I + σ−2
n H

Define Dt = D + ω0I + σ−2
n H, we have

Ct = (Dt −A)−1 = D
− 1

2
t

(∞∑

k=0

(
D
− 1

2
t AD

− 1
2

t

)k
)
D
− 1

2
t ,

where the right hand side is always nonnegative.

The convergence of ‖D−
1
2

t AD
− 1

2
t ‖2 < 1 is as follows.

Define the components for the posterior as Dt =

diag(d
(t)
1 , . . . , d

(t)
n with d(t) =

∑n
i=1 d

(t)
i . Also, define

for the prior model D = diag(d
(0)
1 , . . . , d

(0)
n with d(0) =∑n

i=1 d
(0)
i .

The following holds for any v ∈ Rn,

v>D
− 1

2
t AD

− 1
2

t v =
∑

ij

vivjaij√
d

(t)
i

√
d

(t)
j

≤

√√√√√

∑

ij

v2
i aij

d
(t)
i

∑

ij

v2
jaij

d
(t)
j

 =

∑

i

v2
i

di

d
(t)
i

≤ ‖v‖22.

Further, both equalities cannot hold simultaneously, be-
cause for the first equality to hold, it is required that
v2i aij

d
(t)
i

∝ v2jaij

d
(t)
j

, i.e., v2
j ∝ d

(t)
j ,∀j in the same connected

component, which then dictates that,

∑

i

v2
i

di

d
(t)
i

=
∑

i

(
d

(t)
i

d(t)
‖v‖22

)
di

d
(t)
i

=
d(0)

d(t)
‖v‖22 < ‖v‖22.

Lemma 4. The diagonal elements in Ct is always no
smaller than the off-diagonal elements, i.e., σt(v)2 =
Ct(v, v) ≥ Ct(v, v′),∀v, v′.

Proof. Without loss of generality, let v be the last index of
Ct = (L̃0 + σ−2

n H)−1. For simplicity, let L̃t = L̃0 +
σ−2
n H and it has the following matrix partition,

L̃t =

(
L̃v̄v̄

˜̀
v̄v

˜̀>
v̄v

˜̀
vv

)
,

where v̄ is the complement of v. From Woodbury matrix
inversion lemma, we have

Ct = L̃−1

t =

(
M − 1

m L̃−1

v̄v̄
˜̀
v̄v

− 1
m

˜̀>
v̄vL̃

−1

v̄v̄
1
m

)
, (16)

where m = ˜̀
vv − ˜̀>

v̄vL̃
−1

v̄v̄
˜̀
v̄v and M = L̃−1

v̄v̄ +
1
m L̃−1

v̄v̄
˜̀
v̄v

˜̀>
v̄vL̃

−1

v̄v̄ . To show that Ct(v, v) ≥ Ct(v, v
′), we

need to verify that (−L̃−1

v̄v̄
˜̀
v̄v)v′ ≤ 1.

In fact, since L̃t is diagonally dominant, we have L̃t1n ≥
0. Take its first n − 1 rows to get L̃v̄v̄ · 1n−1 + ˜̀

v̄v ≥ 0.

Notice L̃v̄v̄ is also a valid augmented graph Laplacian. By
Lemma 3, we could left multiply the element-wise nonneg-
ative matrix L̃−1

v̄v̄ to both sides to obtain, 1n−1+L̃−1

v̄v̄
˜̀
v̄v ≥

0, which completes our proof for any v′ ∈ v̄.

B Active Search Regret Bound

We start by stating the following result.

Theorem 5 (Theorem 6, Srinivas et al. (2012)). Let
δ ∈ (0, 1). Assume the observation noises are uniformly
bounded by σn and f has RKHS norm B with kernel
C0, which is equivalent to f>L̃0f ≤ B2. Define αt =√

2B2 + 300γt log(t/δ)3, then

Pr (∀t,∀v ∈ V, |µt(v)− f(v)| ≤ αt+1σt(v)) ≥ 1− δ.

We use this result to bound our instantaneous regrets.

Lemma 6. Conditioned on the high-probability event in
Theorem 5, the following bound holds:

∀t, rt := f(v∗t)− f(vt) ≤ 2αtkσt−1(vt),

where v∗t is the node with the t-th globally largest function
value and vt is node selected at round t.

Proof. At round t there are two possible situations. If v∗t
was picked at some earlier round, the definition of v∗t im-
plies that there exists some t′ < t such that v∗t′ has not been
picked yet. According to our selection rule, the fact that
st(v) ≥ σt(v), and Theorem 5, the following holds:

µt−1(vt) + αtst−1(vt) ≥ µt−1(v∗t′) + αtst−1(v∗t′)

≥ µt−1(v∗t′) + αtσt−1(v∗t′) ≥ f(v∗t′) ≥ f(v∗t).

If v∗t has not been picked yet, a similar argument gives

µt−1(vt)+αtst−1(vt) ≥ µt−1(v∗t)+αtst−1(v∗t) ≥ f(v∗t).

Thus we always have

f(v∗t) ≤ µt−1(vt) + αtst−1(vt)

≤ f(vt) + αtσt−1(v − t) + αtst−1(vt)

≤ f(vt) + 2αtkσt−1(vt).

Lemma 7 (Lemma 5.4, Srinivas et al. (2012)). Let αt be
defined as in Theorem 5 and c1 be defined as in Theorem
2. Conditioned on the high probability event of Theorem 5,
the following holds:

∀T ≥ 1,
T∑

t=1

r2
t ≤ αT k2c1I(yvT ; fvT) ≤ αT k2c1γT .

Finally, the Cauchy-Schwarz inequality gives RT ≤√
T
∑T
t=1 r

2
t ≤ k

√
Tc1αT γT .

550

References

Peter Auer. Using confidence bounds for exploitation-
exploration trade-offs. The Journal of Machine Learning
Research, 3:397–422, 2003.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps
and spectral techniques for embedding and clustering. In
NIPS, volume 14, pages 585–591, 2001.

Michael W. Berry and Murray Browne. The 2001
annotated (by topic) Enron email data set. URL
http://cis.jhu.edu/˜parky/Enron/Anno_
Topic_exp_LDC.pdf.

Sébastien Bubeck, Gilles Stoltz, Csaba Szepesvári, and
Rémi Munos. Online optimization in X-armed bandits.
In Advances in Neural Information Processing Systems,
pages 201–208, 2009.

Emile Contal, Vianney Perchet, and Nicolas Vayatis. Gaus-
sian process optimization with mutual information. In
Proceedings of the 31st International Conference on Ma-
chine Learning (ICML-14), pages 253–261, 2014.

Dennis D Cox and Susan John. Sdo: A statistical method
for global optimization. Multidisciplinary design opti-
mization: state of the art, pages 315–329, 1997.

Varsha Dani, Thomas P Hayes, and Sham M Kakade.
Stochastic linear optimization under bandit feedback. In
COLT, pages 355–366, 2008.

Roman Garnett, Yamuna Krishnamurthy, Xuehan Xiong,
Jeff Schneider, and Richard Mann. Bayesian optimal ac-
tive search and surveying. In ICML, 2012.

Alkis Gotovos, Nathalie Casati, Gregory Hitz, and Andreas
Krause. Active learning for level set estimation. In Pro-
ceedings of the Twenty-Third international joint confer-
ence on Artificial Intelligence, pages 1344–1350. AAAI
Press, 2013.

Ming Ji and Jiawei Han. A variance minimization criterion
to active learning on graphs. In AISTAT, 2012.

Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal.
Multi-armed bandits in metric spaces. In Proceedings of
the fortieth annual ACM symposium on Theory of com-
puting, pages 681–690. ACM, 2008.

Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-
optimal sensor placements in Gaussian processes: The-
ory, efficient algorithms and empirical studies. Jour-
nal of Machine Learning Research (JMLR), 9:235–284,
February 2008.

Yifei Ma, Roman Garnett, and Jeff Schneider. Σ-optimality
in active learning on Gaussian random fields. In NIPS,
2013.

Carey E. Priebe, John M. Conroy, David J. Marchette,
and Youngser Park. Scan statistics on Enron
graphs. URL http://cis.jhu.edu/˜parky/
Enron/enron.html.

Friedrich Pukelsheim. Optimal design of experiments, vol-
ume 50. siam, 1993.

Carl Edward Rasmussen and Christopher KI Williams.
Gaussian processes for machine learning, volume 1.
MIT press Cambridge, MA, 2006.

Herbert Robbins. Some aspects of the sequential design of
experiments. In Herbert Robbins Selected Papers, pages
169–177. Springer, 1985.

Burr Settles. Active learning literature survey. University
of Wisconsin, Madison, 52(55-66):11, 2010.

Alexander J. Smola and Risi Kondor. Kernels and regu-
larization on graphs. In COLT/Kernel, pages 144–158,
2003.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and
Matthias Seeger. Information-theoretic regret bounds for
gaussian process optimization in the bandit setting. In-
formation Theory, IEEE Transactions on, 58(5):3250–
3265, 2012.

Joshua B Tenenbaum, Vin De Silva, and John C Langford.
A global geometric framework for nonlinear dimension-
ality reduction. Science, 290(5500):2319–2323, 2000.

Michal Valko, Rémi Munos, Branislav Kveton, and Tomáš
Kocák. Spectral bandits for smooth graph functions.
In 31th International Conference on Machine Learning,
2014.

Hastagiri P Vanchinathan, Andreas Marfurt, Charles-
Antoine Robelin, Donald Kossmann, and Andreas
Krause. Adaptively selecting valuable diverse sets via
Gaussian processes and submodularity. In NIPS Work-
shop on Discrete and Combinatorial Problems in Ma-
chine Learning (DISCML) 2013: Theory and Applica-
tions, 2013.

Xuezhi Wang, Roman Garnett, and Jeff Schneider. Ac-
tive search on graphs. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 731–738. ACM, 2013.

Xiaojin Zhu, Zoubin Ghahramani, John Lafferty, et al.
Semi-supervised learning using gaussian fields and har-
monic functions. In ICML, volume 3, pages 912–919,
2003a.

Xiaojin Zhu, John Lafferty, and Zoubin Ghahramani. Com-
bining active learning and semi-supervised learning us-
ing gaussian fields and harmonic functions. In ICML
2003 workshop on the continuum from labeled to unla-
beled data in machine learning and data mining, pages
58–65, 2003b.

551

Off-policy learning based on weighted importance sampling
with linear computational complexity

A. Rupam Mahmood Richard S. Sutton
Reinforcement Learning and Artificial Intelligence Laboratory

Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8 Canada

Abstract

Importance sampling is an essential component
of model-free off-policy learning algorithms.
Weighted importance sampling (WIS) is gener-
ally considered superior to ordinary importance
sampling but, when combined with function ap-
proximation, it has hitherto required computa-
tional complexity that is O(n2) or more in the
number of features. In this paper we introduce
new off-policy learning algorithms that obtain
the benefits of WIS with O(n) computational
complexity. Our algorithms maintain for each
component of the parameter vector a measure of
the extent to which that component has been used
in previous examples. This measure is used to
determine component-wise step sizes, merging
the ideas of stochastic gradient descent and sam-
ple averages. We present our main WIS-based
algorithm first in an intuitive acausal form (the
forward view) and then derive a causal algorithm
using eligibility traces that is equivalent but more
efficient (the backward view). In three small
experiments, our algorithms performed signifi-
cantly better than prior O(n) algorithms for off-
policy policy evaluation. We also show that our
adaptive step-size technique can also improve
the performance of on-policy algorithms such as
TD(�) and true online TD(�).

1 Weighted importance sampling for
off-policy Monte Carlo estimation

In off-policy learning problems, an agent learns about a
policy while its experience is generated by following a
different policy. A Monte Carlo technique known as im-
portance sampling (Kahn & Marshall 1953, Rubinstein
1981) is often used to resolve this mismatch in policies
(Sutton & Barto 1998, Dann, Neumann & Peters 2014,
Geist & Scherrer 2014). One of the most effective variants

of importance sampling is weighted importance sampling
(WIS), which often gives much lower variance than the or-
dinary form of importance sampling and is generally pre-
ferred due to its superior empirical performance (Hester-
berg 1988, Precup, Sutton & Singh 2000, Shelton 2001, Liu
2001, Robert & Casella 2004, Koller & Friedman 2009).

Parametric function approximation is widely used and
viewed as essential for large-scale reinforcement learning
applications. However, only recently has WIS been ex-
tended to this more general setting. Mahmood, van Hasselt
and Sutton (2014) have recently developed WIS-LSTD(�),
which extends WIS from tabular off-policy learning to lin-
ear function approximation and eligibility traces. However,
WIS-LSTD(�) is a least-squares algorithm that involves a
matrix inversion in its update, the computational complex-
ity of which scales O(n3) in the number of features. In
large-scale applications, O(n) algorithms, such as stochas-
tic gradient descent, temporal-difference (TD) learning,
and its gradient-based variants, are often preferred.

WIS has not yet been extended to O(n) algorithms. Mod-
ern off-policy algorithms with O(n) computational com-
plexity, such as GTD(�) (Maei 2011), GQ(�) (Maei &
Sutton 2010), and true online GTD(�) (van Hasselt, Mah-
mood & Sutton 2014), all use the ordinary variant of impor-
tance sampling and can suffer severely due to the problem
of large variance (Defazio & Graepel 2014).

In this work, we take several steps to bridge the gap be-
tween the Monte Carlo estimator WIS and O(n) off-policy
algorithms with function approximation. The key to this
endeavor is to relate stochastic gradient descent (SGD) to
simple Monte Carlo estimators such as the sample average.
We realize that there is a missing link in that, when the
function approximation setting reduces to the tabular set-
ting, SGD does not reduce to the sample average estimator.
This is not unique to off-policy learning, and the relation-
ship is missing even in the on-policy setting. Our first key
step is to develop a new SGD that bridges this gap in an on-
policy supervised-learning setting. Using insights from this
step, we subsequently develop O(n) off-policy algorithms
based on WIS in a general reinforcement learning setting.

552

2 Sample averages and stochastic gradient
descent

In this section, we investigate the relationship between the
sample average estimator and SGD. We first show that SGD
does not reduce to the sample average estimator in the
fully-representable case also known as the tabular repre-
sentation. Then we propose a modification to SGD and
show that it achieves the sample average estimator when
the feature representation is tabular.

The sample average is one of the simplest Monte Carlo es-
timators. In order to introduce it, consider that data arrives
as a sequence of samples Yk 2 R drawn from a fixed distri-
bution. The goal of the learner is to estimate the expected
value of the samples, v

.
= EEE [Yk]. The sample average es-

timator V̂t+1 for data given up to time t can be defined and
incrementally updated in the following way:

V̂t+1
.
=

Pt
k=1 Yk

t
= V̂t +

1

t

⇣
Yt � V̂t

⌘
; V̂1

.
= 0. (1)

In the incremental update, 1
t can be viewed as a form of

step size, modulating the amount of change made to the
current estimate, which decreases with time in this case. In
the parametric function approximation case, we have to go
beyond sample average and use stochastic approximation
methods such as SGD.

To introduce SGD, we use a supervised-learning setting
with linear function approximation. In this setting, data
arrives as a sequence of input-output pairs (Xk, Yk), where
Xk takes values from a finite set X and Yk 2 R. The
learner observes a feature representation of the inputs,
where each input is mapped to a feature vector �k

.
=

�(Xk) 2 Rn. The goal of the learner is to estimate the
conditional expectation of Yk for each unique input x 2 X
as a linear function of the features: ✓>�(x) ⇡ v(x)

.
=

EEE [Yk|Xk = x]. SGD incrementally updates the parameter
vector ✓ 2 Rn at each time step t in the following way:

✓t+1
.
= ✓t + ↵t

�
Yt � ✓>t �t

�
�t, (2)

where ↵t > 0 is a scalar step-size parameter, which is often
set to a small constant. The per-update time and memory
complexity of SGD is O(n).

Linear function approximation includes tabular representa-
tions as a special case. For example, if the feature vectors
are |X |-dimensional standard basis vectors, then each fea-
ture uniquely represents an input, and the feature represen-
tation becomes tabular.

We are interested in finding whether SGD degenerates to
sample average when the linear function approximation
setting reduces to the tabular setting. Both incremental up-
dates are in a form where the previous estimate is incre-
mented with a product of an error and a step size. In the

SGD update, the product also has the feature vector as a
factor, but in the tabular setting it simply selects the input
for which an update is made.

A major difference between SGD and sample average is the
ability of SGD to track under non-stationarity through the
use of a constant step size. Typically, the step size of SGD
is set to a constant value or decreased with time, where
the latter does not work well under non-stationarity but is
similar to how sample average works. While we attempt
to accommodate sample average estimation more closely
within SGD, it is also desirable to retain the tracking ability
of SGD.

SGD clearly cannot achieve sample average with a constant
step size. On the other hand, if we set the step-size parame-
ter in the SGD update as ↵t = 1

t , the SGD update still does
not subsume the sample average. This is because, in the
SGD update (2), time t is the total number of samples seen
so far, whereas, in the sample average update (1), it is the
number of samples seen so far only for one specific input.

We take two important steps to bridge the gap between the
sample average update and the SGD update. First, we ex-
tend the sample average estimator to incorporate tracking
through recency weighting, where the amount of weight
assigned to the recent samples is modulated by a scalar
recency-weighting constant. This new recency-weighted
average estimator subsumes sample average as a special
case and hence unifies both tracking and sample averag-
ing. Second, we propose a variant of SGD that reduces
to recency-weighted average in the tabular setting and still
uses only O(n) per-update memory and computation.

Our proposed recency-weighted average estimator can be
derived by minimizing an empirical mean squared objec-
tive with recency weighting:

Ṽt+1
.
= arg min

v

1

t

tX

k=1

(1� ⌘)t�k (Yk � v)
2
; 0 ⌘ < 1.

Here, the recency-weighting constant ⌘ exponentially
weights the past observations down and thus gives more
weight to the recent samples. When ⌘ = 0, all samples
are weighted equally. The recency-weighted average can
be defined and incrementally updated as follows:

Ṽt+1 =

Pt
k=1(1�⌘)t�kYkPt

k=1(1�⌘)t�k
= Ṽt+

1

Ũt+1

⇣
Yt�Ṽt

⌘
, (3)

Ũt+1
.
= (1� ⌘)Ũt + 1; Ũ1

.
= 0, Ṽ1

.
= 0. (4)

It is easy to see that the recency-weighted average is an
unbiased estimator of v. Moreover, when ⌘ = 0, it reduces
to the sample average estimator.

Now, we propose a modified SGD in the supervised-
learning setting that for tabular representation reduces to
the recency-weighted average. The updates are as follows:

553

ut+1
.
= (1� ⌘�t � �t) � ut + �t � �t, (5)

↵t+1
.
= 1↵ ut+1, (6)

✓t+1
.
= ✓t +↵t+1 �

�
Yt � ✓>t �t

�
�t, (7)

where ⌘ � 0 is the recency-weighting factor, � is
component-wise vector multiplication, ↵ is component-
wise vector division where a division by zero results in
zero, and 1 2 Rn is a vector of all ones. Here, ↵t+1 2 Rn

is a vector step-size parameter, set as the vector division
of 1 by ut+1 2 Rn, which parallels Ũ of the recency-
weighted average. We call u the usage vector, as it can
be seen as an estimate of how much each feature is “used”
over time by the update. We call this algorithm the usage-
based SGD (U-SGD). Replacing a division by zero with
zero in the step-size vector amounts to having no updates
for the corresponding component. This makes sense be-
cause a zero in any component of u can occur only at the
beginning when u is initialized to zero and the correspond-
ing feature has not been activated yet. Once a feature is
nonzero, the corresponding component of ↵ becomes pos-
itive and, with sufficiently small ⌘, it always remains so.

In the following theorem, we show that U-SGD reduces to
recency-weighted average in the tabular setting and hence
is a generalization of the sample average estimator as well.

Theorem 1 (Backward consistency of U-SGD with sam-
ple average). If the feature representation is tabular, the
vectors u and ✓ are initially set to zero, and 0 ⌘ < 1,
then U-SGD defined by (5)-(7) degenerates to the recency-
weighted average estimator defined by (3) and (4), in the
sense that each component of the parameter vector ✓t+1 of
U-SGD becomes the recency-weighted average estimator
of the corresponding input.

(Proved in Appendix A.1).

3 WIS and off-policy SGD

In this section, we carry over weighted importance sam-
pling (WIS) to off-policy SGD, drawing from the ideas de-
veloped in the previous section. We introduce two new off-
policy SGD algorithms based on WIS. The first one sub-
sumes WIS fully but does not lead to an O(n) implemen-
tation, whereas the other algorithm is more amenable to an
efficient implementation.

First we introduce both the ordinary importance sampling
(OIS) and WIS. Importance sampling is a technique for es-
timating an expectation under one distribution using sam-
ples drawn from a different distribution. OIS estimates the
expectation by forming a special kind of sample average.
Consider that samples Yk 2 R are drawn from a sample dis-
tribution l, but the goal of the learner is to estimate the ex-
pectation vg

.
= EEEg [Yk] under a different distribution g. OIS

estimates vg by scaling each sample Yk by the importance-
sampling ratio Wk

.
= g(Yk)

l(Yk) and forming a sample average
estimate of the scaled samples:

Ṽt+1
.
=

Pt
k=1 WkYk

t
= Ṽt +

1

t

⇣
WtYt � Ṽt

⌘
; Ṽ1

.
= 0.

WIS, on the other hand, estimates vg by forming a weighted
average estimate of the original samples. Its definition and
incremental update are as follows:

V̂t+1
.
=

Pt
k=1 WkYkPt

k=1 Wk

= V̂t +
1

Ût+1

Wt

⇣
Yt � V̂t

⌘
,

Ût+1
.
= Ût + Wt; Û1

.
= 0, V̂1

.
= 0.

If there is no discrepancy between the sample and the tar-
get distribution, then Wk = 1, 8k, and both OIS and WIS
become equivalent to the sample average estimator.

We derive the recency-weighted WIS as a solution to a mean
squared objective with recency weighting and additionally
importance sampling:

V̄t+1
.
= arg min

v

1

t

tX

k=1

(1� ⌘)t�kWk (Yk � v)
2
; 0 ⌘ < 1,

=

Pt
k=1(1� ⌘)t�kWkYkPt

k=1(1� ⌘)t�kWk

.

It is easy to see that, when ⌘ = 0, the recency-weighted
WIS estimator reduces to WIS. Recency-weighted WIS can
be updated incrementally in the following way:

V̄t+1 = V̄t +
1

Ūt+1
Wt

�
Yt � V̄t

�
; V̄1

.
= 0, (8)

Ūt+1
.
= (1� ⌘)Ūt + Wt; Ū1

.
= 0. (9)

Now we introduce two variants of SGD based on WIS in a
more general off-policy reinforcement learning setting with
linear function approximation. In this setting, a learning
agent interacts with an environment by taking an action
Ak 2 A in a state of the environment Sk 2 S on each
time step k. Here A and S are considered finite. Upon
taking an action, the agent receives a scalar reward Rk+1

and transitions to state Sk+1. Instead of observing the
states directly, the agent observes a feature representation
of the states where each state is mapped to a feature vec-
tor �k

.
= �(Sk) 2 Rn. In an off-policy policy-evaluation

problem, the agent takes actions based on a fixed behavior
policy b(·|Sk). The goal is to estimate v⇡(s) (the expected
sum of the future discounted reward when starting in s and
following ⇡) as a linear function of the features:

✓>�(s) ⇡ v⇡(s)
.
=EEE [Gk|Sk = s, Ai ⇠⇡(·|Si), 8i] ,

Gk
.
=
1X

i=k

Ri+1

iY

j=k+1

�(Sj),

554

where ✓ 2 Rn is the parameter vector to learn, and �k
.
=

�(Sk) 2 [0, 1] denotes a state-dependent discounting. In
a general value-function setting, such state-dependent dis-
counting can be used to denote termination in a state s by
setting �(s) = 0 (Sutton et al. 2011).

In order to learn ✓model-free from samples, we need to use
an importance sampling technique since the behavior pol-
icy and the target policy can be different. Given a partial
trajectory from time k to t + 1: Sk, Ak, Rk+1, · · · , St+1,
the importance-sampling ratio ⇢t+1

k is defined as the likeli-
hood ratio of this trajectory starting at Sk under the target
policy and the behavior policy:

⇢t+1
k

.
=

Qt
i=k p(Si+1|Si, Ai)⇡(Ai|Si)Qt
i=k p(Si+1|Si, Ai)b(Ai|Si)

=

tY

i=k

⇡(Ai|Si)

b(Ai|Si)

=
tY

i=k

⇢i; ⇢i
.
= ⇢i+1

i ,

where p is the state-transition probability function. The
value v⇡(s) can be estimated using returns scaled by the
corresponding importance-sampling ratios. Consider that
data is available up to step t + 1 and no termination or dis-
counting occurs by that time. A return originating from
state Sk can be approximated by using a full discounting at
the final step: �t+1 = 0. Then a flat truncated return can be
defined as (Sutton et al. 2014):

Gt+1
k

.
=

tX

i=k

Ri+1.

When the states are visible and the number of states are
small, the value v⇡(s) for each state s can be estimated
using importance sampling such as OIS, WIS or recency-
weighted WIS by setting Yk

.
= Gt+1

k and Wk
.
= ⇢t+1

k .

Now, we propose the first off-policy SGD based on WIS,
which we call WIS-SGD-1. With 0 k < t + 1 and
✓t

0
.
= ✓0, 8t, the following updates define WIS-SGD-1:

ut+1
k+1

.
= (1� ⌘�k � �k) � ut+1

k + ⇢t+1
k �k � �k, (10)

↵t+1
k+1

.
= 1↵ ut+1

k+1, (11)

✓t+1
k+1

.
= ✓k +↵t+1

k+1 � ⇢t+1
k

�
Gt+1

k � �>k ✓t+1
k

�
�k. (12)

Similar to U-SGD, WIS-SGD-1 maintains a vector step
size through the update of a usage vector, which in this
case also includes the importance-sampling ratios. Unlike
U-SGD, the parameters of WIS-SGD-1 use two time in-
dices. The time index in the subscript corresponds to the
time step of the prediction, and the time index in the su-
perscript stands for the data horizon. In the following, we
show that WIS-SGD-1 reduces to recency-weighted WIS,
and hence to WIS as well, in the tabular setting.

Theorem 2 (Backward consistency of WIS-SGD-1 with
WIS). If the feature representation is tabular, the vectors

u and ✓ are initially set to zero, and 0 ⌘ < 1, then
WIS-SGD-1 defined by (10)-(12) degenerates to recency-
weighted WIS defined by (8) and (9) with Yk

.
= Gt+1

k

and Wk
.
= ⇢t+1

k , in the sense that each component of
the parameter vector ✓t+1

t+1 of WIS-SGD-1 becomes the
recency-weighted WIS estimator of the corresponding in-
put. (Proved in Appendix A.2.)

Now we focus on whether and how WIS-SGD-1 can be im-
plemented efficiently. The updates as defined above cannot
be computed in O(n) per time step. An update for step k
requires computing an importance-sampling ratio and a flat
truncated return that are available only at t + 1 > k. It
can be computed by looking ahead into the future from k,
but then the update becomes acausal. It can alternatively be
computed by waiting until time t + 1 and iterating for each
k. But then the update made at t + 1 becomes expensive,
scaling linearly with t, that is, O(tn).

Such updates, where samples are available in future from
the time step when the update is made, are often known
as forward-view updates (Sutton & Barto 1998). Forward-
view updates are typically expensive, but for some forward-
view updates it is possible to derive causal and efficient
updates, known as backward-view updates, that compute
exactly the same estimate at each time step. Classically
these equivalences were achieved for offline updating. Van
Seijen and Sutton (2014) showed that such equivalences
can also be achieved in the online case.

Converting a forward-view update into an efficient
backward-view update depends on combining the extra
data available at t + 1 with the current estimate ✓t

t in an
efficient way to give the next estimate ✓t+1

t+1 . For linear
recursive updates, it is tantamount to unrolling both ✓t+1

t+1

and ✓t
t and expressing their difference in a form that can

be computed efficiently. It is often not possible to achieve
such efficient backward-view updates, and we believe WIS-
SGD-1 is one such case.

To appreciate why an efficient backward-view update of
WIS-SGD-1 is not plausible, consider the update of ✓t

t un-
rolled back to the beginning of time:

✓t
t =

�
I� ⇢t

t�1(↵
t
t � �t�1)�

>
t�1

�
✓t

t�1 + ⇢t
t�1G

t
t�1�t�1

=
t�1Y

k=0

�
I� ⇢t

k(↵t
k+1 � �k)�>k

�
✓t

0

+
t�1X

k=0

⇢t
kGt

k

t�1Y

j=k+1

�
I� ⇢t

j(↵
t
j+1 � �j)�

>
j

�
�k.

In order to obtain ✓t+1
t+1 by combining the new data �t and

Rt+1 with ✓t
t , it is evident that each of the ⇢t

k(↵t
k+1 �

�k)�>k terms in the first product needs to be replaced by
⇢t+1

k (↵t+1
k+1 � �k)�>k , which is unlikely to be achieved in

an inexpensive way. This problem does not appear in previ-
ous algorithms with online equivalence such as true online

555

TD(�) (van Seijen & Sutton 2014) or true online GTD(�)
(van Hasselt, Mahmood & Sutton 2014), because the terms
involved in the product of the unrolled update in those al-
gorithms do not involve forward-view terms, that is, they
contain ⇢k and ↵k+1 in those products instead of ⇢t+1

k and
↵t+1

k+1. This specific problem with WIS-SGD-1 is due to
the fact that the error of the update in (12) is multiplied by
the forward-view terms ⇢t+1

k and ↵t+1
k+1.

The observation we made in the above leads us to develop
a second off-policy SGD. In this algorithm, first we replace
the forward-view term ↵t+1

k+1 from the update of ✓ with
↵k+1

k+1. Second, instead of multiplying the terms in the error
Gt+1

k ��>k ✓t+1
k with the same forward-view term ⇢t+1

k , we
multiply the first term Gt+1

k by ⇢t+1
k and the second term

�>k ✓
t+1
k by ⇢k. To account for this discrepancy, we add two

more terms in the error, and the resultant error of the new
update becomes ⇢t+1

k Gt+1
k �⇢t+1

k �>k ✓
k�1
k�1 +⇢k�

>
k ✓

k�1
k�1�

⇢k�
>
k ✓

t+1
k . Here, the first two terms are approximating the

WIS-SGD-1 error ⇢t+1
k

�
Gt+1

k � �>k ✓t+1
k

�
, whereas the

last two terms are adding a bias. Although this new algo-
rithm no longer reduces to WIS in the tabular setting, it is
developed based on WIS and still retains the main ideas be-
hind recency-weighted WIS. Hence, we call this algorithm
WIS-SGD-2. The following updates define WIS-SGD-2,
with 0 k < t + 1:

ut+1
k+1

.
= (1� ⌘�k � �k) � ut+1

k + ⇢t+1
k �k � �k, (13)

↵k+1
.
= 1↵ uk+1

k+1, (14)

�t+1
k

.
= ⇢t+1

k Gt+1
k � ⇢t+1

k �>k ✓k�1

+ ⇢k�
>
k ✓k�1 � ⇢k�

>
k ✓

t+1
k , (15)

✓t+1
k+1

.
= ✓t+1

k +↵k+1 � �t+1
k �k. (16)

Here, ✓k
.
= ✓k

k , and ✓�1 = 0. It can be easily verified
that, in the on-policy case, WIS-SGD-2 degenerates to U-
SGD and hence retains the backward consistency with the
sample average estimator.

Although this algorithm has much more plausibility of hav-
ing an efficient backward view due to the careful modifica-
tions, it is not yet immediately clear how such a backward-
view update can be obtained. Van Hasselt, Mahmood and
Sutton (2014) introduced an online equivalence technique
from which both true online TD(�) and true online GTD(�)
can be derived. Their technique requires the target in the
error to have a specific recurrence relation. Unfortunately,
that specific relation does not hold for the target in WIS-
SGD-2. A new technique is needed in order to derive an
efficient backward view for WIS-SGD-2.

4 A new online equivalence technique

In this section, we introduce a new technique for deriv-
ing efficient backward views from online forward-view up-
dates. We show that this technique subsumes the existing

technique for online equivalences (van Hasselt, Mahmood
& Sutton 2014). The following theorem describes the new
online equivalence technique (Proved in Appendix A.3).

Theorem 3 (Online equivalence technique). Consider any
forward view that updates toward an interim scalar target
Y t

k with

✓t+1
k+1

.
= Fk✓

t+1
k + Y t+1

k wk + xk, 0 k < t + 1,

where ✓t
0

.
= ✓0 for some initial ✓0, and both Fk 2 Rn⇥n

and wk 2 Rn can be computed using data available at
k. Assume that the temporal difference Y t+1

k � Y t
k at k is

related to the temporal difference at k + 1 as follows:

Y t+1
k � Y t

k = dk+1

�
Y t+1

k+1� Y t
k+1

�
+ btgk

t�1Y

j=k+1

cj , 0 k < t,

where bk, ck, dk and gk are scalars that can be com-
puted using data available at time k. Then the final
weight ✓t+1=̇✓

t+1
t+1 can be computed through the following

backward-view updates, with e�1
.
= 0, d0

.
= 0, and t � 0:

et
.
= wt + dtFtet�1,

✓t+1
.
= Ft✓t + (Y t+1

t � Y t
t)et + Y t

t wt + btFtdt + xt,

dt+1
.
= ctFtdt + gtet.

This equivalence technique allows producing backward
views that contain a dutch trace e (van Hasselt et al. 2014)
and an extra set of weights d known as provisional weights
(Sutton et al. 2014) at the same time. In previous works
(Sutton et al. 2014, Mahmood et al. 2014), the provisional
weights appeared only in offline updates. Due to this online
equivalence technique, this is the first time the provisional
weights have emerged in online updates.

In the following theorem, we show that the new equiva-
lence technique is a generalization of the existing equiv-
alence technique developed by van Hasselt et al. (2014).
Hence, it readily follows that the existing algorithms with
an online equivalence, such as true online TD(�) and true
online GTD(�), can be derived using the new equivalence
technique. The proof is given in Appendix A.4.

Theorem 4 (Generality of the new equivalence technique).
The online equivalence technique by van Hasselt et al.
(2014, Theorem 1) can be retrieved as a special case of
the online equivalence technique given in Theorem 3.

5 A new off-policy TD(�) based on WIS

In this section, we develop a new off-policy algorithm that
generalizes WIS-SGD-2 to partial termination and boot-
strapping. Then we use the new online equivalence tech-
nique to derive an equivalent O(n) backward-view up-
date. We use a state-dependent bootstrapping parameter
�k

.
= �(Sk) 2 [0, 1] in developing the new algorithm.

556

First, we construct the target, and then we define a new
update for the usage vector u in this more general setting.

Based on the general off-policy forward view by Sutton et
al. (2014), we combine truncated returns Gt+1

k and trun-
cated corrected returns Gt+1

k + �>t+1✓t scaled by corre-
sponding weights due to discounting, bootstrapping and
importance sampling to develop an overall return:

G⇢
k,t+1

.
=⇢kCt

k

⇣
(1� �t+1)G

t+1
k +�t+1

�
Gt+1

k + �>t+1✓t

�⌘

+
tX

i=k+1

⇢kCi�1
k

⇣
(1� �i)G

i
k+�i(1� �i)

�
Gi

k + �>i ✓i�1

�⌘

� ⇢k

Ct

k +
tX

i=k+1

Ci�1
k (1� �i�i)� 1

!
�>k ✓k�1, (17)

where Ct
k

.
=
Qt

j=k+1 �j�j⇢j , ✓k
.
= ✓k

k , 0 k < t + 1
and ✓�1 = 0. It can be readily verified that, when no
bootstrapping is used, that is, �k = 1, 8k and discount-
ing occurs only at the data horizon t + 1, that is, �0 =
�1 = · · · = �t = 1 and �t+1 = 0, then G⇢

k,t+1 =

⇢t+1
k Gt+1

k � ⇢t+1
k �>k ✓k�1 + ⇢k�

>
k ✓k�1. Hence G⇢

k,t+1

is a strict generalization of the WIS-SGD-2 target to the
state-dependent discounting and bootstrapping.

The usage vector u of the WIS-SGD algorithms rescales
the components of the parameter updates in order to
clamp down the updates proportionally when they be-
come large due to large importance-sampling ratios. How-
ever, when bootstrapping is used, larger trajectories are
given smaller weights, and hence their corresponding
importance-sampling ratios will have less severe effect on
the updates. For example, when full bootstrapping is used,
that is, �k = 0, 8k, the overall return becomes G⇢

k,t+1 =

⇢k

�
Rk+1 + �k+1�

>
k+1�k

�
, with an importance-sampling

ratio of a one-transition long trajectory. In such cases, up-
dating u with the importance-sampling ratio of the full tra-
jectory ⇢t+1

k is unnecessary. Hence, the amount of impor-
tance weighting in u at each step should be modulated by
the amount of discounting and bootstrapping.

Based on the overall return in (17) and the idea of dis-
counting and bootstrapping-aware update of u discussed
above, we propose a new off-policy TD algorithm based on
WIS, which we call WIS-TD(�). It consists of the following
forward-view updates:

⇢̃t+1
k

.
= ⇢k

tX

i=k+1

Ci�1
k (1� �i�i) + ⇢kCt

k; ⇢̃t
t

.
= 0, (18)

ut+1
k+1

.
= (1� ⌘�k � �k) � ut+1

k + ⇢̃t+1
k �k � �k, (19)

↵k+1
.
= 1↵ uk+1

k+1, (20)

✓t+1
k+1

.
= ✓t+1

k +↵k+1 �
⇣
G⇢

k,t+1� ⇢k�
>
k ✓

t+1
k

⌘
�k. (21)

It can be easily verified that, when no bootstrapping is used,
that is, �k = 1, 8k and discounting occurs only at the data

horizon t + 1, that is, �0 = �1 = · · · = �t = 1 and
�t+1 = 0, then ⇢̃t+1

k = ⇢t+1
k , and we already showed that

the target of WIS-TD(�) G⇢
k,t+1 reduces to the WIS-SGD-

2 target in this case. Hence, WIS-TD(�) subsumes WIS-
SGD-2, establishing a direct backward consistency to sam-
ple average.

In the following, we apply the new online equivalence tech-
nique to the above forward-view update to derive an O(n)
backward-view update computing the same parameter vec-
tor ✓t at each t. For that, first we derive an O(n) backward-
view update for the step size that computes the same ↵t as
in the above algorithm at each t.
Theorem 5 (Backward view update for↵t of WIS-TD(�)).
The step-size vector ↵t computed by the following
backward-view update and the forward-view update de-
fined by (18) – (20) are equal at each step t:

ut+1
.
= (1� ⌘�t � �t) � ut + ⇢t�t � �t

+ (⇢t � 1)�t�t (1� ⌘�t � �t) � vt, (22)
vt+1

.
= �t�t⇢t (1� ⌘�t � �t) � vt + ⇢t�t � �t, (23)

↵t+1
.
= 1↵ ut+1. (24)

(Proved in Appendix A.5.)

Now, we derive an O(n) backward-view update that com-
putes the same ✓t

t as the above forward view.
Theorem 6 (Backward view update for ✓t

t of WIS-TD(�)).
The parameter vector ✓t computed by the following
backward-view update and the parameter vector ✓t

t com-
puted by the forward-view update defined by (17) and (21)
are equal at every time step t:

et
.
= ⇢t↵t+1 � �t

+ �t�t⇢t

�
et�1 � ⇢t (↵t+1 � �t)�

>
t et�1

�
, (25)

✓t+1
.
= ✓t +↵t+1 � ⇢t

�
✓>t�1�t � ✓>t �t

�
�t

+ (Rt+1 + �t+1✓
>
t �t+1 � ✓>t�1�t)et

+ (⇢t � 1)�t�t

�
dt � ⇢t (↵t+1 � �t)�

>
t dt

�
, (26)

dt+1
.
= �t�t⇢t

�
dt � ⇢t (↵t+1 � �t)�

>
t dt

�

+
�
Rt+1 + ✓>t �t+1 � ✓>t�1�t

�
et. (27)

(Proved in Appendix A.6.)

The overall backward view of WIS-TD(�) is defined by
(22) – (27), and its complete description is given in Ap-
pendix A.7. Note that, Theorem 6 does not depend on how
↵t+1 is set. The per-update time and memory complex-
ity of WIS-TD(�) is O(n). An auxiliary parameter vector
might be included in WIS-TD(�) by making use of the xk

vector of the online equivalence technique as was done by
van Hasselt et al. (2014), but we do not explore this possi-
bility here.

A seemingly related algorithm is fLSTD-SA (Prashanth,
Korda & Munos 2014), which is an on-policy stochas-
tic approximation method derived based on the on-policy

557

LSTD algorithm (Bradtke & Barto 1996) by randomizing
the transition samples. One might speculate whether an
O(n) off-policy stochastic-approximation algorithm based
on WIS can be derived from WIS-LSTD(�) by applying the
techniques used in fLSTD-SA. However, the application of
fLSTD-SA in the off-policy case does not appear to achieve
any form of WIS. Updating a vector step size based on the
usage of the features and importance-sampling weights is a
distinctive aspect of our new algorithm and is essential for
obtaining the benefits of WIS, which is absent in existing
stochastic-approximation methods.

6 Extending existing algorithms based on
the new adaptive step size

The vector step-size adaptation based on the update of the
usage vector u is only loosely coupled with WIS-TD(�)
and can be freely combined with existing off-policy al-
gorithms as well as the on-policy ones. When combined
with the existing algorithms, this step-size adaptation is ex-
pected to yield benefits due to the rescaling it performs ac-
cording to the magnitude of importance-sampling weights
and the frequency of feature activation.

We propose two new off-policy algorithms: WIS-GTD(�)
and WIS-TO-GTD(�), based on GTD(�) (Maei 2011) and
true online GTD(�) (van Hasselt et al. 2014), respectively.
In both algorithms, we propose replacing the scalar step
size of the main parameter vector with the vector step size
according to (22) – (24). The scalar step-size parameter
of the auxiliary parameter vector of GTD(�) and true on-
line GTD(�) could also be replaced with the vector step
size with a different recency-weighting factor, but we leave
it out here. The descriptions of these two algorithms are
given in Appendix A.7.

We propose two new on-policy algorithms: usage-based
TD(�) (U-TD(�)) and usage-based true online TD(�) (U-
TO-TD(�)), by combining the vector-step-size adaptation
with two existing on-policy algorithms: TD(�) (Sutton &
Barto 1998) and true online TD(�) (van Seijen & Sutton
2014), respectively. There are interesting interrelationships
between these on-policy and off-policy algorithms. For ex-
ample, WIS-GTD(�) becomes equivalent to U-TD(�) in
the on-policy case when the second step-size parameter
� = 0. On the other hand, WIS-TD(�) directly degener-
ates to U-TO-TD(�) in the on-policy case, whereas WIS-
TO-GTD(�) reduces to U-TO-TD(�) in the on-policy case
with � = 0. We provide the description of U-TD(�) and
U-TO-TD(�) in Appendix A.7.

7 Experimental results

In this section we evaluate the new algorithms using two
sets of experiments with off-policy and on-policy policy-
evaluation tasks, respectively. Source code for both the

off-policy and on-policy experiments are available online1.
In the first set of experiments, we compared the new off-
policy algorithms: WIS-TD(�), WIS-GTD(�) and WIS-
TO-GTD(�) with two existing O(n) algorithms: GTD(�)
and true online GTD(�) (TO-GTD(�)), and with two least
squares algorithms: LSTD-TO(�), an off-policy algorithm
proposed by Dann, Neumann and Peters (2014), and WIS-
LSTD(�), an ideal extension of WIS. For evaluation, we
created three off-policy policy-evaluation tasks.

The first task was constructed based on a random-walk
Markov chain where the states can be imagined to be laid
out on a horizontal line. There were 11 non-terminal states
and two terminal states: on the left and the right ends of
the chain. From each non-terminal state, there were two
actions available: left, leads to the state to the left, and
right, leads to the state to the right. The initial state was
always set to the state in the middle of the chain. The re-
ward was sparse: 0 for all transitions except for the right-
most transition to the terminal state, where it was +1. The
behavior policy was uniformly random between the two ac-
tions and the target policy chose right with 0.99 proba-
bility. No discounting was used. The feature vectors were
binary representations of state indices. For 11 non-terminal
states, each feature vector was of length blog2(11)c+ 1 =
4, and these vectors for the states from left to right were
(0, 0, 0, 1)>, (0, 0, 1, 0)>, (0, 0, 1, 1,)>, · · · , (1, 0, 1, 1)>.
The features were all zero for the terminal states.

The second and the third tasks were constructed using ran-
domly generated MDPs. We represent a randomly gen-
erated MDP as (N, m, b,�) where N and m stand for
the number of states and actions, respectively, and b is a
branching factor denoting the number of next states for a
given state-action pair. Here, � 2 RN⇥N is a diagonal
matrix where the entries are the state-dependent discount-
ing �(·) for each state. We use such a state-dependent
discounting to denote termination under the target policy
while experience continues seamlessly under the behav-
ior policy. For each state, the next b states were chosen
from total N states randomly without replacement, and the
transition probabilities were generated by partitioning the
unit interval at b � 1 cut points which were selected uni-
formly randomly from [0, 1]. The rewards for a transition
from a state-action pair to the next state were selected uni-
formly randomly from [0, 1] and kept deterministic. The
behavior policy probabilities for different actions in a par-
ticular state were set using uniform random numbers from
[10�15, 1 + 10�15] and normalized to sum to one. The tar-
get policy is much less stochastic: one of the actions in a
particular state is chosen to have probability 0.99 and the
rest of the actions are equiprobable.

1Source code for off-policy experiments is available at http:
//github.com/armahmood/wis-td-experiments
and for on-policy experiments at http://github.com/
armahmood/usage-td-experiments.

558

TO-GTD

GTD

WIS-LSTD

WIS-GTD

W
IS

-T
O-

GT
D

WIS-TD

�

2. Randomly generated MDP: (10 states)

WIS-LSTD

WIS-GTD

TO-GTD

GTD

WIS-TO-GTD
WIS-TD

�

3. Randomly generated MDP: (100 states)

TO-GTD

GTD

WIS-GTD

WIS-TO-GTD

W
IS

-T
D

WIS-LSTD

NMSE

�

1. Random walk: (11 states)

LSTD-TO

LSTD-TO

LSTD-TO

Figure 1: Empirical comparison of the new WIS-based O(n) algorithms with two existing O(n) algorithms and two LSTD
algorithms on three off-policy policy-evaluation tasks. Performance is shown in the empirical normalized MSE (NMSE)
measured by averaging over 50 independent runs and 100 episodes for the first task, 500 steps for the second, and 5000
steps for the third. The new WIS-based algorithms performed significantly better than both existing O(n) algorithms in all
three off-policy tasks and competitively with one of the LSTD algorithms.

We constructed the second task by randomly generating an
MDP with parameters (10, 3, 3,�), where �(·) = 0 for 2
randomly chosen states to denote termination under the tar-
get policy and �(·) = 0.99 for the rest of the 8 states. For
the third task, we randomly generated an MDP with pa-
rameters (100, 3, 10,�), where �(·) = 0 for 5 randomly
chosen states and �(·) = 0.99 for the rest. The feature vec-
tors were binary representations of the indices of all states
including those for which �(·) = 0. In these two tasks, the
feature vectors were normalized to have unit length.

We tested all algorithms for different values of constant �,
from 0 to 0.9 in steps of 0.1 and from 0.9 to 1.0 in steps
of 0.01. The first step-size parameter ↵ of GTD(�) and
TO-GTD(�) was varied by powers of 10 with powers cho-
sen from �3 to 0 in steps of 0.25. The second step-size
parameter � of both algorithms was varied among values
[0, 0.001, 0.01, 0.1]. The initial value u0 of the components
of the usage vector u for WIS-TD(�), WIS-GTD(�) and
WIS-TO-GTD(�) was varied by powers of 10 with powers
chosen from 0 to 3 in steps of 0.25. The recency-weighting
factor ⌘ of the same algorithms was set as ⌘ = µ/u0, where
µ was varied among values [0, 0.001, 0.01, 0.1, 1]. The
second step-size parameter � for WIS-GTD(�) and WIS-
TO-GTD(�) was set to zero. The matrix to be inverted
in LSTD-TO(�) and WIS-LSTD(�) was initialized to ✏I,
where ✏ was varied by powers of 10 with powers chosen
from �3 to +3 in steps of 0.2. The initial parameter vector
✓0 was set to 0.

Performance was measured as the empirical mean squared
error (MSE) between the estimated values of the states
and their true values under the target policy projected to
the space spanned by the given features. The error was
weighted according to the state-visitation distribution un-
der the behavior policy. As the scale of this MSE mea-
sure can vary between these tasks, we normalized it by

the squared weighted L2 norm of the projected true value,
which is equivalent to the MSE under ✓ = 0. As a re-
sult, the initial normalized MSE (NMSE) for each algo-
rithm was 1. For each run, we averaged this error over 100
episodes measured at the end of each episode for the first
task, over 500 steps for the second task, and over 5000 steps
for the third. We produced the final estimate by further av-
eraging over 50 independent runs.

Figure 1 shows the empirical performance together with
the standard error on the three off-policy policy-evaluation
tasks with respect to different � and optimized over all
other parameters. In all three tasks, the new algorithms
significantly outperformed both GTD(�) and TO-GTD(�)
indicating the effectiveness of the adaptive vector step size
in retaining the advantage of WIS. The new algorithms also
performed competitively with LSTD-TO(�) in all tasks.
Among the new algorithms, WIS-GTD(�) had superior
performance with large values of �.

We also studied the sensitivity of the new algorithms with
respect to their parameters. Although these algorithms re-
place the scalar constant step-size parameter of their base
learner with an adaptive vector step size based on feature
usage, the estimate of the usage depends on two new pa-
rameters: the initial value u0 and the recency weighting
constant ⌘. The initial value u0 of the usage vector can
be interpreted as the inverse of the initial step size, and its
tuning can be as extensive as that of the scalar step-size
parameter in other algorithms. On the other hand, ⌘ can be
viewed as the desired final step size. As a result, their prod-
uct µ = u0⌘ is unit free and requires less rigorous tuning.

In our final set of experiments, we compared the new O(n)
on-policy algorithms: U-TD(�) and U-TO-TD(�), with
two O(n) on-policy algorithms: TD(�) with accumulating
traces and true online TD(�), which we call TO-TD(�).

559

TO-TD

�

2. Randomly generated MDP: (100 states)

U-TO-TD

U-TD

TD

�

NM
SE

U-TO-TD

TO-TD

U-TD

TD
1. Randomly generated MDP: (10 states)

Figure 2: Empirical comparison of the new O(n) usage-
based algorithms with two existing O(n) TD algorithms
on on-policy policy-evaluation tasks. Performance is mea-
sured in empirical normalized MSE (NMSE).

We used randomly generated MDPs to produce two on-
policy policy-evaluation tasks. As the TD algorithms
here estimate state-value functions, it sufficed to con-
struct Markov Reward Processes (MRPs), which we ob-
tained by choosing the number of actions m to be 1 in
both tasks. Our first task used an MDP with 10 states:
(10, 1, 3, 0.99I) and the second task used an MDP with 100
states: (100, 1, 10, 0.99I). The feature vectors were binary
representations of the state indices as in the off-policy tasks
and were normalized to have unit length.

For each task, the performance of each algorithm was mea-
sured for different parameter values. For TD(�) and TO-
TD(�), the scalar step-size parameter ↵was varied by pow-
ers of 10 with powers chosen from�3 to 1 in steps of 0.25.
For U-TD(�) and U-TO-TD(�), the parameter u0 was var-
ied by powers of 10 with powers chosen from �1 to 3 in
steps of 0.25. The rest of the parameters for all four al-
gorithms were varied using the same values as in the off-
policy tasks. Performance was measured using NMSE as
in the off-policy tasks. For each run, we averaged this er-
ror over 100 steps for the first task and 1000 steps for the
second. The final estimate is produced again by averaging
over 50 independent runs.

Figure 2 shows the performance on both tasks for different
� with the rest of the parameters optimized. Left plot cor-
responds to MDP (10, 1, 3, 0.99I) and the right plot corre-
sponds to MDP (100, 1, 10, 0.99I). On both tasks, the new
algorithms performed significantly better than their base
learning algorithms for higher values of � and performed
equally well for the smaller ones. The standard error in
each case was smaller than the width of the curves shown.
This set of experiments suggests that the step-size adapta-
tion based on the usage of features can be useful in both
off-policy and on-policy tasks.

8 Discussion and Conclusions

Weighted importance sampling (WIS), one of the most ef-
fective variants of importance sampling, has long been ne-

glected in off-policy learning with parametric function ap-
proximation. Recently introduced WIS-LSTD(�) extends
WIS to linear function approximation and eligibility traces
but is O(n3) in computational complexity in the number of
features. In this paper, we took this endeavor one step fur-
ther and carried over much of the benefit of WIS to O(n)
off-policy algorithms. In the process, we developed modifi-
cations of stochastic gradient descent that are more closely
related to sample averages. This endeavor also resulted in
developing a new online equivalence technique for deriv-
ing causal efficient updates from acausal intuitive updates,
which was deemed essential for achieving O(n) updates for
our new algorithms. On three off-policy policy-evaluation
experiments, the new algorithms outperformed the existing
O(n) off-policy algorithms and performed competitively
with LSTD-TO(�).

An intriguing outcome of our work is an adaptive vector
step size that is updated based on the usage of features,
which has emerged naturally from our goal to incorporate
the sample average within SGD. It is distinct from the ex-
isting adaptive step-size algorithms but not the only possi-
ble one that can achieve a Monte Carlo equivalence. An
interesting direction for future work would be to explore
the other possible variants. Although beyond the scope
of this work, it is interesting to investigate how the in-
sights from the new step-size adaptation idea can be in-
corporated in existing step-size adaptation algorithms such
as Autostep (Mahmood et al. 2012), vSGD (Schaul et al.
2013) or Adam (Kingma et al. 2014). Convergence anal-
ysis of the new algorithms is another interesting direction
for future work.

Acknowledgements

The authors thank Hado van Hasselt, Joseph Modayil,
Marlos C. Machado and Huizhen Yu for fruitful discus-
sions that helped improve the quality of this work. This
work was supported by grants from Alberta Innovates –
Technology Futures, the National Science and Engineer-
ing Research Council of Canada, and the Alberta Innovates
Centre for Machine Learning.

References

Bradtke, S. J., Barto, A. G. (1996). Linear least-squares
algorithms for temporal difference learning. Machine
Learning, 22:33–57.

Dann, C., Neumann, G., Peters, J. (2014). Policy evalua-
tion with temporal differences: a survey and comparison.
Journal of Machine Learning Research, 15:809–883.

Defazio, A., Graepel, T. (2014). A comparison of learning
algorithms on the Arcade Learning Environment. arXiv
preprint arXiv:1410.8620.

560

Geist, M., Scherrer, B. (2014). Off-policy learning with
eligibility traces: A survey. Journal of Machine Learning
Research, 15:289–333.

Hesterberg, T. C. (1988), Advances in Importance Sam-
pling, Ph.D. Dissertation, Statistics Department, Stan-
ford University.

Kahn, H., Marshall, A. W. (1953). Methods of reducing
sample size in Monte Carlo computations. In Journal of
the Operations Research Society of America, 1(5):263–
278.

Kingma, D. P., Ba, J. (2014). Adam: A method for stochas-
tic optimization. arXiv:1412.6980.

Koller, D., Friedman, N. (2009). Probabilistic Graphical
Models: Principles and Techniques. MIT Press, 2009.

Liu, J. S. (2001). Monte Carlo Strategies in Scientific Com-
puting. Berlin, Springer-Verlag.

Maei, H. R., Sutton, R. S. (2010). GQ(�): A general gradi-
ent algorithm for temporal-difference prediction learning
with eligibility traces. In Proceedings of the Third Con-
ference on Artificial General Intelligence, pp. 91–96. At-
lantis Press.

Maei, H. R. (2011). Gradient Temporal-Difference Learn-
ing Algorithms. PhD thesis, University of Alberta.

Mahmood, A. R., Sutton, R. S., Degris, T., Pilarski, P. M.
(2012). Tuning-free step-size adaptation. In Proceedings
of the 2012 IEEE International Conference on Acoustics,
Speech, and Signal Processing, pp. 2121–2124.

Mahmood, A. R., van Hasselt, H., Sutton, R. S. (2014).
Weighted importance sampling for off-policy learning
with linear function approximation. In Advances in
Neural Information Processing Systems 27, Montreal,
Canada.

Prashanth, L. A., Korda, N., Munos, R. (2014). Fast LSTD
using stochastic approximation: Finite time analysis and
application to traffic control. In Machine Learning and
Knowledge Discovery in Databases Springer, Lecture
Notes in Computer Science, 8725:66–81.

Precup, D., Sutton, R. S., Singh, S. (2000). Eligibility
traces for off-policy policy evaluation. In Proceedings of
the 17th International Conference on Machine Learning,
pp. 759–766. Morgan Kaufmann.

Robert, C. P., and Casella, G., (2004). Monte Carlo Statis-
tical Methods, New York, Springer-Verlag.

Rubinstein, R. Y. (1981). Simulation and the Monte Carlo
Method, New York, Wiley.

Schaul, T., Zhang, S., LeCun, Y. (2013). No more pesky
learning rates. In Proceedings of the 30th International
Conference on Machine Learning.

Shelton, C. R. (2001). Importance Sampling for Reinforce-
ment Learning with Multiple Objectives. PhD thesis,
Massachusetts Institute of Technology.

Sutton, R. S., Barto, A. G. (1998). Reinforcement Learn-
ing: An Introduction. MIT Press.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski,
P. M., White, A., Precup, D. (2011). Horde: A scalable
real-time architecture for learning knowledge from unsu-
pervised sensorimotor interaction. In Proceedings of the
10th International Conference on Autonomous Agents
and Multiagent Systems, pp. 761–768.

Sutton, R. S., Mahmood, A. R., Precup, D., van Hasselt,
H. (2014). A new Q(�) with interim forward view and
Monte Carlo equivalence. In Proceedings of the 31st In-
ternational Conference on Machine Learning, Beijing,
China.

van Hasselt, H., Mahmood, A. R., Sutton, R. S. (2014).
Off-policy TD(�) with a true online equivalence. In Pro-
ceedings of the 30th Conference on Uncertainty in Arti-
ficial Intelligence, Quebec City, Canada.

van Seijen, H., & Sutton, R. S. (2014). True online TD(�).
In Proceedings of the 31st International Conference on
Machine Learning. JMLR W&CP 32(1):692–700.

561

Impact of Learning Strategies on the Quality of Bayesian Networks:
An Empirical Evaluation

Brandon Malone
Max Planck Institute

for the Biology of Ageing

Matti Järvisalo and Petri Myllymäki
HIIT, Department of Computer Science,

University of Helsinki

Abstract

We present results from an empirical evalua-
tion of the impact of Bayesian network struc-
ture learning strategies on the learned structures.
In particular, we investigate how learning algo-
rithms with different optimality guarantees com-
pare in terms of structural aspects and gener-
alisability of the produced network structures.
For example, in terms of generalization to un-
seen testing data, we show that local search al-
gorithms often benefit from a tight constraint
on the number of parents of variables in the
networks, while exact approaches tend to ben-
efit from looser parent restrictions. Overall, we
find that learning strategies with weak optimality
guarantees show good performance on synthetic
datasets, but, compared to exact approaches, per-
form poorly on the more “real-world” datasets.
The exact approaches, which guarantee to find
globally optimal solutions, consistently general-
ize well to unseen testing data, motivating further
work on increasing the robustness and scalability
of such algorithmic approaches to Bayesian net-
work structure learning.

1 INTRODUCTION

This work focuses on the well-known problem of learning
the structure of a Bayesian network (BN) from data (Heck-
erman et al., 1995). The BN structure learning problem
(BNSL) is to find a BN structure which optimizes a de-
composable scoring function—typically, either a Bayesian
posterior probability such as the Bayesian Dirichlet (BD)
score or a penalized likelihood function. BNSL is NP-
hard (Chickering, 1996), which poses challenges for devel-
oping algorithmic solutions for this important problem.

Methods proposed for solving BNSL on real-world datasets
divide into approximate, local search methods, e.g., (Heck-
erman et al., 1995; Chickering, 2002; Teyssier and Koller,

2005; Tsamardinos et al., 2006), which do not offer qual-
ity guarantees (in terms of how well a given decom-
posable scoring function is optimized), and exact algo-
rithms (Ott and Miyano, 2003; Koivisto and Sood, 2004;
Silander and Myllymäki, 2006; Parviainen and Koivisto,
2009; de Campos and Ji, 2011; Yuan and Malone, 2013;
Bartlett and Cussens, 2013) which produce guaranteed op-
timal solutions with respect to the scoring function. Of-
ten, the local search methods are computationally effi-
cient, while the exact algorithms can require an exponential
amount of time (and in cases, even memory).

The score of a BN structure is ideally a reflection of how
well it models a training dataset. The general assumption
has been that networks which model the training data well
should also accurately reflect new data. However, it is well-
known that a model can describe a training set very well,
yet generalize poorly to new data (Mitchell, 1997). Thus,
there is no guarantee that a network which optimizes a
score for a training set will generalize well to new data.

There is currently no clear empirical evidence (for or
against) on whether the increased computational efforts re-
quired by exact approaches to BNSL are justifiable in terms
of performance of learned BNs on unseen testing data. All
in all, the relationship between the chosen learning algo-
rithm and the quality of the learned BN structures in terms
of generalisability is not well understood. Furthermore, the
choice of the learning algorithm used can affect structural
properties of the learned networks in other ways. For ex-
ample, for many of the exact algorithmic solutions to be
applicable, in practice structural restrictions must be placed
on the classes of BN structures considered during search.
A commonly-applied restriction is a hard constraint on the
number of parents allowed for each vertex in the network
structures (Friedman et al., 1999). Since most scores in-
corporate a complexity penalty as a “soft constraint” fa-
voring sparser networks, this is a practically-motivated re-
striction, as computing the scoring function for an arbitrary
number of parents is in general infeasible (though pruning
rules (de Campos and Ji, 2011) may in cases permit com-
puting all necessary scores for datasets with few records).

562

However, the influence of such choices combined with the
choice of the learning algorithm used—we refer to the com-
bination of the two as a learning strategy—has not received
much attention.

The aim of this work is to establish a more in-depth
understanding of the aforementioned, currently not well-
understood aspects of BNSL via an extensive empirical
evaluation. Our aim is to shed light on the relationship of
different learning strategies, based on four popular score-
based structure learning algorithms, and the unknown dis-
crepancy between training set scores and generalization. In
particular, we address the following research questions for
different fixed learning algorithms and training sets.

Q1 How similar are structures found using different learn-
ing strategies?

Q2 How do hard constraints on the number of parents in
learned structures affect their generalization?

Q3 How does the amount of training data affect the gener-
alization of learned structures?

Q4 Which learning strategies result in networks with the
best generalization?

Our main contributions, based on a rigorous experimental
setup, are the following. For Q1, we show that the different
learning strategies tend to learn dissimilar network struc-
tures. With respect to Q2, we show that for small datasets,
hard constraints limiting the maximum number of par-
ents to 2 improves generalization on a few datasets for lo-
cal search algorithms; however, optimal algorithms usually
benefit from a higher limit. We answer Q3 by using increas-
ingly large subsets of available training data. Regardless
of the algorithms’ guarantees, more training data results in
more accurate predictions on testing data. Finally, we ad-
dress Q4 by considering all of the data collected during the
evaluation. For some datasets, simple strategies such as the
tractable Chow-Liu algorithm can provide good generaliza-
tion. However, the simple strategies fail to generalize well
on other datasets. Predictive likelihood results show that
the optimal algorithms consistently generalize well.

While some of the observations made in this work, based
on concrete empirical data, may appear to the reader as
common knowledge, we note that to our best knowledge
this is the first work which studies all of the question listed
above thoroughly via empirical means. A previous related
study is (Acid et al., 2004), which focuses on a case study
of the choice of BNSL learning strategies for data from
an emergency medical service. That study focused on Q1
for that particular domain and, orthogonally to the present
work, the impact of the choice of scoring functions on the
learning results. Furthermore, focusing on causal Bayesian
networks, an evaluation of structural distance measures was
presented in (de Jongh and Druzdzel, 2009). (Ueno, 2010;

Ueno, 2011) studied the effect of the equivalent sample size
of BD on learned structures but did not consider predictive
likelihood.

2 BACKGROUND

A Bayesian network (BN) (Pearl, 1988) is a compact rep-
resentation of a joint probability distribution over random
variables X = {X1, . . . , Xn}. It consists of a directed
acyclic graph (DAG) G, in which each vertex in the graph
corresponds to one of the random variables, and conditional
probability distributions P (Xi|PAi), where PAi is the set
of parents of Xi in G. The (log) joint probability distribu-
tion over all of the variables is

logP (X1, . . . , Xn|G) =
n∑

i

logP (Xi|PAi).

Given a BNN and a dataset d = {d1, . . . , dN}, where each
dr (record) is independent of the others, and a complete
instantiation of X, the likelihood of d given N is

logP (d|N) =

N∑

r

logP (dr|N) =

N∑

r

n∑

i

logP (Xr
i |PAr

i),

(1)

where Xr
i and PAri are the instantiations of Xi and its par-

ents in record dr, respectively. In total, Equation 1 consists
of N ·n terms, each of which corresponds to the likelihood
of one variable in one record givenN . We will refer to this
as the predictive likelihood of N on d and use the notation
`d when N is clear from context.

Given a training dataset dt and a scoring function s, the
Bayesian network structure learning problem (BNSL) is
to find a BN N ∗ ∈ argmaxN s(dt,N), i.e., a Bayesian
network structure with the best score in terms of the
scoring function s. The scoring function s is usually
a Bayesian posterior probability or penalized likelihood
function which measures how well N “fits” dt. In prac-
tice, s is decomposable (Heckerman et al., 1995), i.e.,
s(dt,N) =

∑
i s(dt, Xi,PAi). The s(dt, Xi,PAi) terms

are often called local scores.

3 LEARNING ALGORITHMS

Our primary goal is to compare the impact of the guaran-
tees of structure learning algorithms to the generalization
of learned networks to unseen testing data. For this, we use
four popular score-based learning algorithms with a range
of optimality guarantees. In the following discussion, opti-
mality guarantees refer to behavior with respect to the scor-
ing function and a training dataset. In particular, optimality
does not refer to behavior on unseen testing data.

Hill climbing with a tabu list and random restarts
(tabu). Hill climbing is a widely-used local search tech-
nique in discrete optimization (Russell and Norvig, 2003)

563

that typically finds local optima for an objective function
f by maintaining a current solution and applying search
operators. At each step, all search operators are tentatively
applied to the current solution to find its neighborhood. The
member of the neighborhood which results in the biggest
improvement to f is selected as the new current solution.
This process is repeated until a local optimum is found, that
is, when the current solution is better than everything in its
neighborhood. Random restarting is a strategy to escape
from a local optimum by randomly changing a locally opti-
mal solution and restarting the search from the new random
solution. The tabu list strategy (Glover, 1990) augments
random restarts by keeping track of recently visited solu-
tions; solutions in the tabu list are ignored when consider-
ing new neighborhoods. Even with random restarts and the
tabu list, the algorithm is unable to provide guarantees on
how close the found local optima are to the globally opti-
mal solutions in terms of their scores.

In the context of Bayesian networks, each solution corre-
sponds to a network; the search operators considered here
are edge addition, deletion and reversal (as long as the re-
sulting structure is a DAG). The objective function f is ex-
actly the scoring function s.

Max-min hill climbing (mmhc). Max-min hill climb-
ing (Tsamardinos et al., 2006) is a two-phase hybrid learn-
ing algorithm. During the first phase, it uses a set of sta-
tistical independence tests to identify arcs that are forbid-
den from appearing in the learned network. The second
phase uses tabu to find local optima within this restricted
space. Here we use a mutual information statistical test dur-
ing the first phase. The first phase of mmhc is similar to
constraint-based methods such as pc (Spirtes et al., 2000).
Empirically, mmhc has been shown to outperform several
other state-of-the-art algorithms, including PC, sparse can-
didate, three phase dependency analysis, optimal reinser-
tion and greedy equivalence search (Tsamardinos et al.,
2006). While mmhc does guarantee to recover BN struc-
tures when the data are faithful to a DAG in the large sam-
ple limit (Tsamardinos et al., 2006), it does not offer any
non-trivial guarantees about the generalization quality of
the learned network for unfaithful, finite datasets.

Chow-Liu (cl). The Chow-Liu algorithm (Chow and Liu,
1968) is an exact, polynomial-time algorithm for finding
an optimal tree-structured BN. The algorithm calculates the
mutual information between all pairs of variables to form a
weighted graph. The maximum spanning tree through the
graph corresponds to the optimal tree-structured BN.

Provably optimal (opt). Several algorithms have been de-
veloped which are guaranteed to find a network which op-
timizes s (Ott and Miyano, 2003; Koivisto and Sood, 2004;
Silander and Myllymäki, 2006; de Campos and Ji, 2011;
Parviainen and Koivisto, 2009; Cussens, 2011; Yuan and
Malone, 2013). In practice, these algorithms take as input

a set of local scores for each variable and find an optimal
network with respect to these scores. In this work, we use
two of these algorithms which have previously (Malone
et al., 2014) been shown to perform well on a variety of
datasets. The first (Yuan and Malone, 2013) is based on
casting BNSL as a shortest-path finding problem; it then
uses A* to solve the shortest path problem, which gives the
optimal network for the given local scores. The second al-
gorithm (Bartlett and Cussens, 2013) creates an integer lin-
ear program (ILP) based on the local scores. The solution
to the ILP corresponds to the optimal network for the local
scores. Both A* and ILP are guaranteed to find (equivalent)
optimal network structures. In this work, our goal is to un-
derstand the impact of the optimality guarantee on gener-
alization. Since we are not interested in the relative perfor-
mance in terms of running time or memory consumption
among the algorithms, we make no distinction between the
different optimal algorithms.

4 QUALITY MEASURES

In order to address our research question Q1, we propose a
normalized version of the structural Hamming distance to
quantify structural similarity. Research questions Q2–Q4
concern generalization; we propose measures based on the
predictive likelihood of Equation 1 to evaluate these results.

4.1 Structural Similarity

We evaluate the structural similarity of two networks with
structural Hamming distance (SHD) (Tsamardinos et al.,
2006). The SHD between two networks is calculated by
transforming the two networks into the partially directed
acyclic graphs (PDAGs) representing their equivalence
classes. The number of edge additions, deletions, reversals,
and orientation changes (converting an undirected edge
into a directed edge and vice versa) to transform one PDAG
into the other is the SHD. The motivation behind SHD lies
in equivalence classes of BNs; using different conditional
probability distributions, different DAG structures can de-
scribe exactly the same set of joint probability distribu-
tions (Chickering, 1995); these DAGs belong to the same
equivalence class. The SHD is 0 between DAGs in the
same equivalence class. Thus, in a sense, SHD serves as
an imperfect proxy for measuring the distance between the
distributions represented by two DAGs. In order to facili-
tate comparison across datasets with differing numbers of
variables, we use a normalized form ŜHD of SHD:

ŜHDd =
SHDd(
nd
2

)
/2
, (2)

where SHDd is the structural Hamming distance between
two networks for dataset d, nd is the number of variables
in dataset d and

(
n
2

)
is the binomial coefficient. The nor-

malization constant
(
nd
2

)
/2 is approximately the maximum

564

number of edges present in a network structure, and hence
also in the order of the SHD between two networks learned
for dataset d.

4.2 Predictive Likelihood

We use the predictive likelihood to evaluate the generaliza-
tion capability of the learned networks. In particular, for
a dataset d and learning strategy l we calculate the per-
prediction-likelihood, `d,lpp , which is the likelihood of each
prediction on the test set:

`d,lpp = −
∑10
i `d,li

Nd · nd
, (3)

summing over the folds i = 1..10, where `d,li is the pre-
dictive likehood according to Equation 1 on the test set for
fold i using learning strategy l (see Section 5.1 for cross-
validation discussion), Nd is the number of records in the
test set, and nd is the number of variables in the dataset.

The numerator of Equation 3 is the sum over all of the test
set predictive likelihoods for learning strategy l and dataset
d. As discussed in Section 2, each `d,li term comprises Nd

10 ·
nd terms. In total, the sum in the numerator includesNd ·nd
terms, each of which corresponds to the log probability of
one variable of one record from the test set. Consequently,
the denominator serves as a normalizing constant, and `d,lpp
is the average log probability of each prediction.

In order to compare learning strategies, we normalize the
`d,lpp values for each dataset between 0 and 1 to obtain

ˆ̀d,l
pp = 1− `d,lpp −minl′{`d,l

′
pp }

maxl′{`d,l
′

pp } −minl′{`d,l
′

pp }
(4)

where l′ ranges over all learning strategies. Note that, after
normalization, the learning strategy with the best `d,lpp has
ˆ̀d,l
pp = 0 while the worst learning strategy has ˆ̀d,l

pp = 1.

It is important to note that `d,lpp and ˆ̀d,l
pp consider all variables

equally. In particular, they do not consider a special “class”
variable.

5 EXPERIMENTAL SETUP

We continue by describing the experiment setup.

5.1 Datasets

We used datasets from a previous wide-scale empirical
study that focused on predicting the efficiency of BNSL
algorithms (Malone et al., 2014)1. In total, we obtained

1The datasets are available at http://bnportfolio.
cs.helsinki.fi/. Please see the original study for data pre-
processing.

Table 1: Basic dataset characteristics
Dataset Type n N
agaricus uci 22 8 123
alarm10 000 sam 37 10 000
alarm1 000 sam 37 1 000
alarm100 sam 37 100
carpo10 000 sam 60 10 000
carpo1 000 sam 58 1 000
carpo100 sam 56 100
connect6 000 sam 39 6 000
anneal uci 32 897
credit uci 18 1 000
lymph uci 19 147
tumor uci 18 338
dermatology uci 34 365
flag uci 27 193
hailfinder1 000 sam 56 1 000
hailfinder100 sam 56 100
votes uci 17 434
hypothyroid uci 22 3 771
insurance10 000 sam 27 10 000
kredit uci 18 1 000
kr-vs-kp uci 37 3 195
letter uci 17 20 000
lung uci 57 31
mildew1 000 sam 35 1 000
mildew100 sam 35 100
soybean uci 36 306
spect uci 23 186
water100 sam 26 100
zoo uci 17 100

29 datasets from two categories used in that study: 16 are
“real” datasets from the UCI Machine Learning Repository
(uci), and further 13 are generated using logic sampling
from well-known benchmark networks (sam).

As Table 1 shows, the number of variables in the datasets
ranges from 17 to 60, and the number of records ranges
from about 30 to 20 000. We used standard 10-fold cross-
validation in order to evaluate the learning strategies.
Datasets were randomly split into 10 folds. Unless other-
wise noted, all results are averages over all 10 folds. For
a few datasets, not all learning strategies completed on all
folds. In these cases, the averages were adjusted to properly
account for the number of completed folds.

5.2 Learning and Inference

Most of the learning algorithm implementations are pub-
licly available. In all cases, default parameter values were
used (excluding number of parents).

Exact algorithms. The previous study (Malone et al.,
2014) found that the ILP algorithm usually ran faster than
A* for datasets with up to 10 000 local scores. In order to
limit the computational requirements of this study, we used
this simple decision rule to select either ILP or A* for each
dataset. We used a time limit of 2 hours. If the selected al-
gorithm failed, the other one was used.

565

Parent limit. For all algorithms except cl, we used hard
limits of 2 and 8 on the number of parents. This constraint
serves two purposes. First, a hard limit on the complexity
of the learned network allows evaluation of the learning
algorithms in the different search spaces. In particular, the
space defined by a parent limit of 2 is a subset of the space
defined by a parent limit of 8. Thus, the optimal solution
for the at-most-8-parents space is always at least as good
as that of the at-most-2-parents space. Second, calculating
all local scores for large parent limits is impractical.

Table 2 outlines the seven combinations of learning algo-
rithms and parent limits used in the evaluation.

Scoring function. We selected the commonly-used
Bayesian Dirichlet with score equivalence and uniform
structure prior (BDeu) scoring function (Heckerman et al.,
1995) with an equivalent sample size (ESS) of 1 as the scor-
ing function. Note that, while several previous studies (Si-
lander et al., 2008; Liu et al., 2012; Korucuoglu et al., 2014)
have demonstrated that BDeu is sensitive to the ESS, BDeu
with an ESS of 1 is a commonly-used score (Acid et al.,
2004), which motivates this choice.

Inference. For all learned structures, parameter values
were set using a symmetric Dirichlet prior with a concen-
tration parameter of 1 (which is equivalent to Laplacian
smoothing). All testing likelihood calculations were per-
formed by multiplying relevant family factors.

6 RESULTS

In this section, we address each of the research questions
Q1–Q4. In Section 6.1, we answer Q1 by showing that
ŜHD is typically high among networks learned using differ-
ent algorithms, particularly for uci datasets. In Section 6.2,
we show that, surprisingly, the answer to Q2 depends upon
learning algorithm and dataset. We address Q3 in Sec-
tion 6.3, where we find that increasing training data both
improves prediction accuracy and reduces variance among
cross-validation folds. In Section 6.4 we demonstrate that
somewhat unexpectdly, for sam datasets simple learning
strategies like cl perform well. The opt strategy consistently
generalizes better for uci datasets. These observations sug-
gest fundamental differences in the uci and sam datasets.

6.1 Structural Similarity

We address Q1 by evaluating the similarity of learned struc-
tures using ŜHD in two different settings. We first con-
sider the similarity of structures learned using the same
algorithm on different cross-validation folds. We then in-
vestigate the similarity of structures learned using differ-
ent algorithms on the same cross-validation fold. As a triv-
ial baseline learning “result,” the empty network with no
edges, empty, is also included. We stress that the goal of Q1

is to evaluate the structural similarity of learned networks
to each other; we do not consider e.g. similarity to “gold
standard” networks which do not exist for uci datasets.

Variation within a learning algorithm. Due to the cross-
fold validation strategy, each algorithm results in multiple
networks on each dataset. We compared the ŜHD among all
pairs of networks learned using a single learning strategy.
Figure 1(top) shows that, for sam datasets, the difference
among learned networks was usually small. In contrast,
Figure 1(bottom) shows that uci datasets result in more
varied networks. The variation for cl in Figure 1(bottom,
right) is much lower than those of either opt8 (left) or tabu2

(center). This highlights how the reduced search space de-
creases variability among optimal structures.

Interestingly, for uci datasets, opt8 networks tend to have a
slightly higher ŜHD than those of tabu2. However, the vari-
ance for opt8 is smaller than that of tabu2. One interpreta-
tion is that opt8 networks are, in terms of ŜHD, “equally
spaced.” On the other hand, some pairs of the tabu2 net-
works are quite similar, while others have more pronounced
differences. An explanation for this phenomenon is the
greedy search strategy of tabu2. In the beginning stages
of the search, tabu2 is likely to select the same dominant
edges, regardless of the nuances of the dataset at hand.
In contrast, opt8 selects accurate substructures and opti-
mally combines them, so it may disregard single strong
edges in favor of more informative structures. Another ex-
planation is that the search space for tabu2 is more con-
strained than that of opt8. As further evidence for the more
constrained space leading to more similar networks, both
cl (Figure 1(bottom, right)) and opt2 on uci datasets (not
shown) typically result in smaller ŜHD than tabu2.

Variation between learning algorithm. We additionally
compared the average ŜHD among networks learned us-
ing different strategies on the same training set. Figure 2
shows that some of the strategies learn quite similar net-
works, while for other strategies the networks differ quite
a bit. Perhaps unsurprisingly, the same learning algorithm
with different parent limits often result in similar networks.
The mmhc networks are quite similar to empty, which sug-
gests that they are very sparse. Many of the datasets have
fewer than 1 000 records. So the statistical tests employed
at the beginning of mmhc are often unable to detect depen-
dencies, and thus many possible edges are discarded before
beginning the score-based search.

In general, all of the learning strategies tend to learn simi-
lar networks for the sam datasets, while the uci datasets re-
sult in more diverse structures. Despite this, some patterns
among the pairs of learning strategies are consistent among
both types of datasets. For example, opt8 and cl exhibit the
highest average ŜHD. On the other hand, tabu2 and opt2
are more similar than most other pairs for the uci datasets,
but not for sam datasets. This again suggests that the more

566

Table 2: Learning algorithms used in the study
Algorithm Parent limits Abbreviation Availability
tabu 2, 8 tabu2, tabu8 http://www.bnlearn.com/
mmhc 2, 8 mmhc2, mmhc8 http://www.bnlearn.com/
cl - cl custom
opt 2, 8 opt2, opt8 http://urlearning.org

http://www.cs.york.ac.uk/aig/sw/gobnilp/

w
at

er
10
0

m
ild

ew
10
0

al
ar

m
10
0

ca
rp

o 1
00

ha
ilfi

nd
er

10
0

m
ild

ew
1
00
0

al
ar

m
1
00
0

ha
ilfi

nd
er

1
00
0

ca
rp

o 1
00
0

co
nn

ec
t 6

00
0

in
su

ra
nc

e 1
0
00
0

al
ar

m
10

00
0

ca
rp

o 1
0
00
00.00

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

w
at

er
10
0

m
ild

ew
10
0

al
ar

m
10
0

ca
rp

o 1
00

ha
ilfi

nd
er

10
0

m
ild

ew
1
00
0

al
ar

m
1
00
0

ha
ilfi

nd
er

1
00
0

ca
rp

o 1
00
0

co
nn

ec
t 6

00
0

in
su

ra
nc

e 1
0
00
0

al
ar

m
10

00
0

ca
rp

o 1
0
00
00.00

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

w
at

er
10
0

m
ild

ew
10
0

al
ar

m
10
0

ca
rp

o 1
00

ha
ilfi

nd
er

10
0

m
ild

ew
1
00
0

al
ar

m
1
00
0

ha
ilfi

nd
er

1
00
0

ca
rp

o 1
00
0

co
nn

ec
t 6

00
0

in
su

ra
nc

e 1
0
00
0

al
ar

m
10

00
0

ca
rp

o 1
0
00
00.00

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

lu
ng zo

o
ly

m
ph

sp
ec

t
fla

g
so

yb
ea

n
tu

m
or

de
rm

at
ol

og
y

vo
te

s
an

ne
al

cr
ed

it
kr

ed
it

kr
-v

s-
kp

hy
po

th
yr

oi
d

ag
ar

ic
us

le
tte

r0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

lu
ng zo

o
ly

m
ph

sp
ec

t
fla

g
so

yb
ea

n
tu

m
or

de
rm

at
ol

og
y

vo
te

s
an

ne
al

cr
ed

it
kr

ed
it

kr
-v

s-
kp

hy
po

th
yr

oi
d

ag
ar

ic
us

le
tte

r0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

lu
ng zo

o
ly

m
ph

sp
ec

t
fla

g
so

yb
ea

n
tu

m
or

de
rm

at
ol

og
y

vo
te

s
an

ne
al

cr
ed

it
kr

ed
it

kr
-v

s-
kp

hy
po

th
yr

oi
d

ag
ar

ic
us

le
tte

r0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Figure 1: The ŜHD values for opt8 (left), tabu2 (center) and cl (right). The top row contains sam datasets, and the bottom
row contains uci datasets. The datasets are sorted in ascending number of records. Note the different scale for sam and uci.

constrained search space leads to more similar structures.

In summary for Q1, the similarity of learned network struc-
tures depends upon the nature of the training dataset. Typi-
cally, though, both within and between learning algorithms,
sam datasets result in similar learned structures, while
structures learned from uci datasets are more diverse.

6.2 Impact of Restricting Parent Set Size

We study question Q2 by comparing the ˆ̀d,l
pp among

datasets when using k = 2 and k = 8 as the maximum
number of parents for each learning algorithm. The BDeu
score implicitly restricts the maximum number of selected
parents as a soft constraint by integrating over all param-
eterizations of parent instantiations. Other scores, such as
MDL, explicitly incorporate a complexity penalty to dis-
courage large parent sets. In both cases, though, this re-
striction is a soft constraint. Here consider the maximum
number of parents as a hard constraint.

Optimal. Figure 3 (left) shows the performance (in terms
of ˆ̀d,l

pp) of generalization using optk for parent limits k =
2, 8. The (left, top) and (left, bottom) plots show distinctly

different patterns. Figure 3 (left, top) clearly shows that
opt2 results in better generalization for sam datasets with
100 records. However, as the number of records increases,
opt8 yields better performance. In contrast, for uci datasets,
opt8 is almost always better.

Tabu. Contrasting the results for opt, Figure 3 (center, bot-
tom) shows that tabu2 generalizes better than tabu8 for uci
datasets. One possible explanation for this difference is that
the greedy strategy of tabu8 favors structures which im-
prove the likelihood while increasing the complexity of the
learned structures. Thus, the learned structure overfits the
training data and does not generalize well to testing data.
In contrast, as opt is guaranteed to find the best-scoring
structure, it finds structures which better balance training
set likelihood and complexity. The hard constraints on the
number of parents for tabu2 forbid it from selecting the
complex structures. Both tabu2 and tabu8 typically gener-
alize well on sam datasets.

MMHC. Figure 3 (right) shows that the hard parent limit
has little effect on ˆ̀d,l

pp for mmhc. The first phase of mmhc
uses a set of statistical independence tests to restrict the
learned network structures. For many of the datasets, the

567

em
pt

y cl
m

m
hc

2

m
m

hc
8

ta
bu

2

ta
bu

8

op
t 2

op
t 8

empty
cl

mmhc2
mmhc8

tabu2

tabu8

opt2
opt8

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

em
pt

y cl
m

m
hc

2

m
m

hc
8

ta
bu

2

ta
bu

8

op
t 2

op
t 8

empty
cl

mmhc2
mmhc8

tabu2

tabu8

opt2
opt8

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Figure 2: The average ŜHD values between networks
learned using the same training set among all algorithms for
sam (top) and uci (bottom) datasets. Lighter colors indicate
more similar structures. The lower triangle is left empty
due to ŜHD being symmetric.

relatively small number of records restricts the power of
these tests and leads to a very small search space in the sec-
ond phase, despite initially allowing many more structures
for the 8-parent space.

Based on these observations, in the rest of this study we
will focus on opt8, tabu2 and mmhc8.

In summary, the answer to Q2 clearly depends both on the
training datasets and learning algorithm; the global guar-
antees of opt allow it to fully take advantage of the larger
k = 8 search space, but the local search strategy of tabu
performs better in the more restricted k = 2 space.

More data is required to accurately estimate the conditional
probability distributions for complex structures (with more
parameters). This may explain why opt2 generalizes better
than opt8 for datasets with a small number of records.

6.3 Impact of Amount of Training Data

To investigate the impact of the amount of available train-
ing data, to answer Q3 we compared how `d,lpp of opt8, tabu2
and cl behave as the number of records available for train-
ing increases. Figure 4 shows that for all algorithms on both
sam and uci datasets, more records lead to better `d,lpp . Fur-
thermore, the plots also show that with more records, the
variance of `d,lpp decreases. Interestingly, the plot also shows
that cl performs better than opt8 and tabu2 on carpo, a sam
dataset, when only 100 records are available. This again

highlights that restricted model classes can generalize bet-
ter than those with more parameters, especially when little
data is available to estimate the parameter values. Despite
the differences in guarantees, opt8, tabu2 and cl perform
similarly for carpo1 000 and carpo10 000.

As with carpo, for the uci agaricus dataset, the likelihood
improves and variance decreases as the number of records
increases. However, opt8 improves from `d,lpp ≈ 0.7 for 81
records to `d,lpp ≈ 0.48 with 812 records. In contrast, tabu2

only improves from `d,lpp ≈ 0.7 to about `d,lpp ≈ 0.55, and cl
exhibits even less improvement. For agaricus, opt8 using
only 812 records results in better generalization than tabu2

or cl with all 8 123 records.

We observed similar behavior on other sam and uci
datasets as the amount of training data was varied. Unlike
in the case of Q1 and Q2, the same general trends hold for
all algorithms and datasets with respect to Q3. Namely, the
predictive likelihood improves and variance decreases as
the size of the training set increases.

6.4 Comparison Across Learning Strategies

Finally, based on the previous results, we studied Q4 by
choosing the best learning strategies and comparing their
ˆ̀d,l
pp across all of the datasets. In essence, we fix the train-

ing set while varying the learning strategy. Additionally,
empty (with no edges) was included as a baseline. The re-
sults in Figure 5 show several expected trends and a few
surprises. As expected, empty is the worst on almost all
of the datasets. Due to its structural similarity to empty,
mmhc8 was typically worse than the other strategies. These
trends are consistent for both sam and uci datasets. For sam
datasets, tabu2 and opt8 have very similar ˆ̀d,l

pp for most
datasets; the ˆ̀d,l

pp of cl is also surprisingly similar to that
of the two more “sophisticated” strategies.

For uci datasets, opt8 continues to consistently have good
ˆ̀d,l
pp . On the other hand, cl and tabu2 exhibit much more

inconsistency in their generalization relative to opt8. For
some datasets, such as dermatology and kredit, they match
opt8; on others, such as credit and tumor,cl and tabu2 do
not generalize well. Surprisingly, cl exhibits the best ˆ̀d,l

pp

for letter, the uci dataset with the most records.

For Q4, opt guarantees consistently translate into networks
with good generalization. Algorithms with weaker guaran-
tees produce networks with inconsistent generalization.

Comments on Datasets. Besides the behavior of the learn-
ing algorithms, these results also suggest differences in
the datasets themselves. In particular, it seems that sam
datasets are “easier,” in the sense that many learning strate-
gies find networks which generalize well. On the other
hand, only the strategy with strong guarantees consistently
generalizes well on uci datasets. In some sense, this result is
not surprising. The sam data is by construction accurately

568

w
at

er
10
0

m
ild

ew
10
0

al
ar

m
10
0

ca
rp

o 1
00

ha
ilfi

nd
er

10
0

m
ild

ew
1
00
0

al
ar

m
1
00
0

ha
ilfi

nd
er

1
00
0

ca
rp

o 1
00
0

co
nn

ec
t 6

00
0

in
su

ra
nc

e 1
0
00
0

al
ar

m
10

00
0

ca
rp

o 1
0
00
0

opt2

opt8

Le
ar

ni
ng

S
tra

te
gy

w
at

er
10
0

m
ild

ew
10
0

al
ar

m
10
0

ca
rp

o 1
00

ha
ilfi

nd
er

10
0

m
ild

ew
1
00
0

al
ar

m
1
00
0

ha
ilfi

nd
er

1
00
0

ca
rp

o 1
00
0

co
nn

ec
t 6

00
0

in
su

ra
nc

e 1
0
00
0

al
ar

m
10

00
0

ca
rp

o 1
0
00
0

tabu2

tabu8

w
at

er
10
0

m
ild

ew
10
0

al
ar

m
10
0

ca
rp

o 1
00

ha
ilfi

nd
er

10
0

m
ild

ew
1
00
0

al
ar

m
1
00
0

ha
ilfi

nd
er

1
00
0

ca
rp

o 1
00
0

co
nn

ec
t 6

00
0

in
su

ra
nc

e 1
0
00
0

al
ar

m
10

00
0

ca
rp

o 1
0
00
0

mmhc2

mmhc8

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

lu
ng zo

o
ly

m
ph

sp
ec

t
fla

g
so

yb
ea

n
tu

m
or

de
rm

at
ol

og
y

vo
te

s
an

ne
al

cr
ed

it
kr

ed
it

kr
-v

s-
kp

hy
po

th
yr

oi
d

ag
ar

ic
us

le
tte

r

opt2

opt8

Le
ar

ni
ng

S
tra

te
gy

lu
ng zo

o
ly

m
ph

sp
ec

t
fla

g
so

yb
ea

n
tu

m
or

de
rm

at
ol

og
y

vo
te

s
an

ne
al

cr
ed

it
kr

ed
it

kr
-v

s-
kp

hy
po

th
yr

oi
d

ag
ar

ic
us

le
tte

r

tabu2

tabu8

lu
ng zo

o
ly

m
ph

sp
ec

t
fla

g
so

yb
ea

n
tu

m
or

de
rm

at
ol

og
y

vo
te

s
an

ne
al

cr
ed

it
kr

ed
it

kr
-v

s-
kp

hy
po

th
yr

oi
d

ag
ar

ic
us

le
tte

r

mmhc2

mmhc8

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 3: The ˆ̀d,l
ppvalues for opt (left), tabu (center) and mmhc (right) with a hard limit of k = 2 and k = 8 for sam (top) and

uci (bottom) datasets. The datasets are sorted in ascending number of records. Lighter colors indicate better performance.
Close inspection of the mmhc strategies show some slight difference; however, they are difficult to discern in the scaled
image.

ca
rp

o 1
00

ca
rp

o 1
00
0

ca
rp

o 1
0
00
00.25

0.30

0.35

0.40

0.45

0.50

ca
rp

o 1
00

ca
rp

o 1
00
0

ca
rp

o 1
0
00
00.25

0.30

0.35

0.40

0.45

0.50
ca

rp
o 1

00

ca
rp

o 1
00
0

ca
rp

o 1
0
00
00.25

0.30

0.35

0.40

0.45

0.50

ag
ar

ic
us

81

ag
ar

ic
us

81
2

ag
ar

ic
us

8
12
30.4

0.5

0.6

0.7

0.8

0.9

1.0

ag
ar

ic
us

81

ag
ar

ic
us

81
2

ag
ar

ic
us

8
12
30.4

0.5

0.6

0.7

0.8

0.9

1.0

ag
ar

ic
us

81

ag
ar

ic
us

81
2

ag
ar

ic
us

8
12
30.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 4: The `d,lppvalues for using the opt8 (left), tabu2 (center), and cl (right) learning strategies as the number of records
increases. The top row is for the carpo dataset (sam); the bottom row is for the agaricus dataset (uci). Note the different
y-axes for the plots. Lower values and smaller boxes are better.

569

w
at

er
10
0

m
ild

ew
10
0

al
ar

m
10
0

ca
rp

o 1
00

ha
ilfi

nd
er

10
0

m
ild

ew
1
00
0

al
ar

m
1
00
0

ha
ilfi

nd
er

1
00
0

ca
rp

o 1
00
0

co
nn

ec
t 6

00
0

in
su

ra
nc

e 1
0
00
0

al
ar

m
10

00
0

ca
rp

o 1
0
00
0

empty

mmhc8

cl

tabu2

opt8
Le

ar
ni

ng
S

tra
te

gy

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

lu
ng zo

o
ly

m
ph

sp
ec

t
fla

g
so

yb
ea

n
tu

m
or

de
rm

at
ol

og
y

vo
te

s
an

ne
al

cr
ed

it
kr

ed
it

kr
-v

s-
kp

hy
po

th
yr

oi
d

ag
ar

ic
us

le
tte

r

empty

mmhc8

cl

tabu2

opt8

Le
ar

ni
ng

S
tra

te
gy

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 5: The ˆ̀d,l
ppvalues for the best learning strategies. The

empty network is included as a baseline. The sam datasets
are shown in the top heatmap, and uci datasets are in the
bottom. The datasets are sorted in ascending number of
records. Lighter colors indicate better performance.

modeled by a BN, while it is very unlikely that uci datasets
are faithful to any BN. These caveats are also important for
future evaluations.

7 CONCLUSIONS

In this work, we systematically evaluated the impact of
learning strategy, including choice of learning algorithm
and hard constraints on the number of parents for variables
in the network, on the properties of the learned network.
Our experiments address the four research questions intro-
duced in Section 1. In particular, we answered Q1 by show-
ing that different learning strategies result in dissimilar
structures, particularly for uci datasets. For Q2, we showed
that for small sam datasets, opt generalizes better when
constrained to 2 parents; however, for all other datasets
considered in this study, opt8 performed better. In contrast,
tabu2 almost always outperformed tabu8. Q3 had the clear-
est answer of the four questions; increasing the size of the
training set consistently both improved the predictive like-
lihood and decreased its variance across cross-validation

folds. Finally, with respect to Q4, for the datasets in this
evaluation, opt consistently results in networks with good
generalization. Nevertheless, for some of the sam datasets,
simpler strategies such as the polynomial-time Chow-Liu
algorithm yielded nearly as good generalization. In our
view, these results justify the research into learning opti-
mal BN structures in large, complex spaces.

The aim of the study was to better understand how the
combination of learning strategy and dataset affect gen-
eralization. Consequently, we deliberately disregarded the
runtime and memory usage of the studied learning strate-
gies. These are important constraints, especially for opt,
i.e., exact algorithms which provide provably optimal net-
work structures with respect to the score-based objective
function. However, the results clearly show that, whenever
possible (as long as the computational resources allow it), it
is worthwhile to use opt. Similarly, we did not evaluate the
SHD between learned network structures and a “gold stan-
dard” network because this does not directly reflect gen-
eralization. Also, trustworthy “gold standard” networks do
not generally exist for real-world datasets.

This empirical study clarifies some common assumptions
about relationship between structure learning algorithms
and learned Bayesian network structures, including em-
pirically observed conditions for strong theoretical guar-
antees translating into improved empirical results. The re-
sults suggest many interesting questions for further study.
For example, the finding that quite simple networks can
generalize well suggests that a scoring function with a
high complexity penalty, such as the Bayesian Informa-
tion Criterion (BIC), might yield networks with good pre-
dictive capabilities. Another interesting question concerns
the impact of more sophisticated restrictions on learned
networks structures. For example, recently several algo-
rithms (Korhonen and Parviainen, 2013; Berg et al., 2014;
Parviainen et al., 2014) have been proposed which find
provably optimal BNs with bounded treewidth, resulting in
networks for which exact inference is provably tractable.
As bounded treewidth represents another well-principled
approach to constraining complexity of the learned net-
works, an interesting question is whether the quality of the
learned (optimal) networks is affected by such a stringent
constraint. Other extensions of this work would be to in-
volve yet more structure learning algorithms (such as the
Greedy Equivalence Search (Chickering, 2002)), and ex-
tending from using single structure for predictive inference
to a more Bayesian approach by collecting several high-
scoring networks and averaging their predictions. Addi-
tionally, the predictive likelihood analysis is not restricted
to Bayesian networks; extensions to other generative mod-
els, like Markov random fields, would also be of interest.

Acknowledgements This research was supported in part
by the Academy of Finland (grants 251170/COIN, 276412,
and 284591).

570

References

Acid, S., de Campos, L. M., Fernandez-Luna, J. M., Ro-
driguez, S., Rodriguez, J. M., and Salcedo, J. L. (2004). A
comparison of learning algorithms for Bayesian networks:
a case study based on data from an emergency medical ser-
vice. Artificial Intelligence in Medicine, 30(3):215–232.

Bartlett, M. and Cussens, J. (2013). Advances in Bayesian
network learning using integer programming. In Proc. UAI,
pages 182–191. AUAI Press.

Berg, J., Järvisalo, M., and Malone, B. (2014). Learn-
ing optimal bounded treewidth Bayesian networks via
maximum satisfiability. In Proc. AISTATS, pages 86–95.
JMLR.org.

Chickering, D. M. (1995). A transformational charac-
terization of equivalent Bayesian network structures. In
Proc. UAI, pages 87–98. Morgan Kaufmann.

Chickering, D. M. (1996). Learning Bayesian networks
is NP-complete. In Learning from Data: Artificial Intel-
ligence and Statistics V, pages 121–130. Springer-Verlag.

Chickering, D. M. (2002). Learning equivalence classes of
Bayesian-network structures. Journal of Machine Learning
Research, 2:445–498.

Chow, C. and Liu, C. (1968). Approximating discrete prob-
ability distributions with dependence trees. IEEE Transac-
tions on Information Theory, 14(3):462–467.

Cussens, J. (2011). Bayesian network learning with cutting
planes. In Proc. UAI, pages 153–160. AUAI Press.

de Campos, C. P. and Ji, Q. (2011). Efficient learning of
Bayesian networks using constraints. Journal of Machine
Learning Research, 12:663–689.

de Jongh, M. and Druzdzel, M. J. (2009). A comparison of
structural distance measures for causal Bayesian network
models. In Recent Advances in Intelligent Information Sys-
tems, Challenging Problems of Science, Computer Science
series, pages 443–456. Academic Publishing House EXIT.

Friedman, N., Nachman, I., and Peer, D. (1999). Learn-
ing Bayesian network structure from massive datasets: The
“sparse candidate” algorithm. In Proc.UAI, pages 206–215.
Morgan Kaufmann.

Glover, F. (1990). Tabu search: A tutorial. Interfaces,
20(4):74–94.

Heckerman, D., Geiger, D., and Chickering, D. M. (1995).
Learning Bayesian networks: The combination of knowl-
edge and statistical data. Machine Learning, 20:197–243.

Koivisto, M. and Sood, K. (2004). Exact Bayesian struc-
ture discovery in Bayesian networks. Journal of Machine
Learning Research, 5:549–573.

Korhonen, J. H. and Parviainen, P. (2013). Exact learning
of bounded tree-width Bayesian networks. In Proc. AIS-
TATS, pages 370–378. JMLR.org.

Korucuoglu, M., Isci, S., Ozgur, A., and Otu, H. H. (2014).
Bayesian pathway analysis of cancer microarray data.
PLoS ONE, 9(7):e102803.

Liu, Z., Malone, B., and Yuan, C. (2012). Empirical evalu-
ation of scoring functions for Bayesian network model se-
lection. BMC Bioinformatics, 13(Suppl 15):S14.

Malone, B., Kangas, K., Järvisalo, M., Koivisto, M., and
Myllymäki, P. (2014). Predicting the hardness of learn-
ing Bayesian networks. In Proc. AAAI, pages 2460–2466.
AAAI Press.

Mitchell, T. (1997). Machine Learning. McGraw-Hill.

Ott, S. and Miyano, S. (2003). Finding optimal gene net-
works using biological constraints. Genome Informatics,
14:124 – 133.

Parviainen, P., Farahani, H. S., and Lagergren, J. (2014).
Learning bounded tree-width Bayesian networks using in-
teger linear programming. In Proc. AISTATS, pages 751–
759. JMLR.org.

Parviainen, P. and Koivisto, M. (2009). Exact structure dis-
covery in Bayesian networks with less space. In Proc. UAI,
pages 436–443. AUAI Press.

Pearl, J. (1988). Probabilistic reasoning in intelligent sys-
tems: networks of plausible inference. Morgan Kaufmann
Publishers Inc.

Russell, S. J. and Norvig, P. (2003). Artificial Intelligence:
A Modern Approach. Pearson Education.

Silander, T. and Myllymäki, P. (2006). A simple approach
for finding the globally optimal Bayesian network struc-
ture. In Proc. UAI, pages 445–452. AUAI Press.

Silander, T., Roos, T., Kontkanen, P., and Myllymäki,
P. (2008). Factorized normalized maximum likelihood
criterion for learning Bayesian network structures. In
Proc. PGM, pages 257–272.

Spirtes, P., Glymour, C., and Schemes, R. (2000). Causa-
tion, Prediction, and Search. The MIT Press, 2 edition.

Teyssier, M. and Koller, D. (2005). Ordering-based search:
A simple and effective algorithm for learning Bayesian net-
works. In Proc. UAI, pages 548–549. AUAI Press.

Tsamardinos, I., Brown, L., and Aliferis, C. (2006). The
max-min hill-climbing Bayesian network structure learn-
ing algorithm. Machine Learning, 65:31–78.

Ueno, M. (2010). Learning networks determined by the
ratio of prior and data. In Proc. UAI, pages 598–605. AUAI
Press.

Ueno, M. (2011). Robust learning Bayesian networks for
prior belief. In Proc. UAI, pages 698–707. AUAI Press.

Yuan, C. and Malone, B. (2013). Learning optimal
Bayesian networks: A shortest path perspective. Journal
of Artificial Intelligence Research, 48:23–65.

571

Learning the Structure of Causal Models
with Relational and Temporal Dependence

Katerina Marazopoulou
kmarazo@cs.umass.edu

Marc Maier
maier@cs.umass.edu

College of Information and Computer Sciences
University of Massachusetts Amherst

Amherst, MA 01003

David Jensen
jensen@cs.umass.edu

Abstract

Many real-world domains are inherently rela-
tional and temporal—they consist of heteroge-
neous entities that interact with each other over
time. Effective reasoning about causality in such
domains requires representations that explicitly
model relational and temporal dependence. In
this work, we provide a formalization of tem-
poral relational models. We define temporal ex-
tensions to abstract ground graphs—a lifted rep-
resentation that abstracts paths of dependence
over all possible ground graphs. Temporal ab-
stract ground graphs enable a sound and com-
plete method for answering d-separation queries
on temporal relational models. These methods
provide the foundation for a constraint-based al-
gorithm, TRCD, that learns causal models from
temporal relational data. We provide experimen-
tal evidence that demonstrates the need to explic-
itly represent time when inferring causal depen-
dence. We also demonstrate the expressive gain
of TRCD compared to earlier algorithms that do
not explicitly represent time.

1 INTRODUCTION

Recent work in artificial intelligence has devoted increas-
ing attention to learning and reasoning with causal knowl-
edge. Causality is central to understanding the behavior of
complex systems and to selecting actions that will achieve
particular outcomes. Thus, causality is implicitly or explic-
itly central to mainstream AI areas such as planning, cogni-
tive modeling, computational sustainability, game playing,
multiagent systems, and robotics. Causal inference is also
central to many areas beyond AI, including medicine, pub-
lic policy, and nearly all areas of science.

Substantial research advances have been made over the
past several decades that allow the structure and param-

eters of causal graphical models to be learned from ob-
servational data. As early as the 1990s, researchers de-
veloped constraint-based algorithms, such as the IC [Pearl
and Verma, 1991] and PC [Spirtes et al., 2000] algorithms,
that leverage the connection between the graphical criterion
of d-separation and the conditional independencies that are
inferred to hold in the underlying distribution, in order to
learn the structure of causal graphical models from data.

In this work, we significantly extend the expressiveness
of the models learnable with constraint-based algorithms.
Specifically, we provide a formalization of temporal re-
lational models, an expressive class of models that can
capture probabilistic dependencies between variables on
different types of entities within and across time points.
We extend the notion of abstract ground graphs [Maier et
al., 2013b]—a lifted representation that allows reasoning
about the conditional independencies implied by a rela-
tional model—for temporal relational models, and we show
that temporal abstract ground graphs are a sound and com-
plete abstraction for ground graphs of temporal relational
models. Temporal abstract ground graphs can be used to
answer d-separation queries for temporal relational mod-
els. We also extend an existing constraint-based algorithm
for inferring causal dependence in relational data—the re-
lational causal discovery (RCD) algorithm—to incorporate
time, thus providing a constraint-based method that learns
causal models from temporal relational data.

2 RELATIONAL MODELS

Propositional representations, such as Bayesian networks,
describe domains containing a single entity class. Many
real world systems comprise instances from multiple en-
tity classes whose variables are interdependent. Such do-
mains are often referred to as relational. In this section, we
introduce basic concepts of relational representations that
exclude time.

A relational schema S = (E ,R,A, card) specifies the
types of entities, relationships, and attributes that exist in
a domain. It includes a cardinality function that constrains

572

gpa difficulty

Student Course

Takes

[Course,Takes ,Student].gpa ! [Course].di�culty

Figure 1: Relational model for the example domain. The
underlying relational schema (ER diagram) is shown in
gray.

Takes

Takes

Takes

CS201

CS101Alice

Bob

Figure 2: Example relational skeleton for the schema
shown in Figure 1.

the number of times an entity instance can participate in a
relationship. A relational schema can be depicted with an
Entity-Relationship (ER) diagram. Figure 1 shows an ex-
ample ER diagram (in gray) that describes a simplified uni-
versity domain. The domain consists of two entity classes
(Student and Course), and one relationship class (Takes).
The entity class Student has one attribute, gpa , and the
entity class Course has one attribute, difficulty . The car-
dinality constraints are shown with crow’s feet notation—
students can enroll in multiple courses and a course can
be taken by multiple students. A relational skeleton is a
partial instantiation of a relational schema. It specifies the
entity and relationship instances that exist in the domain.
Figure 2 shows an example relational skeleton for the rela-
tional schema of Figure 1. The skeleton consists of two
Student instances, Alice and Bob, and two Course in-
stances, CS101 and CS201. Alice is taking CS101 and Bob
is taking both courses.

Given a relational schema, we can specify re-
lational paths, which intuitively correspond to
ways of traversing the schema. For the schema
shown in Figure 1, possible paths include
[Student ,Takes,Course] (the courses a student takes), as
well as [Student ,Takes,Course,Takes,Student] (other
students that take the same courses). Relational variables
consist of a relational path and an attribute that can be
reached through that path. For example, the relational
variable [Student ,Takes,Course].difficulty corresponds
to the difficulty of the courses that a student takes. Prob-
abilistic dependencies can be defined between relational
variables. Dependencies are said to be in canonical form
when the path of the effect (or outcome) relational variable
is a single item. For canonical dependencies, the path
of the cause (or treatment) relational variable describes
how dependence is induced. As an example, consider the

Alice.gpa

Bob.gpa

CS101.difficulty

CS201.difficulty

Figure 3: Ground graph for the model of Figure 1 applied
on the relational skeleton of Figure 2.

following relational dependency

[Course,Takes,Student].gpa → [Course].difficulty

which states that the difficulty of a course is affected by the
gpa of students taking that course. Presumably, instructors
adjust the difficulty of the course based on the grade-point
average of enrolled students.

A relational modelM = (S,D,Θ) is a collection of rela-
tional dependencies defined over a single relational schema
along with their parameterizations (a conditional probabil-
ity distribution for each attribute given its parents). The
structure of a relational model can be depicted by super-
imposing the dependencies on the ER diagram of the re-
lational schema, as shown in Figure 1, and labeling each
arrow with the corresponding relational dependency.

Given a relational model M and a relational skeleton σ,
we can construct a ground graph GGMσ by applying the
relational dependencies as specified in the model to the spe-
cific instances of the relational skeleton. Figure 3 shows the
ground graph for the model of Figure 1 applied on the re-
lational skeleton of Figure 2. In this work, we restrict our
attention to relational models that do not contain the kind
of relational autocorrelation that gives rise to cycles in the
ground graph.

3 TEMPORAL RELATIONAL MODELS

Relational models can be extended with a temporal di-
mension to model probabilistic dependencies over time.
Such an extension is similar to the way in which dy-
namic Bayesian networks (DBNs) extend Bayesian net-
works [Murphy, 2002]. A temporal relational model can
be thought of as a sequence of time points, each of which
is associated with a (non-temporal) relational model, and a
set of dependencies that cross time points. Because depen-
dencies in this model have a causal interpretation, depen-
dencies across time points are only directed from the past
to the future.

In this section, we extend the relational notions presented
in Section 2 to include time. We assume that (1) time is dis-
crete; (2) the schema is static; (3) relational dependencies
do not change over time; (4) the temporal relational skele-
ton is given a priori; (5) the first-order Markov assumption

573

[Courset,Takest,Student t].gpa ! [Courset].di�culty

gpa difficulty

Student Course

Takes t

[Courset+1,Takest+1,Student t+1].gpa ! [Courset+1].di�culty

[Student t+1,Student t,Takest,Courset].di�culty ! [Student t+1].gpa

gpa difficulty

Student Course

Takes t+1

Figure 4: Example structure of a temporal relational model.

t = 1t = 0

. . .

Takes

Takes

Takes
Alice

Bob CS201

CS101 CS101

CS201Bob

Alice

Figure 5: Example temporal relational skeleton for the
schema shown in Figure 4.

holds (i.e., treatment and outcome can be at most one time
point apart); and (6) all entities participating in a relation-
ship are contemporaneous with the relationship.

Under these assumptions, the structure of a temporal re-
lational model can be represented by using only two time
points, as shown in Figure 4. Every time point has the same
relational schema, shown in gray. A temporal relational
skeleton provides a partial instantiation of a temporal rela-
tional schema. It specifies the entity and relationship in-
stances that exist in each time point. Note that different
sets of entity and relationship instances may be present in
each time step. An example temporal relational skeleton is
shown in Figure 5. In this case, both time points have the
same set of entity instances (Alice and Bob are instances
of the Student entity, CS101 and CS201 are instances of
the Course entity). However, the instances of the relation-
ship Takes differ. In t = 0, Alice takes CS101 and Bob
takes CS201. In t = 1, Alice takes CS201 and Bob takes
no classes.

Temporal relational paths capture possible ways to
traverse the temporal schema; therefore, they can cross
time points. For example, a temporal relational path
is [Student t+1,Student t,Takest,Courset], which de-
scribes the classes that a student took in the previous
semester. More formally, a temporal relational path is
a sequence of non-temporal relational paths (relational
paths within a time point) and “jumps” between neigh-
boring time points. These jumps can happen at both
entities and relationships because each choice encodes
a distinct semantics. For example, the relational path
[Student t+1,Student t,Takest,Courset] describes the
courses that a student took in the previous semester, while
the path [Student t+1,Takest+1,Courset+1,Courset]

first finds the courses that a student is taking this semester,
and then finds those courses in the previous semester. In
the example skeleton of Figure 5, for Alice, the first path
would reach CS101 at t = 0, while the second path, will
reach CS201 at t = 0.
Definition 1. A temporal relational path P is a sequence
of non-temporal relational paths P t00 , . . . , P

tk
k (k ≥ 0) such

that for any two consecutive paths P tii , P
tj
j in P the follow-

ing hold:

1. |ti − tj | = 1

2. The last item class of P tii is the same as the first item
class of P tjj .

3. No subpath of P is of the form [Itk, . . . , I
t
k], where all

relations in the subpath are one-to-one.

We use the notation time(P) to denote the set of all time
points that appear in path P .

Temporal relational variables consist of a temporal rela-
tional path and an attribute that can be reached through
that path. Temporal relational dependencies define proba-
bilistic dependencies between two temporal relational vari-
ables. Temporal probabilistic dependencies are never di-
rected backwards in time. Therefore, at the model level,
there are no dependencies going back in time. However,
the temporal constraints associated with a dependency are
also implicitly encoded by the temporal relational path that
annotates the dependency. To account for this, we forbid
the temporal relational path of the treatment to go through
any time points later than the time point of the outcome.
Definition 2. A temporal relational dependency consists
of two temporal relational variables with a common base
item, [It1, . . . , I

t′
k].Vk → [It1].V1 such that

max
(

time
(
[It1, . . . , I

t′
k]
))
≤ t

The first-order Markov assumption for temporal causal
models implies that for every probabilistic dependency, if
the treatment is in time point t, then the outcome is either
in t or in t + 1. In the case of relational domains, the rela-
tional path of the treatment carries some temporal informa-
tion since it can contain multiple time points. For the first-
order Markov condition to hold, we require the relational
path of the treatment to only go through the current and the
next time points. More formally, a temporal relational de-
pendency [It1, . . . , I

t′
k].Vk → [It1].V1 follows the first-order

Markov assumption if the following two conditions hold:

t = t′ or t = t′ + 1 (1)

time([It1, . . . , I
t′
k]) ⊆ {t, t− 1} (2)

The structure of a 2-slice temporal relational model is de-
fined as a set of temporal relational dependencies over a
relational schema.

574

Tower Cellphone

Connects

Figure 6: Relational schema for the reality mining dataset.

Definition 3. The structure of a 2-slice temporal relational
model is a pair M = 〈S,DT 〉, where S is a relational
schema and DT is a set of temporal relational dependen-
cies that adhere to the first-order Markov assumption.

Figure 4 shows the structure of a 2-slice temporal relational
model for the university domain. The temporal dependency
shows that the difficulty of a course in the fall semester
affects the spring GPA of the students that took this class
in the fall. If, for example, a student takes many difficult
classes, it is more likely that the student’s GPA will drop
in the next semester. Finally, given a temporal relational
skeleton σT and a temporal relational model M, we can
construct a temporal ground graph GGMσT in the same
way as in the non-temporal case.

4 EXPRESSIVENESS OF TEMPORAL
RELATIONAL MODELS

The temporal relational model described so far sub-
sumes propositional directed networks (Bayesian net-
works), propositional temporal directed networks (dynamic
Bayesian networks), and relational non-temporal models.
This added expressivity comes at the cost of increased com-
plexity. This raises an obvious and important question:
What is the value of this added expressivity?

As an example of the practical utility of this added expres-
sivity, we consider a real dataset and show how a path with
temporal jumps leads to different terminal sets. Specifi-
cally, we used the Reality Mining dataset [Eagle and Pent-
land, 2006]. The dataset contains two entities, Tower and
Cellphone , and one relationship, Connects . The relational
schema for this domain is shown in Figure 6. For this
dataset, entity instances (i.e., the set of towers and cell-
phones) do not change over time. However, the set of re-
lationship instances (the connections) are different at every
time point. In total, there are 95 cellphones, 32,579 tow-
ers, and 3,308,709 connections. Every connection is time-
stamped with precision of 1 second. For our work, the time
granularity was coarsened to a day.

We computed the terminal sets for the following three
paths:

P1 : [Tower t+1,Tower t,Connectst,Cellphonet]

P2 : [Tower t+1,Connectst+1,Connectst,Cellphonet]

P3 : [Tower t+1,Connectst+1,Cellphonet+1,Cellphonet]

The first path corresponds to the cellphones that were con-

Table 1: Jaccard distance between the terminal sets of the
different paths for the reality mining dataset (100 sample
dates, distance is averaged across dates and across towers).

Jaccard distance P1 vs. P3 P1 vs. P2 P2 vs. P3
mean 0.47 0.31 0.31
min 0 0 0
max 1 1 1
median 0.5 0 0

nected to a tower in the previous timestep. The second path
corresponds to the cellphones that connected to a tower
both in the current and in the previous timestep. The
third path corresponds to the cellphones that connected to
a tower in the current time step, and gets the state of those
cellphones in the previous timestep.

We randomly selected 100 dates from the dataset. For each
of these dates and for each tower that was used in these
dates, we computed the terminal sets for the above paths.
For a given tower and date, we computed the Jaccard dis-
tance between the different terminal sets. The Jaccard dis-
tance between two sets A and B is defined as J(A,B) =

1 − |A∩B||A∪B| . Intuitively, this quantifies the overlap of two
sets, while accounting for the size of both. Table 1 shows
the average Jaccard distance between the terminal sets, av-
eraged across the dates and the towers. The results indicate
that, on average, the terminal sets reached through the three
paths will be different; therefore, this more expressive rep-
resentation could be of use in real data.

5 TEMPORAL ABSTRACT GROUND
GRAPHS

An abstract ground graph is a lifted representation that ab-
stracts paths of dependence over all possible ground graphs
for a given relational model [Maier et al., 2013b]. Abstract
ground graphs are shown to be sound and complete in the
sense that every edge in the abstract ground graph corre-
sponds to an edge in some ground graph, and every edge
in an arbitrary ground graph is represented by an edge in
an abstract ground graph. In this section we adapt the def-
inition of abstract ground graphs for the case of a 2-slice
temporal relational model.

Definition 4. A temporal abstract ground graph
tAGGMBh = 〈V,E〉 for a 2-slice temporal rela-
tional modelM = 〈S,DT 〉, perspective B ∈ E ∪ R, and
hop threshold h ∈ N0 is an abstraction of the dependencies
DT for all possible ground graphs GGMσT of M on
arbitrary temporal skeletons σT . The temporal abstract
ground graph is a directed graph with the following nodes
and edges:

1. V = RV ∪ IV , where

575

(a) RV is the set of temporal relational variables with a
path of length at most h+ 1.

RV = {[Bt, ... , It′j].V | length([Bt, ... , It
′
j]) ≤ h+ 1}

(b) IV are intersection variables between pairs of tempo-
ral relational variables that could intersect1.

IV = {X ∩ Y | X,Y ∈ RV

and X = [Bt, ... , It
′
k , ... , I

t′′
j].V

and Y = [Bt, ... , It
′′′
l , ... , It

′′
j].V and It

′
k 6= It

′′′
l }

2. E = RVE ∪ IVE , where

(a) RVE ⊂ RV × RV are the relational variable edges:

RVE = {[Bt, ... , It′k].Vk → [Bt, ... , It
′′
j].Vj |

[It
′′
j , ... , I

t′
k].Vk → [It

′′
j].Vj ∈ DT and

[Bt, ... , It
′
k] ∈ extend([Bt, ... , It

′′
j], [It

′′
j , ... , I

t′
k])}

(b) IVE ⊂
(
IV ×RV

)
∪
(
RV × IV

)
are the intersection

variable edges. This is the set of edges that intersection
variables “inherit” from the relational variables that they
were created from.

The extend method converts dependencies of the model,
specified in the canonical form, into dependencies from the
perspective of the abstract ground graph.

Temporal abstract ground graphs can be shown to be
a correct abstraction over all possible temporal ground
graphs. The proof follows the one provided for the non-
temporal abstract ground graphs, as presented by Maier et
al. [2013b].

The temporal abstract ground graph for a model on the
student-courses domain with the dependency

[Student t+1,Student t,Takest,Courset].difficulty →
[Student t+1].gpa

is shown in Figure 7. This abstract ground graph is from
the perspective of Student and for hop threshold h = 4.
Disconnected nodes are omitted.

6 d-SEPARATION IN TEMPORAL
ABSTRACT GROUND GRAPHS

The rules of d-separation provide a graphical criterion that
specifies whether two sets of variables in a directed acyclic
graph are conditionally independent given a third set of
variables. Specifically, let X,Y,Z be disjoint sets of vari-
ables in a directed acyclic graph. X is d-separated from Y

1Only relational variables in the same time point can intersect.

[Student(t+1), Takes(t+1), Takes(t), Course(t)].difficulty

[Student(t+1), Takes(t+1), Takes(t), Student(t), Student(t+1)].gpa)

[Student(t+1), Takes(t+1), Takes(t), Student(t), Student(t+1)].gpa INT
[Student(t+1), Takes(t+1), Course(t+1), Takes(t+1), Student(t+1)].gpa)

[Student(t+1), Takes(t+1), Takes(t), Student(t), Student(t+1)].gpa INT
[Student(t+1), Student(t), Takes(t), Takes(t+1), Student(t+1)].gpa)

[Student(t+1), Student(t), Takes(t), Course(t)].difficulty

[Student(t+1)].gpa)

[Student(t+1), Student(t), Takes(t), Course(t)].difficulty INT
[Student(t+1), Takes(t+1), Takes(t), Course(t)].difficulty

[Student(t+1), Takes(t+1), Takes(t), Course(t)].difficulty INT
[Student(t+1),Takes(t+1), Course(t+1), Course(t)].difficulty

[Student(t+1), Student(t), Takes(t), Course(t)].difficulty INT
[Student(t+1),Takes(t+1), Course(t+1), Course(t)].difficulty

Figure 7: Temporal abstract ground graph from
the perspective of Student and hop thresh-
old h = 4 for a model with one dependency:
[Student t+1,Student t,Takest,Courset].difficulty →
[Student t+1].gpa . INT denotes intersection variables
between pairs of temporal relational variables.

given Z if every path between variables in X and Y is not
a d-connecting path given Z. A path is d-connecting given
Z if for every collider W on the path, either W ∈ Z or a
descendant ofW is in Z, and every non-collider on the path
is not in Z. Geiger and Pearl [1988] and Verma and Pearl
[1988] showed that d-separation is sound and complete.

Ground graphs (and temporal ground graphs) are directed
acyclic graphs; therefore, the rules of d-separation can be
applied to them. In the case of domains where the first-
order Markov assumption holds, a d-separating set for vari-
ables in the same time point can be found by examining
only one time point in the past.

Proposition 5. Let G be a temporal directed acyclic graph
that follows the first-order Markov assumption. (i) IfXt+1

and Y t+1 are conditionally independent given some set Z,
then there exists a separating set W such that time(W) ⊆
{t, t + 1}. (ii) Similarly, if Xt and Y t+1 are conditionally
independent given some set Z, then there exists a separat-
ing set W such that time(W) ⊆ {t, t+ 1}.

Proof. For each case, we will construct an appropriate sep-
arating set:

(i) Let W = parents(Xt+1)∪parents(Y t+1). Because of
the first-order Markov assumption, time(W) ⊆ {t, t+ 1}.
Moreover, conditioning of W renders Xt+1, Y t+1 inde-
pendent because of the local Markov property (eitherXt+1

is a descendant of Y t+1 or vice versa, or none of them is a
descendant of the either).

(ii) In this case, let W = parents(Y t+1). Because of
the temporal semantics, Xt is a non-descendant of Y t+1;
therefore, Y t+1 is conditionally independent of its non-
descendants (that include Xt) given W.

The significance of the above proposition is that, given a
model where the first-order Markov assumption holds, we

576

could infer conditional independencies (and use them to
learn the structure of the model) by only considering con-
secutive time points.

Maier et al. [2013b] showed that d-separation cannot be
applied directly to a relational model. To correct for that,
they introduced relational d-separation, a graphical crite-
rion that can be applied to abstract ground graphs and used
to infer conditional independencies that hold across all pos-
sible ground graphs of the model. Here, we show that
the notion of relational d-separation can be generalized for
temporal abstract ground graphs as well. In the following
definition, X|b denotes the terminal set of X starting at b,
i.e., the set of X instances that can be reached if we start
from instance b and follow the relational path of X on the
relational skeleton.

Definition 6 (Temporal relational d-separation). Let X, Y,
and Z be three disjoint sets of temporal relational variables
from perspective B for a 2-slice temporal relational model
M such that not both X and Y contain variables in t. Then
X and Y are d-separated by Z if and only if, for any tem-
poral skeleton σT , X|b and Y|b are d-separated by Z|b in
ground graph GGMσT for all b ∈ σT (B).

The following theorem shows that temporal relational d-
separation is sound and complete up to a specified hop
threshold. We use the notation X̄ to denote the set of re-
lational variables X augmented with the set of intersection
variables they participate in.

Theorem 7. Let X, Y, and Z be three disjoint sets of tem-
poral relational variables for perspective B such that not
both X and Y contain variables in t. Then, for any tem-
poral skeleton σT and for all b ∈ σ(B), X|b and Y|b are
d-separated by Z|b up to h in ground graph GGMσT if
and only if X̄ and Ȳ are d-separated by Z̄ on the abstract
ground graph tAGGMBh .

Proof. We prove this by defining a non-temporal relational
model that is equivalent to the given temporal model. Since
d-separation is sound and complete for non-temporal rela-
tional models, the result extends to the equivalent model,
and therefore, the temporal relational model. Given a 2-
slice temporal relational modelMT = 〈S,DT 〉, construct
a relational modelM = 〈S ′,D〉 as follows:

• For every item in S, add an item in S ′ with superscript t
and one with superscript t+ 1: S ′ = {It, It+1 | I ∈ S}.
• For every entity E ∈ S, add in S ′ a 1-1 relation between
Et and Et+1.

• The set of relational dependencies is the set of temporal
relational dependencies: D = DT .

It can be shown that these two models are equivalent in
the sense that there is a one-to-one correspondence be-
tween valid paths inMT andM. Leveraging the tempo-
ral constraints of d-separation described by Proposition 5

and the soundness and completeness of d-separation for
abstract ground graphs, we conclude that d-separation is
sound and complete (up to a hop threshold) in temporal ab-
stract ground graphs.

7 TEMPORAL RCD

The theory of temporal relational d-separation allows us
to derive all conditional independence facts that are con-
sistent with the structure of a temporal relational model,
the same way that d-separation connects the structure of
a Bayesian network and the conditional independencies of
the underlying distribution. This is precisely the connec-
tion that constraint-based algorithms leverage in order to
learn the structure of models. Thus, temporal relational d-
separation (and temporal abstract ground graphs) enable a
constraint-based algorithm, TRCD2, that learns the struc-
ture of temporal and relational causal models from data.

TRCD extends RCD [Maier et al., 2013a] to operate over
a 2-slice temporal relational model. More specifically, it
constructs a set of temporal abstract ground graphs, one
from the perspective of each entity, and uses the theory
of temporal relational d-separation on temporal abstract
ground graphs to decide conditional independence facts.
TRCD uses the temporal abstract ground graphs to de-
termine which conditional independence facts should be
checked in the data and which dependencies (edges) in the
temporal relational model are implied by those facts. As
in the case of RCD, for practical reasons, the space of po-
tential dependencies is limited by a domain-specific hop
threshold.

TRCD operates in two phases. Phase I learns a set of undi-
rected dependencies and Phase II employs a set of orienta-
tion rules to orient those dependencies. Phase II of TRCD
uses the same orientation rules as RCD—collider detection,
known non-colliders (KNC), cycle avoidance (CA), Meek
rule 3 (MR3), and relational bivariate orientation (RBO).
Additionally, TRCD orients dependencies that cross time
points from the past to the future.

RCD was shown to be sound and complete in the sam-
ple limit (i.e., with perfect tests of conditional indepen-
dence) and for infinite hop threshold, under the standard
assumptions of the causal Markov condition, faithfulness,
and causal sufficiency for relational domains. By leverag-
ing the soundness and completeness of temporal relational
d-separation, TRCD can be shown to be sound and com-
plete (under the same assumptions).

2Code available at kdl.cs.umass.edu/trcd.

577

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6 7 8 9 10
Number of dependencies

1 entity

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6 7 8 9 10
Number of dependencies

2 entities

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6 7 8 9 10
Number of dependencies

3 entities
P

re
ci

si
on

 /
R

ec
al

l (
w

ith
 s

ta
nd

ar
d

er
ro

r
of

 th
e

m
ea

n)

Skeleton precision Skeleton Recall Oriented Precision Oriented Recall

Figure 8: Precision and recall for TRCD after Phase I (unoriented) and after Phase II (oriented) when using an oracle for
answering d-separation queries. The y-axis values start at 0.8.

8 EXPERIMENTS

8.1 ORACLE EXPERIMENTS

The goal of this set of experiments is twofold. First, we
evaluate the theoretical performance of TRCD in the large
sample limit. Towards that end, we employ an oracle for
answering d-separation queries in the place of statistical
tests of independence. Second, these experiments provide
experimental evidence about the correctness of temporal
relational d-separation.

We generated synthetic schemas with number of entities
varying from 1 to 3, number of relationships fixed to one
less than the number of entities, and number of attributes
for each item drawn from Poisson(λ = 1) + 1. The car-
dinalities were uniformly selected at random. For each
number of entities specified, we generated 500 different
schemas. This generating process yielded 1,500 different
schemas. For a given schema, we generated 10 different
models with number of dependencies ranging from 1 to 10.
Specifically, we generated all possible dependencies, up to
hop-threshold h = 3. Then, we chose the desired num-
ber of dependencies from that space at random, subject to
the following constraints: Each relational variable has at
most 3 parents and the generated model contains no cycles.
Moreover, every model must contain at least one depen-
dency with a temporal relational path that contains more
than one time point. This procedure resulted in a total of
15,000 models.

We ran TRCD with a d-separation oracle for each model.
Figure 8 shows average precision and recall after Phase I
(unoriented dependencies) and after Phase II (partially ori-
ented dependencies). As expected, given that these exper-
iments use an oracle, the algorithm always learns the cor-
rect set of unoriented dependencies (unoriented precision
and recall are always 1). The algorithm makes no mistakes
in the orientation (oriented precision is always 1); however,

Table 2: Frequency of the most-used orientation rules dur-
ing Phase II of TRCD for the oracle experiments. For the
rest of the rules, the frequency was less than 1%. Temporal
dependencies are not oriented by the orientation rules.

Number
of

entities

Collider
detection

KNC RBO Percent of
temporal

dependencies
1 71% 28% 0% 66%
2 66% 11% 23% 68%
3 53% 11% 36% 65%

it is not possible to orient all dependencies (oriented recall
is lower than 1). Note that comparing to an oracle version
of RCD is not straightforward. The oracle requires a true
model that is fully directed. Converting the true temporal
model to a non-temporal one would often result in cycles
or undirected edges, and the relational d-separation oracle
cannot be used.

Table 2 shows how often each orientation rule was used in
Phase II. Collider detection, known non-colliders (KNC),
and relational bivariate orientation (RBO) are orienting the
majority of the edges. As expected, in the case of propo-
sitional models (one entity), the relational bivariate orien-
tation rule, a rule for edge orientation that is unique to
relational data, is never used. We observe that the other
two rules—cycle avoidance and Meek’s rule 3—do not fire
often. That can be explained by the fact that those rules
would never fire in the presence of a temporal edge. Con-
sider cycle avoidance in the propositional case: If the pat-
tern X → Y → Z and X − Y is encountered, then cycle
avoidance orients X → Y . If any of the dependencies
X → Y → Z crosses time points, then X and Y would be
in different time points and the edge between them would
be oriented based on temporal precedence. A similar argu-
ment can be made for the case of Meek’s rule 3.

578

8.2 EXPERIMENTS ON SYNTHETIC DATA

This experiment showcases the use of TRCD on data, i.e.,
without the use of an oracle to decide conditional indepen-
dence. Towards that end, we generated synthetic models,
generated data from these models, and applied TRCD on
them. The use of synthetic data allows us to have access
to the ground truth, so we can measure the accuracy of the
learned models. The data-generating process is described
in detail below.

Using the same process as described in 8.1, we generated 5
synthetic schemas with 2 entities and 5 synthetic schemas
with 3 entities. For each schema, we generated 10 models
with number of dependencies ranging from 1 to 10. This re-
sulted in 100 different models. For each model we created
3 different relational skeletons over 300 timepoints. The
number of entity instances at each time point was drawn
from Poisson(λ) + 1, where λ ∼ U(5, 10). The degree
distribution for the relationship instances was drawn from
Poisson(λ)+1, where λ ∼ U(1, 5). Regarding the param-
eters of the graphical model, the marginals were parameter-
ized as normal distributions N (µ, σ), where µ ∼ U(0, 5)
and σ ∼ U(0, 1). The conditional distribution for a re-
lational variable X was

∑
Y ∈parents(X)

(
avg(Y)

)
+ 0.1 ∗

N (0, 1). This resulted in 300 datasets, each over 300 time
points.

In order to assess statistical independence, we fitted a stan-
dard linear least-squares regression equation to the out-
come variable using the treatment and the variables in the
conditioning set as covariates. For relational variables in
the conditioning set, we used the average as the aggregation
function. Then, we directly used the t-test of the coefficient
of the treatment variable to assess independence (p > 0.05
or effect size < 0.01). Figure 9 shows average precision
and recall of TRCD after Phase I and Phase II, when ap-
plied to the synthetic datasets. While precision after Phase
I is more than 0.75 in most cases, the recall after Phase
I is relatively low. That implies that we concluded inde-
pendence (and therefore we removed an edge) more often
than we should. This corresponds to Type II errors and can
be attributed to the lack of good conditional independence
tests for relational data.

Finally, to demonstrate the difference in expressiveness be-
tween TRCD and RCD (the only constraint-based algo-
rithm for relational data), we ran RCD on a “temporally
flattened”3 version of the synthetic data. The true model
and the model that TRCD learned are shown in Figure 10.
The model learned by RCD is shown in Figure 11. TRCD
correctly learns and orients three of the edges, with the cor-
rect path specification. Those dependencies cannot even be
expressed in the space of dependencies for RCD.

3RCD is ignoring temporal information. An instance is
uniquely identified by instance id and time point.

[Bt+1].Y 2! [Bt+1].Y 1

X1 Y1

A BAB

t
X2

X3 Y2

XY1

XY2 XY3

X1 Y1

A BAB

t+1
X2

X3 Y2

XY1

XY2 XY3

[At+1, At, ABt].XY 2! [At+1].X2

[At+1, At].X2! [At+1].X3

[ABt+1, At+1, ABt+1, ABt].XY 1! [ABt+1].XY 3

[Bt+1, ABt+1, At+1, ABt+1].XY 3! [Bt+1].Y 1

Figure 10: True temporal relational model. The dotted edge
was not learned by TRCD, while the dashed edge was left
unoriented.

X1 Y1

A BAB

X2

X3 Y2

XY1

XY2 XY3

[B].Y 2! [B].Y 1

[B, AB, A, AB].XY 3! [B].Y 1

Figure 11: Model learned by RCD for data generated from
the temporal model of Figure 10.

9 RELATED WORK

For the propositional case, there are several approaches
for learning the structure of temporal probabilistic mod-
els. Most of them are not constraint-based methods, but
follow the search-and-score paradigm. Friedman et al.
[1998] present an algorithm to learn the structure of DBNs
from complete data using a search-and-score algorithm,
and from incomplete data using structural EM. Lähdesmäki
and Shmulevich [2008] use Bayesian methods to learn
the structure of a DBN from steady state measurements
or from time-series data and steady state measurements.
Robinson and Hartemink [2010] present an MCMC algo-
rithm to learn the structure of a DBN that changes over
time. A different approach that learns a causal temporal
model from time series data is the difference-based causal-
ity learner [Voortman et al., 2010]. This framework is
based on dynamic Structural Equation Models.

A constraint-based method for temporal propositional do-
mains is presented by Entner and Hoyer [2010] who ex-
tend the FCI algorithm [Spirtes et al., 2000] to temporal
domains. FCI relaxes the causal sufficiency assumption,
i.e., it allows the presence of latent common causes. Our
approach is the first approach that uses a constraint-based
algorithm for data that is both temporal and relational (al-
though under the assumption of causal sufficiency).

Another widely used method for inferring causal relation-
ships from temporal data is Granger causality [Granger,
1969]. The main idea underlying Granger causality is that

579

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10
Number of dependencies

2 entities

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10
Number of dependencies

3 entities
P

re
ci

si
on

 /
R

ec
al

l (
w

ith
 s

ta
nd

ar
d

er
ro

r
of

 th
e

m
ea

n)

Skeleton precision Skeleton recall Oriented precision Oriented recall

TRCD on temporal data

Figure 9: TRCD on synthetic temporal data.

a cause should improve the predictive accuracy of its ef-
fect, compared to predictions based solely on the effect’s
past values. There has been work in extending Granger
causality for multivariate settings, as well as in combining
Granger causality with graphical models [Eichler, 2012].
Liu et al. [2010] propose a regularized Hidden Markov
Random Field regression to learn the structure of a tempo-
ral causal graph from multivariate time-series data. How-
ever, the methods used for learning the structure of the
causal model are not constraint-based.

Another line of work in learning temporal and relational
models stems from combining first-order logic with prob-
abilistic frameworks. Logical Hidden Markov Models ex-
tend Hidden Markov Models to handle relational (non-flat
data) [Kersting et al., 2006]. Kersting and Raiko [2005]
provide an EM-based algorithm to learn the structure of
LHMMs.

In terms of representation, Manfredotti [2009] introduces
relational dynamic Bayesian networks (RDBNs), a first-
order logic-based extension of dynamic Bayesian net-
works. RDBNs are similar to the relational model we de-
fine; however, we provide an explicit characterization for
the space of relational paths, and subsequently, the space
of relational dependencies. To be more specific, temporal
relational paths in our framework are restricted to conjunc-
tions of predicates that correspond to possible traversals of
the relational schema. This restriction, together with the
domain specific hop threshold, allows us to enumerate the
space of potential dependencies to learn.

10 CONCLUSIONS AND FUTURE WORK

In this paper we presented a formalization of temporal re-
lational models, and we extended the theory of relational
d-separation to the temporal domain. We presented a
constraint-based algorithm, TRCD, that leverages the no-
tion of temporal relational d-separation to learn the causal

structure of temporal relational models from data. We
showed that the algorithm is sound and complete, and we
provided experimental evidence that showcases the correct-
ness of TRCD. Finally, we showed the improvement that
TRCD achieves compared to RCD when applied to do-
mains with a temporal component.

TRCD makes certain simplifying assumptions. Future
work could focus on relaxing some of those assumptions,
specifically, allowing the structure of the causal model to
change over time (change point detection for relational
data). Another avenue for future research is relaxing the
causal sufficiency assumption by employing techniques
such as blocking [Rattigan et al., 2011] for temporal re-
lational domains. Finally, an important issue that arises
when modelling time as a discrete quantity is how to choose
the appropriate granularity of time points. Ribeiro et al.
[2012] provide an analysis on how aggregating at a given
time granularity affects the characterization of the under-
lying temporal process. Continuous time Bayesian net-
works [Nodelman et al., 2002, 2003] provide a way around
this by allowing each variable to be modeled at a different
time granularity.

Acknowledgements

Funding was provided by the U.S. Army Research Office
(ARO) and Defense Advanced Research Projects Agency
(DARPA) under Contract Number W911NF-11-C-0088.
The content of the information in this document does not
necessarily reflect the position or the policy of the Gov-
ernment, and no official endorsement should be inferred.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Government purposes notwithstanding
any copyright notation here on.

580

References
Nathan Eagle and Alex (Sandy) Pentland. Reality mining:

Sensing complex social systems. Personal and Ubiqui-
tous Computing, 10(4):255–268, March 2006.

Michael Eichler. Graphical modelling of multivariate time
series. Probability Theory and Related Fields, 153(1-
2):233–268, 2012.

Doris Entner and Patrik Hoyer. On causal discovery from
time series data using FCI. In Proceedings of the 5th
European Workshop on Probabilistic Graphical Models
(PGM-2010), pages 121–128, 2010.

Nir Friedman, Kevin Murphy, and Stuart Russell. Learning
the structure of dynamic probabilistic networks. In Pro-
ceedings of the Fourteenth Conference on Uncertainty in
Artificial Intelligence, pages 139–147, 1998.

Dan Geiger and Judea Pearl. On the logic of causal models.
In Proceedings of the Fourth Annual Conference on Un-
certainty in Artificial Intelligence, pages 136–147, 1988.

Clive W. J. Granger. Investigating causal relations by
econometric models and cross-spectral methods. Econo-
metrica, 37(3):424–38, July 1969.

Kristian Kersting and Tapani Raiko. “Say EM” for select-
ing probabilistic models for logical sequences. In Pro-
ceedings of the Twenty-First Conference in Uncertainty
in Artificial Intelligence, pages 300–307, 2005.

Kristian Kersting, Luc De Raedt, and Tapani Raiko. Logi-
cal hidden Markov models. Journal of Artificial Intelli-
gence Research, 25:425–456, 2006.

Harri Lähdesmäki and Ilya Shmulevich. Learning the struc-
ture of dynamic Bayesian networks from time series and
steady state measurements. Machine Learning, 71(2-
3):185–217, June 2008.

Yan Liu, Alexandru Niculescu-Mizil, Aurelie C. Lozano,
and Yong Lu. Learning temporal causal graphs for rela-
tional time-series analysis. In Proceedings of the Twenty-
Seventh International Conference on Machine Learning,
pages 687–694, 2010.

Marc Maier, Katerina Marazopoulou, David Arbour, and
David Jensen. A sound and complete algorithm for
learning causal models from relational data. In Proceed-
ings of the Twenty-Ninth Conference on Uncertainty in
Artificial Intelligence, pages 371–380, 2013.

Marc Maier, Katerina Marazopoulou, and David Jensen.
Reasoning about Independence in Probabilistic Models
of Relational Data. arXiv:1302.4381, 2013.

Cristina E. Manfredotti. Modeling and Inference with Re-
lational Dynamic Bayesian Networks. PhD thesis, Uni-
versity of Milano, 2009.

Kevin P. Murphy. Dynamic Bayesian Networks: Represen-
tation, Inference and Learning. PhD thesis, University
of California, Berkeley, 2002.

Uri Nodelman, Christian R. Shelton, and Daphne Koller.
Continuous time Bayesian networks. In Proceedings of
the Eighteenth Conference on Uncertainty in Artificial
Intelligence, pages 378–387, 2002.

Uri Nodelman, Christian R. Shelton, and Daphne Koller.
Learning continuous time Bayesian networks. In Pro-
ceedings of the Nineteenth International Conference on
Uncertainty in Artificial Intelligence, pages 451–458,
2003.

Judea Pearl and Thomas Verma. A theory of inferred cau-
sation. In J. Allen, R. Fikes, and E. Sandewall, edi-
tors, Principles of Knowledge Representation and Rea-
soning: Proceeding of the Second International Confer-
ence, pages 441–452. Morgan Kaufmann, 1991.

Matthew J.H. Rattigan, Marc Maier, and David Jensen. Re-
lational blocking for causal discovery. In Proceedings of
the Twenty-Fifth AAAI Conference on Artificial Intelli-
gence, pages 145–151, 2011.

Bruno F. Ribeiro, Nicola Perra, and Andrea Baronchelli.
Quantifying the effect of temporal resolution in time-
varying network. CoRR, abs/1211.7052, 2012.

Joshua W. Robinson and Alexander J. Hartemink. Learning
non-stationary dynamic Bayesian networks. Journal of
Machine Learning Research, 11:3647–3680, December
2010.

Peter Spirtes, Clark Glymour, and Richard Scheines. Cau-
sation, Prediction and Search. MIT Press, Cambridge,
MA, 2nd edition, 2000.

Thomas Verma and Judea Pearl. Causal networks: Seman-
tics and expressiveness. In Proceedings of the Fourth
Annual Conference on Uncertainty in Artificial Intelli-
gence, pages 352–359, 1988.

Mark Voortman, Denver Dash, and Marek J. Druzdzel.
Learning why things change: The difference-based
causality learner. In Proceedings of the Twenty-Sixth
Conference on Uncertainty in Artificial Intelligence,
pages 641–650, 2010.

581

Hamiltonian ABC

Edward Meeds
Informatics Institute

University of Amsterdam
tmeeds@gmail.com

Robert Leenders
Informatics Institute

University of Amsterdam
leenders.robert@gmail.com

Max Welling ∗
Informatics Institute

University of Amsterdam
welling.max@gmail.com

Abstract

Approximate Bayesian computation (ABC) is a
powerful and elegant framework for performing
inference in simulation-based models. However,
due to the difficulty in scaling likelihood esti-
mates, ABC remains useful for relatively low-
dimensional problems. We introduce Hamil-
tonian ABC (HABC), a set of likelihood-free
algorithms that apply recent advances in scal-
ing Bayesian learning using Hamiltonian Monte
Carlo (HMC) and stochastic gradients. We find
that a small number forward simulations can ef-
fectively approximate the ABC gradient, allow-
ing Hamiltonian dynamics to efficiently traverse
parameter spaces. We also describe a new sim-
ple yet general approach of incorporating random
seeds into the state of the Markov chain, further
reducing the random walk behavior of HABC.
We demonstrate HABC on several typical ABC
problems, and show that HABC samples com-
parably to regular Bayesian inference using true
gradients on a high-dimensional problem from
machine learning.

1 INTRODUCTION

In simulation-based science, models are defined by a sim-
ulator and its parameters. These are called likelihood-
free models because, in contrast to probabilistic models,
their likelihoods are either intractable to compute or must
be approximated by simulations. To perform inference in
likelihood-free models, a broad class of algorithms called
Approximate Bayesian Computation [3, 13, 20, 12] are em-
ployed.

At the core of every ABC algorithm is simulation. To eval-
uate the quality of a parameter vector θ, a simulation is run

∗Donald Bren School of Information and Computer Sciences
University of California, Irvine, and Canadian Institute for Ad-
vanced Research.

using θ as inputs and producing outputs x. If the pseudo-
data x is “close” to observations y, then θ is kept as a sam-
ple from the approximate posterior. Parameters θ are then
adjusted, depending upon the algorithm, to obtain the next
sample.

In ABC, there is a fundamental trade-off between the com-
putation required to obtain independent samples and the
approximation to the true posterior. If the parameter mea-
suring closeness is too small, then samplers “mix” poorly;
on the other hand, if it is too large, then the approxima-
tion is poor. As the dimension of the parameters grows, the
problem worsens, just as it does for general Bayesian in-
ference with probabilistic models, but it is more acute for
ABC due to its simulation requirement. There is therefore
a deep interest in improving the efficiency of ABC sam-
plers (in terms of computation per independent sample). In
this paper we address this issue directly by using Hamil-
tonian dynamics to approximately sample from likelihood-
free models with high-dimensional parameters.

Hamiltonian Monte Carlo (HMC) [7, 16] is perhaps the
only Bayesian inference algorithm that scales to high-
dimensional parameter spaces. The core computation of
HMC is the gradient of the log-likelihood. Two problems
arise if we consider HMC for ABC: one, how can the gra-
dients be computed for high-dimensional likelihood-free
models, and two, given a stochastic approximation to the
gradient, can a valid HMC algorithm be derived?

To answer the latter, we turn to recent developments in scal-
ing Bayesian inference using HMC and stochastic gradi-
ents [25, 5, 6]. We call these stochastic gradient Hamil-
tonian dynamics (SGHD) algorithms. SGHD algorithms
are computationally efficient for two reasons. First, they
avoid computing the gradient of the log-likelihood over
the entire data set, instead approximating it using small
batches of data, i.e. computing stochastic gradients. Sec-
ond, they can maintain reasonable approximations to the
Hamiltonian dynamics and therefore avoid a Metropolis-
Hastings correction step involving the full data set. Dif-
ferent strategies are employed to do this: small step-sizes
combined with Langevin dynamics [25] (stochastic gradi-

582

ent Langevin dynamics—SGLD), using friction to prevent
accumulation of errors in the Hamiltonian [5] (stochastic
gradient HMC—SGHMC), and using a thermostat to con-
trol the temperature of the Hamiltonian [6] (stochastic gra-
dient Nose-Hoover thermostats—SGNHT). Each of these
strategies can be used by HABC.

In HABC, we use forward simulations to approximate
the likelihood-free gradient. The key difference between
SGHD methods and HABC is that the stochasticity of the
gradient does not come from approximating the full data
gradient with a mini-batch gradient, but by the stochasticity
of the simulator. It is therefore not the expense of the sim-
ulator (though this could very well be the case for many in-
teresting simulation-based models – see Section 7) that re-
quires an approximation to the gradient, but the likelihood-
free nature of the problem.

There are several difficulties in estimating gradients of
likelihood-free models that we address with HABC. The
first is due to the form of the ABC log-likelihood. As we
show in Section 2, using a conditional model for π(x|θ)
provides an estimate of the ABC likelihood that is less sen-
sitive to ε and therefore is more conducive to stochastic
gradient computations. The second difficulty is that for
high-dimensional parameter spaces, computing the gradi-
ents naively (i.e. by finite differences (FD) [9]) can squash
the gains brought by the Hamiltonian dynamics. Fortu-
nately, we can use existing stochastic approximation algo-
rithms [21, 22] that can be used to compute unbiased es-
timators of the gradient with a small number of forward
simulations that is independent of the parameter dimen-
sion. The stochastic perturbation stochastic approximation
(SPSA) [21] is described in Section 4

A further innovation of this paper is the use of persistent
random numbers (PRNs) to improve the efficiency of the
Hamiltonian dynamics. The idea behind PRNs is to use the
same set of random seeds for estimating a gradient by FD
or SPSA, i.e. when simulating π(x|θ+dθ) and π(x|θ−dθ)
use the same random seeds. This was applied successfully
to SPSA [10] (and is analogous to using the same mini-
batch in stochastic gradient methods). We extend and sim-
plify this approach by including the random seeds ω into
the state of the Markov chain; by keeping the random seeds
fixed for several consecutive steps, the second order gradi-
ent stochasticity is greatly reduced. We show that doing
this produces a valid MCMC procedure. This approach is
not exclusive to HABC; our experiments show it also helps
random-walk ABC-MCMC.

We briefly review ABC in Section 2. In Section 3 we re-
view three approaches to stochastic gradient inference us-
ing Hamiltonian dynamics: SGLD, SGHMC, and SGNHT.
We then introduce Hamiltonian ABC in Section 4, where
we will show how to improve the stability of the gradi-
ent estimates by using PRNs and local density estimators

of the simulator. Extensions to high-dimensional param-
eter spaces are also discussed. In Section 5 we show how
HABC behaves on a simple one-dimensional problem, then
in Section 6 we compare HABC with ABC-MCMC for two
problems: a low-dimensional model of chaotic population
dynamics and a high-dimensional problem.

2 APPROXIMATE BAYESIAN
COMPUTATION

Consider the Bayesian inference task of either drawing
samples from or learning an approximate model of the fol-
lowing (usually intractable) posterior distribution:

π(θ|y1, . . . ,yN) ∝ π(θ)π(y1, . . . ,yN |θ) (1)

where π(θ) is a prior distribution over parameters θ ∈ IRD

and π(y1, . . . ,yN |θ) is the likelihood of N data observa-
tions, where yi ∈ IRJ . In ABC, the vector of J observa-
tions are typically informative statistics of the raw observa-
tions. It can be shown that if the statistics used in the likeli-
hood function are sufficient, then these algorithms sample
correctly from an approximation to the true posterior [12].
The simulator is treated as a generator of random pseudo-
observations, i.e. x

sim∼ π(x|θ) is a draw from the simula-
tor. Discrepancies between the simulator outputs x and the
observations y are scaled by a closeness parameter ε and
treated as likelihoods. This is the equivalent to putting an
ε-kernel around the observations, and using a Monte Carlo
estimate of the likelihood using S draws of x:

πε(y|θ) =

∫
πε(y|x)π(x|θ)dx ≈ 1

S

S∑

s=1

πε(y|x(s))

(2)

In ABC Markov chain Monte Carlo (MCMC) [13, 26] the
Metropolis-Hastings (MH) proposal distribution is com-
posed of the product of the proposal for the parameters θ
and the proposal for the simulator outputs:

q(θ′,x(1)′ , . . . ,x(S)′ |θ) = q(θ′|θ)
∏

s

π(x(s)′ |θ′) (3)

Using this form of the proposal distribution, and using the
Monte Carlo approximation eq 2, we arrive at the following
Metropolis-Hastings accept-reject probability,

α = min

(
1,
π (θ′)

∑S
s=1 πε(y|x(s)′)q(θ|θ′)

π (θ)
∑S
s=1 πε(y|x(s))q(θ′|θ)

)
(4)

If the simulations are part of the Markov chain, the algo-
rithm corresponds to the pseudo-marginal (PM) sampler
[2], otherwise it is a marginal sampler [13, 20]. For this
paper we will be interested in the PM sampler because this
is equivalent to having the random states that generated the
simulation outputs in the state of the Markov chain, which

583

we will use within a valid ABC sampling algorithm in Sec-
tion 4.

An alternative approach to computing the ABC likelihood
is to estimate the parameters of a conditional model π(x|θ),
e.g. using kernel density estimate [24] or a Gaussian model
[28]. While either approach should be adequate and both
have their own limits and advantages, for this paper we will
use a Gaussian model. In ABC, using a conditional Gaus-
sian model for π(x|θ) is called a synthetic likelihood (SL)
model [28]. For a SL log-likelihood model, we compute
estimators of the first and second moments of π(x|θ). The
advantage is that for a Gaussian ε-kernel, we can convolve
the two densities

πε(y|θ) =

∫
N (y|x, ε2)N (x|µθ, σ2

θ)dx (5)

= N (y|µθ, σ2
θ + ε2) (6)

Of particular concern to this paper is the behavior of the
log-likelihoods for different values of ε. In the ε-kernel
case, the log-likelihood is very sensitive to small values of
ε:

log πε(y|θ) = log
∑

s

N (y|x(s), ε2) (7)

= logN (y|x(s), ε2) + log (1 +H) (8)

≈ − log ε− 1

2ε2
(y − x(m))2 (9)

where m is the simulation that is closest to y, H is a sum
over terms close to 0. We can see that the log-likelihood
can be set arbitrarily small by decreasing ε. On the other
hand, by using a model of the simulation at θ

log πε(y|θ) ≈ −1

2
log(σ2

θ + ε2)− (y − µθ)2

2(σ2
θ + ε2)

(10)

For the SL model, ε acts as a smoothing term and can be set
to small values with little change to the log-likelihood, as
long as the SL estimators are fit appropriately. This insensi-
tivity to ε will be used in Section 4 for estimating gradients
of the ABC likelihood. Before describing HABC in full
detail however, we now explain how scaling Hamiltonian
dynamics in Bayesian learning can be accomplished using
stochastic gradients from batched data.

3 SCALING BAYESIAN INFERENCE
USING HAMILTONIAN DYNAMICS

Scaling Bayesian inference algorithms to massive datasets
is necessary for their continuing relevance in the so-called
big data era. We now review the role stochastic gradi-
ent methods combined with Hamiltonian dynamics have
played in recent advances in scaling Bayesian inference.
Most importantly, these methods have combined the abil-
ity of HMC to explore high-dimensional parameter spaces

with the computational efficiency of using stochastic gradi-
ents based on small mini-batches of the full dataset. After
an overview of HMC, we will briefly describe stochastic
gradient Hamiltonian dynamics (SGHD), starting with us-
ing Langevin dynamics [25], then HMC with friction [5],
and finally HMC with thermostats [6]. We will then make
the connection between SGHD and HABC in Section 4.

3.1 Hamiltonian Monte Carlo

Hamiltonian dynamics are often necessary to adequately
explore the target distribution of high-dimensional param-
eter spaces. By proposing parameters that are far from
the current location and yet have high acceptance probabil-
ity, Hamiltonian Monte Carlo [7, 16] can efficiently avoid
random walk behavior that can render proposals in high-
dimensions painfully slow to mix.

HMC simulates the trajectory of a particle along a friction-
less surface, using random initial momentum ρ and posi-
tion θ. The Hamiltonian function computes the energy of
the system and the dynamics govern how the momentum
and position change over time. The continuous Hamilto-
nian dynamics can be simulated by discretizing time into
small steps η. If η is small, the value of θ at the end of a
simulation can be used as proposals within the Metropolis-
Hastings algorithm. Hamiltonian dynamics should propose
θ that are always accepted, but errors due to discretization
may require a Metropolis-Hastings correction. It is this cor-
rection step that SGHD algorithms want to avoid as it re-
quires computing the log-likelihood over the full data set.

More formally, the Hamiltonian H (θ,ρ) = U(θ) +K(ρ)
is a function of the current potential energy U(θ) and ki-
netic energy K(ρ) = ρTM−1ρ/2 (M is a diagonal ma-
trix of masses which for presentation are set to 1). The
potential energy is defined by the negative log joint density
of the data and prior:

U(θ) = − log π(θ)−
N∑

i=1

log π(yi|θ) (11)

The Hamiltonian dynamics follow

dθ = ρdt dρ = −∇U(θ)dt (12)

in simulation dt = η.

3.2 Stochastic Gradient Hamiltonian Dynamics

If the log-likelihood over the full data set is replaced with a
mini-batch estimate, as is done for the following stochastic
gradient Hamiltonian dynamics (SGHD) algorithms, then
the error in simulating the Hamiltonian dynamics comes
not only from the discretization, but from the variance of
the stochastic gradient. As long as this error is controlled,
either by using small steps η (SGLD), or adding friction

584

terms B (SGHMC), or using a thermostat ξ (SGNHT), the
expensive MH correction step can be avoided and values of
θ from the Hamiltonian dynamics can be used as approxi-
mate samples from the posterior. SGHD algorithms belong
to a larger class of noisy Monte Carlo methods that target
intractable likelihoods; see [1] for an extensive overview of
noisy Monte Carlo.

We develop SGHD from the large-scale data case, where
the intractability is due to computing the full potential
energy and its gradient; it is approximated using mini-
batches:

Û(θ) = − log π(θ)− N

n

hn∑

i=h1

log π(yi|θ) (13)

∇Û(θ) = −∇ log π(θ)− N

n

hn∑

i=h1

∇ log π(yi|θ)(14)

where n is the mini-batch size, and hi are indices cho-
sen randomly without replacement from [1, N] (i.e. it de-
fined a random mini-batch). In likelihood-free settings,
the stochasticity of the potential energy due to the mini-
batches is instead caused by simulation noise; further like-
lihood assumptions, such as a Gaussian model, add an-
other layer of approximation to our posterior. Below we
describe three SGHD algorithms, originally developed for
large-scale data applications, but for which we will apply
directly to likelihood-free inference using gradient approx-
imations in Section 4.

Stochastic gradient Langevin dynamics (SGLD) [25]
performs one full leap-frog step of HMC. In doing so,
SGLD avoids explicitly computing updates for momenta
ρ; the update for θ is

θt+1 = θt + ηN (0, Ip)− η2∇Û(θt)/2 (15)

One of the potential drawbacks of SGLD is that the mo-
mentum term is refreshed (implicitly) for every update of
the θ, and since this means the parameter update only uses
the current gradient approximation, it limits the benefits of
using Hamiltonian dynamics. On the other hand, this also
prevents SGLD from accumulating errors in the Hamil-
tonian dynamics. SGLD has been applied to another in-
tractable likelihood model, Gibbs random fields [1], which
closely resembles how SGLD is applied in this paper.

Stochastic Gradient HMC (SGHMC) [5] avoids ρ re-
freshment altogether. SGHMC makes the assumption
∇Û(θ) = ∇U(θ)+N (0,Vθ), where Vθ is the covariance
of the gradient approximation. To avoid a MH correction
step at the end of a trajectory, a friction term B propor-
tional to Vθ is added to ∆ρ. In practice, since we can only
approximate B, a user defined friction term C is used. In
our experiments we compute an online estimate V̂ and set
C = cIp + V̂ .

Stochastic Gradient thermostats (SGNHT) [6] addresses
the difficulty of estimating B by introducing a scalar vari-
able ξ who’s addition to the Hamiltonian dynamics main-
tains the temperature of the system constant, i.e. it acts as
a (Nose-Hoover) thermostat [11].

4 HAMILTONIAN ABC

The general approach of applying Hamiltonian dynamics
to ABC requires choosing one of the SGHD algorithms and
then plugging in the ABC gradient approximation ∇Û(θ).
With this in mind we leave the details of the Hamiltonian
updates to previous work [25, 5, 6] and focus on the details
of how stochastic gradients are computed in the likelihood-
free setting. Note that in our implementation, we do not
use a MH correction (except when switching seeds), though
this can easily be added for any particular problem.

4.1 Deterministic Representations of Simulations

Implicit in each simulation run x
sim∼ π(x|θ) is a sequence

of internally generated random numbers that are used to
produce random draws from π(x|θ). These random num-
bers are important to HABC because we wish to control
the stochasticity of the simulator when computing its gradi-
ent. Furthermore, we will control the random numbers over
multiple time steps. Instead of keeping track of random
numbers, we can equivalently keep a vector of S random
seeds ω. This allows HABC to treat the simulation func-
tion π(x|θ) as a blackbox, outside of which we can control
the random number generator (RNG), and represent x(s) as
the output of a deterministic function; i.e. x(s) = f(θ, ωs)

instead of x(s) sim∼ π(x|θ). We include ω as part of the
state of our Markov chain.

4.2 Kernel-ε versus Synthetic-likelihood -based
Gradients

In Section 2 we showed that the synthetic-likelihood rep-
resentation of Lε(θ) is less sensitive to small choices of
ε. This is particularly important to HABC as our gradient
approximations are proportional to differences in Lε(θ); if
the variance of the stochastic gradients is too high, then
we must choose a very small step-size η, eliminating the
usefulness of HMC for ABC. Under the deterministic rep-
resentation of x(s), we can write the log-likelihood as

Lε(θ) ∝ log
∑

s

N (y|f(θ, ωs), ε
2) (16)

≈ − log ε− 1

2ε2
(y − f(θ, ωm))2 (17)

In the second line we have assumed ε is very small and
m is the index of the random seed producing the clos-
est simulation to y. For a finite difference approximation,

585

Algorithm 1∇U SPSA-ABC
inputs: θ, dθ, f,ω,Lε, π,R
ĝ ← 0
for r = 1 : R do

∆ ∼ 2 · Bernouilli (1/2, D) - 1
for s = 1 : S do

x
(s)
+ ← f (θ + dθ∆, ωs)

x
(s)
− ← f (θ − dθ∆, ωs)

end for
ĝ ← ĝ +

(
Lε({x(s)

+ })− Lε({x(s)
− })

)
·∆−1

end for
ĝ ← ĝ/(2dθR) +∇ log π(θ)
return −ĝ

∂Lε(θ)/∂θ is

1

4dθε2
(
(y − f(θ − dθ, ω−m))2 − (y − f(θ + dθ, ω

+
m))2

)

(18)

On the other hand, the synthetic-likelihood is stable; using
a deterministic representation, we have

µθ =
1

S

∑

s

f(θ, ωs) σsθ =
1

S − 1

∑

s

(µθ−f(θ, ωs))
2

(19)
the gradients (for a 1-dim problem) use ε as a smoothness
prior in ∂Lε(θ)/∂θ:

−1

2
log

(
σ2
θ+ + ε2

σ2
θ− + ε2

)
− (y − µθ+)2

2(σ2
θ+ + ε2)

+
(y − µθ−)2

2(σ2
θ− + ε2)

(20)
In Figure 2, as part of our demonstration of HABC, we
compare the gradient approximations around the true θMAP
using SL versus kernel-ε for a simple problem. Although
there is a small bias using SL due to its Gaussian assump-
tion, it has much smaller variance, convergence to this (bi-
ased) posterior should be stable. Further, [19] showed that
convergence for SGHD type algorithms depends on the
tails of the log-posterior, which suggests that despite its
bias, the non-heavy tails of the Gaussian may allow SL to
produce a more efficient Markov chain.

4.3 From Finite Differences to Simultaneous
Perturbations

If the dimension of θ is small, then finite difference stochas-
tic approximation (FDSA) [9] can be applied to ∇U(θ)
(conditioned on random seeds ω). The number of simula-
tions required for FDSA is 2SD, which may be acceptable
for some small ABC problems. Our main goal is to scale
ABC to high-dimensions and for that we need an alterna-
tive stochastic approximation to∇U(θ).

In the gradient-free setting, Spall [21, 22] provides a
stochastic approximate to the true gradient using only 2

0.05 0.10 0.15 0.20 0.25 0.30

θ

0

5

10

15

20

x

Simulation with Common Random Numbers

Figure 1: A view of a simulator using persistent random num-
bers; in other contexts, these are called common random numbers
[10]. The horizontal line represents y and red shading ±2ε. The
shaded curved region represents 2σ of π(x|θ). The dashed lines
are f(θ, ωs) for several values of ω. The blue circles are potential
random samples from π(x|θ). For a fixed value ωs, the simulator
produces deterministic outputs that change smoothly, even though
the simulator itself is quite noisy.

forward simulations for any dimension D (though the ap-
proximation can be improved by averaging R estimates).
Spall’s simultaneous perturbation stochastic approxima-
tion (SPSA) algorithm works as follows. Let L be the
gradient-free function we wish to optimize. Each approxi-
mation randomly generates a perturbation mask (our name)
∆ of dimensionD where entry ∆d ∼ 2Bernouilli(1/2)−1
(i.e. all entries randomly set to ±1). Then L is evaluated at
θ+ dθ∆ and θ− dθ∆, giving the gradient approximation
ĝ(θ) ≈ ∂L(θ)/∂θ:

ĝ(θ) =
L (θ + dθ∆)− L (θ − dθ∆)

2dθ

1/∆1

1/∆2

...
1/∆D

 (21)

If we let ĝr(θ) be the estimate using perturbation mask
∆r, the estimate ĝ(θ) can be improved by averaging
ĝ(θ) = 1/R

∑
r ĝr(θ). Algorithm 1 shows SPSA to es-

timate ∇U(θ). The number of simulations required for
SPSA is 2SR, where R ≥ 1.

Variations of SPSA include one-sided SPSA [22] (we use
what Spall calls 2SPSA) and an algorithm for estimating
the Hessian based on the same principle as SPSA [23].
The one-sided version is attractive computationally, but for
HABC, the updates for θ require simulating two-sides any-
way (once at θ, after a step is taken, and once for the
one-sided gradient). SPSA has also been used within a
procedure for maximum-likelihood estimation for hidden
Markov models using ABC [8].

4.4 Persistent Random Numbers

The usefulness of applying persistent random numbers
(PRNs) in SPSA has been previously demonstrated [10]. In

586

that work, the same random numbers are used to simulate
both sides of the optimization function within the SPSA
gradient. This makes sense intuitively, as we would gen-
erally assume that the expected simulation function varies
smoothly in dθ; by using PRNs, this smoothness is eas-
ily exploited (see Figure 1). If we were to apply SPSA
to Bayesian learning, then using PRNs in the gradient step
would be analogous to using the same mini-batch for both
sides of the computation. In the case where the number of
random numbers is unknown or is itself random, we can
simply consider seeds of the random number generator in-
stead of vectors of random numbers.

In addition to using PRNs in simulations for each gradient
computation, we have found that using PRNs helps HABC
explore the parameter landscape more easily for some al-
gorithms and problems. Intuitively, for a gradient-based
sampling algorithm, it means a particle can slide along a
smooth Hamiltonian landscape because the additive noise
is suppressed. This is very similar to using dependent ran-
dom streams to drive MCMC [15, 17], the main difference
we believe is that we are using the Hamiltonian dynam-
ics to drive proposals for θ and using persistent seeds ω to
suppress simulation noise. The full benefits of suppressing
the noise may be limited, however. Recent work has shown
that scaling HMC for large data applications may be funda-
mentally limited [4]: noise from mini-batches causes biases
in trajectories, which require either increasing mini-batch
sizes (in our case, running more simulations) or decreasing
the step size.

Using random seeds (versus, say, a set of random num-
bers) allows us to treat the simulator as a black-box, setting
the random seed of its RNG without knowing the internal
mechanisms it uses to generate random numbers. In light
of our arguments above, we propose including persistent
random seeds ω in the state of our Markov chain. We will
now describe a simple Metropolis-Hastings transition op-
erator that randomly proposes flipping each seed ωs at time
t with some probability γ.

This Metropolis-Hastings transition conditions of the cur-
rent parameter location θ and proposes changing a single
random seed ω (it easily generalizes to S seeds). The
procedure is as follows: 1) propose a new seed ω

′ ∼
q(ω

′ |ω) = π(ω) (independent of the current seed and
from its uniform prior); 2) simulate deterministically x

′
=

f(θ, ω
′
); 3) compute the acceptance ratio (which reduces

to the ratio of π(y|x′)/π(y|x)). It is straightforward to
show that this leaves the target distribution invariant. The
probability of the proposal is q(x

′
, ω
′ |θ, ω) = π(ω

′
)δ(x

′−
f(θ, ω

′
)), where δ(a) is a delta function at a = 0. Because

the q has this form, the acceptance ratio simplifies:

πε(y|x
′
)π(ω

′
)π(x

′ |θ, ω′)π(ω)δ(x− f(θ, ω))

πε(y|x)π(ω)π(x|θ, ω)π(ω′)δ(x′ − f(θ, ω′))
=
πε(y|x

′
)

πε(y|x)
(22)

In pseudo-marginal ABC-MCMC one could propose
q(x

′(s)|θ) (fixing θ) and still sample correctly from the dis-
tribution of simulations with high likelihood at θ. What we
propose is slightly different. By instead keeping the ran-
dom seeds fixed, we can sample θ using HABC and use ω
as PRNs within the gradient computation step and suppress
gradient noise over time. In this way, random seeds carry
over the same additive noise from one step to the next.

5 Demonstration
We use a simple D = 1 problem to demonstrate HABC.
Let y = 1

N

∑
i ei, where ei ∼ Exp(1/θ?); θ? = 0.15,

N = 20, and y = 7.74 in our concrete example. Assum-
ing π(θ) = Gamma(α, β), the true posterior is a gamma
distribution with shape α+N and rate β+Ny. Our simu-
lator therefore generates the average of N exponential ran-
dom variates with rate λ = 1/θ. Data x sim∼ π(x|θ) are
shown in Figure 1. We have explicitly shown the smooth-
ness of the simulator by generating data along trajectories
of fixed seeds ωs; i.e. for several ωs we vary θ (dashed lines
are function f(θ, ωs)) and randomly reveal simulation data
(blue circles). The horizontal line with shading indicates
y ± 2ε, where ε = 0.37 is used throughout the demonstra-
tion.

5.1 Bias and Variance of∇Û(θ)

To test our assumption that the synthetic-likelihood model
is better suited for HABC, we ran FDSA at the true θMAP.
Using S = 5 and S = 50 and fixing ε = 0.37, we gather
10K gradients samples using kernel-ε and SL likelihoods.
These gradient estimate densities are shown in Figure 2.
An unbiased estimate of the gradient should be centered at
0. There are two important results. First, the SL estimates
have a small bias, even at S = 50. This is because it is esti-
mating the true Gamma distribution of π(x|θ) with a Gaus-
sian. We can analytically estimate this bias as S → ∞;
for this example it is −7.8 which is what SL estimates are
centered around (−9.3 for S = 5 and 7.3 for S = 50).
The kernel-ε likelihood, on the other hand, exhibits low
bias at S = 50. However, the second important result
is the variances. SL variances decrease quickly with S:
σ2 = 432 → 4.92, whereas kernel-ε starts very high and
remains high: σ2 = 1472 → 192. It is for this reason
that we have chosen to use SL likelihoods for our gradient
estimates, despite their small bias. As mentioned in Sec-
tion 4.2 it is possible that other likelihood models, such as
a kernel density estimate, might provide low bias and low
variance gradient estimates. We leave this for future work.

5.2 Posterior Inference using HABC

We ran chains of length 50K for SL-MCMC, SGLD,
SGHMC, and SGNHT versions of HABC using SL gra-

587

−100 −50 0 50 100

∇Û(θMAP)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

p(
∇
Û

(θ
M
A
P

))

Variance of Gradient Under Different Methods
Kernel-ε S=50
Synthetic Likelihood S=50
Kernel-ε S=5
Synthetic Likelihood S=5

Figure 2: Variance of gradient estimation using kernel-ε and SL
for different values of S ∈ {5, 50} and fixed ε = 0.37 (the same
used in the other results). When S = 5, the empirical estimates
of ∇Û(θMAP) are −12 ± 147 (kernel-ε) and −9.3 ± 43 (SL).
When S = 50 they are −0.80 ± 19 (kernel-ε) and −7.3 ± 4.9
(SL). Note the large discrepancy in variance. Note the limit of
S → ∞, ∇Û(θMAP) = −7.8. The bias if SL gradients is due to
its Gaussian approximation (smoothed by ε) of π(x|θ), which is
a heavy-tailed Gamma distribution (the sum of N exponentials).

dient estimates (S = 5). SL-MCMC refers to pseudo-
marginal ABC-MCMC. We note that SGHMC gave re-
sults nearly identical to SGNHT, so are not shown due to
space limitations. In one set of experiments, the same ran-
dom seeds were used for gradient computations but did not
persist over time steps; these experiments are called non-
persistent. In another set of runs, we resampled ωs at each
time step with probability γ = 0.1; these experiments are
persistent. In Figure 3 we show the posterior distributions
for these experiments; in Table 1 we report the total varia-
tional distance between the true posterior and the ABC pos-
teriors using the first 10K samples and after 50K samples
(averaged over 5 chains). Of note is the poor approximation
of SG-Thermostats when the seeds are not persistent. By
adding persistent seeds, SGNHT gives similar posteriors to
the other methods.

In Figure 4 we show the trace plots of the last 1000 samples
from a single chain for each algorithm. In the left column,
traces for non-persistent random seeds are shown, and on
the right, traces for persistent seeds. We can observe that
persistent random seeds further reduces the random walk
behavior of all three methods. We also observe small im-
provements in total variational distance for SL-MCMC and
SGLD, while SGNHT improves significantly. We find this
a compelling mystery. Is it because of the interaction be-
tween hyperparameters and stochastic gradients, or is this
an artifact of this simple model?

6 Experiments

We present experimental results comparing HABC with
standard ABC-MCMC for two challenging simulators. The
first is the blowfly model which uses stochastic differential
equations to model possibly chaotic population dynamics

0.05 0.10 0.15 0.20 0.25 0.30

θ

0

2

4

6

8

10

12

14

16

π
(θ
|y

)

True Posterior
SL-MCMC

0.05 0.10 0.15 0.20 0.25 0.30

θ

0

2

4

6

8

10

12

14

16

π
(θ
|y

)

True Posterior
SG-Langevin

0.05 0.10 0.15 0.20 0.25 0.30

θ

0

5

10

15

20

25

π
(θ
|y

)

True Posterior
SG-Thermostats

0.05 0.10 0.15 0.20 0.25 0.30

θ

0

2

4

6

8

10

12

14

16

π
(θ
|y

)

True Posterior
SL-MCMC

0.05 0.10 0.15 0.20 0.25 0.30

θ

0

2

4

6

8

10

12

14

16

π
(θ
|y

)

True Posterior
SG-Langevin

0.05 0.10 0.15 0.20 0.25 0.30

θ

0

2

4

6

8

10

12

14

16

π
(θ
|y

)

True Posterior
SG-Thermostats

Figure 3: Posterior distributions for the demonstration prob-
lem; columns left to right: SL-MCMC, SGLD (SG-Langevin),
SGNHT (SG-Thermostats). Top row: No persistent seeds. Bot-
tom row: Persistent seeds with γ = 0.1. Histograms of the
posterior estimates are overlaid with the true posterior (dashed
line). All algorithms (except for SGNHT for non-persistent ω)
give roughly the same posterior estimate. By adding persistent ω
SGNHT achieved similar posteriors to the other algorithms.

Table 1: Average total variational distance (tvd) for the
demonstration problem. Non-persistent used no persistent
random seeds, whereas Persistent randomly proposes a new
ωs with γ = 0.1. Each algorithms’ parameters were opti-
mized for minimal tvd after 10K samples. The results for
SGHMC (not shown) and SGNHT are nearly identical.

Non-persistent Persistent
Algo 10K 50K 10K 50K

SL-MCMC 0.047 0.045 0.045 0.045
SGLD 0.049 0.048 0.048 0.043
SGNHT 0.232 0.239 0.055 0.051

[28]. Although it is a low-dimensional problem, the noise
and chaotic behavior of the model make it challenging for
gradient-based sampling. Our second experiment applies
HABC to a Bayesian logistic regression model. Although
we only use 2 classes (0’s versus 1’s), the dimensionality
is very high (D = 1568). We show that HABC can work
well despite using SPSA gradients.

6.1 Blowfly

For these experiments, a simulator of adult sheep blowfly
populations [28] is used with statistics set to those from
[14]. The observational vector y is a time-series of a fly
population counted daily. The population dynamics are
modeled using a stochastic differential equation1

Nt+1 = PNt−τ exp(−Nt−τ/N0)et +Nt exp(−δεt)

where et ∼ G(1/σ2
p, 1/σ

2
p) and εt ∼ G(1/σ2

d, 1/σ
2
d) are

sources of noise, and τ is an integer. In total, there areD =

1Equation 1 in Section 1.2.3 of the supplementary information
in [28].

588

0 200 400 600 800 1000

time

0.05

0.10

0.15

0.20

0.25

0.30

θ

SL-MCMC

SL-MCMC

0 200 400 600 800 1000

time

0.05

0.10

0.15

0.20

0.25

0.30

θ

SG-Langevin

SG-Langevin

0 200 400 600 800 1000

time

0.05

0.10

0.15

0.20

0.25

0.30

θ

SG-Thermostats

SG-Thermostats

0 200 400 600 800 1000

time

0.05

0.10

0.15

0.20

0.25

0.30

θ

SL-MCMC

SL-MCMC

0 200 400 600 800 1000

time

0.05

0.10

0.15

0.20

0.25

0.30

θ

SG-Langevin

SG-Langevin

0 200 400 600 800 1000

time

0.05

0.10

0.15

0.20

0.25

0.30

θ

SG-Thermostats

SG-Thermostats

Figure 4: Trajectories of the last 1000 θ samples for the demonstration problem. Top row: Non-persistent random seeds. Bottom row:
Persistent random seeds with γ = 0.1. Each algorithm’s parameters were optimized to minimize the total variational distance. With
persistent seeds, each algorithm’s random walk behavior is suppressed. Without persistent seeds, the optimal step-size η for SGNHT is
small, resulting in an under-dispersed estimate of the posterior; when the seeds are persistent, the gradients are more consistent, and the
optimal step-size is larger and therefore there is larger injected noise. The resulting posteriors are shown in Figure 3.

6 parameters θ = {logP, log δ, logN0, log σd, log σp, τ}.
As [14] we place broad log-normal priors over θ1...5 and
a Poisson prior over τ . This is considered a challenging
problem because slight changes to some parameter settings
can produce degenerate x, while others settings can be very
noisy due to the chaotic nature of the equations. The statis-
tics from [14] are used (J = 10): the log average of 4
quantiles of N/1000, the average of 4 quantiles of the first-
order differences in N/1000, and the number of maximal
population peaks under two different thresholds.

We compare difference HABC algorithms with ABC-
MCMC for the blowfly population problem. We use
ε = {1/2, 1/2, 1/2, 1/2, 1/4, 1/4, 1/4, 1/4, 3/4, 3/4}
(slightly different ε from [14]) and S = 10 for all experi-
ments (this means that there are S random seeds). We use
SPSA with R = 2 using SL log-likelihoods for all HABC
gradient estimates. Without persistent seeds, the number of
simulations per time-step is 2SR (about double marginal
ABC-MCMC) and with it is 2SR+ 2Sγ.

Figure 5 show the posterior distributions for three pa-
rameters for SL-MCMC, SGLD, and SGNHT using non-
persistent seeds (persistent seeds, not shown, produced
very similar posteriors). In the second row we show the tra-
jectories of two parameters, clearly showing the suppressed
random walk behavior of SGLD and SG-Thermostats rela-
tive to ABC-MCMC. In Figure 6 the scatter plots of trajec-
tories are shown for two parameters. Though not shown
due to space limitations, we have found that persistent
seeds can improve convergence of the posterior predic-
tive distribution. Further experiments with persistent seeds
needs to be carried out to understand the extent to which
the help and how to determine when they are necessary, if
at all.

6.2 Bayesian Logistic Regression

We perform Bayesian inference on a logistic regression
model using the digits 0 and 1 from MNIST. Although

0.0 0.5 1.0 1.5 2.0 2.5
log P

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

lo
g
σ
d

SG-Langevin

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
log P

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

lo
g
σ
d

SG-Thermo

Figure 6: Blowfly trajectories of two parameters over the last
1000 time-steps. Top: SGLD and Bottom: SGNHT (SG-
Thermostats). Relative to SL-MCMC (not shown), the Hamil-
tonian dynamics clearly show persistent θ trajectories.

not technically an ABC problem because we use the actual
likelihoods, it still represents a high-dimensional problem
(D = 1568) and is therefore useful to evaluate the poten-
tial of SPSA-like gradients in actual HABC problems. We
first ran stochastic gradient descent to determine θMAP us-
ing the true gradient. We then ran SGLD and SGNHT start-
ing θMAP to discover how well the algorithms explore the
posterior. We examine how SGLD and SGNHT trajectories
are affected by using SPSA instead of the true gradients.
We use n = 100 sized mini-batches and R = 10 pertur-
bations for SPSA. Figure 7 shows samples randomly pro-
jected onto 2 dimensions (1000 evenly sub-sampled from

589

−2 0 2 4 6

log P
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p(
θ|y

)

−3 −2 −1 0 1 2 3

log δ
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

4 5 6 7 8 9

log N0

0.0

0.2

0.4

0.6

0.8

1.0

SL-MCMC

−2 0 2 4 6

log P
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

p(
θ|y

)

−3 −2 −1 0 1 2 3

log δ
0.0

0.2

0.4

0.6

0.8

1.0

4 5 6 7 8 9

log N0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SG-Langevin

−2 0 2 4 6

log P
0.0

0.1

0.2

0.3

0.4

0.5

p(
θ|y

)

−3 −2 −1 0 1 2 3

log δ
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

4 5 6 7 8 9

log N0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

SG-Thermostats

0 100 200 300 400 500

time
−4

−3

−2

−1

0

1

2

3

θ SL-MCMC log P
SL-MCMC log σd

0 100 200 300 400 500

time
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

θ

SG-Langevin log P
SG-Langevin log σd

0 100 200 300 400 500

time
0.2

0.4

0.6

0.8

1.0

1.2

1.4

θ

SG-Thermo log P
SG-Thermo log σd

Figure 5: Blowfly posterior distributions (non-persistent seeds). Top row: Posteriors for three parameters for SL-MCMC (left set of
three), SGLD (SG-Langevin) (middle), and SGNHT (SG-Thermostats) (right). Bottom row: Last trajectories of the last 1000 samples
for two parameters for the same algorithms.

Figure 7: Bayesian logistic regression sampling trajectories ran-
domly projected. The yellow circle is the projected MAP of θ.

10K). We can clearly see that the trajectories using SPSA
exhibit very similar behavior to Bayesian learning with the
true gradients. This is very positive result that indicates
HABC can successfully exploit the noisy and less informa-
tive gradients of SPSA.

7 DISCUSSION AND CONCLUSION

Hamiltonian ABC proposes a new set of algorithms for
Bayesian inference of likelihood-free models. HABC
builds upon the connections between Hamiltonian Monte
Carlo with stochastic gradients and well-established gradi-
ent approximations based on a minimal number of forward
simulations, even in high-dimensions. We have performed
some preliminary experiments showing the feasibility of
running HABC on both small and large problems, and we
hope that the door has been opened for exploration of larger
simulation-based models using HABC.

Another innovation we introduce is the use of persistent
random seeds to suppress the simulator noise and there-
fore smooth the simulation landscape over a local region

of parameter space. For some algorithms run on certain
models, improved performance has been observed. This is
most likely to be the case for simulators with large additive
noise and algorithms that benefit from long Hamiltonian
trajectories (i.e. SGHMC and SGNHT). We feel that new
classes of ABC algorithms could develop from using per-
sistent random seeds, not just gradient-based samplers but
traditional ABC-MCMC.

There are several unresolved and open questions regarding
the application of stochastic gradients to ABC. The first
issue is the importance of the bias-variance relationship
for different ABC likelihood models. We found that using
gradients based on the synthetic-likelihood greatly reduced
their variance, but introduced a small bias, because of its
Gaussian assumption. The second issue is setting algorithm
parameters, in particular the step-sizes η, the injected noise
C (for SGHMC/SGNHT), and the number of SPSA repeti-
tionsR. All of these parameters are highly interactive. Can
we use statistical tests during the MCMC run to determine
R? Should η and C be set differently in the ABC setting?
One final issue is monitoring or determining whether the
correct amount of noise is being injected to ensure proper
sampling. In SGLD [25], for example, we can always turn
down η so that the injected noise term dominates, but when
our goal is efficient exploration of the posterior, this is not
a very satisfying solution.

Expensive simulators are an important class of models
that we do not address in this work. However, previous
work in Bayesian inference has shown the usefulness of
HMC-based proposals based on Gaussian process of log-
likelihood surfaces [18]. We could similarly use HABC
with ABC surrogate models [14, 27] to minimize simula-
tion calls, yet still benefit from Hamiltonian dynamics.

Acknowledgements

We thank the anonymous reviewers for the many useful
comments that improved this manuscript. MW acknowl-
edges support from Facebook, Google, and Yahoo.

590

References
[1] Alquier, Pierre, Friel, Nial, Everitt, Richard, and

Boland, Aidan. Noisy Monte Carlo: Convergence of
Markov chains with approximate transition kernels.
Statistics and Computing, pp. 1–19, 2014.

[2] Andrieu, C. and Roberts, G. The pseudo-marginal
approach for efficient Monte Carlo computations. The
Annals of Statistics, 37(2):697–725, 2009.

[3] Beaumont, Mark A, Zhang, Wenyang, and Balding,
David J. Approximate Bayesian computation in pop-
ulation genetics. Genetics, 162(4):2025–2035, 2002.

[4] Betancourt, MJ. The Fundamental Incompatibility
of Hamiltonian Monte Carlo and Data Subsampling.
Journal of Machine Learning Research, 37, 2015.

[5] Chen, Tianqi, Fox, Emily B, and Guestrin, Carlos.
Stochastic gradient Hamiltonian Monte Carlo. 2014.

[6] Ding, Nan, Fang, Youhan, Babbush, Ryan, Chen,
Changyou, Skeel, Robert D, and Neven, Hartmut.
Bayesian sampling using stochastic gradient ther-
mostats. In Advances in Neural Information Process-
ing Systems, pp. 3203–3211, 2014.

[7] Duane, Simon, Kennedy, Anthony D, Pendleton,
Brian J, and Roweth, Duncan. Hybrid Monte Carlo.
Physics letters B, 195(2):216–222, 1987.

[8] Ehrlich, Elena, Jasra, Ajay, and Kantas, Nikolas. Gra-
dient Free Parameter Estimation for Hidden Markov
Models with Intractable Likelihoods. Methodology
and Computing in Applied Probability, pp. 1–35,
2013.

[9] Kiefer, Jack, Wolfowitz, Jacob, et al. Stochastic es-
timation of the maximum of a regression function.
The Annals of Mathematical Statistics, 23(3):462–
466, 1952.

[10] Kleinman, Nathan L, Spall, James C, and Naiman,
Daniel Q. Simulation-based optimization with
stochastic approximation using common random
numbers. Management Science, 45(11):1570–1578,
1999.

[11] Leimkuhler, Benedict and Reich, Sebastian. A
metropolis adjusted Nosé-Hoover thermostat.
ESAIM: Mathematical Modelling and Numerical
Analysis, 43(04):743–755, 2009.

[12] Marin, J.-M., Pudlo, P., Robert, C.P., and Ryder,
R.J. Approximate bayesian computational methods.
Statistics and Computing, 22:1167–1180, 2012.

[13] Marjoram, Paul, Molitor, John, Plagnol, Vincent, and
Tavaré, Simon. Markov chain Monte Carlo without
likelihoods. Proceedings of the National Academy of
Sciences, 100(26):15324–15328, 2003.

[14] Meeds, Edward and Welling, Max. GPS-ABC: Gaus-
sian process surrogate approximate bayesian compu-
tation. Uncertainty in AI, 2014.

[15] Murray, Iain and Elliott, Lloyd T. Driving Markov
chain Monte Carlo with a dependent random stream.
arXiv:1204.3187, 2012.

[16] Neal, Radford M. MCMC using Hamiltonian dy-
namics. Handbook of Markov Chain Monte Carlo,
2, 2011.

[17] Neal, Radford M. How to View an MCMC Simu-
lation as a Permutation, with Applications to Paral-
lel Simulation and Improved Importance Sampling.
Technical Report No. 1201, Dept. of Statistics, Uni-
versity of Toronto, 2012.

[18] Rasmussen, C.E. Gaussian processes to speed up
hybrid monte carlo for expensive bayesian integrals.
Bayesian Statistics, 7:651–659, 2003.

[19] Roberts, Gareth O and Tweedie, Richard L. Ex-
ponential convergence of Langevin distributions and
their discrete approximations. Bernoulli, pp. 341–
363, 1996.

[20] Sisson, Scott A and Fan, Yanan. Likelihood-
free markov chain monte carlo. Arxiv preprint
arXiv:1001.2058, 2010.

[21] Spall, James C. Multivariate stochastic approxima-
tion using a simultaneous perturbation gradient ap-
proximation. Automatic Control, IEEE Transactions
on, 37(3):332–341, 1992.

[22] Spall, James C. Adaptive stochastic approximation
by the simultaneous perturbation method. Automatic
Control, IEEE Transactions on, 45(10):1839–1853,
2000.

[23] Spall, James C. Monte Carlo computation of the
Fisher information matrix in nonstandard settings.
Journal of Computational and Graphical Statistics,
14(4), 2005.

[24] Turner, Brandon M. and Sederberg, Per B. A gen-
eralized, likelihood-free method for posterior estima-
tion. Psychonomic Bulletin & Review, 21(2):227–
250, 2014.

[25] Welling, Max and Teh, Yee W. Bayesian learning via
stochastic gradient Langevin dynamics. In Proceed-
ings of the 28th International Conference on Machine
Learning (ICML-11), pp. 681–688, 2011.

[26] Wilkinson, R. Approximate Bayesian computation
(ABC) gives exact results under the assumption of
model error. Statistical Applications in Genetics and
Molecular Biology, 12(2):129–142, 2013.

[27] Wilkinson, R. Accelerating abc methods using gaus-
sian processes. AISTATS, 2014.

[28] Wood, Simon N. Statistical inference for noisy
nonlinear ecological dynamic systems. Nature, 466
(7310):1102–1104, 2010.

591

(Nearly) Optimal Differentially Private Stochastic Multi-Arm Bandits

Nikita Mishra
Department of Computer Science

University of Chicago
nmishra@cs.uchicago.edu

Abhradeep Thakurta
Yahoo! Research, Sunnyvale

guhathakurta.abhradeep@gmail.com

Abstract

We study the problem of private stochastic multi-
arm bandits. Our notion of privacy is the same as
some of the earlier works in the general area of
private online learning [13, 17, 24]. We design
algorithms that are i) differentially private, and
ii) have regret guarantees that (almost) match the
regret guarantees for the best non-private algo-
rithms (e.g., upper confidence bound sampling
and Thompson sampling). Moreover, through
our experiments, we empirically show the effec-
tiveness of our algorithms.

1 INTRODUCTION

A general abstraction of bandit problems is the following:
Given a set of k arms C = {a1, · · · , ak}, at each time step
one pulls an arm ai ∈ C, gets a reward corresponding to ai
and the objective of the algorithm is to obtain large cumu-
lative reward over all time steps T . In a class of problems
called the adversarial bandits, it is assumed that the re-
ward can be adversarial, in the sense that the rewards for
each of the arms in C are arbitrarily chosen. The other
class of problems is called the stochastic bandits where it
is assumed that the reward for each of the arm in C is from
an unknown distribution. (See [5] for a detailed introduc-
tion to these classes.) In this paper we are interested in the
stochastic bandit setting. We analyze two of the most com-
mon algorithms in this setting in the context of differential
privacy, upper confidence bound (UCB) sampling by [4]
and Thompson sampling by [2, 18]. We show that one can
modify UCB sampling and Thompson sampling algorithms
in such a way that ensures: i) differential privacy, and ii) re-
gret guarantee which is only poly log T factor worse com-
pared to the regret for the non-private variants.

We now focus on the semantics of differential privacy in
this setting where the data points (the rewards) arrive on-
line in a stream at every time step. This setting was first
studied by [13] and then followed by [17] and [24]. Let

ft = 〈ft(a1), · · · , ft(ak)〉 be the vector of rewards for all
the arms in C at time step t. Privacy guarantee will ensure
that from the output of the algorithm over all the T time
steps the adversary will not be able to distinguish between
the presence or absence of any single reward vector ft. [16]
studied differentially private online algorithms in the full-
information setting, where at each time step t the algorithm
can see the complete reward vector ft as opposed to ft(a)
for the arm a pulled in the bandit setting. [24] extended
this line of work to obtain tighter and nearly optimal regret
guarantees for both full-information and adversarial ban-
dit settings. Recall that in the non-private world, the full-
information and the adversarial bandit settings both have
optimal regret guarantee of Ω(

√
T) (see [23]). In contrast,

stochastic bandit algorithms enjoy a regret of O(log T). In
this work we obtain the first and nearly optimal regret guar-
antees for stochastic bandit problems. Since, stochastic
bandit algorithms have a very different flavor than adver-
sarial online algorithms, we needed to introduce new proof
techniques tailored to our problem.

The stochastic multi-armed bandit algorithms usually run
in the two implicit phases exploration phase and exploita-
tion phase. During the exploration phase, the algorithm
uses the pull of the arms in the initial rounds to get a suf-
ficiently accurate estimate of the means of the arms, and
then in the second phase uses this information to guide the
decision of pulling of arms in the later rounds. However,
in order to ensure differential privacy, we are required to
introduce certain randomness in the observed rewards, but
this tends to grossly corrupt the estimation of the means of
the arms. At a high-level, for both UCB and Thompson
sampling, we address this issue by increasing the number
of rounds used by the algorithm to estimate these means.
The exact details are very different for both the algorithms
are discussed in the respective sections. One important
point to keep in mind is that although we make stochas-
tic assumptions on the data to ensure strong utility guaran-
tees, we do not make any assumptions on the data while
ensuring privacy for our algorithms. Using the distribu-
tional assumption on the data for any kind of privacy guar-
antee may be disastrous, since real world data may not fol-

592

low the assumed distribution. For our algorithms, privacy
should hold in the worst case scenario but the utility guar-
antee holds under distributional assumptions on the data.
Finally, to fortify our theoretical guarantees we show that
they work well in experiments and often are competitive
w.r.t. the non-private algorithms.

Practical motivation. In the past few years bandit algo-
rithms have become extremely popular in both the theoret-
ical and applied online learning community. Along with
having strong theoretical guarantees, these algorithms have
found wide applicability in Internet scale systems. A con-
crete usage scenario is in the online search advertisement
industry. Companies like Google, Microsoft and Yahoo run
multi-million dollar industry based on showing relevant ad-
vertisements for a web-queries. For a given search query
by the user, the search engine displays a few advertisement
which the user is most likely to click (commonly known
as the main-line advertisement). After the advertisement
gets displayed, the user chooses to either click or not click.
If he/she clicks, then we say that the search engine gets a
reward of one, and zero otherwise. To earn maximum rev-
enue, the search engine strives to get high overall reward.
One important feature of this setup (and generally in ban-
dit learning) is that the search engine only gets to see the
reward for the advertisements that were shown to the user,
and gets no feedback about what the user would have done
on other candidate advertisements. Bandit algorithms have
been extremely successful in such settings and often enjoy
strong theoretical guarantees for the overall reward. Set-
tings like search advertisements immediately raise privacy
concern for the users whose data get used in training the
learning algorithms. Consider the example of a user who
searches for a lawyer in Port Jefferson, NY and clicks on an
advertisement of a divorce law farm. If the learning algo-
rithm uses this feedback to show the same advertisement
for similar query (e.g., finance lawyer in Port Jefferson,
NY), then one can use such feedbacks to infer significant
amount of information about a particular user. [19] on the
Facebook advertisement recommendation system and [6]
on the Amazon recommendation system, showed that one
can leverage such side information to breach user privacy.

1.1 Our Contributions

Here, we provide an overview of our contributions.

• Differentially private UCB sampling [Section 3]. We
provide a differentially private variant of UCB sampling
which enjoys the same utility guarantee as the non-
private algorithm up to poly-logarithmic factors in the
number of time steps T . The privacy guarantee follows
via standard reduction to the tree-based-aggregation
scheme, proposed by [14, 7]. Our utility analysis goes
via carefully analyzing the exploration phase of the al-
gorithm, where it estimates the means of the arms. Thus,
we provide a version of UCB sampling algorithm which

is robust to noise.
• Differentially private Thompson sampling [Section

4]. We also provide a differentially private variant of
Thompson sampling which enjoys the same utility guar-
antee as the non-private algorithm up to poly-logarithmic
factors in the number of time steps T . The privacy anal-
ysis is very similar to the UCB sampling. But, the utility
analysis is much trickier. In fact even without privacy an-
alyzing the exploration phase was considered extremely
difficult and it took more than seventy years for the com-
munity to come up with a formal analysis (see [2, 18]).
The main technical contribution of this section is to come
up with a noise robust version of Thompson sampling. In
order to obtain this robustness, the exploration phase of
the original algorithm had to be modified significantly.
A question that we leave open in this work is that if that
is necessary.

2 BACKGROUND AND PROBLEM
DEFINITION

2.1 Background on Differential privacy

In this section we provide a short overview of differential
privacy. D = 〈f1, · · · , fT 〉 be a data set of all the reward
functions. We call a data set D′ neighbor of D if it differs
fromD in exactly one reward function. Let CT be the space
of all T outputs of Algorithm A.

Definition 1 (Differential privacy [12]). A randomized al-
gorithm A is ε-differentially private if for any two neigh-
boring data sets D and D′, and for all sets O ⊆ CT the
following holds:

Pr[A(D) ∈ O] ≤ eε Pr[A(D′) ∈ O].

As per the semantics of the definition, differential privacy
ensures that an adversary gets to know “almost the same
thing” about a reward function ft irrespective of its pres-
ence or absence in the data set D. This closeness is mea-
sured by the privacy parameter ε. A typical choice of ε is
a small constant (e.g., 0.1). One important requirement of
the definition is that the guarantee should hold for every
pair of neighboring data sets. This directly implies that al-
though for the regret analysis of our algorithmAwe can as-
sume that the reward function comes from some underlying
distribution, but we cannot use any stochastic assumption
on the reward functions for privacy guarantee. Next, we
discuss some of the basic tools for designing differentially
private algorithms.

Laplace and Gamma mechanism. Laplace [12] and
Gamma mechanism [10] are sensitivity based methods to
achieve differential privacy. The best way to introduce
Laplace mechanism is via the following setting. Consider
a domain of data entries U and a function f : U∗ → R. For
the domain of data sets Un, we define the sensitivity of the

593

function f as below.

s = Sensitivity(f) = max
NeighborsD,D′∈U∗

|f(D)− f(D′)|

Let Lap(λ) be the Laplace distribution with scaling pa-
rameter λ, i.e., the density function of this distribution is
given by 1

2λe
−|x|/λ. Laplace mechanism states that for a

given data set D and noise N ∼ Lap
(
s
ε

)
, f(D) + N is

ε-differentially private. The proof of this claim directly fol-
lows from the density function for Laplace distribution and
triangle inequality. [12]

Gamma mechanism is also very similar to Laplace mecha-
nism. The only difference being that we are now working
with a vector valued function f : U∗ → Rp. Analogous to
Laplace mechanism, let us define the L2-sensitivity of the
function f as below.

s = Sensitivity(f) = max
NeighborsD,D′∈U∗

‖f(D)− f(D′)‖2

Gamma mechanism states that if we sample the noise
vector N ∈ Rp from the noise distribution with kernel
e−ε‖N‖2/s, then f(D) +N is ε-differentially private. (See
[10] for the proof.)

Tree based aggregation. Initially proposed by [14, 7], this
aggregation scheme is extremely effective in releasing pri-
vate continual statistics over a data stream. To define the
scheme formally, consider a data set D = 〈f1, · · · , fT 〉,
where each entry ft ∈ [0, 1], and these entries arrive in a
stream, i.e., at every time step t ∈ [T], one entry ft arrives.

At every time step t, the task is to output vt =
t∑

τ=1
ft while

ensuring that the complete output sequence 〈v1 · · · , vT 〉 is
ε-differentially private. One can design an algorithm (us-
ing a binary tree based aggregation), which assures an ad-
ditive error of O

(
log1.5 T

ε

)
per query. Moreover, it is sim-

ple to extend this scheme to the case where ft ∈ Rp and
‖ft‖2 ≤ 1 for all t ∈ [T]. Since, the noise used in this
scheme is exponential in nature, a high-probability guaran-
tee is also immediate. We defer the details of the scheme
to Appendix A. Suppose at every time step t ∈ [T], one
entry from dataset D, ft ∈ [0, 1] arrives and the task is to

output vt =
t∑

τ=1
ft while ensuring that the complete output

sequence 〈v1 · · · , vT 〉 is ε-differentially private. This algo-
rithm uses a binary tree based aggregation scheme, which
assures an additive error of O

(
log1.5 T

ε

)
per query. We de-

fer the details of the scheme to Appendix A. Moreover, it
can be extended to the case where ft ∈ Rp and ‖ft‖2 ≤ 1
for all t ∈ [T].

2.2 Background on Stochastic Multi-arm Bandits

A typical setup for an online learning problem is as fol-
lows: There is a sequence of reward functions f1, · · · , fT

arriving in a stream (i.e., one at every time step t ∈ [T]),
where each fi maps from some fixed set C to R. At ev-
ery time step t, an online learning algorithm A is expected
to produce an element xt ∈ C before ft is revealed to it.
Once ft gets revealed to A, the algorithm pays a reward of
ft(xt). The objective of A is to be competitive with the
best choice of x ∈ C in the hindsight, i.e., be competitive

with max
x∈C

T∑
t=1

ft(x). A natural measure of the utility ofA is

regret, defined: RegretA(T) = max
x∈C

T∑
t=1

ft(x)−
T∑
t=1

ft(xt).

(For a detailed discussion, see [23]

There are two popular settings under which these problems
are studied, namely, i) online learning under complete feed-
back or the full-information setting, and ii) online learning
under partial feedback or the bandit setting. In the first set-
ting, it is assumed that at time step t after the algorithm A
has produced xt, it gets to see the complete reward function
ft. In the second setting, the algorithm gets much lesser
information from the environment and just sees the evalua-
tion of ft at xt.

2.3 Problem Definition

Let us assume that for all t ∈ [T] we have ft : C → [0, 1],
where C is the set of k-arms. Additionally we assume that
for each arm a ∈ C, each ft(a) is an independent sam-
ple from a distribution with mean µa. The objective is to
design differentially private algorithms, whose regret (de-
fined in (1)) depends poly-logarithmically in the number of
reward functions T .

E [RegretA(T)] = T max
a∈C

µa − E

[
T∑

t=1

ft(a(t))

]
. (1)

Here, a(t) ∈ C is the arm played in the t-th time step.

3 PRIVATE UCB SAMPLING

Upper Confidence Bound (UCB) sampling by [4] is a
heuristic for stochastic multi-arm bandit (MAB) problems,
which despite being very simple gives strong utility guar-
antees. The regret for UCB O∗(log T) in fact matches the
asymptotic lower given by [20] upto a problem dependent
constant. This is in sharp contrast with the algorithms for
adversarial multi-arm bandit problems where the regret de-
pends polynomially on the time horizon T (see [1, 15]).
Recently [24] provided differentially private algorithms for
adversarial bandit problems, which are almost optimal in
the parameter T . In this section, for the UCB algorithm
for stochastic MAB, we provide a differentially private al-
gorithm whose expected regret is only poly-logarithmically
worse in T . Before we move on to the differentially private
UCB algorithm, we provide a brief overview of the non-
private version of the algorithm.

594

Background on UCB sampling. Recall that in the MAB

problem there are k-arms denoted by the set C, and at each
time step t each arm a ∈ C produces either 0 or 1 from
some unknown but fixed distribution on [0, 1] with mean
µa. The objective is to minimize the regret defined in (1).
For each arm a, the UCB algorithm records the number
of times it got pulled na(t) and the average reward ra(t)

na(t)

aggregated so far upto time t. Upon initialization, the al-
gorithm pulls each arm exactly once. Later, the algorithm
picks the arm with the highest upper confidence bound, i.e.,

arg max
a∈C

ra(t)
na(t) +

√
2 log t
na(t) .

Theorem 2 (Regret for non-private UCB Sampling [4]).
Let µ∗ = max

a∈C
µa. For each arm a ∈ C, let ∆a = µ∗ −

µa. The expected regret of UCB sampling algorithm is as
follows:

E [RegretUCB(T)] = O

 ∑

a∈C:µa<µ∗

log T

∆a
+ ∆a

 .

The expectation is over the randomness of the data.

3.1 Private UCB Sampling: Algorithm and Analysis

In Algorithm 1 we modify the UCB sampling algorithm
to obtain an ε-differentially private variant. Notice that for
each arm a ∈ C the average reward ra(t), is the only term
that depends directly on the data set whose privacy we want
to protect. So, if we can ensure that this sequence, ra(t),
t ∈ [T] is ε/k-differentially private for each arm a, then
immediately we have ε-differential privacy for the com-
plete algorithm. We invoke the tree based aggregation al-
gorithm from Section 2.1 to make these sequences private.
Additionally, to counter the noise added to the empirical
mean, we loosen the confidence interval for the biases of
each arm.
3.1.1 Privacy Analysis

Theorem 3 (Privacy guarantee). Algorithm 1 is ε-
differentially private.

Proof. The algorithm only accesses the reward for its com-
putation via the tree based aggregation scheme (see Sec-
tion 2). Since, there are k-arms, we maintain k separate
trees, each of which is guaranteed to be ε0 = ε

k differen-
tially private. Using the composition property of differen-
tial privacy, we immediately conclude that Algorithm 1 is
ε-differentially private.

3.1.2 Regret Analysis

The expected regret of the algorithm is given by
E[

∑
a∈C:µa<µa∗

∆ana(T)]. Hence, if our algorithm limits

the pulls of the bad arms, we are done. Our regret analysis
proceeds as follows, first we bound the amount of noise that

Algorithm 1 Differentially Private UCB Sampling
Input: Time horizon: T , arms: C = {a1, · · · , ak}, privacy

parameter: ε, failure probability: γ.
1: Create an empty tree Treeai with T -leaves for each arm
ai. Set ε0 ← ε/k.

2: for t← 1 to k do
3: Pull arm at and observe reward ft(at).
4: Insert ft(at) into Treeat via tree based aggregation

(see Section 2.1) with privacy parameter ε0.
5: Number of pulls: nat = 1.
6: end for
7: Confidence relaxation:Γ← k log2 T log((kT log T)/γ)

ε .
8: for t← k + 1 to T do
9: Total reward: ra(t) ← Total reward computed us-

ing Treea, for all a ∈ C.

10: Pull arm a∗ = arg max
a∈C

(
ra(t)
na

+
√

2 log t
na

+ Γ
na

)

and observe ft(a∗).
11: Number of pulls: na∗ ← na∗ + 1.
12: Insert ft(a∗) into Treea∗ using tree based aggrega-

tion and privacy parameter ε0.
13: end for

can be present in any of the total rewards ra(t). And later
using this bound, we show that the number of times the
suboptimal arms get pulled is small. We bifurcate the anal-
ysis of the each of the suboptimal arms into exploration and
exploitation phase. We argue that in case of bad arms, after
getting pulled forO

(
k log2 T log(kT)

ε∆2
a

)
rounds the arm is not

selected again with high probability. The main arguments
in this analysis follow the general sequence of arguments
in the analysis for non-private UCB sampling. (See [9] for
a comparison.)

Theorem 4 (Utility guarantee). Let {µa : a ∈ C} be the
biases of the k-arms in the set C. Let µ∗ = max

a∈C
µa and for

each arm a ∈ C, ∆a = µ∗ − µa. With probability at least
1− γ (over the randomness of the algorithm), the expected
regret (over the randomness of the data) is as follows:

E
[
RegretPriv−UCB(T)

]

= O

 ∑

a∈C:µa<µ∗

k log2 T log(kT/γ)

ε∆a
+ ∆a

 .

In the following lemma, we bound the error in the computa-
tion of the total reward in Line 9 in Algorithm 1, introduced
due to privacy.

Lemma 5. For all arms a ∈ C and all time step t ∈ [T],
w.p. ≥ 1 − γ (over the randomness of the algorithm), the
error in the computation of the total reward for a till time t
is at most k log2 T log((kT log T)/γ)

ε .

595

The proof of this lemma is given in Appendix B.

Lemma 6. For a given arm a ∈ C, if the mean µa < µ∗

and ∆a = µ∗−µa, then w.p. ≥ 1−γ (over the randomness
of the algorithm) E [na(T)] = O

(
log2 T log(kT/γ)

ε∆2
a

)
+ ζ.

Here ζ is a fixed positive constant independent of the prob-
lem parameters. The expectation is over the randomness of
the data and O(·) only hides multiplicative constants.Proof. This lemma provides us with an upper limit on the
expected number of pulls of the suboptimal arms. For
each arm we partition the analysis into two phases (explo-
ration phase and exploitation phase). For an arm a, such
that µa < µ∗, we show that the exploration phase lasts
for sa = 8k log2 T log((kT log T)/γ)

ε∆2
a

many pulls. Once ex-
ploration phase is over, the exploitation phase starts. If
na(T) ≤ sa, then we are done, since it means the arm was
never finished the exploration phase. Otherwise, we show
that the probability of pulling an arm after its exploration
phase is very low. In principle, what we show that for the
bad arms, the expected number of pulls for those arms is
bounded during its exploration phase.

Let Xa(t) be the true total reward and Noisea(t) = ra(t)−
Xa(t) for an arm a. For the ease of notation, let Γ =
k log2 T log((kT log T)/γ)

ε . At time step t ∈ [T − 1], an arm a
is pulled over a∗ if the following is true.

ra∗(t)

na∗(t)
+

√
2 log t

na∗(t)
+

Γ

na∗(t)

≤ ra(t)

na(t)
+

√
2 log t

na(t)
+

Γ

na(t)

⇔ Xa∗

na∗(t)
+

√
2 log t

na∗(t)
+

Γ

na∗(t)
+

Noisea∗(t)

na∗(t)

≤ Xa

na(t)
+

√
2 log t

na(t)
+

Γ

na(t)
+

Noisea(t)

na(t)
(2)

It can be easily shown that (2) is true, only if at least one of
the following equations hold.

Xa∗

na∗(t)
≤ µ∗ −

√
2 log t

na∗(t)
(3)

Xa

na(t)
≥ µa +

√
2 log t

na(t)
(4)

µ∗ +
Γ

na∗(t)
+

Noisea∗(t)

na∗(t)

< µa +
Γ

na(t)
+ 2

√
2 log t

na(t)
+

Noisea(t)

na(t)
(5)

Directly by the use of Chernoff bound, we can show that
with probability at least 1 − 2t−4, (3) and (4) are false.
To ensure that (5) does not hold, it suffices to ensure the

following.

Γ

na(t)
+ 2

√
2 log t

na(t)
+

Noisea(t)

na(t)
≤ Γ

na∗(t)
+

Noisea∗(t)

na∗(t)
+ ∆a

⇔ 2

√
2 log t

na(t)
+

Γ + Noisea(t)

na(t)
−
(

Γ + Noisea∗(t)

na∗(t)

)
≤ ∆a

(6)

From Lemma 5 we know that during the execution of the
algorithm, w.p. ≥ 1 − γ, |Noisea∗(t)| and |Noisea(t)| are
at most Γ. Therefore, to ensure (6) it suffices to ensure the
following.

2

√
2 log t

na(t)
+

Γ + Noisea(t)

na(t)
≤ ∆a (7)

If for some 0 < ν < 1 we have, 2
√

2 log t
na(t) ≤ ν∆a and

Γ+Noisea(t)
na(t) ≤ (1 − ν)∆a, then we can claim (7). Hence

to ensure (7), by setting y =
√

log(t)
Γ (assume T > 3) it

suffices to have na(t) ≥ 8Γ
∆2
a

since ∆a < 1. Recall that this
is the exactly the threshold for the exploration phase for the
arm a. We now focus our attention to the term E [na(T)]
we initially intended to bound. It is easy to see the follow-
ing.

E [na(T)] ≤
⌈

8Γ

∆2
a

⌉
+

T∑

t= 8Γ
∆2
a

Pr [Pulling arm a at time t]

≤
⌈

8Γ

∆2
a

⌉
+

T∑

t= 8Γ
∆2
a

Pr [∃na(t), na∗(t) s.t. (2) holds]

≤
⌈

8Γ

∆2
a

⌉
+

T∑

t= 8Γ
∆2
a

t∑

na∗=1

t∑

na= 8Γ
∆2
a

2t−4

≤
⌈

8Γ

∆2
a

⌉
+

T∑

t=1

2t−2 ≤ 8Γ

∆2
a

+ ζ (8)

This completes the proof Lemma 6.

Proof of Theorem 4. In order to obtain the final regret guar-
antee of Theorem 4 and conclude the proof, we notice

that, E
[
RegretPriv−UCB(T)

]
= E

[
∑

a∈C:µa<µa∗
∆ana(T)

]
.

Using Lemma 6 in the expression above concludes the
proof.

4 PRIVATE THOMPSON SAMPLING

In this section we study a different flavor of bandit learn-
ing algorithms called Thompson sampling. Historically,

596

Thompson sampling [25] is much older than UCB sam-
pling style algorithms, dating back to early 20th century.
Although Thompson sampling is a very powerful heuris-
tic and often outperforms UCB sampling in experimental
setups, until recently little was known about its regret guar-
antees. [2] provided the first regret analysis for Thomp-
son sampling and they showed that it has regret logarithmic
in the time horizon T . We provide a differentially private
variant of the Thompson sampling algorithm. One reason
for studying private Thompson sampling along with pri-
vate UCB sampling is because it is known that in the non-
private world the experimental performance of Thompson
sampling is much better than UCB sampling. Moreover it
demonstrates properties like stability to delayed feedback.
(See [8] for details.) The question we want to answer is
whether we can obtain a differentially private variant of
Thompson sampling which preserves the asymptotic regret
guarantee of as the same order as the non-private algorithm
and also demonstrate similar experimental properties.

Background on Thompson sampling. The basic Thomp-
son sampling heuristic is extremely simple. Sup-
pose there are k-arms C = {a1, · · · , ak} which give
Bernoulli rewards (i.e., {0,1} rewards) and have biases
µa1

, · · · , µak . Let ra1
(t), · · · , rak(t) be the number of

ones and na1
(t), · · · , nak(t) be the total number of arm

pulls, upto time t. The rule to pick the arm for each round
is: Sample θi ∼ Beta(rai(t) + 1, nai(t) − rai(t) + 1)
for i ∈ [k] for i ∈ [k] and pull the arm correspond-
ing to the highest θi. Based on the result of the arm
pull, the posterior distribution for that particular arm gets
updated.[2] showed that the expected regret for this algo-
rithm (over the randomness of the algorithm and the data)

isO
(∑
a∈C−a∗

(
1

∆2
a

)2

log T

)
, where a∗ be the optimal arm

and ∆a = µa∗ − µa.

4.1 Private Thompson Sampling: Algorithm and
Analysis

In this section we modify this generic Thompson sampling
algorithm to obtain an ε-differentially private variant (Al-
gorithm 2). We show that even with the privacy constraint
our algorithm has almost the same regret as non-private al-
gorithm with only poly log T overhead. This is the same
setting in which [2] also proved their results. One inter-
esting observation in the MAB problems is that all the
sequential algorithms would encourage a downward bias,
which means that if an arm does not give good results ini-
tially then it will not be pulled again, therefore it’s empir-
ical mean would be much lower than its true mean. UCB
algorithm overcomes this problem by adding a monotoni-
cally decreasing function of the number of pulls (na(t)) to
the empirical mean, thus in some sense balancing out this
downward bias. But in case of Thompson sampling, we are
randomizing our decision hence the bias correction mech-

anism is different, it is due to randomization. In Thompson
sampling, the biggest challenge is to bound the number of
mistakes in the initial rounds. Moreover to ensure differ-
ential privacy, we introduce additional randomness to the
original Thompson sampling algorithm, it becomes even
harder for us to analyze the number of mistakes in the ini-
tial rounds. So, we take a slightly different approach. We
segregate the algorithm into explicit exploration phase and
a combined exploration and exploitation phase. The idea
in the exploration phase is to estimate the biases of the
two arms (within sufficient confidence) without bothering
about the number of mistakes made. In the joint explo-
ration and exploitation phase, we use the standard Thomp-
son sampling, except we make sure the algorithm only has
differentially private access to the rewards. Similar to the
private UCB algorithm (Algorithm 1), we use the private
tree based aggregation (from Section 2.1) to ensure differ-
ential privacy. In the following section, for the convenience
of notation we assume that µ∗ = µa1

> µa2
≥ · · · ≥ µak .

4.1.1 Privacy Analysis

Theorem 7 (Privacy guarantee). Algorithm 2 is ε-
differentially private.

Proof. The proof of privacy is segregated into two parts.
In the first part we argue that the gap estimation section is
ε/2-differentially private. In the second part we argue that
the rest of the sections of the algorithm are combined ε/2-
differentially private. Using these two arguments and the
composition property of differential privacy we argue that
Algorithm 2 is ε-differentially private. Notice that in the
first part, each arm i, i ∈ [k] is pulled in batches of m-
pulls, till the condition in Line 8 in Algorithm 2 is satisfied.
If each of this batch is made ε

2k -differentially private, then
by parallel composition property of differential privacy, the
first phase is ε/2-differentially private. To guarantee ε

2k -
differential privacy for a given batch, we use Laplace mech-
anism from Section 2.1. The ε/2-privacy guarantee for
the second phase follows directly from the analysis of tree
based aggregation scheme described in Section 2.1.

4.1.2 Regret Analysis

In this section, we provide the regret analysis for our private
Thompson sampling algorithm (Algorithm 2). The high-
level structure of the analysis is as follows. First we estab-
lish that in the gap estimation phase, the estimated gap ∆̂ is
within constant factor of the true gap ∆ =

∣∣µa(1)
− µa(2)

∣∣
(i.e. the mean difference of the best arm and the second
best arm). Moreover, we argue that the gap estimation runs
for at most poly log T number of rounds. Second, assum-
ing our estimation ∆̂ is reasonably accurate, we pull all
the arms randomly for certain number of steps to ensure
sufficient concentration of the empirical means around the
true means. In the third and final stage, we analyze the
noisy version of the classic Thompson sampling with beta
prior. The analysis of this part resembles the analysis of [2]

597

Algorithm 2 Differentially Private Thompson Sampling
Input: Time horizon: T , arms: C = {a1, a2, · · · , ak}, pri-

vacy parameter: ε.
1: Gap (∆ = |µa1

− µa2
|) estimation

2: Initialize: Time counter: τ ← 0, estimated gap: ∆̂←
1, total pulls: na1 , na2 , · · · , nak .

3: repeat
4: Pull each arm ai m = 192k log T

ε∆̂2
times to obtain av-

erage rewards µ̃ai ∀ai ∈ C. Increment nai ←
nai +m ∀ai ∈ C.

5: Differentially private means: µ̂ai ← µ̃ai +
Lap

(
2k
εm

)
, ∀ai ∈ C.

6: Set ∆̂← ∆̂/2 and τ ← τ + km.
7: Find the best and second best arms as, a(1) =

argmax
ai∈C

µai and a(2) = argmax
ai∈C,ai 6=a(1)

µai

8: until |µ̂a(1) − µ̂a(2)| > ∆̂
9: Create empty trees Treeai with (T−τ)-leaves ∀ai ∈ C.

Set ε0 ← ε/2k.
10: Random pullings of arms to build confidence
11: Confidence parameter: Γ← 192 log3 T

ε .
12: Pull each arm ai, Γ

∆̂2
times. Record the total rewards ri

∀ai ∈ C. Insert ri in Treeai with privacy parameter ε0,
∀ai ∈ C. Increment nai ← nai + Γ

∆̂2
and τ ← τ+ kΓ

∆̂2
.

13: Combined explore-exploit phase of Thompson sam-
pling

14: for t← τ + 1 to T do
15: Total reward: ra(t) ← Total reward computed us-

ing Treea, ∀ai ∈ C. θa(t) ∼ Beta(ra(t)+1, na(t)−
ra(t)+1) , ∀ai ∈ C. Pull arm a∗ = arg max

ai∈C
(θa(t))

and observe reward ft(a∗), Insert ft(a∗) into Treea∗
using tree based aggregation and privacy parameter
ε0,

16: Number of pulls: na∗(t)← na∗(t) + 1.
17: end for

closely. The overall regret guarantee is given in Theorem 8
below.
Theorem 8 (Utility guarantee). Let µa1 , µa2 , · · · , µak be
the biases of the k arms. Let ∆ =

∣∣µa(1)
− µa(2)

∣∣, where
a(1) = arg max

ai∈C
µai and a(2) = arg max

ai∈C,ai 6=a(1)
µai .

Then, for T ≥ 8 max {log2
1
∆ , 1} and ε < 1 expected re-

gret of Algorithm 2 (over the randomness of the data and
the algorithm) is as follows:

E
[
RegretPriv−Thomspon(T)

]
= O

(
k

log3 T

∆2ε2

)

.
Let N1, N2 and N3 denote the number of times the wrong
arm is pulled in the gap estimation phase, random pullings
phase and combined explore and exploit phase of Algo-
rithm 2 respectively. We would bound the expected val-
ues of N1, N2 and N3 using the following lemmas which
would allow us to prove Theorem 8.

Lemma 9 (Bound on gap estimation phase). Following
the notation of Theorem 8, then with probability at least
1 − 1/T 4 (over the randomness of the algorithm and the
data distribution), for T ≥ 8kmax {log2

1
∆ , 1} and ε < 1

the estimated gap ∆̂ in Algorithm 2 is in [∆/3, 2∆], the ex-
pected number of times incorrect arm is pulled is, E[N1] =

O
(
k log2 T

ε

)
.

The proof of this Lemma is provided in Appendix C.

Lemma 10 (Bound on geometric random variables
(Lemma 3 [2])). Let sj be a random variable, index by
j ∈ Z+ s.t. for fixed parameters T ∈ Z+ and µ ∈ [0, 1],
with probability at least 1−T−2, sjj > µ+y

2 . Let y ∈ [0, µ)

be a predefined threshold and let X(sj , y) be the random
variable that counts the number samples w ∼ Beta(sj +
1, j − (sj + 1)) that need to be drawn i.i.d. before w ex-
ceeds y. Using T as the fixed upper bound on X(sj , y), if
j ≥ 4 log2 T

(µ−y)2 , then Es [Ew [min {X(sj , y), T}]] = O
(

1
T

)
.

Lemma 11 (Bound on Beta random variable
[Lemma 7 [2]).] Let us define event E(t) as,
E(t) : θa(t) ∈ [µa − ∆a

2 , µa + ∆a

2],∀a ∈ C, a 6= a1.

Then Pr(E(t), na(t) ≥ 32 log2 T
∆2) ≥ 1− 4(k−1)

T 3 , ∀t.
Lemma 12 (Regret bound in the combined explore and
exploit phase). Suppose N3 is a random variable which
counts the number of times the suboptimal arms are pulled
in Algorithm 2. Then, over the randomness of the algorithm
and the data, E[N3] = O (1).

Proof. In order to calculate the regret we count the num-
ber of times the sub-optimal arms get pulled since it upper
bounds the regret. The main idea behind the proof of this
lemma is that via random pulling of the arms in Algorithm
2, the arm a1 is well separated from the other sub-optimal
arms. Hence, in the combined explore and exploit phase,
with high probability the optimal arm gets pulled almost
always. We will use the proof technique from [2] for ana-
lyzing the number of pulls of the suboptimal arms.

We denote the set of suboptimal arms by S and S =
a2, · · · , ak. We count the number of pulling of sub-optimal
arm as, by the following scheme: count the number of
pulls of arm as in between two successive pulls of arm a1.
First, recall that with probability at least 1 − T−4 (from
Lemma 9), ∆̂ (the estimated gap) is within [∆/3, 2∆]. By
the property of the tree based aggregation discussed earlier,
the difference between the true total reward at time t(j) and
ra(t(j)) is at most log3

2 T
ε , with probability 1 − negl(T).

Since by the beginning of combined explore and exploit
phase, we have pulled arm a1 at least Γ

∆̂2
-times, it follows

that with probability at least 1− 2T−4, difference between
the true total reward at time t(j) and ra1

(t(j)) is at most ∆
4 .

Using Lemma 11 and the fact that we pulled all the arms for
Γ/∆2 > 32 log2 T

∆2
a

, we observe that with probability atleast

598

(a) (b)

Figure 1: Simulation results for our differentially private
algorithms UCB sampling (Algorithm 1) and Thompson
sampling (Algorithm 2) for the number of arms k = 5 and
∆ = 0.5. Smaller ε indicates more privacy.

1− 4k−2
T 3 , θa < µa+∆a/2. Hence bundled up failure prob-

abilities obtained so far for θa1
< θas using union bound is

1− 4
T 2 . Let j and j + 1 be any two successive pulls of arm

a1, let t(j) and t(j + 1) be the respective time epochs and
denote ∆s = µas − µa1

.The Beta distribution for the sam-
ple θafrom arm a in between these pulls (not including the
(j+1)-th pull is Beta(ra(t(j))+1, na(t(j))−ra(t(j))+1).
Now a suboptimal arm as is pulled during round j and j+1
pull of arm a1 if θa1

< µa1
− minas∈S ∆as . In order to

use Lemma 10 above, we set the threshold y = µa2
+ ∆

2 .
Moreover, if we set sj = ra1(t(j)), then we know that
with probability at least 1− 4T−2, sjj > µa1 − ∆

4 . Hence,
the conditions of Lemma 10 holds and summing over all T
rounds, we complete the proof.

Proof of Theorem 8. The expected regret of multi-armed
bandit algorithms can be upper bounded by the number of
times the suboptimal arm is pulled. We defined N1, N2

and N3 to denote the number of times the wrong arm is
pulled in the gap estimation phase ,random pullings phase
of Algorithm 2 and combined explore and exploit phase of
Algorithm 2 respectively. Thus we have,

E
[
RegretPriv−Thomspon(T)

]
= E [N1] + E [N2] + E [N3]

From Lemma 9 we know that E [N1] = O
(
k log T

ε2

)
.

From Lemma 9 and Algorithm 2, we know that E [N2] =

O
(
k Γ

∆2

)
, where Γ = O

(
log3 T
ε

)
. Finally from Lemma 12,

we know that E [N3] = O (1). Combining these bounds,
we get the bound on the expected regret.

5 EXPERIMENTAL EVALUATION

In this section, we support the theoretical regret bounds for
our algorithms (Algorithm 1 and 2) with empirical results.
The experimental results show that there is a smooth trade-
off between privacy and accuracy. As we increase our pri-
vacy parameter ε, the regret improves. We perform the
simulation experiments on for stochastic multi-arm ban-
dits, with rewards in {0, 1}. The k-arm private UCB sam-
pling algorithm is described in Section 3. The 2-arm pri-
vate Thompson sampling and its extension to k-arm private

Figure 2: Comparison of different differentially private and
non-private multi-armed bandit algorithms on Yahoo! front
page News article recommender system. The click-through
rates for each algorithm is normalized with respect a ran-
dom algorithm.

Thompson sampling are given in Section 4.1. The true un-
derlying distribution of the arms are chosen as follows. The
mean for the best arm is 0.9 and the other arms have biases
of 0.9 −∆ each, where ∆ = 0.5. We tune the parameters
of our private algorithms, the confidence parameter (see
Line 9 in Algorithm 1) for UCB and the number of ran-
dom pullings (see Line 12 in Algorithm 1) for Thompson
to enhance accuracy. Note, the parameter tuning does not
violate privacy, since the access to the aggregated rewards
is still based the on tree based aggregation scheme. All
the UCB type sampling algorithms have a common param-
eter, the confidence interval; same as Line 9 in Algorithm
1. For our experiment on private UCB sampling (Algo-
rithm 1), we use a particular confidence interval, given in
[8], which seems to perform the best. The confidence inter-

val is given as,
√
ra(t) log t

na(t) + log t
na(t) , where ra(t) and na(t)

are the reward and number of pulls for arm a ∈ C up to
time t respectively. For our experiments on private Thomp-
son sampling (see Algorithm 2) we do not implement the
gap estimation phase and for the second phase that involves
random pullings (Line 10 of 2), use a smaller value for m.

Conclusions drawn from simulations. We observe in the
plots that the regret for the private algorithms saturates af-
ter certain time, similar to that of their non-private coun-
terparts (see Figure 1). Also notice that in the simula-
tions, Thompson sampling tends to perform much better
than UCB sampling.

5.1 Yahoo! Front Page Data set

In this section, we describe our results on Yahoo! front
page news article recommendation data set. The data set
contains 45,811,883 user visits to the Today module during
first 10 days in May 2009. Each user click on a news article
shown corresponds to a reward of one for that article. This
data set has also been used by [21], [11] for bandit exper-
iments. One property of this data set is that the displayed
article is chosen uniformly at random from the candidate
article pool allowing us to use an unbiased offline evalua-

599

tion method [21, 22]. The pool of articles is small (around
20 articles), but it is dynamic which means that the articles
may be added or removed from this pool. For each visit,
both the user and each of the candidate articles are asso-
ciated with a feature vector of dimension 6. The feature
vector acts as a context for the news article recommender
and based on this context the most suited article can be cho-
sen using a bandit algorithm. This is the contextual bandit
setting. In this setting, in each of T rounds, a learner is
presented with the context vector: za ∈ Rd for each arm
a ∈ C and based on his previous observations and this new
context vector, the learner needs to select one out of k ac-
tions. The learner’s aim is to learn the relation between the
reward and the context vector in an online fashion.

Differentially private contextual sampling (Algorithm 3
and Algorithm 4 in Appendix D.2 and D.3.) The private
contextual UCB algorithm is adapted from the LinUCB al-
gorithm in [21] and is similar to the basic UCB sampling
algorithm, as it computes the expected reward of each arm
and then chooses the arm with the highest upper confidence
bound. The expected reward is given as zTt θt, where θt is
estimated using ridge regression and the confidence bound
is given as

√
za(t)TAtza(t), which is the Mahalanobis dis-

tance of the context vector with covariance matrix A. On
the other hand, the private contextual Thompson sampling
algorithm is a differentially private version for the algo-
rithm provided by [3]. In regular Thompson sampling, for
each round we choose an arm according to its posterior
probability of having the best parameter. A natural gen-
eralization of Thompson Sampling for contextual bandits
is to use Gaussian prior and Gaussian likelihood function.
The extension of these algorithms to private algorithms is
straightforward. In both the private algorithms, we restrict
our access to the parameters which aggregate over each
time stamp and use tree based aggregation scheme to re-
trieve those parameters. We give the details of these algo-
rithms in Appendix D.2 and D.3.

Conclusions on experiments with Yahoo! front page data
set. The results for this experiment are summarized in Fig-
ure 2. We find that the private algorithms do not perform
much worse than the non-private algorithms. Since, the
feature vector is of length 6 by setting the privacy ε0 of each
parameter as 0.1, the total privacy measured in terms of the
total privacy parameter ε = 2.7. We also investigate the
performance of the algorithms with respect to delays. We
have considered the delay values in {0, 100, 1000}. When
the input data does not have any delay in the feedback,
the private algorithms perform slightly worse than the non-
private counter parts and as the delay increases the perfor-
mance of the non-private algorithms is hurt more than the
private algorithms.

600

References

[1] Alekh Agarwal, Ofer Dekel, and Lin Xiao. Optimal algo-
rithms for online convex optimization with multi-point ban-
dit feedback. In COLT, pages 28–40, 2010.

[2] Shipra Agrawal and Navin Goyal. Analysis of thompson
sampling for the multi-armed bandit problem. In COLT,
2012.

[3] Shipra Agrawal and Navin Goyal. Thompson sampling
for contextual bandits with linear payoffs. arXiv preprint
arXiv:1209.3352, pages 1–29, 2012.

[4] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-
time analysis of the multiarmed bandit problem. Machine
learning, 47(2-3):235–256, 2002.

[5] Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analy-
sis of stochastic and nonstochastic multi-armed bandit prob-
lems. CoRR, abs/1204.5721, 2012.

[6] Joseph A. Calandrino, Ann Kilzer, Arvind Narayanan, Ed-
ward W. Felten, and Vitaly Shmatikov. ”you might also like:
” privacy risks of collaborative filtering. In IEEE Symposium
on Security and Privacy, 2011.

[7] TH Hubert Chan, Elaine Shi, and Dawn Song. Private and
continual release of statistics. In ICALP. 2010.

[8] Olivier Chapelle and Lihong Li. An empirical evaluation
of thompson sampling. In Advances in Neural Information
Processing Systems, pages 2249–2257, 2011.

[9] Kamalika Chaudhuri. Topics in online learning: Lecture
notes. 2011.

[10] Kamalika Chaudhuri and Claire Monteleoni. Privacy-
preserving logistic regression. In Daphne Koller, Dale Schu-
urmans, Yoshua Bengio, and Léon Bottou, editors, NIPS.
MIT Press, 2008.

[11] Wei Chu, Seung-Taek Park, Todd Beaupre, Nitin Motgi,
Amit Phadke, Seinjuti Chakraborty, and Joe Zachariah. A
case study of behavior-driven conjoint analysis on yahoo!:
front page today module. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 1097–1104. ACM, 2009.

[12] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam
Smith. Calibrating noise to sensitivity in private data analy-
sis. In Theory of Cryptography Conference, pages 265–284.
Springer, 2006.

[13] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N
Rothblum. Differential privacy under continual observation.
In STOC, 2010.

[14] Cynthia Dwork, Moni Naor, Omer Reingold, Guy Roth-
blum, and Salil Vadhan. On the complexity of differentially
private data release: efficient algorithms and hardness re-
sults. In STOC, pages 381–390, 2009.

[15] Abraham D Flaxman, Adam Tauman Kalai, and H Brendan
McMahan. Online convex optimization in the bandit setting:
gradient descent without a gradient. In Proceedings of the
sixteenth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 385–394. Society for Industrial and Applied
Mathematics, 2005.

[16] Prateek Jain, Pravesh Kothari, and Abhradeep Thakurta.
Differentially private online learning. arXiv preprint
arXiv:1109.0105, 2011.

[17] Prateek Jain, Pravesh Kothari, and Abhradeep Thakurta.
Differentially private online learning. In Conference on
Learning Theory, pages 24.1–24.34, 2012.

[18] Emilie Kaufmann, Nathaniel Korda, and Rémi Munos.
Thompson sampling: An asymptotically optimal finite-time
analysis. In Algorithmic Learning Theory, pages 199–213.
Springer, 2012.

[19] Aleksandra Korolova. Privacy violations using microtar-
geted ads: A case study. In International Conference on
Data Mining Workshops, 2010.

[20] Tze Leung Lai and Herbert Robbins. Asymptotically effi-
cient adaptive allocation rules. Advances in applied mathe-
matics, 6(1):4–22, 1985.

[21] Lihong Li, Wei Chu, John Langford, and Robert E Schapire.
A contextual-bandit approach to personalized news article
recommendation. In Proceedings of the 19th international
conference on World wide web, pages 661–670. ACM, 2010.

[22] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang.
Unbiased offline evaluation of contextual-bandit-based
news article recommendation algorithms. In Proceedings
of the fourth ACM international conference on Web search
and data mining, pages 297–306. ACM, 2011.

[23] Shai Shalev-Shwartz. Online learning and online convex
optimization. Foundations and Trends in Machine Learning,
4(2):107–194, 2011.

[24] Adam Smith and Abhradeep Thakurta. Nearly optimal al-
gorithms for private online learning in full-information and
bandit settings. In NIPS (To appear), 2013.

[25] William R Thompson. On the likelihood that one unknown
probability exceeds another in view of the evidence of two
samples. Biometrika, 25(3/4):285–294, 1933.

601

Equitable Partitions of Concave Free Energies

Martin Mladenov
TU Dortmund University
{fn.ln}@cs.tu-dortmund.de

Kristian Kersting
TU Dortmund University
{fn.ln}@cs.tu-dortmund.de

Abstract

Significant progress has recently been made to-
wards formalizing symmetry-aware variational
inference approaches into a coherent framework.
With the exception of TRW for marginal infer-
ence, however, this framework resulted in ap-
proximate MAP algorithms only, based on equi-
table and orbit partitions of the graphical model.
Here, we deepen our understanding of it for
marginal inference. We show that a large class of
concave free energies admits equitable partitions,
of which orbit partitions are a special case, that
can be exploited for lifting. Although already in-
teresting on its own, we go one step further. We
demonstrate that concave free energies of pair-
wise models can be reparametrized so that ex-
isting convergent algorithms for lifted marginal
inference can be used without modification.

1 INTRODUCTION

Computing likelihoods and marginals using graphical mod-
els [24] is an important task for many applications in bi-
ology, information retrieval, and computer vision, among
other fields. If the graphical models are defined over trees,
marginals can be efficiently computed using belief propa-
gation. For models with cycles, however, exact inference
is generally intractable. This motivates approximate infer-
ence algorithms, favoring algorithms which are as accurate
as possible while being guaranteed to converge. One promi-
nent example are variational inference approaches [24, 7,
14], where one aims to approximate a given distribution by
a simpler one, i.e., one whose marginals are easier to read
off. If a good fit is found, the marginals of the approxi-
mating distribution can be used as approximations to the
marginals of the original one. Such approaches are typi-
cally obtained in two steps: (1) one selects an approxima-
tion criterion (a free energy), which is a function of the

approximating marginals, and (2) designs optimization al-
gorithms to minimize that free energy efficiently.

A recent development in probabilistic inference has been
the use of symmetry [18, 1, 19, 23] as a basis for effi-
cient algorithms. Detecting and utilizing symmetry is es-
tablishing itself as an important component of inference.
On one hand, there are classes of models where symme-
try provides the only means for tractable inference [4]. On
the other, in approximate inference algorithms (which tend
to be tractable by design) symmetry usually translates to
significant improvements in running time as a result of re-
ducing the number of variables of the problem. Symmetry-
aware inference approaches are often referred to as lifted
inference approaches [20, 9], and one of the first lifted vari-
ational inference approaches was lifted loopy belief prop-
agation [8, 22, 10]. These works, however, are largely of
algorithmic nature and specific to loopy belief propagation.
More recently, Bui et al. [1] proposed a general, algebraic
framework for lifted variational inference. It formalizes the
notion of symmetry in graphical models via lifting parti-
tions and shows how to exploit them within corresponding
variational optimization problems. With the exception of
lifted TRW via Frank-Wolfe optimization [2], however, the
framework resulted in approximate MAP inference algo-
rithms only, based on equitable and orbit partitions of the
graphical model [1, 17, 16].

Our goal in this paper is to deepen our understanding of
the lifted variational framework for marginal inference. We
do so by extending the notion of equitable partitions — a
formalization of symmetry — of models to equitable parti-
tions of energies. We show that within a well-known class
of concave energies, a) given a concave energy that admits
an equitable partition, the number of variables in the re-
sulting optimization problem can be reduced in a way that
an exact solution can still be found. Moreover, b) given
a model that admits an equitable partition, a concave en-
ergy that admits the same equitable partition can always
be constructed. In combination, these two results allow us
to perform concave inference without breaking the sym-
metry of the model. Although already interesting on its

602

(a) (b)

Figure 1: Representations. (a) An MRF and its factor graph.
(b) An LP and its factor graph. (Best viewed in color)

own, we go one step further. We demonstrate that for the
case of pairwise models, “lifted” concave free energies can
be reparametrized to “ground” energies of smaller models.
That is, for any pair pG, cq of pairwise model and energy
parameters as well as an appropriate partition, we can find
a pair pG1, c1q of smaller size such that the resulting ener-
gies are equivalent, regardless of the solver. This enables
us to use existing highly efficient and distributed conver-
gent message passing algorithms for lifted marginal infer-
ence such (as [21]) without modification. Furthermore, we
provide a novel angle on the open question raised by Bui
et al. regarding the applicability equitable partitions within
lifted variational inference. While they point out that parti-
tions coarser than an orbit partition of the model generally
cannot lift the TRW energy [2] faithfully, we show that a
large class of other energies in the same class do admit any
equitable partition of the model.

To achieve the above goal(s) we start off by reviewing the
required tools from (lifted) variational inference. Section 3
then introduces the notion of an equitable partition of a con-
vex energy and shows that this partition is a lifting partition.
In Section 4, we show to reparametrize energies and models
modulo equitable partitions in order to eliminate the neces-
sity of a lifted solver. Before concluding, we illustrate our
theoretical results empirically.

2 BACKGROUND

We will start with reviewing variational inference in
Markov random fields (MRF). Then we will touch upon the
basics of the lifting framework for variational problems.

Variational Inference in MRFs. Let X “
pX1, X2, . . . , Xnq be a set of n discrete-valued ran-
dom variables and let xα represent the possible re-
alizations of a subset α of these random variables.
Markov random fields (MRFs) compactly repre-
sent a joint distribution over X as a factorization
P pX “ xq “ Z´1 exp rřα θαpxαq `

ř
i θipxiqs , see

[24] for more details.

It is often convenient to represent MRFs by their factor

graphs. In this paper, however, we will slightly modify the
standard definition of a factor graph. For our purposes, a
factor graph G is a colored tri-partite graph, whose nodes
represent the variables, factors and the positions of vari-
ables in factors within an MRF. In contrast to standard
factor graphs and as illustrated in Fig. 1a, we connect a
variable Xi to factor θα via a dummy position node ♦iα,
which we color according to the symmetry of θα. More pre-
cisely, if the positions of Xi and Xj are compatible, that is,
θαp. . . , xi, . . . , xj , . . .q “ θαp. . . , xj , . . . , xi, . . .q for all
realizations xi, xj , we color ♦iα and ♦jα with the same
color. If the positions are not compatible, they receive dif-
ferent colors. Moreover, we assume that factors, variables
and positions use different color spaces, e.g. a position and
factor node cannot share the same color. While this is not
the most compact representation, it will allow us to use a
common graphical representation across various kinds of
partitions and optimization problems.

Inference in MRFs is generally intractable, hence, infer-
ence tasks are often addressed via approximations. One
prominent class of approximate inference algorithms arises
from the following optimization problem:

µ˚ “ argmax
µPLpGq

”
θTµ` T ¨ pHpµq

ı
loooooooooomoooooooooon

“:F pµq

, (1)

where F is the free energy and the set LpGq, defined as

LpGq “
"
µ ě 0

ˇ̌
ˇ̌
ř
xi
µipxiq “ 1ř

xαzxi µαpxαq “ µipxiq
*
, (2)

is known as the local polytope [24]. The problem in Eq. 1 is
at the heart of many message-passing inference algorithms.
For instance, if we set T “ 0 (or sufficiently small in the
sense of [13]), µ˚ in Eq. 1 yields a linear programming ap-
proximation of the Maximum a-Posteriori (MAP) problem
and prominent MAP algorithms such as MPLP and MSD
are typically derived as specialized solvers for the latter. If,
on the other hand, we choose T to be 1 and pH to be an ap-
proximation of the entropy function, µ˚ approximates the
vector of single-node and factor marginals of the distribu-
tion P . For example, we can choose pH “ pHc as

pHcpµq “
ÿ

i
ciHipµiq `

ÿ
α
cαHαpµαq , (3)

where Hi and Hα are local entropies. For ci “ 1´ |nbpiq|
and cα “ 1, F becomes the Bethe energy, FBethe. In this
case, solving the set of saddle-point equations of Eq. 1 by
means of fixed-point iteration yields the popular Loopy Be-
lief Propagation algorithm. The Bethe Energy often gives
surprisingly good approximations to the true marginals,
however, it is rather difficult to optimize over. Thus, one
may prefer to consider instances of pHc, where maximiza-
tion is efficient.

Naturally, a class of such energies results from pH being
concave. In particular, we are interested in values of c that

603

(a)

minimize 〈θ,µ〉 subject to:

µ00
12 ` µ01

12 “ µ0
1, µ

11
12 ` µ10

12 “ µ1
1

µ00
12 ` µ10

12 “ µ0
2, µ

11
12 ` µ01

12 “ µ1
2

µ00
23 ` µ01

23 “ µ0
2, µ

11
23 ` µ10

23 “ µ1
2

µ00
23 ` µ10

23 “ µ0
3, µ

11
23 ` µ01

23 “ µ1
3

(b) (c)

Figure 2: Model symmetry of G propagates to its MAP-LP. (a) G – colored by the classes of the CEP. (b) The MAP-LP
of G (nonnegativity and normalization constraints as well as position nodes have been omitted for clarity). (c) The factor
graph of the MAP-LP of G colored by its CEP. The colors indicate that the classes can be deduced from the CEP of G..
Note that the darker and lighter version of each color are not grouped together. (Best viewed in color)

make pHc in Eq. 3 concave, as the structure of these en-
ergies gives rise to message-passing algorithms with de-
sirable theoretical properties, cf. [14, 6]. A sufficient con-
dition for pHc to be concave is that nonnegative auxiliary
numbers cαα, cii, and ciα exist, called counting numbers,
obeying to

CpGq “
$
&
% cα, ci

ˇ̌
ˇ̌
ˇ̌
Dcαα, cii, ciα ě 0 ,
cα “ cαα `ř

iPα ciα,
ci “ cii ´ř

α:iPα ciα

,
.
- . (4)

Finally, note that for T “ 0, Eq. 1 becomes a linear pro-
gram (LP), called the MAP-LP of G. An LP is an opti-
mization problem of the form maximize cTx subject to
Ax ď b. While LPs are not the focus of this paper, they
will be an important tool in the analysis of variational in-
ference problems. Note that linear programs, like MRFs,
can be represented by factor graphs. We represent a con-
straint α (row α ofA) as a factor node φα, LP variable i as
a variable node xi and the coefficient Aαi as position node
♦αi. Our notion of compatibility of positions here is that
♦αi is colored with the same color as ♦βj if Aαi “ Aβj .
Additionally, xi and xj are colored with the same color if
ci “ cj , while φα and φβ are colored the same if bα “ bβ .
An example is given in Fig. 1b. Having set-up the varia-
tional inference problem, we now give a short review of
lifted variational inference.

Lifted Variational Inference via Lifting Partitions.
Lifted inference approaches essentially amount to reduc-
ing the size a model by grouping together indistinguishable
variables and factors. In other words, they exploit symme-
tries. To formalize the notion of symmetry more concisely,
we follow [1].

Consider the linearly constrained concave program

x˚ “ argmaxAxďb Jpxq . (♣)

We are interested in partitioning the variables of the pro-
gram by a partition P “ tP1, . . . , Ppu, Pi X Pj “ H,

Ť
i Pi “ rx1, . . . , xns, such that there exists at least one so-

lution that respects the partition. More formally, P is a lift-
ing partition of p♣q if p♣q admits a solution with xi “ xj
whenever xi and xj are in the same class in P . We call the
linear subspace defined by the latter condition RP .

Having obtained a lifting partition of the ground varia-
tional problem, we can now restrict the solution space to
tx : Ax ď buXRP . That is, we constrain equivalent vari-
ables to be equal, knowing that at least one solution will be
preserved in this space of lower dimension. Since ground
variables of the same class are now equal, they can be re-
placed with a single aggregated (lifted) variable. The result-
ing lifted problem has one variable per equivalence class,
thus, if the lifting partition is coarse enough, significant
compression and in turn run-time savings can be achieved.
To recover a ground solution from the lifted solution, one
assigns the value of the lifted variable to every ground vari-
able in the class.

For linear programs, Mladenov et al. [15, 17, 16, 5] have
shown that equitable partitions [3] act as lifting parti-
tions. An equitable partition of a graph is a partition
P of the vertex set such that for any pair of vertices
u and v in the same class Pn and any other class Pm,
|nbpuq X Pm| “ |nbpvq X Pm|1. For colored graphs,
we additionally require that the color vector respects the
partition. We call the quantity | nbpvq X Pm| the degree
of Pn to Pm, degpPn, Pmq. For notational convenience,
we will introduce equitable partitions of factor graphs as
P “ tP1, . . . , Pp, Q1, . . . , Qq, D1, . . . , Ddu, where the P -
classes refer to the variable classes, the Q-classes to factor
classes and the D-classes to position classes.

For the purposes of our discussion, an equitable partition
of a linear program is an equitable partition of its factor
graph. The existence of an equitable partition of a linear
program implies the existence of certain doubly-stochastic

1The orbit partitions discussed in [1, 2] are a special kind of
equitable partitions.

604

matrices pΣ,Πq such that cTΠ “ cT , Σb “ b and ΣA “
AΠ [5].

Recall that a concave energy inference problem as defined
here is essentially a linear program (the MAP-LP) plus a
linear combination of local entropies in the objective. The
symmetries of the MAP-LP have already received atten-
tion [1, 17, 16], and it is understood that the MAP-LP pre-
serves the symmetries present in the model. We will use
this understanding as a starting point for our discussion of
concave energies. We briefly formalize the claim.

Lemma 1. Any equitable partitionP of an MRFG induces
an equitable partition P 1 of the resulting MAP-LP.

Let us briefly sketch how this works. Suppose we are given
an equitable partition P of G. To obtain an equitable par-
tition P 1 on LpGq, we group together µip0q with µjp0q,
resp. µip1q with µjp1q if Xi is grouped with Xj in P . To
partition the joint state pseudomarginals, we use the fol-
lowing rule. Let θα and θβ be two factors grouped together
in P (α “ β is also allowed). Then, for all permutations
π : α Ñ β such that πpiq “ j only if ♦iα is grouped
together with ♦jβ in P , we group together µαpxq with
µβpπpxqq for every joint configuration x. This grouping of
the LP variables also induces a grouping of the constraints
and positions that completes the partition.

Due to lack of space, we will not prove this here. Instead,
we give an example of how model symmetry propagates to
MAP-LP symmetry. Fig. 2 shows an MRF G colored by its
CEP (a) and the resulting MAP-LP (b) (some constraints
and the position nodes have been omitted for clarity). In
Fig. 2c, we see the correspondence between the CEP of G
and the CEP of the MAP-LP as indicated by the colors.

3 EQUITABLE PARTITIONS OF
CONCAVE FREE ENERGIES

With the basics of lifted variational inference at hand, we
can now begin our main discussion. We proceed as follows.
We start off by defining an equitable partition of a concave
energy. Then, as the first main result of this section, we
show that any concave energy that admits an equitable par-
tition has a solution that respects that partition. This estab-
lishes that equitable partitions of concave energies are lift-
ing partitions. Next, we show that given an equitable parti-
tion of an MRF, concave energies that admit this partition
are guaranteed to exist. That is, if we want to do conver-
gent inference on a model with symmetries, we can always
find a suitable energy that does not break the symmetries.
Finally, we will look at some heuristics used for selecting
concave energies and examine their relationship to equi-
table partitions.

Definition 2. An equitable partition of a concave energy
pHc (as in Eq. 3) with c P CpGq is an equitable partition of
G such thatXi andXj are grouped together only if ci “ cj

and θα, θβ are grouped together only if cα “ cβ .

We will shortly show that equitable partitions of concave
energies preserve optimal solutions of the variational prob-
lem. Before we do so, however, we will formalize what we
consider to be the symmetries of pHc.
If we set aside the constraints and ignore semantics of
µ, pHc is just a linear combination of x log x terms, i.e.
pHcpxq “ ř

k ckxk log xk. Observe that if we permute any
two variables whose c’s are the same, we do not change
pHc. In other words, any permutation Π with Πc “ c is an
automorphism of pHc, i.e., pHcpΠxq “ pHcpxq. Moreover,
switching any pair of variables can be done independently
of other pairs. We now restate the above in formal terms.
If we introduce R “ tR1, . . . , Rru that partitions the vari-
ables into classes having equal c, then the following holds:

Observation 3. The group Γ “Â
RPR S|R| is isomorphic

to a subgroup of AUTp pHq.
Here

Â
denotes the group product and Sn is the symmetric

group over n elements. Now, let us “switch on” the seman-
tics of the argument and interpret the automorphism group
of pHc in terms of pseudomarginals. We can see that the
following operations are automorphisms of pHc: we can ex-
change the pseudomarginals of any two variables with the
same c’s, e.g., pµip0q, µip1qq ÞÑ pµjp0q, µjp1qq); similarly,
we can exchange any two sets of factor beliefs; we could
also exchange states within a set of beliefs: µip0q ÞÑ µip1q,
or even exchange states across variables, µip0q ÞÑ µjp1q
(given that the c’s are compatible). All of these operations
can be done independently of each other. Of course, many
symmetries of pHc are not symmetries of Eq. 1, as they
are not symmetries of the constraints. For example, Eq. 1
would generally not admit, say the reordering of states of
a variable without reordering the states of its neighbors as
a symmetry, since marginalization constraints tie adjacent
nodes in the factor graph.

In summary, pHc is a highly symmetric object given that we
have equal c’s. Hence, what we really have to be careful
about are the symmetries of the constraints. However, as we
will discuss now, equitability takes care of the constraints
and we end up with lifting partitions for Eq. 1.

Theorem 4 (EPs of Concave Energies are Lifting Parti-
tions). Let G be an MRF and c P CpGq a vector of count-
ing numbers. If P is an equitable partition of pHc , then P 1
obtained from P via Lemma 1 is a lifting partition of Eq. 1.

Proof. To prove that P 1 is a lifting partition of Eq. 1, we
need to prove that Eq. 1 admits a solution, where equivalent
variables take on equal values. We will establish this in the
following way. Given any feasible vector µ of Eq. 1, we
will produce a vector µ1 by replacing each variable by the
average of its class. E.g., if the variable µipxq is in some
class P , then µ1ipxq “ 1{|P |řjPP µjpxq. Thus averaged,

605

the vector µ1 respects P 1. Then, we need that a) µ1 is feasi-
ble as well and that b) F pµ1q ě F pµq. Having established
a) an b), the rest is simple: we take any optimal solution of
Eq. 1 and average over the classes. By a) we know the aver-
age is feasible. By b) we know that it will not decrease the
objective value. Since we started with somethin that was
already optimal, it must be that averaged vector is of equal
objective value, as improvement over the optimum is not
possible by definition. Thus we have found a new optimum
that respects the partition. It now only remains to verify that
a) and b) indeed hold.

Proof of a). The averaging operation over the partition
classes can be represented in a linear algebraic way, as mul-
tiplying µ with the doubly stochastic matrixX defined as:

Xij “
#

1{|C| if pµqi, pµqj are both in some C P P 1,
0 otherwise.

The brackets in the equation indicate that the indices above
are used in a generic sense (not bound to factors, variables
or particular states). The theory of equitable partitions of
LPs tells us that if P 1 is equitable, then µ being feasible
implies µ1 “ Xµ is feasible as well, as X is a fractional
automorphism of the LP [5].

Proof of b). The Birkhoff-von-Neumann Theorem [12] al-
lows one to decompose the doubly stochastic X as a con-
vex combination of permutation matrices

ř
i λiΠi. Note

that any of these permutation matrices will exchange only
variables that had been grouped together in P 1. This fol-
lows from the fact that the λ’s form a convex combination.
If Πk has a nonzero element, then

ř
k λkpΠkqij “ Xij

has to be strictly greater than 0 as well, as the convex com-
bination has at least one nonzero element. By definition c
respectsP 1, hence all Π’s are automorphisms of pHc. More-
over, θ also respects P 1 due to our definition of equitable
partitions, hence the Π’s are automorphisms of θT as well.
Taken together, we establish that all Πi’s are automor-
phisms of F , F pµq “ F pΠiµq. With this in mind, the con-
cavity of F gives us the result: F pµ1q “ F při λiΠiµq ěř
i λiF pΠiµq “ F pµq. l

Thus, we have established that equitable partitions of con-
cave energies are lifting partitions for the variational prob-
lem of interest. However, an important question that re-
mains is: do they actually exist? That is, if we want to do
inference, can we find counting numbers that permit lift-
ing at all? As we will show now, not only do such num-
bers exist, but also most heuristics presented in literature
for finding counting numbers will yield c that respect eq-
uitable partitions of G. Let us first show the existence of
liftable counting numbers.
Lemma 5 (Existence of liftable counting numbers). Let
P be an equitable partition of the MRF G. If CpGq is not
empty, then there exists a c-vector that respects P . In other
words, P is an equitable partition of pHc for at least one c.

(a)

LpG1q LpGq

LpG1q1 LpGq1
liftP 1

identical

Punlift

(b)

Figure 3: (a) Illustration of Lemma 5. (b) Commutative di-
agram underlying the “lifted inference by reparametriza-
tion” paradigm. (Best viewed in color)

Proof (sketch). Observe that the set of counting numbers
is defined by a linear program, as Eq. 4 consistes of linear
constraints. Thus, we can again rely on the fact that equi-
table partitions of linear programs act as lifting partitions,
given that we manage to translate P into an equitable par-
tition P 1 of CpGq. Let us show the translation in question.
We group together ci with cj , cii with cjj , and φi (the con-
straint generated by Xi) with φj in P 1 if Xi and Xj are
grouped together in P . Similarly, if P groups θα and θβ ,
we group cα with cβ , cαα with cββ , and φα (the constraint
generated by θα) with φβ . Finally, ciα and cjβ are grouped
together if ♦iα and ♦jβ are grouped together in P . Now let
us argue that P 1 is indeed equitable on CpGq. The main
idea is as follows: we will show that the factor graph of G
is isomorphic to a “skeleton” subgraph of the factor graph
of CpGq. As such, any equitable partition of G is also equi-
table on the skeleton of CpGq. Then, we will complete the
partition on the remaining elements of CpGq in a way that
preserves equitability.

To obtain the skeleton, we temporarily ignore the variables
ci, cii, cα, cαα. Then, the map M : G Ñ CpGq, which
maps the position node ♦αi to the LP variable ciα, the fac-
tor θα to the constraint of the factor and the variable Xi

to the constraint of the variable, is an isomorphism. This
follows directly from Eq. 4. An LP variable ciα appears in
the factor constraint of θα if and only if θα is connected to
position node ♦αi (in other words variable i participates in
factor θα). Moreover a variable ciα appears in the variable
constraint of Xi if and only if Xi is connected to position
node ♦αi. Thus, an equitable partition of G yields an eq-
uitable partition of the constraints and the variables ciα. If
we reintroduce now ci, cii, cα, cαα, we see that each ap-
pears in exactly one constraint, so they can be partitioned
in a way to preserve equitability. Fig. 3a provides an illus-
tration. Note that we have so far ignored the position nodes
in the FG of CpGq. It can be verified that they can be par-
titioned without breaking the equitability of the partition
obtained thus far. l

We have established that if G admits an equitable parti-

606

tion, then there will be at least one energy that admits the
same equitable partition. The question now is, how do we
compute the appropriate counting numbers? Naturally, as
in Thm 4, we can take any vector of counting numbers,
any equitable partition of G and simply average c over
the classes. However, as CpGq is a polyhedron, there are
infinitely many vectors of counting numbers and the use-
fulness of the resulting energies in terms of the approx-
imate inference problem will vary. In the following, we
show that several heuristics for picking counting numbers
naturally yield counting numbers that allow nice equitable
partitions of the energy. The heuristics that we will dis-
cuss first are the following two: (a) [6] following the prin-
ciple of insufficient reason one tries to make c’s as uni-
form as possible by minimizing either

ř
αpcα ´ 1q2 orř

α cα log cα over CpGq; (b) [14] finding the least-squares
projection of the c’s of the Bethe energy onto CpGq, i.e.
c˚ “ argmincPCpGq

ř
αpcα´1q2`řipci´|nbpXiq|`1q2.

Both of them lead to liftable energies.
Proposition 6 (Finding lifted counting numbers). Let P be
an EP of G and P 1 is an EP of CpGq obtained as in Thm. 5.
Then P 1 is a lifting partition of both (a) and (b).
Proof. The proof is identical to the proof of Thm. 4. As,
Lemma 5 already established, given any c P CpGq, we ob-
tain a new c1 P CpGq by assigning to any c1α or c1i the
average of c over the respective class. Now we need to
show that this averaging does not increase the respective
objective values. We argue in the same way as in Thm. 4.
For both cases in (a), the automorphism group consists of
the product of two symmetric groups - we can exchange
any two ci, cj and any two cα, cβ independently. Thus av-
eraging over P 1 is equivalent to averaging over automor-
phisms of the objectives, which by convexity does not in-
crease the value. For the case of (b), the automorphism
group is smaller. We are allowed to exchange any two
cα, cβ independently, but we can exchange ci, cj only if
|nbpXiq| “ | nbpXjq|. Recall however, that in any eq-
uitable partition, for any class Q, we group Xi and Xj

if degpXi, Qq “ degpXj , Qq. This implies |nbpXiq| “
|nbpXjq|. Thus, the averaging matrix X as in Thm. 4 will
have a non-zero value only if |nbpXiq| “ |nbpXjq|, and
the resulting Birkhoff-von-Neumann decomposition will
consist of automorphisms of the objective. l

In essence, this proposition tells us that optimal numbers
(w.r.t. (a) and (b)) can be found that turn any equitable par-
tition of G into an equitable partition of the energy. Could
this be the case for all heuristics? As it turns out, some
heuristics can impose restrictions on what partitions can be
EPs of their respective energies.

To see this, consider for example as a further option (c)
Tree-Reweighted BP (in pairwise models). We obtain c P
CpGq by setting cα to be the number of spanning trees pass-
ing through θα divided by the number of all spanning trees
in G. If we translate the result of Bui et al. [2] in the lan-

guage of the present paper, it states that the equitable parti-
tion of G coarser than its orbit partition may generally not
be turned into an equitable partition of the TRW energy.
However, for the orbit partition, they give an efficient algo-
rithm to produce the appropriate c.

Finally, one could also follow Meshi et al. [14] as
option (d): instead of approximating the numbers of
FBethe, we project FBethe itself onto the set of con-
cave energies FcPCpGq. More precisely, we take c˚ “
argmincPCpGq

ş
µPLpGq pFBethepµq ´ Fcpµqq2 dµ . As a

matter of fact, it is even an open question whether FBethe

admits stationary points that respect2 any P . It should be
noted that if we want a coarser partition than what (c) or
(d) permit, we could still take the counting numbers and
average them over a coarser equitable partition of G. How-
ever, the question of whether this operation preserves the
quality of approximation remains open.

4 LIFTING AS REPARAMETRIZATION

One issue that arises with the above approach is that in cer-
tain cases, compression changes the structure of the opti-
mization problem. For example, given an equitable parti-
tion P “ tQ1, . . . , Qq, P1, . . . , Pp, D1, . . . , Ddu of G, the
compressed inference problem will take on the following
form: µ˚ “
argmax
µPLpGq1

E1pµq`
ÿ

PPP
|P |cPHP pµP q`

ÿ

QPP
|Q|cQHQpµQq ,

where

E1pµq “
ÿ

PPP
|P |θPµP `

ÿ

QPP
|Q|θQµQ and

LpGq1 “

$
’’’’&
’’’’%
µ ě 0

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

µ0
P ` µ1

P “ 1
µ00
Q ` µ01

D “ µ0
P

µ11
Q ` µ01

D1 “ µ1
P

µ00
Q ` µ01

D1 “ µ0
P 1

µ11
Q ` µ01

D “ µ1
P 1

,
////.
////-
. (5)

Here, Q is the representative of a factor class, P and P 1 are
the representatives of its neighboring variable classes and
D andD1 are the representatives of the position classes that
connect variables in P and P 1 to factors inQ. Note that our
notation treats the beliefs of factor Q being in state 00 or
11 differently from the beliefs of factor Q being in state 01
or 01. This becomes important in the following situation: in
an equitable partition, it could happen that P “ P 1. That is,
for any ground factor in the classQ, both participating vari-
ables are in the same class of the lifting partition. For the
variational problem, this means that we need to unify the

2Works on lifted loopy belief propagation [8, 22, 10] do in-
deed show that BP admits such solutions. However, the question
of whether this is due to FBethe or an artifact of the way BP opti-
mizes it is unclear.

607

variables µ01
D1 and µ01

D , ending up with a peculiar-looking
set of constraints such as:

µ00
Q ` µ01

D “ µ0
P and µ11

Q ` µ01
D “ µ1

P .

This example illustrates why we cannot simply view the
lifted inference problem as a standard inference problem
on a smaller “proper” factor graph. We have a binary factor
that has the same variable in both positions (which is, un-
fortunately, not equivalent to a unary factor). Now, in terms
of message-passing, to send a message to P , Q would have
to first eliminate P – an operation which is not supported
by standard message-passing frameworks.

To circumvent the problem, at least for the case of T “ 0 in
Eq. 1, we can follow the “lifted inference as reparametriza-
tion” paradigm recently advocated by Mladenov et al. [16].
The main idea is based on the fact that equitable partitions
allow one to not only recover a solution of the ground vari-
ational problem from the lifted one, but also a solution of
the ground problem can be projected onto RP by averag-
ing the variables within each equivalence class. Thus, what
we do is the following: given an G and an equitable parti-
tion P , we find a smaller G1 and a partition P 1 such that
the variational problem of G lifted with P is identical to
the variational problem of G1 lifted with P 1. So, we solve
the smaller G1 with a ground solver, average over P 1 to ob-
tain a solution to the lifted problem of G1, transfer that to
the lifted variational problem ofG, since they are identical,
and then finally unlift according toP . The idea is illustrated
in Fig. 3. The work of [16] shows how to find G1 and P
and then reparametrize the factors of G1 such that its lifted
MAP-LPs are same the one of G. Our goal here is to show
that if in addition we reparametrize the c’s, their lifted con-
cave energies will also be the same. Thus, in essence, we
can make use of any ground concave energy solver that al-
lows manually setting c’s for lifted inference.

As we would like to avoid introducing again the technical
arguments of [16], we will introduce a notion of weak parti-
tion equivalence, which subsumes the equivalence in [16],
and build upon that. We will show that reparametrization
of pHc is possible among partition-equivalent pairs. Since
the pairs produced by the algorithm of [16] are partition-
equivalent, the result applies.

Definition 7. Let G and G1 be MRFs. We call G and G1
weakly partition-equivalent if they admit equitable par-
titions P “ tP1, . . . , Pp, Q1, . . . , Qq, D1, . . . , Ddu resp.
P 1 “ tP 11, . . . , P 1p, Q11, . . . , Q1q, D11, . . . , D1du having the
same number of variable, factor and position classes.
Moreover, for any two classes X,Y P P , we have
degpX,Y q ‰ 0 if and only if degpX 1, Y 1q ‰ 0 (♠).

Note that the actual number of nodes in the class may very
well be different, we do not require |Q| “ |Q1|.
Lemma 8. If G and G1 are weakly partition equiv-
alent w.r.t. P and P 1, then degpQ,Dq ‰ 0 implies

|Q|
|Q1| degpQ,Dq “ |D|

|D1| degpQ1, D1q, resp. degpP,Dq ‰ 0

implies |P |
|P 1| degpP,Dq “ |D|

|D1| degpP 1, D1q.
Proof. For any equitable partition it will hold
that |Q|degpQ,Dq “ |D|degpD,Qq, resp.
|Q1|degpQ1, D1q “ |D1|degpD,Qq. Since D con-
sists of only position nodes, and every position node
can be connected to exactly one factor (and one vari-
able), degpD,Qq “ degpD1, Q1q “ 1. With this in
mind, we take the quotient of both equations and ob-
tain |Q| degpQ,Dq

|Q1| degpQ1,D1q “ |D|
|D1| . Multiplying both sides by

degpQ1, D1q yields the result. The reasoning for the
variable classes is identical. l

Now, suppose counting numbers for G which respect P
have been found, that is, for every θα in the class Q,
cα “ cQ and so on, as in Thm. 5. Then, we can construct
a vector of counting numbers for G1 by the following pro-
cedure: for every vertex in G1 (regardless of whether it is
a variable, factor, or position), we take the size of its class,
|X 1|, the size of the corresponding class in P , |X| and then
normalize the counting number cX (from G) by their ratio.
That is, c1k “ p|X|{|X 1|qcX .
Theorem 9. SupposeG andG1 are weakly partition equiv-
alent with respect to P and P 1 and c P CpGq respects P .
Then, the vector c1 having c1k “ cX1 “ |X|

|X1|cX consists of
counting numbers for G1. I.e. c1 P CpG1q.
Proof. We have assumed c respects P . This allows us to
rewrite the conditions of Eq. 4 as

CQ “ CQQ `ř
D degpQ,DqcD and,

CP “ CPP `ř
D degpP,DqcD .

The above describes the lifted LP of CpGq after unification
of all equivalent variables. Now, observe that

CQ1 “ |Q|
|Q1|CQ “

|Q|
|Q1|

«
CQQ `

ÿ

D

degpQ,DqcD
ff

“ |Q|
|Q1|CQQ `

ÿ
D:degpQ,Dq‰0

|Q|
|Q1| degpQ,DqcD

“ CQ1Q1 `
ÿ

D:degpQ,Dq‰0
degpQ1, D1q |D||D1|cD

“ CQ1Q1 `
ÿ

D1:degpQ1,D1q‰0
degpQ1, D1qcD1 .

Note, we were allowed to switch the index in the last line
due to p♠q. Similarly,

CP 1 “ |P |
|P 1|CP “

|P |
|P 1|

«
CPP ´

ÿ

D

degpP,DqcD
ff

“ |P |
|P 1|CPP ´

ÿ
D:degpP,Dq‰0

|P |
|P 1| degpP,DqcD

“ CP 1P 1 ´
ÿ

D:degpP,Dq‰0
degpP 1, D1q |D||D1|cD

“ CP 1P 1 ´
ÿ

D1:degpP 1,D1q‰0
degpP 1, D1qcD1 .

608

W V pxq
´0.1 x ‰ y ^ `

V pxq ô V pyq˘

W x ‰ y ^ Frpx, yq
´0.8 Capxq
´12.4 Auxpx, yq

1.5 pSmpxq ñ Capxqq
6.2 px ‰ y ^ Auxpx, yq ^ Smokespxqq
6.2 px ‰ y ^ Auxpx, yq ^ Smokespyqq
6.2 px ‰ y ^ Auxpx, yq ^ Friendspx, yqq
´3.1 px ‰ y ^ pSmokespxq ^ Friendspx, yqq
´3.1 px ‰ y ^ pSmokespyq ^ Friendspx, yqq

W x ‰ y ^ `
Q1pxq ô Q2pyq˘

W x ‰ y ^ `
Q2pxq ô Q3pyq˘

W x ‰ y ^ `
Q3pxq ô Q1pyq˘

´W x ‰ y ^ `
Q1pxq ô Q2pyq˘

´W x ‰ y ^ `
Q2pxq ô Q3pyq˘

´W x ‰ y ^ `
Q3pxq ô Q1pyq˘

Complete Graph Friends-Smokers Clique-Cycle

Table 1: The Markov Logic Network models used to illustrate our theoretical results. Details are given in the main text.

What this tells us is that c1 is a solution of CpG1q lifted ac-
cording to P 1. This implies that we can recover a vector
of ground counting numbers by assigning to c1k the corre-
sponding c1X . l

So now, given c obtained as above, let us examine the lifted
entropy of G1 with respect to P 1,

pH 1 “
ÿ

P 1PP 1 |P 1|cP 1HP 1 `
ÿ

Q1PP 1 |Q1|cQ1HQ1

“
ÿ

P 1PP 1 |P 1|
|P |
|P 1|cPHP 1 `

ÿ
Q1PP 1 |Q1|

|Q|
|Q1|cQHQ1

“
ÿ

PPP 1 |P |cPHP `
ÿ

Q1PP 1 |Q|cQHQ “ pH .

As we see, this is exactly the lifted entropy of G with re-
spect to P . To conclude the argument, we note that the al-
gorithm of [16] takes care that the linear E1p¨q part and
the constraints of the lifted variational problems are the
same. Thus, with the addition of the reparametrized c’s, we
achieve full equivalence of both lifted variational problems.

5 EMPIRICAL ILLUSTRATION

We will now illustrate our theoretical results by demon-
strating that the “lifting by reparametrization” paradigm
allows one to lift Schwing et al.’s distributed message-
passing algorithm3 for marginal inference [21] without any
overhead. As far as we know, this presents the first lifted
convergent variational marginal inference that can handle
problems efficiently by distributing and parallelizing the
inference computation and the memory requirements. The
convergence and optimality guarantees are preserved by
consistency messages, sent between the distributed cores,
that our lifted variant directly inherits from Schwing et
al.’s original version. Together with parallelizable lifting
approaches [11], this shows for the first time that each step
of the lifted inference pipeline is readily parallelizable.

The experimental protocol is inspired by [2] and uses three
of their test models in Markov Logic Network syntax, cf.
Tab. 1: complete graph, friends-smokers, and clique-cycle.

3http://alexander-schwing.de/projects.php

We focus on the repulsive case, i.e. the weight of interac-
tion clauses is set to a negative values. The parameter W
denotes the weight that will be varying across the exper-
iments. As Bui et al. [2] point out, in all models except
clique-cycle, W acts like the “local field” potential in an
Ising model; a positive value of W means that variables
tend to be in the 1 state, whereas a negative value favors the
0 state. The complete graph model is an Ising model over
the complete graph over n nodes (the domain size); all pa-
rameters are the same. The weight of the interaction clause
is repulsive with ´0.1. The friends-smokers is a pairwise
version of the one negated one used by Bui et al., where we
also used a repulsive interaction between smokers: Here the
domain size is the number of people. Finally, the clique-
cycle model encodes a model with 3 cliques, each consist-
ing of n nodes (the domain size), and 3 bipartite graphs
between them. For more details we refer to [2].

Since we reparametrize an existing variational approach,
we will not report on the accuracy of the marginals and the
quality of the objective as they have been investigated al-
ready in the corresponding literature. Rather, we perform
a “within model” comparison of the objectives achieved,
the size of the models, and the running times for inference
since they are what our theoretical results are about. Specif-
ically, we evaluated the lifted and the ground version on
several instances of the three test models, varying the pa-
rameter W and the domain size. We assume no evidence
has been observed, which results in a large amount of sym-
metries. As Bui et al. [2] argue this is a sensible setting
since performing marginal inference in relational proba-
bilistic models can be very useful for maximum-likelihood
parameter estimation.

The experimental results are summarized in Fig. 4. As one
can see the lifted inference can be orders of magnitude
faster than its ground version. We also ran a single-core
lifted loopy belief propagation. However, due to its lack of
convergence, it is difficult to have a meaningful comparison
of running times. Nevertheless, we observed cases where it
did not converge but actually started to oscillate.

609

30 20 10 0 10 20 30
W

4500

5000

5500

6000

6500

7000

7500

8000

O
b
je

ct
iv

e
 o

f
d
cB

P ground
reparam

0 50 100 150 200 250 300
Domain Size

2

4

6

8

10

|V
|

+
 |

F|
,
lo

g

0 50 100 150 200 250 300
Domain Size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
u
n
n
in

g
 t

im
e
,
lo

g

(a) Complete Graph MLN.

0.0 0.5 1.0 1.5 2.0
W

63000

63100

63200

63300

63400

63500

63600

63700

O
b
je

ct
iv

e
 o

f
d
cB

P ground
reparam

0 50 100 150 200 250 300
Domain Size

2

4

6

8

10

12

14

|V
|

+
 |

F|
,
lo

g

0 50 100 150 200 250 300
Domain Size

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

R
u
n
n
in

g
 t

im
e
,
lo

g

(b) Clique-Cycle MLN.

10 5 0 5 10
W

0

20000

40000

60000

80000

100000

120000

140000

O
b

je
ct

iv
e
 o

f
d

cB
P ground

reparam

0 50 100 150 200 250 300
Domain Size

2

4

6

8

10

12

14

|V
|

+
 |

F|
,

lo
g

0 50 100 150 200 250 300
Domain Size

2

1

0

1

2

3

4

5

R
u
n
n
in

g
 t

im
e
,

lo
g

 s
ca

le

(c) Friends-smokers MLN.

Figure 4: Experimental results on the test models from Tab. 1. Each row shows from left to right the objective for different
weights, the size (number of nodes and factors) in log-space and the running time in seconds in log-space for ground (red)
versus lifted (black). As one case see, lifted variational marginal inference can be orders of magnitude faster than it ground
version without sacrificing the objective. (best viewed in color)

6 CONCLUSIONS

We have established a “lifted inference by reparametriza-
tion” paradigm for variational marginal inference. More
precisely, we have introduced the notion of equitable par-
titions of concave free energies and shown how to use
them to reparameterize the corresponding variational op-
timization problems. In turn, a large class of existing
variational marginal inference algorithms can directly be
made aware of symmetries without modifications. We illus-
trated this by lifting Schwing et al.’s distributed message-
passing algorithm for marginal inference, resulting in the
first lifted, distributed, convergent message passing algo-
rithms for marginal inference. Moreover, the paradigm of
reparametrization allows us to address the observation of
Bui et al. [2] about their Frank-Wolfe TRW solver running
slower than BP. At least in the case where no extra tight-
ening is required, one can just compute the TRW count-
ing numbers with lifted Kruskal, reparametrize and apply a
generic convergent message-passing algorithm.

Our work provides several avenues for future work. For in-
stance, one should explore what other constraints we can
posed on counting numbers to enforce exactness while we
can still optimize over the set in a lifted fashion. Since the
dimensionality reduction changes the geometry of the vari-
ational optimization problem, one should also investigate
its interaction with the solvers. It is interesting to explore
features of relational languages to speed up lifted varia-
tional marginal inference even more. One of the most in-
teresting open question raised by our work is whether non-
trivial reparametrizations of FBethe and of energies in gen-
eral exists and are exploitable for speeding up optimiza-
tion, at least in an approximate sense. An affirmative an-
swer would have deep implications not only for probabilis-
tic inference but for many tasks in computer vision, ma-
chine learning, and AI in general.

Acknowledgements: The authors would like to thank the
reviewers for their feedback. This research was partly sup-
ported by the German-Israeli Foundation (GIF) for Scien-
tific Research and Development, 1180-218.6/2011.

610

References

[1] H.H. Bui, T.N. Huynh, and S. Riedel. Automorphism
groups of graphical models and lifted variational in-
ference. In Proc. of the 29th Conference on Uncer-
tainty in Artificial Intelligence (UAI-2013), 2013.

[2] H.H. Bui, T.N. Huynh, and D. Sontag. Lifted tree-
reweighted variational inference. In Proceedings of
the 30th Conference on Uncertainty in Artificial In-
telligence (UAI), 2014.

[3] C. Godsil and G. Royle. Algebraic Graph Theory.
Springer, 2001.

[4] Eric Gribkoff, Guy Van den Broeck, and Dan Suciu.
Understanding the complexity of lifted inference and
asymmetric weighted model counting. In Proceed-
ings of the 30th Conference on Uncertainty in Artifi-
cial Intelligence (UAI), July 2014.

[5] M. Grohe, K. Kersting, M. Mladenov, and E. Selman.
Dimension reduction via colour refinement. In Pro-
ceedings of the 22th Annual European Symposium on
Algorithms (ESA), pages 505–516, 2014.

[6] T. Hazan and A. Shashua. Convergent message-
passing algorithms for inference over general graphs
with convex free energies. In Proceedings of the
Twenty-Forth Conference in Uncertainty in Artificial
Intelligence, (UAI), pages 264–273, 2008.

[7] T. Heskes. Convexity arguments for efficient mini-
mization of the bethe and kikuchi free energies. J.
Artif. Intell. Res. (JAIR), 26:153–190, 2006.

[8] A. Jaimovich, O. Meshi, and N. Friedman. Template-
based Inference in Symmetric Relational Markov
Random Fields. In Proc. of the Conf. on Uncer-
tainty in Artificial Intelligence (UAI-07), pages 191–
199, 2007.

[9] K. Kersting. Lifted probabilistic inference. In Pro-
ceedings of ECAI-2012. IOS Press, 2012.

[10] K. Kersting, B. Ahmadi, and S. Natarajan. Counting
Belief Propagation. In Proc. of the 25th Conf. on Un-
certainty in Artificial Intelligence (UAI–09), 2009.

[11] K. Kersting, M. Mladenov, R. Garnett, and M. Grohe.
Power iterated color refinement. In Proceedings of
the Twenty-Eighth AAAI Conference on Artificial In-
telligence (AAAI), pages 1904–1910, 2014.

[12] Albert W. Marshall, Ingram Olkin, and Barry C.
Arnold. Inequalities : theory of majorization and its
applications. Springer series in statistics. Springer,
New York, 2011.

[13] T. Meltzer, A. Globerson, and Y. Weiss. Convergent
message passing algorithms - a unifying view. In Pro-
ceedings of the Twenty-Fifth Conference on Uncer-
tainty in Artificial Intelligence (UAI), pages 393–401,
2009.

[14] O. Meshi, A. Jaimovich, A. Globerson, and N. Fried-
man. Convexifying the bethe free energy. In Proceed-
ings of the Twenty-Fifth Conference on Uncertainty in
Artificial Intelligence (UAI), pages 402–410, 2009.

[15] M. Mladenov, B. Ahmadi, and K. Kersting. Lifted lin-
ear programming. In 15th Int. Conf. on Artificial In-
telligence and Statistics (AISTATS 2012), pages 788–
797, 2012. Volume 22 of JMLR: W&CP 22.

[16] M. Mladenov, A. Globerson, and K. Kersting. Lifted
message passing as reparametrization of graphical
models. In Proceedings of the 30th Conference on
Uncertainty in Artificial Intelligence (UAI), 2014.

[17] M. Mladenov, K. Kersting, and A. Globerson. Effi-
cient lifting of MAP LP relaxations using k-locality.
In Proceedings of the Seventeenth International Con-
ference on Artificial Intelligence and Statistics (AIS-
TATS) 22-25, 2014, pages 623–632, 2014.

[18] M. Niepert. Markov chains on orbits of permutation
groups. In Proceedings of the 28th Conference on
Uncertainty in Artificial Intelligence (UAI), 2012.

[19] M. Niepert and G. Van den Broeck. Tractability
through exchangeability: A new perspective on effi-
cient probabilistic inference. In Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelli-
gence (AAAI), pages 2467–2475, 2014.

[20] D. Poole. First-Order Probabilistic Inference. In Proc.
of the 18th International Joint Conference on Artifi-
cial Intelligence (IJCAI-05), pages 985–991, 2003.

[21] A.G. Schwing, T. Hazan, M. Pollefeys, and R. Ur-
tasun. Distributed message passing for large scale
graphical models. In Proceedings of the 24th IEEE
Conference on Computer Vision and Pattern Recog-
nition,(CVPR), pages 1833–1840, 2011.

[22] P. Singla and P. Domingos. Lifted First-Order Be-
lief Propagation. In Proc. of the 23rd AAAI Conf. on
Artificial Intelligence (AAAI-08), pages 1094–1099,
Chicago, IL, USA, July 13-17 2008.

[23] G. Van den Broeck and M. Niepert. Lifted proba-
bilistic inference for asymmetric graphical models. In
Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence (AAAI), 2015.

[24] M.J. Wainwright and M.I. Jordan. Graphical mod-
els, exponential families, and variational inference.
Found. Trends Mach. Learn., 1(1-2):1–305, January
2008.

611

Non-parametric Revenue Optimization for Generalized Second Price Auctions

Mehryar Mohri
Courant Institute and Google Research,

251 Mercer Street, New York, NY

Andrés Muñoz Medina
Courant Institute of Mathematical Sciences,

251 Mercer Street, New York, NY

Abstract

We present an extensive analysis of the key prob-
lem of learning optimal reserve prices for gen-
eralized second price auctions. We describe
two algorithms for this task: one based on den-
sity estimation, and a novel algorithm benefit-
ing from solid theoretical guarantees and with
a very favorable running-time complexity of
O(nS log(nS)), where n is the sample size and
S the number of slots. Our theoretical guar-
antees are more favorable than those previously
presented in the literature. Additionally, we show
that even if bidders do not play at an equilibrium,
our second algorithm is still well defined and
minimizes a quantity of interest. To our knowl-
edge, this is the first attempt to apply learning
algorithms to the problem of reserve price opti-
mization in GSP auctions. Finally, we present
the first convergence analysis of empirical equi-
librium bidding functions to the unique symmet-
ric Bayesian-Nash equilibrium of a GSP.

1 INTRODUCTION

The Generalized Second-Price (GSP) auction is currently
the standard mechanism used for selling sponsored search
advertisement. As suggested by the name, this mechanism
generalizes the standard second-price auction of Vickrey
(1961) to multiple items. In the case of sponsored search
advertisement, these items correspond to ad slots which
have been ranked by their position. Given this ranking,
the GSP auction works as follows: first, each advertiser
places a bid; next, the seller, based on the bids placed, as-
signs a score to each bidder. The highest scored advertiser
is assigned to the slot in the best position, that is, the one
with the highest likelihood of being clicked on. The second
highest score obtains the second best item and so on, until
all slots have been allocated or all advertisers have been
assigned to a slot. As with second-price auctions, the bid-
der’s payment is independent of his bid. Instead, it depends

solely on the bid of the advertiser assigned to the position
below.

In spite of its similarity with second-price auctions, the
GSP auction is not an incentive-compatible mechanism,
that is, bidders have an incentive to lie about their valua-
tions. This is in stark contrast with second-price auctions
where truth revealing is in fact a dominant strategy. It is
for this reason that predicting the behavior of bidders in a
GSP auction is challenging. This is further worsened by the
fact that these auctions are repeated multiple times a day.
The study of all possible equilibria of this repeated game
is at the very least difficult. While incentive compatible
generalizations of the second-price auction exist, namely
the Vickrey-Clark-Gloves (VCG) mechanism, the simplic-
ity of the payment rule for GSP auctions as well as the large
revenue generated by them has made the adoption of VCG
mechanisms unlikely.

Since its introduction by Google, GSP auctions have gen-
erated billions of dollars across different online advertise-
ment companies. It is therefore not surprising that it has
become a topic of great interest for diverse fields such as
Economics, Algorithmic Game Theory and more recently
Machine Learning.

The first analysis of GSP auctions was carried out inde-
pendently by Edelman et al. (2005) and Varian (2007).
Both publications considered a full information scenario,
that is one where the advertisers’ valuations are publicly
known. This assumption is weakly supported by the fact
that repeated interactions allow advertisers to infer their ad-
versaries’ valuations. Varian (2007) studied the so-called
Symmetric Nash Equilibria (SNE) which is a subset of the
Nash equilibria with several favorable properties. In partic-
ular, Varian showed that any SNE induces an efficient allo-
cation, that is an allocation where the highest positions are
assigned to advertisers with high values. Furthermore, the
revenue earned by the seller when advertisers play an SNE
is always at least as much as the one obtained by VCG.
The authors also presented some empirical results showing
that some bidders indeed play by using an SNE. However,
no theoretical justification can be given for the choice of

612

this subset of equilibria (Börgers et al., 2013; Edelman and
Schwarz, 2010). A finer analysis of the full information
scenario was given by Lucier et al. (2012). The authors
proved that, excluding the payment of the highest bidder,
the revenue achieved at any Nash equilibrium is at least
one half that of the VCG auction.

Since the assumption of full information can be unrealis-
tic, a more modern line of research has instead considered
a Bayesian scenario for this auction. In a Bayesian setting,
it is assumed that advertisers’ valuations are i.i.d. samples
drawn from a common distribution. Gomes and Sweeney
(2014) characterized all symmetric Bayes-Nash equilibria
and showed that any symmetric equilibrium must be effi-
cient. This work was later extended by Sun et al. (2014)
to account for the quality score of each advertiser. The
main contribution of this work was the design of an algo-
rithm for the crucial problem of revenue optimization for
the GSP auction. Lahaie and Pennock (2007) studied dif-
ferent squashing ranking rules for advertisers commonly
used in practice and showed that none of these rules are
necessarily optimal in equilibrium. This work is comple-
mented by the simulation analysis of Vorobeychik (2009)
who quantified the distance from equilibrium of bidding
truthfully. Lucier et al. (2012) showed that the GSP auc-
tion with an optimal reserve price achieves at least 1/6 of
the optimal revenue (of any auction) in a Bayesian equilib-
rium. More recently, Thompson and Leyton-Brown (2013)
compared different allocation rules and showed that an an-
choring allocation rule is optimal when valuations are sam-
pled i.i.d. from a uniform distribution. With the exception
of Sun et al. (2014), none of these authors have proposed
an algorithm for revenue optimization using historical data.

Zhu et al. (2009) introduced a ranking algorithm to learn an
optimal allocation rule. The proposed ranking is a convex
combination of a quality score based on the features of the
advertisement as well as a revenue score which depends on
the value of the bids. This work was later extended in (He
et al., 2014) where, in addition to the ranking function, a
behavioral model of the advertisers is learned by the au-
thors.

The rest of this paper is organized as follows. In Sec-
tion 2, we give a learning formulation of the problem of
selecting reserve prices in a GSP auction. In Section 3, we
discuss previous work related to this problem. Next, we
present and analyze two learning algorithms for this prob-
lem in Section 4, one based on density estimation extend-
ing to this setting an algorithm of Guerre et al. (2000), and a
novel discriminative algorithm taking into account the loss
function and benefiting from favorable learning guarantees.
Section 5 provides a convergence analysis of the empirical
equilibrium bidding function to the true equilibrium bid-
ding function in a GSP. On its own, this result is of great
interest as it justifies the common assumption of buyers
playing a symmetric Bayes-Nash equilibrium. Finally, in

Section 6, we report the results of experiments comparing
our algorithms and demonstrating in particular the benefits
of the second algorithm.

2 MODEL

For the most part, we will use the model defined by Sun
et al. (2014) for GSP auctions with incomplete information.
We consider N bidders competing for S slots with N ≥ S.
Let vi ∈ [0, 1] and bi ∈ [0, 1] denote the per-click valuation
of bidder i and his bid respectively. Let the position fac-
tor cs ∈ [0, 1] represent the probability of a user noticing
an ad in position s and let ei ∈ [0, 1] denote the expected
click-through rate of advertiser i. That is ei is the probabil-
ity of ad i being clicked on given that it was noticed by the
user. We will adopt the common assumption that cs > cs+1

(Gomes and Sweeney, 2014; Lahaie and Pennock, 2007;
Sun et al., 2014; Thompson and Leyton-Brown, 2013). De-
fine the score of bidder i to be si = eivi. Following Sun
et al. (2014), we assume that si is an i.i.d. realization of a
random variable with distribution F and density function
f . Finally, we assume that advertisers bid in an efficient
symmetric Bayes-Nash equilibrium. This is motivated by
the fact that even though advertisers may not infer what the
valuation of their adversaries is from repeated interactions,
they can certainly estimate the distribution F .

Define π : s 7→ π(s) as the function mapping slots to adver-
tisers, i.e. π(s) = i if advertiser i is allocated to position s.
For a vector x = (x1, . . . , xN) ∈ RN , we use the notation
x(s) := xπ(s). Finally, denote by ri the reserve price for
advertiser i. An advertiser may participate in the auction
only if bi ≥ ri. In this paper we present an analysis of the
two most common ranking rules (Qin et al., 2014):

1. Rank-by-bid. Advertisers who bid above their re-
serve price are ranked in descending order of their
bids and the payment of advertiser π(s) is equal to
max(r(s), b(s+1)).

2. Rank-by-revenue. Each advertiser is assigned a qual-
ity score qi := qi(bi) = eibi1bi≥ri and the rank-
ing is done by sorting these scores in descending
order. The payment of advertiser π(s) is given by
max

(
r(s), q

(s+1)

e(s)

)
.

In both setups, only advertisers bidding above their reserve
price are considered. Notice that rank-by-bid is a particular
case of rank-by-revenue where all quality scores are equal
to 1. Given a vector of reserve prices r and a bid vector b,
we define the revenue function to be

Rev(r,b)

=

S∑

s=1

cs

(q(s+1)

e(s)
1q(s+1)≥e(s)r(s)+r

(s)1q(s+1)<e(s)r(s)≤q(s)
)

613

Using the notation of Mohri and Medina (2014), we define
the loss function

L(r,b) = −Rev(r,b).

Given an i.i.d. sample S = (b1, . . . ,bn) of realizations of
an auction, our objective will be to find a reserve price vec-
tor r∗ that maximizes the expected revenue. Equivalently,
r∗ should be a solution of the following optimization prob-
lem:

min
r∈[0,1]N

Eb[L(r,b)]. (1)

3 PREVIOUS WORK

It has been shown, both theoretically and empirically, that
reserve prices can increase the revenue of an auction (My-
erson, 1981; Ostrovsky and Schwarz, 2011). The choice
of an appropriate reserve price therefore becomes crucial.
If it is chosen too low, the seller might lose some revenue.
On the other hand, if it is set too high, then the advertisers
may not wish to bid above that value and the seller will not
obtain any revenue from the auction.

Mohri and Medina (2014), Pardoe et al. (2005), and Cesa-
Bianchi et al. (2013) have given learning algorithms that
estimate the optimal reserve price for a second-price auc-
tion in different information scenarios. The scenario we
consider is most closely related to that of Mohri and Med-
ina (2014). An extension of this work to the GSP auction,
however, is not straightforward. Indeed, as we will show
later, the optimal reserve price vector depends on the distri-
bution of the advertisers’ valuation. In a second-price auc-
tion, these valuations are observed since the corresponding
mechanism is an incentive-compatible. This does not hold
for GSP auctions. Moreover, for second-price auctions,
only one reserve price had to be estimated. In contrast, our
model requires the estimation of up to N parameters with
intricate dependencies between them.

The problem of estimating valuations from observed bids in
a non-incentive compatible mechanism has been previously
analyzed. Guerre et al. (2000) described a way of estimat-
ing valuations from observed bids in a first-price auction.
We will show that this method can be extended to the GSP
auction. The rate of convergence of this algorithm, how-
ever, in general will be worse than the standard learning
rate of O

(
1√
n

)
.

Sun et al. (2014) showed that, for advertisers playing an
efficient equilibrium, the optimal reserve price is given by
ri = r

ei
where r satisfies

r =
1− F (r)

f(r)
.

The authors suggest learning r via a maximum likelihood
technique over some parametric family to estimate f and

F , and to use these estimates in the above expression.
There are two main drawbacks for this algorithm. The first
is a standard problem of parametric statistics: there are no
guarantees on the convergence of their estimation proce-
dure when the density function f is not part of the paramet-
ric family considered. While this problem can be addressed
by the use of a non-parametric estimation algorithm such as
kernel density estimation, the fact remains that the function
f is the density for the unobservable scores si and there-
fore cannot be properly estimated. The solution proposed
by the authors assumes that the bids in fact form a perfect
SNE and so advertisers’ valuations can be recovered using
the process described by Varian (2007). There is however
no justification for this assumption and, in fact, we show in
Section 6 that bids played in a Bayes-Nash equilibrium do
not in general form a SNE.

4 LEARNING ALGORITHMS

Here, we present and analyze two algorithms for learning
the optimal reserve price for a GSP auction when advertis-
ers play a symmetric equilibrium.

4.1 DENSITY ESTIMATION ALGORITHM

First, we derive an extension of the algorithm of Guerre
et al. (2000) to GSP auctions. To do so, we first derive a
formula for the bidding strategy at equilibrium. Let zs(v)
denote the probability of winning position s given that the
advertiser’s valuation is v. It is not hard to verify that

zs(v) =

(
N − 1

s− 1

)
(1− F (v))s−1F p(v),

where p = N − s. Indeed, in an efficient equilibrium, the
bidder with the s-th highest valuation must be assigned to
the s-th highest position. Therefore an advertiser with val-
uation v is assigned to position s if and only if s−1 bidders
have a higher valuation and p have a lower valuation.

For a rank-by-bid auction, Gomes and Sweeney (2014)
showed the following results.

Theorem 1 (Gomes and Sweeney (2014)). A GSP auction
has a unique efficient symmetric Bayes-Nash equilibrium
with bidding strategy β if and only if β is strictly increasing
and satisfies the following integral equation:

S∑

s=1

cs

∫ v

0

dzs(t)

dt
tdt (2)

=
S∑

s=1

cs

(
N−1

s−1

)
(1− F (v))s−1

∫ v

0

β(t)pF p−1(t)f(t)dt.

Furthermore, the optimal reserve price r∗ satisfies

r∗ =
1− F (r∗)
f(r∗)

. (3)

614

The authors show that, if the click probabilities cs are suffi-
ciently diverse, then, β is guaranteed to be strictly increas-
ing. When ranking is done by revenue, Sun et al. (2014)
gave the following theorem.

Theorem 2 (Sun et al. (2014)). Let β be defined by the pre-
vious theorem. If advertisers bid in a Bayes-Nash equilib-
rium then bi = β(vi)

ei
. Moreover, the optimal reserve price

vector r∗ is given by r∗i = r
ei

where r satisfies equation (3).

We are now able to present the foundation of our first algo-
rithm. Instead of assuming that the bids constitute an SNE
as in (Sun et al., 2014), we follow the ideas of Guerre et al.
(2000) and infer the scores si only from observables bi.
Our result is presented for the rank-by-bid GSP auction but
an extension to the rank-by-revenue mechanism is trivial.

Lemma 1. Let v1, . . . , vn be an i.i.d. sample of valua-
tions from distribution F and let bi = β(vi) be the bid
played at equilibrium. Then the random variables bi are
i.i.d. with distribution G(b) = F (β−1(b)) and density
g(b) = f(β−1(b))

β′(β−1(b)) . Furthermore,

vi = β−1(bi) (4)

=

∑S
s=1 cs

(
N−1
s−1

)
(1−G(bi))

s−1bipG(bi)
p−1g(bi)

∑S
s=1 cs

(
N−1
s−1

)
dz
db (bi)

−
∑S
s=1cs(s−1)(1−G(bi))

s−2g(bi)
∫ bi

0
pG(u)p−1ug(u)du

∑S
s=1 cs

(
N−1
s−1

)
dz
db (bi)

,

where zs(b) := zs(β
−1(b)) and is given by

(
N−1
s−1

)
(1 −

G(b))s−1G(b)p−1.

Proof. By definition, bi = β(vi) is a function of only vi.
Since β does not depend on the other samples either, it
follows that (bi)

N
i=1 must be an i.i.d. sample. Using the

fact that β is a strictly increasing function we also have
G(b) = P (bi ≤ b) = P (vi ≤ β−1(b)) = F (β−1(b)) and a
simple application of the chain rule gives us the expression
for the density g(b). To prove the second statement observe
that by the change of variable v = β−1(b), the right-hand
side of (2) is equal to

S∑

s=1

(
N−1

s−1

)
(1−G(b))s−1

∫ β−1(b)

0

pβ(t)F p−1(t)f(t)dt

=
S∑

s=1

(
N−1

s−1

)
(1−G(b))s−1

∫ b

0

puG(u)p−1(u)g(u)du.

The last equality follows by the change of variable t =

β(u) and from the fact that g(b) = f(β−1(b))
β′(β−1(b)) . The same

change of variables applied to the left-hand side of (2)

yields the following integral equation:

S∑

s=1

(
N−1

s−1

)∫ b

0

β−1(u)
dz

du
(u)du

=
S∑

s=1

(
N−1

s−1

)
(1−G(b))s−1

∫ b

0

upG(u)p−1(u)g(u)du.

Taking the derivative with respect to b of both sides of this
equation and rearranging terms lead to the desired expres-
sion.

The previous Lemma shows that we can recover the valua-
tion of an advertiser from its bid. We therefore propose the
following algorithm for estimating the value of r.

1. Use the sample S to estimate G and g.
2. Plug this estimates in (4) to obtain approximate sam-

ples from the distribution F .
3. Use the approximate samples to find estimates f̂ and
F̂ of the valuations density and cumulative distribu-
tion functions respectively.

4. Use F̂ and f̂ to estimate r.

In order to avoid the use of parametric methods, a ker-
nel density estimation algorithm can be used to estimate
g and f . While this algorithm addresses both drawbacks
of the algorithm proposed by Sun et al. (2014), it can be
shown (Guerre et al., 2000)[Theorem 2] that if f isR times
continuously differentiable, then, after seeing n samples,
‖f − f̂‖∞ is in Ω

(
1

nR/(2R+3)

)
independently of the algo-

rithm used to estimate f . In particular, note that for R = 1
the rate is in Ω

(
1

n1/4

)
. This unfavorable rate of conver-

gence can be attributed to the fact that a two-step estimation
algorithm is being used (estimation of g and f). But, even
with access to bidder valuations, the rate can only be im-
proved to Ω

(
1

nR/(2R+1)

)
(Guerre et al., 2000). Furthermore,

a small error in the estimation of f affects the denominator
of the equation defining r and can result in a large error on
the estimate of r.

4.2 DISCRIMINATIVE ALGORITHM

In view of the problems associated with density estima-
tion, we propose to use empirical risk minimization to find
an approximation to the optimal reserve price. In particu-
lar, we are interested in solving the following optimization
problem:

min
r∈[0,1]N

n∑

i=1

L(r,bi). (5)

We first show that, when bidders play in equilibrium, the
optimization problem (1) can be considerably simplified.
Proposition 1. If advertisers play a symmetric Bayes-Nash
equilibrium then

min
r∈[0,1]N

Eb[L(r,b)] = min
r∈[0,1]

Eb[L̃(r,b)],

615

- cs bi
(s+1)

 bi
(s+1) bi

(s)

Figure 1: Plot of the loss function Li,s. Notice that the loss
in fact resembles a broken “V” .

where q̃i := q̃i(bi) = eibi and

L̃(r,b) = −
S∑

s=1

cs
e(s)

(
q̃(s+1)1q̃(s+1)≥r+r1q̃(s+1)<r≤q̃(s)

)
.

Proof. Since advertisers play a symmetric Bayes-Nash
equilibrium, the optimal reserve price vector r∗ is of
the form r∗i = r

ei
. Therefore, letting D = {r|ri =

r
ei
, r ∈ [0, 1]} we have minr∈[0,1]N Eb[L(r,b)] =

minr∈D Eb[L(r,b)]. Furthermore, when restricted to D,
the objective function L is given by

−
S∑

s=1

cs
e(s)

(
q(s+1)1q(s+1)≥r + r1q(s+1)<r≤q(s)

)
.

Thus, we are left with showing that replacing q(s) with q̃(s)

in this expression does not affect its value. Let r ≥ 0, since
qi = q̃i1q̃i≥r, in general the equality q(s) = q̃(s) does not
hold. Nevertheless, if s0 denotes the largest index less than
or equal to S satisfying q(s0) > 0, then q̃(s) ≥ r for all
s ≤ s0 and q(s) = q̃(s). On the other hand, for S ≥ s > s0,
1q(s)≥r = 1q̃(s)≥r = 0. Thus,

S∑

s=1

cs
e(s)

(
q(s+1)1q(s+1)≥r + r1q(s+1)<r≤q(s)

)

=

s0∑

s=1

cs
e(s)

(
q(s+1)1q(s+1)≥r + r1q(s+1)<r≤q(s)

)

=

s0∑

s=1

cs
e(s)

(
q̃(s+1)1q̃(s+1)≥r + r1q̃(s+1)<r≤q̃(s)

)

= −L̃(r,b),

which completes the proof.

In view of this proposition, we can replace the challenging
problem of solving an optimization problem in RN with
solving the following simpler empirical risk minimization
problem

min
r∈[0,1]

n∑

i=1

L̃(r,bi) = min
r∈[0,1]

n∑

i=1

S∑

s=1

Ls,i(r, q̃
(s), q̃(s+1)),

(6)

Algorithm 1 Minimization algorithm

Require: Scores (q̃
(s)
i), 1 ≤ n, 1 ≤ s ≤ S.

1: Define (p
(1)
is , p

(2)
is) = (q̃

(s)
i , q̃

(s+1)
i); m = nS;

2: N :=
⋃n
i=1

⋃S
s=1{p

(1)
is , p

(2)
is };

3: (n1, ..., n2m) = Sort(N);
4: Set di := (d1, d2) = 0

5: Set d1 = −∑n
i=1

∑S
s=1

cs
ei
p

(2)
is ;

6: Set r∗ = −1 and L∗ =∞
7: for j = 2, . . . , 2m do
8: if nj−1 = p

(2)
is then

9: d1 = d1 + cs
ei
p

(2)
is ; d2 = d2 − cs

ei
;

10: else if nj−1 = p
(1)
is then

11: d2 = d2 + cs
es

12: end if
13: L = d1 − njd2;
14: if L < L∗ then
15: L∗ = L; r∗ = nj ;
16: end if
17: end for
18: return r∗;

where Ls,i(r, q̃(s)), q̃(s+1)) := − cs
e(s)

(q̃
(s+1)
i 1

q̃
(s+1)
i ≥r −

r1
q̃
(s+1)
i <r≤q̃(s)i

). In order to efficiently minimize this
highly non-convex function, we draw upon the work of
Mohri and Medina (2014) on minimization of sums of v-
functions.

Definition 1. A function V : R3 → R is a v-function if it
admits the following form:

V (r, q1, q2)

=−a(1)1r≤q2−a(2)r1q2<r≤q1+
[r
η
−a(3)

]
1q1<r<(1+η)q1 ,

with 0 ≤ a(1), a(2), a(3), η ≤ ∞ constants satisfying
a(1) = a(2)q2, −a(2)q11η>0 =

(
1
η q1 − a(3)

)
1η>0. Un-

der the convention that 0 · ∞ = 0.

As suggested by their name, these functions admit a char-
acteristic “V shape”. It is clear from Figure 1 that Ls,i is a
v-function with a(1) = cs

e(s)
q̃

(s+1)
i , a(2) = cs

e(s)
and η = 0.

Thus, we can apply the optimization algorithm given by
Mohri and Medina (2014) to minimize (6) inO(nS log nS)
time. Algorithm 1 gives the pseudocode of that the adap-
tation of this general algorithm to our problem. A proof
of the correctness of this algorithm can be found in (Mohri
and Medina, 2014).

We conclude this section by presenting learning guarantees
for our algorithm. Our bounds are given in terms of the
Rademacher complexity and the VC-dimension.

Definition 2. Let X be a set and let G := {g : X → R} be
a family of functions. Given a sample S = (x1, . . . , xn) ∈

616

X , the empirical Rademacher complexity ofG is defined by

R̂S(G) =
1

n
Eσ
[

sup
g∈G

1

n

n∑

i=1

σig(xi)
]
,

where σis are independent random variables distributed
uniformly over the set {−1, 1}.
Proposition 2. Let m = mini ei > 0 and M =

∑S
s=1 cs.

Then, for any δ > 0, with probability at least 1 − δ over
the draw of a sample S of size n, each of the following
inequalities holds for all r ∈ [0, 1]:

E[L̃(r,b)] ≤ 1

n

n∑

i=1

L̃(r,bi) + C(M,m, n, δ) (7)

1

n

n∑

i=1

L̃(r,bi) ≤ E[L̃(r,b)] + C(M,m, n, δ), (8)

where C(M,m, n, δ) = 1√
n

+
√

log(en)
n +

√
M log(1/δ)

2mn .

Proof. Let Ψ: S 7→ supr∈[0,1]
1
n

∑n
i=1 L̃(r,bi) −

E[L̃(r,b)]. Let Si be a sample obtained from S by re-
placing bi with b′i. It is not hard to verify that |Ψ(S) −
Ψ(Si)| ≤ M

nm . Thus, it follows from a standard learning
bound that, with probability at least 1− δ,

E[L̃(r,b)] ≤ 1

n

n∑

i=1

L̃(r,bi) + R̂S(R) +

√
M log(1/δ)

2mn
,

where R = {Lr : b 7→ L̃(r,b)|r ∈ [0, 1]}. We pro-
ceed to bound the empirical Rademacher complexity of the
class R. For q1 > q2 ≥ 0 let L(r, q1, q2) = q21q2>r +
r1q1≥r≥q2 . By definition of the Rademacher complexity
we can write

R̂S(R) =
1

n
Eσ
[

sup
r∈[0,1]

n∑

i=1

σiLr(bi)
]

=
1

n
Eσ
[

sup
r∈[0,1]

n∑

i=1

σi

S∑

s=1

cs
es
L(r, q̃

(s)
i , q̃

(s+1)
i)

]

≤ 1

n
Eσ
[S∑

s=1

sup
r∈[0,1]

n∑

i=1

σiψs(L(r, q̃
(s)
i , q̃

(s+1)
i))

]
,

where ψs is the cs
m -Lipschitz function mapping x 7→ cs

e(s)
x.

Therefore, by Talagrand’s contraction lemma (Ledoux and
Talagrand, 2011), the last term is bounded by

S∑

s=1

cs
nm

Eσ sup
r∈[0,1]

n∑

i=1

σiL(r, q̃
(s)
i , q̃

(s+1)
i)=

S∑

s=1

cs
m
R̂Ss(R̃),

where Ss =
(
(q̃

(s)
1 , q̃

(s+1)
1), . . . , (q̃

(s)
n , q̃

(s+1)
n)

)
and R̃ :=

{L(r, ·, ·)|r ∈ [0, 1]}. The loss L(r, q̃(s), q̃(s+1)) in fact
evaluates to the negative revenue of a second-price auction

with highest bid q̃(s) and second highest bid q̃(s+1) (Mohri
and Medina, 2014). Therefore, by Propositions 9 and 10 of
Mohri and Medina (2014) we can write

R̂Ss(R̃) ≤ 1

n
Eσ
[

sup
r∈[0,1]

n∑

i=1

rσi

]
+

√
2 log en

n

≤
(1√

n
+

√
2 log en

n

)
,

which concludes the proof.

Corollary 1. Under the hypotheses of Proposition 2, let r̂
denote the empirical minimizer and r∗ the minimizer of the
expected loss. Then, for any δ > 0, with probability at least
1− δ, the following inequality holds:

E[L̃(r̂,b)]− E[L̃(r∗,b)] ≤ 2C
(
M,m, n,

δ

2

)
.

Proof. By the union bound, (7) and (8) hold simultane-
ously with probability at least 1− δ if δ is replaced by δ/2
in those expression. Adding both inequalities and using the
fact that r̂ is an empirical minimizer yields the result.

It is worth noting that our algorithm is well defined whether
or not the buyers bid in equilibrium. Indeed, the algorithm
consists of the minimization over r of an observable quan-
tity. While we can guarantee convergence to a solution of
(1) only when buyers play a symmetric BNE, our algorithm
will still find an approximate solution to

min
r∈[0,1]

Eb[L(r,b)],

which remains a quantity of interest that can be close to (1)
if buyers are close to the equilibrium.

5 CONVERGENCE OF EMPIRICAL
EQUILIBRIA

A crucial assumption in the study of GSP auctions, includ-
ing this work, is that advertisers bid in a Bayes-Nash equi-
librium (Lucier et al., 2012; Sun et al., 2014). This assump-
tion is partially justified by the fact that advertisers can in-
fer the underlying distribution F using as observations the
outcomes of the past repeated auctions and can thereby im-
plement an efficient equilibrium.

In this section, we provide a stronger theoretical justifica-
tion in support of this assumption: we quantify the dif-
ference between the bidding function calculated using ob-
served empirical distributions and the true symmetric bid-
ding function in equilibria. For the sake of notation sim-
plicity, we will consider only the rank-by-bid GSP auction.

Let Sv = (v1, . . . , vn) be an i.i.d. sample of values drawn
from a continuous distribution F with density function f .

617

Assume without loss of generality that v1 ≤ . . . ≤ vn and
let v denote the vector defined by vi = vi. Let F̂ denote
the empirical distribution function induced by Sv and let
F ∈ Rn and G ∈ Rn be defined by Fi = F̂ (vi) = i/n and
Gi = 1− Fi.

We consider a discrete GSP auction where the advertiser’s
valuations are i.i.d. samples drawn from a distribution F̂ .
In the event where two or more advertisers admit the same
valuation, ties are broken randomly. Denote by β̂ the bid-
ding function for this auction in equilibrium (when it ex-
ists). We are interested in characterizing β̂ and in providing
guarantees on the convergence of β̂ to β as the sample size
increases.

We first introduce the notation used throughout this section.

Definition 3. Given a vector F ∈ Rn, the backwards dif-
ference operator ∆ : Rn → Rn is defined as:

∆Fi = Fi − Fi−1,

for i > 1 and ∆F1 = F1.

We will denote ∆∆Fi by ∆2Fi. Given any k ∈ N and
a vector F, the vector Fk is defined as Fki = (Fi)

k. Let
us now define the discrete analog of the function zs that
quantifies the probability of winning slot s.

Proposition 3. In a symmetric efficient equilibrium of the
discrete GSP, the probability ẑs(v) that an advertiser with
valuation v is assigned to slot s is given by

ẑs(v)

=

N−s∑

j=0

s−1∑

k=0

(
N − 1

j, k,N−1−j−k

)
Fji−1G

k
i

(N − j − k)nN−1−j−k ,

if v = vi and otherwise by

ẑs(v) =

(
N − 1

s− 1

)
lim

v′→v−
F̂ (v′)p(1− F̂ (v))s−1 =: ẑ−s (v),

where p = N − s.

In particular, notice that ẑ−s (vi) admits the simple expres-
sion

ẑ−s (vi) =

(
N − 1

s− 1

)
Fpi−1G

s−1
i−1 ,

which is the discrete version of the function zs. On the
other hand, even though ẑs(vi) does not admit a closed-
form, it is not hard to show that

ẑs(vi) =

(
N − 1

s− 1

)
Fpi−1G

s−1
i +O

(1

n

)
. (9)

Which again can be thought of as a discrete version of zs.
The proof of this and all other propositions in this section

are deferred to the Appendix. Let us now define the lower
triangular matrix M(s) by:

Mij(s) = −
(
N − 1

s− 1

)
n∆Fpj∆Gs

i

s
,

for i > j and

Mii(s) =

N−s−1∑

j=0

s−1∑

k=0

(
N − 1

j, k,N−1−j−k

)
Fji−1G

k
i

(N−j−k)nN−1−j−k .

Proposition 4. If the discrete GSP auction admits a sym-
metric efficient equilibrium, then its bidding function β̂ sat-
isfies β̂(vi) = βi, where β is the solution of the following
linear equation.

Mβ = u, (10)

with M =
∑S
s=1 csM(s) and ui =

∑S
s=1

(
cszs(vi)vi −

∑i
j=1 ẑ

−
s (vj)∆vj

)
.

To gain some insight about the relationship between β̂ and
β, we compare equations (10) and (2). An integration by
parts of the right-hand side of (2) and the change of variable
G(v) = 1− F (v) show that β satisfies

S∑

s=1

csvzs(v)−
∫ v

0

dzs(t)

dt
tdt

=

S∑

s=1

cs

(
N − 1

s− 1

)
G(v)s−1

∫ v

0

β(t)dF p. (11)

On the other hand, equation (10) implies that for all i

ui =
S∑

s=1

cs

[
Mii(s)βi −

(
N − 1

s− 1

)
n∆Gs

i

s

i−1∑

j=1

∆Fpjβj

]
.

(12)
Moreover, by Lemma 2 and Proposition 10 in the Ap-
pendix, the equalities −n∆Gs

i

s = Gs−1
i +O

(
1
n

)
and

Mii(s) =
1

2n

(
N − 1

s− 1

)
pFp−1

i−1G
s−1
i +O

(1

n2

)
,

hold. Thus, equation (12) resembles a numerical scheme
for solving (11) where the integral on the right-hand side is
approximated by the trapezoidal rule. Equation (11) is in
fact a Volterra equation of the first kind with kernel

K(t, v) =
S∑

s=1

(
N − 1

s− 1

)
G(v)s−1pF p−1(t).

Therefore, we could benefit from the extensive literature
on the convergence analysis of numerical schemes for this
type of equations (Baker, 1977; Kress et al., 1989; Linz,
1985). However, equations of the first kind are in general

618

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 100 200 300 400 500

Sample size

max(βi - βi-1)
C n-1/2

Figure 2: (a) Empirical verification of Assumption 2. The
blue line corresponds to the quantity maxi ∆βi. In red we
plot the desired upper bound for C = 1/2.

ill-posed problems (Kress et al., 1989), that is small pertur-
bations on the equation can produce large errors on the so-
lution. When the kernel K satisfies mint∈[0,1]K(t, t) > 0,
there exists a standard technique to transform an equation
of the first kind to an equation of the second kind, which is
a well posed problem. Thus, making the convergence anal-
ysis for these types of problems much simpler. The kernel
function appearing in (11) does not satisfy this property and
therefore these results are not applicable to our scenario.
To the best of our knowledge, there exists no quadrature
method for solving Volterra equations of the first kind with
vanishing kernel.

In addition to dealing with an uncommon integral equa-
tion, we need to address the problem that the elements of
(10) are not exact evaluations of the functions defining (11)
but rather stochastic approximations of these functions. Fi-
nally, the grid points used for the numerical approximation
are also random.

In order to prove convergence of the function β̂ to β we
will make the following assumptions

Assumption 1. There exists a constant c > 0 such that
f(x) > c for all x ∈ [0, 1].

This assumption is needed to ensure that the difference be-
tween consecutive samples vi − vi−1 goes to 0 as n→∞,
which is a necessary condition for the convergence of any
numerical scheme.

Assumption 2. The solution β of (10) satisfies vi,βi ≥ 0
for all i and maxi∈1,...,n ∆βi ≤ C√

n
, for some universal

constant C.

Since βi is a bidding strategy in equilibrium, it is reason-
able to expect that vi ≥ βi ≥ 0. On the other hand, the
assumption on ∆βi is related to the smoothness of the so-
lution. If the function β is smooth, we should expect the ap-
proximation β̂ to be smooth too. Both assumptions can in
practice be verified empirically, Figure 2 depicts the quan-
tity maxi∈1,...,n ∆βi as a function of the sample size n.

Assumption 3. The solution β to (2) is twice continuously
differentiable.

0.0 0.2 0.4 0.6 0.8

0.
1

0.
3

0.
5

0.
7

0.
1

0.
3

0.
5

0.
7

0.0 0.2 0.4 0.6 0.8

b

v

Figure 3: Approximation of the empirical bidding function
β̂ to the true solution β. The true solution is shown in red
and the shaded region represents the confidence interval of
β̂ when simulating the discrete GSP 10 times with a sam-
ple of size 200. Where N = 3, S = 2, c1 = 1, c2 = 0.5
and bids were sampled uniformly from [0, 1]

This is satisfied if for instance the distribution function F
is twice continuously differentiable. We can now present
our main result.

Theorem 3. If Assumptions 1, 2 and 3 are satisfied, then,
for any δ > 0, with probability at least 1− δ over the draw
of a sample of size n, the following bound holds for all
i ∈ [1, n]:

|β̂(vi)− β(vi)| ≤ eC
[

log(2
δ)

N
2

√
n

q
(
n,

2

δ

)3

+
Cq(n, 2

δ)

n3/2

]
.

where q(n, δ) = 2
c log(nc/2δ) with c defined in Assump-

tion 1, and where C is a universal constant.

The proof of this theorem is highly technical, thus, we defer
it to Appendix F.

6 EXPERIMENTS

Here we present preliminary experiments showing the ad-
vantages of our algorithm. We also present empirical ev-
idence showing that the procedure proposed in Sun et al.
(2014) to estimate valuations from bids is incorrect. In con-
trast, our density estimation algorithm correctly recovers
valuations from bids in equilibrium.

6.1 SETUP

Let F1 and F2 denote the distributions of two truncated log-
normal random variables with parameters µ1 = log(.5),
σ1 = .8 and µ2 = log(2), σ = .1; the mixture parameter
was set to 1/2 . Here, F1 is truncated to have support in
[0, 1.5] and the support of F2 = [0, 2.5]. We consider a
GSP with N = 4 advertisers with S = 3 slots and position
factors c1 = 1, c2 =, 45 and c3 = 1. Based on the results of
Section 5 we estimate the bidding function β with a sample
of 2000 points and we show its plot in Figure 4. We proceed
to evaluate the method proposed by Sun et al. (2014) for

619

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.5 1 1.5 2 2.5

β(v)
v

Figure 4: Bidding function for our experiments in blue and
identity function in red.

recovering advertisers valuations from bids in equilibrium.
The assumption made by the authors is that the advertisers
play a SNE in which case valuations can be inferred by
solving a simple system of inequalities defining the SNE
(Varian, 2007). Since the authors do not specify which SNE
the advertisers are playing we select the one that solves the
SNE conditions with equality.

We generated a sample S consisting of n = 300 i.i.d. out-
comes of our simulated auction. Since N = 4, the effec-
tive size of this sample is of 1200 points. We generated
the outcome bid vectors bi, . . . ,bn by using the equilib-
rium bidding function β. Assuming that the bids constitute
a SNE we estimated the valuations and Figure 5 shows an
histogram of the original sample as well as the histogram of
the estimated valuations. It is clear from this figure that this
procedure does not accurately recover the distribution of
the valuations. By contrast, the histogram of the estimated
valuations using our density estimation algorithm is shown
in Figure 5(c). The kernel function used by our algorithm
was a triangular kernel given by K(u) = (1 − |u|)1|u|≤1.
Following the experimental setup of Guerre et al. (2000)
the bandwidth h was set to h = 1.06σ̂n1/5, where σ̂ de-
notes the standard deviation of the sample of bids.

Finally, we use both our density estimation algorithm and
discriminative learning algorithm to infer the optimal value
of r. To test our algorithm we generated a test sample of
size n = 500 with the procedure previously described. The
results are shown in Table 1.

Density estimation Discriminative
1.42 ± 0.02 1.85 ± 0.02

Table 1: Mean revenue for our two algorithms.

7 CONCLUSION

We proposed and analyzed two algorithms for learning op-
timal reserve prices for generalized second price auctions.
Our first algorithm is based on density estimation and there-
fore suffers from the standard problems associated with
this family of algorithms. Furthermore, this algorithm is
only well defined when bidders play in equilibrium. Our
second algorithm is novel and is based on learning theory

(a) 0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

True valuations

(b) 0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

SNE estimates

(c) 0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Kernel estimates

Figure 5: Comparison of methods for estimating valuations
from bids. (a) Histogram of true valuations. (b) Valuations
estimated under the SNE assumption. (c) Density estima-
tion algorithm.

guarantees. We show that the algorithm admits an efficient
O(nS log(nS)) implementation. Furthermore, our theo-
retical guarantees are more favorable than those presented
for the previous algorithm of Sun et al. (2014). Moreover,
even though it is necessary for advertisers to play in equi-
librium for our algorithm to converge to optimality, when
bidders do not play an equilibrium, our algorithm is still
well defined and minimizes a quantity of interest albeit over
a smaller set. We also presented preliminary experimental
results showing the advantages of our algorithm. To our
knowledge, this is the first attempt to apply learning algo-
rithms to the problem of reserve price selection in GSP auc-
tions. We believe that the use of learning algorithms in rev-
enue optimization is crucial and that this work may preface
a rich research agenda including extensions of this work to
a general learning setup where auctions and advertisers are
represented by features. Additionally, in our analysis, we
considered two different ranking rules. It would be inter-
esting to combine the algorithm of Zhu et al. (2009) with
this work to learn both a ranking rule and an optimal re-
serve price. Finally, we provided the first analysis of con-
vergence of bidding functions in an empirical equilibrium
to the true bidding function. This result on its own is of
great importance as it justifies the common assumption of
advertisers playing in a Bayes-Nash equilibrium.

620

References
Baker, C. T. (1977). The numerical treatment of integral

equations. Clarendon press.

Börgers, T., I. Cox, M. Pesendorfer, and V. Petricek (2013).
Equilibrium bids in sponsored search auctions: Theory
and evidence. American Economic Journal: Microeco-
nomics 5(4), 163–87.

Cesa-Bianchi, N., C. Gentile, and Y. Mansour (2013). Re-
gret minimization for reserve prices in second-price auc-
tions. In Proceedings of SODA 2013, pp. 1190–1204.

Edelman, B., M. Ostrovsky, and M. Schwarz (2005). Inter-
net advertising and the generalized second price auction:
Selling billions of dollars worth of keywords. American
Economic Review 97.

Edelman, B. and M. Schwarz (2010). Optimal auction de-
sign and equilibrium selection in sponsored search auc-
tions. American Economic Review 100(2), 597–602.

Gibbons, R. (1992). Game theory for applied economists.
Princeton University Press.

Gomes, R. and K. S. Sweeney (2014). Bayes-Nash equilib-
ria of the generalized second-price auction. Games and
Economic Behavior 86, 421–437.

Guerre, E., I. Perrigne, and Q. Vuong (2000). Optimal non-
parametric estimation of first-price auctions. Economet-
rica 68(3), 525–574.

He, D., W. Chen, L. Wang, and T. Liu (2014). A game-
theoretic machine learning approach for revenue maxi-
mization in sponsored search. CoRR abs/1406.0728.

Kress, R., V. Maz’ya, and V. Kozlov (1989). Linear inte-
gral equations, Volume 82. Springer.

Lahaie, S. and D. M. Pennock (2007). Revenue analysis
of a family of ranking rules for keyword auctions. In
Proceedings of ACM EC, pp. 50–56.

Ledoux, M. and M. Talagrand (2011). Probability in Ba-
nach spaces. Classics in Mathematics. Berlin: Springer-
Verlag. Isoperimetry and processes, Reprint of the 1991
edition.

Linz, P. (1985). Analytical and numerical methods for
Volterra equations, Volume 7. SIAM.

Lucier, B., R. P. Leme, and É. Tardos (2012). On revenue
in the generalized second price auction. In Proceedings
of WWW, pp. 361–370.

Milgrom, P. and I. Segal (2002). Envelope theorems for
aribtrary choice sets. Econometrica 70(2), 583–601.

Mohri, M. and A. M. Medina (2014). Learning theory and
algorithms for revenue optimization in second price auc-
tions with reserve. In Proceedings of ICML, pp. 262–
270.

Myerson, R. (1981). Optimal auction design. Mathematics
of operations research 6(1), 58–73.

Ostrovsky, M. and M. Schwarz (2011). Reserve prices in
internet advertising auctions: a field experiment. In Pro-
ceedings of ACM EC, pp. 59–60.

Pardoe, D., P. Stone, M. Saar-Tsechansky, and K. Tomak
(2005). Adaptive auctions: Learning to adjust to bidders.
In Proceedings of WITS 2005.

Qin, T., W. Chen, and T. Liu (2014). Sponsored search
auctions: Recent advances and future directions. ACM
TIST 5(4), 60.

Sun, Y., Y. Zhou, and X. Deng (2014). Optimal reserve
prices in weighted GSP auctions. Electronic Commerce
Research and Applications 13(3), 178–187.

Thompson, D. R. M. and K. Leyton-Brown (2013). Rev-
enue optimization in the generalized second-price auc-
tion. In Proceedings of ACM EC, pp. 837–852.

Varian, H. R. (2007, December). Position auctions. In-
ternational Journal of Industrial Organization 25(6),
1163–1178.

Vickrey, W. (1961). Counterspeculation, auctions, and
competitive sealed tenders. The Journal of finance 16(1),
8–37.

Vorobeychik, Y. (2009). Simulation-based analysis of key-
word auctions. SIGecom Exchanges 8(1).

Zhu, Y., G. Wang, J. Yang, D. Wang, J. Yan, J. Hu, and
Z. Chen (2009). Optimizing search engine revenue in
sponsored search. In Proceedings of ACM SIGIR, pp.
588–595.

621

Polynomial-time algorithm for learning optimal tree-augmented dynamic
Bayesian networks

José L. Monteiro
IDMEC

Instituto Superior Técnico
Universidade de Lisboa

jose.libano.monteiro@tecnico.ulisboa.pt

Susana Vinga
IDMEC

Instituto Superior Técnico
Universidade de Lisboa

susanavinga@tecnico.ulisboa.pt

Alexandra M. Carvalho
Instituto de Telecomunicações

Instituto Superior Técnico
Universidade de Lisboa

alexandra.carvalho@tecnico.ulisboa.pt

Abstract

The identification of conditional dependences in
longitudinal data is provided through structure
learning of dynamic Bayesian networks (DBN).
Several methods for DBN learning are con-
cerned with identifying inter-slice dependences,
but often disregard the intra-slice connectivity.
We propose an algorithm that jointly finds the
optimal inter and intra time-slice connectivity
in a transition network. The search space is
constrained to a class of networks designated
by tree–augmented DBN, leading to polynomial
time complexity. We assess the effectiveness of
the algorithm on simulated data and compare the
results to those obtained by a state of the art DBN
learning implementation, showing that the pro-
posed algorithm performs very well throughout
the different experiments. Further experimen-
tal validation is made on real data, by identify-
ing non-stationary gene regulatory networks of
Drosophila melanogaster.

1 INTRODUCTION

Longitudinal data, also known as multivariate time series in
the machine learning community, are obtained by conduct-
ing repeated measurements on a set of individuals. They
arise in several contexts, such as biomedical and clinical
studies, socio-economics and meteorology, and provide an
opportunity for studying changes over time. In multivari-
ate longitudinal data, each measurement or observation is
a vector of variables, whose joint evolution is subject of
analysis.

Multivariate longitudinal data can be modelled as a set of
n-dimensional observations of a stochastic process over T
sequential instants of time. The set of observations is ex-
pressed as {xi[t]}i∈I,t∈T ,, where I is the set of individu-
als being measured and T is the set of time indices. Thus,

xi[t] = (xi1[t], . . . , x
i
n[t]) ∈ Rn is a single observation of

n features, made at time t and referring to the individual i.

Observations are assumed to result from independent sam-
ples of a sequence of probability distributions {Pθ[t]}t∈T .
While these distributions may be time-variant, they are
considered constant across different individuals observed
at the same time, such that xi[t] ∼ Pθ[t] for all i ∈ I. If
the observations are also identically distributed over time,
that is, θ[t] = θ for all t ∈ T , the process is said to have a
stationary or time-invariant distribution (henceforth simply
referred to as a stationary process).

The identification of conditional independences in data
provides an approximation to estimating the underlying
probability distribution (Chow and Liu, 1968). Bayesian
networks (BN) are a popular machine learning tool for this
purpose, being able to represent complex processes that in-
volve uncertainty. Dynamic Bayesian networks (DBN) ex-
tend BN in order to model temporal processes and are usu-
ally defined according to strong simplifying assumptions
(Friedman et al., 1998; Murphy, 2002). A common premise
is to consider the first-order Markov property, which states
that attributes in time-slice t + 1 only depend on those in
time-slice t, but not on the past trajectory. Another fre-
quent assumption is to consider a stationary process, which
may be adequate in some cases, but does not hold in many
interesting scenarios.

1.1 RELATED WORK

Methods for learning stationary DBN are essentially simple
extensions of those employed to learn BN (Murphy, 2002).
A common approach consists in defining a scoring func-
tion, which measures a network’s goodness of fit to training
data, and a search procedure to generate networks (Hecker-
man et al., 1995). In general, obtaining an optimal network
is an NP-hard problem, because the search space is super-
exponential in the number of attributes (Chickering et al.,
1995).

Unlike the case of BN, however, it was recently shown
that learning the inter-slice structure of DBN does not have

622

to be NP-hard (Dojer, 2006). This new hardness result
is due to the relaxation of the acyclicity constraint on the
transition network, since the unrolled network is always
acyclic. In the same article, the author derived a polyno-
mial complexity bound in the number of variables when us-
ing the minimum description length (MDL) or the Bayesian
Dirichlet equivalence (BDe) scores. Relying on this result,
Vinh et al. (2011b) further proposed a polynomial-time al-
gorithm for learning optimal DBN using the mutual infor-
mation tests (MIT) score.

While there is plenty of literature regarding the process of
learning stationary first-order Markov networks, there are
only a few references to learning more general classes of
DBN. In fact, it was not until recently that some authors
started to relax the standard stationarity assumption under-
lying graphical models. The following paragraphs present
a brief review of such realizations.

The problem of model selection, that is, identifying a sys-
tem for probabilistic inference that is efficient, accurate and
informative is discussed in Bilmes (2000). With the pur-
pose of performing classification, the author proposes a
class of models where the conditional independences are
determined by the values of certain nodes in the graph,
instead of being fixed. This is accomplished by extend-
ing hidden Markov models (HMM) to include dependences
among observations of different time-slices. The idea of a
network whose edges can appear and disappear is further
explored by other authors in a temporal context to model
non-stationary processes.

An extension of the traditional discrete DBN model is de-
fined in Robinson and Hartemink (2010), where an initial
network of dependences and a set of incremental changes
on its structure are learnt. The authors assume that the pro-
cess is piecewise-stationary, having the number and times
of the transitions (change points) to be estimated a poste-
riori. Prior knowledge regarding both the initial structure
and the evolutionary behaviour of the network can be in-
corporated. By considering conjugate Dirichlet priors on
the parameters, which are assumed to have a multinomial
distribution, the marginal likelihood is computed exactly,
resulting in the BDe metric. The authors extend this metric
to incorporate the changes introduced by their new model.

The same approach is considered in Dondelinger et al.
(2010), but concerning continuous data. The authors also
differentiate the penalties for adding and removing edges in
a network and allow different nodes to have distinct penalty
terms, instead of a single hyperparameter for penalizing
disparities between structures.

In more recent work, Grzegorczyk and Husmeier (2012)
argue that there should be a trade-off between the often
unrealistic stationarity assumption, modelled with constant
parameters, and the opposite case of complete parameter
independence over time, ignoring the evolutionary aspect

of the process. They acknowledge, however, that the latter
case, which is considered in Dondelinger et al. (2010) and
Robinson and Hartemink (2010), has the advantage of al-
lowing the computation of the marginal likelihood in closed
form. The authors introduce a scheme for coupling the pa-
rameters along time-slices, although keeping the network
structure fixed.

Regarding undirected graphical models, Kolar et al. (2010)
propose two methods for estimating the underlying time-
varying networks of a stochastic process. They model
each network as a Markov random field (MRF) with bi-
nary nodes. The first method assumes that the parameters
change smoothly over time whereas the second considers
piecewise constant parameters with abrupt changes. In both
approaches, the estimator for the parameters is the result
of a l1-regularized convex optimization problem. These
methods, however, only capture pairwise undirected rela-
tions between binary variables, resulting in a model which
is far from being generally applicable.

1.2 OUR APPROACH

The algorithm we propose falls under the search and score
paradigm. Many software implementations for learning
DBN are concerned with identifying inter-slice depen-
dences, but disregard the intra-slice connectivity or assume
it is given by some prior network and kept fixed over time
(Dojer et al., 2013; Murphy, 2001; Vinh et al., 2011a). We
instead suggest an algorithm that simultaneously learns all
these dependences.

As a consequence of considering intra-slice edges in the
proposed algorithm, the relaxation of the acyclicity con-
straint proposed in Dojer (2006) no longer applies, and
obtaining an optimal network becomes NP-hard. We ap-
proach this problem by limiting the search space to tree-
augmented networks, that is, networks whose attributes
have at most one parent in the same time-slice. This re-
striction does not prevent an attribute to have several par-
ents from preceding slices, and also accounts for the al-
gorithm’s polynomial time complexity in the number of at-
tributes. Moreover, even though tree structures appear to be
a strong constraint, they have been shown to produce very
good results in classification tasks, namely within the tree
augmented naive Bayes (TAN) method (Friedman et al.,
1997).

The remaining of the paper is organized as follows. Sec-
tion 2 formally defines BN, provides a theoretical overview
on learning this class of networks and introduces DBN by
extension. Section 3 describes the proposed DBN structure
learning algorithm and analyses its time complexity. Sec-
tion 4 assesses its performance on simulated data and real
data. Section 5 presents the conclusions of this work.

623

2 THEORETICAL BACKGROUND

A BN is a graphical representation of a joint probability
distribution over a set of random variables (Pearl, 1988). It
is defined as a triple B = (X, G,θ), where:

• X = (X1, . . . , Xn) is a random vector. Discrete ran-
dom variables with a finite domain are considered;

• G = (X, E) is a directed acyclic graph (DAG) whose
nodes are the elements ofX and edgesE specify con-
ditional dependences between the variables: each Xi

is independent of its non-descendants given its parents
pa(Xi) in G;

• θ = {θijk} is a set of parameters, specifying the local
probability distributions of the network via

θijk = PB(Xi = xik | pa(Xi) = wij), (1)

where i ∈ {1, . . . , n}, j ∈ {1, . . . , qi} and k ∈
{1, . . . , ri}. ri is the number of discrete states of Xi.
The set of possible configurations of pa(Xi), i.e., the
set of different combinations of values that the parents
of Xi can take, is denoted by {wi1, . . . , wiqi}, where
qi =

∏
Xj∈pa(Xi) rj is the number of all possible con-

figurations.

A BN B defines a joint probability distribution overX:

PB(X1, . . . , Xn) =
n∏

i=1

PB(Xi | pa(Xi)). (2)

The problem of learning a BN, given a dataset compris-
ing instances of X , can be stated as finding the structure
(DAG) and parameters that best match the training data.
When measuring the goodness of fit of a network B to data
D by means of a scoring function φ, learning a BN consists
of maximizing φ(B,D) over the space of all networks with
n attributes.

A decomposable scoring function can be expressed as a
sum of local terms, each depending only on a node and
its parents:

φ(B,D) =
n∑

i=1

φi(pa(Xi), D). (3)

Decomposability simplifies the process of calculating
scores and provides an efficient way of evaluating incre-
mental changes on a network.

The log-likelihood (LL) is a decomposable score which
favours networks that are more likely to have generated
the data. For a fixed structure G, assuming an underlying
multinomial distribution, the network parameters are deter-
mined by maximum-likelihood estimation (MLE):

{θ̂ijk = P̂D(Xi = xik | pa(Xi) = wij) =
Nijk
Nij
} (4)

where P̂D is the distribution induced by the observed fre-
quency estimates, Nijk is the number of instances where
Xi takes its k-th value xik and the variables in pa(Xi)
take their j-th configuration wij , and Nij is the number of
instances where the variables in pa(Xi) take their j-th con-
figuration wij notwithstanding the value of Xi. Since the
parameters are unambiguously found for a fixed network
structure, the LL criterion depends only on the network G.
Taking into account Eq. (2), and assuming that instances
of D are independent and identically distributed (i.i.d.), the
LL scoring function is expressed (Heckerman et al., 1995)
as

φLL(B,D) = logP (D | B)

=
n∑

i=1

qi∑

j=1

ri∑

k=1

Nijk log
Nijk
Nij

.
(5)

The minimum description length (MDL) score is an exten-
sion of the LL criterion, including a term for penalizing
complex structures:

φMDL(B,D) = φLL(B,D)− 1

2
log(N)|B|, (6)

where N is the number of samples in D and |B| denotes
the number of parameters of the network, given by:

|B| =
n∑

i=1

(ri − 1)qi. (7)

While a BN defines a joint probability distribution over a
fixed set of variables, a DBN extends this representation
to model temporal processes (Friedman et al., 1998). Let
X = (X1, . . . , Xn) be a random vector, composed by the
attributes that the are changed by some process. Further-
more, let X[t] = (X1[t], . . . , Xn[t]) denote the instantia-
tion of the attributes at discrete time t ∈ N. A DBN en-
codes the joint probability distributions over all possible
trajectories of a process.

The first-order Markov property states that future values
only depend on present ones, not on the past trajectory, s.t.
P (X[t + 1] | X[0] ∪ · · · ∪X[t]) = P (X[t + 1] | X[t]).
A relaxation of this assumption is the higher-order Markov
property, where nodes can have dependences on an arbi-
trary (but fixed) number of previous time-slices.

A non-stationary first-order Markov DBN describing a
temporal process over T time-slices consists of:

• a prior networkB0, which specifies a distribution over
the initial statesX[0];

• a set of transition networks Bt+1
t over the variables

X[t] ∪X[t+ 1], specifying the state transition prob-
abilities, for 0 ≤ t < T .

624

A stationary network contains only one prior network and
one transition network, being the latter unrolled over time.

Learning DBN typically refers to the transition network(s),
as learning the prior network can be done directly using BN
methods. Learning a transition network has the additional
requirement that edges between slices must flow forward in
time.

3 PROPOSED METHOD

The proposed algorithm is based on learning tree-like
Bayesian networks. The Chow-Liu algorithm finds a tree
with maximum mutual information (Chow and Liu, 1968),
or, equivalently, a tree with maximum LL score. The al-
gorithm works as follows: (i) a complete undirected graph
weighted with the mutual information between each pair of
nodes is built; (ii) an undirected spanning tree is extracted;
and (iii) the optimal branching is retrieved by choosing an
arbitrary node as the tree root and then setting the direction
of all edges to be outward from it.

It was shown that the Chow-Liu algorithm can be adapted
to use any decomposable scoring criterion φ (Heckerman
et al., 1995). In this case, the weight of an edgeXj → Xi is
assigned as φi({Xj}, D)− φi({}, D), expressing the con-
tribution of the edge, as measured by φ, to the total network
score. If φ is score-equivalent, the weights of the edges
Xj → Xi andXi → Xj are the same, and so an undirected
spanning tree is enough to retrieve the optimal branching.
However, if the score is not score-equivalent, Edmond’s al-
gorithm (Edmonds, 1967) needs to be used to find the max-
imum branching from a complete directed weighted graph
(Heckerman et al., 1995).

In the temporal domain, nodes in X[t + 1] can also have
parents from previous time-slices. Our approach for learn-
ing DBN jointly learns inter and intra time-slice depen-
dences. We propose to learn a tree network structure for the
intra-slice dependences while limiting the number of par-
ents from the preceding time-slices. That is, for each node
in the current time-slice t+1 we allow one parent from the
same time-slice (with the exception of the root node) and
at most p parents from the preceding time-slices. We call
the resulting transition network structure a tree-augmented
DBN (tDBN). As we shall see next, the weight of an edge
Xj [t+ 1]→ Xi[t+ 1] will account for the contribution of
inter and intra-slice parents simultaneously. Therefore, due
to inter-slice parents, the weights Xj [t + 1] → Xi[t + 1]
and Xi[t + 1] → Xj [t + 1] are, in general, not the same.
This forces us to resort to Edmond’s algorithm.

3.1 OPTIMAL TREE-AUGMENTED DBN
STRUCTURE LEARNING

Considering, for the sake of simplicity, the first-order
Markov DBN paradigm, parents from the past can only be-

long to the preceding slice. Let P≤p(X[t]) be the set of
subsets of X[t] of cardinality less than or equal to p. If
a node in X[t+ 1] is limited to having at most p parents
from the past, its set of parents must belong to P≤p(X[t]).
The optimal tDBN structure learning algorithm proceeds as
follows.

First, for each node Xi[t + 1] ∈ X[t + 1], the best score
and the set of parentsXps[t] in P≤p(X[t]) that maximizes
it are found. This optimization is formally expressed as

si = max
Xps[t]∈P≤p(X[t])

φi(Xps[t], D
t+1
t), (8)

where φi denotes a local term of a decomposable scoring
function φ and Dt+1

t is the subset of observations of D
concerning the time transition t→ t+1. Then, also allow-
ing one parent from the current time-slice, for each edge
Xj [t+1]→ Xi[t+1], the best score and the set of parents
from the past that maximizes it are also found:

sij = max
Xps[t]∈P≤p(X[t])

φi(Xps[t]∪{Xj [t+1]}, Dt+1
t). (9)

A complete directed graph with nodes in X[t+ 1] is built,
being the weight of each edge Xj [t + 1] → Xi[t + 1] as-
signed as

eij = sij − si, (10)

which expresses the gain in the total network score by in-
cluding Xj [t + 1] as a parent of Xi[t + 1], as opposed
to leaving Xi[t + 1] only with parents in X[t]. In gen-
eral, eij 6= eji, and therefore a directed spanning tree must
be found. Thus, to obtain the t → t + 1 transition net-
work structure, the Edmonds’ algorithm for finding a max-
imum branching (Edmonds, 1967) is applied. The resulting
directed tree immediately provides the network intra-slice
connectivity (in t+1). In addition, for all the nodes except
the root, their set of parents from the preceding time-slice is
the solution for the optimization problem in Eq. (9). Sim-
ilarly, the root node’s parents are given by the solution for
the problem in Eq. (8).

The described procedure can jointly obtain the intra and
inter-slice connectivity in a transition network. By repeat-
edly applying it to all the available time transitions, it is
possible to retrieve the structure of a tree-augmented non-
stationary first-order Markov DBN. A global view of this
method is presented in Algorithm 1.

Theorem 1. Algorithm 1 finds an optimal tDBN under a
given decomposable scoring function.

Proof. Let B be an optimal tDBN and T be the tree struc-
ture of B accounting only for the intra-slice dependences.
Due to the optimality of B, its overall score is equal to

sR +
∑

Xj [t+1]→Xi[t+1]∈T
sij ,

625

Algorithm 1: Optimal non-stationary first-order Markov
tDBN structure learning
Input: X: the set of network attributes;

D: dataset of longitudinal observations over T
time-slices;
φ: a decomposable scoring function

Output: A tree-augmented DBN structure
1 For each transition t→ t+ 1 :
2 Build a complete directed graph inX[t+ 1]
3 Calculate the weight of all edges and the optimal set of

parents of all nodes (Algorithm 2)
4 Apply a maximum branching algorithm
5 Extract transition t→ t+ 1 network using the

maximum branching and the optimal set of parents
calculated in Algorithm 2

6 Collect transition networks to obtain DBN structure

according to Eq. (8) and Eq. (9), whereXR is the root node
of T .

Consider the constant K =
∑
i si. Finding an optimal

tDBN for a given score φ is the same as finding the optimal
tDBN up to the constant K; note that si does not depend
on the structure T , nor B. By subtracting K to the score of
B we obtain ∑

Xj [t+1]→Xi[t+1]∈T
eij ,

according to Eq. (10). Observe that an optimal branching of
the complete directed graph, where each edge Xj [t+1]→
Xi[t + 1] is weighted with eij , is precisely T . Therefore,
due to the soundness of Edmonds’ algorithm, the output of
Algorithm 1 is T , from which B can be recovered.

3.2 COMPLEXITY ANALYSIS

The derivation of a complexity bound on the running time
of Algorithm 1 is presented in the following.

Theorem 2. The time complexity of Algorithm 1 is polyno-
mial in the number of attributes n, linear in the the number
of observations N , and exponential in the number of par-
ents p.

Proof. For each transition, the step of determining the edge
weights and optimal sets of parents takes the most number
of operations and determines the algorithm’s growth rate.
The iterative process starting at line 11 in Algorithm 2 is
the most expensive overall. It calculates the weights for
all edges in a complete graph with n nodes, which requires
O(n2) iterations. For any edge, a score is evaluated for
each possible set of parents in the preceding time-slice. The
total number of parent sets is given by:

|P≤p(X[t])| =
p∑

i=1

(
n

i

)
<

p∑

i=1

ni ∈ O(np). (11)

Algorithm 2: Determining edge weights and optimal sets
of parents (first-order Markov)
Input: X[t],X[t+ 1]: sets of n nodes from two adjacent

time-slices;
p: upper bound on the number of parents from
time-slice t;
Dt+1
t : dataset of observations concerning the time

transition t→ t+ 1;
φchild[t+1](parents, dataset): a local term of φ

Output: E[n×n]: edge weights matrix;
parentsPastSlice[n]: optimal set of parents from
time-slice t;
parentsAllSlices[n×n] : optimal set of parents
from time-slices t and t+ 1

1 allParentSets← P≤p(X[t])
2 For each Xi[t+ 1] :
3 bestScore← −∞
4 For eachXps[t] ∈ allParentSets :
5 currentScore← φi(Xps[t], D

t+1
t)

6 If bestScore < currentScore :
7 bestScore← currentScore
8 parentsPastSlicei ←Xps[t]

9 For each Xj [t+ 1] :
10 Eij ← −bestScore
11 For each Xi[t+ 1] :
12 For each Xj [t+ 1] :
13 bestScore← −∞
14 For eachXps[t] ∈ allParentSets :
15 currentScore

← φi(Xps[t] ∪ {Xj [t+ 1]}, Dt+1
t)

16 If bestScore < currentScore :
17 bestScore← currentScore
18 parentsAllSlicesij ←Xps[t]

19 Eij ← Eij+ bestScore

For calculating each score, all different network configu-
rations must be considered. Assuming that r is the max-
imum number of discrete states a variable can take, and
that a variableXi[t+ 1] has p+ 1 parents (one inX[t+ 1]
and p in X[t]), there are O(rp+2) different configura-
tions. Each configuration needs to be counted over a dataset
containing |Dt+1

t | observations, which can be stored in
a |Dt+1

t | × 2n sized matrix, thus requiring O(|Dt+1
t |n)

comparisons. Taking into account all the internal loops,
the complexity of the outer cycle is O(np+3 rp+2 |Dt+1

t |).
The efficient implementation of Edmonds’ algorithm de-
scribed in (Tarjan, 1977) has quadratic complexity in the
number of nodes, hence being irrelevant to the overall
bound. Algorithm 1, which learns a network structure for
each of T time transitions, admits a worst-case complexity
ofO(np+3rp+2N), whereN = |D| =∑T−1

t=0 |Dt+1
t |.

626

3.3 EXTENSIONS TO STATIONARITY AND
HIGHER-ORDER MARKOV

Algorithm 1 was presented in its non-stationary first-order
Markov form. Nonetheless, adaptations for stationary or
higher-order Markov processes are trivial and can be con-
cisely described.

A stationary version of Algorithm 1 does not contain the
for loop starting at line 1, because only one iteration is
needed to find one transition network. In Algorithm 2, the
entire dataset D is used in each score evaluation. Over-
all, since the number of examinations of each observation
for learning the DBN structure is the same as in the non-
stationary version, the time complexity remains the same,
that is, O(np+3 rp+2 N).

In a m-th-order Markov version of tDBN, regardless of
process stationarity, nodes are allowed to have parents from
m previous time-slices. Therefore, in Algorithm 2, allPar-
entSets← P≤p(X[t−m+ 1] ∪ · · · ∪X[t]) and Dt+1

t−m+1

is used instead of Dt+1
t . These changes worsen the al-

gorithm’s time complexity, which can be roughly approxi-
mated by O((nm)p+3 rp+2 N).

4 EXPERIMENTAL RESULTS

In this section we describe the methodology used for evalu-
ating the optimal tDBN learning algorithm and present the
obtained results, in terms of speed and accuracy. Our al-
gorithm was implemented in Java using an object-oriented
approach and released under a free-software license1. Sim-
ulated data was first considered to evaluate the simpler
stationary first-order Markov tDBN. As very good results
were achieved, further assessment on real data with a non-
stationary first-order Markov tDBN was used to learn time-
varying gene regulatory networks from gene expression
data of Drosophila melanogaster.

4.1 SIMULATED DATA

In the first set of experiments comprising simulated data,
Banjo (et al., 2005), a state of the art DBN learning tool,
was employed besides the tDBN learning algorithm for
comparative purposes. Banjo was chosen for being able to
also learn the intra-slice connectivity, as opposed to most
DBN learning implementations. Throughout the experi-
ments, an implementation’s ability to recover a known net-
work structure was measured. This was accomplished by
specifying a DBN (both its structure and parameters), sam-
pling the network to generate observations and inputting
the produced datasets to each implementation, in order to
learn the underlying structure. The original and recovered
networks were then compared by evaluating the precision

1Available at http://josemonteiro.github.io/
tDBN/ where additional experimental results are also provided.

0 500 1,000 1,500 2,000 2,500

0.2

0.4

0.6

0.8

1

N

P
re
ci
si
o
n

n = 5

n = 7

n = 9

Figure 1: Plot of the precision values achieved by the
tDBN+LL learning algorithm for different values of input
observations N . Three lines are shown, corresponding to
complete tree-augmented networks with different number
of attributes n, each attribute taking r = 8 different states
and having p = 2 parents from the previous time-slice.
Each point results from averaging the precision over 25
sampled datasets, with error bars denoting standard errors.
Precision generally increases with N for every choice of n,
attaining a plateau with N > 2000.

and recall metrics. In addition, to provide a unified score
combining the two previous metrics, the F -measure was
also calculated.

Because many methods only learn the inter-slice connec-
tivity of DBN, Table 1 present the metrics taking into ac-
count (i) only the inter-slice edges, and (ii) all edges. The
results in Table 1 are displayed as average statistics over
5 runs. Precision (Pre), recall (Rec) and F -measure (F1)
values are presented as percentages, running time is in sec-
onds; n is the number of network attributes, p is the number
of parents from the preceding time-slice, r is the number of
states of all attributes, andN is the number of observations.
Values in bold correspond to the highest F -measure score
in groups (i) or (ii); that is, one concerning the recovery of
the inter-slice edges only and another concerning the recov-
ery of all edges. Additional results and details concerning
other experiments employing the tDBN learning algorithm
are shown in Figures 1 and 2.

In the comparative tests, the stationary tDBN learning al-
gorithm was employed using the LL and MDL scores.
Banjo’s Markov lag interval was set between 0 and 1 to
allow intra-slice edges. Its running time was set to 10 min-
utes, which was always longer than learning tDBN’s, and
simulated annealing was used as search procedure. In all
cases, the maximum number of parents was set according
to the original network. The experiments were run on an
Intel i5-3570 @ 3.40 GHz machine.

627

Table 1: Comparative structure recovery results on simulated data. Banjo’s running time is not shown, as it was always
600 seconds.

tDBN+LL tDBN+MDL Banjo
N Inter-slice Global Inter-slice Global Inter-slice Global

Pre Rec F1 Pre Rec F1 Time Pre Rec F1 Pre Rec F1 Time Pre Rec F1 Pre Rec F1

Complete tree-augmented network (n = 20, p = 2, r = 2)
100 64 ± 3 64 ± 3 64 61 ± 4 61 ± 4 61 4 75± 3 54± 3 63 67± 3 54± 3 60 4 98± 3 17± 1 29 66± 9 15± 1 24

300 88 ± 2 88 ± 2 88 86 ± 3 86 ± 3 86 12 98 ± 2 80 ± 1 88 90± 2 79± 1 84 13 98± 3 18± 1 30 54± 3 20± 1 29

700 97 ± 1 97 ± 1 97 98 ± 1 98 ± 1 98 28 100± 0 93± 0 96 100± 0 95± 0 97 29 97± 3 19± 1 32 46± 3 19± 1 27

Complete tree-augmented network (n = 20, p = 2, r = 5)
100 15 ± 2 15 ± 2 15 13 ± 2 13 ± 2 13 68 21± 2 11± 1 14 16 ± 1 11 ± 1 13 68 – – – – – –
300 84 ± 3 84 ± 3 84 83 ± 3 83 ± 3 83 209 51± 5 26± 2 34 45± 5 29± 3 35 213 – – – – – –
700 100 ± 0 100 ± 0 100 100 ± 0 100 ± 0 100 491 97± 2 49± 1 65 96± 2 64± 1 77 489 100± 0 3± 0 6 100± 0 2± 0 4

Incomplete tree-augmented network (n = 20,max p = 3, r = 2)
100 39± 1 81± 3 53 43± 0 70± 1 53 44 73 ± 2 67 ± 2 70 70 ± 2 66 ± 3 68 46 96± 4 17± 1 29 60± 14 18± 3 28

300 43± 1 90± 1 58 53± 1 87± 2 66 136 85 ± 1 84 ± 2 84 86 ± 3 85 ± 3 85 140 100± 0 19± 1 32 46± 3 23± 1 31

700 48± 0 99± 1 65 58± 1 96± 2 72 330 90 ± 0 94 ± 1 92 94 ± 0 96 ± 0 95 326 93± 7 20± 2 33 37± 5 21± 3 27

Inter-sliced only network (n = 20, p = 2, r = 2)
100 63 ± 3 63 ± 3 63 42 ± 2 63 ± 3 50 4 73± 2 51± 3 60 43± 2 51± 3 47 4 100± 0 18± 1 31 100± 0 18± 1 31

300 87 ± 1 87 ± 1 87 59 ± 1 87 ± 1 70 12 91± 1 79± 1 85 59± 1 79± 1 68 12 100± 0 18± 0 31 89± 11 18± 0 30

700 91± 1 91± 1 91 61 ± 1 91 ± 1 73 28 96 ± 1 88 ± 1 92 63 ± 0 88 ± 1 73 28 100± 0 18± 0 31 100± 0 18± 0 31

Four different network settings are considered in Table 1.
The first two networks are complete tree-augmented DBN,
in the sense that each attribute in X[t+ 1] has exactly p
parents in X[t] and at most one parent in X[t+ 1]. In
these settings, the number of edges is always n(p + 1) −
1. On the other hand, the third network is an incomplete
tree-augmented DBN, because the number of parents from
the preceding slice is chosen at random between 1 and p.
In the fourth network, there are no edges inside X[t+ 1],
corresponding to the traditional inter-sliced DBN concept.

According to each network setting, a network was created
by randomly generating its structure and parameters using
uniform distributions. An experimental group, correspond-
ing to a line in Table 1, consisted of 5 independent datasets
with the same number of observations, sampled from one
of the generated networks. The presented values result
from averaging the performance metrics over the datasets
of a group.

From the experimental results in Table 1, it can be seen that
the performance of the proposed algorithm consistently in-
creases withN . In the first setting, the tDBN learning algo-
rithm performs very well with either score, with LL having
a slight advantage. This result was expected, since a com-
plete tree-augmented DBN is biased towards tDBN, and LL
assures that a necessary and sufficient number of edges is
recovered. Banjo obtains a very good inter-slice precision,
but only recovers one fifth of the original edges. Notice
that Banjo’s global results deteriorate when N increases,
which can be explained by decreasing performance while
identifying the intra-slice connectivity.

In the second setting, the tDBN+LL learning algorithm
globally outperforms the other implementations. The reg-
ularization effect of MDL is observed through lower recall
levels, since the number of network parameters increases

with r. Nevertheless, tDBN+MDL greatly improves with
N and already achieves very high precision for N = 700.
Comparing to the first setting, Banjo is more conservative
adding edges, and chooses none for N ≤ 300.

In the third setting, the inter-slice precision of tDBN+LL
does not exceed 50%, due to the recovery of exactly p
parents, when the real number can be smaller than p. In
this setting, tDBN+MDL clearly achieves the best perfor-
mance. The penalizing term in MDL prevents false positive
edges from being chosen, resulting in significantly higher
precision values compared to LL. Banjo performs like in
the first setting, being able to determine the correct parents
and thus reaching high precision values with respect to the
inter-slice connectivity.

Even though the last setting comprises a network without
intra-slice edges, the tDBN learning algorithm performs
well with either scoring function. In fact, the inter-slice
metrics are comparable to the ones in the first setting. The
F -measure values of LL and MDL are very similar, caus-
ing neither score to stand out. The recovery of an intra-slice
tree, which is an inherent aspect of tDBN learning pro-
cedure, worsens the global performance of the algorithm.
In this setting, Banjo obtains an excellent inter-slice re-
sult, correctly identifying all the dependences and report-
ing no false positives. On the other hand, the percentage
of retrieved edges is quite low, resulting in unimpressive
F -measure scores.

Overall, the tDBN learning algorithm obtained very good
results. While tDBN+LL outperformed in the more com-
plex second setting network, tDBN+MDL showed to be
more robust, achieving at least one highest F -measure
score in each setting. Banjo consistently identified high-
precision sparse inter-sliced networks, but generally could
not recover more than 20% of the existing data depen-

628

X1[0]

X2[0]

X3[0]

X4[0]

X5[0]

X1[1]

X2[1]

X3[1]

X4[1]

X5[1]

(a) Original network

X1[0]

X2[0]

X3[0]

X4[0]

X5[0]

X1[1]

X2[1]

X3[1]

X4[1]

X5[1]

(b) N = 50

X1[0]

X2[0]

X3[0]

X4[0]

X5[0]

X1[1]

X2[1]

X3[1]

X4[1]

X5[1]

(c) N = 100

X1[0]

X2[0]

X3[0]

X4[0]

X5[0]

X1[1]

X2[1]

X3[1]

X4[1]

X5[1]

(d) N = 150

X1[0]

X2[0]

X3[0]

X4[0]

X5[0]

X1[1]

X2[1]

X3[1]

X4[1]

X5[1]

(e) N = 200

X1[0]

X2[0]

X3[0]

X4[0]

X5[0]

X1[1]

X2[1]

X3[1]

X4[1]

X5[1]

(f) N = 250

Figure 2: Example of the tDBN+LL learning algorithm’s
ability to recover a known network. The original tree-
augmented network has n = 5 attributes, each taking r = 8
different states and having one parent from the previous
time-slice. Differing in the number of input observations
N , five recovered networks are shown. Dashed edges are
not present in the original network but are nevertheless re-
covered. As N increases, the recovered network structures
become more similar to the original, being identical for
N = 250.

dences.

4.2 DROSOPHILA MELANOGASTER DATA

The following experiments consisted in applying the tDBN
learning algorithm to identify non-stationary gene regu-
latory networks of Drosophila melanogaster. Arbeitman

et al. (2002) published a dataset containing gene expres-
sion measurements of 4028 Drosophila genes over 67 time
steps, covering the four major stages of morphogenesis:
embryo, larva, pupa and adult. Some authors have focused
on a small subset of this time series, consisting of eleven
genes involved in wing muscle development (Guo et al.,
2007; Robinson and Hartemink, 2010; Dondelinger et al.,
2013). Consequently, to allow comparison to other meth-
ods, the same subset is considered herein. The Drosophila
gene expression dataset was preprocessed in the same way
as in the aforementioned references.

For learning the gene regulatory networks, the first-order
Markov tDBN learning algorithm was employed with the
MDL score, allowing at most two parents from the past.
However, as the number of observations was small, there
was not enough evidence for MDL to include more than
one parent. Figure 3 presents the resulting networks in
compact form, to facilitate comparison to networks inferred
by other authors. Table 2 examines the identified gene in-
teractions against the ones reported in other publications,
in the form of matching percentages. Guo et al. (2007)
predicted non-stationary undirected networks, while Don-
delinger et al. (2013) inferred non-stationary DBN.

The results in Table 2 suggest that tDBN learning algorithm
performed reasonably well. The embryonic and larval net-
works contain a significant number of known interactions
that are present in at least one of the corresponding reported
networks. On the other hand, the pupal and adult networks
did not achieve this result. Some of the pupal interactions
could be disjointly found on the networks of both authors,
resulting in a higher combined matching rate. The adult
network, however, retrieved few known interactions, even
when comparing to both sources combined.

Table 2: Comparative structure learning results on
Drosophila melanogaster data.

Morphogenic stage Embryonic Larval Pupal Adult

Observed time-slices 31 10 18 8

Matches (Guo et al., 2007) 25% 50% 40% 30%

Matches (Dondelinger et al., 2013) 75% 60% 30% 20%

Matches (both sources) 75% 70% 60% 40%

As acknowledged by Dondelinger et al. (2013), an objec-
tive assessment regarding the accuracy of the learnt net-
works is not possible due to limited biological knowledge
available, which leads to the absence of a gold standard.
Furthermore, there are three reasons for which the obtained
results should be interpreted carefully. First, despite the
best efforts to follow the procedure in Zhao et al. (2006),
the resulting preprocessed dataset was possibly not the
same. Second, learnt interactions are suggestions of causal
regulatory effects. Additional biological experiments are
necessary for validating the inferred networks, as noted in
Guo et al. (2007). Third, the small number of observa-
tions leads to the existence of many equivalent networks

629

with maximum score, but only one is reported by the tDBN
learning algorithm.

5 CONCLUSION

We have presented a simple yet effective algorithm for
learning the structure of DBN, jointly recovering the inter
and intra time-slice connectivity. The tDBN learning algo-
rithm has polynomial time complexity with respect to the
number of attributes and can be applied to non-stationary
Markov processes.

The stationary version of the algorithm achieved very good
results on simulated datasets, showing to be competitive
with state of the art algorithms in recovering underly-
ing structures. Furthermore, encouraging results were ob-
tained on real data with the non-stationary and higher-order
Markov versions of tDBN, indicating a broad scope of ap-
plications for the proposed algorithm.

Finally, the application of our method to learn non-
stationary processes could be improved in conjunction with
change-point techniques, as investigated in Robinson and
Hartemink (2010) and Dondelinger et al. (2010). In its
current form, the tDBN learning algorithm cannot identify
changes in the underlying distribution of data and thus the
number of transition networks to learn, as well as adequate
training data for each network, need to be previously spec-
ified.

Acknowledgments

This work was supported by national funds through
FCT, Fundação para a Ciência e a Tecnologia, un-
der contracts LAETA (UID/EMS/50022/2013) and IT
(UID/EEA/50008/2013), and by projects CancerSys
(EXPL/EMS-SIS/1954/2013) and InteleGen (PTDC/DTP-
FTO/1747/2012). SV acknowledges support by Program
Investigador FCT (IF/00653/2012) from FCT, co-funded
by the European Social Fund (ESF) through the Opera-
tional Program Human Potential (POPH).

References

M. N. Arbeitman, E. E. M. Furlong, F. Imam, E. Johnson,
B. H. Null, B. S. Baker, M. A. Krasnow, M. P. Scott,
R. W. Davis, and K. P. White. Gene expression during
the life cycle of Drosophila melanogaster. Science, 297
(5590):2270–2275, 2002.

J. A. Bilmes. Dynamic Bayesian multinets. In Proc. of
the 16th Conference on Uncertainty in Artificial Intelli-
gence, pages 38–45, 2000.

D. Chickering, D. Geiger, and D. Heckerman. Learning
Bayesian networks: Search methods and experimental

twi

myo61F

actn
mlc1

up

msp300

mhc

prm

sls
gfl

eve

(a) Embryonic

twi

myo61F

actn
mlc1

up

msp300

mhc

prm

sls
gfl

eve

(b) Larval

twi

myo61F

actn
mlc1

up

msp300

mhc

prm

sls
gfl

eve

(c) Pupal

twi

myo61F

actn
mlc1

up

msp300

mhc

prm

sls
gfl

eve

(d) Adult

Figure 3: Drosophila gene regulatory networks identified
by the tDBN learning algorithm. Networks are shown in
compact form, where each edge represents a dependence
between a node at time-slice t + 1 and its parent at the
previous time-slice t. Highlighted edges indicate a relation
found in the majority of the morphogenic stages. Intra-slice
edges are omitted.

630

results. In Proc. of the 5th International Workshop on Ar-
tificial Intelligence and Statistics, pages 112–128, 1995.

C. Chow and C. Liu. Approximating discrete probability
distributions with dependence trees. IEEE Transactions
on Information Theory, 14(3):462–467, 1968.

N. Dojer. Learning Bayesian networks does not have to
be NP-hard. In Mathematical Foundations of Computer
Science 2006, pages 305–314. 2006.

N. Dojer, P. Bednarz, A. Podsiadło, and B. Wilczyński.
BNFinder2: Faster Bayesian network learning and
Bayesian classification. Bioinformatics, page btt323,
2013.

F. Dondelinger, S. Lèbre, and D. Husmeier. Heteroge-
neous continuous dynamic Bayesian networks with flex-
ible structure and inter-time segment information shar-
ing. In Proc. of the 27th International Conference on
Machine Learning, pages 303–310, 2010.

F. Dondelinger, S. Lèbre, and D. Husmeier. Non-
homogeneous dynamic Bayesian networks with
Bayesian regularization for inferring gene regula-
tory networks with gradually time-varying structure.
Machine learning, 90(2):191–230, 2013.

J. Edmonds. Optimum branchings. Journal of Research
of the National Bureau of Standards B, 71(4):233–240,
1967.

A. Hartemink et al. Banjo: Bayesian
network inference with Java objects.
http://www.cs.duke.edu/amink/software/banjo/, 2005.

N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian net-
work classifiers. Machine learning, 29(2-3):131–163,
1997.

N. Friedman, K. Murphy, and S. Russell. Learning the
structure of dynamic probabilistic networks. In Proc. of
the 14th Conference on Uncertainty in Artificial Intelli-
gence, pages 139–147, 1998.

M. Grzegorczyk and D. Husmeier. Bayesian regulariza-
tion of non-homogeneous dynamic Bayesian networks
by globally coupling interaction parameters. In Journal
of Machine Learning Research Workshop and Confer-
ence Proceedings, volume 22, pages 467–476, 2012.

F. Guo, S. Hanneke, W. Fu, and E. P. Xing. Recovering
temporally rewiring networks: A model-based approach.
In Proc. of the 24th international conference on Machine
learning, pages 321–328, 2007.

D. Heckerman, D. Geiger, and D. Chickering. Learning
Bayesian networks: The combination of knowledge and
statistical data. Machine learning, 20(3):197–243, 1995.

M. Kolar, L. Song, A. Ahmed, and E. P. Xing. Estimating
time-varying networks. The Annals of Applied Statistics,
4(1):94–123, 2010.

K. Murphy. The Bayes net toolbox for Matlab. Computing
Science and Statistics, 33:2001, 2001.

K. Murphy. Dynamic Bayesian networks: representation,
inference and learning. PhD thesis, University of Cali-
fornia, 2002.

J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Representation and
Reasoning Series. Morgan Kaufmann, 1988. ISBN
9781558604797.

J. W. Robinson and A. J. Hartemink. Learning non-
stationary dynamic Bayesian networks. Journal of Ma-
chine Learning Research, 11:3647–3680, 2010.

R. Tarjan. Finding optimum branchings. Networks, 7(1):
25–35, 1977.

N. Vinh, M. Chetty, R. Coppel, and P. Wangikar. Glob-
alMIT: Learning globally optimal dynamic Bayesian
network with the mutual information test criterion.
Bioinformatics, 27(19):2765–2766, 2011a.

N. Vinh, M. Chetty, R. Coppel, and P. Wangikar. Poly-
nomial time algorithm for learning globally optimal dy-
namic Bayesian network. In Neural Information Pro-
cessing, pages 719–729, 2011b.

W. Zhao, E. Serpedin, and E. R. Dougherty. Inferring gene
regulatory networks from time series data using the min-
imum description length principle. Bioinformatics, 22
(17):2129–2135, 2006.

631

Learning and Inference in Tractable Probabilistic Knowledge Bases

Mathias Niepert and Pedro Domingos
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350, USA

Abstract

Building efficient large-scale knowledge bases
(KBs) is a longstanding goal of AI. KBs need
to be first-order to be sufficiently expressive,
and probabilistic to handle uncertainty, but these
lead to intractable inference. Recently, tractable
Markov logic (TML) was proposed as a non-
trivial tractable first-order probabilistic represen-
tation. This paper describes the first inference
and learning algorithms for TML, and its applica-
tion to real-world problems. Inference takes time
per query sublinear in the size of the KB, and
supports very large KBs via parallelization and
a disk-based implementation using a relational
database engine. Query answering is fast enough
for interactive and real-time use. We show that,
despite the data being non-i.i.d. in general, max-
imum likelihood parameters for TML knowl-
edge bases can be computed in closed form.
We use our algorithms to build a very large
tractable probabilistic KB from numerous het-
erogeneous data sets. The KB includes millions
of objects and billions of parameters. Our ex-
periments show that the learned KB outperforms
existing specialized approaches on challenging
tasks in information extraction and integration.

INTRODUCTION

A knowledge base that continuously acquires knowledge
and answers complex queries is a vision as old as the field
of AI itself. The formal representation employed by such a
KB needs to be at the level of first-order logic, in which in-
ference is intractable. Many tractable subsets of first-order
logic have been proposed (e.g., description logics, Horn
KBs), but building large KBs further requires that the rep-
resentation be probabilistic, for at least two reasons: most
of the knowledge will necessarily be acquired from text, the
Web, etc., which are inherently noisy and ambiguous, and

maintaining the consistency of large KBs is extremely dif-
ficult. First-order probabilistic representations like Markov
logic have been developed, but they are again intractable,
as are subsets like probabilistic Horn KBs and description
logics. Recently, Domingos and Webb [2011] developed
tractable Markov logic (TML), a subset of Markov logic
that has expressiveness comparable to probabilistic Horn
KBs and description logics but remains tractable. However,
to date this was only a theoretical proposal, with no infer-
ence and learning algorithms beyond the basic inference re-
quired to prove tractability, and no real-world applications.

This paper develops highly scalable inference and learn-
ing algorithms for tractable probabilistic knowledge bases
(TPKBs), using TML as the representation. After an ini-
tialization phase that computes the partition function of the
TPKB in time linear in its size, queries are answered in
sublinear time using a relational database implementation
that allows for large disk-resident KBs and is easily paral-
lelized. Maximum-likelihood parameter learning is done in
closed form, and takes time linear in the size of the train-
ing data, which can therefore also be very large and disk-
resident. Together these inference and learning algorithms
make it possible to learn and reason with very large first-
order probabilistic KBs.

As a test of our architecture and algorithms, we learn the
structure and parameters of a TPKB from a multitude of
very large data sets, and use it to answer a variety of
queries. The resulting TPKB is larger than previous sta-
tistical relational models by at least an order of magnitude,
with millions of objects and billions of parameters, yet al-
lows for subsecond query answering times. Extensive ex-
periments show the efficiency and effectiveness of the pro-
posed framework for entity linking and resolution.

RELATED WORK

Probabilistic description logic programs [17] combine DL
programs under the answer set and well-founded seman-
tics with independent choice logic [26]. Particular variants
of light-weight description logics with probabilistic seman-

632

tics [11, 22, 24] have been proposed. However, these for-
malisms are too expressive to be tractable for the types of
queries needed in large-scale applications, do not allow the
modeling of data properties, and do not address the prob-
lem of parameter and structure learning.

TPKBs are related to PROBLOG [28] a probabilistic
logic programming language that is generally intractable.
URDF [19] is based on weighted MAX-SAT algorithms
and is in principle intractable. It also does not support
queries that ask for a distribution over objects, classes and
relations given a subset of their attributes. Infinite relational
models (IRMs) are non-parametric hierarchical models but
are not tractable in general [13]. We leverage the hierarchy
of TPKBs to estimate parameters on the level of classes and
relation more robustly. This is related to shrinkage [18].

TPKBs are different from probabilistic databases [31] in
that they represent general knowledge attached to class and
relation hierarchies and do not assume tuple independence,
that is, the independence of facts in the knowledge base.
Moreover, inference in a TPKB is always at most linear
in the size of the TPKB whereas inference complexity in
PDBs depends on the query expression and can be costly.

Open information extraction [7] and other IE projects [2,
15] often use ad-hoc approaches and heuristics and do not
provide a consistent joint distribution and query language.
There exist several statistical relational systems employ-
ing relational database technology to facilitate queries over
structured data [23, 33, 25]. However, the proposed sys-
tems are intractable. Recent work on statistical relational
learning has focused on tractable probabilistic graphical
models, that is, probabilistic models for which inference
is efficient by design. Examples are relational sum-product
networks [20], particular tractable fragments of probabilis-
tic logics [32], and probabilistic soft logic [14]. None of
these languages feature disk-based, sublinear inference al-
gorithms or has been used to build a real-world tractable
probabilistic knowledge base. There is related work in
the context of information extraction and relation learn-
ing. Notable representative publications of this line of re-
search are tensor factorizations of YAGO [21] and univer-
sal schemas [29]. These approaches do not facilitate a con-
sistent probabilistic semantics and expressive query lan-
guages.

TRACTABLE PROBABILISTIC
KNOWLEDGE BASES

Tractable Markov logic (TML) [4] is a subset of Markov
logic exploiting probabilistic class and part hierarchies to
control complexity. In TML the domain is decomposed into
parts, each part is drawn probabilistically from a class hier-
archy, the part is further decomposed into parts according
to its class, and so on. More recently, TML was extended

so as to also handle existence uncertainty [34]. Tractable
probabilistic knowledge bases (TPKBs) accomplish this by
defining a possible world as a set of objects and the truth
values of the atoms in which they occur as arguments,
rather than just as a set of truth values over a fixed uni-
verse of objects. TPKBs form the basis for the new algo-
rithms in this paper. We extend them with attributes that
can have discrete and continuous distributions. Attributes
allow us to model typical properties of objects in real-world
knowledge bases such as images, geographical locations,
and mentions.

Syntax

A TPKB is a set of class and object declarations. A class
declaration specifies the subclasses, parts, attributes, and
relations of the class, along with their distributions. It has
the following form:

Class C {
subclasses S1 w1, ..., Sn wn;
parts P1[c1] C1, ..., P`[c`] C`;
attributes A1 D1 u1, ..., Am Dm um;
relations R1(...) v1, ..., Rk(...) vk;
}
Subclass declarations specify the direct subclasses (chil-
dren) of C and their real-valued weights. Direct subclasses
are assumed to be mutually disjoint and form a partition of
the superclass.

Part declarations specify the parts every instance of C must
have. Part declarations consist of a part name Pi, the part’s
class Ci, and the number ci of parts of that type where ci
is optional and 1 by default. Two classes such that one is a
descendant of the other in the class hierarchy never have a
part with the same name.

Every attribute A has a domain Di (e.g., {0, ..., 10}, R) and
a weight function ui : Di → R. The weight function for a
continuous domain must be efficiently integrable.

Each relation Ri(...) has the form Ri(Pa, ..., Pz) where each
of Pa, ..., Pz is a part of C, that is, one of P1, ..., P`, and the
vi’s are real-valued weights. Weights determine the prob-
ability that an object belongs to a direct subclass or that a
relation is true as specified below. If a relation weight does
not appear, then the relation is hard, that is, it must hold in
every possible world.

Objects of the TPKB are introduced as parts, subparts, sub-
subparts, etc., of a single top object. The top object is the
sole instance of its class which is named the top class. The
top class does not have superclasses. Given a set of class
declarations, we can define the following concepts.

The class hierarchy is a directed graph whose nodes cor-
respond to classes and whose edges correspond to direct

633

subclass relationships. The class hierarchy must be a for-
est.

The part decomposition is a directed graph whose nodes
correspond to parts and with edges from each object to each
of its possible parts. The part decomposition must be a tree
with the top object as root node.

In addition to class declarations, TPKBs have object
declarations which introduce evidence by specifying the
names of the object as well as its subclass memberships,
attribute values, and relations. An object declaration has
the form

Path Name {
S1, ..., Sn;
A1 = D1, ...;
R1(...), ...,¬R1(...), ...;
}
where Path is the object’s path from the top object in
the part decomposition and Name the name given to the
object. For instance, for a TPKB with top object World,
World.Country1.State5.Capital Olympia { ... } is the
declaration for object World.Country1.State5.Capital
giving it the name Olympia. If, for instance, Country1
was previously declared to be World.USA and State5
to be USA.Washington, then Path could also be
Washington.Capital.

The statement S1, ..., Sn; expresses that S1, ..., Sn are the
only classes the object can be an instance of. Each state-
ment Ai = D, with D ∈ Di, is an attribute fact and denotes
that the attribute is known to have value D. For every at-
tribute Ai of the object there exists at most one fact Aai = D.
Each statement Ri(...) is a relation fact and denotes that the
relation is known to be true, and each statement ¬Ri(...) is
a relation fact that denotes that the relation is known to be
false. Object declarations are optional and may be empty,
that is, they may have the form Path Name { }. Empty ob-
ject declarations introduce evidence by declaring the object
to exist in all possible worlds. Object declarations have the
purpose of naming objects and introducing evidence and
must be compatible with the class declarations. Table 1 de-
picts a typical set of class and object declarations.

Semantics

The possible objects of a TPKB are the top object and every
other object in the part decomposition. The Herbrand uni-
verse of a TPKB is the set of constants representing classes,
paths representing objects, and constants representing at-
tribute values. An n-ary predicate grounded with elements
of the Herbrand universe is an atom. We define the binary
predicate Is, where atom Is(O, C) is true if object O is of
class C and false otherwise. Likewise, A(O, D) is an atom
which is true if attribute A has value D for object O. Finally,

Class City {
 parts Mayor Person, PoliceChief Person;
 attributes area ℝ u5, image Images u6;
 relations reportsTo(PoliceChief,Mayor) 2.3;
}

Class Person {
 subclasses Politician 0.6, ..., Actor 1.1;
 attributes age ℕ u3, image Images u4;
}

World.Country1 USA {
 area = 9857306;
}

Class Country {
 parts Capital City, President Person;
 attributes area ℝ u1, image Images u2;
}

WashingtonDC.PoliceChief CathyLanier { }

USA.Capital WashingtonDC {
 area = 77, image= ;
}

WashingtonDC.Mayor MurielBowser {
 age = 42, image= ;
}

Table 1: Example class and object declarations of a TPKB.
area is an attribute that models the area of an entity in
square kilometers, and images a collection of images de-
picting entities.

R(O, ...) is an atom which is true if the relation R(...) is true
for object O and false otherwise. We refer to class mem-
bership, attribute, and relation atoms and their negations as
literals. A TPKB is a DAG of objects and their properties
(classes, attributes, relations), and a possible world is a sub-
tree of the DAG with values for the attributes and relations.
More formally, a possible world W of a TPKB with top
object O0 and top class C0 is a set of literals such that:

1. Is(O0, C0) ∈W.

2. If Is(O, C) ∈W, then

(a) if C has direct subclasses, then Is(O, S) ∈W for
exactly one direct subclass S and ¬Is(O, S′) ∈
W for every other direct subclass S′;

(b) for every part P of O declared to be of class C′,
Is(O.P, C′) ∈W;

(c) for every attribute Ai declared for class C there
is exactly one D ∈ Di with Ai(O, D) ∈ W and
¬Ai(O, D′) ∈W for every other D′ ∈ Di; and

(d) for every relation R(...) declared for class C either
R(O, ...) ∈ W or ¬R(O, ...) ∈ W; if R is hard,
then R(O, ...) ∈W.

3. No other literals are in W.

634

The set of objects that exist in a possible world is exactly
the objects that occur as arguments of the class member-
ship, relation, and attribute predicates. We write W to de-
note the set of all possible worlds.

We write Subs(C), Parts(C), Atts(C) and Rels(C) to de-
note the direct subclasses, parts, attributes, and relations de-
clared for class C.

A possible subworld for object O and class C is defined as
above with O0 replaced by O and C0 replaced C. The unnor-
malized distribution φ over possible subworld W without
evidence, that is, without object declarations, is defined re-
cursively as φ(O, C,W) = 0 if ¬Is(O, C) ∈ W or if a
relation R of C is hard and ¬R(O, ...) ∈W and otherwise as

φ(O, C,W) =

 ∑

Si∈Subs(C)

ewi φ(O, Si,W)

×

 ∏

Pi∈Parts(C)

φ(O.Pi, Ci,W)ni

×

 ∏

Ai∈Atts(C)

α(O, Ai,W)

×

 ∏

Ri∈Rels(C)

ρ(O, Ri,W)

 ,

where α(O, Ai,W) = eui(D) if Ai(O, D) ∈ W. Moreover,
ρ(O, Ri,W) = evi if Ri(O, ...) ∈W and ρ(O, Ri,W) = 1
if ¬Ri(O, ...) ∈ W. If an object has no subclasses, parts,
attributes, or relations, then the corresponding products in
the above equation evaluate to 1.

The unnormalized probability of a possible world W is
now φ(O0, C0,W). The sub-partition function for object O
and class C is

ZKO,C =
∑

W∈W
φ(O, C,W).

If O is the top object and C the top class, we simply write
ZK. The probability of a possible world W is

P (W) =
φ(O0, C0,W)

ZK
.

Sum-product networks (SPNs) are a class of deep proba-
bilistic models in which one can perform fast exact infer-
ence [27]. An SPN is recursively constructed by forming
sums and products of univariate distributions, and its par-
tition function can be computed in time linear in its size.
Every TPKB maps into a corresponding SPN such that the
distribution of the TPKB is equivalent to the distribution of
the SPN. The construction follows the recursive definition
of the distribution over possible worlds φ(O0, C0, ·). Fig-
ure 1 depicts the SPN corresponding to the example TPKB

×

+

area
+

image

×

Is(WashingtonDC,City)

Is(USA.President,Person)
...

× ×

9857306
u2

Is(USA,Country)

+

area
+

image

×

77
Is(CathyLanier,Person)

×

Is(MurielBowser,Person)

×

+

reportsTo(MurielBowser,CathyLanier)
¬reportsTo(MurielBowser,CathyLanier)

...

e2.3
1

+

...

×

×

e0.6 e1.1

Is(MurielBowser,Politician)

+

age
+

image
...
×

42Is(MurielBowser,Actor)
...

...

×

u1

u5 u6

u3 u4

Figure 1: The SPN corresponding to the TPKB in Table 1.

of Table 1. The size of a TPKB is the number of objects
times the number of classes each object is possibly an in-
stance of. The proof of the following theorem can be found
in the appendix.

Theorem 1. The partition function of a TPKB can be com-
puted in time linear in its size.

We can also show that TPKBs are at least as expressive as
the class of SPNs.

Theorem 2. For every SPN there exists a TPKB with the
same distribution and the size of the TPKB is linear in the
size of the SPN.

Hence, TPKBs include a large number of high-treewidth
graphical models. These high-treewidth distributions are
common in the real world, occurring whenever two sub-
classes of the same class have different subparts. TPKBs
are non-trivial relational models that capture relational de-
pendencies, multiple objects, existence uncertainty, etc.
Also, even though data is not i.i.d. in general, closed-form
maximum likelihood learning is possible given the TPKB’s
structure and complete data. Lifting in TPKBs is straight-
forward and makes the complexity of inference indepen-
dent of the number of evidence-free objects.

The key assumption that TPKBs make to ensure tractability
is that an object’s attributes and relations are independent
given its class. As a result, some distributions cannot be
represented compactly. For example, an Ising model with

635

0

1

2 2

1

01

0

O1

O2

C1

C2

C'2

Figure 2: A part decomposition (left) with 6 objects and
the class hierarchy (right) with two trees and 8 classes.
Dashed arrows indicate which object was declared with
which class. The numbers indicate the depth ` of the layers
in the part decomposition (left) and of the trees of the class
hierarchy (right).

arbitrary structure may require an exponential number of
classes to represent.

INFERENCE

Object declarations introduce evidence in form of subclass,
attribute, and relation facts and therefore influence the dis-
tribution of a TPKB by reducing the number of possible
worlds with non-zero probability. The TPKB’s partition
function is now the sum of the unnormalized probabilities
of all possible worlds not contradicting the evidence. For
a TPKB K and a set of facts E, we write ZK(E) for the
corresponding partition function.

There are several possible types of queries. For instance,
we can ask for P (Q | E), where E and Q are sets of facts
pertaining to objects inK. The answers to these queries can
always be tractably computed as ratios of partition func-
tions:

P (Q | E) =
ZK(Q ∪ E)

ZK(E)
.

We can also perform MAP inference, that is, ask for the
most probable possible world given evidence. This is pos-
sible in a TPKB simply by replacing sums over subclasses
with maxes and performing a traceback.

For real-world knowledge bases with millions of objects
and tens of thousand of relations and attributes, disk-based
and parallel inference algorithms with sublinear running
time are required. We now introduce a novel inference algo-
rithm with these characteristics. To the best of our knowl-
edge, this is the first sublinear exact inference algorithm
that scales to millions of objects and is fully implemented
using a relational database. The algorithm performs sev-
eral relational queries, which allows us to take advantage
of query evaluation plans, index structures, and caching
strategies. Intuitively, the structure of the query expres-
sions resembles the corresponding sum-product network
where sum nodes correspond to join-and-sum operations
and product nodes to join-and-multiply operations.

There are two distinct inference algorithms. The first one
computes the partition function and, as a by-product,
all sub-partition functions for objects and their possible
classes (stored in table TZ) and the values of all sum nodes
(stored in table T+S). It does this once offline, in time linear
in the size of the TPKB.

The second algorithm computes, given evidence E, the
ratio of the partition function with and without E (the
marginal probability of E), by propagating ratios of sub-
partition functions with and without evidence.

To illustrate the algorithm, let us consider Figure 2 which
depicts the part decomposition and the class hierarchy of
a small TPKB. Every fact given by evidence E specifies
either (a) the value of an attribute; (b) the truth value of
a relation; (c) or the possible classes of an object. Ev-
idence changes the sub-partition functions involving ob-
jects to which these attributes, relations, or subclasses ap-
ply. For instance, in Figure 2, if the sub-partition function
for object O2 and its possible class C′2 is ewSewPewAewR ,
and if evidence changes the factor pertaining to attributes
from ewA to ew

′
A and leaves all other factors the same, then

the ratio of the sub-partition functions with and without
evidence is ew

′
A/ewA . The evidence also impacts the ra-

tios of sub-partition functions with and without evidence,
Z

(O2,C)
K (E)/Z

(O2,C)
K , for every superclass C of C′2 the object

O2 can be an instance of (here: class C2). In Figure 2 these
classes are depicted as shaded nodes in the second tree of
the class hierarchy. Moreover, since O2 is a part of object
O1, the ratios of sub-partition functions for object O1 in
layer 1 and the class it was declared with also change, and
so on. Fortunately, we only need to compute the ratios for
objects that are ancestors of the object whose sub-partition
function is impacted by the evidence.

The inference algorithm propagates these ratios of sub-
partition functions bottom-up through the TPKB’s struc-
ture to obtain ZK(E)/ZK = P (E). The relational queries
computing these ratios of sub-partition functions only in-
volve tables changed by the evidence and, therefore, the
complexity of the algorithm depends on the evidence and
not the size of the TPKB.

The inference algorithm is shown in Algorithm 1. To avoid
confusion with relations and attributes of the TPKB, we use
the terms table for relations and columns for attributes in
the relational algebra. Table TZ(Path, Class, subZ) with
unique key (Path, Class) represents the TPKB’s sub-
partition functions. Hence, (O, C, Z) ∈ TZ if and only if
O can be an instance of class C and ZK(O, C) = Z. Anal-
ogously, we store the ratios of sub-partition function with
and without evidence E in table TEZ with the same schema.
We often write TZ(O, C) to denote the value of the unique
sub-partition function for object O and its possible class C.

Layer ` of the part decomposition consists of all ob-
jects with depth (distance to the root node) `. Table

636

Algorithm 1 Computes the probability of evidence E at
each sub-partition function of objects in layer `.

1: T← T
`,E
Is

2: k ← maximum height of class hierarchy
3: if ` < height of part decomposition then
4: T′ ← T`Part on TEZ
5: TE×P←π(Path,Class,subZ)

(
(Path,Class)GMUL(subZ)(T

′)
)

6: T← ⊗
(
T, TEA1 , ..., T

E
Am

)

7: T← ⊗
(
T, TER1 , ..., T

E
Rn

)

8: T ← ⊗
(
T, TE×P

)

9: T′ ← ∅
10: for each t← (O, C, C′, Z) ∈ T do
11: TEZ ← TEZ ∪ {(O, C, Z)}
12: if C = C′ then
13: T← T− {t}
14: else if C is in layer k of the class hierarchy then
15: t← (O, C, C′, TZ(O, C)(1− Z))
16: T′ ← T′ ∪ {t}
17: if T 6= ∅ then
18: T← T− T′

19: T′ ← ⊕(Path,Superclass)(⊗(T′, Tk−1Sub))
20: T′ ← π(Path,Superclass→Class,Class′,subZ) (T

′)
21: for each (O, C, C′, Z) ∈ T′ do
22: T← T ∪ (O, C, (T+S(O, C)− Z)/T+S(O, C))

23: k ← k − 1
24: goto 6

T
`,E
Is (Path, Class, Class′) represents, for every object O

in layer `, its possible leaf classes C in the class hierarchy,
and the classes C′ it is declared with. The table, however,
only stores objects and classes whose sub-partition func-
tion is impacted by the evidence E. These sub-partition
functions can be efficiently computed using the structure
of the TPKB.

Table TPart represents the part decomposition of the TPKB.
This table is used in lines 4 and 5 of Algorithm 1 to com-
pute the table TE×p(Path, Class, subZ) with (O, C, Z) ∈
TE×p if and only if object O is in layer ` of the part de-
composition, O is declared as instance of class C, and Z
is the product of the ratios of sub-partition functions with
and without evidence of O’s parts according to C.

Lines 6, 7, and 8 evaluate the attribute, relation, and part
product nodes of the TPKB’s SPN (the three product nodes
in Figure 1). The table TEA (Path, Class, subZ) stores, for
each object and its possible classes, the ratio of the expo-
nentiated summed weights of the attribute A with and with-
out evidence E. The tables TERi(Path, Class, subZ) are the
analogous tables for relations. The operator ⊗ computes a
left outer join on the columns Path and Class, and mul-
tiplies the values of the tables’ subZ columns. The join
queries of lines 5 and 6 only involve attribute and relation
tables changed by the evidence.

Line 11 stores the computed ratios of sub-partition func-
tions with and without evidence to table TEZ . In Line 12 it
is tested, for each object O, whether we have reached the
node of the class O was declared with. If this is the case, we
remove the corresponding tuple from T since the computa-
tion of sub-partition functions that involve these objects is
finished.

Lines 19 and 20 evaluate the SPN’s sum nodes. First,
we perform a left outer join of the tables T and TkSub to
multiply the children of each sum node with their re-
spective weight. Table TSub(Class, Superclass, weight)
represents the class hierarchy and the subclass weights.
For each Superclass in layer k of the class hierarchy,
TkSub(Class, Superclass, weight) stores the weight for
each of its subclasses. Second, the operator ⊕ performs a
grouping on the columns Path and Superclass and sums
the values of column subZ for each of the groups. Line 20
renames the column Superclass to Class and projects
out superfluous columns. The result of these operations are
the values Z by which the sub-partition function at the sum
nodes is reduced by the evidence. Line 22 computes the
ratio of the sum node for object O and class C with and
without evidence: (T+S(O, C)− Z)/T+S(O, C).

Steps 6-22 are repeated until we have computed the ratio
of the sub-partition function with and without evidence for
every object in layer ` and each of its possible classes.

After running Algorithm 1 for ` = h, .., 0, where h is the
height the part decomposition, we have that TEZ (O0, C0) =
ZK(E)/ZK = P (E).

Theorem 3. Let K be a TPKB and let n(E) be the number
of sub-partition functions changed by a set of facts E. Al-
gorithm 1 computes the probability P (E) in time O(n(E))
and independent of the size of K.

Proof sketch. This can be shown with a nested proof by
induction on (a) the height of the part decomposition and
(b) the height of the class trees of each object.

Hence, inference time depends on the number of sub-
partition functions changed by the evidence. This approach
is different from caching previously computed values [10].
While we exploit this idea as well, the major advancement
is the propagation of only those ratios of partition functions
that are changed by the evidence.

Algorithm 1 can be parallelized by leveraging the struc-
ture of the TPKB’s part decomposition and class hierarchy.
First, the executions of Algorithm 1 on distinct trees of the
class hierarchy are independent and can be performed in
parallel. Moreover, for each layer of the part decomposi-
tion, the execution of the algorithm for an object in the
layer is independent of the execution for any other object
in the same layer. More generally, for any two objects, Al-
gorithm 1 can be executed independently until we reach a

637

layer with the parent of the two objects. By using relational
database systems for query processing, we can take advan-
tage of existing paralellization strategies that detect these
types of decompositions. We show below that this reduces
the query evaluation time on multi-core architectures.

LEARNING

The TPKB’s parameters are the weights associated with
attributes, relations, and subclasses. The training data is
an i.i.d. sample of possible worlds. Hence, a sample
{W1, ...,WN} is a multiset of N i.i.d. possible worlds.
Note that, even if the sample consists of only one possible
world (a mega-example), we can often still obtain robust
parameter estimates due to the structure of a TPKB which
features a large number of objects with the same class and,
therefore, the same attributes and relations.

We derive closed-form maximum likelihood (ML) estima-
tors of the parameters. We choose ML parameters that lead
to a partition function with value 1. Since for each possible
world, the classes for all objects are known and every object
can only be an instance of one of a set of sibling classes, the
expression for the likelihood is a product of factors. The
log-likelihood, therefore, is a sum of terms and differenti-
ating it with respect to a particular parameter leaves only
the terms involving one particular attribute, at which point
the MLE can be found in closed form for exponential fam-
ily distributions.

Let n(C) be the number of objects O in all possible worlds
in the training data such that O is an instance of class C. For
each class C, the probabilities of its subclasses S1, ..., Sn are
governed by a categorical distribution. The standard ML
estimates of P (Si|C), therefore, are n(Si)/n(C). Due to the
parameterization of TPKBs, the MLEs are the logarithms
of these estimates. Hence MLE(wi) = log (n(Si)/n(C)) .

Analogously, we can derive the ML estimates for attributes
and relations. For categorical attributes, let nA(C, D) be the
number of objects O in all possible worlds in the training
data such that O is an instance of class C and has value D

for attribute A. Moreover, let nA(C) be the number of ob-
jects O in all possible worlds such that O is an instance of
class C and has some value for attribute A. If attribute A

is declared for class C and for none of C’s superclasses,
then MLE(u(D)) = log (nA(C, D)/nA(C)) . If attribute A is
declared for class C, then it is also (implicitly) declared for
each of its subclasses. Let S be such a subclass of C. Then

MLE(u(D)) = log
nA(S, D)/nA(S)

nA(C, D)/nA(C)
.

These are ML estimates precisely because we set the em-
pirical probability, that is, the probability of an instance of
class S having attribute value D, to the exponentiated sum
of the weight estimates for S and all its superclasses. If the
distribution is identical for a class and one of its subclasses,

Class Country {
 subclasses USA 1.1, ..., Italy 0.4;
 attributes area ℝ u3, image Images u4;
}

Class Capital {
 parts s City, o Country;
 attributes distance ℝ u1;
}

Class Paris {
 founded ℕ u8;
}

Table 2: Example class and object declarations of the
TPKB based on the DBPEDIA ontology.

the MLE is 0 and we do not have to explicitly represent the
attribute parameters for the subclass. This is advantageous
as it results in sparser TPKBs. Note also that this param-
eterization is useful as we may not know an object’s most
specific class during inference time.

The ML estimates for attributes with continuous distribu-
tions are derived analogously. As before, the ML estimate
is based on the sufficient statistics for the attribute at class
C and its superclass for which the attribute is also declared.
For instance, for Gaussian variables, we compute the mean
and standard deviation, and the MLE for the weight func-
tion for S subclass of C is

MLE(u(x)) = log
(x− µS)2/σ2

S

(x− µC)2/σ2
C

.

Relations are similar to Boolean attributes except that for
relations we represent the positive case only. The weight
of a relation at a class is the log ratio of the positive and
negative count differences.

In order to smooth distributions that are defined on mul-
tiple levels of the class hierarchy, we recursively average
the estimate for each class with the estimate for the super-
class, with the combination weights determined by a form
of cross-validation [18]. There are more sophisticated vari-
ants of shrinkage and other forms of hierarchical smooth-
ing, but we leave this to future work.

So far, we have assumed that the training data is complete,
that is, that for every object its class, its attribute values,
and the truth values of relations are given. If attribute val-
ues, classes, or relation values are missing in the training
data, we can use the EM algorithm [3], alternating between
inferring the distributions of the missing values and finding
the MLEs.

Structure learning involves the learning of the part decom-
position and the class hierarchy. While this is beyond the
scope of this paper, possible directions include adapting
LearnSPN [9] and LearnRSPN [20] to TPKBs.

638

TPKBS FOR INFORMATION
EXTRACTION

There are several information extraction projects such
as NELL [2], DBPEDIA [16, 1], the Google Knowl-
edge Vault [5], and REVERB [7]. These systems parse
large amounts of text and semi-structured data sources.
Typical extractions are of the form 〈ms, mp, mo〉 where
ms is a mention of the subject, mp of the predicate,
and mo of the object of a sentence. For instance,
〈Obama, graduated from, Columbia〉. A common prob-
lem is the grounding of these extractions in a canonical
KB such as DBPEDIA. It is a challenging problem due to
the inherent ambiguities of extractions and the problem of
representing context. For instance, in the above example
extractions, the mention Obama might refer to numerous
individuals; Columbia to the district, the university, or a
number of other possible entities; and graduated from

might express that someone graduated from high school,
college, etc. Only in conjunction with background knowl-
edge is it possible to infer that the extraction mentions
Barack Obama, 44th President of the US, and his being a
graduate of Columbia University in New York.

We propose to use TPKBs to address the problem of joint
entity linking. The TPKB has three objects s, p, and o,
representing the latent canonical subjects, predicates, and
objects of extractions. Every possible class of the object p
represents a relation type. For instance, DBPEDIA’s canon-
ical relation type alumni, which expresses a person having
graduated from a university, is such a class. The represen-
tation of relation types as classes of object pairs is advan-
tageous due to the type-token distinction: in order to per-
form entity linking one has to model objects as classes,
not constants, since one predicts the class membership of
s and o from their attributes. Since objects are represented
as classes, we cannot use TPKB relations and, instead, rep-
resent relation types as classes of object pairs.

The objects s and o are declared as parts of object p. The
classes of s and o depend on the class in which they were
declared. For instance, in class alumni, s is declared to be
of class Person and o to be of class University. In class
capital, s is declared to be of class populatedPlace and
o of class City. Objects s and o are declared as parts of p
only in classes representing relations without subrelations.

The class hierarchy consists of three trees, representing the
class structure of objects o, s, and p, respectively. The leaf
classes of the class trees of s and o are classes that repre-
sent canonical entities such as BarackObama. The structure
of this TPKB allows us to model the dependencies between
attributes, classes, and relation types in a tractable and prin-
cipled way. It also allows us to disambiguate extractions
based on geographical, temporal, and other numerical at-
tributes in a principled manner.

Once the parameters of the TPKB are estimated, we
can perform entity linking. For instance, given the
extraction 〈Obama, graduated from, Columbia〉 we
compute the probability of the mention Obama referring
to the canonical entity BarackObama using the query
P (Q | E) with Q = {Is(s, BarackObama)} and E =
{mention(s, Obama), mention(p, graduated from),
mention(o, Columbia)}, where mention is an attribute
modeling mentions.

Experiments

We derived the class trees for objects s and o directly from
the DBPEDIA ontology [16, 1]. The class tree for object p
is derived from the relations in DBPEDIA, that is, every re-
lation type in DBPEDIA is represented with a class object
that p can be an instance of. In addition to the classes and
relation types taken from the DBPEDIA ontology, we cre-
ated one leaf class for each canonical entity. For instance,
the DBPEDIA entity BarackObama is a leaf in the class hi-
erarchy with attributes birthYear, mention, etc. Table 2
depicts a small selection of class declarations.

For several attributes such as birthYear, elevation,
geocoordinates, etc. we used data from DBPEDIA to
learn the parameters. To learn the attribute distributions
for leaf classes, that is, classes modeling entities, we as-
sumed a uniform distribution if, for one entity, more than
one value was given for a particular attribute. For in-
stance, if Arnold has values 1947 and 1946 for attribute
birthYear then, following the maximum-likelihood prin-
ciple, we assume that both values have probability 0.5. For
the other classes, we pooled attribute values of the instances
of each class and used histograms to model these distri-
butions. For the attribute mention modeling mentions we
used the WIKIPREP tool [8] to compute the conditional dis-
tribution of a canonical entity given a mention. We also
learned the parameters of attributes for classes represent-
ing relation types. For instance, we introduced the attribute
diffBirthYear which models a distributions over the ab-
solute value of birth year differences.

The number of parameters of the resulting TPKB exceeds 1
billion and we model more than 1 million objects. We per-
formed inference by running Algorithm 1 using a MYSQL
database system. Each query was answered in less than
one second. The reduction in running time for comput-
ing the partition function was 31% for 2 cores, 47% for 4
cores, 49% for 6 cores, and 50% for 8 cores. We evaluated
the learned TPKB empirically on two important problem
classes.

Entity Linking

For the entity linking experiments we used an existing gold
standard [6] for aligning NELL triples to DBPEDIA en-
tities. For each NELL triple of the form 〈ms, mp, mo〉, we

639

Precision@1 Recall@1
NELL relation WL TPKB1 TPKB2 WL TPKB1 TPKB2
ActorStarredInMovie 0.81 0.85 0.92 0.82 0.82 0.31
AgentcollaboratesWithAgent 0.82 0.83 0.91 0.86 0.87 0.20
AnimalIsTypeofAnimal 0.86 0.86 0.99 0.86 0.86 0.71
AthleteLedSportsTeam 0.89 0.91 0.93 0.86 0.87 0.37
BankBankInCountry 0.82 0.87 0.93 0.76 0.76 0.10
CityLocatedInState 0.80 0.85 0.95 0.81 0.82 0.64
BookWriter 0.82 0.83 0.92 0.81 0.82 0.73
CompanyAlsoKnownAs 0.71 0.71 1.00 0.58 0.61 0.49
PersonLeadsOrganization 0.79 0.81 0.92 0.75 0.71 0.68
TeamPlaysAgainstTeam 0.81 0.81 1.00 0.81 0.83 0.70
WeaponMadeInCountry 0.88 0.91 1.00 0.88 0.89 0.65
LakeInState 0.90 0.91 1.00 0.90 0.90 0.84

System Prec@1 Rec@1
PARIS 91.9 73.8

TPKB1 85.3 75.2
TPKB2 92.1 74.0

Table 3: Results for entity resolution experiments (left) and entity linking experiments (right). Bold numbers indicate
significance (paired t-test; p < 0.05) compared to the baselines.

performed the following two queries. The query (TPKB1)

P ({Is(s, x), Is(o, y)} | {mention(s, ms), mention(o, mo)})

asks for the marginal probability of s being entity x and o
being entity y, conditioned on the NELL triple’s mentions.
The result is a list of substitutions for variables x and y and
the corresponding marginal probabilities.

We proceeded to manually align the subject and object
mention with their classes in the TPKB. For instance,
for the triple 〈Obama, graduated from, Columbia〉, we
aligned Obama to the class Politician and Columbia

to the class University. We then performed the previous
query except that we added the set {Is(s, Cs), Is(o, Co)}
to the evidence (TPKB2). This query retrieves the probabil-
ities of s being entity x and o being entity y, conditioned on
the mentions and their class memberships. The results are
given in Table 3 (left) and compared with a baseline given
in [6]. There are other possible baselines such as matrix
factorization methods [21, 29]. However, it is non-trivial
to use these methods for the entity linking problem. This
is because we have only mentions of entities and no data
that links these mentions to relations and attributes in the
canonical KBs. Precision@k and Recall@k is computed by
retrieving the k most probable answer tuples. The results
of the TPKB outperform the WikiLink baseline [6] sub-
stantially and are as efficient to compute. TPKB2, however,
should only be used if high precision results are required.

Entity Resolution

Entity resolution is the problem of determining whether
two entities in two knowledge bases are equivalent. To
evaluate the TPKB for entity linking we repeated the ex-
periment of linking YAGO [12] to DBPEDIA conducted
to evaluate the PARIS matching system [30]. Both knowl-
edge bases use Wikipedia identifiers for their objects which
gives us a large set of gold standard pairs for evaluation
purposes. We manually aligned a set of attributes (datatype

properties) and classes between YAGO and the learned
TPKB. We sampled 100,000 objects in YAGO, retrieved
the aligned attributes for each object (labels, numerical at-
tributes, etc.) and ran, for each entity, the query above,
where we condition on the given value of attribute mention
(TPKB1); and all other attributes for which a manual align-
ment existed (TPKB2). Table 3 shows that TPKBs are able
to accurately link entities and compare favorably with spe-
cialized algorithms.

The learned TPKB is both efficient and accurate, outper-
forming existing problem-specific approaches.

CONCLUSION

We presented a novel inference algorithm for TPKBs that is
disk-based, parallel, and sublinear. We also derived closed-
form maximum likelihood estimates for TPKB parameters.
We used these results to learn a large TPKB from multiple
data sources and applied it to information extraction and
integration problems. The TPKB outperformed existing al-
gorithms in accuracy and efficiency.

Future work will be concerned with more sophisticated
smoothing approaches, the comparison of different learn-
ing strategies, and the problem of structure learning. We
also plan to apply TPKBs to a wide range of problems that
benefit from tractable probabilistic knowledge representa-
tions.

An open-source implementation of TPKBs is available at
alchemy.cs.washington.edu/lite2.

ACKNOWLEDGMENTS

This research was partly funded by ONR grants N00014-13-1-
0720 and N00014-12-1-0312, and AFRL contract FA8750-13-2-
0019. The views and conclusions contained in this document are
those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of
ONR, AFRL, or the United States Government.

640

References

[1] C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the
story so far. Int. J. Semantic Web Inf. Syst., 5(3):1–22, 2009.

[2] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr.,
and T. M. Mitchell. Toward an architecture for never-ending
language learning. In Proc. AAAI, pages 1306–1313, 2010.

[3] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the EM algorithm. Jour-
nal of the Royal Statistical Society, Series B, 39(1):1–38,
1977.

[4] P. Domingos and W. A. Webb. A tractable first-order prob-
abilistic logic. In Proc. AAAI, pages 1902–1909, 2012.

[5] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao,
K. Murphy, T. Strohmann, S. Sun, and W. Zhang. Knowl-
edge Vault: A web-scale approach to probabilistic knowl-
edge fusion. In Proc. SIGKDD, pages 601–610, 2014.

[6] A. Dutta, C. Meilicke, M. Niepert, and S. P. Ponzetto. Inte-
grating open and closed information extraction: Challenges
and first steps. In Proc. NLP-DBPEDIA@ISWC, 2013.

[7] O. Etzioni, A. Fader, J. Christensen, S. Soderland, and
Mausam. Open information extraction: The second genera-
tion. In Proc. IJCAI, pages 3–10, 2011.

[8] E. Gabrilovich and S. Markovitch. Computing semantic re-
latedness using Wikipedia-based explicit semantic analysis.
In Proc. IJCAI, pages 1606–1611, 2007.

[9] R. Gens and P. Domingos. Learning the structure of sum-
product networks. In Proc. ICML, pages 873–880, 2013.

[10] V. Gogate and P. Domingos. Probabilistic theorem proving.
In Proc. UAI, pages 256–265, 2011.

[11] V. Gutiérrez-Basulto, J. C. Jung, C. Lutz, and L. Schröder.
A closer look at the probabilistic description logic prob-el.
In Proc. AAAI, pages 197–202, 2011.

[12] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum.
YAGO2: A spatially and temporally enhanced knowledge
base from Wikipedia. Artif. Intell., 194:28–61, 2013.

[13] C. Kemp, J. B. Tenenbaum, T. L. Griffiths, T. Yamada, and
N. Ueda. Learning systems of concepts with an infinite re-
lational model. In Proc. AAAI, pages 381–388, 2006.

[14] A. Kimmig, S. H. Bach, M. Broecheler, B. Huang, and
L. Getoor. A short introduction to probabilistic soft logic. In
Proc. NIPS Workshop on Probabilistic Programming: Foun-
dations and Applications, 2012.

[15] J. Lehmann, D. Gerber, M. Morsey, and A.-C. N. Ngomo.
Defacto - deep fact validation. In Proc. ISWC, pages 312–
327, 2012.

[16] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kon-
tokostas, P. N. Mendes, S. Hellmann, M. Morsey, P. van
Kleef, S. Auer, and C. Bizer. DBpedia - a large-scale, multi-
lingual knowledge base extracted from wikipedia. Semantic
Web Journal, 2014.

[17] T. Lukasiewicz. Probabilistic description logic programs.
Int. J. Appr. Reas., 45, 2007.

[18] A. McCallum, R. Rosenfeld, T. M. Mitchell, and A. Y. Ng.
Improving text classification by shrinkage in a hierarchy of
classes. In Proc. ICML, pages 359–367, 1998.

[19] N. Nakashole, M. Sozio, F. M. Suchanek, and M. Theobald.
Query-time reasoning in uncertain RDF knowledge bases
with soft and hard rules. pages 15–20, 2012.

[20] A. Nath and P. Domingos. Learning the structure of rela-
tional sum-product networks. In Proc. AAAI, pages 873–
880, 2013.

[21] M. Nickel, V. Tresp, and H.-P. Kriegel. Factorizing YAGO:
Scalable machine learning for linked data. In Proc. WWW,
pages 271–280, 2012.

[22] M. Niepert, J. Noessner, and H. Stuckenschmidt. Log-linear
description logics. In Proc. IJCAI, pages 2153–2158, 2011.

[23] F. Niu, C. Ré, A. Doan, and J. W. Shavlik. Tuffy: Scaling
up statistical inference in Markov logic networks using an
RDBMS. PVLDB, 4(6):373–384, 2011.

[24] J. Noessner and M. Niepert. Elog: A probabilistic reasoner
for OWL EL. In Proc. RR, pages 281–286, 2011.

[25] J. Noessner, M. Niepert, and H. Stuckenschmidt. Rockit:
Exploiting parallelism and symmetry for map inference in
statistical relational models. In Proc. AAAI, pages 739–745,
2013.

[26] D. Poole. The independent choice logic and beyond.
In Probabilistic inductive logic programming. Springer-
Verlag, 2008.

[27] H. Poon and P. Domingos. Sum-product networks: A new
deep architecture. In Proc. UAI, pages 337–346, 2011.

[28] L. D. Raedt, A. Kimmig, and H. Toivonen. Problog: a prob-
abilistic prolog and its application in link discovery. In Proc.
IJCAI, pages 2468–2473, 2007.

[29] S. Riedel, L. Yao, B. M. Marlin, and A. McCallum. Relation
extraction with matrix factorization and universal schemas.
In Proc. HLT-NAACL, pages 74–84, 2013.

[30] F. M. Suchanek, S. Abiteboul, and P. Senellart. PARIS:
Probabilistic alignment of relations, instances, and schema.
PVLDB, 5(3):157–168, 2011.

[31] D. Suciu, D. Olteanu, R. Christopher, and C. Koch. Proba-
bilistic Databases. Morgan & Claypool Publishers, 1st edi-
tion, 2011.

[32] G. Van den Broeck. On the completeness of first-order
knowledge compilation for lifted probabilistic inference. In
Proc. NIPS, pages 1386–1394, 2011.

[33] D. Z. Wang, M. J. Franklin, M. N. Garofalakis, and J. M.
Hellerstein. Querying probabilistic information extraction.
PVLDB, 3(1):1057–1067, 2010.

[34] W. Webb and P. Domingos. Tractable probabilistic knowl-
edge bases with existence uncertainty. In Proc. AAAI Work-
shop on Statistical Relational AI, 2013.

641

Multi-Context Models for Reasoning under Partial Knowledge:
Generative Process and Inference Grammar

Ardavan S. Nobandegani
Dept. of Electrical and Computer Engineering

McGill University
Montreal, QC H3A 0E9

Ioannis N. Psaromiligkos
Dept. of Electrical and Computer Engineering

McGill University
Montreal, QC H3A 0E9

Abstract

Arriving at the complete probabilistic knowledge
of a domain, i.e., learning how all variables inter-
act, is indeed a demanding task. In reality, set-
tings often arise for which an individual merely
possesses partial knowledge of the domain, and
yet, is expected to give adequate answers to a
variety of posed queries. That is, although pre-
cise answers to some queries, in principle, cannot
be achieved, a range of plausible answers is at-
tainable for each query given the available partial
knowledge. In this paper, we propose the Multi-
Context Model (MCM), a new graphical model
to represent the state of partial knowledge as to a
domain. MCM is a middle ground between Prob-
abilistic Logic, Bayesian Logic, and Probabilistic
Graphical Models. For this model we discuss: (i)
the dynamics of constructing a contradiction-free
MCM, i.e., to form partial beliefs regarding a do-
main in a gradual and probabilistically consistent
way, and (ii) how to perform inference, i.e., to
evaluate a probability of interest involving some
variables of the domain.

1 INTRODUCTION

At an abstract level, an individual (also referred to as a rea-
soner) is faced with a domain where by “domain” we sim-
ply mean a collection of propositions or concepts which
are mathematically encoded as Random Variables (RVs).
To arrive at the complete probabilistic knowledge of the
domain, i.e., to learn how all RVs in the domain proba-
bilistically interact with one another, is indeed a demanding
task. In reality, an individual is often faced with a domain
for which she merely possesses partial knowledge—that
is, she only knows how some (not all) RVs in the domain
interact. To make the setting under study more tangible,
consider the following case. Suppose that the probabilis-
tic knowledge of a domain is represented by a Probabilis-

tic Graphical Model (PGM) B, e.g., a Bayesian Network
(BN). Then the reasoner comes across a new RV, say ψ,
and would like to incorporate it into B so as to achieve
the complete probabilistic knowledge of the new domain
(which now also includesψ). However, incorporation ofψ
into B would require knowledge of how ψ is probabilisti-
cally related to all the RVs already present in B; a knowl-
edge which may be, quite plausibly, unavailable to the rea-
soner. An interesting question that now arises is how to
handle situations where only partial knowledge as to how
ψ is probabilistically related to B is available. An example
would be when the reasoner merely knows howψ interacts
probabilistically with only one RV, say φ, in B.

In this paper, a graphical model, namely, the Multi-Context
Model (MCM) is proposed to represent the setting in which
only partial probabilistic knowledge of a domain is avail-
able to the reasoner. More specifically, MCM is a graphical
language to represent settings in which the Joint Probability
Distribution (JPD) over all RVs is not available, but what
is available instead is the JPDs over a collection of subsets
of RVs of the domain (referred to as sub-domains or con-
texts). These contexts are potentially overlapping, i.e., they
could share some RVs. As pointed out elegantly in (Pearl
1990), “this state of partial knowledge is more common,
because we often begin thinking about a problem through
isolated frames, paying no attention to interdependencies.”
Along the same line of thought, it is plausible to assume
that the probabilistic knowledge of the domain at the early
primitive stage consists of a collection of disjoint contexts
and as the reasoner acquires more knowledge as to how the
variables in the model are related to one another and thus
probabilistically interact, contexts gradually go through a
process very much like an evolution: contexts start to share
some variables, overlaps begin to emerge and, once enough
knowledge is obtained, a number of contexts could merge
thereby giving rise to bigger contexts. This naturally raises
the following fundamental question: How could a collec-
tion of consistent, probabilistically sound, and potentially
overlapping contexts emerge gradually over the course of
time? In an attempt to answer this question we present
a generative process of constructing a contradiction-free

642

MCM. Finally, we would like to note that the special case
where the whole domain is modeled as a single context cor-
responds to the conventional way of modeling the proba-
bilistic knowledge of a domain using a single PGM, e.g.,
by some BN.

Another yet crucial question which we address in this
work—which is another motivation behind the develop-
ment of the MCM—is how the task of inference (i.e., the
evaluation of some probability of interest which is here-
after referred to as query) should be carried out in a domain
which is modeled according to some MCM. A query does
not necessarily belong to any one of the contexts in partic-
ular and, in fact, may involve RVs from different contexts.

The paper is structured as follows. After introducing the
notation in Sec. 2, we define in Sec. 3 the MCM and draw-
ing on the notion of probabilistic conditioning, a genera-
tive process of constructing a contradiction-free MCM is
discussed. Then, in Sec. 4 we elaborate on the problem of
inference in a multi-context setting, i.e., in a domain whose
probabilistic knowledge is encoded as an MCM. In Sec. 5
we discuss the relevant past work and comment on the pro-
posed model. Finally, Sec. 6 concludes the paper.

2 TERMINOLOGY AND NOTATION

In this section we present the mathematical notation and the
terminology employed in this paper. Random quantities are
denoted by bold-faced letters; their realizations are denoted
by the same letter but non-bold. More specifically, RVs
are denoted by lower-case bold-faced letters, e.g., x, while
random vectors are denoted by upper-case bold letters, e.g.,
X. Val(·) denotes the set of values a random quantity can
take, e.g., Val(x) is the set of all possible realizations of the
RV x. In this paper, we assume that all random quantities
are discrete.

The JPD over the RVs x1, · · · , xn is denoted by
P(x1, · · · , xn); when x1, · · · , xn comprise a vector X then
P(X) := P(x1, · · · , xn). We will use the notation x1:n

to denote the sequence of n RVs x1, · · · , xn. To simplify
presentation and to prevent our expressions from becom-
ing cumbersome, we incur the following abuse of notation:
We denote the probability P(x = x) by P(x) for some RV
x and its realization x ∈ Val(x). Also, P(x̄) := P(x 6=
x) = 1− P(x) for some x ∈ Val(x), i.e., P(x̄) is the prob-
ability that x takes on any value other than x. For condi-
tional probabilities we will use the notation P(x|y) instead
of P(x = x|y = y). Similar notations will be used for
the case of random vectors, i.e., P(X) := P(X = X),
P(X̄) := P(X 6= X) = 1 − P(X = X) = 1 − P(X), and
P(X|Y) := P(X = X|Y = Y).

The subscript ↓ on a probability, e.g., P(x|y)↓, denotes
the minimum value the probability can take subject to the
constraints induced by the available probabilistic knowl-

edge. Likewise, the subscript ↑ on a probability denotes
the maximum value the probability can take. Finally, the
operator [·]+ gives the positive part of its argument, i.e.,
[a]+ := max{0, a} for any real-valued a.

3 MULTI-CONTEXT MODEL

As explained earlier, a domain is simply the set of all Ran-
dom Variables (RVs) at hand. A context comprises a col-
lection of RVs for which their JPD is precisely known, see
Fig. 1(a). In general, two contexts could be disjoint (Fig.
1(b)) or overlapping (Fig. 1(c)).

a

b
X a

b

Y
t

X

t
Yz

k

(a) (b) (c)

Figure 1: Graphical representation of contexts: (a) Context
associated to P(a,b,X). (b) Two disjoint contexts associ-
ated to P(a,b) and P(Y, t). (c) Two overlapping contexts
associated to P(X,Y, t) and P(Y, z,k). The random vector
Y is referred to as the induced part in Sec. 3.

A Multi-Context Model (MCM) encodes the probabilistic
knowledge of a domain as a collection of possibly overlap-
ping contexts. This enables the handling of situations in
which comprehensive knowledge of a domain is not avail-
able, but partial information is, in the form of JPDs of some
subsets of the domain. Let us first motivate the proposed
MCM by entertaining a simple yet enlightening example.

3.1 MOTIVATING EXAMPLE

Consider a domain consisting of the RVs y, z in addition
to a set of n RVs, x1:n. A reasoner has formed a par-
tial belief as to the probabilistic connections between the
variables of the domain. More specifically, the reasoner
knows precisely the JPDs P(y, z) and P(x1:n) but not the
JPD P(y, z, x1:n). This setting is described by an MCM
that consists of two disjoint contexts, one associated to RVs
y, z and the other to x1:n, as shown in Fig. 2.

x1:n y
z

Figure 2: Problem statement as an MCM.

Assume that the following query is posed: Given the avail-
able information, what could be said about P(y|xi) for
some i = 1, · · · , n? The RVs y and xi belong to differ-
ent contexts, therefore, the JPD of y and xi, P(xi, y), is not
available. The best one can hope for is to derive the range
within which P(y|xi) varies, namely, [P(y|xi)↓,P(y|xi)↑].

643

Let us for the moment assume the objective is to find
P(y|xi)↓. Based on the conventional methodology, i.e., the
approach adopted by past work (cf. (Andersen and Hooker
1990; 1994; Hansen et al. 1995) and references therein)
one has to write down all the information as a list of linear
equations and solve it as a Linear Program (LP). The main
drawback of the conventional approach is that it cannot dis-
tinguish between what information is relevant and what is
irrelevant for the posed query, and hence what needs to and
what need not be considered in answering the query. The
price for this is that the number of parameters required to
merely formulate the query as an LP is exponential in n.

The key point, however, is that what information is rele-
vant (or irrelevant) depends directly on the posed query,
i.e., it is query-dependent. The main advantage of the pro-
posed MCM over previous approaches is that it enables an-
swering a query in a computationally efficient manner by
distinguishing the relevant information from the irrelevant
for the given query. This is realized thorough adopting the
notion of inference grammar; a concept which will be sys-
tematically defined later. For our example, following the
inference rule we will provide in Sec. 4.2, one can easily
get P(y|xi)↓ = [P(y)−P(x̄i)

P(xi)
]+.

The task of inference in an MCM is carried out on two dif-
ferent levels, which makes the task more computationally
efficient:

(i) High-Level Reasoning: at this level, through the use
of inference grammar, the relevant quantities are iden-
tified (e.g., P(y) and P(x̄i) in the case of our exam-
ple).

(ii) Low-Level Reasoning: the relevant quantities, identi-
fied in (i), can then be computed by employing infer-
ence algorithms which take advantage of the poten-
tially rich independence structure governing the con-
texts. For example, it could very well be the case
that for the JPD associated to x1:n a large number of
conditional independence relations hold. In that case,
stating the derivation of P(x̄i) (i.e., 1 − P(xi)) as an
LP would be computationally inefficient1 but unnec-
essary. Indeed, the task of finding P(x̄i) could be
accomplished in a computationally efficient way us-
ing one of the many inference methods developed for
probabilistic graphical models; a key point that the
previous approaches do not take advantage of.

As a final step, in order to derive the lower/upper bound to
the posed query, the quantities identified in (i) and subse-
quently calculated in (ii) are stated and solved as an LP.

The idea behind “high-level reasoning” will be explained
and clarified further in Sec. 4.2 and 4.3, while the concept

1The number of parameters required just to state the problem
as an LP is exponential in n.

of “low-level reasoning” will be discussed in Sec. 4.1.

3.2 GENERATIVE PROCESS OF
CONTRADICTION-FREE MCMS

The objective of the generative process we describe in this
section is to provide a way to consistently2 construct con-
texts, in a sequential manner, over a set of RVs. The act of
constructing a context, i.e., of assigning a JPD to a subset
of RVs, corresponds to forming a subjective3 belief over
those RVs. In this light, the act of constructing multiple
contexts corresponds to gradually forming subjective be-
liefs over a number of subsets of variables in the domain;
hence every context symbolizes an established belief over
the RVs involved in that context.

We introduce this problem by considering a simple case
shown in Fig. 3(a). Suppose there are three RVs, namely,

x

yz

x

yz

(a) (b)

P(y,z)

P
(x
,y
)

P(y,z)

P(
x,
z)

P
(x
,y
)

Figure 3: Generative process for contradiction-free Multi-
Context Model. The dash-dotted contexts cannot be freely
assigned.

x, y, and z, present in the domain and let us consider the
following question: Could one assign P(x, y) and P(y, z),
freely and gradually in a consistent manner, over the three
variables without introducing any sort of contradiction?
It is easy to verify that the answer is positive. Indeed,
one could start off by assigning P(x, y). This assignment
would, of course, induce the marginal P(y) and one can
write P(y, z) = P(y)P(z|y). Then, to complete this task,
one would just need to proceed with assigning P(z|y). This
process could be referred to as a generative process of the
assignment of P(x, y) and P(y, z) over x, y, and z without
introducing any inconsistencies, in a gradual manner. In-
deed, free-assignment refers to the act of freely assigning
the non-induced, e.g., P (z|y), part of the to-be-formed be-
lief, e.g., P (y, z). In other words, free-assignment signifies
the observation that the already-formed belief does not im-
pose any constraints on the non-induced part of the to-be-
formed belief.

2That is, without introducing any form of contradictory result
with respect to any probability assignment.

3One must not interpret the subjectivity of belief as “total dis-
connectivity from the reality.” Thus, we adopt the Bayesian inter-
pretation of probability in this section. The avid reader is referred
to (Chalmers 1976). An adherent to the frequentist interpreta-
tion of probability could think of contexts as being empirically
constructed from a collection of data and thus skip Sec. 3.2 and
proceed directly to the next section.

644

Let us now consider the case shown in Fig. 3(b). Could
one assign P(x, y),P(y, z), and P(x, z) freely and gradu-
ally in a consistent manner over the three variables with-
out introducing any sort of contradiction? After some in-
vestigation, one can see that the answer is negative (Pearl
1985). Not surprisingly, the reason for this has to do with
the existence of a loop in the model: once P(x, y) and
P(y, z) = P(y)P(z|y) are assigned4, then P(x, z) cannot
be assigned freely. This is due to the fact that P(x, z) has to
satisfy some non-trivial conditions imposed by the already
assigned contexts P(x, y) and P(y, z) (Pearl 1985).

In summary, whenever it comes to generating a new con-
text, the JPD associated to that context has to be sepa-
rated into two parts: (i) the part induced by the already
existing contexts, and (ii) the part containing new variables
which have never been so far associated to any context
(i.e., non-induced part). The key point in the generation of
contradiction-free MCMs is that the former part has to be
induced by some context which, itself, is already present
in the domain. That is, all the induced parts have to be
already contained within some context. Otherwise, to in-
clude the induced parts—each constrained by the context
it is already in—in a new context, the newly created con-
text would have to satisfy some nontrivial constraints and
therefore could not be freely assigned.

a

b
c

d e

P(a,b,c)

P(b,d)
P(b,c,e)

Figure 4: MCM for P(a,b, c),P(b,d), and P(b, c, e).

Let us discuss one final case to further clarify the pro-
cess. Consider the multi-context model in Fig. 4. Could
this model be constructed freely and gradually in a prob-
abilistically consistent manner? The answer is positive.
We first assign P(a,b, c), then we assign P(b, c, e) =
P(b, c)P(e|b, c) where P(b, c) is induced by our first as-
signment of P(a,b, c). Finally, we assign P(b,d) =
P(b)P(d|b) where P(b) is induced by our first assignment
of P(a,b, c). A closer look reveals that this is not the
only way we can gradually construct a contradiction-free
model in this case: we could have performed the assign-
ments in a different order5. Of course, the only thing which
would have been different would be the induced probabil-
ities. That is, if one does the assignment in the following

4P(y) is induced by the assignment of P(x, y).
5Yet, this is not always the case: suppose there are four RVs

in the domain, namely, a, b, c and d and we would like to as-
sign P(a, b),P(b, c), and P(c, d). Performing the assignments
in the order (1) − P(a, b), (2) − P(b, c), (3) − P(c, d) would
not introduce any inconsistencies, in contrast to using the order
(1)− P(a, b), (2)− P(c, d), (3)− P(b, c).

order: (1)−P(b,d), (2)−P(a,b, c), (3)−P(b, c, e) then the
first assignment of P(b,d) will induce P(b) for the sec-
ond assignment of P(a,b, c) = P(b)P(a, c|b) and the sec-
ond assignment will induce P(b, c) for the third assignment
P(b, c, e) = P(b, c)P(e|b, c).

4 INFERENCE IN MCMS

In this section we consider evidential inference problems in
multi-context settings. The objective is to evaluate (to the
extent possible) a probability of the form P(O = O|E =
E), called a query, where O and E are two mutually exclu-
sive sets of RVs. The set E is the set of evidence variables
and O is the set of RVs for which we are interested in know-
ing with what probability they take on the valueO, upon the
observation of E = E. In multi-context settings, inference
problems can be categorized into two broad classes:

• Intra-Contextual Inference Problems: For which the
sets E and O both belong to the same context.

• Inter-Contextual Inference Problems: For which the
sets E and O do not belong to a single context and,
therefore, more than one context is involved in the in-
ference problem.

In what follows, we will elaborate on these two cases.

4.1 INTRA-CONTEXTUAL INFERENCE
PROBLEM

One advantage of MCMs is that, once an inference prob-
lem is found to be an intra-contextual inference problem,
one can take advantage of the rich independence structure
potentially governing the context to accomplish the task of
inference in a computationally efficient way. For instance,
if the probabilistic knowledge of a context is presented in a
form of a BN, then one can benefit from a variety of exact
or approximate methods already developed for BNs. For a
comprehensive study of such methods the reader is referred
to (Koller and Friedman 2009). Hence, it is of great inter-
est to have contexts whose probabilistic knowledge can be
represented in some form of a PGM with sufficiently rich
independence structure for which inference problems can
be solved in a computationally efficient way. For example,
if the probabilistic knowledge of a context is to be mod-
eled according to some BN, we would like that BN to be
as sparsely connected as possible and enjoy low tree-width
to ensure computational efficiency for the task of inference
(Chandrasekaran, Srebro, and Harsha 2008).

4.2 INTER-CONTEXTUAL INFERENCE
PROBLEM: INFERENCE GRAMMAR

In this section, we turn our attention to the task of inter-
contextual inference. The RVs involved in the query for

645

the inter-contextual inference problem do not belong to a
single context. For this reason, the answer to the query is
inevitably in the form of an interval indicating a lower and
upper bound for the query. Since P(E|O) + P(Ē|O) = 1
we have P(E|O)↑ = 1 − P(Ē|O)↓. Therefore, we can fo-
cus our attention on the minimization problem (i.e., identi-
fying a lower bound to the probability of interest) realizing
that any maximization problem (i.e., identifying an upper
bound to the probability of nterest) could be cast as a min-
imization problem and vice versa.

First, we are going to consider some simple queries which
are posed to some example MCMs. These MCMs are de-
picted in Fig. 5(a-c). The goal here is to develop some
insight as to which variables are indeed relevant and which
are deemed irrelevant for a given query and the correspond-
ing MCM.

XY
W V

U1

a1

Un

an

X
V

Y

W
Z

P(X|Y)↓ = [
P(X)− P(Ȳ)

P(Y)
]+ P(X|Y, Z)↓ = [

P(X|Z)− P(Ȳ |Z)

P(Y |Z)
]+

U1

a1

Un

an

X
V

Y

W

Z
t

P(X|Y,Z, t)↓ = [
P(X|Z, t)− P(Ȳ |Z, t)

P(Y |Z, t)]+

P(X|Y,Z)↓ =
∑

t∈Val(t)

P(X|Y,Z, t = t)↓ P(t = t|Y,Z)

(a) (b)

(c)

U1

a1

Un

an

Figure 5: Sample inference rules given for some inter-
contextual inference problems. The RVs involved in the
query are shown in blue.

We begin by considering a simple case: the disjoint MCM
shown in Fig. 5(a). The rule to evaluate P(X|Y)↓ is
also given in Fig. 5(a). Interestingly enough, the expres-
sion only requires the intra-contextual quantities P(X) and
P(Y) and it does not depend on any other RV present in the
domain. In other words, as far as P(X|Y)↓ is concerned,
the MCM shown in Fig. 5(a) is equivalent to a much sim-
pler MCM: the one corresponding to having only two dis-
joint contexts described by P(X) and P(Y). Next, we take
the MCM given in Fig. 5(b) where there is an overlap be-
tween the context containing X and the one containing Y.
The overlapping part consists of the random vector Z. The
rule to evaluate P(X|Y, Z)↓ is given in Fig. 5(b). Now,
consider the MCM shown in Fig. 5(c) where we have the
same setting we had in previous case but a new random
variable t is added in the overlapping region. Notice that
the expression for P(X|Y, Z, t)↓ given in Fig. 5(c) is the
same expression given for P(X|Y,Z)↓ in Fig. 5(b) with
the substitution of Z, t instead of Z. That is, Z in Fig.
5(b) and Z, t in Fig. 5(c) are representing the same thing,
namely, “all the variables in the overlapping region”, and
in that respect, they are ultimately the same. The rules are

very much like sentences in predicate logic for which vari-
ables merely serve as place-holders.

The derivation of the rules given in Fig. 5(a-c) is not pre-
sented here. However, using the proof presented in Sec.
A-II of Appendix (to identify the relevant variables) and
subsequently following the methodology outlined in Sec.
A-III of Appendix (to visualize the partitions and reason
out the extent they overlap) it should be straightforward to
derive the presented rules.

The sample set of rules presented is by no means exhaus-
tive, nonetheless, due to the idea of context transformation
that will be discussed in Sec. 4.3, they can be applied to
a wide range of interesting inter-contextual inference prob-
lems. We would like to clarify that our ultimate objective is
not to compute and provide the complete set of rules that
can answer all possible queries and for all possible MCMs,
since simply, the set is infinite in size. What we need, there-
fore, is an algorithm, let us call it I∗, that can provide the
answer to the posed query being given an MCM as an in-
put. The presented rules provide insights and hints to the
nature of I∗ which needs to be devised to ideally handle
any arbitrary query posed to any6 MCM. In a sense, we
can get a glimpse of the nature of I∗ through analyzing the
presented rules. In other words, the derived rules serve as
a lens through which one can study I∗. In Sec. A-I of
Appendix a simple version of I∗ that can handle arbitrary
MCMs is outlined.

The motivation behind giving this sample set of rules can
now be summarized in the following.

1. To shed light on the general nature of a rule (which
reflects on the nature of I∗). More specifically, to il-
lustrate that a rule enjoys two key properties, namely:
(i) scale-invariance, (ii) resemblance to sentences in
predicate logic, in that in both cases, variables are
mere place-holders. For this resemblance we refer to
I∗ as inference grammar.

2. To demonstrate that a rule is telling us which intra-
contextual quantities are essential and which are irrel-
evant for a particular inter-contextual query.

3. To emphasize the key property that a rule derived un-
der a specific MCM remains valid for and can be ap-
plied to infinitely many other MCMs all of which are
linked through the notions of nestedness and transfor-
mation; hence generalization is achieved.

4. To lay down the foundation of transformation and
nestedness which both play crucial roles in under-
standing the underlying machinery behind I∗.

6Although we believe that the MCMs generated through the
generative process outlined in Sec. 3.2 are more cognitively plau-
sible, nonetheless, from a pure mathematical point of view, it
would be of interest to find an algorithm which could handle any
MCM.

646

Next, we discuss another key property of the inference
rules, namely, that of scale-invariance. Consider once
again the case in Fig. 2. Now let us derive P(xi|y)↓,
and P(X|y)↓ where X , x1:n. Using the rule given in
Fig. 5(a), one arrives at the following results: P(xi|y)↓ =

[P(xi)−P(ȳ)
P(y)]+, and P(X|y)↓ = [P(X)−P(ȳ)

P(y)]+. In other
words, the expressions remain the same, regardless of the
dimension of the quantity of interest, i.e., be it a single RV
or be it a random vector comprised of many RVs. In this re-
spect, once again, the inference rules resemble expressions
in predicate logic. The intuition on the scale invariance is
provided in Sec. A-III of Appendix.

It is worth noting that I∗ formulates the inter-contextual in-
ference problem as a Linear Programming (LP) optimiza-
tion (cf. Sec. A-I of Appendix). The key issues to consider
are: (i) what RVs have to be included in the LP, and (ii) the
abstraction level I∗ should choose to encode the RVs iden-
tified in step (i) for the LP, i.e., the parametrization of RVs
identified in step (i) for the LP. In what follows, the con-
cepts of nestedness and transformation are put forth. Once
the two are introduced, one could apply a single rule (e.g.,
one in Fig. 5(a)) to a much larger number of MCMs; in fact
to infinitely many MCMs.

4.3 INTER-CONTEXTUAL INFERENCE
PROBLEM: NESTEDNESS AND
TRANSFORMATION

x

y
z

=⇒
z

x
y =⇒

x

y

z

=⇒ x
y z

(a) (b) (c) (d)

P(x)

P(y
)

P
(z
)

{P(x,y)} |= P(x) ∧ P(y)

P(z
)

{P(x,y,z)} |= P(x) ∧ P(y) ∧ P(z)

Figure 6: Inter-Contextual Inference Problem: Transfor-
mation and hierarchical construct. As one proceeds from
the left to the right, a more comprehensive knowledge of
domain is assumed to be available, of course hypotheti-
cally.

The nested property, or nestedness, refers to the fact that
every MCM can be considered as an element of a family
of MCMs. That family contains all MCMs which through
marginalization can produce the original MCM. In such
a case we simply say that the nested property holds be-
tween the original MCM and the family. The process of
going from the original MCM to one of the members of the
family is referred to as transformation. For example, the
MCM containing three contexts {x}, {y}, and {z} shown
in Fig. 6(a) is a member of a family of MCMs contain-
ing two contexts {x, y} and {z}, shown in Fig. 6(b), one
of which is associated to a family of JPDs over x and y
(the dash-dotted circle in Fig. 6(b)) which, if marginal-
ized, produces the same P(x) and P(y) in the original
MCM (left-most MCM). Mathematically, the set of all

JPDs over RVs x and y which, if marginalized, produce
specific marginal probability distributions P(x) and P(y) is
denoted by {P(x, y)} |= P(x) ∧ P(y). The notion of the
nested property enables us to look at one MCM as a subset
of another larger MCM. The nested property, furthermore,
enables one to sort MCMs in a hierarchical construct as il-
lustrated in Fig. 6 where moving from the left to the right
corresponds to moving from lower levels of hierarchy to
higher levels.

x
y

RT
=⇒ x

y

R

T

a b

a

b
P(y,T)

P(x,a,b,R)
V

V

P(y,V)

w
w

P(b,w,R)

V
y

T
x

a R
b w

=⇒
S

P(
y,
S
) S S

Figure 7: Transformation: Sample case.

To convey the idea, consider the case illustrated in Fig.
7. Suppose the query of interest is P(x|y,R)↓. Then,
one can first transform the original (left-most) MCM into
the MCM shown in the middle, and subsequently into the
right-most MCM. Hence, using the right-most MCM and
the rule given in Fig. 5(b), one can write P(x|y,R)↓ =

[P(x|R)−P(ȳ|R)
P(y|R)]+ = [P(x|R)−1+P(y|R)

P(y|R)]+. If we had the
knowledge of P(y|R) then the expression given above
would have been sufficient to derive P(x|y,R)↓. However,
since P(y|R) is not known, we need to go through one more
step. This is precisely due to, and emphasizes, the fact
that by working on the right-most MCM we implicitly pre-
sumed that we were equipped with more knowledge than
we really had. Using the middle MCM and the rule given
in Fig. 5(a), one can conclude P(y|R)↓ = [P(y)−P(R̄)

P(R)]+.

Altogether7, P(x|y,R)↓ =
(
[P(x|R)−1+P(y|R)

P(y|R)]+
)
↓ =

[
P(x|R)−1+P(y|R)↓

P(y|R)↓
]+. It is worth noting that the same rule

would apply if instead of the random vector R we were
dealing with the random variable a, i.e., to find P(x|y, a)↓
one could use the same expression given for P(x|y,R)↓
by substituting a in place of R in all the expressions. Ar-
guments of this kind are made possible due to the idea
of transformation which enables us to analyze the trans-
formed MCM (e.g., the middle one in Fig. 7) rather than
the original MCM (the left-most one in Fig. 7). Further-
more, the concept of transformation highlights a key idea:
if a piece of information (i.e., an intra-contextual quantity)
is irrelevant in the transformed MCM for the posed query,
it must have been irrelevant in the original MCM in the
first place. This statement, once again, sheds light on what
intra-contextual quantities are relevant or irrelevant to de-
rive a posed inter-contextual query on a given MCM.

7This is due to the observation that for function f(y) = (k+y
y

)

when k < 0, min1≥y≥t>0 f(y) = (k+t
t
).

647

5 DISCUSSION

We will now discuss related work so as to build a connec-
tion between ours and previous attempts to incorporate par-
tial probabilistic knowledge of a domain in the task of in-
ference.

Attempting to combine Probabilistic Logic and BNs, the
authors in (Andersen and Hooker 1990; 1994) formulate
the inference problem as an optimization problem subject
to non-linear constraints so as to incorporate the condi-
tional independence relations embedded in the BN. How-
ever, in our proposed framework, the issue of dealing with
conditional independence relations does not arise at all, be-
cause these relations are dealt with during the derivation
process of intra-contextual probabilities.

The authors of (Hansen et al. 1995) point out that one could
avoid non-linear optimization when the value for a condi-
tional probability is at least imprecisely known. For exam-
ple, the constraint P(a|b) = P(a), if the value for P(a) is
known either precisely or imprecisely within some interval
[α, β], can be written as

P(a, b)

P(b)
= P(a) ∈ [α, β]⇔

{
P(a, b)− αP(b) > 0,
P(a, b)− βP(b) < 0.

Hence, the independence P(a|b) = P(a) can be formulated
as a number of linear constraints. However, the main draw-
back of this approach is that encoding a conditional inde-
pendence relation such as P(x|y, a1, · · · , an) = P(x|y) re-
quires a number of linear equations that is exponential in n
to be introduced into the optimization problem (Andersen
and Hooker 1994).

Drawing on the idea of Context-Specific Independence
(CSI) (Boutilier et al. 1996), the authors of (Geiger and
Heckerman 1991) propose the Bayesian Multinet model
which aims at taking advantage of the existing CSIs to
perform inference, by modeling a single BN as multiple
context-specific BNs. Translated into our multi-context set-
ting, the Bayesian Multinet model corresponds to the case
where the whole domain is modeled as a single BN, i.e.,
a single-context MCM, that can be decomposed into mul-
tiple BNs each being valid for a specific instantiation of
some RVs in the domain.

The authors of (Thone, Guntzer, and Kiebling 1992) point
out the same concerns which led us to propose MCM,
namely: (i) If unverified (in)dependencies are imposed be-
tween the variables in the domain then implausible results
may arise; (ii) PGMs require one to have complete prob-
abilistic knowledge of a domain which may not be avail-
able. Motivated by these, (Thone, Guntzer, and Kiebling
1992) gives a collection of rules to carry out inference in a
domain. Broadly speaking, this work is similar to ours in
spirit with the main distinction being the level of abstrac-
tion chosen to perform inference. In (Thone, Guntzer, and

Kiebling 1992) inference is performed in a very local and
rule-based fashion and conditional independence relations
are dealt with directly which complicates the task at hand;
a task which is futile when it comes to dealing with do-
mains of many variables. In our case, by introducing the
notion of context and encoding conditional independence
relations within contexts we avoid having to contemplate
the intra-contextual inference problem and leave this task
for the corresponding context. This way, we can take ad-
vantage of the possibly rich independence structure govern-
ing the context and carry out the intra-contextual inference
problem in a computationally efficient manner.

Finally, let us discuss some interesting aspects of the pro-
posed model.

The degree of belief is encoded mathematically in the form
of a probability distribution over the variables contained
within the context. Furthermore, in the process of partial
belief formation (which leads to the formation of contexts)
the reasoner is ignorant as to how various contexts proba-
bilistically interact (are related), except that, some contexts
may in fact share a number of variables in between and
hence overlap. Later on, in the process of the derivation of
the query posed to the reasoner, this ignorance manifests in
the uncertainty region represented by the min/max values
for the inter-contextual query of interest. In other words,
if the reasoner incurs ignorance as to the (in)dependency
structure governing the variables present in the domain,
then later on, in the process of derivation of the posed
query, the reasoner has to pay the price by merely arriv-
ing at a probability interval rather than a point probability
as an answer to the query of interest. Yet, the knowledge
of the underlying dependency structure is a fundamental
knowledge whose availability to the reasoner should not be
postulated as an inevitability but as an advantaged position.

The evolutionary process of MCM does not enforce a spe-
cific gradual expansion path, for the claim of MCM is
merely that any partial belief formation as to the domain
can be modeled in the framework depicted by MCM. That
is, the reasoner may arrive at different MCMs, depending
on the order in which the reasoner encounters different con-
cepts and also depending on her background knowledge as
to the nature of the potential connections between a collec-
tion of variables. Simply put, the order according to which
the reasoner comes about knowing the concepts or propo-
sitions of the domain does matter (cf. the discussion on the
order of belief formation in Sec. 3.2).

MCM enables one to carry out inference without having
to commit to any unjustified or uncertain independence as-
sumptions. In light of this, contexts symbolize the regions
of the domain over which an (in)dependence structure is
presumed and hence, the growth and merging of contexts
indicates the formation of new (in)dependence structures
over some parts of the domain which previously were un-

648

structured. In short, MCM is meant to be invoked in cir-
cumstances where the observations and the a priori knowl-
edge combined are not sufficient for the reasoner to form
the full JPD over all of the domain variables and yet, quite
crucially, the reasoner is reluctant to submit to any unjus-
tified assumptions to compensate for such inadequacy of
knowledge.

6 CONCLUSION

In an attempt to establish a middle ground between
Bayesian Logic and Probabilistic Logic (Andersen and
Hooker 1990; 1994), on one side, and PGMs8 on the other,
we proposed the Multi-Context Model to represent the state
of partial knowledge regarding a domain. The generative
process for the gradual construction of contradiction-free
MCMs was discussed. The task of Inference for MCM was
studied and, along the path, the notions of inference gram-
mar, nestedness, and transformation were introduced. A
short version of I∗ without the scale-invariance property
was provided in Appendix. It is worth noting that scale-
invariance property can be achieved with a minor change
to the last step of the proposed algorithm.

APPENDIX

A-I I∗non−scale: A short version of I∗ without
scale-invariance property

I∗ aims at minimally parameterizing the information con-
tained in an MCM so that the posed inter-contextual query
can be stated as an LP with the fewest number of parame-
ters. As pointed out earlier in Sec. 4.2, I∗ has to decide on
the following: (i) what RVs have to be included in the LP,
and (ii) the abstraction level required to minimally encode
the information on the RVs identified in step (i) for the LP,
in our case, the parametrization of the identified RVs.

In what follows, a simple algorithm, I∗non−scale, is
sketched which only performs (i) and ignores (ii). In other
words, I∗non−scale identifies the relevant RVs needed to de-
rive the exact lower/upper bound for the inter-contextual
query, however, it does not aim at minimally encoding them
into the LP9. I∗non−scale consists of three steps:

(1) Identify all the RVs involved in the posed query (e.g.,
in P (X|Y, z) these are the random vector X , random
vector Y and RV z).

(2a) If any two of the already identified RVs belong to two

8For instance, Bayesian Networks (Pearl 1986), Markov Net-
works (Koller and Friedman 2009), and Chain Graphs (Buntine
1995).

9To read more on this, the reader is referred to the discussion
on scale-invariance property in Sec. 4.2 and Sec. A-III of Ap-
pendix.

overlapping contexts, identify all the overlapping RVs
between these two contexts (e.g., in Fig. 5(b) and for
the query P (X|Y) for which step (1) would identify
X and Y , random vector Z in the overlapping region
must be identified as well).

(2b) If any two of the already identified RVs belong to
two contexts connected through a chain of overlap-
ping contexts: identify all the RVs contained in all the
overlapping regions of the chain of contexts.

(3) Parameterize only the identified RVs in steps (1), (2a),
and (2b) (remove all the other RVs from the MCM—
there is no need to encode the information on any
other RVs not identified in steps (1), (2a), and (2b)).

�

It should be noted that whether the posed query involves
minimization or maximization does not affect which RVs
need to be identified by I∗non−scale. Finally, It is worth not-
ing that with a minor modification to step (3) of I∗non−scale,
the scale-invariance property could be achieved. The mod-
ification has to do with the question of how to minimally
encode the information on each RV identified in steps (1),
(2a), and (2b) of I∗non−scale.
To demonstrate the operation of I∗non−scale on a more com-
plicated MCM that involves loops, consider the following
example sketched in Fig. 8(a). The query of interest is
P(X|Y)↓.

Xa

b

c

d

e
Y

z1:n

P

Q

S

t
1:m

v
1:r

O

B

j1:n

w1:n

h

Xa

b

c

d

e
Y

(a) (b)

Figure 8: (a) Sample MCM. The RVs involved in the posed
query are depicted in blue. (b) In Step (1) X and Y are
identified; in step (2b) the RVs b, d as well as a, c, and e
are identified. According to step (3) of I∗non−scale all of
the information as to the RVs X, Y, b, d, a, c, and e has to
be stated as an LP to derive the query.

Next, we are going to sketch the proof for I∗non−scale. Let
us first state the claim formally and then provide the proof.

A-II Proof for I∗non−scale:

Lemma: Given a posed query and an MCM, if all the
information on the RVs identified in steps (1) to (2b) of
I∗non−scale is stated and then solved as an LP, the exact
solution (i.e., a min or max) can be derived for the posed

649

query; all the remaining information available in the MCM
is deemed irrelevant to the derivation of the query, hence
the sufficiency.

Proof: Our proof is constructive. In the proof we entertain
two ideas, namely (i) the idea of generative process and,
particularly, that of conditioning also used in Sec. 3.2, and
(ii) the notion we refer to as the locality of information.
Suppose that all the RVs discussed in steps (1) to (2b) of
I∗non−scale are identified. The key insight is that the infor-
mation on how the remaining RVs probabilistically interact
with each other is completely local in nature and, there-
fore, irrelevant to the derivation of the posed query. To
see this, one can start off with the identified RVs and then
in a gradual fashion add on10 the rest of the RVs (through
the idea of conditioning discussed in Sec. 3.2). Quite cru-
cially, this very process of adding the non-identified RVs to
the model can be done completely in a local fashion, i.e.,
without imposing any constraints on how the identified RVs
probabilistically interact. The mere fact that those RVs can
be added into the model: (i) subsequent to the identified
ones, and (ii) without inducing any sort of constraints on
the identified ones, deems them irrelevant to the derivation
of the query. �

A-III Scale-Invariance Property: Intuition

Here, we will provide a proof for the example on scale-
invariance property given in Sec. 4.2. Although the proof
is provided for a special query, the methodology used in
the proof provides an insightful way of visualizing an in-
ference problem. The idea behind the proof is very simple
and related to visualizing the connection of a RV to the
underlying sample space using Venn diagrams. Without
loss of generality, we assume that all the RVs present in
the domain are binary11. Random vector X = x1:n par-
titions the sample space Ω into 2n disjoint regions each
of which corresponds to a realization of X. If each real-
ization of the random vector x1:n corresponds to a binary
number (i.e., binary-coding the realizations), then one can
conclude Val(X) = {0, 1, · · · , 2n − 1}. Let us index the
partitions by their corresponding realization of X. An il-
lustrative example of an induced partitioning of the sam-
ple space Ω due to random vector X = x1:n is depicted
in Fig. 9(a), and a partitioning induced by RVs y and z
is sketched in Fig. 9(b). We note that the mere knowl-
edge of the distribution function of a random quantity does
not provide one with the knowledge of the underlying par-
titions. For this particular example, since the JPD over
X, y, z is not available, the knowledge of how the parti-
tions induced by y, z (Fig. 9(b)) and the ones induced by
X (Fig. 9(a)) interact, i.e., to what extent they overlap,

10This is based on the fundamental property that a JPD can be
expanded using the chain rule of probability in an arbitrary order.

11The generalization of the argument to non-binary RVs is
straightforward.

remains unspecified. Therefore, since P(X|y) = P(X,y)
P(y) ,

to minimize (maximize) P(X|y), the quantity P(X, y) has
to be minimized (maximized). Pictorially, the minimiza-
tion (maximization) of P(X, y) corresponds to the mini-
mization (maximization) of the overlap between the parti-
tions corresponding to the events {X = X} and {y = y};
hence, very simply, P(X, y)↓ = [P(X) + P(y) − 1]+ and
P(X, y)↑ = min{P(X),P(y)}. The key point, which
yields the scale-invariance property, is that to derive the
minimum (maximum) overlap between the partitions cor-
responding to the events {X = X} and {y = y} the in-
formation as to how the other partitions—corresponding
to the other realizations of the present RVs in the model—
interact with one another neither needs to be known nor to
be encoded into the LP; a fact which results in not requir-
ing to encode the information as to the other realizations.
Hence the only pieces of information that are required to
be encoded and then solved as an LP are P(X) and P(y).
The same line of reasoning could be adopted for P(xi|y).
The idea of scale-invariance, therefore, aims to avoid the
encoding of the information as to the partitions induced on
Ω which are yet deemed to be irrelevant to the derivation
of the posed query; hence one needs to encode solely the
relevant ones into the LP.

1

2
3

4

5

6

i

2 n−
2

0

2
n
−
1

Ω Ω

{y = 0, z = 0}

{y = 1, z = 0}
{y = 1, z = 1}

{y = 0, z = 1}

{xi = 0} {y = 0}

(a) (b)

Figure 9: Sample Space: (a) Partitioning induced on Ω due
to X = x1:n. The blue region corresponds to the partition
associated to the event {xi = 0} and the red one to that of
{X = i} where i ∈ Val(X). (b) Partitioning induced on
Ω due to RVs y and z. The blue region corresponds to the
partition associated to the event {y = 0}.

Acknowledgement

The authors would like to thank the anonymous reviewers
for their valuable comments.

This work was supported in part by the Natural Sci-
ences and Engineering Research Council (NSERC) under
grant RGPIN 262017 and by the Fonds Quebecois de la
Recherche sur la Nature et les Technologies (FQRNT).

650

References

Andersen, K. A., and Hooker, J. N. 1990. Probabilistic
logic for belief nets. In International Congress of Cyber-
netics and Systems. New York City.

Andersen, K. A., and Hooker, J. N. 1994. Bayesian logic.
Decision Support Systems 11(2):191–210.

Boutilier, C.; Friedman, N.; Goldszmidt, M.; and Koller, D.
1996. Context-specific independence in bayesian networks.
115–123. Morgan Kaufmann Publishers Inc.

Buntine, W. L. 1995. Chain graphs for learning. In Pro-
ceedings of the Eleventh conference on Uncertainty in ar-
tificial intelligence, 46–54. Morgan Kaufmann Publishers
Inc.

Chalmers, A. F. 1976. What is this thing called science?
Hackett Publishing.

Chandrasekaran, V.; Srebro, N.; and Harsha, P. 2008. Com-
plexity of inference in graphical models. Proceedings of
the 24th Conference in Uncertainty in Articial Intelligence
70–78.

Geiger, D., and Heckerman, D. 1991. Advances in prob-
abilistic reasoning. In Proceedings of the Seventh Con-
ference on Uncertainty in Artificial Intelligence, 118–126.
Morgan Kaufmann Publishers Inc.

Hansen, P.; Jaumard, B.; Nguetse, G. D.; and Aragao, M.
P. D. 1995. Models and algorithms for probabilistic and
Bayesian logic. Citeseer.

Koller, D., and Friedman, N. 2009. Probabilistic graphical
models: principles and techniques. MIT press.

Pearl, J. 1985. Bayesian networks: a model of self-
activated memory for evidential reasoning. in Proceedings
of the Cognitive Science Society 329–334.

Pearl, J. 1986. Fusion, propagation, and structuring in
belief networks. Artificial intelligence 29(3):241–288.

Pearl, J. 1990. Reasoning with belief functions: An analy-
sis of compatibility. International Journal of Approximate
Reasoning 4(5):363–389.

Thone, H.; Guntzer, U.; and Kiebling, W. 1992. Towards
precision of probabilistic bounds propagation. In Uncer-
tainty in Artificial Intelligence, 315–322.

651

Annealed Gradient Descent for Deep Learning

Hengyue Pan Hui Jiang
Department of Electrical Engineering and Computer Science
York University, 4700 Keele Street, Toronto, Ontario, Canada

Emails: panhy@cse.yorku.ca hj@cse.yorku.ca

Abstract

Stochastic gradient descent (SGD) has been re-
garded as a successful optimization algorithm in
machine learning. In this paper, we propose a
novel annealed gradient descent (AGD) method
for non-convex optimization in deep learning.
AGD optimizes a sequence of gradually im-
proved smoother mosaic functions that approx-
imate the original non-convex objective function
according to an annealing schedule during the
optimization process. We present a theoretical
analysis on its convergence properties and learn-
ing speed. The proposed AGD algorithm is ap-
plied to learning deep neural networks (DNNs)
for image recognition on MNIST and speech
recognition on Switchboard. Experimental re-
sults have shown that AGD can yield comparable
performance as SGD but it can significantly ex-
pedite training of DNNs in big data sets (by about
40% faster).

1 INTRODUCTION

The past few decades have witnessed the success of gradi-
ent descent algorithms in machine learning. By only cal-
culating the local gradient information of the loss function,
gradient descent (GD) algorithms may provide reasonably
good optimization results for different types of problem-
s. Among many, stochastic gradient descent (SGD) is a
very popular method for modern learning systems, which
only use one or a few randomly-selected training samples
to update the model parameters in each iteration (Bottou,
1998). In comparison to the batch GD algorithms, SGD re-
quires far less computing resources especially when it deals
with a huge task involving big data. In (LeCun and Bottou,
2004), it has been proved that SGD can process asymptoti-
cally more training samples than batch GD algorithms giv-
en the same amount of computing resources. (Roux et al.,
2012) proposed a new SGD framework that can achieve

a linear convergence rate for strongly-convex optimization
problems. In (Shamir and Zhang, 2013), the performance
of SGD was analyzed on a number of non-smooth convex
objective functions and a bound on the expected optimiza-
tion errors was provided. On the other hand, SGD also has
its own drawbacks. The random noise introduced by da-
ta sampling leads to noisy gradient estimates, which may
slow down the convergence speed and degrage the perfor-
mance (Murata and Amari, 1999). Moreover, because of its
sequential nature, SGD is hard to parallelize. More recent-
ly, several different methods have been proposed to par-
allelize SGD to accelerate its training speed for big-data
applications. Initially, some researchers have proposed to
implement the SGD method across multiple computing n-
odes that are synchronized for updating model parameters.
Unfortunately, it has been found that the delay by the re-
quired server synchronization is always much longer than
the time needed to calculate the gradient. Therefore, sev-
eral other methods have been proposed to parallelize SGD
without frequent synchronization among computing nodes.
For example, Zinkevich et al. (2009) has presented a paral-
lelized SGD algorithm, which dispatches all training sam-
ples into several computing nodes to update the parameters
independently, and the final models will be combined by
averaging all separate models at the end of each training e-
poch. Moreover, Bockermann and Lee (2012) have proved
that the performance of this parallelized SGD algorithm de-
pends on the number of SGD runs, and they have success-
fully used it to train large-scale support vector machines.
However, the convergence of this simple parallelized SGD
method requires that the learning process is convex. More-
over, Agarwal and Duchi (2012) have shown that the delays
introduced by asynchronous model updates can be asymp-
totically neglected when we optimize a smooth and convex
problem. Similarly, Feng et al. (2011) has proposed a par-
allelized SGD framework called HOGWILD!, which has
mostly removed the memory locking and synchronization.
However, it has found that this method works well only for
sparse models. In summary, these parallelized SGD meth-
ods heavily rely on the assumptions that the learning prob-
lems are convex and/or sparse. These methods may suf-

652

fer the performance degradation when dealing with more
general non-convex optimization problems such as those in
deep learning.

Recently, deep learning (Bengio, 2009) has achieved huge
successes in many real-world applications, such as speech
recognition and computer vision. It becomes a very inter-
esting problem to learn large-scale deeply-structured neural
networks, such as deep neural networks (DNNs), from big
data sets. We know that the training of DNNs is highly non-
convex. Moreover, it is relatively expensive to compute the
gradients of the objective function for DNNs since it needs
to run the time-consuming back-propagation algorithm. To
accelerate the large scale DNN training for big data, it has
proposed a weight sharing method in (LeCun et al., 1989),
which reduces the number of free parameters in the neural
network and thus speeds up the training procedure. Even
though today’s development of computing hardware makes
it possible to train large DNNs directly, it is still very slow
to train state-of-the-art DNNs for many real-world applica-
tions since the major training of DNNs still depends on the
mini-batch SGD algorithm. Therefore, it is much needed in
deep learning to develop new optimization methods that are
faster to solve large-scale training problems in deep learn-
ing. One idea is ‘starting small’ (Elman, 1993), in which
the network training will begin from simple training da-
ta with small working memory, and gradually increase the
data complexity and network memory. This process simu-
lates the learning procedure of human beings, especially in
some complex domains like language. Krueger et al. have
implemented the so-called ‘shaping’ learning in the neural
network training (Krueger and Dayan, 2009). During the
training, the task is split into several sub-components and
a suitable training sequence is used to boost the training
speed. In (Bengio et al., 2009), Bengio et al. have pro-
posed a training strategy for deep learning called curricu-
lum learning. The basic idea is to start the learning pro-
cess from small tasks that are easy to solve, and gradually
increase the complexity of the tasks in the later learning
stage. Experimental results imply that when using a suit-
able curriculum, this training strategy may provide a sim-
ilar performance as unsupervised pre-training and it helps
the algorithm to find a better local minimum. The curricu-
lum learning method can serve as an important basis for the
work in this paper.

In this paper, we propose a new algorithm called annealed
gradient descent (AGD). Instead of directly optimizing the
original non-convex objective function, the basic idea of
AGD is to optimize a low resolution approximation func-
tion that may be smoother and easier to optimize. Further-
more, the approximation resolution is gradually improved
according to an annealing schedule over the optimization
course. In this work, we have proposed to approximate a
non-convex objective function based on some pre-trained
codebooks, where the approximation precision can be eas-

ily controlled by choosing different number of codewords
in the codebook. In comparison with (Bengio et al., 2009),
the main contribution of this paper is that AGD provides a
suitable way for approximation (through pre-trained code-
books), and more importantly, we show a bound for the
difference between the parameters derived by AGD and
the regular GD algorithms. This new method has several
advantages: Firstly, the low resolution approximation by
codebooks lead to a much smoother risk function, which
may result in finding a good local minimum more easily.
Secondly, because the size of each codebook is much s-
maller than that of the training set, we can use a fast batch
algorithm to learn the model at the beginning and this part
can be easily parallelized. In this work, we have applied
AGD to training DNNs for various tasks to verify its effi-
ciency and effectiveness. Experiments have shown that the
AGD algorithm yields about 40% speed-up in total training
time of DNNs, and also leads to similar recognition perfor-
mance as the regular mini-batch SGD.

The remainder of this paper is organized as follows. In sec-
tion 2, we provide some background information about em-
pirical risk function and two kinds of gradient descent algo-
rithm. Section 3 shows the mosaic risk function and some
related theoretical analysis. In section 4, we present the
proposed AGD algorithm. Section 5 reports experiments
on different tasks, and we conclude this paper in section 6.

2 PRELIMINARIES

In this section, we first review some preliminary definition-
s in machine learning, which serve as important notation
bases for this work.

2.1 EMPIRICAL RISK FUNCTION

In machine learning, we normally use a loss function,
Q(x, y, θ), to measure the ‘cost’ of a given event x (y is
the corresponding label of x) and the underlying model pa-
rameters are denoted as θ, and the expected value of the
loss function is the so-called expected risk function, R(θ):

R(θ) = E[Q(x, y, θ)] ,
∫
Q(x, y, θ)dP (x, y) (1)

where P (x, y) denotes the ground truth distribution over
all possible events. The fundamental goal of many ma-
chine learning problems is to minimize the above expect-
ed risk function. In practice, however, it is extreme-
ly hard to do so because P (x, y) is always unknown.
Therefore, In practice, we normally use a finite training
set that includes N independent pairs of sample ON =
{(x1, y1), (x2, y2), ..., (xN , yN)}, which are presumably
randomly sampled from the above unknown distribution.
Based on the training set, we may derive the so-called em-
pirical risk function, RN (θ), to approximate the expected

653

risk function in eq.(1):

R(θ) ≈ RN (θ) =
1

N

N∑

n=1

Q(xn, yn, θ) (2)

If the training set is sufficiently large, under some minor
conditions, minimizing the empirical risk function in e-
q.(2) may also minimize the expected risk function in eq.(1)
(Vapnik, 1998). For notational clarity, without confusion,
we drop label yn from the loss function for the rest of this
paper.

2.2 GRADIENT DESCENT ALGORITHM

To minimize the empirical risk function, we can use gra-
dient descent algorithms, which update θ along the direc-
tion of the negative gradient based on a pre-defined learning
rate λ. Generally speaking, there are two different types of
gradient descent algorithms: batch gradient descent (batch
GD) and stochastic gradient descent (SGD).

In each iteration, the batch GD considers all of the training
samples to calculate the average gradient and then update
the parameters accordingly:

θ̂t+1 = θ̂t − λt · ∇θRN (θ̂t)

= θ̂t − λt ·
1

N

N∑

n=1

∂Q(xn, θ̂t)

∂θ
(3)

where λt is the learning rate at iteration t. In contrast, SGD
only takes one training sample (which is randomly sampled
from the training set) into account in each iteration:

θ̄t+1 = θ̄t − λt ·
∂Q(xn, θ̄t)

∂θ
. (4)

If we set a suitable learning rate, under some conditions,
both batch GD and SGD can finally converge to a local
minimum θ∗ of the empirical risk function (Bottou, 2004).
In practice, to reduce variance of the estimated gradients in
SGD, a variant SGD, called mini-batch SGD, is normally
used, where a small set (called mini-batch) of randomly
selected data samples are used to estimate the gradient for
each model update, as opposed to only one sample in SGD.

As we know, the batch GD works well for convex opti-
mization while SGD may be used to solve non-convex op-
timization problems due to the random noises in its gra-
dient estimation. Meanwhile, SGD requires far less com-
puting resources in comparison to batch algorithms, but
on the downside, its convergence speed is very slow due
to sampling noise, and it is very hard to parallelize SGD.
Therefore, when dealing with some large scale tasks, S-
GD may run very slowly. In this paper, we propose a new
optimization method to solve some large-scale non-convex
optimization problems in deep learning. The new method
will be compared with SGD in terms of convergence speed
and learning performance.

3 THE MOSAIC RISK FUNCTION

Some previous work has considered the problem of crit-
ical points (including local optima and saddle points) in
non-convex optimizations. According to (Choromanska
et al., 2014), some poor local minima may hinder the opti-
mization process especially in small-scale neural network-
s. (Dauphin et al., 2014) argued that for the practical high
dimensional problems, the saddle points may become the
most difficult problem to deal with, rather than local opti-
ma. In practice, any local search algorithms may be eas-
ily trapped into a nearby shallow local optimum point or
saddle point, which makes it hard for optimization to pro-
ceed further. SGD relies on the sampling noise to allevi-
ate this problem. Another way to tackle this problem is to
optimize a smoother approximation of the original rugged
non-convex function. In this work, we propose to approx-
imate the original objective function based on a relatively
small codebook, which is generated by clustering the whole
training set. In this way, we may provide a low resolution
approximation of the objective function, which is much s-
moother and easier to optimize with simple local search
algorithms.

Assume we use a discrete codebook, denoted as C =
{c1, c2, ..., cM}, where M � N , to approximate the o-
riginal training set. For a training sample xn, we select its
nearest codeword in C as its approximation:

c(n) = arg min
cm∈C

‖ xn − cm ‖ (5)

and the quantization error εn is ‖ xn − c(n) ‖.
Next, we may derive a low resolution risk function R̃ε,
called mosaic risk function, to approximate the empirical
risk function RN (θ) (where ε ≡ maxn εn):

R̃ε(θ) =
1

N

N∑

n=1

Q(c(n), θ) =
M∑

m=1

ωm
N
·Q(cm, θ) (6)

where ωm is the number of training samples in the whole
training set that are approximated by the codeword cm, i.e.,
ωm =

∑N
n=1 δ(c

(n)−cm), where δ() denotes the Kroneck-
er delta function.

Assume that the loss function Q(x, θ) is twice Lipschitz-
continuous with respect to the input sample x and the mod-
el parameter θ, that is,

‖ Q(xi, θ)−Q(xj , θ) ‖< L0 ‖ xi − xj ‖ (7)

‖ Q′(xi, θ)−Q′(xj , θ) ‖< L1 ‖ xi − xj ‖ (8)

‖ Q(x, θi)−Q(x, θj) ‖< L0 ‖ θi − θj ‖ (9)

‖ Q′(x, θi)−Q′(x, θj) ‖< L1 ‖ θi − θj ‖ (10)

In this case, it is easy to show that for any θ, the mosaic
risk function can provide a bounded approximation for the

654

empirical risk function:

‖ RN (θ)− R̃ε(θ) ‖< ε · L0 (∀θ). (11)

When we deal with a non-convex loss function, the mosa-
ic risk function will give a very important benefit due to
its low resolution: because we use a smaller codebook to
approximate the training set, and one codeword may repre-
sent a large number of different training samples, the mosa-
ic risk function normally corresponds to a smoother curve
that may get rid of a lot of critical points comparing with
the original empirical risk function. (Bengio et al. (2009)
may support this argument.) Therefore, if we use the gra-
dient descent method to optimize the mosaic risk function,
named as mosaic gradient descent (MGD), we can find its
local minimum much easier and much faster, and this local
minimum on mosaic risk function is a good initialization
for further learning. If we can use a batch algorithm to op-
timize the mosaic risk function, it may significantly speed
up the training phase due to a smaller number of codeword-
s.

When we use MGD to minimize the mosaic risk function,
we can get the following parameter update sequence:

θ̃t+1 = θ̃t − λt · ∇θR̃ε = θ̃t − λt
M∑

m=1

ωm
N
· ∂Q(cm, θ̃t)

∂θ

(12)
Obviously, MGD generates a different sequence of the
model parameters θ̃t.

Moreover, we may extend the above MGD to a stochastic
version using only a random mini-batch of data for each
model update in eq.(12) rather than the whole training set.
All data in the selected mini-batch are approximated by
codewords as in eq.(5). This is called mini-batch MGD.
Of course, it may be better to use a much larger batch size
in mini-batch MGD than that of mini-batch SGD to explore
the overall structure of the mosaic function.

In the following, we will show that under some minor con-
ditions, minimization of the mosaic risk function leads to
convergence into a bounded neighborhood of a local op-
timum of the empirical risk function. Moreover, we also
show that MGD may provide faster a convergence rate than
GD and SGD under certain conditions.

3.1 CONVERGENCE ANALYSIS

As we know, if the learning rates satisfy some minor con-
ditions, the batch GD algorithm in eq. (3) is guaranteed to
converge to a critical point of the empirical risk function.
In the following, let’s first compare the MGD update se-
quence in eq.(12) with the GD update in eq.(3). Obviously,
we have the following lemma:

Lemma 1 (MGD vs. GD) Assume that the two update se-
quences in eq. (3) and eq. (12) start from the same initial

parameters θ0, and use the same sequence of learning rates
λt, then we have:

‖ θ̃t − θ̂t ‖< ε · L1 ·
t−1∑

τ=1

λτ (13)

Proof: (1) At t = 1, assume that GD and MGD start from
the same initialization θ0 and share the same sequence of
learning rate. Based on the Lipschitz-continuous condition
in eq. (8), it is easy to show:

‖ θ̃1 − θ̂1 ‖=
λ0
N
‖

N∑

n=1

∂Q(xn, θ0)

∂θ0
−

N∑

n=1

∂Q(c(n), θ0)

∂θ0
‖

≤ λ0
N
·
N∑

n=1

‖ ∂Q(xn, θ0)

∂θ0
− ∂Q(c(n), θ0)

∂θ0
‖

≤ λ0
N
· L1 ·

N∑

n=1

‖ xn − c(n) ‖

≤ ε · L1 · λ0
(14)

(2) Assume that the Lemma 1 holds for t, i.e.,

‖ θ̃t − θ̂t ‖< ε · L1 ·
t−1∑

τ=1

λτ . (15)

For t+ 1, considering the condition in eq. (10), we have:

‖ θ̃t+1 − θ̂t+1 ‖

=‖ (θ̃t − θ̂t) +
λt
N

N∑

n=1

(
∂Q(xn, θ̂t)

∂θ
− ∂Q(c(n), θ̃t)

∂θ
) ‖

≤‖ θ̃t − θ̂t ‖ +
λt
N

N∑

n=1

‖ ∂Q(xn, θ̂t)

∂θ
− ∂Q(c(n), θ̃t)

∂θ
‖

≤ ε · L1 ·
t−1∑

τ=1

λτ + λt · L1· ‖ xn − c(n) ‖

= ε · L1 ·
t∑

τ=1

λτ

(16)

Therefore, Lemma 1 also holds for t+ 1. �

Lemma 1 means that if we run both MGD and the batch GD
algorithm for t iterations, the difference between two resul-
tant model parameters is bounded and it is proportional to
the maximum quantization error, ε, in the mosaic function.

Based on Lemma 1, we have the following theorem:

Theorem 2 (MGD vs. GD) When we use the empirical
risk function eq. (2) to measure the two parameters θ̃t in
eq. (12) and θ̂t in eq.(3), the difference is also bounded as:

‖ RN (θ̃t)−RN (θ̂t) ‖≤ ε · L0 · L1 ·
t∑

τ=1

λτ (17)

655

Proof: Based on the condition in eq.(7) we have:

‖ RN (θ̃t)−RN (θ̂t) ‖=
1

N
· ‖

N∑

n=1

(Q(xn, θ̃t)−Q(xn, θ̂t)) ‖

≤ 1

N
·
N∑

n=1

‖ Q(xn, θ̃t)−Q(xn, θ̂t) ‖

≤ L0· ‖ θ̃t − θ̂t ‖

≤ L0 · ε · L1 ·
t∑

τ=1

λτ . �

(18)

In Lemma 1 and Theorem 2, the bounds are proportion-
al to the summation of all used learning rates. However,
in many deep learning practices such as DNN/CNN train-
ing, we need to use a sequence of quickly-decayed learning
rates to guarantee the convergence. In these situations, the
summation of all learning rates is clearly bounded. There-
fore, Theorem 2 shows that model parameters θ̃t derived
by MGD provide a good estimation of θ̂t learned by the
regular batch GD algorithm when they are measured with
the empirical risk function. The difference is bounded by a
quantity proportional to the quantization error in the mosaic
function. As a result, if the quantization error is sufficiently
small, MGD converges into a bounded neighborhood of a
critical point of the original empirical risk function.

3.2 FASTER LEARNING

Here we study the learning speed of MGD. If we want to
optimize the empirical risk function RN (θ) up to a given
precision ρ, i.e., ‖ θ − θ∗ ‖< ρ, by using batch gradi-
ent descent in eq. (3), it will take O(log 1

ρ) iterations, and
the complexity of each iteration is O(N). Thus the overall
complexity of the batch algorithm isO(N log(1

ρ)) (Bottou,
2012).

Alternatively, we can run the MGD algorithm on eq. (12)
for t iterations, and based on Lemma 1 we have:

Lemma 3 If we run the MGD algorithm in eq. (12) for t
iterations, the model parameters can reach the precision
as:

‖ θ̃t − θ∗ ‖< ρ+ ε · L1 ·
t∑

τ=1

λτ (19)

and the overall computational complexity of MGD isO(M ·
t).

Based on Lemma 3, we can have Theorem 4 as below:

Theorem 4 (MGD vs. GD) Assume there exists a code-
book C containing M codewords, which can approximate
the whole training set well enough, and M is sufficiently

small, i.e.

ε� ρ

L1 ·
∑t
τ=1 λτ

and M <
N ·O(log(1

ρ))

t
(20)

then to reach the same optimization precision, optimizing
the mosaic risk function using MGD requires less comput-
ing resources and yields faster convergence speed than the
batch GD in eq. (3).

Similar to Theorem 4, we also have Theorem 5 that com-
pares the resource requirement between MGD and SGD:

Theorem 5 (MGD vs. SGD) In SGD, we need to run
O(1

ρ) iterations to achieve the optimization precision ρ
(Bottou, 1998). Similar to Theorem 4, if we find a code-
book which satisfies the quantization error requirement and
remains sufficiently small as follows:

ε� ρ

L1 ·
∑t
τ=1 λτ

and M <
1

t
·O(

1

ρ
) (21)

then MGD will require less computation resource than S-
GD to achieve the optimization precision ρ.

In the case of big data, i.e., N is extremely large (N �M),
or in an early stage of optimization, when we only require
a rough optimization precision, i.e., ρ is allowed to be rel-
atively large, such codebook may exist. In these cases, it
may be beneficial to run MGD instead of GD or SGD since
MGD has faster convergence speed than batch GD and S-
GD. Moreover, as opposed to pure serial computation in
SGD, the gradient computation in each MGD iteration can
be easily parallelized. Therefore, MGD may provide an
even faster training speed if multiple computing units are
available.

4 ANNEALED GRADIENT DESCENT

Theorems 4 and 5 imply that MGD may possibly converge
faster than either GD or SGD but it remains unclear how to
find a codebook that simultaneously satisfy both condition-
s in these theorems. Moreover, we may require different
levels of optimization precision in various stages of a train-
ing process. For example, at the beginning, when all model
parameters stay far away from any local optimal point, we
may not need to calculate a very accurate gradient, i.e., ρ
is allowed to be relatively large at this time. On the other
hand, as the parameters move towards a close neighbor-
hood of an optimal point, we may require a very small ρ
to perform an accurate local search to converge more ef-
fectively. As suggested by eq.(20), the required quantiza-
tion error, ε, is proportionally related to ρ. For a fixed set
of training data, the quantization error, ε, in turn depend-
s on the size of the codebook, M . This suggests we use
an annealing schedule of {ε1, ε2, · · · } (with εi+1 < εi) for

656

the whole training process, where ε gradually decreases as
training continues. At the beginning, we can use a small
low resolution codebook (relatively big ε) to run MGD to
learn model parameters. As training proceeds, we gradual-
ly reduce ε by using increasingly larger codebooks. At the
final stage, we may even use all original training samples
to fine-tune the model parameters.

Therefore, the basic idea of annealed gradient descen-
t (AGD) is to construct deeply-structured hierarchical code-
books, in which quantization error ε slowly decreases from
the top layer down to the bottom layer, and the last layer
is finally connected to the original training set. During the
training procedure, we first start from the top to use each
layer of codebooks to do MGD updates in eq.(12) and grad-
ually move down the hierarchy based on a pre-specified an-
nealing schedule until we finally use the training samples
to fine-tune the model parameters. If a proper annealing
schedule is used, this annealed learning process may ac-
celerate the training speed as implied by Theorems 4 and
5. More importantly, it may help to converge to a better
local optimum at the end because AGD optimizes much s-
moother mosaic objective functions from the early stage of
training.

In this section, we first briefly discuss the hierarchical code-
books, and then present the AGD training algorithm.

4.1 HIERARCHICAL CODEBOOKS

In this work, we use a regular K-means based top-down hi-
erarchical clustering algorithm (Zhou et al., 2015) to con-
struct the required hierarchical codebooks, where the cen-
troid of each cluster is used as a codeword for each lay-
er. The structure of the hierarchical codebooks is shown in
Figure 1.

Figure 1: Illustration of a hierarchical codebook for AGD

When building the codebooks, we first divide the training
set into several subsets based on the class labels of da-
ta samples (each subset only contains all training samples

from one class label), then conduct the hierarchical top-
down K-means clustering on each subset. Note that the
clustering process is very easy to parallelize because al-
l subsets are independent with each other and we can run
hierarchical K-means on them separately. In the K-means
clustering, we first define a suitable K, then use K-means
to split each subset into K clusters. The centroids of all
clusters are used to build the first layer of codebooks. Next,
we continuously apply the K-means clustering on all clus-
ters to further divide them into K sub-clusters to derive
the codebooks in the next layer. We repeat this procedure
several times until the quantization error in the last layer
becomes small enough. Finally, we connect the original
training samples at the bottom as the leaf nodes to obtain a
hierarchical codebook as shown in Figure 1, in which the
sizes of the codebooks are gradually increased from the top
layer to the bottom layer. In this way, the K-means code-
words in the various layers of the hierarchy may be used
to approximate each training sample in the leaf node up to
different precision levels as required in the following AGD
algorithm.

4.2 ANNEALED GRADIENT DESCENT
ALGORITHM

In AGD, we first specify an annealing schedule, i.e.,
{ε1, ε2, · · · } (εi+1 < εi). In each epoch of AGD, for each
training sample in the selected data mini-batch, we selec-
t a codeword from the uppermost layer of the hierarchi-
cal codebooks that barely satisfies the required quantiza-
tion error εi, to construct the mosaic function for MGD at
this stage. Since εi gradually decreases in the annealing
schedule, we slowly move to use more and more precise
codewords (eventually the original data samples) in AGD.
In AGD, a hierarchical search list is constructed for each
layer in C based on the average quantization errors in K-
means. As a result, in each AGD step, the correspond-
ing codewords can be found very efficiently based on this
search list. The annealed gradient descent (AGD) algorith-
m is shown as in Algorithm 1. During the AGD training,
we may even use varying batch sizes. For example, we
can start from a very large batch size (even the whole train-
ing set) at the beginning and slowly decrease the batch size
from epoch to epoch. In general, we normally use much
larger batch sizes than those used in the regular mini-batch
SGD. If a suitable annealing schedule is specified, many
initial AGD epochs may be designated to run faster MGD
with smaller codebooks, yielding faster training speed than
the mini-batch SGD or GD in overall.

5 EXPERIMENTS

In this section, we apply the proposed AGD algorithm
to learning sigmoid fully connected deep neural networks
(DNNs) for image recognition in the MNIST database and

657

Algorithm 1 Annealed Gradient Descent(AGD)
Input: training set O, hierarchical codebook C, anneal-
ing schedule {ε1, ε2, ..., εT | εi+1 < εi}
for each epoch i = 1 to T do

for each batch X do
For each sample in X , select a codeword c(n) at the
uppermost layer of the C satisfying εi;
Use MGD to optimize the mosaic risk function;

end for
end for

Table 1: The total training time of K-means clustering.
Database Number of CPUs Training Time
MNIST 5 4.3 (hr)
Switchboard 8 9.2 (hr)

speech recognition in the Switchboard database. AGD and
the regular mini-batch SGD are both used to train DNNs
based on the minimum cross-entropy error criterion. AGD
is compared with mini-batch SGD in terms of the total
training time and the final recognition performance.

For each data set, we first use a standard K-means algorith-
m to build a deeply-structured hierarchical codebook. We
use K = 5 in MNIST and K = 4 in Switchboard, which
can result in a hierarchical codebook with sufficient depth.
In our experiments, the MNIST database contains 10 class-
es and Switchboard contains 8991 classes, thus the hierar-
chical K-means has a good potential for parallel training.
Here, the K-means clustering procedure is parallelized a-
mong multiple CPUs to speed it up as much as possible.
In our experiments, the total running time of the K-means
clustering is about 4.3 hours in MNIST (using 5 CPUs) and
about 9.2 hours in Switchboard (using 8 CPUs), as shown
in Table 1. If we use more CPUs, the K-means running
time can be further reduced. As shown later, the K-means
training time is not significant when comparing with the
necessary DNN training times. And if we use more CPUs
to do K-means, the clustering time can be further reduced
(approximately less than 3 hours for MNIST and less then
5 hours for Switchboard). Moreover, for each database we
only need to run K-means once and after that we can use
the same codebook to train DNNs based on different an-
nealing schedules. Therefore, we do not take into account
the running time of the K-means clustering in the following
comparisons. Note that no pre-training is used for DNNs
in our experiments.

5.1 MNIST: IMAGE RECOGNITION

The MNIST database (LeCun et al., 1998) contains 60,000
training images and 10,000 test images, and the images are
28-by-28 in size. Here, we use data augmentation through
image deformation at the beginning of each epoch to en-

large the training set as in (Ciresan et al., 2010). We use the
configuration of 3-hidden-layer DNNs (1500, 1000, 500 n-
odes in each hidden layer) in (Ciresan et al., 2010) as our
network structures and use SGD and AGD to do network
training. Following (Ciresan et al., 2010), we fine-tune al-
l hyper-parameters towards the best possible performance.
In SGD, we use a mini-batch of 10 samples and an initial
learning rate of 0.4. Notice that in MNIST experiments
we do not use momentum during the training phase. In
MGD, we use a larger mini-batch size of 4500 and an ini-
tial learning rate of 0.8. The training process runs for 550
epochs to guarantee the convergence of the augmented M-
NIST database.

As we know, we should shrink the learning rates during the
training process for better convergence. Specifically, when
the training mean square error (MSE) becomes smaller than
a pre-defined threshold r, we use the formula

λt+1 = λt ·
p

p+ t

to gradually decrease the learning rate, where p is a pre-
defined constant to control the decreasing speed of the
learning rates. In our experiments, we set r = 0.17 and
p = 10000. As for the AGD annealing schedule in MNIST,
we start from ε1 = 7.5 (this value is based on the average
quantization error in the first layer of the codebook) and
εi+1 = 0.999 · εi.
During the annealing phase we use MGD to train the net-
work while in the regular phase we use SGD with the same
configurations as the baseline. Note that we only do image
deformation during the regular phase. In Figure 2, we have
shown the learning curves of both SGD and AGD in terms
of cross-entropy and classification error rate on the MNIST
training set. Since each MGD epoch runs much faster than
a SGD epoch, all learning curves are plotted as a function
of total training time instead of epochs.

From the two pictures in Figure 2 we can see that AGD
(in blue) finishes the same number of epochs much earlier
than SGD (in red). In addition, in Table 2, we also give the
total training time and the best classification error on the
test set for both AGD and SGD. From results in Figure 2
and Table 2, we can see that the proposed AGD training
algorithm yields slightly better classification performance
in the test set, and more importantly reduces the total DNN
training time by about 40%.

5.2 SWITCHBOARD: SPEECH RECOGNITION

Switchboard is a 320-hour English transcription task,
which contains 332,576 utterances in its training set
(amounting to about 126 millions of training samples in
total). We select the standard NIST Hub5e2000 as the test

658

0 200 400 600 800 1000 1200 1400
−4.5

−4

−3.5

−3

−2.5

Execution Time(102 sec)

Lo
g

of
 C

ro
ss

 E
nt

ro
py

 o
n

T
ra

in
in

g
S

et

Training CE of Two Methods

SGD
AGD

0 200 400 600 800 1000 1200 1400
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Execution Time(102 sec)

Lo
g

of
 E

rr
or

 o
n

T
ra

in
in

g
S

et

Training Error of Two Methods

SGD
AGD

Figure 2: Learning curves on the MNIST training set (Left: cross entropy error; Right: classification error) of SGD and
AGD as a function of elapsed training time.

Table 2: Comparison between SGD and AGD in terms of
total training time (using one GPU) and the best classifica-
tion error rate on MNIST.

Method Training Time Test Error

SGD 38.8 (hr) 0.47%
AGD 23.6 (hr) 0.46%

set in this work, which has 1831 utterances.1 Following
(Seide et al., 2011; Bao et al., 2013; Pan et al., 2012),
we train a 6-hidden-layer DNN with 2048 nodes per lay-
er based on the minimum cross-entropy criterion. We com-
pare the cross entropy and frame classification errors on the
training and test sets to evaluate the performance of SGD
and AGD, meanwhile we also evaluate word error rates in
speech recognition for the test set.

Here we use similar hyper-parameters as in (Pan et al.,
2012; Xue et al., 2014). For example, we use a mini-batch
of 1024 samples and an initial learning rate of 0.2 in SGD,
and a mini-batch of 6144 and an initial learning rate of 1.0
in MGD. We use 0.9 as the momentum in both SGD and
MGD. We run 10 epochs in SGD and 17 epochs in AGD.
During the training process, we need to shrink the learn-
ing rates slowly. Specifically, we multiply the learning rate
by 0.8 every epoch after the 5-th epoch in SGD and the
12-th epoch in AGD. Note that our SGD baseline is solid
and comparable with the best results reported on this task

1Due to the copyright issue, all Switchboard experiments were
conducted at NELSLIP, University of Science and Technology of
China.

(Seide et al., 2011; Hinton et al., 2012; Xue et al., 2014) in
terms of both training speed and recognition performance.

As for the AGD annealing schedule in Switchboard, unlike
MNIST, it starts from an initial value ε1 (17.5 in this case),
and use the formula

εi+1 = εi −∆ε

to reduce εi by subtracting a constant value every epoch
until it reaches the pre-defined value (8.5 in this case). The
reason for this formula is that we run much less epochs
here. In Switchboard, we have evaluated three differen-
t annealing schedules to show how they affect the training
speed and the final recognition performance as shown in
Table 3. In these three schedules, we use different values
for ∆ε, e.g. 1.0, 0.9 and 0.8 respectively. We can see that
the annealing schedule 1 (∆ε = 1.0) decreases fastest and
it provides the best performance but relatively slower train-
ing speed. In contrast, schedule 3 (∆ε = 0.8) gives the
fastest training speed but slightly worse performance be-
cause more epochs will be dispatched to run MGD.

Figure 3 shows the learning curves of both SGD and AGD
(using the annealing schedule with ∆ε = 1) in terms of
cross-entropy and frame errors on the Switchboard training
set as a function of elapsed training time. Clearly, AGD
runs much faster than SGD on Switchboard as well. Mean-
while, AGD can also achieve a slightly better local mini-
mum than SGD as measured in both figures.

In Table 3, we give the total training times and the word
error rates in speech recognition. We report the experimen-
tal results for all 3 different annealing schedules. The re-
sults have shown that the proposed AGD method can yield
similar recognition performance with much faster training

659

0 100 200 300 400
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Execution Time(103 sec)

C
ro

ss
 E

nt
ro

py
 o

n
T

ra
in

in
g

S
et

Training CE of Two Methods

SGD
AGD

0 100 200 300 400

50

55

60

65

70

75

80

85

90

95

Execution Time(103 sec)

F
ra

m
e

E
rr

or
 o

n
T

ra
in

in
g

S
et

(%
)

Training Frame Error of Two Methods

SGD
AGD

Figure 3: Learning curves on the Switchboard training set (Left: cross entropy error; Right: frame classification error) of
SGD and AGD as a function of elapsed training time.

Table 3: Comparison between SGD and AGD in terms of
total training time (using one GPU) and word error rate in
speech recognition on Switchboard.

Method Training Time Word Error

SGD 114.05 (hr) 16.4%
AGD (∆ε = 1.0) 78.79 (hr) 16.3%
AGD (∆ε = 0.9) 66.63 (hr) 16.7%
AGD (∆ε = 0.8) 55.35 (hr) 17.5%

speed than SGD (about a 30% to 40% reduction in total
training time) when a suitable annealing schedule is used.
Results in Table 3 also imply how quantization errors in the
codebooks may affect the final classification performance:
a slower schedule means more epochs will be dispatched
to run MGD, which uses each layer of the codebooks to
train the DNNs. In this case, the quantization error of the
codebook may bring about some negative influence on the
performance but provide faster learning speed. In practice,
when we are sensitive to the total training time of DNNs,
we may use slower decreasing schedules to accelerate the
DNN training dramatically.

6 CONCLUSIONS

In this paper, we have proposed a new annealed gradien-
t descent (AGD) algorithm for non-convex optimization in
deep learning, which can converge to a better local min-
imum with faster speed when compared with the regular
mini-batch SGD algorithm. In this work, AGD has been
applied to training large scale DNNs for image classifi-

cation and speech recognition tasks. Experimental result-
s have shown that AGD significantly outperforms SGD in
terms of the convergence speed. Therefore, the AGD algo-
rithm is especially suitable for the large scale non-convex
optimization problems in deep learning. In the future,
we may apply AGD to training convolutional neural net-
works (CNNs) for other more challenging image recogni-
tion tasks, where we may build the hierarchical codebook-
s by clustering image patches instead of the whole input
images. Moreover, AGD may be applied to the recently
proposed unsupervised learning algorithm in (Zhang and
Jiang, 2015; Zhang et al., 2015) as well.

Acknowledgments

This work was partially supported by an NSERC discovery
grant from the Canadian Federal Government. The first au-
thor is supported by a scholarship from China Scholarship
Council (CSC). We appreciate Dr. Pan Zhou from NEL-
SLIP, University of Science and Technology of China for
his help in conducting the Switchboard experiments in this
paper.

References

A. Agarwal and J. C. Duchi. Distributed delayed stochastic
optimization. In IEEE Annual Conference on Decision
and Control (CDC), pages 5451–5452, 2012.

Y. Bao, H. Jiang, L. Dai, and C. Liu. Incoherent training of
deep neural networks to de-correlate bottleneck features
for speech recognition. In Proc. of IEEE International
Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pages 6980–6984, 2013.

660

Y. Bengio. Learning deep architectures for AI. Foundations
and Trends in Machine Learning, 2(1):1–127, 2009.

Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Cur-
riculum learning. In Proceedings of the 26th annual in-
ternational conference on machine learning, pages 41–
48. ACM, 2009.

C. Bockermann and S. Lee. Scalable stochastic gradient de-
scent with improved confidence. In NIPS Workshop on
Big Learning–Algorithms, Systems, and Tools for Learn-
ing at Scale, 2012.

L. Bottou. Online learning and stochastic approximations.
On-line learning in neural networks, 17:9, 1998.

L. Bottou. Stochastic learning. In Advanced lectures on
machine learning, pages 146–168. Springer, 2004.

L. Bottou. Stochastic gradient tricks. Neural network-
s: tricks of the trade. Springer, Berlin, pages 430–445,
2012.

A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous,
and Y. LeCun. The loss surface of multilayer networks.
arXiv preprint arXiv:1412.0233, 2014.

D. C. Ciresan, U. Meier, L. M. Gambardella, and
J. Schmidhuber. Deep big simple neural nets excel on
handwritten digit recognition. Neural Computation, 22
(12):3207–3220, 2010.

Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Gan-
guli, and Y. Bengio. Identifying and attacking the sad-
dle point problem in high-dimensional non-convex opti-
mization. In Advances in Neural Information Processing
Systems (NIPS’14), pages 2933–2941, 2014.

J. L. Elman. Learning and development in neural networks:
The importance of starting small. Cognition, 48(1):71–
99, 1993.

N. Feng, R. Benjamin, R. Christopher, and J. W. Stephen.
Hogwild!: A lock-free approach to parallelizing stochas-
tic gradient descent. In Advances in Neural Information
Processing System 24 (NIPS’11), 2011.

G. Hinton, L. Deng, D. Yu, G. Dahl, A.Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and
B. Kingsbury. Deep neural networks for acoustic mod-
elling in speech recognition. IEEE Signal Processing
Magazine, 29, 2012.

K. A. Krueger and P. Dayan. Flexible shaping: How learn-
ing in small steps helps. Cognition, 110(3):380–394,
2009.

Y. LeCun and L Bottou. Large scale online learning. In
Advances in neural information processing systems 17
(NIPS’04), page 217, 2004.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Back-
propagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, 1998.

N. Murata and S. Amari. Statistical analysis of learning
dynamics. Signal Processing, 74(1):3–28, 1999.

J. Pan, C. Liu, Z. Wang, Y. Hu, and H. Jiang. Investigations
of deep neural networks for large vocabulary continuous
speech recognition: Why DNN surpasses GMMs in a-
coustic modelling. In Proc. of International Symposium
on Chinese Spoken Language Processing, 2012.

N. L. Roux, M. Schmidt, and F. R. Bach. A stochastic
gradient method with an exponential convergence rate
for finite training sets. In Advances in Neural Infor-
mation Processing Systems 25 (NIPS’12), pages 2672–
2680, 2012.

F. Seide, G. Li, and D. Yu. Conversational speech tran-
scription using context-dependent deep neural networks.
In Proc. of Interspeech, pages 437–440, 2011.

O. Shamir and T. Zhang. Stochastic gradient descent for
non-smooth optimization: Convergence results and opti-
mal averaging schemes. In Proceedings of the 30th Inter-
national Conference on Machine Learning (ICML-13),
pages 71–79, 2013.

V. N. Vapnik. Statistical Learning Theory. John Wiley and
Sons, 1st edition, 1998.

S. Xue, O. Abdel-Hamid, H. Jiang, L. Dai, and Q. Liu. Fast
adaptation of deep neural network based on discriminan-
t codes for speech recognition. IEEE/ACM Trans. on
Audio, Speech and Language Processing, 22(12):1713–
1725, 2014.

S. Zhang and H. Jiang. Hybrid orthogonal projection and
estimation (hope): A new framework to probe and learn
neural networks. In arXiv:1502.00702, 2015.

S. Zhang, L. Dai, and H. Jiang. The new hope way to learn
neural networks. In Proc. of Deep Learning Workshop
at ICML 2015, 2015.

P. Zhou, H. Jiang, L. Dai, Y. Hu, and Q. Liu. State-
clustering based multiple deep neural networks model-
ing approach for speech recognition,. IEEE/ACM Trans.
on Audio, Speech and Language Processing, 23(4):631–
642, 2015.

M. Zinkevich, J. Langford, and E. J. Smola. Slow learners
are fast. In Advances in Neural Information Processing
Systems 22 (NIPS’09), pages 2331–2339, 2009.

661

Max-Product Belief Propagation for Linear Programming:
Applications to Combinatorial Optimization

Sejun Park Jinwoo Shin
Department of Electrical Engineering Department of Electrical Engineering

Korea Advanced Institute of Science and Technology Korea Advanced Institute of Science and Technology
sejun.park@kaist.ac.kr jinwoos@kaist.ac.kr

Abstract

Max-product belief propagation (BP) is a pop-
ular message-passing algorithm for computing
a maximum-a-posteriori (MAP) assignment in
a joint distribution represented by a graphical
model (GM). It has been shown that BP can
solve a few classes of Linear Programming (LP)
formulations to combinatorial optimization prob-
lems including maximum weight matching and
shortest path, i.e., BP can be a distributed solver
for certain LPs. However, those LPs and corre-
sponding BP analysis are very sensitive to under-
lying problem setups, and it has been not clear
what extent these results can be generalized to.
In this paper, we obtain a generic criteria that BP
converges to the optimal solution of given LP,
and show that it is satisfied in LP formulations
associated to many classical combinatorial op-
timization problems including maximum weight
perfect matching, shortest path, traveling sales-
man, cycle packing and vertex cover. More im-
portantly, our criteria can guide the BP design
to compute fractional LP solutions, while most
prior results focus on integral ones. Our results
provide new tools on BP analysis and new direc-
tions on efficient solvers for large-scale LPs.

1 INTRODUCTION

Graphical model (GM) has been one of powerful
paradigms for succinct representations of joint probability
distributions in variety of scientific fields (Yedidia et al.,
2005; Richardson and Urbanke, 2008; Mezard and Mon-
tanari, 2009; Wainwright and Jordan, 2008). GM repre-
sents a joint distribution of some random vector to a graph
structured model where each vertex corresponds to a ran-
dom variable and each edge captures to a conditional de-
pendency between random variables. In many applications
involving GMs, finding maximum-a-posteriori (MAP) as-
signment in GM is an important inference task, which is

known to be computationally intractable (i.e., NP-hard) in
general (Chandrasekaran et al., 2008). Max-product belief
propagation (BP) is the most popular heuristic for approxi-
mating a MAP assignment of given GM, where its perfor-
mance has been not well understood in loopy GMs. Nev-
ertheless, BP often shows remarkable performances even
on loopy GM. Distributed implementation, associated ease
of programming and strong parallelization potential are
the main reasons for the growing popularity of the BP al-
gorithm. For example, several software architectures for
implementing parallel BPs were recently proposed (Low
et al., 2010; Gonzalez et al., 2010; Ma et al., 2012) by dif-
ferent research groups in machine learning communities.

In the past years, there have been made extensive research
efforts to understand BP performances on loopy GMs be-
hind its empirical success. Several characterizations of the
max-product BP fixed points have been proposed (Weiss
and Freeman, 2001; Vinyals et al., 2010), whereas they do
not guarantee the BP convergence in general. It has also
been studied about the BP convergence to the correct an-
swer, in particular, under a few classes of loopy GM formu-
lations of combinatorial optimization problems: matching
(Bayati et al., 2005; Sanghavi et al., 2011; Huang and Je-
bara, 2007; Salez and Shah, 2009), perfect matching (Bay-
ati et al., 2011), matching with odd cycles (Shin et al.,
2013) and shortest path (Ruozzi and Tatikonda, 2008). The
important common feature of these instances is that BP
converges to a correct MAP assignment if the Linear Pro-
gramming (LP) relaxation of the MAP inference problem
is tight, i.e., it has no integrality gap. In other words, BP
can be used an efficient distributed solver for those LPs,
and is presumably of better choice than classical central-
ized LP solvers such as simplex methods (Dantzig, 1998),
interior point methods (Thapa, 2003) and ellipsoid methods
(Khachiyan, 1980) for large-scale inputs. However, these
theoretical results on BP are very sensitive to underlying
structural properties depending on specific problems and it
is not clear what extent they can be generalized to, e.g.,
the BP analysis for matching problems (Bayati et al., 2005;
Sanghavi et al., 2011; Huang and Jebara, 2007; Salez and
Shah, 2009) are not extended to even for perfect matching

662

ones (Bayati et al., 2011). In this paper, we overcome such
technical difficulties for enhancing the power of BP as a LP
solver.

Contribution. We establish a generic criteria for GM for-
mulations of given LP so that BP converges to the optimal
LP solution. By product, it also provides a sufficient con-
dition for a unique BP fixed point. As one can naturally ex-
pect given prior results, one of our conditions requires the
LP tightness. Our main contribution is finding other suffi-
cient generic conditions so that BP converges to the correct
MAP assignment of GM. First of all, our generic criteria
can rediscover all prior BP results on this line, including
matching (Bayati et al., 2005; Sanghavi et al., 2011; Huang
and Jebara, 2007), perfect matching (Bayati et al., 2011),
matching with odd cycles (Shin et al., 2013) and shortest
path (Ruozzi and Tatikonda, 2008), i.e., we provide a uni-
fied framework on establishing the convergence and cor-
rectness of BPs in relation to associated LPs. Furthermore,
we provide new instances under our framework: we show
that BP can solve LP formulations associated to other pop-
ular combinatorial optimizations including perfect match-
ing with odd cycles, traveling salesman, cycle packing and
vertex cover, which are not known in the literature. While
most prior known BP results on this line focused on the
case when the associated LP has an integral solution, the
proposed criteria naturally guides the BP design to com-
pute fractional LP solutions as well (see Section 4.2 and
Section 4.4 for details).

Our proof technique is built upon on that of Sanghavi et al.
(2011) where the authors construct an alternating path in
the computational tree induced by BP to analyze its perfor-
mance for the maximum weight matching problem. Such
a trick needs specialized case studies depending on the as-
sociated LP when the path reaches a leaf of the tree, and
this is one of main reasons why it is not easy to generalize
to other problems beyond matching. The main technical
contribution of this paper is providing a way to avoid the
issue in the BP analysis via carefully analyzing associated
LP polytopes.

The main appeals of our results are providing not only
tools on BP analysis, but also guidelines on BP design for
its high performance, i.e., one can carefully design a BP
given LP so that it satisfies the proposed criteria. We run
such a BP for solving the famous traveling saleman prob-
lem (TSP), and our experiments show that BP outperforms
other popular heuristics (see Section 5). Our results provide
not only new tools on BP analysis and design, but also new
directions on efficient distributed (and parallel) solvers for
large-scale LPs and combinatorial optimization problems.

Organization. In Section 2, we introduce necessary back-
grounds for the BP algorithm. In Section 3, we provide
the main result of the paper, and several concrete applica-
tions to popular combinatorial optimizations are described

in Section 4. In Section 5, we show empirical performances
of BP algorithms for solving TSP.

2 PRELIMINARIES

2.1 GRAPHICAL MODEL

A joint distribution of n (binary) random variables Z =
[Zi] ∈ {0, 1}n is called a Graphical Model (GM) if it fac-
torizes as follows: for z = [zi] ∈ {0, 1}n,

Pr[Z = z] ∝
∏

i∈{1,...,n}
ψi(zi)

∏

α∈F
ψα(zα),

where {ψi, ψα} are (given) non-negative functions, so-
called factors; F is a collection of subsets

F = {α1, α2, ..., αk} ⊂ 2{1,2,...,n}

(each αj is a subset of {1, 2, . . . , n} with |αj | ≥ 2); zα
is the projection of z onto dimensions included in α.1 In
particular, ψi is called a variable factor. Figure 1 depicts
the the graphical relation between factors F and variables
z.

α1 α2 α3

z1 z2 z3 z4

Figure 1: Factor graph for the graphical model
Pr[z] ∝ ψα1

(z1, z3)ψα2
(z1, z2, z4)ψα3

(z2, z3, z4), i.e.,
F = {α1, α2, α3} and n = 4. Each αj selects a subset
of z. For example, α1 selects {z1, z3}.

Assignment z∗ is called a maximum-a-posteriori (MAP)
assignment if z∗ = arg maxz∈{0,1}n Pr[z]. This means
that computing a MAP assignment requires us to compare
Pr[z] for all possible z, which is typically computation-
ally intractable (i.e., NP-hard) unless the induced bipartite
graph of factors F and variables z, so-called factor graph,
has a bounded treewidth (Chandrasekaran et al., 2008).

2.2 MAX-PRODUCT BELIEF PROPAGATION

The (max-product) BP algorithm is a popular heuristic for
approximating the MAP assignment in GM. BP is imple-
mented iteratively; at each iteration t, BP maintains four
messages {mt

α→i(c),m
t
i→α(c) : c ∈ {0, 1}} between

every variable zi and every associated α ∈ Fi, where
Fi := {α ∈ F : i ∈ α}; that is, Fi is a subset of F
such that all α in Fi are associated with zi. The messages

1For example, if z = [0, 1, 0] and α = {1, 3}, then zα =
[0, 0].

663

are updated as follows:

mt+1
α→i(c) = max

zα:zi=c
ψα(zα)

∏

j∈α\i
mt
j→α(zj) (1)

mt+1
i→α(c) = ψi(c)

∏

α′∈Fi\α
mt
α′→i(c). (2)

Where each zi only sends messages to Fi; that is, zi sends
messages to αj only if αj selects/includes i. The outer-
term in the message computation (1) is maximized over all
possible zα ∈ {0, 1}|α| with zi = c. The inner-term is a
product that only depends on the variables zj (excluding
zi) that are connected to α. The message-update (2) from
variable zi to factor ψα is a product containing all messages
received by zi in the previous iteration, except for the mes-
sage sent by ψα itself.

One can reduce the complexity by combining (1) and (2)
as:

mt+1
i→α(c) = ψi(c)

∏

α′∈Fi\α
max

zα′ :zi=c
ψα′(zα′)

×
∏

j∈α′\i
mt
j→α′(zj).

The BP fixed-point of messages is defined as mt+1 = mt

under the above updating rule. Given a set of messages
{mi→α(c),mα→i(c) : c ∈ {0, 1}}, the so-called BP
marginal beliefs are computed as follows:

bi[zi] = ψi(zi)
∏
α∈Fi mα→i(zi). (3)

This BP algorithm outputs zBP = [zBPi] where

zBPi =

1 if bi[1] > bi[0]

? if bi[1] = bi[0]

0 if bi[1] < bi[0]

.

It is known that zBP converges to a MAP assignment after
a sufficient number of iterations, if the factor graph is a
tree and the MAP assignment is unique. However, if the
graph contains cycles, the BP algorithm is not guaranteed
to converge a MAP assignment in general.

3 CONVERGENCE AND CORRECTNESS
OF BELIEF PROPAGATION

In this section, we provide the main result of this paper:
a convergence and correctness criteria of BP. Consider the
following GM: for x = [xi] ∈ {0, 1}n and w = [wi] ∈ Rn,

Pr[X = x] ∝
∏

i

e−wixi
∏

α∈F
ψα(xα), (4)

where F is the set of non-variable factors and the factor
function ψα for α ∈ F is defined as

ψα(xα) =

{
1 if Aαxα ≥ bα, Cαxα = dα

0 otherwise
,

for some matrices Aα, Cα and vectors bα, dα. Now we
consider the Linear Programming (LP) corresponding the
above GM:

minimize w · x
subject to ψα(xα) = 1, ∀α ∈ F

x = [xi] ∈ [0, 1]n.

(5)

One can easily observe that the MAP assignments for GM
(4) corresponds to the (optimal) solution of LP (5) if the
LP has an integral solution x∗ ∈ {0, 1}n. As stated in the
following theorem, we establish other sufficient conditions
so that the max-product BP can indeed find the LP solution.

Theorem 1 The max-product BP on GM (4) with arbitrary
initial message converges to the solution of LP (5) if the
following conditions hold:

C1. LP (5) has a unique integral solution x∗ ∈ {0, 1}n,
i.e., it is tight.

C2. For every i ∈ {1, 2, . . . , n}, the number of factors as-
sociated with xi is at most two, i.e., |Fi| ≤ 2.

C3. For every factor ψα, every xα ∈ {0, 1}|α| with
ψα(xα) = 1, and every i ∈ α with xi 6= x∗i , there
exists γ ⊂ α such that

|{j ∈ {i} ∪ γ : |Fj | = 2}| ≤ 2

ψα(x′α) = 1, where x′k =

{
xk if k /∈ {i} ∪ γ
x∗k otherwise

.

ψα(x′′α) = 1, where x′′k =

{
xk if k ∈ {i} ∪ γ
x∗k otherwise

.

Since Theorem 1 holds for arbitrary initial messages, the
conditions C1, C2, C3 also provides the uniqueness of BP
fixed-points in term of marginal beliefs, as follows.

Corollary 2 The BP fixed-points of GM (4) have the same
marginal beliefs if conditions C1, C2, C3 hold.

The conditions C2, C3 are typically easy to check given
GM (4) and the uniqueness in C1 can be easily guaran-
teed via adding random noises, where we provide several
concrete examples in Section 4. On the other hand, the in-
tegral property in C1 requires to analyze LP (5), where it
has been extensively studied in the field of combinatorial
optimization (Schrijver, 2003). Nevertheless, Theorem 1
provides important guidelines to design BP algorithms, ir-
respectively of the LP analysis. For example, in Section
5, we report empirical performances of BP following the
above guideline for solving the traveling salesman prob-
lem, without relying on whether the corresponding LP has
an integral solution or not.

664

3.1 PROOF OF THEOREM 1

To begin with, we define some necessary notation. We let
P denote the polytope of feasible solutions of LP (5):

P := {x ∈ [0, 1]n : ψα(xα) = 1, ∀α ∈ F} .

Similarly, Pα is defined as

Pα :=
{
x ∈ [0, 1]|α| : ψα(xα) = 1

}
.

We first state the following key technical lemma.
Lemma 3 There exist universal constants K, η > 0 for LP
(5) such that if z ∈ [0, 1]n and 0 < ε < η satisfy the
followings:

1. There exist at most two violated factors for z, i.e.,
|{α ∈ F : zα /∈ Pα}| ≤ 2.

2. For each violated factor α, there exist i ∈ α such that
z†α ∈ Pα, where z† = z + εei or z† = z − εei and
ei ∈ {0, 1}n is the unit vector whose i-th coordinate
is 1,

then there exists z‡ ∈ P such that ‖z − z‡‖1 ≤ εK.

The proof of Lemma 3 is presented in Section 3.2. Now,
from Condition C1, it follows that there exists ρ > 0 such
that

ρ := inf
x∈P\x∗

w · x− w · x∗
‖x− x∗‖1

> 0. (6)

We let x̂t ∈ {0, 1, ?}n denote the BP estimate at the t-
th iteration for the MAP computation. We will show that
under Conditions C1-C3,

x̂t = x∗, for t >
(
wmax

ρ
+ 1

)
K,

where wmax = maxj |wj | and K is the universal con-
stant in Lemma 3. Suppose the above statement is false,
i.e., there exists i ∈ {1, 2, . . . , n} such that x̂ti 6= x∗i for

t >
(
wmax

ρ + 1
)
K. Under the assumption, we will reach

a contradiction.

Now we construct a tree-structured GM Ti(t), popularly
known as the computational tree (Weiss and Freeman,
2001), as follows:

1. Add yi ∈ {0, 1} as the root variable with variable fac-
tor function e−wiyi .

2. For each leaf variable yj and for each α ∈ Fj and ψα
is not associated with yj in the current tree-structured
GM, add a factor function ψα as a child of yj .

3. For each leaf factor ψα and for each variable yk such
that k ∈ α and yk is not associated with ψα in the cur-
rent tree-structured GM, add a variable yk as a child
of ψα with variable factor function e−wkyk .

4. Repeat Step 2, 3 t times.

Suppose the initial messages of BP are set by 1, i.e.,
mj→α(·)0 = 1. Then, if x∗i 6= x̂ti, it is known (Weiss,
1997) that there exists a MAP configuration yMAP on Ti(t)
with yMAP

i 6= x∗i at the root variable. For other initial mes-
sages, one can guarantee the same property under changing
weights of leaf variables of the tree-structured GM. Specif-
ically, for a leaf variable k with |Fk = {α1, α2}| = 2 and
α1 being its parent factor in Ti(t), we reset its variable fac-
tor by e−w

′
kyk , where

w′k = wk−log
maxzα2 :zk=1 ψα2

(zα2
)Πj∈α2\km

0
j→α2

(zj)

maxzα2 :zk=0 ψα2
(zα2

)Πj∈α2\km
0
j→α2

(zj)
.

(7)
This is the reason why our proof of Theorem 1 goes through
for arbitrary initial messages. For notational convenience,
we present the proof for the standard initial message of
m0
j→α(·) = 1, where it can be naturally generalized to

other initial messages using (7).

Now we construct a new valid assignment yNEW on the
computational tree Ti(t) as follows:

1. Initially, set yNEW ← yMAP .

2. Update the value of the root variable of Ti(t) by
yNEWi ← x∗i .

3. For each child factor ψα of root i ∈ α, choose γ ⊂ α
according to Condition C3 and update the associated
variable by yNEWj ← x∗j ∀j ∈ γ.

4. Repeat Step 2,3 recursively by substituting Ti(t) by
the subtree of Ti(t) of root j ∈ γ until the process
stops (i.e., i = j) or the leaf of Ti(t) is reached (i.e., i
does not have a child).

One can notice that the set of revised variables in Step 2 of
the above procedure forms a path structure Q in the tree-
structured GM. We first, consider the case that both ends
of the path Q touch leaves of Ti(t), where other cases can
be argued in a similar manner. Define ζj and κj be the
number of copies of xj in path Q with x∗j = 1 and x∗j = 0,
respectively, where ζ = [ζj], κ = [κj] ∈ Zn+ . Then, from
our construction of yNEW , one can observe that

yNEW = yMAP + ζ − κ
w · yMAP − w · yNEW = w · (κ− ζ).

If we set z = x∗ + ε(κ− ζ) where 0 < ε < min{1/2t, η},
then one can check that z satisfies the conditions of Lemma
3 using Conditions C2, C3. Hence, from Lemma 3, there
exists z‡ ∈ P such that

‖z‡ − z‖1 ≤ εK
‖z‡ − x∗‖1 ≥ ε(‖ζ‖1 + ‖κ‖1 −K) ≥ ε(t−K).

665

where z = x∗ + ε(κ− ζ). Hence, it follows that

0 < ρ ≤ w · z‡ − w · x∗
‖z‡ − x∗‖1

≤ w · z + εwmaxK − w · x∗
ε(t−K)

=
εw · (κ− ζ) + εwmaxK

ε(t−K)

=
w · (κ− ζ) + wmaxK

t−K

Furthermore, if t >
(
wmax

ρ + 1
)
K, the above inequality

implies that

w · yMAP − w · yNEW = w · (κ− ζ)

≥ ρt− (wmax + ρ)K > 0.

This contradicts to the fact that yMAP is a MAP configura-
tion. This completes the proof of Theorem 1.

3.2 PROOF OF LEMMA 3

One can write P = {x : Ax ≥ b} ⊂ [0, 1]n for some
matrix A ∈ Rm×n and vector b ∈ Rm, where without loss
of generality, we can assume that ‖Ai‖2 = 1 where {Ai}
is the set of row vectors of A. We define

Pε = {x : Ax ≥ b− ε1},

where 1 is the vector of ones. Then, one can check that
z ∈ Pε for z, ε satisfying conditions of Lemma 3. Now we
aim for finding a universal constant K satisfying

dist(P,Pε) := max
x∈Pε

(min
y∈P
‖x− y‖1) ≤ εK,

which leads to the conclusion of Lemma 3.

To this end, for ξ ⊂ [1, 2, . . . ,m] with |ξ| = n, we let Aξ
be the square sub-matrix of A by choosing ξ-th rows of A
and bξ is the n-dimensional subvector of b corresponding ξ.
Throughout the proof, we only consider ξ such that Aξ is
invertible. Using this notation, we first claim the following.

Claim 4 If Aξ is invertible and vξ := A−1ξ bξ ∈ P , then vξ
is a vertex of polytope P .

Proof. Suppose vξ is not a vertex of P , i.e. there exist
x, y ∈ P such that x 6= y and vξ = λx + (1 − λ)y for
some λ ∈ (0, 1/2]. Under the assumption, we will reach a
contradiction. Since P is a convex set,

3λ

2
x+

(
1− 3λ

2

)
y ∈ P. (8)

However, as Aξ is invertible,

Aξ

(
3λ

2
x+

(
1− 3λ

2

)
y

)
6= bξ. (9)

From (8) and (9), there exists a row vector Ai of Aξ and
the corresponding element bi of bξ such that

Ai ·
(

3λ

2
x+

(
1− 3λ

2

)
y

)
> bi.

Using the above inequality and Ai · (λx+ (1− λ)y) = bi,
one can conclude that

Ai ·
(
λ

2
x+

(
1− λ

2

)
y

)
< bi,

which contradict to λ
2x +

(
1− λ

2

)
y ∈ P . This completes

the proof of Claim 4. �

We also note that if v is a vertex of polytope P , there exists
ξ such that Aξ is invertible and v = A−1ξ bξ. We define the
following notation:

I = {ξ : A−1ξ bξ ∈ P} Iε = {ξ : A−1ξ (bξ − ε1) ∈ Pε},

where Claim 4 implies that {vξ := A−1ξ bξ : ξ ∈ I} and
{uξ,ε := A−1ξ (bξ − ε1) : ξ ∈ Iε} are sets of vertices of
P and Pε, respectively. Using the notation, we show the
following claim.

Claim 5 There exists η > 0 such that Iε ⊂ I for all ε ∈
(0, η).

Proof. Suppose η > 0 satisfying the conclusion of Claim
5 does not exist. Then, there exists a strictly decreasing
sequence {εk > 0 : k = 1, 2, . . . } converges to 0 such that
Iεk − I 6= ∅. Since |{ξ : ξ ⊂ [1, 2, . . . ,m]}| < ∞, there
exists ξ′ such that

|K := {k : ξ′ ∈ Iεk − I}| =∞. (10)

For any k ∈ K, observe that the sequence {uξ′,ε` : ` ≥
k, ` ∈ K} converges to vξ′ . Furthermore, all points in the
sequence are in Pεk since Pε` ⊂ Pεk for any ` ≥ k. There-
fore, one can conclude that vξ′ ∈ Pεk for all k ∈ K, where
we additionally use the fact that Pεk is a closed set. Be-
cause P =

⋂
k∈K Pεk , it must be that vξ′ ∈ P , i.e., vξ′

must be a vertex of P from Claim 4. This contradicts to the
fact ξ′ /∈ I. This completes the proof of Claim 5. �

From the above claim, we observe that any x ∈ Pε can be
expressed as a convex combination of {uξ,ε : ξ ∈ I}, i.e.,
x =

∑
ξ∈I λξuξ,ε with

∑
ξ∈I λξ = 1 and λξ ≥ 0. For all

ε ∈ (0, η) for η > 0 in Claim 5, one can conclude that

dist(P,Pε) ≤ max
x∈Pε

‖
∑

ξ∈I
λξuξ,ε −

∑

ξ∈I
λξvξ‖1

= max
x∈Pε

ε‖
∑

ξ∈I
λξA

−1
ξ 1‖1

≤ εmax
ξ
‖A−1ξ 1‖1,

where we choose K = maxξ ‖A−1ξ 1‖1. This completes
the proof of Lemma 3.

666

4 APPLICATIONS OF THEOREM 1 TO
COMBINATORIAL OPTIMIZATION

In this section, we introduce concrete instances of LPs
satisfying the conditions of Theorem 1 so that BP cor-
rectly converges to its optimal solution. Specifically, we
consider LP formulations associated to several combina-
torial optimization problems including shortest path, max-
imum weight perfect matching, traveling salesman, maxi-
mum weight disjoint vertex cycle packing and vertex cover.
We note that the shortest path result, Corollary 6, is known
(Ruozzi and Tatikonda, 2008), where we rediscover it as a
corollary of Theorem 1. Our other results, Corollaries 7-11,
are new and what we first establish in this paper.

4.1 SHORTEST PATH

Given directed graph G = (V,E) and non-negative edge
weights w = [we : e ∈ E] ∈ R|E|+ , the shortest path prob-
lem is to find the shortest path from the source s to the
destination t: it minimizes the sum of edge weights along
the path. One can naturally design the following LP for this
problem:

minimize w · x
subject to

∑

e∈δo(v)
xe −

∑

e∈δi(v)
xe

=

1 if v = s

−1 if v = t

0 otherwise
∀ v ∈ V

x = [xe] ∈ [0, 1]|E|.

(11)

where δi(v), δo(v) are the set of incoming, outgoing edges
of v. It is known that the above LP always has an integral
solution, i.e., the shortest path from s to t. We consider the
following GM for LP (11):

Pr[X = x] ∝
∏

e∈E
e−wexe

∏

v∈V
ψv(xδ(v)), (12)

where the factor function ψv is defined as

ψv(xδ(v)) =

1 if
∑
e∈δo(v) xe −

∑
e∈δi(v) xe

=

1 if v = s

−1 if v = t

0 otherwise
0 otherwise

.

For the above GM (12), one can easily check Conditions
C2, C3 of Theorem 1 hold and derive the following corol-
lary whose formal proof is presented in the supplementary
material due to the space constraint.
Corollary 6 If the shortest path from s to t, i.e., the solu-
tion of the shortest path LP (11), is unique, then the max-
product BP on GM (12) converges to it.

The uniqueness condition in the above corollary is easy to
guarantee by adding small random noises to edge weights.

4.2 MAXIMUM WEIGHT PERFECT MATCHING

Given undirected graphG = (V,E) and non-negative edge
weights w = [we : e ∈ E] ∈ R|E|+ on edges, the maximum
weight perfect matching problem is to find a set of edges
such that each vertex is connected to exactly one edge in
the set and the sum of edge weights in the set is maximized.
One can naturally design the following LP for this problem:

maximize w · x
subject to

∑

e∈δ(v)
xe = 1, ∀ v ∈ V

x = [xe] ∈ [0, 1]|E|.

(13)

where δ(v) is the set of edges connected to a vertex v. If
the above LP has an integral solution, it corresponds to the
solution of the maximum weight perfect matching problem.

It is known that the maximum weight matching LP
(13) always has a half-integral solution x∗ ∈ {0, 12 , 1}|E|.
We will design BP for obtaining the half-integral solution.
To this end, duplicate each edge e to e1, e2 and define a
new graph G′ = (V,E′) where E′ = {e1, e2 : e ∈ E}.
Then, we suggest the following equivalent LP that always
have an integral solution:

maximize w′ · x
subject to

∑

ei∈δ(v)
xei = 2 ∀ v ∈ V

x = [xei] ∈ [0, 1]|E
′|.

(14)

where w′e1 = w′e2 = we. One can easily observe that solv-
ing LP (14) is equivalent to solving LP (13) due to our con-
struction of G′ and w′. Now, construct the following GM
for LP (14):

Pr[X = x] ∝
∏

ei∈E′
ew
′
ei
xei
∏

v∈V
ψv(xδ(v)), (15)

where the factor function ψv is defined as

ψv(xδ(v)) =

{
1 if

∑
ei∈δ(v) xei = 2

0 otherwise
.

For the above GM (15), we derive the following corollary
of Theorem 1 whose formal proof is presented in the sup-
plementary material due to the space constraint.

Corollary 7 If the solution of the maximum weight perfect
matching LP (14) is unique, then the max-product BP on
GM (15) converges it.

667

Again, the uniqueness condition in the above corollary is
easy to guarantee by adding small random noises to edge
weights [w′ei]. We note that it is known (Bayati et al., 2011)
that BP converges to the unique and integral solution of LP
(13), while Corollary 7 implies that BP can solve it without
the integrality condition. We note that one can easily ob-
tain a similar result for the maximum weight (non-perfect)
matching problem, where we omit the details in this paper.

4.3 MAXIMUM WEIGHT PERFECT MATCHING
WITH ODD CYCLES

In previous section we prove that BP converges to the opti-
mal (possibly, fractional) solution of LP (14), equivalently
LP (13). One can add odd cycle (also called Blossom) con-
straints and make those LPs tight i.e. solves the maximum
weight perfect matching problem:

maximize w · x
subject to

∑

e∈δ(v)
xe = 1, ∀ v ∈ V

∑

e∈C
xe ≤

|C| − 1

2
, ∀C ∈ C,

x = [xe] ∈ [0, 1]|E|.

(16)

where C is a set of odd cycles in G. The authors (Shin
et al., 2013) study BP for solving LP (16) by replacing∑
e∈δ(v) xe = 1 by

∑
e∈δ(v) xe ≤ 1, i.e., for the maximum

weight (non-perfect) matching problem. Using Theorem 1,
one can extend the result to the maximum weight perfect
matching problem, i.e., solving LP (16). To this end, we
follow the approach (Shin et al., 2013) and construct the
following graph G′ = (V ′, E′) and weight w′ = [w′e : e ∈
E′] ∈ R|E′| given set C of disjoint odd cycles:

V ′ = V ∪ {vC : C ∈ C}
E′ = {(u, vC) : u ∈ C,C ∈ C} ∪ E \ {e ∈ C : C ∈ C}

w′e =

1
2

∑
e′∈E(C)(−1)dC(u,e′)we′ if e = (u, vC)

for some C ∈ C
we otherwise

,

where dC(u, e′) is the graph distance between u, e′ in cycle
C. Then, LP (16) is equivalent to the following LP:

maximize w′ · y
subject to

∑

e∈δ(v)
ye = 1, ∀ v ∈ V

∑

u∈V (C)

(−1)dC(u,e)y(vC ,u) ∈ [0, 2], ∀e ∈ E(C)

∑

e∈δ(vC)

ye ≤ |C| − 1, ∀C ∈ C

y = [ye] ∈ [0, 1]|E
′|.

(17)

Now, we construct the following GM from the above LP:

Pr[Y = y] ∝
∏

e∈E
eweye

∏

v∈V
ψv(yδ(v))

∏

C∈C
ψC(yδ(vC)),

(18)
where the factor function ψv , ψC is defined as

ψv(yδ(v)) =

{
1 if

∑
e∈δ(v) ye = 1

0 otherwise
,

ψC(yδ(vC)) =

1 if
∑
u∈V (C)(−1)dC(u,e)y(vC ,u) ∈ {0, 2}∑
e∈δ(vC) ye ≤ |C| − 1

0 otherwise

.

For the above GM (18), we derive the following corollary
of Theorem 1 whose formal proof is presented in the sup-
plementary material due to the space constraint.

Corollary 8 If the solution of the maximum weight perfect
matching with odd cycles LP (17) is unique and integral,
then the max-product BP on GM (18) converges to it.

We again emphasize that a similar result for the maximum
weight (non-perfect) matching problem was established in
(Shin et al., 2013). However, the proof technique in the
paper does not extend to the perfect matching problem.
This is in essence because presumably the perfect match-
ing problem is harder than the non-perfect matching one.
Under the proposed generic criteria of Theorem 1, we over-
come the technical difficulty.

4.4 VERTEX COVER

Given undirected graph G = (V,E) and non-negative in-
teger vertex weights b = [bv : v ∈ V] ∈ Z|V |+ , the vertex
cover problem is to find a set of vertices minimizes the sum
of vertex weights in the set such that each edge is connected
to at least one vertex in it. This problem is one of Karp’s
21 NP-complete problems (Karp, 1972). The associated LP
formulation to the vertex cover problem is as follows:

minimize b · y
subject to yu + yv ≥ 1, (u, v) ∈ E

y = [yv] ∈ [0, 1]|V |.

(19)

However, if we design a GM from the above LP, it does not
satisfy conditions in Theorem 1. Instead, we will show that
BP can solve the following dual LP:

maximize
∑

e∈E
xe

subject to
∑

e∈δ(v)
xe ≤ bv, ∀ v ∈ V

x = [xe] ∈ R|E|+ .

(20)

Note that the above LP always has a half-integral solution.
As we did in Section 4.2, one can duplicate edges, i.e.,

668

E′ = {e1, . . . , e2bmax : e ∈ E} with bmax = maxv bv ,
and design the following equivalent LP having an integral
solution:

maximize w′ · x
subject to

∑

ei∈δ(v)
xei ≤ 2bv, ∀ v ∈ V

x = [xei] ∈ [0, 1]|E
′|

, (21)

where w′ei = we for e ∈ E and its copy ei ∈ E′. From the
above LP, we can construct the following GM:

Pr[X = x] ∝
∏

ei∈E′
ew
′
ei
xei
∏

v∈V
ψv(xδ(v)), (22)

where the factor function ψv is defined as

ψv(xδ(v)) =

{
1 if

∑
ei∈δ(v) xei ≤ 2bv

0 otherwise
.

For the above GM (22), we derive the following corollary
of Theorem 1 whose formal proof is presented in the sup-
plementary material due to the space constraint.

Corollary 9 If the solution of the vertex cover dual LP (21)
is unique, then the max-product BP on GM (22) converges
it.

Again, the uniqueness condition in the above corollary is
easy to guarantee by adding small random noises to edge
weights [w′ei]. We further remark that if the solution of
the primal LP (19) is integral, then it can be easily found
from the solution of the dual LP (21) using the strictly com-
plementary slackness condition (Bertsimas and Tsitsiklis,
1997) .

4.5 TRAVELING SALESMAN

Given directed graph G = (V,E) and non-negative edge
weights w = [we : e ∈ E] ∈ R|E|+ , the traveling salesman
problem (TSP) is to find the minimum weight Hamiltonian
cycle inG. The natural LP formulation to TSP is following:

minimize w · x
subject to

∑

e∈δ(v)
xe = 2

x = [xe] ∈ [0, 1]|E|.

(23)

From the above LP, one can construct the following GM:

Pr[X = x] ∝
∏

e∈E
e−wexe

∏

v∈V
ψv(xδ(v)), (24)

where the factor function ψv is defined as

ψv(xδ(v)) =

{
1 if

∑
e∈δ(v) xe = 2

0 otherwise
.

For the above GM (24), we derive the following corollary
of Theorem 1 whose formal proof is presented in the sup-
plementary material due to the space constraint.

Corollary 10 If the solution of the traveling salesman LP
(23) is unique and integral, then the max-product BP on
GM (24) converges it.

Again, the uniqueness condition in the above corollary is
easy to guarantee by adding small random noises to edge
weights. In Section 5, we show the empirical performance
of the max-product BP on GM (24) for solving TSP without
relying on the integrality condition in Corollary 10.

4.6 MAXIMUM WEIGHT CYCLE PACKING

Given undirected graphG = (V,E) and non-negative edge
weights w = [we : e ∈ E] ∈ R|E|+ , the maximum weight
vertex disjoint cycle packing problem is to find the maxi-
mum weight set of cycles with no common vertex. It is easy
to observe that it is equivalent to find a subgraph maximiz-
ing the sum of edge weights on it such that each vertex of
the subgraph has degree 2 or 0. The natural LP formulation
to this problem is following:

maximize w · x
subject to

∑

e∈δ(v)
xe = 2yv

x = [xe] ∈ [0, 1]|E|, y = [yv] ∈ [0, 1]|V |.

(25)

From the above LP, one can construct the following GM:

Pr[X = x, Y = y] ∝
∏

e∈E
ewexe

∏

v∈V
ψv(xδ(v), yv),

(26)
where the factor function ψv is defined as

ψv(xδ(v), yv) =

{
1 if

∑
e∈δ(v) xe = 2yv

0 otherwise
.

For the above GM (26), we derive the following corollary
of Theorem 1 whose formal proof is presented in the sup-
plementary material due to the space constraint.

Corollary 11 If the solution of maximum weight vertex
disjoint cycle packing LP (25) is unique and integral, then
the max-product BP on GM (26) converges it.

Again, the uniqueness condition in the above corollary is
easy to guarantee by adding small random noises to edge
weights.

5 EXPERIMENTAL RESULTS FOR
TRAVELING SALESMAN PROBLEM

In this section, we report empirical performances of BP on
GM (24) for solving the traveling salesman problem (TSP)

669

Table 1: Experimental results for small size complete graph and each number is the average among 100 samples. For
example, Greedy+BP means that the Greedy algorithm using edge weights as BP beliefs as we describe in Section 5. The
left value is the approximation ratio, i.e., the average weight ratio between the heuristic solution and the exact solution.
The right value is the average weight of the heuristic solutions. The last row is a ratio of tight TSP LP (23).

Size 5 10 15 20 25
Greedy 1.07 / 1.84 1.20 / 2.25 1.33 / 2.58 1.51 / 2.85 1.51 / 3.04
Greedy+BP 1.00 / 1.75 1.05 / 1.98 1.13 / 2.23 1.19 / 2.27 1.21 / 2.43
Christofides 1.38 / 1.85 1.38 / 2.56 1.67 / 3.20 1.99 / 3.75 2.16 / 4.32
Christofides+BP 1.00 / 1.75 1.09 / 2.07 1.23 / 2.43 1.30 / 2.50 1.45 / 2.90
Insertion 1.03 / 1.79 1.29 / 2.38 1.53 / 2.95 1.72 / 3.26 1.89 / 3.77
Insertion+BP 1.00 / 1.75 1.29 / 2.39 1.52 / 2.97 1.79 / 3.38 1.94 / 3.89
N-Neighbor 1.07 / 1.84 1.27 / 2.39 1.42 / 2.74 1.55 / 2.96 1.64 / 3.30
N-Neighbor+BP 1.00 / 1.75 1.05 / 1.98 1.13 / 2.23 1.15 / 2.21 1.20 / 2.40
2-Opt 1.00 / 1.75 1.08 / 2.04 1.12 / 2.21 1.24 / 2.36 1.28 / 2.57
2-Opt+BP 1.00 / 1.75 1.04 / 1.96 1.07 / 2.11 1.11 / 2.13 1.16 / 2.34
Tight LPs 100% 93% 88% 87% 84%

Table 2: Experimental results for sparse Erdos-Renyi graph with fixed average vertex degrees and each number is the
average among 1000 samples. The left value is the ratio that a heuristic finds the Hamiltonian cycle without penalty edges.
The right value is the average weight of the heuristic solutions.

Size 100 200
Degree 10 25 50 10 25 50
Greedy 0% / 7729.43 0.3% / 2841.98 13% / 1259.08 0% / 15619.9 0% / 5828.88 0.3% / 2766.07
Greedy+BP 14% / 1612.82 21% / 1110.27 44% / 622.488 6.4% / 2314.95 10% / 1687.29 16% / 1198.48
Christoifeds 0% / 19527.3 0% / 16114.3 0% / 10763.7 0% / 41382.5 0% / 37297.0 0% / 32023.1
Christofides+BP 14% / 2415.73 20% / 1663.47 34% / 965.775 6.1% / 3586.77 9.2% / 2876.35 12% / 2183.80
Insertion 0% / 12739.2 84% / 198.099 100% / 14.2655 0% / 34801.6 0.9% / 3780.71 99% / 44.1293
Insertion+BP 0% / 13029.0 76% / 283.766 100% / 14.6964 0% / 34146.7 0.3% / 4349.11 99% / 41.2176
N-Neighbor 0% / 9312.77 0% / 3385.14 7.6% / 1531.83 0% / 19090.7 0% / 7383.23 0.3% / 3484.82
N-Neighbor+BP 16% / 1206.95 26% / 824.232 50% / 509.349 6.9% / 1782.17 12% / 1170.38 24% / 888.421
2-Opt 34% / 1078.03 100% / 14.6873 100% / 7.36289 2% / 3522.78 100% / 35.8421 100% / 18.6147
2-Opt+BP 76% / 293.450 100% / 13.5773 100% / 6.53995 33% / 1088.79 100% / 34.7768 100% / 17.4883
Tight LPs 62% 62.3% 63% 52.2% 55% 52.2%

that is presumably the most famous one in combinatorial
optimization. In particular, we design the following BP-
guided heuristic for solving TSP:

1. Run BP for a fixed number of iterations, say 100, and
calculate the BP marginal beliefs (3).

2. Run the known TSP heuristic using edge weights as
log b[0]

b[1] using BP margianl beliefs instead of the orig-
inal weights.

For TSP heuristic in Step 2, we use Greedy, Christoifeds,
Insertion, N-Neighbor and 2-Opt provided by the LEMON
graph library (Dezső et al., 2011). We first perform the ex-
periments on the complete graphs of size 5, 10, 15, 20, 25
and random edge weight in (0, 1) to measure approxima-
tion qualities of heuristics, where it is reported in Table 1.
Second, we consider the sparse Erdos-Renyi random graph
of size 100, 200 and random edge weight in (0, 1). Then,
we make it a complete graph by adding non-existing edges
with penalty edge weight 1000.2 For these random in-

2This is to ensure that a Hamiltonian cycle always exists.

stances, we report performance of various heuristics in Ta-
ble 2. Our experiments show that BP boosts performances
of known TSP heuristics in overall, where BP is very easy
to code and does not hurt the simplicity of heuristics.

6 CONCLUSION

The BP algorithm has been the most popular algorithm
for solving inference problems arising graphical models,
where its distributed implementation, associated ease of
programming and strong parallelization potential are the
main reasons for its growing popularity. In this paper, we
aim for designing BP algorithms solving LPs, and pro-
vide sufficient conditions for its correctness and conver-
gence. We believe that our results provide new interesting
directions on designing efficient distributed (and parallel)
solvers for large-scale LPs.

Acknowledgements.

We would like to acknowledge the support of the AOARD
project, FA2386-14-1-4058.

670

References

Mohsen Bayati, Devavrat Shah, and Mayank Sharma.
Maximum weight matching via max-product belief
propagation. In Information Theory, 2005. ISIT 2005.
Proceedings. International Symposium on, pages 1763–
1767. IEEE, 2005.

Mohsen Bayati, Christian Borgs, Jennifer Chayes, and Ric-
cardo Zecchina. Belief propagation for weighted b-
matchings on arbitrary graphs and its relation to linear
programs with integer solutions. SIAM Journal on Dis-
crete Mathematics, 25(2):989–1011, 2011.

Dimitris Bertsimas and John N Tsitsiklis. Introduction to
linear optimization, volume 6. Athena Scientific Bel-
mont, MA, 1997.

Venkat Chandrasekaran, Nathan Srebro, and Prahladh Har-
sha. Complexity of inference in graphical models. In
UAI 2008, Proceedings of the 24th Conference in Un-
certainty in Artificial Intelligence, pages 70–78. AUAI
Press, 2008.

George B Dantzig. Linear programming and extensions.
Princeton university press, 1998.

Balázs Dezső, Alpár Jüttner, and Péter Kovács. Lemon–
an open source c++ graph template library. Electronic
Notes in Theoretical Computer Science, 264(5):23–45,
2011.

Joseph Gonzalez, Yucheng Low, and Carlos Guestrin. Par-
allel splash belief propagation. Technical report, DTIC
Document, 2010.

Bert C Huang and Tony Jebara. Loopy belief propagation
for bipartite maximum weight b-matching. In Interna-
tional Conference on Artificial Intelligence and Statis-
tics, pages 195–202, 2007.

Richard M Karp. Reducibility among combinatorial prob-
lems. Springer, 1972.

Leonid G Khachiyan. Polynomial algorithms in linear
programming. USSR Computational Mathematics and
Mathematical Physics, 20(1):53–72, 1980.

Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny
Bickson, Carlos Guestrin, and Joseph M. Hellerstein.
Graphlab: A new framework for parallel machine learn-
ing. In UAI 2010, Proceedings of the Twenty-Sixth Con-
ference on Uncertainty in Artificial Intelligence, pages
340–349. AUAI Press, 2010.

Nam Ma, Yinglong Xia, and Viktor K Prasanna. Task
parallel implementation of belief propagation in factor
graphs. In Parallel and Distributed Processing Sympo-
sium Workshops & PhD Forum (IPDPSW), 2012 IEEE
26th International, pages 1944–1953. IEEE, 2012.

Marc Mezard and Andrea Montanari. Information, physics,
and computation. Oxford University Press, 2009.

Tom Richardson and Ruediger Urbanke. Modern coding
theory. Cambridge University Press, 2008.

Nicholas Ruozzi and Sekhar Tatikonda. st paths using the
min-sum algorithm. In Communication, Control, and
Computing, 2008 46th Annual Allerton Conference on,
pages 918–921. IEEE, 2008.

Justin Salez and Devavrat Shah. Belief propagation: an
asymptotically optimal algorithm for the random assign-
ment problem. Mathematics of Operations Research, 34
(2):468–480, 2009.

Sujay Sanghavi, Dmitry Malioutov, and Alan Willsky. Be-
lief propagation and lp relaxation for weighted matching
in general graphs. Information Theory, IEEE Transac-
tions on, 57(4):2203–2212, 2011.

Alexander Schrijver. Combinatorial optimization: polyhe-
dra and efficiency, volume 24. Springer, 2003.

Jinwoo Shin, Andrew E Gelfand, and Misha Chertkov. A
graphical transformation for belief propagation: Maxi-
mum weight matchings and odd-sized cycles. In Ad-
vances in Neural Information Processing Systems, pages
2022–2030, 2013.

George B Dantzig Mukund N Thapa. Linear programming.
2003.

Meritxell Vinyals, Alessandro Farinelli, Juan A Rodrı́guez-
aguilar, et al. Worst-case bounds on the quality of max-
product fixed-points. In Advances in Neural Information
Processing Systems, pages 2325–2333, 2010.

Martin J Wainwright and Michael I Jordan. Graphical
models, exponential families, and variational inference.
Foundations and Trends R© in Machine Learning, 1(1-2):
1–305, 2008.

Yair Weiss. Belief propagation and revision in networks
with loops. 1997.

Yair Weiss and William T Freeman. On the optimality
of solutions of the max-product belief-propagation al-
gorithm in arbitrary graphs. Information Theory, IEEE
Transactions on, 47(2):736–744, 2001.

Jonathan S Yedidia, William T Freeman, and Yair Weiss.
Constructing free-energy approximations and general-
ized belief propagation algorithms. Information Theory,
IEEE Transactions on, 51(7):2282–2312, 2005.

671

Fast Algorithms for Learning with Long N -grams via Suffix Tree Based Matrix
Multiplication

Hristo S. Paskov
Computer Science Dept.

Stanford University
hpaskov@stanford.edu

John C. Mitchell
Computer Science Dept.

Stanford University
john.mitchell@stanford.edu

Trevor J. Hastie
Statistics Dept.

Stanford University
hastie@stanford.edu

Abstract

This paper addresses the computational issues of
learning with long, and possibly all, N -grams in
a document corpus. Our main result uses suf-
fix trees to show that N -gram matrices require
memory and time that is at worst linear (in the
length of the underlying corpus) to store and to
multiply a vector. Our algorithm can speed up
any N -gram based machine learning algorithm
which uses gradient descent or an optimization
procedure that makes progress through multipli-
cation. We also provide a linear running time and
memory framework that screens N -gram fea-
tures according to a multitude of statistical crite-
ria and produces the data structure necessary for
fast multiplication. Experiments on natural lan-
guage and DNA sequence datasets demonstrate
the computational savings of our framework; our
multiplication algorithm is four orders of mag-
nitude more efficient than naı̈ve multiplication
on the DNA data. We also show that prediction
accuracy on large-scale sentiment analysis prob-
lems benefits from long N -grams.

1 Introduction

N -gram models are indespensible in natural language pro-
cessing (NLP) , information retrieval, and, increasingly,
computational biology. They have been applied succuss-
fully in sentiment analysis (Paskov, 2013), text catego-
rization (Cavnar, 1994), author identification (Houvardas,
2006), DNA function prediction (Kähärä, 2013), and nu-
merous other tasks. The allure of N -gram models comes
from their simplicity, interpretability, and efficacy: a doc-
ument corpus is represented by its N -gram matrix, where
each row/column corresponds to a distinct document/N -
gram respectively, and each entry counts the number of oc-
currences of that N -gram in the document. The N -gram
matrix provides a feature representation for statistical mod-

elling and the coefficients of each N -gram can often be in-
terpreted as a score indicating their relevance to the task.

At the simplest extreme, unigrams provide a summary of
the word distribution in each document and serve as an ef-
fective baseline representation for a variety of NLP tasks.
Higher order N -grams provide more nuance by capturing
short-term positional information and can achieve state of
the art results on a variety of tasks (Wang, 2012) (Paskov,
2013). A canonical example of the value of longer N -
grams is given by the phrase ”I don’t like horror movies,
but this was excellent,” which fails to convey its positive
sentiment when its words are scrambled. Unfortunately,
this additional information comes at a cost: a document of
n words may contain up to Θ(Kn) distinct N -grams of
length K1. This growth makes the memory and computa-
tional burden of training N -gram models beyond bigrams
impractical for large natural language corpora. Statistically,
these larger feature representations suffer from the curse of
dimensionality (Hastie, 2001) and may lead the model to
overfit, so careful regularization is necessary.

This paper ameliorates the computational burden of learn-
ing with long N -grams. We demonstrate how the struc-
ture of suffix trees can be used to store and multiply2 any
N -gram matrix in time and space that is at most linear in
the length of the underlying corpus. As most learning al-
gorithms rely on matrix-vector multiplication to learn and
predict, our results equate the computational cost of learn-
ing with N -gram matrices to scanning through the original
corpus. Our method can speed up any learning algorithm
that exhibits such structure by simply replacing its multi-
plication routine with ours. Fast multiplication is possi-
ble by means of a specialized data structure that efficiently
represents the algebraic structure of the N -gram matrix. In
view of the statistical issues associated with longN -grams,
we provide a linear running time and memory framework
that not only computes this data structure, but also filters
N -grams by various criteria and outputs necessary column

1We use N -grams of length K to mean N -grams of length at
most K for brevity.

2Multiplication always refers to matrix-vector multiplication.

672

normalizations. The emphasis of this framework is mini-
mality: by only storing the topological structure of the suf-
fix tree we achieve memory requirements that are compa-
rable to storing the original document corpus. As such, our
framework can be used to permanently store the corpus in
a format that is optimized for machine learning.

Our paper is organized as follows: section 2 derives the
fast multiplication algorithm by showing that after redun-
dant columns in the N -gram matrix are removed, the al-
gebraic structure of the resulting submatrix is encoded by
the suffix tree of the underlying corpus. We then inves-
tigate how this matrix can be used as a black-box in var-
ious common learning scenarios in section 3. Section 4
presents our preprocessing framework. Timing and mem-
ory benchmarks that demonstrate the efficacy of the multi-
plication algorithm are presented in section 5. We also find
that high-order N -grams can improve prediction accuracy
in large-scale sentiment analysis tasks.

1.1 Related Work

Suffix trees and arrays are used by (Vish., 2004), (Teo,
2006), and (Rieck, 2008) for kernels that efficiently com-
pute pair-wise document similarities based on N -grams.
Computing the similarity of all document pairs limits ker-
nels to moderately sized datasets and the lack of explicit
features prevents the use of sparsity inducing regularizers
such as in the Lasso (Tibs., 1996). Next, (Zhang, 2006)
use suffix trees to identify useful N -grams in a text cor-
pus and to show that the all N -gram matrix may be pruned
since it contains redundant columns. We show in section 2
that the resulting N -gram matrix may still have too many
entries to be practical for large corpora and observe this ex-
perimentally. Suffix trees are also used by (Wood, 2011)
to efficiently represent and perform inference with a hier-
archical process for text. Finally, while (Abou., 2004) and
(Kasai, 2001) provide space efficient frameworks for work-
ing with suffix arrays, our framework is specialized to sta-
tistical processing and achieves greater memory efficiency.

1.2 Multiplication in Machine Learning

We briefly discuss the importance of matrix-vector multi-
plication for learning. Let x1, . . . ,xN ∈ Rd be N data
points with corresponding labels y1, . . . , yN ∈ Y and let
X ∈ RN×d be the feature matrix that stores xi as its ith

row. Matrix-vector multiplication operations abound in all
phases of supervised and unsupervised learning: basic pre-
processing that computes normalizings factors of the form
XT1 (or X1) for every feature (or data point); screening
rules that use |XT y| (when Y ⊂ R) to exclude uninfor-
mative features (Tibs., 2010); or predictions of the form
f(Xw) where w is a learned vector of weights.

Multiplication is also essential for many of the optimiza-
tion techniques that lie at the core of these learning algo-

rithms. A variety of learning problems can be expressed as
optimization problems of the form

minimize
w∈Rd,β∈Rp

Ly(Xw, β) + λR(w) (1)

where w, β are the learning parameters, Ly is a loss func-
tion that encodes the yi labels (if the problem is super-
vised), and R is a regularization penalty. It is important to
remember that this framework captures a number of unsu-
pervised learning problems as well, such as Principle Com-
ponent Analysis, which is useful directly and as a prepro-
cessing step for clustering, deep learning, and other tech-
niques (Hastie, 2001). Any (sub)gradient3 of (1) with re-
spect to w is given by

gw ∈ XT∂XwL(Xw, β) + λ∂wR(w). (2)

where ∂zf(z) is the subdifferential of f with respect to z.

Since every (sub)gradient descent method (Parikh, 2013) or
accelerated variant critically relies on gw as a search direc-
tion, computing Xw and then XT [∂XwL(Xw, β)] is es-
sential and often the most costly part of the optimization.
A number of other popular large-scale optimization meth-
ods also reduce to multiplyingX repeatedly. These include
Krylov subspace algorithms such as the conjugate gradi-
ent method, and various quasi-Newton methods including
BFGS and its limited memory variant (Nocedal, 2006).

1.3 Background and Notation

Let Σ be a finite vocabulary with a strict total ordering
≺ over its elements. A document D = x1x2...xn of
length n is a list of n characters drawn from Σ and an
N -gram is any string of characters drawn from Σ. We
will refer to each of the n suffixes in D via D[i] =
xixi+1...xn. We denote the set of all substrings in D by
D∗ = {xi...xi+k | 1 ≤ i ≤ n, 0 ≤ k ≤ n− i } and the set
of all substrings in a document corpus of N documents
C = {D1, . . . , DN} as C∗ =

⋃N
i=1D

∗
i .

Given a subset S ⊆ C∗ of the set of substrings in (any
of) the documents, entry Xis of the N -gram matrix X ∈
ZN×|S|+ counts how many times substring s ∈ S appears
in document Di. We use Mi to indicate the ith column of
matrix M ; when each column pertains to a specific math-
ematical object, such as an N -gram or tree node, we may
use that object as an index (to avoid imposing a particular
ordering over the objects). We will always take X to be an
N -gram matrix for an implicitly given corpus.

A compact tree T = (V,E) is a tree with nodes V and
edges E where every internal node is required to have at
least 2 children. This ensures that if T has n leaves, then
there are at most n − 1 internal nodes. We use ch(v) ⊂ V
and p(v) ∈ V to denote the children and parent of v ∈ V ,

3To handle non-differentiable objectives, see (Parikh, 2013).

673

respectively. The root node is given by root(T), the depth
of any node v ∈ V is d(v) (with d(root(T)) = 1), and
depth(T) is the maximum depth of any node in V . Finally,
a branch of T is a path starting at the root and ending at
a leaf; we will use the terminal leaf to identify branches.
We will also be concerned with subtrees T̂ = (V̂ , Ê) of
T which contain a subset V̂ ⊂ V of its nodes. We allow
the new edge set Ê to be arbitrary and add a second argu-
ment to ch(v, Ê) and p(v, Ê) to indicate that parent/child
relationships are taken with respect to this new edge set.

1.3.1 Suffix Trees

Given a documentD = x1x2...xn whose characters belong
to an alphabet Σ, the suffix tree TD = (V,E) for D is a
compact tree with n leaves, each of which corresponds to a
distinct suffix of D and is numbered according to the start-
ing position of the suffix 1, . . . , n. The edges along branch
i are labelled with non-empty substrings that partitionD[i]:
suffix D[i] can be recovered by concatenating the edge la-
bels from the root to leaf i. Let l(e) for e ∈ E be the label
of edge e and define the node character c(v) of any non-
root node v ∈ V to be the first character of l((p(v), v)).
The nodes of TD are constrained so that siblings may not
have the same node character and are ordered according to
the≺ relation on these characters. These constraints ensure
that every node has at most |Σ| children and they allow for
well-defined traversals of TD. Moreover, every substring
s ∈ D∗ is represented by a unique path in TD that starts at
the root node and terminates in — possibly the middle of
— an edge. Similarly to suffixes, s equals the concatena-
tion of all characters encountered along edges from the root
to the path’s terminus (only a prefix of the final edge will
be concatenated if the path ends in the middle of an edge).

Remarkably, TD can be constructed in O(n) time (Gus-
field, 1997) and has n leaves and at most n − 1 internal
nodes, yet it represents all O(n2) distinct substrings of D.
This is possible because any substrings whose path repre-
sentation in T ends at the same edge belong to the same
equaivalence class. In particular, for v ∈ V \{root(TD)}
suppose that edge (p(v), v) has a label t = xi . . . xi+k and
let s be the string obtained by concatenating the edge labels
on the path from root(TD) down to p(v). Then the strings
S(v) = {sxi, sxi+1, . . . , sxi+k} belong to the same equiv-
alence class because they occur in the same locations, i.e.
if sxi starts at location l in D, then so do all members of
S(v). For example, in the string ”xaxaba” the substrings
”x” and ”xa” belong to the same equivalence class.

The generalized suffix tree TC for a document corpus C of
n words compactly represents the set of all substrings in C∗
and has n leaves pertaining to every suffix of every docu-
ment in C. Leaves are also annotated with the document
they belong to and TC inherits all of the linear-time stor-
age and computational guarantees of the regular suffix tree
(with respect to the corpus length n).

1.3.2 Tree Traversals and Storage

The majority of algorithms in this paper can be expressed
as a bottom-up or top-down traversal of a tree T = (V,E)
(typically the suffix tree or one of its subtrees) in which in-
formation is only exchanged between a parent and its chil-
dren. Given a fixed ordering of V , the necessary informa-
tion for a traversal is the topology of T , i.e. its parent-
child relationships, as well as any node annotations neces-
sary for the computation. We use two formats which effi-
ciently store this information and make traversals easy: the
breadth-first format (BFF) and preorder depth-first format
(DFF). In both cases we distinguish between the internal
nodes and leaves of T and divide them into their respective
sets I ∪ L = V . In the BFF we order the nodes of I ac-
cording to their breadth-first traversal whereas in the DFF
we order the nodes of I according to their preorder depth
first traversal; both formats assign indices [0, . . . , |I|) to
the nodes in I . Note that for these traversals to be well de-
fined we assume that the children of each node are ordered
in some (arbitrary) but fixed manner. Next, the leaves of T ,
i.e. L, are assigned indices [|I|, . . . , |V |) so that if u, v ∈ L
and p(u) comes before p(v) – note that both parents must
be in I – then u comes before v. This ordering ensures that
leaves are ordered into contiguous blocks with respect to
their parent and that the blocks are in the same order as I .

A pair of arrays (chI , chL), each of size |I|, capture the
topology of T : for all v ∈ I , chIv = |ch(v) ∩ I| stores the
number of internal children of v and chLv = |ch(v) ∩ L|
stores the number of leaf children of v. The number of bits
needed to store this topology is

|I|(dlog2 U(I)e+ dlog2 U(L)e) (3)

whereU(I), U(L) are the largest values in chI , chL respec-
tively, i.e. the largest number of internal/leaf children for
any node. Given node annotations in the same order as
the BFF or DFF, top-down/bottom-up traversals are easy to
perform by a linear sweep of the annotations and chI , chL

arrays. All memory access is sequential and can be per-
formed efficiently by standard (i.e. desktop) memory and
processors.

A speed/memory tradeoff exists for the two formats. The
amount of random access memory necessary for a traversal
is proportional to the depth of T for DFF versus the width
of T for the BFF. As we discuss in section 4, the former
is likely to be smaller than the latter for our purposes. The
space savings of the DFF are achieved by maintaining a
stack of active nodes pertaining to the current branch be-
ing processed. The additional logic required for this book-
keeping makes the DFF slightly slower than the BFF for
the traversal. As such, the DFF is useful for more com-
plicated computations in which the amount of information
stored per node may be large, whereas the BFF is useful for
simple computations that will be performed many times.

674

2 Fast Multiplication

This section presents our fast multiplication algorithm. Let
TC = (V,E) be the suffix tree for a document corpus C =
{D1, . . . , DN} and let X be an N -gram matrix containing
a column for every s ∈ S ⊆ C∗, i.e. the N -grams we are
interested in. In order to uncover the necessary algebraic
structure for our algorithm we must first remove redundant
columns in X . As observed in (Zhang, 2006), redundant
columns occur whenever strings in S belong to the same
equivalence class. This implies the following lemma:

Lemma 1. For any v ∈ V , any s, s′ ∈ S ∩ S(v) have the
same distribution among the documents in C so Xs = Xs′ .

We remove this redundancy by working with the node ma-
trix X ∈ ZN×M+ , a submatrix of X that contains a single
column for the M equivalence classes present in S. For-
mally, node v ∈ V is present in X if S(v) ∩ S 6= ∅ and
we define V ⊂ V 4 to be the set of all nodes present in X .
Column Xv for v ∈ V is obtained by picking an arbitrary
s ∈ S(v)∩S and settingXv = Xs. We can also reconstruct
X from X by replicating column Xv |S(v)∩S| times; this
underscores the inefficiency in the N -gram matrix.

2.1 Linear Dependencies in the Node Matrix

We are now ready to show how the topology of TC deter-
mines the linear dependencies among the columns of X .
Central to our analysis is the lemma below, which shows
that the document frequency of any node is determined en-
tirely by the leaves of its subtree:

Lemma 2. The number of times node v ∈ V \{root(TC)}
appears in document Di ∈ C equals the number of leaves
that belong to Di in the subtree rooted at v.

The simplest case occurs when V = V \{root(TC)}, i.e.
every node in TC (except for the root) has a corresponding
column in X . In this case lemma 2 directly establishes a
recursive definition for the columns of X :

Xv =

{
eNdoc(v) if v is a leaf∑
u∈ch(v) Xu otherwise.

(4)

Here eNi is the ith canonical basis vector for RN and doc(v)
indicates the document index leaf v is labelled with. Im-
portantly, (4) shows that the column corresponding to any
internal node can be expressed as a simple linear combina-
tion of the columns of its children. This basic property lies
at the core of our fast multiplication algorithm.

We now show how to apply the reasoning behind (4) to
the more general case when V is an arbitrary subset of
V , i.e. a node’s children may be partly missing. Define
TC(V) = (V̂ , Ê), the restriction of TC to V , to be a tree

4Note that V never includes the root node.

with nodes V̂ = V ∪ {root(TC)}. In addition, for any
v ∈ V \{root(TC)} let la(v, V̂) ∈ V̂ be the closest proper
ancestor of v in TC that is also in V̂ ; since root(TC) ∈ V̂ ,
this mapping is always well defined. The edge set Ê pre-
serves the ancestor relationships among the nodes in V̂ : ev-
ery v ∈ V is connected to la(v, V̂) as a child. An inductive
argument shows that if u, v ∈ V̂ , then u is an ancestor of v
in TC if and only if u is also an ancestor of v in TC(V).

Associated with TC(V) is a matrix Φ ∈ ZN×|V|+ that sub-
sumes the role of leaf document labels. Φ contains a col-
umn for every node v ∈ V and accounts for all of the leaves
in TC . When v is a leaf in TC and v is included in V we set
Φv = eNdoc(v). Otherwise, v is accounted for in Φla(v,V̂), the
column pertaining to v’s closest ancestor in V . In particu-
lar, if u ∈ V is not a leaf in TC , then

Φu =
∑

v∈leaves(TC)\V
la(v,V̂)=u

eNdoc(v). (5)

This bookkeeping allows us to relate the columns of X
when V is any subset of V :

Theorem 1. The columns of the node matrix X for V ⊆
V \ {root(TC)} are given recursively by

Xv = Φv +
∑

u∈ch(v;Ê)

Xu

where Φ and TC(V) = (V̂ , Ê) are defined above.

This theorem shows that Xv is a simple linear combination
of the columns of its children in TC(V) plus a correction
term in Φ. We utilize this structure below to give a fast
matrix-vector multiplication algorithm for node matrices.

2.2 Fast Multiplication Algorithm

A simple application of Theorem 1 shows that the matrix-
vector product Xw for w ∈ R|V| can be obtained by re-
cursively collecting entries of w into a vector β ∈ R|V|:

βv = wv + βp(v;Ê) (6a)

Xw = Φβ (6b)

Here we use the convention βroot(TC(V)) = 0. The trans-
posed operation X T y for y ∈ RN can also be written re-
cursively by expressing each entry as

(X T y)v = ΦTv y +
∑

u∈ch(v;Ê)

(X T y)u. (7)

Equations (6-7) lead to the following theorem, for which
we provide a proof sketch:

675

Theorem 2. Let C be a document corpus of n words and
let X be any node matrix derived from this corpus. Then X
requires O(n) memory to store. Multiplying a vector with
X or X T requires O(n) operations.

Proof. Vector β in equation (6) can be computed in
O(|V|) ∈ O(n) operations by a top-down traversal that
computes each of its entries in constant time. The matrix Φ
is a sparse matrix with at most one entry per leaf of the suf-
fix tree TC , i.e. at most n entries. It follows that the product
Φβ requires O(n) operations which proves the theorem for
multiplication with X . The transposed case follows simi-
larly by noting that we must compute a matrix-vector prod-
uct with ΦT and perform a bottom-up traversal that per-
forms constant time operations for every node in V .

2.2.1 Efficiency Gains

We use naı̈ve multiplication to mean sparse matrix-vector
multiplication in what follows. The supplementary mate-
rial discusses examples which show that naı̈ve multipli-
cation with the N -gram matrix X can be asymptotically
slower than naı̈ve multiplication with X , which in turn can
be asymptotically slower than multiplication with our re-
cursive algorithm. These examples establish the following
complexity separation result:

Theorem 3. There exists documents of n words for which

1. The all N -grams matrix X requires Θ(n2) storage
and operations to multiply naı̈vely.

2. The all N -grams node matrix X requires Θ(n
√
n)

storage and operations to multiply naı̈vely.

3. In all cases recursive multiplication of the node matrix
requires O(n) storage and operations.

2.3 Matrix Data Structure

The fast multiplication algorithm can be performed directly
on the suffix tree derived from C, but it is faster to use
a dedicated data structure optimized for the algorithm’s
memory access patterns. The breadth-first multiplication
tree (BFMT) stores the topology of TC(V) in the BFF (dis-
cussed in section 1.3.2) and the frequency information in
Φ as a sparse matrix in a modifed compressed sparse col-
umn (csc) format (see the supplementary material) whose
columns are ordered according to the order of the BFF. We
chose this format because executing equations (6) and (7)
requires a simple linear sweep of the BFMT. We expect that
the vectors being multiplied can be stored in memory and
therefore opted for the speed afforded by the BFF instead
of the memory savings of the DFF.

The total number of bits necessary to store the BFMT is
given by equation (3) along with the total number of bits

necessary to store Φ, which is

|V|dlog2 U
Φe+ nz(dlog2Me+ dlog2Ne). (8)

Here UΦ = maxv∈V‖Φv‖0 is the largest number of non-
zero elements in a column of Φ, nz is the total number of
non-zero elements in Φ, and M is the largest entry in Φ. It
is easy to verify that |I| ≤ |V| ≤ nz ≤ n and the term in-
volving nz typically dominates the memory requirements.

3 Common Usage Patterns

We now discuss how several common machine learning
scenarios can be adapted to use our representation of the
node matrix or preferably, to treat multiplication with X as
a black-box routine. The most straightforward use case is
to replace the original N -gram matrix with the more suc-
cint node matrix. Moreover, mean centering and column
normalization can be performed implictly, without modify-
ing X , by premultiplying and adding a correction term:

((
X − 1µT

)
Σ
)
w = X (Σw)− (µTΣw)1

Here µ is a vector of column means and Σ is a diagonal
matrix of column normalizing factors. Analogous formulas
exist for row centering and normalization.

3.1 Problem Reformulation

A variety of optimization problems can also be reformu-
lated so that they are equivalent to using the original N -
gram matrix. A simple example of such a conversion comes
from using ridge regression to model label yi ∈ R based on
the ith row of the N -gram matrix X . We wish to solve

minimize
w∈Rd

1

2
‖y −Xw‖22 +

λ

2
‖w‖22. (9)

It is easy to show that if λ > 0 and N -grams s, t belong
to the same equivalence class, then ws = wt. We can sim-
ulate the effect of these duplicated variables by collecting
terms. Let S be the set of N -grams present in X , V the
set of suffix tree nodes present in X , and define S(v) =
S(v) ∩ S for brevity. For all v ∈ V let zv = |S(v)|ws
for some s ∈ S(v). Then

∑
s∈S(v)Xsws = Xvzv and∑

s∈S(v) w
2
s = |S(v)|−1z2

v so problem (9) is equivalent to
a smaller weighted ridge regression using X :

minimize
z∈R|V|

1

2
‖y −X z‖22 +

λ

2

∑

v∈V

z2
v

|S(v)| . (10)

Note that this also shows that representations using the N -
gram matrix downweight the ridge penalty of each equiva-
lence class in proportion to its size.

We can characterize the set of optimization problems that
have an equivalent problem where the N -gram matrix can

676

be replaced with the node matrix. Define a partition J of
the integer set {1, . . . , d} to be a set of m integral inter-
vals ζk = {i, . . . , j} such that

⋃m
k=1 ζk = {1, . . . , d} and

ζk ∩ ζj = ∅ if k 6= j. A function f : Rd → Rp is per-
mutation invariant with respect to J (abbrev. J -PI) if for
all x ∈ Rd, f(x) = f(π[x]) where π : Rd → Rd is any
permutation that only permutes indices within the same in-
terval ζk ∈ J . For our purposes it is important to note that
Lp-norms are J -PI as are affine functionsAx+bwhenever
columns Ai = Aj ∀i, j ∈ ζk,∀ζk ∈ J . It is straightfor-
ward to show that if f, g : Rd → Rp are both J -PI and
c : Rp → Rq then f(x) + g(x) and c(f(x)) are also J -PI.

We prove the following theorem in the supplementary ma-
terial to connect permutation invariance to optimization:

Theorem 4. Let f : Rd → R be any convex function that
is J -PI where m = |J |. Then there exists a convex func-
tion g : Rm → R over m variables such that the problem
minx∈Rd f(x) is equivalent to minz∈Rm g(z). If z∗ is opti-
mal for the second problem, then xi = z∗k ∀i ∈ ζk, ∀ζk ∈
J is optimal for the first problem.

This theorem establishes that any convex loss of the form
L(Xw, b); e.g. SVM, logisitic regression, least squares;
added to any Lp norm, e.g. L2 ridge or L1 lasso penalty,
can be simplified to an equivalent learning problem that
uses the node matrix instead of the N -gram matrix.

3.2 Holding Out Data

Oftentimes the document corpus is organized into T (pos-
sibly overlapping) integral sets Q1, . . . ,QT indexing the
documents. For instance, splitting documents into train-
ing and testing sets yields T = 2 index sets, and further
subdividing the training set for K-fold crossvalidation in-
troduces 2K additional sets (indicating the hold out and
training data for each split). In this case we are not inter-
ested in multiplying all of X , but only the submatrix whose
rows’ indices are in the givenQi. This matrix-vector prod-
uct can be computed by calling the recursive multiplication
algorithm with the topology information in TC(V) (derived
from the full corpus) and with the submatrix of Φ whose
rows’ indices are in Qi. Also note that if only a subset of
the documents will ever be used for training, we can ig-
nore any nodes in TC that do not appear in the training set
since they (should) be ignored by any learning algorithm;
we discuss this further in section 4.2.

4 Preprocessing

We use an intermediary data structure, the depth-first pre-
processing tree (DFPT), to output the BFMT. The DFPT is
computed from a corpus C and stores the minimal informa-
tion in TC = (V,E) necessary to produce any BFMT and to
prune the nodes in V . It can be computed once and used to
store C in a format that is amenable for arbitrary machine

learning tasks. Given a new learning problem the DFPT
proceeds in two stages: 1) it identifies useful N -grams in
V and calculates relevant column normalizations, and 2)
it emits a BFMT tailored to that task. Construction of the
DFPT, as well as its processing stages, requires O(n) time
and memory with respect to the corpus length n.

As suggested by its name, the DFPT stores the topology of
TC in DFF, its leaf-document annotations, and if filtering
by N -gram length, the edge label length for each internal
node of V . Its processing stages are a sequence of of top-
down/bottom-up traversals of TC that are individually more
sophisticated than those required by our multiplication al-
gorithm, so we opted for the memory savings afforded by
the DFF. Indeed, depth(TC) is bounded by the length of
the longest document in C while the tree width is bounded
by the corpus length; the memory savings of the DFF over
the BFF are substantial. Importantly, the traversals stream
through the DFPT so it is reasonable to operate on it via
external memory, e.g. a hard drive, if memory is limited.

In detail, the DFPT requires 2|I|dlog2 |Σ|e + ndlog2Ne
bits to store the topology and leaf-document annotations,
where I is the set of internal nodes of V , N the number
of documents in C, and Σ the alphabet. For reference stor-
ing C requires ndlog2 |Σ|e + Ndlog2 ne bits and |I| < n.
An additional |I|dlog2

n
N e bits are used to store edge la-

bels lengths, but this information is only necessary when
pruning by maximum N -gram length.

4.1 Computing the Depth-First Suffix Tree

Computing the DFPT from C represents the least memory
efficient part of our framework as we first compute a suffix
array (SA) (Gusfield, 1997) from the text and then convert
the SA into the DFPT. The process requires 3ndlog2 ne +
ndlog2(|Σ|+N)e bits and O(n) time. We emphasize that
our framework is completely modular so the DFPT only
needs to be computed once. We leave it as an open problem
to determine if a more memory efficient algorithm exists
that directly computes the DFPT.

Recalling that each leaf of TC is numbered according to the
suffix it corresponds to, the SA is a permutation of the in-
tegers [0, . . . , n) that stores the leaves of TC in a pre-order
depth-first traversal. We use an SA rather than a suffix tree
because the former typically requires 4 times less memory
than a suffix tree and can also be constructed in O(n) time
and memory. We use the implementation of (Mori, 2015),
which requires m = 3ndlog2 ne + ndlog2(|Σ|+N)e bits
to construct the SA, where the second term corresponds
to a modified copy of C. This was the most memory ef-
ficient linear-time suffix array construction algorithm we
could find; asymptotically slower but more memory effi-
cient algorithms may be preferable for DNA sequence data.

The details of how we compute the DFPT from a suffix

677

array are rather involved and will be discussed in an ex-
tended version of this paper. The framework of (Kasai,
2001) is instrumental in our conversion as it allows us
to simulate a post-order depth-first traversal of TC using
the SA. By carefully managing memory and off-loading
unused information to external storage, each step of the
conversion requires at most m − ndlog2 ne bits to be
stored in main memory at any time. The total memory
requirements, including storing the DFPT while it is con-
structed, never exceed the maximum of m−ndlog2 ne and
2ndlog2 ne+ (n+ |I|)dlog2Ne bits; both are less than m.

4.2 Filtering and Normalizations

The first stage of the DFPT’s processing determines which
nodes in TC should be present in the final BFMT. It also
computes any required normalizations, such as the column
mean or norm, of the node matrix X the BFMT represents.
We assume that only the internal nodes I ⊂ V of TC will
ever be used; each leaf appears in only a single document
and is unlikely to carry useful information. We model the
screening process as a sequence of filters that are applied
to I: associated with I is a boolean array b ∈ {0, 1}|I|
where bv = 1 indicates that node v ∈ I is useful and
bv = 1 ∀v ∈ I initially. Each filter takes as input the
DFPT and b, and updates b (in place) with its own crite-
ria. All of our filters are memory efficient and only need to
store |I|+O(depth(TC)) bits in memory as the BFMT can
reasonably be streamed from slower external storage. With
the exception of the unique document filter, all of the filters
listed below run in O(n) time:

N -gram length: removes nodes whose shortest corre-
sponding N -gram is longer than a given threshold.

Training set: removes nodes that do not appear in any doc-
uments designated as the training set.

Unique document frequency: removes nodes that do not
appear in at least some number of distinct documents. We
use an algorithm given in (Paskov, 2015) which runs in
O(nα−1(n)) time, where α−1 is the inverse Ackermann
function (α−1(1080) = 4) and is essentially linear-time. A
O(n) algorithm (Gusfield, 1997) is possible, but it requires
complicated pre-processing and an additional ndlog2 ne
bits of memory.

Strong rules: given mean centered document labels y ∈
RN , removes all nodes v for which |X Tv y| < λ for a
threshold λ. This implements the strong rules of (Tibs.,
2010) and can be applied to a subset of the documents
Itr ⊂ {1, . . . , N} (e.g. training data) by mean centering
only yItr and setting yi = 0 for all i /∈ Itr. Column normal-
izations are achieved by checking η−1

v |X Tv y| < λ, where
η−1
v is the normalization for column v. This filter essen-

tially multiplies X T y using the DFPT and the normaliza-
tion can be computed on the fly (see discussion below).

Once we know which nodes will be used in the BFMT we
typically require the column mean µ = 1

NX T1 and some
kind of normalization η−1

v for each column of X . Noting
that all entries of X are non-negative, the L1-norm of each
column is η = X T1. Each of these quantities is a matrix-
vector multiply that we perform using the DFPT. These
quantities can be specialized to training data by setting ap-
propriate entries of the 1 vector to 0. We can also compute
the L2-norm of each column of X or the L1/L2-norm of
each column of X − 1µT , the mean centered node matrix.
These normalizations however require O(N |I|) time and
O(Ndepth(TC)) memory; the space savings of the DFF are
critical for the memory bound. These running times are tol-
erable if performed only once, especially on the short and
wide trees that tend to occur with natural language.

4.3 Producing the Matrix Structure

The final stage in our pipeline produces the BFMT using
the DFPT and filter b. The following lemma follows from
the definitions of breadth-first and depth-first traversals and
is essential for easy conversion between the two formats:

Lemma 3. Given a tree T = (V,E), let β be an (ordered)
list of the nodes in V in breadth-first order and define δ to
be a list of V in depth-first preorder. Define β(d) and δ(d)
to be the (sub) lists of β and δ respectively containing only
nodes at depth d. Then β(d) = δ(d) ∀d = 1, . . . , depth(T).

This lemma states that the breadth-first and depth-first pre-
order traversals list nodes in the same order if we only con-
sider the nodes of a tree at a specific depth. We thus allocate
memory for the BFMT by counting the number of nodes
with bv = 1 at each depth in the DFPT. The lemma then
allows us to copy the relevant nodes in the DFPT into the
BFMT skeleton by maintaining a stack of size depth(TC)
that keeps track of how many nodes have been written to
the BFMT at each depth. The depth-first traversal also
makes it is easy to determine edges by keeping track of
each node’s nearest ancestor (in TC) that is in the BFMT.
The copying process streams through the DFPT and b in
a single linear sweep and requires storing the BFMT and
O(depth(TC)) bits in memory.

5 Experiments

This section provides benchmarks for our multiplication al-
gorithm and applies it to solve several large-scale sentiment
analysis tasks. We implemented our framework in C 5 and
compiled it used the GCC compiler version 4.4.7 for an
x86-64 architecture. Our reference machine uses an Intel
Xeon E5-2687W processor with 8 cores running at 3.1 GHz
and has 128 Gb of RAM.

5Please contact the first author for source code.

678

5.1 Memory and Timing Benchmarks

We evaluate our multiplication algorithm on three kinds of
data to investigate its performance in a variety of scenarios:
short natural language articles, long technical papers, and
DNA sequence data. The first is the BeerAdvocate dataset
(McAuley, 2013), a corpus of 1, 586, 088 beer reviews to-
talling 1 Gb of plaintext and each consisting of a median
of 126 words. The second is a collection of 70, 728 jour-
nal articles collected from NCBI (U.S. National Library,
2015) with a median length of 6955 words and totalling
3 Gb of plaintext6. Our third dataset is derived from the
1000 Genomes Project (1000 Genomes Project, 2008) and
it consists of 6, 196, 151 biallelic markers, i.e. binary val-
ues, along chromosome 1 for 250 people.

Our preprocessing framework required at most 3.5 times
the memory of the original datasets for the natural language
data. The third dataset however presents a worst case sce-
nario for our framework and suffix tree/arrays in general.
It requires 185 megabytes to store because of its small al-
phabet size, yet its suffix array requires ndlog2 ne bits, i.e.
31 times more memory, and several times this amount to
compute. While the DFPT ameliorates this memory us-
age, it still requires 10 times more memory than the orig-
inal data and total memory usage went up to 18 gigabytes
when computing it from the suffix array.

Figure 1 compares the memory requirements of the BFMT
to explicitly storing the node and N -gram matrices for all
N -grams up to length K that appear in at least 2 doc-
uments. We show space requirements for our modified
sparse matrix format (MSF) as well as the standard sparse
format (SSF), e.g. used in Matlab. The top two graphs
correspond to the natural language datasets and have sim-
ilar patterns: memory usage for the explicit representa-
tions rises quickly for up to K = 7 and then tapers off
as overly long N -grams are unlikely to appear in multiple
documents. In all cases the BFMT is superior, requiring
approximately 3 times less memory than the MSF and up
to 14 times less memory than its floating-point counterpart.
While there is some separation between the node matrix
and naı̈ve all N -gram matrix, the gap – which is more pro-
nounced in the journal articles – is mitigated by filtering
N -grams that do not appear in multiple documents.

The third graph presents a striking difference between the
representations: the BFMT requires up to 41 times less
memory than the MSF node matrix and over 4, 600 times
less memory than the naive N -gram matrix. The floating
point counterparts for these matrices accentuate the differ-
ences by a factor of 5. Interestingly, the size of the BMFT
decreases as K increases from 103 to 104. This occurs be-
cause whenK ≥ 104, the BFMT behaves as if allN -grams
are included so that all entries in the frequency matrix Φ are

6This data was graciously made available by the Saccha-
romyces Genome Database at Stanford.

0 10 20 30 40 50
0

5

10

15

20 Matrix Memory Utilization

0 10 20 30 40 50
0

10

20

30

G
ig

ab
yt

es

100 101 102 103 104 105

Maximum N-Gram Length

10−5

100

105

BFMT
Node MSF
Node SSF
All MSF
All SSF

Figure 1: Memory utilization for the BFMT, node, and
all N -gram matrices as a function of maximum N -gram
length K on the BeerAdvocate data (top), journal data
(middle) and 1000 genomes data (bottom).

0 or 1. When K ≈ 103, most of the entries are bounded by
1, but a few large entries exist and force additional bits to
be used for all non-zero frequencies in Φ.

Next, figure 2 compares the average multiplication time for
the BFMT to ordinary sparse multiplication with the node
matrix. The top figure presents results for the BeerAdvo-
cate data; we did not include timings for the journal data
since they are essentially the same. We were unable to pro-
vide timing results for the node matrix on the DNA data
because it quickly exceeded our computer’s memory. All
trials were performed using a single core for fairness of
comparison. The difference between the BFMT and the
node matrix closely follows the memory requirement dif-
ferences. This is to be expected as both multiplication rou-
tines make a single pass over the data so running time is
proportional to the amount of data that must be scanned.
We also note that the BFMT running time scales gracefully

679

0 10 20 30 40 50
0

1

2

3

Se
co

nd
s

Matrix-Vector Multiplication Times

100 101 102 103 104 105

Maximum N-Gram Length

0

6

12
BFMT
Node MSF

Figure 2: Average time to perform one matrix-vector multi-
ply with the BFMT and node matrices as a function of max-
imum N -gram length K on the BeerAdvocate data (top)
and 1000 Genomes Data (bottom). Node matrix times are
missing for the latter because it was impractical to store.

on the DNA data; time increases at a logarithmic rate with
respect to K since the x-axis is logarithmic.

5.2 Sentiment Analysis Tasks

We applied our framework to sentiment analysis tasks on
three large datasets: the BeerAdavocate dataset, a set of
6, 396, 350 music reviews from Amazon (McAuley, 2013)
(4.6 Gb of text), and a set of 7, 850, 072 movie reviews
also from Amazon (McAuley, 2013) (7.4 Gb of text). Each
review’s sentiment is a value between 1 and 5 (indicating
negative or positive) and we tried to predict this sentiment
using a ridge regression model on features provided by the
node matrix. Each dataset was randomly split into train-
ing, validation, and testing sets comprised of 75%, 12.5%,
and 12.5% of the total data; all parameters discussed below
were selected based on their validation set performance.

We solved the regression by implementing a conjugate gra-
dient solver in C that uses our fast multiplication routine.
The ridge parameter λ was tuned on a grid of up to 100
values. We stopped tuning once the validation error in-
creased for 5 consecutive λ values and the procedure typ-
ically terminated after trying 60 values. N -grams were
pruned by maximum N -gram length and were required to
appear in at least 20 distinct documents – we experimented
with several document frequency thresholds. We also used
the strong rules to select a subset of the features for each
λ value and used αλ as the threshold; α = 1 always gave
the best performance. Finally, all columns were mean cen-
tered and normalized by their L2 norm. Our framework
computed this normalization in 2.5 minutes for the larger
movie dataset. The largest and most time intensive feature
set contained 19.4 million features and occured for K = 5
on the movie dataset. It took 26 hours to solve for and eval-
uate 69 lambda values while running on a single core. We

were able to effectively run all N -gram trials in parallel.

Table 1: Mean Squared Error for Sentiment Analysis

K Beer Music Movies

1 0.286 0.766 0.765
2 0.254 0.481 0.237
3 0.245 0.366 0.140
4 0.244 0.333 0.121
5 0.244 0.325 0.115

Table 1 summarizes the mean-squared error of our regres-
sion model on the testing set. All three datasets benefit
from longer N -grams, but we note that the longer datasets
seem to benefit more (size increases from left to right).
Confounding this potential effect are peculiarities specific
to the tasks and specific to BeerAdvocate versus Amazon
reviews (recall that the music and movie reviews both come
from the same data source). Nonetheless, it is also possi-
ble that larger datasets are better equipped to utilize long
N -grams: they provide enough examples to counter the
variance incurred from estimating coefficients for long, and
therefore relatively infrequent,N -grams. It will be interest-
ing to verify this potential effect with more experiments.

6 Conclusion

This paper shows that learning with longN -grams on large
corpora is tractable because of the rich structure in N -
gram matrices. We provide a framework that can be used
to permanently store a document corpus in a format op-
timized for machine learning. Given a particular learning
task, our framework finds helpfulN -grams and emits a data
structure that is tailored to the problem and allows for fast
matrix-vector multiplication – an operation that lies at the
heart of many popular learning algorithms.

Our work suggests a number of extensions. While our mul-
tiplication algorithm is single-threaded, the underlying data
structure is a tree and the necessary traversals are easy to
parallelize. Finding an efficient algorithm to directly com-
pute the DFPT without using a suffix array will also be use-
ful. Finally, our framework provides considerable compu-
tational savings for DNA sequence data over naı̈ve repre-
sentations (up to 4 orders of magnitude). We hope that our
algorithm will inspire additional research into longN -gram
models for this kind of data.

Acknowledgements

In loving memory of Hristo P. Georgiev (Hristo P.
Georgiev). Funding provided by the Air Force Office of
Scientific Research and the National Science Foundation.

680

References

[1] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno
Ohlebusch. Replacing suffix trees with enhanced suffix ar-
rays. J. of Discrete Algorithms, 2(1):53–86, March 2004.

[2] William Cavnar and John Trenkle. N-gram-based text cate-
gorization. In In Proceedings of SDAIR-94, 3rd Annual Sym-
posium on Document Analysis and Information Retrieval,
pages 161–175, 1994.

[3] Dan Gusfield. Algorithms on Strings, Trees, and Sequences:
Computer Science and Computational Biology. Cambridge
University Press, New York, NY, USA, 1997.

[4] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The
Elements of Statistical Learning. Springer Series in Statis-
tics. Springer New York Inc., New York, NY, USA, 2001.

[5] John Houvardas and Efstathios Stamatatos. N-gram feature
selection for authorship identification. In Proceedings of
the 12th International Conference on Artificial Intelligence:
Methodology, Systems, and Applications, AIMSA’06, pages
77–86, Berlin, Heidelberg, 2006. Springer-Verlag.

[6] Juhani Kähärä and Harri Lähdesmäki. Evaluating a lin-
ear k-mer model for protein-dna interactions using high-
throughput selex data. BMC Bioinformatics, 14(S-10):S2,
2013.

[7] Toru Kasai, Hiroki Arimura, and Setsuo Arikawa. Efficient
substring traversal with suffix arrays.

[8] Julian McAuley and Jure Leskovec. From amateurs to con-
noisseurs: Modeling the evolution of user expertise through
online reviews. In Proceedings of the 22Nd International
Conference on World Wide Web, WWW ’13, pages 897–
908, Republic and Canton of Geneva, Switzerland, 2013.
International World Wide Web Conferences Steering Com-
mittee.

[9] Julian McAuley and Jure Leskovec. Hidden factors and hid-
den topics: understanding rating dimensions with review
text. In Proceedings of the 7th ACM conference on Rec-
ommender systems, pages 165–172. ACM, 2013.

[10] Yuta Mori. sais, https://sites.google.com/site/yuta256/sais,
2015.

[11] Jorge Nocedal and Stephen Wright. Numerical Optimiza-
tion. Springer Series in Operations Research and Financial
Engineering. Springer New York, 2006.

[12] U.S. National Library of Medicine. National center for
biotechnology information, 2015.

[13] Neal Parikh and Stephen Boyd. Proximal algorithms. Foun-
dations and Trends in Optimization, 2013.

[14] Hristo Paskov, John Mitchell, and Trevor Hastie. Unique-
ness counts: A nearly linear-time online algorithm for the
multiple common substring problem. In In preparation,
2015.

[15] Hristo Paskov, Robert West, John Mitchell, and Trevor
Hastie. Compressive feature learning. In NIPS, 2013.

[16] 1000 Genomes Project. 1000 genomes project, a deep cata-
log of human genetic variation., 2008.

[17] Konrad Rieck and Pavel Laskov. Linear-time computation
of similarity measures for sequential data. The Journal of
Machine Learning Research, 9:23–48, 2008.

[18] Choon Hui Teo and S. V. N. Vishwanathan. Fast and space
efficient string kernels using suffix arrays. In In Proceed-
ings, 23rd ICMP, pages 929–936. ACM Press, 2006.

[19] Robert Tibshirani. Regression shrinkage and selection via
the lasso. J. R. Stat. Soc. B, 58(1):267–288, 1996.

[20] Robert Tibshirani, Jacob Bien, Jerome Friedman, Trevor
Hastie, Noah Simon, Jonathan Taylor, and Ryan J. Tibshi-
rani. Strong rules for discarding predictors in lasso-type
problems., 2010.

[21] SVN Vishwanathan and Alexander Johannes Smola. Fast
kernels for string and tree matching. Kernel methods in com-
putational biology, pages 113–130, 2004.

[22] Sida Wang and Christopher Manning. Baselines and bi-
grams: Simple, good sentiment and topic classification. In
Proceedings of the ACL, pages 90–94, 2012.

[23] Frank Wood, Jan Gasthaus, Cédric Archambeau, Lancelot
James, and Yee Whye Teh. The sequence memoizer. Com-
munications of the ACM, 54(2):91–98, 2011.

[24] Dell Zhang. Extracting key-substring-group features for text
classification. In In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery and data
mining (KDD 06, pages 474–483. ACM Press, 2006.

681

A Complete Generalized Adjustment Criterion

Emilija Perković
Seminar for Statistics

ETH Zurich, Switzerland
perkovic@stat.math.ethz.ch

Johannes Textor
Theoretical Biology & Bioinformatics
Utrecht University, The Netherlands

johannes.textor@gmx.de

Markus Kalisch
Seminar for Statistics

ETH Zurich, Switzerland
kalisch@stat.math.ethz.ch

Marloes H. Maathuis
Seminar for Statistics

ETH Zurich, Switzerland
maathuis@stat.math.ethz.ch

Abstract

Covariate adjustment is a widely used approach
to estimate total causal effects from observational
data. Several graphical criteria have been de-
veloped in recent years to identify valid covari-
ates for adjustment from graphical causal mod-
els. These criteria can handle multiple causes,
latent confounding, or partial knowledge of the
causal structure; however, their diversity is con-
fusing and some of them are only sufficient, but
not necessary. In this paper, we present a cri-
terion that is necessary and sufficient for four
different classes of graphical causal models: di-
rected acyclic graphs (DAGs), maximum ances-
tral graphs (MAGs), completed partially directed
acyclic graphs (CPDAGs), and partial ancestral
graphs (PAGs). Our criterion subsumes the ex-
isting ones and in this way unifies adjustment set
construction for a large set of graph classes.

1 INTRODUCTION

Which covariates do we need to adjust for when estimat-
ing total causal effects from observational data? Graphical
causal modeling allows to answer this question construc-
tively, and contributed fundamental insights to the theory
of adjustment in general. For instance, a simple example
known as the “M-bias graph” shows that it is not always
appropriate to adjust for all observed (pre-treatment) co-
variates (Shrier, 2008; Rubin, 2008). A few small graphs
also suffice to refute the “Table 2 fallacy” (Westreich and
Greenland, 2013), which is the belief that the coefficients in
multiple regression models are “mutually adjusted”. Thus,
causal graphs had substantial impact on theory and practice
of covariate adjustment (Shrier and Platt, 2008).

The practical importance of covariate adjustment has in-
spired a growing body of theoretical work on graphical
criteria that are sufficient and/or necessary for adjustment.

Pearl’s back-door criterion (Pearl, 1993) is probably the
most well-known, and is sufficient but not necessary for
adjustment in DAGs. Shpitser et al. (2012) adapted the
back-door criterion to a necessary and sufficient graphi-
cal criterion for adjustment in DAGs. Others considered
graph classes other than DAGs, which can represent struc-
tural uncertainty. van der Zander et al. (2014) gave neces-
sary and sufficient graphical criteria for MAGs that allow
for unobserved variables (latent confounding). Maathuis
and Colombo (2015) presented a generalized back-door
criterion for DAGs, MAGs, CPDAGs and PAGs, where
CPDAGs and PAGs represent Markov equivalence classes
of DAGs or MAGs, respectively, and can be inferred di-
rectly from data (see, e.g., Spirtes et al., 2000; Chickering,
2003; Colombo et al., 2012; Claassen et al., 2013; Colombo
and Maathuis, 2014). The generalized back-door criterion
is sufficient but not necessary for adjustment.

In this paper, we extend the results of Shpitser et al. (2012),
van der Zander et al. (2014) and Maathuis and Colombo
(2015) to derive a single necessary and sufficient adjust-
ment criterion that holds for all four graph classes: DAGs,
CPDAGs, MAGs and PAGs.

To illustrate the use of our generalized adjustment crite-
rion, suppose we are given the CPDAG in Figure 1a and
we want to estimate the total causal effect of X on Y . Our
criterion will inform us that the set {A,Z} is an adjustment
set for this CPDAG, which means that it is an adjustment
set in every DAG that the CPDAG represents (Figure 1b).
Hence, we can estimate the causal effect without knowl-
edge of the full causal structure. In a similar manner, by
applying our criterion to a MAG or a PAG, we find ad-
justment sets that are valid for all DAGs represented by
this MAG or PAG. Our criterion finds such adjustment
sets whenever they exist; else, our knowledge of the model
structure is insufficient to compute the desired causal ef-
fect by covariate adjustment. We hope that this ability to
allow for incomplete structural knowledge or latent con-
founding or both will help address concerns that graphical
causal modelling “assumes that all [...] DAGs have been
properly specified” (West and Koch, 2014).

682

A B

I Z

X Y

(a)

(b)

Figure 1: (a) A CPDAG in which, according to our cri-
terion, {A,Z} is an adjustment set for the total causal ef-
fect of X on Y . (b) The Markov equivalence class of (a),
with node labels removed for simplicity and varying edges
highlighted. An adjustment set for a CPDAG (PAG) is
one that works in all DAGs (MAGs) of the Markov equiv-
alence class.

We note that, although we can find all causal effects that
are identifiable by covariate adjustment, we generally do
not find all identifiable causal effects, since some effects
may be identifiable by other means, such as Pearl’s front-
door criterion (Pearl, 2009, Section 3.3.2) or the ID algo-
rithm (Tian and Pearl, 2002; Shpitser and Pearl, 2006). We
also point out that MAGs and PAGs are in principle not
only able to represent unobserved confounding, but can
also account for unobserved selection variables. However,
in this paper we assume that there are no unobserved se-
lection variables. This restriction is mainly due to the fact
that selection bias often renders it impossible to identify
causal effects using just covariate adjustment. Bareinboim
et al. (2014) discuss these problems and present creative
approaches to work around them, e.g., by combining data
from different sources. We leave the question whether ad-
justment could be combined with such auxiliary methods
aside for future research.

2 PRELIMINARIES

Throughout the paper we denote sets in bold uppercase let-
ters (e.g., S), graphs in calligraphic font (e.g., G) and nodes
in a graph in uppercase letters (e.g., X)

Nodes and edges. A graph G = (V,E) consists of a set of
nodes (variables) V = {X1, . . . , Xp} and a set of edges E.

There is at most one edge between any pair of nodes, and
nodes are called adjacent if they are connected by an edge.
Every edge has two edge marks that can be arrowheads,
tails or circles. Edges can be directed →, bidirected ↔,
non-directed b b or partially directed b→ . We use • as a
stand in for any of the allowed edge marks. An edge is
into (out of) a node X if the edge has an arrowhead (tail)
at X . A directed graph contains only directed edges. A

mixed graph may contain directed and bi-directed edges.
A partial mixed graph may contain any of the described
edges. Unless stated otherwise, all definitions apply for
partial mixed graphs.

Paths. A path p from X to Y in G is a sequence of distinct
nodes 〈X, . . . , Y 〉 in which every pair of successive nodes
is adjacent in G. A node V lies on a path p if V occurs
in the sequence of nodes. The length of a path equals the
number of edges on the path. A directed path from X to
Y is a path from X to Y in which all edges are directed
towards Y , i.e., X → · · · → Y . A directed path is also
called a causal path. A possibly directed path (possibly
causal path) from X to Y is a path from X to Y that has
no arrowhead pointing to X . A path from X to Y that is
not possibly causal is called a non-causal path from X to
Y . A directed path from X to Y together with an edge
Y → X (Y ↔ X) forms an (almost) directed cycle. For
two disjoint subsets X and Y of V, a path from X to Y is
a path from some X ∈ X to some Y ∈ Y. A path from X
to Y is proper if only its first node is in X.

Subsequences and subpaths. A subsequence of a path p is
a sequence of nodes obtained by deleting some nodes from
p without changing the order of the remaining nodes. A
subsequence of a path is not necessarily a path. For a path
p = 〈X1, X2, . . . , Xm〉, the subpath from Xi to Xk (1 ≤
i ≤ k ≤ m) is the path p(Xi, Xk) = 〈Xi, Xi+1, . . . , Xk〉.
We denote the concatenation of paths by ⊕, so that for ex-
ample p = p(X1, Xk) ⊕ p(Xk, Xm). We use the conven-
tion that we remove any loops that may occur due to the
concatenation, so that the result is again a path.

Ancestral relationships. If X → Y , then X is a par-
ent of Y . If there is a (possibly) directed path from X to
Y , then X is a (possible) ancestor of Y , and Y is a (pos-
sible) descendant of X . Every node is also a descendant
and an ancestor of itself. The sets of parents and (possi-
ble) descendants of X in G are denoted by Pa(X,G) and
(Poss)De(X,G) respectively. For a set of nodes X ⊆ V,
we have Pa(X,G) = ∪X∈X Pa(X,G), with analogous
definitions for (Poss)De(X,G).
Colliders and shields. If a path p contains
Xi•→Xj←•Xk as a subpath, then Xj is a collider
on p. A collider path is a path on which every non-
endpoint node is a collider. A path of length one is a trivial
collider path. A path 〈Xi, Xj , Xk〉 is an (un)shielded triple
if Xi and Xk are (not) adjacent. A path is unshielded if all
successive triples on the path are unshielded. Otherwise
the path is shielded. A node Xj is a definite non-collider
on a path p if there is at least one edge out of Xj on p, or if
Xi• bXj

b •Xk is a subpath of p and 〈Xi, Xj , Xk〉 is an
unshielded triple. A node is of definite status on a path if it
is a collider or a definite non-collider on the path. A path
p is of definite status if every non-endpoint node on p is
of definite status. An unshielded path is always of definite

683

status, but a definite status path is not always unshielded.

m-separation and m-connection. A definite status path
p between nodes X and Y is m-connecting given a set of
nodes Z (X,Y /∈ Z) if every definite non-collider on p is
not in Z, and every collider on p has a descendant in Z.
Otherwise Z blocks p. If Z blocks all definite status paths
between X and Y , we say that X and Y are m-separated
given Z. Otherwise, X and Y are m-connected given Z.
For pairwise disjoint subsets X, Y, Z of V, X and Y are
m-separated given Z if X and Y are m-separated by Z for
any X ∈ X and Y ∈ Y. Otherwise, X and Y are m-
connected given Z.

Causal Bayesian networks. A directed graph without
directed cycles is a directed acyclic graph (DAG). A
Bayesian network for a set of variables V = {X1, . . . , Xp}
is a pair (G, f), where G is a DAG, and f is a joint
probability density for V that factorizes according to the
conditional independence relationships described via m-
separation, that is f(V) =

∏p
i=1 f(Xi|Pa(Xi,G)) (Pearl,

2009). We call a DAG causal when every edge Xi → Xj

in G represents a direct causal effect of Xi on Xj . A
Bayesian network (G, f) is a causal Bayesian network if
G is a causal DAG. If a causal Bayesian network is given
and all variables are observed one can easily derive post-
intervention densities. In particular, we consider interven-
tions do(X = x) (X ⊆ V), which represent outside inter-
ventions that set X to x (Pearl, 2009):

f(v|do(X = x)) =

=

∏
Xi∈V\X f(xi|Pa(xi,G)), for values of V

consistent with x,

0, otherwise.
(1)

Equation (1) is known as the truncated factorization for-
mula (Pearl, 2009) or the g-formula (Robins, 1986).

Maximal ancestral graph. A mixed graph G without di-
rected cycles and almost directed cycles is called ancestral.
A maximal ancestral graph (MAG) is an ancestral graph
G = (V,E) where every two non-adjacent nodes X and Y
in G can be m-separated by a set Z ⊆ V\{X,Y }. A DAG
with unobserved variables can be uniquely represented by
a MAG that preserves the ancestral and m-separation re-
lationships among the observed variables (Richardson and
Spirtes, 2002). The MAG of a causal DAG is a causal
MAG.

Markov equivalence. Several DAGs can encode the same
conditional independence information via m-separation.
Such DAGs form a Markov equivalence class which can
be described uniquely by a completed partially directed
acyclic graph (CPDAG) . Several MAGs can also en-
code the same conditional independence information. Such
MAGs form a Markov equivalence class which can be

X

V

Y

X

Vn

V3

V2

V1

Y

Figure 2: Two configurations where the edge X → Y is
visible.

described uniquely by a partial ancestral graph (PAG)
(Richardson and Spirtes, 2002; Ali et al., 2009). We de-
note all DAGs (MAGs) in the Markov equivalence class
described by a CPDAG (PAG) G by [G].
Consistent density. A density f is consistent with a causal
DAGD if the pair (D, f) forms a causal Bayesian network.
A density f is consistent with a causal MAGM if there ex-
ists a causal Bayesian network (D′, f ′), such thatM rep-
resents D′ and f is the observed marginal of f ′. A density
f is consistent with a CPDAG (PAG) G if it is consistent
with a DAG (MAG) in [G].
Visible and invisible edges. All directed edges in DAGs
and CPDAGs are said to be visible. Given a MAGM or a
PAG G, a directed edge X → Y is visible if there is a node
V not adjacent to Y such that there is an edge between V
and X that is into X , or if there is a collider path from V to
X that is into X and every non-endpoint node on the path
is a parent of Y . Otherwise, X → Y is said to be invisible
(Zhang, 2006; Maathuis and Colombo, 2015).

A directed visible edge X → Y means that there are no
latent confounders between X and Y .

3 MAIN RESULT

Throughout, let G = (V,E) represent a DAG, CPDAG,
MAG or PAG, and let X, Y and Z be pairwise disjoint
subsets of V, with X 6= ∅ and Y 6= ∅. Here X represents
the intervention variables and Y represents the set of re-
sponse variables, i.e., we are interested in the causal effect
of X on Y.

We define sound and complete graphical conditions for ad-
justment sets relative to (X,Y) in G. Thus, if a set Z satis-
fies our conditions relative to (X,Y) in G (Definition 3.3),
then it is a valid adjustment set for calculating the causal
effect of X on Y (Definition 3.1), and every existing valid
adjustment set satisfies our conditions (see Theorem 3.4).
First, we define what we mean by an adjustment set.

Definition 3.1. (Adjustment set; Maathuis and Colombo,
2015) Let G represent a DAG, CPDAG, MAG or
PAG. Then Z is an adjustment set relative to (X,Y)

684

in G if for any density f consistent with G we have

f(y|do(x)) =
{
f(y|x) if Z = ∅,∫
Z
f(y|x, z)f(z)dz = EZ{f(y|z,x)} otherwise.

If X = {X} and Y = {Y }, we call Z an adjustment set
relative to (X,Y) in the given graph.

To define our generalized adjustment criterion, we intro-
duce the concept of amenability:

Definition 3.2. (Amenability for DAGs, CPDAGs,
MAGs and PAGs) A DAG, CPDAG, MAG or PAG G is
said to be adjustment amenable, relative to (X,Y) if every
possibly directed proper path from X to Y in G starts with
a visible edge out of X.

For conciseness, we will also write “amenable” instead of
“adjustment amenable”. The intuition behind the concept
of amenability is the following. In MAGs and PAGs, di-
rected edges X → Y can represent causal effects, but
also mixtures of causal effects and latent confounding; in
CPDAGs and PAGs, there are edges with unknown di-
rection. This complicates adjustment because paths con-
taining such edges can correspond to causal paths in some
represented DAGs and to non-causal paths in others. For
instance, when the graph X → Y is interpreted as a DAG,
the empty set is a valid adjustment set with respect to
(X,Y) because there is only one path from X to Y , which
is causal. When the same graph is however interpreted as a
MAG, it can still represent the DAG X → Y , but also
for example the DAG X → Y with a non-causal path
X ← L → Y where L is latent. A similar problem arises
in the CPDAG X Y .

We will show that for a graph G that is not amenable rela-
tive to (X,Y), there is no adjustment set relative to (X,Y)
in the sense of Definition 3.1 (see Lemma 5.2). Note that
every DAG is amenable, since all edges in a DAG are vis-
ible and directed. For MAGs, our notion of amenability
reduces to the one defined by van der Zander et al. (2014).

We now introduce our Generalized Adjustment Criterion
(GAC) for DAGs, CPDAGs, MAGs and PAGs.

Definition 3.3. (Generalized Adjustment Criterion
(GAC)) Let G represent a DAG, CPDAG, MAG or PAG.
Then Z satisfies the generalized adjustment criterion
relative to (X,Y) in G if the following three conditions
hold:

(0) G is adjustment amenable relative to (X,Y), and

(1) no element in Z is a possible descendant in G of any
W ∈ V \ X which lies on a proper possibly causal
path from X to Y, and

(2) all proper definite status non-causal paths in G from
X to Y are blocked by Z.

XV1

V2

Y

(a)

XV1

V2

Y

(b)

XV1

V2

Y

(c)

Figure 3: (a) PAG P , (b) MAGM1, (c) MAGM2 used
in Example 4.2.

Note that condition (0) does not depend on Z. In other
words, if condition (0) is violated, then there is no set
Z′ ⊆ V \ (X ∪ Y) that satisfies the generalized adjust-
ment criterion relative to (X,Y) in G.

Condition (1) defines a set of nodes that cannot be used in
an adjustment set. Denoting this set of forbidden nodes by

FG(X,Y) = {W ′ ∈ V :W ′ ∈ PossDe(W,G) for some
W /∈ Xwhich lies on a proper possibly
causal path fromX toY}, (2)

condition (1) can be stated as: Z∩FG(X,Y) = ∅. We will
sometimes use this notation in examples and proofs.

We now give the main theorem of this paper.

Theorem 3.4. Let G represent a DAG, CPDAG, MAG or
PAG. Then Z is an adjustment set relative to (X,Y) in G
(Definition 3.1) if and only if Z satisfies the generalized ad-
justment criterion relative to (X,Y) in G (Definition 3.3).

4 EXAMPLES

We now provide some examples that illustrate how the gen-
eralized adjustment criterion can be applied.

Example 4.1. We first return to the example of the Intro-
duction. Consider the CPDAG C in Figure 1a. Note that C
is amenable relative to (X,Y) and that FC(X,Y) = {Y }.
Hence, any node other than X and Y can be used in an
adjustment set. Note that every definite status non-causal
path p from X to Y has one of the following paths as a
subsequence: p1 = 〈X,Z, Y 〉 and p2 = 〈X,A,B, Y 〉,
and nodes on p that are not on p1 or p2 are non-colliders
on p. Hence, if we block p1 and p2, then we block all defi-
nite status non-causal paths fromX to Y . This implies that
any superset of {Z,A} and {Z,B} is an adjustment set
relative to (X,Y) in C, and all adjustment sets are given
by: {Z,A}, {Z,B}, {Z,A, I}, {Z,B, I}, {Z,A,B} and
{Z,A,B, I}.

Example 4.2. To illustrate the concept of amenability, con-
sider Figure 3 with a PAG P in (a), and two MAGsM1

and M2 in [P] in (b) and (c). Note that P and M1 are
not amenable relative to (X,Y). For P this is due to the

685

X

V2 V1

V3V4Y

(a)

X

V2 V1

V3V4Y

(b)

Figure 4: (a) PAG P1, (b) PAG P2 used in Example 4.3.

X1 V1

X2

V2 Y

(a)

X1

V3

V4

V1 V2

X2

Y

(b)

Figure 5: (a) CPDAG C, (b) PAG P used in Example 4.4.

path X b bY , and forM1 this is due to the invisible edge
X → Y . On the other hand, M2 is amenable relative to
(X,Y), since the edges X → Y and X → V2 are visible
due to the edge V1 → X and the fact that V1 is not adja-
cent to Y or V2. Since there are no proper definite status
non-causal paths from X to Y in M2, it follows that the
empty set satisfies the generalized adjustment criterion rel-
ative to (X,Y) inM2. Finally, note thatM1 could also be
interpreted as a DAG. In that case it would be amenable
relative to (X,Y). This shows that amenability depends
crucially on the interpretation of the graph.

Example 4.3. Let P1 and P2 be the PAGs in Figure 4(a)
and Figure 4(b), respectively. Both PAGs are amenable
relative to (X,Y). We will show that there is an adjust-
ment set relative to (X,Y) in P1 but not in P2. This illus-
trates that amenability is not a sufficient criterion for the
existence of an adjustment set.

We first consider P1. Note that FP1(X,Y) = {V4, Y } is
the set of nodes that cannot be used for adjustment. There
are two proper definite status non-causal paths from X to
Y in P1: X← bV3 → Y and X → V4 ← V3 → Y .
These are blocked by any set containing V3. Hence, all
sets satisfying the GAC relative to (X,Y) in P1 are: {V3},
{V1, V3}, {V2, V3} and {V1, V2, V3}.
We now consider P2. Note that FP2 (X,Y) =
FP1(X,Y) = {V4, Y }. There are three proper definite sta-
tus non-causal paths fromX to Y in P2: p1 = X ↔ V3 →
Y , p2 = X ↔ V3 ↔ V4 → Y and p3 = X → V4 ↔
V3 → Y . To block p1, we must also use V3. This implies
that we must use V4 to block p2. But V4 ∈ FP2 (X,Y).
Hence, there is no set Z that satisfies the GAC relative to
(X,Y) in P2.

Example 4.4. Let X = {X1, X2} and Y = {Y } and con-
sider the CPDAG C and the PAG P in Figures 5(a) and
5(b). We will show that for both graphs there is no set that
satisfies the generalized back-door criterion of Maathuis
and Colombo (2015) relative to (X,Y), but there are sets
that satisfy the generalized adjustment criterion relative to
(X,Y) in these graphs.

Recall that a set Z satisfies the generalized back-door cri-
terion relative to (X,Y) and a CPDAG (PAG) G if Z
contains no possible descendants of X in G and if for every
X ∈ X the set Z ∪ X \ {X} blocks every definite status
path from X to every Y ∈ Y in G that does not start with
a visible edge out of X .

We first consider the CPDAG C. To block the path X2 ←
V2 ← Y , we must use node V2, but V2 ∈ PossDe(X1, C).
Hence, no set Z can satisfy the generalized back-door cri-
terion relative to (X,Y) in C. However, {V1, V2} satisfies
the generalized adjustment criterion relative to (X,Y) in
C.

We now consider P . To block the path X2 ← V2 ↔ Y ,
we must use node V2. But, V2 ∈ De(X1,P) and thus
there is no set satisfying the generalized back-door cri-
terion relative to (X,Y) in P . However, sets {V1, V2},
{V1, V2, V3}, {V1, V2, V4}, {V1, V2, V3, V4} all satisfy the
generalized adjustment criterion relative to (X,Y) in P .

5 PROOF OF THEOREM 3.4

For DAGs and MAGs, our generalized adjustment crite-
rion reduces to the following adjustment criterion:
Definition 5.1. (Adjustment Criterion (AC)) Let G =
(V,E) represent a DAG or MAG . Then Z satisfies the
adjustment criterion relative to (X,Y) in G if the follow-
ing three conditions hold:

(0*) G is adjustment amenable with respect to (X,Y), and

(a) no element in Z is a descendant in G of any W ∈
V \X which lies on a proper causal path from X to
Y, and

(b) all proper non-causal paths in G from X to Y are
blocked by Z.

This adjustment criterion is a slightly reformulated but
equivalent version of the adjustment criterion of Shpitser
et al. (2012) for DAGs and of van der Zander et al. (2014)
for MAGs, with amenability directly included in the crite-
rion. This adjustment criterion was shown to be sound and
complete for DAGs (Shpitser et al., 2012; Shpitser, 2012)
and MAGs (van der Zander et al., 2014). We therefore only
need to prove Theorem 3.4 for CPDAGs and PAGs.

To this end, we need three main lemmas, given below.
Throughout, we let G = (V,E) represent a CPDAG or

686

Theorem 3.4

Lemma 5.2Lemma 5.5

Lemma 5.3

Lemma 5.4Lemma 5.8Lemma 5.7

Figure 6: Proof structure of Theorem 3.4.

a PAG, and we let X, Y and Z be pairwise disjoint subsets
of V, with X 6= ∅ and Y 6= ∅. We use GAC and AC to re-
fer to the generalized adjustment criterion (Definition 3.3)
and adjustment criterion (Definition 5.1), respectively.

Lemma 5.2 is about condition (0) of the GAC:

Lemma 5.2. If a CPDAG (PAG) G satisfies condition (0)
of the GAC relative to (X,Y), then every DAG (MAG)
in [G] satisfies condition (0*) of the AC relative to (X,Y).
On the other hand, if G violates condition (0) of the GAC
relative to (X,Y), then there exists no set Z′ ⊆ V \ (X ∪
Y) that is an adjustment set relative to (X,Y) in G (see
Definition 3.1).

Next, we assume that G satisfies condition (0) of the GAC
relative to (X,Y). Under this assumption, we show that
Z satisfies conditions (1) and (2) of the GAC relative to
(X,Y) in G if and only if Z satisfies conditions (a) and (b)
of the AC relative to (X,Y) in every DAG (MAG) in [G].
This is shown in two separate lemmas:

Lemma 5.3. Let condition (0) of the GAC be satisfied rela-
tive to (X,Y) in a CPDAG (PAG) G. Then the following
two statements are equivalent:

• Z satisfies condition (1) of the GAC relative to (X,Y)
in G.

• Z satisfies condition (a) of the AC relative to (X,Y)
in every DAG (MAG) in [G].

Lemma 5.4. Let condition (0) of the GAC be satisfied rel-
ative to (X,Y) in a CPDAG (PAG) G, and let Z satisfy
condition (1) of the GAC relative to (X,Y) in G. Then the
following two statements are equivalent:

• Z satisfies condition (2) of the GAC relative to (X,Y)
in G.

• Z satisfies condition (b) of the AC relative to (X,Y)
in every DAG (MAG) in [G].

The proofs of Lemmas 5.2, 5.3 and 5.4 are discussed in
Sections 5.1, 5.2 and 5.3, respectively. Some proofs re-
quire additional lemmas that can be found in the supple-
ment. The proof of Lemma 5.4 is the most technical, and
builds on the work of Zhang (2006).

Figure 6 shows how all lemmas fit together to prove Theo-
rem 3.4.

Proof of Theorem 3.4: First, suppose that the CPDAG
(PAG) G and the sets X, Y and Z satisfy all conditions of
the GAC. By applying Lemmas 5.2, 5.3 and 5.4 in turn, it
directly follows that all conditions of the AC are satisfied
by X, Y and Z and any DAG (MAG) in [G].
To prove the other direction, suppose that the tuple G, X,
Y, Z does not satisfy all conditions of the GAC. First, sup-
pose that G violates condition (0) relative to (X,Y). Then
by Lemma 5.2, there is no adjustment set relative to (X,Y)
in G, and hence Z is certainly not an adjustment set.

Otherwise, Z must violate condition (1) or (2) of the GAC
relative to (X,Y). By applying Lemmas 5.3 and 5.4 in
turn, this implies that there is a DAG D (MAGM) in [G]
such that Z violates conditions (a) or (b) of the AC relative
to (X,Y) in D (M). Since the AC is sound and complete
for DAGs and MAGs, this implies that Z is not an adjust-
ment set relative to (X,Y) inD (M), so that Z is certainly
not an adjustment set relative to (X,Y) in G.

�

5.1 PROOF OF LEMMA 5.2

The proof of Lemma 5.2 is based on the following lemma:

Lemma 5.5. LetX and Y be nodes in a PAG P , such that
there is a possibly directed path p∗ from X to Y in P that
does not start with a visible edge out of X . Then there is
a MAGM in [P] such that the path p inM, consisting of
the same sequence of nodes as p∗ in P , contains a subse-
quence that is a directed path from X to Y starting with an
invisible edge inM.

The proof of Lemma 5.5 is given in the supplement.

Proof of Lemma 5.2: First suppose that G satisfies condi-
tion (0) of the GAC relative to (X,Y), meaning that every
proper possibly directed path from X to Y in G starts with
a visible edge out of X. Any visible edge in G is visible
in all DAGs (MAGs) in [G], and any proper directed path
in a DAG (MAG) in [G] corresponds to a proper possibly
directed path in G. Hence, any proper directed path from X
to Y in any DAG (MAG) in [G] starts with a visible edge
out of X. This shows that all DAGs (MAGs) in [G] satisfy
condition (0*) of the AC relative to (X,Y).

Next, suppose that G violates condition (0) of the GAC rel-
ative to (X,Y). We will show that this implies that there is
no set Z′ ⊆ V \ (X ∪Y) that is an adjustment set relative
to (X,Y) in G. We give separate proofs for CPDAGs and
PAGs.

Thus, let G represent a CPDAG and suppose that there is
a proper possibly directed path p from a node X ∈ X to a
node Y ∈ Y that starts with a non-directed edge (b b).

687

Let p′ = 〈X,V1, . . . , Y 〉 (where V1 = Y is allowed) be
a shortest subsequence of p such that p′ is also a proper
possibly directed path from X to Y starting with a non-
directed edge in G. We first show that p′ is a definite status
path, by contradiction. Thus, suppose that p′ is not a defi-
nite status path. Then the length of p′ is at least 2, and we
write p′ = 〈X,V1, . . . , Vk = Y 〉 for k ≥ 2. Since the sub-
path p′(V1, Y) is a definite status path (otherwise we can
choose a shorter path), this means that V1 is not of a defi-
nite status on p′. This implies the existence of an edge be-
tween X and V2. This edge must be of the form X → V2,
since X b bV2 implies that we can choose a shorter path,
and X ← V2 together with X b bV1 implies V1 ← V2 by
Lemma 1 from Meek (1995) (see Section 1 of the supple-
ment), so that p′ is not possibly directed from X to Y . But
the edge X → V2 implies that V1 → V2, since otherwise
Lemma 1 from Meek (1995) implies X → V1. But then V1
is a definite non-collider on p′, which contradicts that V1 is
not of definite status.

Hence, p′ is a proper possibly directed definite status path
from X to Y . By Lemma 7.6 from Maathuis and Colombo
(2015) (see Section 1 of the supplement), there is a DAG
D1 in [G] such that there are no additional arrowheads into
X , as well as a DAG D2 in [G] such that there are no addi-
tional arrowheads into V1. This means that the paths corre-
sponding to p′ are oriented as p′1 = X → V1 → · · · → Y
and p′2 = X ← V1 → · · · → Y in D1 and D2. An adjust-
ment set relative to (X,Y) inD2 must block the non-causal
path p′2, by using at least one of the non-endpoints nodes on
this path. But all these nodes are in FD1

(X,Y) (see (2)).
Hence, there is no set Z′ ⊆ V \ (X ∪Y) that satisfies the
AC relative to (X,Y) in D1 and D2 simultaneously. Since
the AC is sound and complete for DAGs, this implies that
there is no Z′ ⊆ V \ (X ∪ Y) that is an adjustment set
relative to (X,Y) in G.

Finally, let G represent a PAG and suppose that there is a
proper possibly directed path p from someX ∈ X to some
Y ∈ Y that does not start with a visible edge out of X in
G.

By Lemma 5.5, there is a subsequence p′ of p such that
there is a MAG M in [G] where the corresponding path
is directed from X to Y and starts with an invisible edge.
ThenM is not amenable relative to (X,Y). By Lemma 5.7
from van der Zander et al. (2014) (see Section 1 of the sup-
plement) this means that there is no set Z′ ⊆ V \ (X∪Y)
that is an adjustment set relative to (X,Y) inM. Hence,
there is no set Z′ ⊆ V \ (X ∪Y) that is an adjustment set
relative to (X,Y) in G. �

5.2 PROOF OF LEMMA 5.3

Proof of Lemma 5.3: First, suppose that Z satisfies con-
dition (1) of the GAC relative to (X,Y) in G. Then
Z ∩ FG(X,Y) = ∅. Since FD(X,Y) ⊆ FG(X,Y)

(FM(X,Y) ⊆ FG(X,Y)) for any DAG D (MAG M)
in [G], it follows directly that Z satisfies condition (a) of
the AC relative to (X,Y) in all DAGs (MAGs) in [G].
To prove the other direction, suppose that G satisfies con-
dition (0) of the GAC relative to (X,Y), but that Z does
not satisfy condition (1) of the GAC relative to (X,Y) in G.
Then there is a node V ∈ Z∩FG(X,Y), i.e., V ∈ Z and V
is a possible descendant of a node W on a proper possibly
directed path from some X ∈ X to some Y ∈ Y in G. We
denote this path by p = 〈X,V1, . . . , Vk, Y 〉, where k ≥ 1
and W ∈ {V1, . . . , Vk}. Then the subpaths q = p(X,W)
and r = p(W,Y) are also proper possibly directed paths.
Moreover, there is a possibly directed path s from W to V ,
where this path is allowed to be of zero length (if W = V).
We will show that the existence of these paths implies that
there is a DAG D (MAGM) in [G] such that Z violates
condition (a) of the AC relative to (X,Y) in D (M).

By Lemma B.1 from Zhang (2008) (see Section 1 of the
supplement), there are subsequences q′, r′ and s′ of q, r and
s that are unshielded proper possibly directed paths (again
s′ is allowed to be a path of zero length). Moreover, q′

must start with a directed (visible) edge, since otherwise the
concatenated path q′ ⊕ r′, which is again a proper possibly
directed path from X to Y , would violate condition (0) of
the GAC.

Lemma B.1 from Zhang (2008) then implies that q′ is a
directed path from X to W in G. Hence, the path corre-
sponding to q′ is a directed path from X to W in any DAG
(MAG) in [G].
By Lemma 7.6 from Maathuis and Colombo (2015), there
is at least one DAG D (MAGM) in [G] that has no addi-
tional arrowheads into W . In this graph D (M), the path
corresponding to r′ is a directed path fromW to Y , and the
path corresponding to s′ is a directed path W to V . Hence,
V ∈ FD(X,Y) (V ∈ FM(X,Y)), so that Z does not sat-
isfy condition (a) of the AC relative to (X,Y) in D (M).
�

5.3 PROOF OF LEMMA 5.4

We first define a distance between a path and a set in Def-
inition 5.6. We then give the proof of Lemma 5.4. This
proof relies on Lemma 5.7 and Lemma 5.8 which are given
later in this section.
Definition 5.6. (Distance-from-Z; Zhang, 2006) Given a
path p from X to Y that is m-connecting given Z in a DAG
or MAG, for every collider Q on p, there is a directed path
(possibly of zero length) from Q to a member of Z. Define
the distance-from-Z of Q to be the length of a shortest
directed path (possibly of length 0) from Q to Z, and define
the distance-from-Z of p to be the sum of the distances
from Z of the colliders on p.

Proof of Lemma 5.4: Let G represent an amenable

688

CPDAG (PAG) that satisfies condition (0) of the GAC rel-
ative to (X,Y), and let Z satisfy condition (1) of the GAC
relative to (X,Y) in G.

We first prove that if Z does not satisfy condition (2) of
the GAC relative to (X,Y) in G, then Z does not satisfy
condition (b) of the AC relative to (X,Y) in any DAG
(MAG) in [G]. Thus, assume that there is a proper definite
status non-causal path p from X ∈ X to Y ∈ Y that is
m-connecting given Z in G. Consider any DAG D (MAG
M) in [G]. Then the path corresponding to p in D (M) is
a proper non-causal m-connecting path from X to Y given
Z. Hence, Z violates condition (b) of the AC relative to
(X,Y) and D (M).

Next, we prove that if Z violates condition (b) of the AC
relative to (X,Y) in some DAG (MAG) in [G], then Z
violates condition (2) of the GAC relative to (X,Y) in G.
Thus, assume that there is a DAGD (MAGM) in [G] such
that there is a proper non-causal m-connecting path from X
to Y in D (M) given Z. We choose a shortest such path p,
such that no equally short proper non-causal m-connecting
path has a shorter distance-from-Z than p. By Lemma 5.8
below, the corresponding path p∗ in G is an m-connecting
proper definite status non-causal path from X to Y given
Z. Hence Z violates condition (b) of the GAC relative to
(X,Y) in G. �
Lemma 5.7. Let M represent a MAG (DAG) and let P
be the PAG (CPDAG) ofM. Let P satisfy condition (0)
of the GAC relative to (X,Y), and let Z satisfy condition
(1) of the GAC relative to (X,Y) in P . Let p be a shortest
proper non-causal path from X to Y that is m-connecting
given Z in M and let p∗ denote the corresponding path
constituted by the same sequence of variables in P . Then
p∗ is a proper definite status non-causal path in P .

Lemma 5.7 is related to Lemma 1 from Zhang (2006). The
proof of Lemma 5.7 is given in the supplement.

Lemma 5.8. Let M represent a MAG (DAG) and let P
be the PAG (CPDAG) ofM. Let P satisfy condition (0)
of the GAC relative to (X,Y), and let Z satisfy condition
(1) of the GAC relative to (X,Y) in P . Let p be a shortest
proper non-causal path from X to Y that is m-connecting
given Z in M, such that no equally short such path has
a shorter distance-from-Z than p. Let p∗ denote the cor-
responding path constituted by the same sequence of vari-
ables in P . Then p∗ is a proper definite status non-causal
path from X to Y that is m-connecting given Z in P .

Lemma 5.8 is is related to Lemma 2 from Zhang (2006).

Proof of Lemma 5.8. By Lemma 5.7, p∗ is a proper defi-
nite status non-causal path in P . It is only left to prove that
p∗ is m-connecting given Z in P .

Every definite non-collider on p∗ in P corresponds to a
non-collider on p in M, and every collider on p∗ is also

a collider on p. Since p is m-connecting given Z, no non-
collider is in Z and every collider has a descendant in Z.
Let Q be an arbitrary collider (if there is one). Then there
is a directed path (possibly of zero length) fromQ to a node
in Z inM. Let d be a shortest such path from Q to a node
Z ∈ Z. Let d∗ denote the corresponding path in P , consti-
tuted by the same sequence of variables. Then d∗ is an un-
shielded possibly directed path from Q to Z in P (Lemma
B.1 from Zhang (2008)).

It is only left to show that d∗ is a directed path. If d∗ is
of zero length, this is trivially true. Otherwise, suppose for
contradiction that there is a circle mark on d∗. Then d∗

must start with a circle mark at Q (cf. Lemma B.2 from
Zhang, 2008 and Lemma 7.2 from Maathuis and Colombo,
2015; see Section 1 of the supplement).

Let S be the first node on d after Q. If S is not a node on
p, then following the proof of Lemma 2 from Zhang (2006)
there is a path p′ = p(X,W) ⊕W •→S←•V ⊕ p(V, Y),
where W and V are nodes distinct from Q on p(X,Q) and
p(Q,Y) respectively and p′ is m-connecting given Z inM.
Since p′ is non-causal and shorter than p, or as long as p but
with a shorter distance-from-Z than p, the path p′ must be
non-proper, i.e. S ∈ X. But, in that case the path 〈S, V 〉 ⊕
p(V, Y) is a proper non-causal m-connecting path from X
to Y given Z that is shorter than p inM. This contradicts
our assumption about p.

If S is a node on p, then it lies either on p(X,Q) or
p(Q,Y). Assume without loss of generality that S is on
p(Q,Y). Following the proof of Lemma 2 from Zhang
(2006), there exists a path p′ = p(X,W) ⊕ W •→S ⊕
p(S, Y) in M, where W is a node on p(X,Q) distinct
from Q that is m-connecting given Z in M. Since p′

is proper, and shorter than p, or as long as p but with
a shorter distance-from-Z than p, the path p′ must be
causal in M. Let p′∗ denote the corresponding path con-
stituted by the same sequence of variables in P . Then
p′∗ is a possibly causal path and Z ∈ PossDe(S,P), so
Z ∈ FP(X,Y) ∩ Z. This is in contradiction with our as-
sumption of Z satisfying condition (1) of the GAC relative
to (X,Y) in P .

Thus, the path d∗ is directed and Q is an ancestor of Z in
P . This proves that p∗ is a proper definite status non-causal
path from X to Y that is m-connecting given Z inM.

�

6 DISCUSSION

We have derived a generalized adjustment criterion that is
necessary and sufficient for adjustment in DAGs, MAGs,
CPDAGs and PAGs. Our criterion unifies existing crite-
ria for DAGs and MAGs, and provides a new result for
CPDAGs and PAGs, where only a sufficient criterion ex-

689

isted until now. This is relevant in practice, in particular
in combination with algorithms that can learn CPDAGs or
PAGs from observational data.

Our generalized adjustment criterion is stated in terms of
paths that need to be blocked, which is intuitively appeal-
ing. A logical next step for future research would be to
transform our criterion into an algorithmically construc-
tive version that could be used to efficiently perform tasks
like enumeration of all minimal adjustment sets for a given
graph. This has already been done for DAGs and MAGs
by van der Zander et al. (2014), and we strongly suspect
that their results can be extended to CPDAGs and PAGs
as well. In a similar spirit, it would be desirable to have an
easily checkable condition to determine if there exists any
adjustment set at all, as done for the generalized back-door
criterion for single interventions by Maathuis and Colombo
(2015). In turn, these results could then be used to char-
acterize distances between graphs, as done by Peters and
Bühlmann (2015). Future work might also explore under
which circumstances our restriction to not allow for latent
selection variables might be relaxed, or whether our crite-
rion could be combined with methods to recover from se-
lection bias (Bareinboim et al., 2014).

As pointed out in Section 4, our criterion sometimes has
to interpret PAGs or MAGs differently than DAGs or
CPDAGs. This is the case precisely when the first edge on
some proper possibly causal path in a MAG or PAG is not
visible. However, this difference in interpretation is irrele-
vant for DAGs or CPDAGs that would be amenable when
viewed as a MAG or PAG. For instance, if we are given a
DAG D that is amenable when interpreted as a MAGM,
then its adjustment sets also work for every DAG that the
MAGM represents, many of which could contain latent
confounding variables. Reading a DAG as a MAG (or a
CPDAG as a PAG) can thus allow computing adjustment
sets that are to some extent invariant to confounding.

We note that an adjustment set relative to (X,Y) in a given
graph can only exist if the total causal effect of X on Y is
identifiable in the graph. If the effect of X on Y is not
identifiable, one may be interested in computing all possi-
ble total causal effects of X on Y for DAGs represented by
the given graph. Such an approach is used in the IDA al-
gorithm of Maathuis et al. (2009, 2010), by considering all
DAGs represented by a CPDAG and applying back-door
adjustment to each of these DAGs. Similar ideas could be
used for MAGs and PAGs, but listing all relevant DAGs
described by a MAG or PAG seems rather non-trivial.

There is also an interesting connection between amenabil-
ity and instrumental variables: a MAG or PAG G with
X = {X} is amenable with respect to (X,Y) whenever
it contains an instrument I , i.e. there exists a variable that
is a parent ofX but not a parent of any child ofX (e.g., I in
Figure 1a). Thus, instruments are useful to find adjustment

sets in nonparametric graphical models that allow for latent
confounding. This connection is perhaps surprising given
that the notion of instruments originates from causal effect
identifications in linear models (Angrist et al., 1996).

In summary, our generalized adjustment criterion exhaus-
tively characterizes the options to identify total causal ef-
fects by covariate adjustment in DAGs, MAGs, CPDAGs,
and PAGs. Our results entail several existing, less general
or less powerful ones (Pearl, 1993; Shpitser et al., 2012;
Textor and Liśkiewicz, 2011; van der Zander et al., 2014;
Maathuis and Colombo, 2015) as special cases.

Acknowledgements

This research was supported by the Swiss National Science
Foundation (200021_149760).

References

Ali, R. A., Richardson, T. S., and Spirtes, P. (2009).
Markov equivalence for ancestral graphs. Ann. Stat.,
37:2808–2837.

Angrist, J. D., Imbens, G. W., and Rubin, D. B. (1996).
Identification of causal effects using instrumental vari-
ables. J. Am. Stat. Assoc., 91(434):444–455.

Bareinboim, E., Tian, J., and Pearl, J. (2014). Recovering
from selection bias in causal and statistical inference. In
Proceedings of AAAI 2014, pages 2410–2416.

Chickering, D. M. (2003). Optimal structure identification
with greedy search. J. Mach. Learn. Res., 3:507–554.

Claassen, T., Mooij, J., and Heskes, T. (2013). Learning
sparse causal models is not NP-hard. In Proceedings of
UAI 2013, pages 172–181.

Colombo, D. and Maathuis, M. H. (2014). Order-
independent constraint-based causal structure learning. J.
Mach. Learn. Res., 15:3741–3782.

Colombo, D., Maathuis, M. H., Kalisch, M., and Richard-
son, T. S. (2012). Learning high-dimensional directed
acyclic graphs with latent and selection variables. Ann.
Stat., 40:294–321.

Maathuis, M. H. and Colombo, D. (2015). A generalized
back-door criterion. Ann. Stat., 43:1060–1088.

Maathuis, M. H., Colombo, D., Kalisch, M., and
Bühlmann, P. (2010). Predicting causal effects in large-
scale systems from observational data. Nat. Methods,
7:247–248.

Maathuis, M. H., Kalisch, M., and Bühlmann, P. (2009).
Estimating high-dimensional intervention effects from
observational data. Ann. Stat., 37:3133–3164.

690

Meek, C. (1995). Causal inference and causal explanation
with background knowledge. In Proceedings of UAI 1995,
pages 403–410.

Pearl, J. (1993). Comment: Graphical models, causality
and intervention. Stat. Sci., 8:266–269.

Pearl, J. (2009). Causality. Cambridge University Press,
Cambridge, second edition.

Peters, J. and Bühlmann, P. (2015). Structural interven-
tion distance (SID) for evaluating causal graphs. Neural
Comput., 27:771–799.

Richardson, T. and Spirtes, P. (2002). Ancestral graph
Markov models. Ann. Stat., 30:962–1030.

Robins, J. (1986). A new approach to causal inference
in mortality studies with a sustained exposure period-
application to control of the healthy worker survivor ef-
fect. Math. Mod., 7:1393–1512.

Rubin, D. (2008). Author’s reply. Stat. Med., 27:2741–
2742.

Shpitser, I. (2012). Appendum to “On the validity of co-
variate adjustment for estimating causal effects”. Unpub-
lished manuscript.

Shpitser, I. and Pearl, J. (2006). Identification of joint
interventional distributions in recursive semi-markovian
causal models. In Proceedings of AAAI 2006, pages 1219–
1226.

Shpitser, I., VanderWeele, T., and Robins, J. M. (2012).
On the validity of covariate adjustment for estimating
causal effects. In Proceedings of UAI 2010, pages 907–
916.

Shrier, I. (2008). Letter to the editor. Stat. Med., 27:2740–
2741.

Shrier, I. and Platt, R. W. (2008). Reducing bias through
directed acyclic graphs. BMC Med. Res. Methodol., 8(70).

Spirtes, P., Glymour, C., and Scheines, R. (2000). Cau-
sation, Prediction, and Search. MIT Press, Cambridge,
second edition.

Textor, J. and Liśkiewicz, M. (2011). Adjustment criteria
in causal diagrams: An algorithmic perspective. In Pro-
ceedings of UAI 2011, pages 681–688.

Tian, J. and Pearl, J. (2002). A general identification con-
dition for causal effects. In Proceedings of AAAI 2002,
pages 567–573.

van der Zander, B., Liśkiewicz, M., and Textor, J. (2014).
Constructing separators and adjustment sets in ancestral
graphs. In Proceedings of UAI 2014, pages 907–916.

West, S. G. and Koch, T. (2014). Restoring causal analysis
to structural equation modeling. Struct. Equ. Modeling,
21:161–166.

Westreich, D. and Greenland, S. (2013). The table 2 fal-
lacy: presenting and interpreting confounder and modifier
coefficients. Am. J. Epidemiol., 177:292–298.

Zhang, J. (2006). Causal Inference and Reasoning in
Causally Insufficient Systems. PhD thesis, Carnegie Mel-
lon University.

Zhang, J. (2008). On the completeness of orientation rules
for causal discovery in the presence of latent confounders
and selection bias. Artif. Intell., 172:1873–1896.

691

Optimal Threshold Control for Energy Arbitrage with Degradable Battery
Storage

Marek Petrik
IBM T. J. Watson Research Center

Yorktown, NY 10598
mpetrik@us.ibm.com

Xiaojian Wu
School of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003

xiaojian@cs.umass.edu

Abstract

Energy arbitrage has the potential to make elec-
tric grids more efficient and reliable. Batteries
hold great promise for energy storage in arbitrage
but can degrade rapidly with use. In this paper,
we analyze the impact of storage degradation on
the structure of optimal policies in energy arbi-
trage. We derive properties of the battery degra-
dation response that are sufficient for the exis-
tence of optimal threshold policies, which are
easy to interpret and compute. Our experimen-
tal results suggest that explicitly considering bat-
tery degradation in optimizing energy arbitrage
significantly improves solution quality.

1 INTRODUCTION

Energy storage and arbitrage play an important role
in numerous domains including hybrid vehicle propul-
sion or electric grids [Walawalkar et al., 2007]. An
important challenge in this domain is to decide how
much energy to store or release based on current
and expected future prices. Related resource effi-
ciency optimization problems have been recently stud-
ied, among others, in the computational sustainability
research area [Gomes, 2009, Petrik and Zilberstein, 2011,
Ermon et al., 2011, Ermon et al., 2013]. Since computing
an energy arbitrage policy is a difficult sequential stochas-
tic optimization problem subject to significant uncertainty,
it is particularly relevant to the computational sustainability
community.

In this paper, we are concerned with optimizing energy
arbitrage under stochastically varying energy prices. The
goal of the decision maker is to maximize profits by charg-
ing an energy storage device when the price of energy is
low and discharging it when it is high. We show that opti-
mal policies have a threshold structure even when battery
degradation is considered and use this structure to develop
a practical algorithm.

Our optimal threshold policy has two price-dependent
thresholds l and u (l ≤ u). If the current state of charge
is less than l, then the battery is charged up to l. If the
current state of charge is greater than u, then the battery is
discharged to u. For any state of charge between l and u,
no action is taken. Such threshold structure makes charging
policies easy to compute, analyze, and interpret.
The structure of optimal policies in energy arbitrage has
been analyzed previously without accounting for battery
degradation [Lifshitz and Weiss, 2014, Nadarajah, 2014,
Van de Ven et al., 2011, Harsha and Dahleh, 2011]. In case
of batteries—an important energy storage device—the
degradation can be significant and often represents an im-
portant limitation due to the high cost of batteries.
Batteries degrade most noticeably by losing capacity to
hold charge. Modeling how usage patterns affect differ-
ent battery types (e.g. NiMH and Li-ion) is an important
research problem [Ramadass et al., 2003, Aurbach, 2000].
In Li-ion batteries, the degradation is predominantly influ-
enced by 1) the state of charge, 2) the rate of charge and
discharge, and 3) the ambient temperature. We aim, in this
work, to minimize the battery’s capacity loss as it is influ-
enced by the state of charge.
Battery degradation has been explicitly consid-
ered in optimizing energy storage in hybrid ve-
hicles [Bashash et al., 2011, Serrao et al., 2005,
Hoke et al., 2011, Moura et al., 2011]. These meth-
ods solve a discretized dynamic program. The drawback
of this approach is that the computed policies are complex,
hard to implement and interpret. In addition, the discretiza-
tion and sampling issues can significantly degrade solution
quality as we show experimentally. On the other hand, the
optimality of threshold policies has been studied widely
in the inventory management literature [Porteus, 2002].
There is, however, no concept of storage degradation in
traditional inventory management domains.
The existence of an optimal threshold policy in our set-
ting is somewhat surprising. The standard threshold policy
results rely on the fact that the optimal value function is
convex or k-convex. The optimal value function for non-
trivial battery degradation functions, as we show, may be

692

non-convex. Yet, we establish the existence of a threshold
policy through the convexity of an auxiliary optimization
function.
The remainder of the paper is organized as follows. Sec-
tion 2 describes the overall arbitrage model. We primarily
study models that faithfully capture the energy arbitrage
setting in electric grids. Section 3 describes the model of
battery degradation and derives some basic properties of
the degradation function. Then, we show sufficient con-
ditions for the existence of threshold policies in Section 4
and describe how the structure can be used in computing an
optimized policy in Section 5. Section 6 describes an appli-
cation of the methodology with the analysis of the results
and a comparison to discretization-based methods.

2 ENERGY STORAGE MODEL

This section describes the model of energy arbitrage and
storage. We assume multiple finite known price levels and
a stochastic evolution given a limited storage capacity. In
particular, the storage is assumed to be an electrical battery
that degrades when energy is stored or retrieved.
The underlying model is a Markov decision process. We
assume a discrete-time problem with either a finite horizon
T or a discounted infinite horizon. Prices are governed by a
Markov process with states Θ. There are two energy prices
in each time step: pi : Θ → R+ is the purchase (or input)
price and po : Θ → R+ is the selling (or output) price. To
simplify notation, the difference in these prices is also used
to model the energy loss in the charging and discharging
processes. In other words, the prices measure the cost of
energy as added or subtracted from the storage and may
not actually be sold or purchased.
We use s to denote the available battery capacity with s0

denoting the initial capacity. The current state of charge is
denotes as x or y and must satisfy that 0 ≤ xt ≤ st at any
time step t. The action is the amount of energy to charge
or discharge, which is denoted by u. Positive u indicates
that energy is purchased to charge the battery; negative u
indicates the sale of energy.
We will make the following assumption regarding the pur-
chase and selling prices.
Assumption 1. Purchase price is higher than the selling
price per unit in a time step:

piθ ≥ poθ ∀θ ∈ Θ .

Assumption 1 is virtually always satisfied in practice. If
violated, direct arbitrage by simultaneously purchasing and
selling energy in a single time step would then equalize the
prices. In addition, the purchase price pi will be greater
than the selling price po due to the inefficiencies involved
in charging and discharging.
As mentioned above, the focus of the paper is on degrada-
tion of battery capacity as a function of its use. In partic-
ular, we model the degradation as a function of the battery

capacity when charged or discharged. We use a general
model of battery degradation with a specific focus on Li-
ion batteries. The degradation function d(x, u) ∈ R+ rep-
resents the battery capacity loss after starting at the state of
charge x ≥ 0 and charging (discharging if negative) by u
with −x ≤ u ≤ s0 − x. This function indicates the loss of
capacity, such that:

st+1 = st − d(xt, ut)

We discuss the degradation function in more detail in Sec-
tion 3.
Our model makes several simplifying assumptions that are
reasonable in an electric grid scenario, but may not apply to
other scenarios such as a hybrid vehicle battery storage. In
particular, we assume that the purchase and selling prices
are independent of the energy quantity sold or purchased
and battery degradation is independent of current and tem-
perature.
The state set in the Markov decision problem is composed
of (x, s, θ) where x is the state of charge, s is the bat-
tery capacity, and θ ∈ Θ is the state of the price process.
The available actions in a state (x, s, θ) are u such that
−x ≤ u ≤ s − x. The transition is from (xt, st, θt) to
(xt+1, st+1, θt+1) given action ut is:

xt+1 = xt + ut

st+1 = st − d(xt, ut)

The probability of this transition is given by P [θt+1|θt].
The reward for this transition is:

r((xt, st, θt), ut) =

{
−ut · pi − cd · d(xt, ut) if ut ≥ 0

−ut · po − cd · d(xt, ut) if ut < 0
.

That is, the reward captures the monetary value of the trans-
action minus a penalty for degradation of the battery. Here,
cd represents the cost of a unit of lost battery capacity.
The solution of the Markov decision process is a policy π,
which can be computed from a value function v and a post-
decision (or state-action) value function q. We focus on
both the discounted infinite horizon with a discount factor
λ ∈ (0, 1) and the finite horizon with the undiscounted total
return criterion.
The Bellman optimality equations for this problem are:

qT (x, s, θT) = 0

vt(x, s, θt) = min
{
piθt [u]+ + poθt [u]−+

+ cd d(x, u)+

+ qt(x+ u, s− d(x, u), θt) :

: u ∈ [−x, s− x]
}

qt(x, s, θt) = λ · E [vt+1(x, s, θt+1)]

(2.1)

where [u]+ = max{u, 0} and [u]− = min{u, 0} and the
expectation is taken over P (θt+1|θt). For finite horzion
case, λ = 1.

693

For the purpose of our theoretical analysis, we assume that
the lost capacity is immediately replaced and therefore the
battery capacity does not actually change (st+1 = st =
s0). Instead, the degradation induces a penalty in the form
of capacity replacement cost governed by cd. In that case,
the capacity s can be omitted from the definition of v in
(2.1). The experimental results, however, study the setting
in which the capacity is not immediately replaced.

3 BATTERY DEGRADATION FUNCTION

This section describes properties of the degradation func-
tion d(x, u) that can capture the behavior of Li-ion
batteries [Aurbach, 2000, Ramadass et al., 2003] and can
guarantee the existence of an optimal threshold pol-
icy. We focus on Li-ion batteries because of their
ubiquity and considerable promise in future applica-
tions [Peterson et al., 2010]. The chemical processes in
other battery types—such as NiMH and NiCd—are often
quite different [Serrao et al., 2005].
As noted above, we consider the dependence of the degra-
dation only on the state of charge because the other vari-
ables, such as the temperature and the current, can be effi-
ciently controlled in an electric grid energy application.
In broad terms, a Li-ion battery degrades significantly
while the state of charge is either very low or very high. A
naive policy that minimizes battery degradation will there-
fore attempt to use the battery as close to approximately
50% state of charge as possible.
Instead of considering a single degradation function, we
define a class of functions d(x, u), continuous in u for x ∈
[0, s0], that in addition satisfy the following properties.

A1 Convexity: function d(x, u) is convex in u for all x ∈
[0, s0].

A2 Memorylessness: d(x, u1 + u2) = d(x, u1) + d(x +
u1, u2) when sgn(u1) = sgn(u2).

A3 Cycle linearity: function d(0, u) + d(u,−u) is linear
in u.

Next we informally describe the meaning of the properties
above; a more detailed analysis of functions that satisfy
these properties follows later. The property A1 is gener-
ally satisfied in Li-ion batteries in which the degradation is
more severe near the extreme range of the state of charge.
The property A2 requires that the degradation due to the
charging is independent of the amount charged, but instead
depends only on the current state of charge. Finally, the
property A3 requires that the degradation due to charging
an arbitrary amount from the state of charge 0 and subse-
quently fully discharging is linear in the amount charged.
The assumptions above, unfortunately, are hard to grasp
intuitively and therefore difficult to justify. To eluci-
date the definitions, consider the alternative definition of

0 20 40 60 80 100

New State of Charge (%): y

0

20

40

60

80

100

C
ap

ac
ity

Lo
ss

(%
):
d
(x
,y
−
x

)

d(x, y − x),x = 20%

d(x, y − x),x = 80%

δ+

δ−

Figure 1: Example degradation function with δ+(x) = x2

and δ−(x) = 1− x2.

d(x, u) based on the degradation at any state of charge for
an infinitesimally small amount of energy charged δ+ :
[0, s0]→ R+ or discharged δ− : [0, s0]→ R+. The degra-
dation function is then simply defined as the following in-
tegral:

d(x, u) =

{∫ x+u

x
δ+(y) dy if u ≥ 0∫ x

x+u
δ−(y) dy if u < 0

. (3.1)

Fig. 1 depicts an example of the immediate degradation
functions δ+ and δ− and the corresponding degradation
function d for two values of the current state of charge.

The following proposition describes how the properties of
δ+ and δ− translate to properties of d(x, u).

Proposition 3.1. When d is defined as in (3.1) and

(i) both δ− and δ+ are continuous on [0, s0]
(ii) δ+ is nondecreasing and δ− is nonincreasing

(iii) δ+(y) + δ−(y) is a constant for any y ∈ [0, s0]

Then, the battery degradation function d(x, u) satisfies the
properties of A1, A2 and A3.

Proof. The property (i) implies that there exist anti-
derivatives D+ and D− to δ+ and δ− on the appropriate
intervals. Then:

d(x, u) =

{
D+(x+ u)−D+(x) if u ≥ 0

D−(x)−D−(x+ u) if u < 0

We prove each property individually.
A1: Convexity. The convexity for a fixed x and u 6= 0
follows directly from the convexity of D+ and −D−.
The functions D+(x, u) and D−(x, u) are convex be-
cause their first derivatives δ+ and −δ− are nondecreas-
ing [Boyd and Vandenberghe, 2004]. Since both D+ and
D− are non-negative functions and d(x, 0) = 0, we have

694

0 20 40 60 80 100

New State of Charge (%): y

0.0

0.2

0.4

0.6

0.8

1.0

C
ap

ac
ity

Lo
ss

(%
):
d
(x
,y
−
x

)
d(x, y − x),x = 20%

d(x, y − x),x = 80%

δ+

δ−

Figure 2: Example degradation function with δ+(x) =
0.01 · x6 and δ−(x) = 0.005 · (1− x)3.

that u = 0 is the minimum of d(x, u) and therefore it satis-
fies the convexity condition.
A2: Memorylessness. If u1 > 0 and u2 > 0,

d(x, u1 + u2) =

∫ x+u1+u2

x

δ+(y)dy

=

∫ x+u1

x

δ+(y)dy +

∫ x+u1+u2

x+u1

δ+(y)dy

= d(x, u1) + d(x+ u1, u2).

The property holds similarly when u1 < 0 and u2 < 0.
A3: Cycle linearity. Let u > 0,

d(0, u) + d(u,−u) =

∫ u

0

δ+(y)dy +

∫ u

0

δ−(y)dy

since δ+(y) + δ−(y) is a constant, the cycle linearity is
satisfied.

Note that the degradation function in Fig. 1 satisfies
the properties A1–A3. This can be easily seen since
δ+(x) + δ−(x) = 1. However, the degradation of Li-
ion batteries may not always satisfies these properties.
Fig. 2 illustrates an example, based on real Li-ion behav-
ior [Bashash et al., 2011], which violates A3. The precise
form of the degradation function for any particular battery
design can be obtained either experimentally or by simula-
tion [Ramadesigan et al., 2012].

4 STRUCTURE OF OPTIMAL POLICIES

In this section, we show the existence of an optimal thresh-
old policy in the battery storage problem if properties A1–
A3 are satisfied. The analysis is based on a finite-horizon
version of the problem and we discuss how this structure
generalizes to discounted infinite horizon problems later in
the section.
A two-threshold charge policy is defined as follows:

1 2 3 4 5 6 7 8 9 10

State of Price Process: θ

0

20

40

60

80

100

S
ta

te
of

C
ha

rg
e

(%
):
y

Figure 3: Example of a threshold policy. The upper (red)
line representsC(θ); the lower (green) line represents c(θ).

Definition 4.1. A two-threshold charge policy with thresh-
olds (ct,θ, Ct,θ) with ct,θ ≤ Ct,θ for some θ ∈ Θ and
t = 1 . . . T is defined as:

ut =

ct,θ − xt when xt ≤ ct,θ
Ct,θ − xt when xt ≥ Ct,θ
0 otherwise

(4.1)

where t is the current time step, xt is the current battery
charge, θt is the price level state, and ut is the change in
the state of charge.

One of the main appealing properties of a threshold policy
is its simplicity and interpretability. Fig. 3 depicts an ex-
ample of a threshold policy. The x-axis represents the state
of the price process θ. In this example, the price of energy
grows linearly with θ and the price transitions behave as
a martingale. If the current state of charge is in the red re-
gion, the next step is to discharge the battery to the red line.
Similarly, states in the green region are charged up to the
green line.
Note that the policy in Fig. 3 behaves very intuitively.
When the price of energy is low (small θ), the battery is
charged to a high level. It is not charged fully, however,
to prevent excessive degradation of capacity. No action
is taken for the medium energy price. When the energy
price increases to its maximum level, the battery is fully
discharged.
We are now ready to state the main theoretical result of the
paper.
Theorem 4.2. Assume that the battery degradation func-
tion satisfies properties A1, A2, and A3 and λ = 1. Then,
there exists an optimal two-threshold charge policy for the
finite horizon problem with some time-dependent thresh-
olds (c(t, θ), C(t, θ)).

To prove the theorem, we need to show several auxiliary
properties. The following lemma describes the properties
of the degradation function induced by the assumptions
above.

695

0 20 40 60 80 100

New State of Charge (%): y

0

20

40

60

80

100

C
ap

ac
ity

Lo
ss

(%
):
d
(x
,y
−
x

)
d(x, y − x),x = 20%

d(x, y − x),x = 80%

δ+

δ−

Figure 4: Degradation function in Example 4.4.

Lemma 4.3. A degradation function d that satisfies prop-
erty A2 also satisfies:

(i) d(x, 0) = 0
(ii) d(x, y − x) = d(0, y)− d(0, x) when y ≥ x

(iii) d(x, y − x) = d(x,−x)− d(y,−y) when y ≤ x
In addition, when d satisfies property A1, then:
(iv) d(x,−x) is concave in x
(v) d(x, y − x) = max{d(0, y) − d(0, x), d(x,−x) −

d(y,−y)}

Proof. The lemma follows by simple algebraic manipula-
tion for the individual cases as follows.
Case (i):

d(x, u+ 0) = d(x, 0) + d(x+ 0, u) .

Case (ii):

d(0, y) = d(0, x+ (y − x)) = d(0, x) + d(x, y − x) .

Case (iii):

d(x,−x) = d(x, (y − x)− y) = d(x, y − x) + d(y,−y) .

Case (iv): by rewriting d(s0,−s0) = d(s0,−(s0−x)−x)
we get:

d(x,−x) = d(s0,−s0)− d(s0, x− s0) .

Function d(x,−x) is concave because d(s0, x−s0) is con-
vex.
Case (v): Note that d(0, x) is non-decreasing, and d(x,−x)
is non-increasing. The proof then readily follows from
properties (ii) and (iii).

We are now ready to prove the main result. The typical
proof of the threshold property in inventory management
settings is based on convexity of the value function. Unfor-
tunately, as the example described below in Example 4.4

y

v

fo + go

f i + gi

xy?oy?i

Figure 5: Example of functions in the proof of Theo-
rem 4.2. The current charge is x and the optimal action
is to discharge to y?o .

y

v

fo + go

f i + gi

x y?oy?i

Figure 6: Example of functions in the proof of Theo-
rem 4.2. The current charge is x and the optimal action
is to leave the charge unchanged.

demonstrates, the value function in our setting may be non-
convex. Instead, we use property A3 to establish the con-
vexity of the post-decision value function (the concept is
similar to q-function in reinforcement learning). In partic-
ular, the linearity required by A1 can be used to cancel out
the value function non-convexities due to the battery degra-
dation.

Proof of Theorem 4.2. Like most structural proofs in dy-
namic programming, the proof is based a backward induc-
tion on time steps. But first, we need to derive a more con-
venient representation of the optimality equation (2.1). To
that effect, rewrite the term piθ [u]+ + poθ [u]− in (2.1) as a
maximum over two functions:

piθ [u]+ + poθ [u]− = max{piθu, poθu} .

696

This holds from Assumption 1. It will be more convenient
to change the optimization variable in (2.1) from the charge
difference u to the new state of charge y = x + u. Also
using property (v) from Lemma 4.3 to express the degra-
dation function, the optimality expression for vt(x, θ) now
reads as:

min
y∈[0,s0]

max
{
piθ(y − x), poθ(y − x)

}
+ qt(y, θ)+

+cd ·max
{
d(0, y)− d(0, x), d(x,−x)− d(y,−y)

}
.

Properties (ii) and (iii) from Lemma 4.3 and Assumption 1
imply that the two max operators attain their respective first
terms if and and only if y ≥ x and therefore can be merged:

min
y∈[0,s0]

max
{
piθ(y − x) + cd(d(0, y)− d(0, x)) + qt(y, θ),

poθ(y − x) + cd(d(x,−x)− d(y,−y)) + qt(y, θ)
}

Then we replace max{a, b} by maxξ∈[0,1]{ξa, (1 − ξ)b}.
Thus the Bellman optimality conditions become:

vt(x, θ) = min
y∈[0,s0]

max
ξ∈[0,1]

φt(y, ξ, x, θ) ,

where the main objective function φ is defined as:

φt(y, ξ, x, θ) = ξ(f it (y, θ) + git(x, θ))+

+(1− ξ)(fot (y, θ) + got (x, θ)) .

The functions gi and go represent terms that are constant
with respect to the optimization variable y:

git(x, θ) = −piθx− cdd(0, x)

got (x, θ) = −poθx+ cdd(x,−x) .

On the other hand, the functions f i and fo represent terms
that depend on the optimization variable y:

f it (y, θ) = piθy + cdd(0, y) + qt(y, θ)

fot (y, θ) = poθy − cdd(y,−y) + qt(y, θ) .

The remainder of the proof focuses on showing that f i and
fo are convex and using this convexity to show the opti-
mality of a threshold policy in computing the minimization
over y.
We next show by induction on t from t = T to t = 0
that the functions f it and fot are convex even if qt is not.
To prove the base case t = T recall that qT = 0. The
convexity of f it and fot then follows from property (iv) in
Lemma 4.3.
To prove the inductive step, assume that the functions f it+1

and fot+1 are convex. Our focus is on showing convexity of
f it ; the derivation of convexity of fot is analogous. Recall
that:

f it (y, θ) = piθy + cdd(0, y) + E [vt+1(x, θt+1)]

Since given a fixed x, the function φ(y, ξ, x) is convex–
concave, continuous, and optimized on convex compact
sets we have by a generalized minimax theorem (e.g.
[Sion, 1958]) and further algebraic manipulation that:

vt+1(x, θ) = min
y∈[0,s0]

max
ξ∈[0,1]

φt+1(y, ξ, x, θ)

= max
ξ∈[0,1]

min
y∈[0,s0]

φt+1(y, ξ, x, θ)

= max
{
git+1(x, θ) + min

y∈[0,s0]
f it+1(y, θ),

got+1(x, θ) + min
y∈[0,s0]

fot+1(y, θ)
}
,

Note that the functions git+1 and got+1 may not be convex,
but taking the maximum outside of the minimization will
help to establish the convexity of f it .
Next, plug in the above expression for vt+1 and the defini-
tions of git+1 and got+1 to f it (y, θ). Further algebraic sim-
plification yields:

f it (y, θ) = cdd(0, y)+

+E
[
max{−cdd(0, y) + L1(y), cdd(y,−y) + L2(y)}

]

= E
[
max{L3(y), cdd(0, y) + cdd(y,−y) + L4(y)}

]

where L1(y) . . . L4(y) represent functions that are linear
or constant in y. Now, recall from Lemma 4.3 that the
function d(y,−y) is concave. However, Assumption A3
implies that d(0, y) + d(y,−y) is a linear (convex) term.
Point-wise maximization and expectation preserve convex-
ity and thus the function f it is convex. The analogous proof
for fot requires that d(0, y)+d(y,−y) is concave (or linear)
and thus the linearity required by A3.
The final step in the proof is to show the two-threshold
structure in the solution to the action optimization problem:

min
y∈[0,s0]

max
{
f it (y, θ) + git(x, θ),

fot (y, θ) + got (x, θ)
}
.

(4.2)

Figs. 5 and 6 depict examples of functions in (4.2) for two
different values of the current state of charge x. The hor-
izontal axis represents the next state of charge y and the
bold dashed line highlights the maximum of the two func-
tions. Note that the change in the current state of charge x
only shifts the two functions without changing their shape.
Now, recall that from Lemma 4.3 and from the construction
of (4.2), the following inequalities hold:

y > x⇒ f it (y, θ) + git(x, θ) ≥ fot (y, θ) + got (x, θ)

y < x⇒ f it (y, θ) + git(x, θ) ≤ fot (y, θ) + got (x, θ)

y = x⇒ f it (y, θ) + git(x, θ) = fot (y, θ) + got (x, θ)

Now let ei(y) = f it (y, θ) + git(x, θ) and y?i ∈
arg miny∈[0,s0] ei(y). Also let eo(y) = fot (y, θ) + got (x, θ)

697

0 20 40 60 80 100

State of Charge (%): x

−1.0

−0.8

−0.6

−0.4

−0.2

0.0
Va

lu
e

Fu
nc

tio
n:
v
(x

)

Figure 7: Value function at time t = 1.

and y?o ∈ arg miny∈[0,s0] eo(y). We will show below that
the optimal solution to (4.2) can be either at y?i , y?o , or at x.
There are three possible cases:

1. If y?i > x then y?i is optimal in (4.2) because
f it (y, θ) + git(x, θ) ≤ fot (y, θ) + got (x, θ) for any
y < x.

2. If y?o < x then y?o is optimal in (4.2) as above.

3. If y?i ≤ x and y?o ≥ x then x is optimal in (4.2). Bar-
ring the trivial case y?i = x, for any y > x, we have
ei(y)−ei(x)

y−x ≥ ei(x)−ei(y?i)
x−y?i

≥ 0 since ei(y) is convex.
Therefore ei(y) ≥ ei(x) for any y > x. A similar
argument for any y < x shows that eo(y) ≥ eo(x)
which proves the desired optimality of x in (4.2).

These cases correspond to the threshold policy as described
in Definition 4.1.

The following example illustrates that even when the con-
ditions A1–A3 are satisfied, the optimal value function may
not be convex.

Example 4.4. Consider a two stage problem with the sale
price pi = po = 2, the degradation cost cd = 1 and the
degradation function being:

d(x, u) = max{(x+u)2−x2, (s0−x−u)2− (s0−x)2}.

The degradation function at x = 0.2 and x = 0.8 is de-
picted in Fig. 4.
The battery capacity is s0 = 1. It is easy to show that
the optimal policy in the last stage is simply to fully dis-
charge the battery. Then v1(x) = −po · x+ cd · d(x,−x).
By Lemma 4.3, the function v1 is concave as illustrated in
Fig. 7.

Note that the degradation function in Example 4.4 satisfies
the property A3 and, therefore, this property is insufficient

to guarantee the convexity of a value function. In fact,
the value function will only be convex only if d(x,−x)
is linear—the degradation function is linear only when the
degradation is independent of the battery charge.
Finally, note that Theorem 4.2 does not apply to discounted
problems. To apply to discounted problems, we require
a modified A3 that states that both functions d(0, u) +
λ d(u,−u) and −λ d(0, u)− d(u,−u) are convex.
Corollary 4.5. Assume that the battery degradation func-
tion satisfies properties A1, A2, and modified A3. Then
there exists an optimal two-threshold charge policy for the
discounted infinite horizon problem with time-independent
thresholds (c(θ), C(θ)).

The proof of Corollary 4.5 follows the same steps as the
proof of Theorem 4.2 and is provided in the appendix. The
stationarity follows using the standard argument for the ex-
istence of an optimal stationary policy, e.g. Theorem 6.2.7
in [Puterman, 2005].
The modified condition A3 is however more difficult to sat-
isfy and verify than the original A3. However, it may be
sufficient to satisfy either one of these properties approxi-
mately in order for a threshold policy be close to optimal.
This analysis is, however, beyond the scope of the present
paper.

5 OPTIMIZATION ALGORITHM

So far we described the structure of the optimal policy. It is
important to also develop an algorithm that can take advan-
tage of this structure and efficiently compute the optimal
policy. In this section, we describe such an algorithm and
prove its optimality. We focus on the infinite horizon prob-
lem which is more relevant in practice.
A naive approach to optimizing threshold policies is to
iteratively evaluate a given set of thresholds by simula-
tion and then optimize the threshold values. This class
of methods is known as simulation-optimization or policy
search [Carson and Maria, 1997]. Simply searching over
all sets of thresholds is intractable because the number of
threshold values that need to be computed is 2|Θ|. As we
show below this search can be decomposed by the states of
the price process θ leading to Algorithm 1. The algorithm
optimizes each pair of thresholds independently for each
state of the price process.
The evaluation function f̃(cθ1 , Cθ1 , . . . , cθk , Cθk , . . . ,
cθn , Cθn) is computed by simulating the execution.
Using common random numbers when optimizing
a value by simulation in this setting can signifi-
cantly reduce sample variance and speed up the algo-
rithm [Glasserman and Yao, 1992]. To model the discount
factor, we assume a termination probability of 1 − λ
in every step. The function f̃ is computed as a sample
average.
In the remainder of the section, assume that the function f̃
can be evaluated precisely. The result readily generalizes to

698

Algorithm 1: Threshold Optimization by Simulation

// Initialize thresholds
1 (cθ, Cθ)← (0, 1) ∀θ ∈ Θ ;
// Initialize step counter

2 k ← 1 ;
3 g0 ← inf, g−1 ← inf ;
4 while gk−1 < gk−2 + ε do
5 for θ ∈ Θ do

// Optimize thresholds for θ

6 cθ, Cθ ← arg minc̄θ,C̄θ f̃(. . . , c̄θ, C̄θ, . . .) ;
// f̃ is sampled mean return

7 gk ← f̃(cθ1 , Cθ1 , . . . , cθn , Cθn) ;

8 k ← k + 1 ;

// Return computed thresholds
9 return {(θ, cθ, Cθ) : θ ∈ Θ}

the sampled setting by considering appropriate Hoeffding
or Bernstein concentration inequalities.
Proposition 5.1. Consider an energy arbitrage problem
that satisfies the properties A1, A2, and modified A3 suf-
ficient for the optimality of a threshold policy. Then Algo-
rithm 1 converges to the optimal solution in a finite number
of iterations.

Proof. We argue that Algorithm 1 corresponds to a variant
of the simplex algorithm implementation on the dual MDP
formulation (e.g., [Puterman, 2005]). First, note that using
the same argument as in the proof of Theorem 4.2 we can
show that the optimal solution to the minimization in Algo-
rithm 1 is also a threshold policy. Therefore, the algorithm
corresponds to a coordinate descent on the linear program
formulation of the MDP. The result then follows from the
finite number of coordinate blocks.

6 NUMERICAL RESULTS

This section numerically evaluates Algorithm 1 in an ide-
alized, but realistic, model of daily energy price evolution
and a degradable Li-ion battery. First, we analyze the prop-
erties of the computed solution and study the impact of the
battery degradation on the quality of the computed policy.
Then, we compare the solution based on a threshold policy
to directly solving a discretized version of the problem.
The experimental setting assumes that energy is traded
daily in a large exchange market that is not influenced by
the trading policy. We compute policies for a discount fac-
tor of 0.9999 and report results of simulations of energy
arbitrage throughout 5 years (1825 days).
Our energy prices are based on data from the Intercon-
tinental Exchange (IEC) [IEC, 2015] for New England
for years 2001 through 2013. The price per MW h in
this period ranges between $24 and $312. Numerous pa-
pers have focused on building predictive models of energy

0 50 100 150 200 250 300

State of Price Process: θ

0

20

40

60

80

100

S
ta

te
of

C
ha

rg
e

(%
):
y

Figure 8: Optimal threshold policy πnon which does not
consider battery degradation. The price state θ represents
the average price of energy in $/MW h.

prices, most auto-regressive or latent [Mateo et al., 2005,
Aggarwal et al., 2009]. Since the prediction problem is not
the main focus of this work, we simply use a Markov model
with quantized price data in $25 intervals. The model is de-
scribed in detail in Appendix A.1. More accurate models
of the energy price, such as ones that include seasonal ef-
fects, may lead to significantly greater returns. In addition,
to model transmission and battery inefficiencies, we use pi

that is 5% higher and po that is 5% lower than the spot
market price.
The battery degradation process is based on a generic be-
havior of a Li-ion battery depicted in Fig. 2. The actual
degradation will depend on the specific construction of the
particular battery [Ramadesigan et al., 2012]. We assume a
battery of size 1 MW h; using a larger battery would sim-
ply linearly scale the results. We assume a low price of
Li-ion batteries at about $20 per kW h, which translates to
a degradation cost of cd = 20000. While the current price
of Li-ion batteries is considerably higher, it is expected to
decrease in the future.
Policies are computed using 10 iterations of Algorithm 1.
We first compute a policy πnon that ignores the effects
of battery degradation. This is the approach taken by
some previous relevant work [Harsha and Dahleh, 2011,
Van de Ven et al., 2011]. This policy is depicted in Fig. 9.
Second, we compute the policy that considers the degrada-
tion πdeg and show it in Fig. 9.
Both policies πnon and πdeg charge the battery to a relatively
high level when the energy price is low and discharge it
when the energy price is high. However, note that πdeg
charges the battery to a lower maximal level, and also is
more conservative in discharging the battery completely,
unless the price of energy is especially high. This behavior
decreases some potential trading revenues but minimizes
battery degradation.
Fig. 10 compares the capacity loss of the two policies as a
function of the trading day averaged over 10 runs. It is no-

699

0 50 100 150 200 250 300

State of Price Process: θ

0

20

40

60

80

100
S

ta
te

of
C

ha
rg

e
(%

):
y

Figure 9: Optimal threshold policy πdeg which considers
battery degradation. The price state θ represents the aver-
age price of energy in $/MWh.

0 500 1000 1500 2000

Day

0

200

400

600

800

1000

1200

1400

1600

C
ap

ac
ity

Lo
ss

C
os

t(
$)

πnodeg

πdeg

Figure 10: Cost of the capacity loss as a function of the
trading day. The final capacity loss corresponds to about
10% of the initial capacity for πnon.

0 500 1000 1500 2000

Day

−200

−100

0

100

200

300

400

500

600

700

Tr
ad

in
g

G
ai

n
Le

ss
C

ap
ac

ity
C

os
t(

$)

πnodeg

πdeg

Figure 11: Cost of the capacity loss as a function of the
trading day. The final capacity loss corresponds to about
10% of the initial capacity for πnon.

ticeable that the policy that does not consider ends up lead-
ing to battery degradation that is more than double of the
policy that is optimized for battery loss. Fig. 11 shows the
cumulative gains from the arbitrage less the cost of the lost
battery capacity. Note that the policy that does not consider
battery degradation ends up with negative returns. That is
the cost of the lost capacity is greater than the profits earned
from trading.
One note on practicality of using Li-ion batteries for en-
ergy storage is in order. Although we assumed a very
low cost of Li-ion batteries, it does not appear that the
return that we obtained is sufficient to offset the capi-
tal invested in the battery. However, when the capac-
ity is already available for a different purpose, such as
with an plug-in electric vehicle, energy arbitrage using
the battery may be viable [Yudovina and Michailidis, 2014,
Peterson et al., 2010].

7 CONCLUSION

We described sufficient conditions that guarantee the exis-
tence of an optimal threshold policy for energy arbitrage
with a degradable battery storage. Threshold policies in
this setting are very appealing for several reasons. They are
relatively easy to compute and are simple to analyze, inter-
pret, and implement. Our experimental results indicate that
it is necessary to consider battery degradation in realistic
scenarios since the battery cost is significant in comparison
with energy prices. In addition, even when the degradation
function does not satisfy the threshold policy assumptions,
the proposed algorithm can compute very good solutions
that in fact outperform a dynamic programming solution of
the discretized problem.
Future work should characterize the structure of policies
for problems that violate A3. In addition, the threshold
policy property could be combine with a dynamic program-
ming approach instead of simulation optimization. Such
approach may lead to more efficient algorithms in terms of
computational and sampling complexities.

Acknowledgments

We thank Pavithra Harsha and Peter M. Van de Ven for
extensive discussions of the results and for suggesting this
research topic. We also thank the anonymous reviewers
whose comments helped to improve the paper significantly.

References
[IEC, 2015] (2015). Intercontinental Exchange:

http://www.eia.gov/electricity/wholesale.

[Aggarwal et al., 2009] Aggarwal, S. K., Saini, L. M., and Ku-
mar, A. (2009). Electricity price forecasting in deregulated
markets: A review and evaluation. International Journal of
Electrical Power and Energy Systems, 31(1):13–22.

[Aurbach, 2000] Aurbach, D. (2000). Review of selected elec-
trodesolution interactions which determine the performance of

700

Li and Li ion batteries. Journal of Power Sources, 89(2):206–
218.

[Bashash et al., 2011] Bashash, S., Moura, S. J., Forman, J. C.,
and Fathy, H. K. (2011). Plug-in hybrid electric vehicle charge
pattern optimization for energy cost and battery longevity.
Journal of Power Sources, 196(1):541–549.

[Boyd and Vandenberghe, 2004] Boyd, S. and Vandenberghe, L.
(2004). Convex Optimization. Cambridge University Press,
Cambridge.

[Carson and Maria, 1997] Carson, Y. and Maria, a. (1997). Sim-
ulation optimization: methods and applications. Proceedings
of the 29th conference on Winter simulation, pages 118–126.

[Ermon et al., 2011] Ermon, S., Conrad, J., Gomes, C. P., and
Selman, B. (2011). Risk-sensitive policies for sustainable re-
newable resource allocation. In International Joint Conference
on Artificial Intelligence, pages 1942–1948.

[Ermon et al., 2013] Ermon, S., Xue, Y., Gomes, C., and Selman,
B. (2013). Learning policies for battery usage optimization in
electric vehicles. Machine learning, 92(1):177–194.

[Glasserman and Yao, 1992] Glasserman, P. and Yao, D. D.
(1992). Some guidelines and guarantees for common random
numbers. Management Science, 38(6):884–908.

[Gomes, 2009] Gomes, C. P. (2009). Computational sustainabil-
ity: Computational methods for a sustainable environment,
economy, and society. The Bridge, 39(4):5–13.

[Harsha and Dahleh, 2011] Harsha, P. and Dahleh, M. (2011).
Optimal sizing of energy storage for efficient integration of re-
newable energy. In IEEE Conference on Decision and Control
and European Control Conference, pages 5813–5819.

[Hoke et al., 2011] Hoke, A., Brissette, A., Maksimovic, D.,
Pratt, A., and Smith, K. (2011). Electric vehicle charge op-
timization including effects of lithium-ion battery degradation.
2011 IEEE Vehicle Power and Propulsion Conference, pages
1–8.

[Lifshitz and Weiss, 2014] Lifshitz, D. and Weiss, G. (2014).
Optimal Control of a Capacitor-Type Energy Storage System.
IEEE Transactions on Automatic Control, 9286(1):1–6.

[Mateo et al., 2005] Mateo, A., Muñoz, A., and Garcı́a-
González, J. (2005). Modeling and Forecasting Electricity
Prices with Input/Output Hidden Markov Models. IEEE Trans-
actions on Power Systems, 20(1):13–24.

[Moura et al., 2011] Moura, S. J., Fathy, H. K., and Callaway,
D. S. (2011). A stochastic optimal control approach for power
management in plug-in hybrid electric vehicles. IEEE Trans-
actions on Control Systems Technology, pages 1–11.

[Nadarajah, 2014] Nadarajah, S. (2014). Approximate Dynamic
Programming for Commodity and Energy Merchant Opera-
tions. PhD thesis, Carnegie Mellon.

[Peterson et al., 2010] Peterson, S. B., Apt, J., and Whitacre, J. F.
(2010). Lithium-ion battery cell degradation resulting from re-
alistic vehicle and vehicle-to-grid utilization. Journal of Power
Sources, 195:2385–2392.

[Petrik and Zilberstein, 2011] Petrik, M. and Zilberstein, S.
(2011). Linear dynamic programs for resource management.
In Conference on Artificial Intelligence (AAAI).

[Porteus, 2002] Porteus, E. L. (2002). Foundations of Stochastic
Inventory Theory. Stanford Business Books.

[Puterman, 2005] Puterman, M. L. (2005). Markov decision pro-
cesses: Discrete stochastic dynamic programming. John Wiley
& Sons, Inc.

[Ramadass et al., 2003] Ramadass, P., Haran, B., White, R., and
Popov, B. N. (2003). Mathematical modeling of the capacity
fade of Li-ion cells. Journal of Power Sources, 123(2):230–
240.

[Ramadesigan et al., 2012] Ramadesigan, V., Northrop, P. W. C.,
De, S., Santhanagopalan, S., Braatz, R. D., and Subramanian,
V. R. (2012). Modeling and Simulation of Lithium-Ion Batter-
ies from a Systems Engineering Perspective. Journal of The
Electrochemical Society, 159(3):31–44.

[Serrao et al., 2005] Serrao, L., Chehab, Z., Guezennec, Y., and
Rizzoni, G. (2005). An Aging Model of Ni-MH Batteries
for Hybrid Electric Vehicles. 2005 IEEE Vehicle Power and
Propulsion Conference, pages 78–85.

[Sion, 1958] Sion, M. (1958). On general minimax theorems.
Pacific Journal of Mathematics, 8(4):171–176.

[Van de Ven et al., 2011] Van de Ven, P., Hegde, N., Massoulie,
L., and Salonidis, T. (2011). Optimal Control of Residential
Energy Storage Under Price Fluctuations. ENERGY 2011, The
First International Conference on Smart Grids, Green Com-
munications and IT Energy-aware Technologies, pages 159–
162.

[Walawalkar et al., 2007] Walawalkar, R., Apt, J., and Mancini,
R. (2007). Economics of electric energy storage for en-
ergy arbitrage and regulation in New York. Energy Policy,
35(4):2558–2568.

[Yudovina and Michailidis, 2014] Yudovina, E. and Michailidis,
G. (2014). Socially Optimal Charging Strategies for Elec-
tric Vehicles. IEEE Transactions on Automatic Control,
9286(c):1–6.

701

Mesochronal Structure Learning

Sergey Plis
Mind Research Network &
University of New Mexico
Albuquerque, NM 87106

David Danks
Department of Philosophy

Carnegie Mellon University
Pittsburgh, PA 15213

Jianyu Yang
Mind Research Network &
University of New Mexico
Albuquerque, NM 87106

Abstract

Standard time series structure learning algo-
rithms assume that the measurement timescale
is approximately the same as the timescale of
the underlying (causal) system. In many scien-
tific contexts, however, this assumption is vio-
lated: the measurement timescale can be sub-
stantially slower than the system timescale (so
intermediate time series datapoints will be miss-
ing). This assumption violation can lead to sig-
nificant learning errors. In this paper, we pro-
vide a novel learning algorithm to extract system-
timescale structure from measurement data that
undersample the underlying system. We employ
multiple algorithmic optimizations that exploit
the problem structure in order to achieve com-
putational tractability. The resulting algorithm
is highly reliable at extracting system-timescale
structure from undersampled data.

1 INTRODUCTION

In many domains, measurement speed can be significantly
slower than the causal or communication speeds in the un-
derlying system. For example, fMRI experiments typically
measure brain activity roughly every two seconds, but the
causal and communication connections between neuronal
layers operate much faster [8]. Similar observations can be
made about systems in ecology, climatology, economics,
genomics and proteomics, and cognitive science. More-
over, a discrepancy between the measurement timescale
τM and the system timescale τS can make a difference: an
apparent A → B connection at τM can be consistent with
any possible connection at τS : A→ B,A← B, or no con-
nection at all. Thus, it is critical that we not simply restrict
our attention to learning connections at τM .

In this paper, we address the problem of learning the causal
structure at τS from measurements taken at a slower sam-

pling rate, also called “undersampled” data.1 We focus
on cases in which the underlying system structure can be
represented as a directed graphical model (without simul-
taneous influence). There has been very little prior work
on the problem of structure learning from undersampled
time series data, though there have been important prior
explorations of learning when the measurement and sys-
tem timescales diverge, or when causal influences operate
on multiple timescales [3, 5, 9]. There are multiple al-
gorithms for learning graphical structure from time series
data [6, 7, 11, 14, 15], but they all assume that τM is at
least as fast as τS . Undersampling was explicitly addressed
in [2], but they focused on the “forward” problem of un-
dersampling: given a structure at τS , what structure will be
realized at τM? That paper provided some preliminary the-
orems (used below) to characterize the backward problem,
but not a usable algorithm for actually learning structure at
τS from measurements at τM . In this paper, we introduce
such an algorithm: the Mesochronal Structure Learning
(MSL) algorithm (from Greek méso (µέσω) for “through”
and chronos (χρóνoς) for “time”) (Section 3); and show
that it can often learn significant τS structure from τM data
(Section 4). First, however, we provide a precise statement
of the problem.

2 REPRESENTATION AND FORMALISM

We use a compressed graph representation of the under-
lying system structure.2 We assume that the system is
first-order Markov,3 and so temporal information can be
encoded directly in the graphical edges. This assumption
also implies a form of “causal sufficiency”: specifically,

1Measurements taken at a faster sampling rate pose a compu-
tational challenge, but not a distinctive theoretical problem.

2This framework is mathematically equivalent to dynamic
Bayesian networks [4, 12], so all results could instead be ex-
pressed using DBNs [2]. However, compressed graphs provide
significant computational advantages for this particular problem
domain.

3That is, the system-state at t is independent of all system-
states at t−n for n > 1, conditional on the system-state at t− 1.

702

there cannot be unobserved variables such that nodes in
the current timestep (at the causal timescale) are condi-
tionally associated once the variable values at the previous
timestep are known. Let G be a directed graphical model
over variables V such that Vi → Vj means V t−1i → V tj ,
where superscripts denote (relative) time index. We ex-
clude contemporaneous connections because τS can be ar-
bitrarily fast. G can be cyclic, including self-loops, but
the underlying system structure will be acyclic when “un-
rolled” through time. Let P (2V) be a joint probability
distribution over Vt and Vt−1. We connect G and P (2V)
through standard assumptions, though adjusted for this set-
ting. Specifically, let pa(Vi) denote the parents of Vi in
G. The Markov assumption requires: V ti is independent of[
Vt \ V ti

]
∪
[
Vt−1 \ pa(Vi)

t−1] conditional on pa(Vi)
t−1.

The Faithfulness assumption requires that these be the only
independencies involving some V ti .

Let {t0, t1, . . . , tk, . . .} denote the timesteps at the system
timescale. We say that the system is sampled at rate u when
the measured timesteps are {t0, tu, . . . , tku, . . .}. The sys-
tem timescale is thus “sampled at rate 1.” We focus on
cases of undersampling; that is, when u > 1. Undersam-
pling implies failure to observe intermediate steps on paths
between variables, and so the measurement timescale graph
Gu can be derived from the causal timescale graph G1.
More precisely, Vi → Vj in Gu iff there is a path of length
u from Vi to Vj in G1. Undersampling can also introduce
bidirected edges that represent unobserved common causes
of variables at time t. For example, if Vi ← Vc → Vj in
G1, then for all u > 1, Gu will contain Vi ↔ Vj since the
unmeasured V t−1c is a parent of both V ti and V tj . If the true
system structure G1 and the sampling rate u are known,
then there are efficient algorithms for computing the result-
ing (expected) measurement timescale structure Gu [2].

The general problem of inferring G1 from data sampled at
unknown rate u is computationally intractable at the current
time, and so we principally focus on the special case in
which u = 2 (though Section 4 shows how to generalize
our algorithm to u > 2). That is, what can be learned about
G1 if the input data is a time series in which every other
timestep is unobserved? It is straightforward to see that
G2 can be quite different from G1; for example, if G1 is a
directed cycle over three variables (e.g., X → Y → Z →
X), then that cycle will have the reverse direction in G2.
At the same time, G2 and G1 cannot be arbitrarily different;
for example, if Vi → Vi in G1 (i.e., Vi has a self-loop), then
Vi → Vi in G2. We now provide a multi-step algorithm for
recovering as much information as possible.

3 MSL ALGORITHM

There are a number of previously identified structural in-
variants of G1 that hold across sampling rates [2], but many
of them provide only a coarse characterization of the struc-

ture of G1. We thus must search in a more direct fashion
for the G1 that could have produced G2. The Mesochronal
Structure Learning (MSL) algorithm has two distinct steps.
First, one learns G2 from data, expert knowledge, or a com-
bination of the two (Section 3.1). There are many different
algorithms for learning causal structure at the measurement
timescale (i.e., G2), and so we focus on the second step: in-
fer the set of G1 that could possibly have produced (given
undersampling) the learned G2 (Section 3.2). The G2 → G1
mapping is one-to-many, and so the MSL algorithm out-
puts an equivalence class (possibly a singleton) of possible
G1. The MSL algorithm is based on a conceptually simple
inferential move, but requires significant algorithmic (Sec-
tion 3.3) and practical (Section 3.4) optimizations in order
to be computationally tractable.

3.1 LEARNING G2

There are many different algorithms for learning the struc-
ture of G2 from time series data [6, 7, 11, 14, 15], as the
measurement and structure timescales are the same. One
can also modify structure learning algorithms designed
for i.i.d. data (e.g., the well-known PC or GES algo-
rithms [1, 13]) for the special case of time series data in
which the causal direction can be inferred from tempo-
ral information. We will mostly treat these algorithms as
“black boxes” that simply provide an estimated G2 for in-
put to the second stage. We cannot completely abstract
away from details of those algorithms, however, since er-
rors learning G2 structure can result in errors by the overall
MSL algorithm. We return to this issue in Section 4, but
focus for now on the algorithmically novel aspect of in-
ferring causal timescale structure from estimated measure-
ment timescale structure.

3.2 FROM G2 TO G1

Given a known G1 and undersample rate u, [2] provides an
efficient method for computing Gu. Thus, for an estimated
H2, there is an obvious brute-force approach: for all G1,
compute the corresponding G2 and check if it equals the
estimated H2. The problem with this approach is equally
obvious: it must survey every possible G1, of which there
are 2n

2

many. This brute-force strategy could potentially
work for 3-, 4-, or even 5-node graphs, but rapidly becomes
computationally completely infeasible. We thus pursue a
different strategy.

We focus throughout on the case of a single Strongly Con-
nected Component (SCC): a maximal variable set S such
that there is a path from every X ∈ S to every Y ∈ S. All
systems with feedback are composed of SCCs, and so they
are the most scientifically interesting systems when work-
ing with time series data. When a very weak additional
condition holds,4 then SCC membership is invariant under

4Every SCC S can be uniquely expressed as the union of a set

703

Figure 1: A 3-node SCC at undersampling rates 1 and 2, as
well as its virtual nodes and their merging options.

undersampling (Corollary 7 in [2]). Thus, we can use G2
structure to reliably identify SCC membership in G1, and
then do focused search over each SCC separately.

Theorems 4 and 5 in [2] show that, when u gets very large,
such an SCC becomes a super-clique: for every pair of
nodes A,B (possibly A = B), we have A → B, A ← B,
and A ↔ B. (The last two do not apply when A = B.)
That is, a super-clique is a maximally dense graph over
the SCC. Moreover, these super-cliques are the worst-case
for a “backwards” learning algorithm, as a huge number of
SCCs imply a super-clique under (significant) undersam-
pling. Thankfully, super-cliques rarely result for smaller
undersample rates; typically, more can be learned at u = 2.

Given an estimatedH2 that is an SCC, every directed edge
corresponds to a path of length 2 in G1. More generally, if
we have estimatedHu for a known u, then each edge must
correspond to a path of length u in G1. Thus, we can add
u− 1 “virtual” nodes within each edge in Hu, where each
virtual node refers to some unknown, but actual, node in V.
The virtual-to-actual node mapping can clearly be many-
to-one, as u can be significantly larger than the size of V.
This virtual node representation is shown in Figure 1.

The basic structure of this stage of the MSL algorithm
is: (1) “identify” each virtual node with an actual node,
thereby yielding a candidate G1; and then (2) check if that
candidate actually implies Hu. As noted above, there is a
computationally efficient algorithm for step (2); the com-
putational challenge is efficiently considering the relevant
possible identifications. We focus in the remainder of this
section on the case of u = 2 as that is sufficient to reveal
significant complexities. The overall algorithm-schema is
importantly not limited to that case, however, and we pro-
vide a “proof-of-concept” for u = 3 in Section 4.

For e edges in H2, there are ne possible node identifica-
tions,5 each of which results in a candidate G1. Moving di-
rectly to complete identifications can require examining an
intractable number of G1 (e.g., if n > 30 and e > 100, as
below). We thus instead sequentially identify virtual nodes,
coupled with a (local) stopping rule based on the concept

of simple loops LS. Let gcd(LS) be the greatest common divisor
of the lengths of those simple loops. The additional condition is
that gcd(LS) = 1.

5In general, there are ne(u−1) possible identifications.

Figure 2: The search tree for 3-node SCC of Figure 1

of a conflict, and a lemma (with corollary):6

conflict Gu contains one or more edges that are not inHu.

Lemma 3.1. Conflict persistence: If a virtual node iden-
tification results in a conflict, then no further node identifi-
cations will eliminate that conflict.

Corollary 3.2. If G1 conflicts with Hu, then every super-
graph of G1 conflicts withHu.

Thus, if any partial virtual node identification results in a
G1 whose Gu contains an edge not found in Hu, then we
need not consider any further identifications that build off
of that base. This naturally suggests a backtracking search
on a search tree through the possible node identifications,
as shown in Figure 2. More precisely, the basic MSL algo-
rithm is:

1. Let G be the empty graph, and {E1, . . . , Ee} be an
arbitrary ordering of edges inHu (Table in Figure 1)

2. In a depth-first manner over the edges, consider
each possible node identification for the virtual nodes
added to Ei and add the corresponding edges to G

3. Check whether a conflict is found after adding the
edges arising from virtual node identification for Ei

4. If a conflict is found, then prune that search tree
branch, backtrack by removing the Ei identification,
and try the next possible node identifications for Ei.

The process is illustrated in Figure 2 for the graph in Fig-
ure 1. In the worst case, this algorithm obviously requires
checking as many G1 as if we simply surveyed all possible
simultaneous node identifications. In practice, however, the
proactive pruning of branches in the search tree can lead to
considerable speed-ups, especially in cases in which e is
relatively large.

This algorithm is correct but not yet complete, as G1 can
contain edges that do not have manifest in any way in G2.
For example, if G1 is A→ B, then G2 is simply the empty

6All proofs are provided in Supplementary Materials.

704

graph over A,B. In that case, there are no virtual nodes to
identify, so the algorithm would correctly but incompletely
return the empty graph as the only G1 possibility. More
generally, especially for relatively denseH2, the algorithm
finds a suitable G1 prior to reaching the full depth of the
search tree (i.e., without identifying all virtual nodes). One
response would be to simply force the algorithm to fully
traverse the tree, but this can be quite expensive when the
branching factor is high (i.e., for dense H2). Instead, we
pursue a different strategy.

If the algorithm finds a suitable G1 before reaching a leaf
of the search tree, then we know that every graph below
it in the tree will be a supergraph of that G1 (since virtual
node identifications can only add edges, not remove them).
Thus, we only need to find all supergraphs of that G1 whose
G2 = H2. That search is greatly aided by Corollary 3.2.

The supergraph construction step first tries to separately
add each of the n2 possible directed edges that are not yet
in G1. Each resulting graph that equals H2 is added to the
output equivalence class. The step then adds, in a depth-
first manner, each edge that did not yield a conflict to the
other new graphs, and backtracks whenever an edge addi-
tion creates a conflict.7 This step is extremely fast in prac-
tice for graphs of reasonable sparsity despite its worst-case
factorial behavior. If no edges create a conflict—for exam-
ple, when H2 is a super-clique—then the running time is
indeed Θ(n!). In that particular case, however, the equiva-
lence class has been analytically determined to be any size-
n SCC with gcd=1 (see fn. 4) [2, Theorem 4], and so the
present algorithm is actually unnecessary.

The full MSL algorithm (including the supergraph step) has
the following desirable property:
Lemma 3.3. The MSL algorithm is correct and complete:
givenH2, it finds all and only G1 such that G2 = H2.

Unfortunately, preliminary experiments demonstrated that
the algorithm can be very slow (see Figure 4 for a highlight
of the problem) and take days even for smaller (n = 10)
graphs. The order in which virtual nodes are identified can
make a significant difference in runtime speed, but even
improving those orders is insufficient to yield an algorithm
that is usable on large graphs. Instead, we must exploit
additional constraints and optimizations.

3.3 USING GRAPHICAL CONSTRAINTS

The key intuition underlying the constraints in this sec-
tion is that some virtual node identifications can be ex-
cluded without ever actually constructing-and-testing the
corresponding G1. For example, suppose A → B → C
in H2. In this case, G1 must contain, for some X,Y :
A → X → B → Y → C. There is thus a length-2
path from X to Y in G1, and so G2 will contain X → Y .

7See pseudocode in the Supplementary Material.

Figure 3: Edge-pairs for 3-node SCC of Figure 1 and merg-
ing options for their virtual nodes: all possible options
(raw) and the one that remain after constructing the pair-
wise data structure (pruned).

Hence, we only need to consider virtual node identifica-
tions for A → B and B → C in which the two identifi-
cations correspond to nodes with a directed edge between
them in H2. More generally, virtual node identifications
can analytically constrain one another in ways that can be
exploited in this algorithm.

Recall that the complexity of the MSL algorithm for u = 2
is approximately ne, where e is the number of edges in
H2. By identifying pairs of virtual nodes (that analytically
constrain one another), we can potentially achieve a large
reduction in the exponent in practice, since we will have to
consider many fewer branches.

Two different types of structures in H2 guide the pairwise
identifications. First, consider all forks in H2: pairs of
edges X ← H → Y , where possibly X = H or Y = H
(if there is a self-loop plus another edge). If the two vir-
tual nodes refer to the same actual node, thenX and Y will
have a common cause in the previous (causal) timestep, and
so there will be a bidirected edge between them.8 Thus, if
there is no bidirected edge between X and Y in H2, then
the two virtual nodes cannot identify to the same node.
Hence, we only need to consider n2 − n possible identi-
fications for that pair of virtual nodes.

The other relevant structure is the two-edge chain described
at the start of this section, where the only pairwise virtual
node identifications that are considered are those for which
there is a corresponding edge inH2.

In practice, the algorithm converts some elements of the
edge list {E1, . . . , Ee} into edge-pairs by first selecting
(without replacement) all forks in H2, then selecting all
remaining two-edge directed paths. The remaining edges
have the usual n possible virtual node identifications.

Figure 3 shows a search space for the graph from Figure
1, and demonstrates the computational advantage of con-
sidering pairwise identifcations, as the number of possible
identifications is significantly reduced.

8Note that the converse does not hold: X ↔ Y inH2 does not
imply that the virtual nodes correspond to the same actual node.

705

Figure 4: Comparison of the search-space size (left) and
computation time (right) between the naive backtracking
and our approaches.

In general, let {m1, . . . ,ml} be the sets of virtual node
identifications for each of the edges or edge-pairs derived
from the preceding procedure. The computational com-
plexity of using some edge-pairs is simply

∏l
i len(mi),

where len is the number of possible identifications for that
particular edge or edge-pair. Thus, the computational ad-
vantage, expressed as a log-ratio, of using (some) edge-
pairs is: log r =

∑l
i log len(mi) − e log n. This advan-

tage is plotted in Figure 4, which shows (on log-scale) the
average log-ratio for 100 random 8- and 10-node SCCs.
The practical advantage of edge-pairs is potentially even
greater, as Figure 4 does not account for active pruning of
the search tree.

3.4 PRECOMPUTATION AND OPTIMIZATIONS

The use of edge-pairs provides significant speed-up in the
MSL algorithm (as seen in Figure 4), but its worst-case
complexity still makes it difficult to use the algorithm for
n > 10. Moreover, around 10% of the graphs took many
days to compute, and did not exhibit any noticeable struc-
tural difference inH2 that could be used to predict compu-
tation time.9 The core problem is that much of the search
tree eventually gets pruned, but structural features ofH2 do
not support predictions about which parts will be pruned. If
we can instead prune conflicting options prior to the traver-
sal of the solution space, then we can potentially further
reduce the search time.

The key algorithmic move is to expand the “analytic con-
flict checking” beyond just particular edge-pairs, to also
pre-computing conflicts between multiple edge-pairs. In
the extreme, there can be a (seemingly) possible virtual

9Even with random restarts to account for order differences
in edge-pair selection, the algorithm still behaved similarly to the
“only single edge” version.

node identification that conflicts with every possible identi-
fication for some other edge or edge-pair, in which case the
first identification can simply be removed from considera-
tion. Moreover, this precomputation is independent of the
evaluation order of the virtual node identifications, since
a conflict between identifications mi and mj does not de-
pend on the particular values i and j. This pruning thus also
reduces the need for random restarts to be robust against
evaluation order effects.

The MSL algorithm was therefore expanded to include sig-
nificant pre-computation to further prune the initial search
tree. Specifically, for each pair of edge-pairs, the algo-
rithm constructs a G1 for every possible identification of
both edge-pairs. If the resulting G1 results in a conflict
with H2, then we remove that pair of complex identifica-
tions from the search tree. This precomputation can con-
siderably prune the search tree, perhaps even yielding (as
in Figure 3) a search “tree” with only one branch. There is
a cost because the resulting data structure can be complex:
it contains not only the reduced set of (complex) identifi-
cations for each edge-pair, but also splits those options into
subsets depending on the particular (complex) identifica-
tion used in the previous level of the search tree. This more
complex structure is required because some possible iden-
tifications will be incompatible with only a subset of the
identifications at the previous level, but we want to avoid
checking them during the algorithm flow (since we already
checked in the precomputation).

Further algorithmic speed-ups can be achieved by intel-
ligently ordering the virtual node identifications (i.e., the
levels of the search tree). In particular, the MSL algo-
rithm will run fastest when search tree levels with signifi-
cant breadth—that is, virtual nodes or node-pairs for which
there are many possible identifications—are pushed further
down in the search tree. If this is done, then pruning oper-
ations will remove more branches. In addition, each search
tree node is also a “conflict check” point, and this ordering
of search tree levels minimizes the number of search tree
nodes, even if no branches are ever pruned. The benefits
of intelligent identification ordering can be substantial for
deep trees with small numbers of possible identifications
for most of the edge-pairs.

These two optimizations—precomputation and intelligent
search tree ordering—yield substantial benefits. We again
computed the potential reduction in computation for ran-
domly generated graphs (using the equation from Sec-
tion 3.3). The “+ data structure” line on the left-hand plot
in Figure 4 shows that the more optimized approach can
achieve over 40 orders of magnitude reduction in the num-
ber of conflict checks.

Each conflict check requires the algorithm to add edges to
the constructed G1, compute G2, check for conflicts with
H2, and then remove the just-added edges in case of a con-

706

flict. These steps are computationally expensive, and so
we can achieve further performance gains if we can analyt-
ically determine whether a complex identification creates
a conflict before starting these operations. These checks
are not precomputed, but rather are performed in an online
fashion based on the constraints in the following lemmas
(where chG(A) and paG(A) denote the children and par-
ents of A in G, respectively):

Lemma 3.4. A virtual node V in S V−→ E cannot be iden-
tified with node X if any of the following holds:

1. ∃W ∈ chG1(S) \X s.t. @W ↔ X ∈ H2

2. ∃W ∈ chG1(X) \ E s.t. @W ↔ E ∈ H2

3. ∃W ∈ chG1(X) s.t. @S →W ∈ H2

4. ∃W ∈ chG1(E) s.t. @X →W ∈ H2

5. ∃W ∈ paG1(S) s.t. @W → X ∈ H2

6. ∃W ∈ paG1(X) s.t. @W → E ∈ H2

Lemma 3.5. A virtual node pair V1, V2 for a fork E1
V1←−

S
V2−→ E2 cannot be identified with nodes X1, X2 if any of

the following holds:

1. V1 in E1
V1←− S cannot be identified with X1

2. V2 in S V2−→ E2 cannot be identified with X2

3. V1 ≡ E2 ∧ V2 6∈ paH2(E1)
4. V2 ≡ E1 ∧ V1 6∈ paH2(E2)
5. S ≡ V2 ∧ V1 6= V2 ∧ V1 6= E2 and @E2 ↔ V1 ∈ H2

6. S ≡ V1∧(V1 ≡ V2∨V2 ≡ E2) and @E1 ↔ E2 ∈ H2

7. S ≡ V1∧(V1 ≡ V2∨V2 ≡ E2) and @E1 ↔ E2 ∈ H2

8. S ≡ V2∧(V1 ≡ V2∨V1 ≡ E1) and @E1 ↔ E2 ∈ H2

9. V1 ≡ V2 and @E1 ↔ E2 ∈ H2

Lemma 3.6. A virtual node pair V1, V2 for two-edge se-
quence S V1−→ M

V2−→ E cannot be identified with X1, X2

if any of the following holds:
1. V1 in S V1−→M cannot be merged to X1

2. V2 in M V2−→ E cannot be merged to X2

3. V1 ≡ V2 ∧ (M 6∈ paH2(M) ∨ V1 6∈ paH2(V2) ∨ S 6∈
paH2(E))

As noted above, we apply these constraints in an online
manner in order to prune branches of the search tree with-
out having to add edges and check for conflicts. The re-
sulting algorithm exhibits substantial reductions in runtime,
enabling us to examine the MSL algorithm’s behavior for
G1 ranging up to 35 nodes, as shown in the simulation test-
ing described in the next section.

4 TESTING AND VALIDATION

As we argued earlier, SCCs represent the scientifically
most interesting situations, precisely because they are ones
in which feedback loops present a challenging learning
task. In addition, although connections between SCCs are

undoubtedly of interest, the formal results of [2] imply that
we can reliably treat the SCCs relatively independently. We
thus focus on single-SCC graphs in our synthetic data stud-
ies. Any SCC can provably be decomposed into a single
simple loop with “ears” (i.e., sequences that branch off
from, then return to, that simple loop) that build on top
of one another. We thus use a simple ear decomposition
skeleton to generate SCCs for our simulations.

SCC generation procedure: For n nodes, first generate
a single simple loop that passes through all nodes. With-
out loss of generality, we can assume that this ring graph
passes through the nodes in sequential order. There are
n(n−1) possible edges that can be added to this ring graph,
including self-loops for each node. We sample uniformly
from those possible edges until the required density—i.e.,
the fraction of the n2 possible edges that are actual—is
achieved.10 We use overall density rather than average node
degree to measure graph complexity because density is nor-
malized by the number of possible edges, so we can (ap-
proximately) match graph complexity across different val-
ues of n.

We previously reported the theoretical maximum conflict
checks for 8- and 10-node graphs for different versions of
the MSL algorithm. We also report (in Figure 4) a compar-
ison of the actual run times. We randomly generated 100
8-node graphs for each density in {15%, 20%, 25%, 30%}
and ran both the naive approach (virtual node identification
for each edge separately) and the precomputation approach
that takes advantage of edge-pairs and pairwise constraints.
The box and whisker plot shows the distribution of the in-
dividual run-times expressed in minutes. Not only does the
median execution time for 8-node graphs improve by an
order of magnitude, but the naive approach also generates
considerably more outliers that take much longer to com-
pute. The run-times for the hardest graphs (which provide
an empirical estimate on the run-time upper bound) are five
orders of magnitude longer for the naive approach.11

4.1 EQUIVALENCE CLASS SIZES

We earlier noted that, when H2 is a super-clique (i.e., ev-
ery possible edge between each pair of nodes), then there
will typically be a large number of G1 consistent with that
super-clique. That is, the equivalence class will be quite
large. One question is about the sizes of the equivalence
classes when H2 is not a super-clique. If the equivalence
class is sufficiently small, then expert knowledge or further
studies may be a tractable way to reach a unique solution.

To better explore the equivalence class sizes, we generated
10Note that the bare ring graph has a density of 1/n.
11This may be less relevant in practice, except for the unlucky

10% of researchers who happen to deal with the hardest graphs.
Nonetheless, this difference is substantial, and shows the impor-
tance of the algorithmic optimizations.

707

Figure 5: Equivalence class size distribution among 100
randomly generated 6-node SCCs at a given density and
examples of 6-node SCCs for each.

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1
2
3
4
7

equivalence
class size

density

Figure 6: Equivalence class size distribution for 100 ran-
domly generated 8-node SCCs at a given density and ex-
amples of 8-node SCCs for each of the densities.

100 random 6-node SCCs (using the above procedure) for
each density from 20% to 60% in 5% increments, then an-
alytically computed G2 and passed that to the optimized
MSL algorithm. n = 6 is sufficiently large that brute-force
inference is infeasible, but the graphs are still tractable for
the optimized MSL algortihm even at high densities. This
is a particular worry since the complexity of the search
grows exponentially with the number of edges in G2. Fig-
ure 5 shows the sizes of the equivalence classes for the
graphs at different densities.

Some of the most notable findings from Figure 5 are i) for
densities up to 35%, the overwhelming majority of the
equivalence classes are singletons; ii) for densities above
50%, the equivalence classes often grow to quite large
sizes; however, iii) those G2 graphs are incredibly dense,
and so unsurprisingly are difficult to analyze tractably. The
MSL algorithm complexity depends exponentially on the
number of edges in G2, and so increasing n for a fixed den-
sity rapidly leads to significant computational barriers. Fig-
ure 5 suggests that densities above 35% will frequently lead
to very large equivalence classes, and so we focus on lower

100

equivalence
class size 1 2 3 ...

Figure 7: Distribution of run-time (wall clock) and sizes of
equivalence classes across densities of 10-node graphs.

1

2

3 4

5

6

7

89

10

1

2

3 4

5

6

7

89

10

1

2

3 4

5

6

7

89

10

1

2

3 4

5

6

7

89

10

1

2

3 4

5

6

7

89

10

1

2

3 4

5

6

7

89

10

1

2

3 4

5

6

7

89

10

1

2

3 4

5

6

7

89

10

density (% of 100 total possible edges)

0.25 0.4 0.5 0.68
density
at rate 2

Figure 8: Example 10-node graphs at different densities
and their corresponding G2s.

densities for larger n.

In particular, we performed the same analysis (including
run-times) for 8-node (Figure 6) and 10-node graphs (Fig-
ure 7). The results for 6-node graphs largely generalize.
MSL is a fast and practical algorithm for these graph sizes,
as demonstrated by the wall-clock run-time measurements
summarized in Figure 7. Note that these are quite chal-
lenging graphs, as shown in Figure 8. 10-node graphs with
30% density can have more than 65 edges in G2, and so the
naive approach would have to consider 1065 virtual node
identifications.

The MSL algorithm is also computationally tractable for
significantly larger n. For 15-node graphs, it can readily
learn G1 structures up to 25% density, though outlier cases
can take multiple days to compute. Figure 9 shows results
for 100s of random SCCs with density of 10% for node
sizes from 15 to 35. This density actually corresponds to
quite challenging learning tasks. For example, a 35-node
graph with 10% density can have nearly 400 edges in G2.
Despite these large numbers of edges, the MSL algorithm
rarely takes longer than an hour, even for 35-node graphs.

4.2 GENERALITY OF THE MSL ALGORITHM

The MSL algorithm is actually an algorithm-schema that
can be generalized to different known u, though its com-
plexity rapidly increases. We performed a “proof-of-
concept” of MSL for u = 3 with 100 random 6-node
graphs. In this variant, each G3 edge has two virtual nodes

708

1

2

3

4
5

6

7

8

9

10

11

12
13

14

15

1

2

3

4
5

6

7

8

9

10

11

12
13

14

15

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

1

2

3

4

5

6
7 8

9

10

11

12

13

14

15

16

17

18

1920
21

22

23

24

25

1

2

3

4

5

6
7 8

9

10

11

12

13

14

15

16

17

18

1920
21

22

23

24

25

1

2

3

4

5

6

7
8 9

10

11

12

13

14

15

16

17

18

19

20

21

22
2324

25

26

27

28

29

30

1

2

3

4

5

6

7
8 9

10

11

12

13

14

15

16

17

18

19

20

21

22
2324

25

26

27

28

29

30

1

2

3

4

5

6

7

8
9 10 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
262728

29

30

31

32

33

34

35

1

2

3

4

5

6

7

8
9 10 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25
262728

29

30

31

32

33

34

35

density
at rate 2

1 2 3equivalence
class size

0.15 0.20 0.23 0.27 0.32

Figure 9: Graphs with 15, 20, 25, 30, and 35 nodes at the
density of 10%, their corresponding G2 and equivalence
class size distribution as well as the running time summa-
rizing the computation of 100 random SCCs per node size.

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

1

2 3

4

56

0.28 0.31 0.69 0.83
density
at rate 3

36
equivalence
class size 1 2 9 >1000......

Figure 10: Applying the MSL algorithm to the G3 → G1
problem: results for 100 random 6 node graphs per den-
sity. Example G1 and their corresponding G3 are shown for
reference.

that must be identified. Figure 10 shows the equivalence
classes for u = 3. Interestingly, we obtain similar results
with singleton equivalence classes dominating at low den-
sities, but a rapid increase in the proportion of larger equiv-
alence classes.

4.3 VIOLATIONS OF THE RATE ASSUMPTIONS

If we know that u = 2, then MSL can successfully recover
all graphs in the equivalence class. That assumption could
easily be violated, however, as one might (for example) be-
lieve u = 2 when actually u = 3. Figure 11 shows results
when MSL assuming u = 2 was applied to the G3 for 100
6-node graphs. Importantly, for G1 densities up to 30%,
the MSL (assuming u = 2) algorithm fails to find a solu-
tion; that is, there is no G1 whose G2 matches the given
graph (which is actually a G3). One can thus infer that a
key algorithmic assumption has likely been violated. Un-

equivalence
class size 0 >1000...

density (% of 36 total possible edges)

Figure 11: Equivalence class size distribution for 100 ran-
domly generated 6-node SCCs at a given density after the
G2 → G1 MSL search when the input graph to the algo-
rithm was in fact G3

fortunately, the testability of the u = 2 assumption does
not seem to extend to higher densities, which further sug-
gests focusing our attention on G1 with no more than 30%
density.

4.4 FROM UNDERSAMPLED DATA TO G1

The above results show that the nonparametric G2 → G1
component of the MSL algorithm is correct and computa-
tionally efficient, enabling us to learn equivalence classes
for SCCs with densities up to 30%. For finite sample data,
we need to incorporate a stable, reliable algorithm to learn
theH2 structure. As noted earlier, there are multiple learn-
ing algorithms for this task (i.e., learning measurement-
timescale structure), though they must allow for the pos-
sibility of bidirected edges to encode correlation between
variables at the same time. We have used both a restricted
version of the PC algorithm [11] and direct optimization of
log likelihood in a structural vector autoregressive (SVAR)
model [10]. In our experiments, we found that SVAR
optimization provided more accurate and stable solutions,
likely because of errors in conditional independence tests
used in the modified PC algorithm. The best choice for
learning H2 structure is an open research question. In the
following, we only show results for the SVAR procedure.

We generated 100 random 8-node SCCs for each density
in {15%, 20%, 25%, 30%}. These graphs are complex and
interesting, but also are computationally tractable for the
full MSL algorithm. For each random graph, we gener-
ated a random transition matrix by sampling weights for the
non-zero elements of the adjacency matrix, and controlling
system stability (by keeping the maximal eigenvalue at or
below 1). This transition matrix was then used for a vec-
tor auto-regressive (VAR) model [10] with noise (standard
deviation of 1) to generate data. Every other data sample
was removed (to undersample at rate 2), and the resulting
data was provided to the SVAR optimization to yield a can-
didate H2. The MSL algorithm was then applied to this
H2 to obtain an equivalence class of G1 that can be com-
pared to ground truth in terms of two error-types: omis-
sion error: the number of omitted edges normalized to the
total number of edges in the ground truth; comission er-
ror: number of edges not present in the ground truth nor-

709

Figure 12: The MSL estimation and search errors on syn-
thetic data undersampled at rate 2.

malized to the total possible edges minus the number of
those present in the ground truth. Figure 12 shows the re-
sults of these simulations. We also plot the estimation er-
rors of the SVAR (on the undersampled data) to understand
the dependence of MSL estimation errors on the estimation
errors for H2. Interestingly, applying the MSL algorithm
does not significantly increase the error rates over those
produced by the SVAR estimation.

In some cases, SVAR estimation errors result in an H2 for
which there are no possible G1.12 For the simulations de-
scribed in Figure 12, we deal with these cases by i) modi-
fying MSL to accept (at the final step) those solutions that
produce an undersampled graph that has the same directed
edges as the estimated H2; ii) restarting the simulation if
a solution is not found. The former improves performance
because bidirected edges often contain a weaker signal and
are prone to mis-estimation, while the latter is to ensure
comparability of results.

We have also modified the MSL algorithm so that, in these
cases, it sequentially considers all neighbors of each H2

in the Hamming cube constructed on the length n2 +
(
n
2

)

binary string that represent directed and bidirected edges.
If MSL finds a solution for one of these neighbors of H2,
then we return it and compare to the ground truth as before.

We repeated our 8-node experiment successively checking
neighborhoods from 1-5 steps away from the learned H2.
In the worst case, this can require over 5.2 × 107 addi-
tional MSL runs (for n = 8), so there can be a signifi-
cant increase in run-time. The results are summarized in
Figure 13. The increased complexity did not allow us to
proceed to the 30% density. This time, however, we did not
have to restart a single computation at densities or 15% and
20% with only few rejected at 25%.

12Because the G1 → G2 map is many-to-one, there are multiple
such H2. In fact, the set of “reachable” H2 is at most 1/2(

n
2) of

the theoretically possible graphs.

Figure 13: The estimation and search errors on synthetic
data undersampled at rate 2 when the G2 Hamming cube
neighborhood search is used.

5 CONCLUSIONS

Many scientific contexts depend on learning the structure
of a system at some timescale that is faster than the mea-
surement timescale. Standard structure learning algorithms
can extract the measurement-level structure, but that struc-
ture can be quite different from the structure of the under-
lying system. The apparent structure given undersampled
data is not immediately informative about the actual struc-
ture at the causal or system timescale. We have presented
the first computationally efficient algorithm for learning the
equivalence class of system-timescale structures that could
have produced the measurement-timescale data. The algo-
rithm can, in theory, be applied for arbitrary known under-
sample rates u, though it is computationally intractable for
u > 3. Nonetheless, we have shown that the MSL algo-
rithm exhibits promising performance for u = 2, including
reliably learning underlying structure over large node-sets.
The MSL algorithm also provides a novel tool for investi-
gating the sizes of those equivalence classes. We showed
that small amounts of undersampling typically do not de-
stroy much information, as the equivalence class for many
G2 was a singleton. Undersampling greatly increases the
complexity of structure learning, but does not make it im-
possible or infeasible.

ACKNOWLEDGEMENTS

Thanks to Kun Zhang for helpful conversations. SP &
DD contributed equally. SP was supported by awards NIH
R01EB005846 & NSF IIS-1318759. DD was supported by
awards NSF IIS-1318815 & NIH U54HG008540 (from the
National Human Genome Research Institute through funds
provided by the trans-NIH Big Data to Knowledge (BD2K)
initiative). The content is solely the responsibility of the au-
thors and does not necessarily represent the official views
of the National Institutes of Health.

710

References
[1] D. M. Chickering. Optimal structure identification

with greedy search. The Journal of Machine Learning
Research, 3:507–554, 2003.

[2] D. Danks and S. Plis. Learning causal structure
from undersampled time series. In JMLR: Workshop
and Conference Proceedings, volume 1, pages 1–10,
2013.

[3] D. Dash. Restructuring dynamic causal systems in
equilibrium. In Proceedings of the Tenth Interna-
tional Workshop on Artificial Intelligence and Statis-
tics (AIStats 2005), pages 81–88, 2005.

[4] T. Dean and K. Kanazawa. A model for reasoning
about persistence and causation. Computational in-
telligence, 5(2):142–150, 1989.

[5] F. M Fisher. A correspondence principle for simul-
taneous equation models. Econometrica: Journal of
the Econometric Society, pages 73–92, 1970.

[6] N. Friedman, K. Murphy, and S. Russell. Learning the
structure of dynamic probabilistic networks. In 15th
Annual Conference on Uncertainty in Artificial Intel-
ligence, pages 139–147, San Francisco, 1999. Mor-
gan Kaufmann.

[7] C.W.J. Granger. Investigating causal relations by
econometric models and cross-spectral methods.
Econometrica: Journal of the Econometric Society,
pages 424–438, 1969.

[8] S. A. Huettel, A. W. Song, and G. McCarthy. Func-
tional magnetic resonance imaging. Sinauer As-
sociates, Publishers, Sunderland, MA, USA, 2004.
ISBN 0-87893-288-7.

[9] Y. Iwasaki and H. A Simon. Causality and model
abstraction. Artificial Intelligence, 67(1):143–194,
1994.

[10] H. Lütkepohl. New introduction to multiple time se-
ries analysis. Springer Science & Business Media,
2007.

[11] A. Moneta, N. Chlaß, D. Entner, and P. Hoyer. Causal
search in structural vector autoregressive models. In
Journal of Machine Learning Research: Workshop
and Conference Proceedings, Causality in Time Se-
ries (Proc. NIPS2009 Mini-Symposium on Causality
in Time Series), volume 12, pages 95–114, 2011.

[12] K. Murphy. Dynamic Bayesian Networks: Repre-
sentation, Inference and Learning. PhD thesis, UC
Berkeley, 2002.

[13] P. Spirtes, C. Glymour, and R. Scheines. Causation,
prediction, and search, volume 81. MIT press, 2001.

[14] B. Thiesson, D. Chickering, D. Heckerman, and
C. Meek. ARMA time-series modeling with graph-
ical models. In Proceedings of the Twentieth Con-

ference Annual Conference on Uncertainty in Artifi-
cial Intelligence (UAI-04), pages 552–560, Arlington,
Virginia, 2004. AUAI Press.

[15] M. Voortman, D. Dash, and M. Druzdzel. Learn-
ing why things change: The difference-based causal-
ity learner. In Proceedings of the Twenty-Sixth An-
nual Conference on Uncertainty in Artificial Intel-
ligence (UAI), pages 641–650, Corvallis, Oregon,
2010. AUAI Press.

711

Budgeted Online Collective Inference

Jay Pujara
University of Maryland

jay@cs.umd.edu

Ben London
University of Maryland
blondon@cs.umd.edu

Lise Getoor
University of California, Santa Cruz

getoor@soe.ucsc.edu

Abstract

Updating inference in response to new evidence
is a fundamental challenge in artificial intelli-
gence. Many real problems require large prob-
abilistic graphical models, containing millions of
interdependent variables. For such large mod-
els, jointly updating the most likely (i.e., MAP)
configuration of the variables each time new ev-
idence is encountered can be infeasible, even if
inference is tractable. In this paper, we introduce
budgeted online collective inference, in which
the MAP configuration of a graphical model is
updated efficiently by revising the assignments
to a subset of the variables while holding oth-
ers fixed. The goal is to selectively update cer-
tain variables without sacrificing quality with re-
spect to full inference. To formalize the conse-
quences of partially updating inference, we in-
troduce the concept of inference regret. We de-
rive inference regret bounds for a class of graph-
ical models with strongly-convex free energies.
These theoretical insights, combined with a thor-
ough analysis of the optimization solver, moti-
vate new approximate methods for efficiently up-
dating the variable assignments under a budget
constraint. In experiments, we demonstrate that
our algorithms can reduce inference time by 65%
with accuracy comparable to full inference.

1 INTRODUCTION

A key challenge of many artificial intelligence problems is
that the evidence grows and changes over time, requiring
updates to inferences. Every time a user rates a new movie
on Netflix, posts a status update on Twitter, or adds a con-
nection on LinkedIn, inferences about preferences, events,
or relationships must be updated. When constructing a
knowledge base, each newly acquired document prompts
the system to update inferences over related facts and re-

solve mentions to their canonical entities. Problems such as
these benefit from collective (i.e., joint) reasoning, but in-
corporating new evidence into a collective model is partic-
ularly challenging. New evidence can affect multiple pre-
dictions, so updating inference typically involves recom-
puting all predictions in an expensive global optimization.
Even when a full inference update is tractable—which, us-
ing the best known methods, can be linear in the number of
factors—it may still be impractical. For example, updating
a knowledge graph with millions of facts can take hours
(Pujara et al., 2013), thereby requiring some compromise,
either in the form of a deferment strategy or approximate
update. In this work, we consider the task of efficiently up-
dating the maximum-a-posteriori (MAP) state of a proba-
bilistic graphical model, conditioned on evolving evidence.
We refer to this problem as online collective inference.

In online collective inference, a single graphical model,
describing the conditional distribution of a set of random
variables with fixed dependency structure, is given. Over a
series of epochs, the true assignments (i.e., labels) of cer-
tain variables are revealed, introducing new evidence with
which we can update the assignments to the remaining un-
knowns. We constrain the problem by adding a budget,
such that only a fixed percentage of variables can be up-
dated in each epoch, necessitating some approximation to
full inference. This constraint distinguishes our work from
the vast body of literature on belief revision (e.g., Garden-
fors, 1992), Bayesian network updates (e.g., Buntine, 1991;
Friedman and Goldszmidt, 1997; Li et al., 2006), mod-
els for dynamic (Murphy, 2002) or sequential (Fine et al.,
1998) data, and adaptive inference (e.g., Acar et al., 2008),
which deal with exact updates to inference. We analyze
budgeted online collective inference from both the theo-
retical and algorithmic perspectives, addressing two funda-
mental questions: How do we choose which variables to
update? How “close” is the approximate inference update
to the full inference update?

To formalize the latter question, we introduce the con-
cept of inference regret. Informally, inference regret mea-
sures the amount of change induced by fixing (i.e., condi-

712

tioning on) certain variables in the inference optimization.
We specifically analyze the inference regret of continu-
ous graphical models whose inference objective is strongly
convex. One instantiation of this class of models is hinge-
loss Markov random fields (Bach et al., 2013), which have
been broadly applied and demonstrate state-of-the-art per-
formance in many applications. Using the duality between
strong convexity and stability, we upper-bound the infer-
ence regret. Our bound is proportional to the distance from
the fixed variables to the optimal values of the full inference
problem, scaled by a function of several model-specific
properties. We use our inference regret bound to quantify
the effect of approximate inference updates in response to
new evidence (in this case, revealed labels). The bound
highlights two terms affecting the regret: the accuracy of
the original predictions and the amount that the original
predictions change. This latter insight informs our approxi-
mate update methods with a simple intuition: fix the predic-
tions that are unlikely to change in a full inference update.

To efficiently determine which variables are least likely to
change, we turn to the optimization algorithm used dur-
ing inference. The alternating direction method of multi-
pliers (ADMM) (Boyd et al., 2011) is a popular convex
optimization technique that offers convergence guarantees
while remaining highly scalable. We analyze the optimiza-
tion process and catalog the features that allow us to de-
termine which variables will change the most. Using these
features to generate a score for each variable, we estab-
lish a ranking capturing the priority of including the vari-
ables in subsequent inference. Since the variable scores are
produced using the state of the optimization algorithm, our
method does not incur computational overhead. By ranking
variables, we approximate full inference with an arbitrary
budget and support an anytime online inference algorithm.

We evaluate the theoretical guarantees and approximation
quality in experiments on a synthetic collective classifica-
tion task and a real-world collaborative filtering task. These
experiments validate our theoretical bounds by measuring
the stability and quality of the MAP state as new evidence is
revealed. To connect theoretical guarantees with empirical
performance, we compare approximate inference to com-
puting the full MAP state at each epoch of graph evolution.
We find that our approach to online inference allows a sub-
stantial decrease in computation and running time while
maintaining the quality of the inferred values. In our ex-
periments, our methods consistently reduce running time
by 65% to 70%, show diminishing inference regret, and, in
some cases, have lower test error than full inference.

1.1 RELATED WORK

Updating inference is a longstanding problem in artificial
intelligence. The classic problem of belief revision (Gar-
denfors, 1992) considers revising and updating a set of

propositional beliefs using a set of axiomatic guarantees to
consistency. Diverse research has considered updating the
parameters or structure of Bayesian networks in response
to evolving evidence (Buntine, 1991; Friedman and Gold-
szmidt, 1997; Li et al., 2006, e.g.,). Finally, many mod-
els address dynamic or sequential data, such as Dynamic
Bayesian Networks (Murphy, 2002) and hierarchical hid-
den Markov models (Fine et al., 1998). Our work addresses
the specific problem of approximating full MAP inference
in the online setting when a model is given and provides
formal guarantees for the approximation quality.

Making efficient updates to the full inference result is
the goal of a related area of research, adaptive inference.
Adaptive marginal inference (Acar et al., 2008; Sümer et
al., 2011) can update the marginal probability of a query
in O

(
2tw(G) log n

)
-time, where tw(G) is the tree-width

of the graph and n is the number of variables. Adaptive
MAP inference (Acar et al., 2009) can update the MAP
state in O (m+m log(n/m))-time, where m is the num-
ber of variables that change their state. Though the al-
gorithm does not need to know m beforehand, a model
change could result in changes to all n variables’ states,
with cost equivalent to exact inference. These adaptive in-
ference techniques do not currently support partial updates
to the MAP state or accommodate budgeted updates.

Approximate adaptive inference was considered by Nath
and Domingos (2010), who proposed expanding frontier
belief propagation (EFBP), a belief propagation algorithm
that only updates messages in the vicinity of the up-
dated potentials. They showed that the beliefs generated
by EFBP lower- and upper-bound the beliefs of full BP,
thereby providing guarantees on the quality of the approx-
imation. This result differs from ours in that it bounds the
individual marginal probabilities, whereas we bound the
L1 distance between MAP states. Unlike our approxima-
tion algorithm, EFBP does not explicitly limit computation
and, in the worst case, may need to update all variables to
achieve convergence conditions.

The quantity we call inference regret is conceptually sim-
ilar to collective stability (London et al., 2013a). Collec-
tive stability measures the amount of change in the out-
put of a structured predictor induced by local perturba-
tions of the evidence. London et al. (2013a, 2014) ana-
lyzed the collective stability of marginal inference in dis-
crete graphical models, concluding that (approximate) in-
ference with a strongly convex entropy function enhances
stability. Our technical approach is similar, in that we also
leverage strong convexity. However, the types of perturba-
tions we consider—fixing target variables—are not covered
by their analysis. Stability analysis is closely related to sen-
sitivity analysis. Since the terms are used interchangeably
in the literature, we distinguish them as follows: sensitivity
analysis examines if and when the solution changes; sta-
bility analysis examines how much it changes by. Laskey

713

analyzed the sensitivity of queries (which can be used for
marginal inference) in Bayesian networks. Chan and Dar-
wiche studied the sensitivity of queries (2005) and MAP
inference (2006) in Markov networks. Their 2005 paper
also analyzes the stability of queries.

2 PRELIMINARIES

The theory and methods introduced in this paper apply to
any continuous-valued MRF with a strongly convex MAP
inference objective function. One case of particular in-
terest is a class of graphical models known as hinge-loss
Markov random fields (HL-MRFs) (Bach et al., 2013). An
HL-MRF is a continuous-valued Markov network in which
the potentials are hinge functions of the variables. Our
choice of HL-MRFs comes from technical considerations:
we reason about the strength of convexity of the inference
objective, and maximum a posteriori (MAP) inference in
HL-MRFs can be strongly convex. However, from a prac-
tical standpoint, HL-MRFs have many benefits. MAP in-
ference in HL-MRFs is provably and empirically efficient,
in theory growing O(N3) with the number of potentials,
N , but in practice often converging in O(N) time. Models
built using HL-MRFs achieve state-of-the-art performance
for a variety of applications (Bach et al., 2013; Beltagy et
al., 2014; Chen et al., 2014; Fakhraei et al., 2014; Lon-
don et al., 2013b; Ramesh et al., 2014). Finally, HL-MRFs
are easily specified through probabilistic soft logic (PSL)
(Bach et al., 2015), a probabilistic programming language
with a first-order logical syntax.

To better understand HL-MRFs and PSL, consider a model
for collective classification of network data, in which the
goal is to assign labels to nodes, conditioned on some local
evidence and network structure. Let G , (V, E) denote
an undirected graph on n , |V| nodes. Each node i ∈ V
is associated with a set of local observations, Xi, and an
unknown label, Li. (In some settings, a subset of the la-
bels are revealed.) In general, the observations and labels
can be real-valued; but for simplicity of exposition, let us
assume that each observation is binary-valued, and each la-
bel is categorical. The following logical rules define a PSL
program for a typical collective classification model:

wx,` : FEATURE(N, x)⇒ LABEL(N, `)

we,` : EDGE(N1, N2) ∧ LABEL(N1, `)⇒ LABEL(N2, `)

Variables N , N1 and N2 denote nodes; x indexes a local
feature; and ` denotes a label. The rules are weighted
by wx,` and we,` respectively. Given G and X ,
(X1, . . . , Xn) (and possibly some subset of the labels), the
rules are grounded out for all possible instantiations of the
predicates. The groundings involving unknown variables—
in this case, groundings of the LABEL predicate—are rep-
resented by [0, 1]-valued variables, Y , (Yi,`)i,`. Using
a relaxation of the MAX-SAT problem to continuous do-

mains (Globerson and Jaakkola, 2007), each grounding is
converted to a convex hinge function of the form

f(X,Y) = (max{0, ϕ(X,Y)})q ,

where ϕ is a linear function of (X,Y), and q ∈ {1, 2} is an
exponent that is set a priori for the given rule. Each hinge
function becomes a potential in an HL-MRF.

The resulting HL-MRF enables probabilistic inference over
the set of PSL rules. Fix a set of r PSL rules, with corre-
sponding weights w , (w1, . . . , wr). For the ith rule, let
G(i) denote its set of groundings in G, and let f ij denote
the jth grounding of its associated hinge function. To com-
pactly express the weighted sum of grounded rules, we let

f(X,Y) ,

|G(1)|∑

j=1

f1
j (X,Y) , . . . ,

|G(r)|∑

j=1

frj (X,Y)

>

denote the aggregate of the grounded hinge functions.
We can thus write the weighted sum of groundings
as w · f(X,Y). This inner product defines a distri-
bution over (Y |X) with probability density function
p (Y = y |X = x;w) ∝ exp (−w · f(X,Y)). The max-
imizer of the density function (alternately, the minimizer
of −w · f(X,Y)) is the MAP state. The values of Y in
the MAP state can be interpreted as confidences. Addition-
ally, we can define a prior distribution over each Y. In this
case, we will use an L2, or Gaussian, prior. This can be
accomplished using the rule wp,` : ¬ LABEL(N, `), with a
squared hinge (i.e., q = 2). Let us assume, without loss
of generality, that each prior rule has weight wp,` = wp/2,
for some wp > 0. Thus, the corresponding hinge function
for grounding LABEL(i, `) is simply (Yi,`)

2; the aggregate
features for the prior are ‖Y‖22. So as to simplify notation,
let ẇ , (w, wp) and define an energy function,

E(y |x; ẇ) , w · f(x,y) +
wp
2
‖y‖22 . (1)

The resulting probability density function is

p (Y = y |X = x; ẇ) ∝ exp (−E(y |x; ẇ)) .

MAP inference, henceforth denoted h(x; ẇ), is given by

h(x; ẇ) = arg min
y

E(y |x; ẇ).

3 INFERENCE REGRET

The notion of regret has often been used to measure the
loss incurred by an online learning algorithm relative to
the optimal hypothesis. We extend this concept to online
inference. Fix a model. Suppose we are given evidence,
X = x, from which we make a prediction, Y = y, using
MAP inference. Then, some subset of the unknowns are

714

revealed. Conditioning on the new evidence, we have two
choices: we can recompute the MAP state of the remain-
ing variables, using full inference; or, we can fix some of
the previous predictions, and only update a certain subset
of the variables. To understand the consequences of fixing
our previous predictions we must answer a basic question:
how much have the old predictions changed?

We formalize the above question in the following concept.

Definition 1. Fix a budget m ≥ 1. For some subset S ⊂
{1, . . . , n}, such that its complement S , {1, . . . , n} \ S ,
has size

∣∣S
∣∣ = m, let YS denote the corresponding subset

of the variables, and let YS denote its complement. As-
sume there is an operator Γ that concatenates YS and YS
in the correct order. Fix a model, ẇ, and an observation,
X = x. Further, fix an assignment, YS = yS , and let

h(x,yS ; ẇ) , Γ

(
yS , arg min

yS

E (Γ(yS ,yS) |x; ẇ)

)

denote the new MAP configuration for YS after fixing YS
to yS . We define the inference regret for (x,yS ; ẇ) as

Rn(x,yS ; ẇ) , 1

n
‖h(x; ẇ)− h(x,yS ; ẇ)‖1 . (2)

In general, the inference regret can be as high as 1 for vari-
ables in [0,1]. For example, consider network classification
model in which probability mass is only assigned to config-
urations where all nodes have the same label. Fixing a vari-
able corresponding to a single node label in this setting is
tantamount to fixing the label for all nodes. In the presence
of strong evidence for a different label, incorrectly fixing a
single variable results in incorrectly inferring all variables.

In online inference, regret can come from two sources.
First, there is the regret of not updating the MAP state given
new evidence (in this case, revealed labels). If this regret is
low, it may not be worthwhile to update inference, which
can be useful in situations where updating inference is ex-
pensive (such as updating predicted attributes for all users
in a social network). The second type of regret is from
using an approximate inference update in which only cer-
tain variables are updated, while the rest are kept fixed to
their previous values. We describe several such approxima-
tions in Section 4. In practice, one may have both types of
regret, caused by approximate updates in response to new
evidence. Note that the inference regret obeys the triangle
inequality, so one can upper-bound the compound regret of
multiple updates using the regret of each update.

3.1 REGRET BOUNDS FOR STRONGLY
CONVEX INFERENCE

A convenient property of the L2 prior is that it is strongly
convex, by which we mean the following.

Definition 2. Let Ω ⊆ Rn denote a convex set. A differen-
tiable function, f : Ω → R, is κ-strongly convex (w.r.t. the
2-norm) if, for all ω,ω′ ∈ Ω,
κ

2
‖ω − ω′‖22 + 〈∇f(ω),ω′ − ω〉 ≤ f(ω′)− f(ω). (3)

Strong convexity has a well-known duality with stability,
which we will use in our theoretical analysis.

The function f(ω) , 1
2 ‖ω‖

2
2 is 1-strongly convex. There-

fore, the prior, wp2 ‖y‖
2
2, is at least wp-strongly convex. We

also have that the aggregated hinge functions, f(x,y), are
convex functions of Y. Thus, it is easily verified that the
energy, E(y |x; ẇ), is at least a wp-strongly convex func-
tion of y. This yields the following upper bound on the
inference regret.
Proposition 1. Fix a model with weights ẇ. Assume there
exists a constant B ∈ [0,∞) such that, for any x, and any
y,y′ that differ at coordinate i,

‖f(x,y)− f(x,y′)‖2 ≤ B |yi − y′i| . (4)

Then, for any observations x, any budget m ≥ 1, any sub-
set S ⊂ {1, . . . , n} :

∣∣S
∣∣ = m, and any assignments yS ,

with ŷ , h(x; ẇ), we have that

Rn(x,yS ; ẇ) ≤
√

1

n

(
3

2
+
B ‖w‖2
wp

)
‖yS − ŷS‖1.

Proof Due to space restrictions, the proof is some-
what abbreviated. Let ŷ , h(x; ẇ) denote the origi-
nal MAP configuration, i.e., the minimizer of E(· |x;w).
Let ŷ′ , h(x,yS ; ẇ) denote the updated MAP state
after conditioning, and note that ŷ′S is the minimizer
of E (Γ(yS , ·) |x; ẇ). Since ŷS may be different from
yS , we have that ŷ may not be in the domain of
E (Γ(yS , ·) |x; ẇ). We therefore define a vector ỹ ∈
[0, 1]n that is in the domain, and has minimal Hamming
distance to ŷ. Let ỹi , yi for all i ∈ S , and ỹj , ŷj for all
j /∈ S. It can be shown that

∥∥ŷ′ − ŷ
∥∥2

2
=
∥∥ŷ′ − ỹ

∥∥2

2
+ ‖ỹ − ŷ‖22 . (5)

Further, since the domain of each Yi is [0, 1],

‖ỹ − ŷ‖22 = ‖yS − ŷS‖22 ≤ ‖yS − ŷS‖1 . (6)

Therefore, combining Equations 5 and 6,

∥∥ŷ − ŷ′
∥∥2

2
=

1

2

(∥∥ŷ − ŷ′
∥∥2

2
+
∥∥ŷ′ − ŷ

∥∥2

2

)

≤ 1

2

(∥∥ŷ − ŷ′
∥∥2

2
+
∥∥ŷ′ − ỹ

∥∥2

2
+ ‖yS − ŷS‖1

)
. (7)

For any κ-strongly convex function, ϕ : Ω → R, where
ω̂ = arg minω∈Ω ϕ(ω) is the minimizer, then ∀ω′ ∈ Ω,

1

2
‖ω̂ − ω′‖22 ≤

1

κ
(ϕ(ω′)− ϕ(ω̂)) . (8)

715

Applying this identify to the first two terms in Equation 7,
since E(· |x; ẇ) is wp-strongly convex, we have that

1

2

∥∥ŷ − ŷ′
∥∥2

2
+

1

2

∥∥ŷ′ − ỹ
∥∥2

2

≤ 1

wp
(E(ỹ |x; ẇ)− E(ŷ |x; ẇ)) . (9)

The E(ŷ′ |x; ẇ) terms cancel out. Expanding E(· |x; ẇ),

E(ỹ |x; ẇ)− E(ŷ |x; ẇ)

= w · (f(x, ỹ)− f(x, ŷ)) +
wp
2

(
‖ỹ‖22 − ‖ŷ‖

2
2

)

≤ ‖w‖2 ‖f(x, ỹ)− f(x, ŷ)‖2 + wp ‖yS − ŷS‖1 . (10)

The last inequality uses Cauchy-Schwarz and

‖ỹ‖22 − ‖ŷ‖
2
2 ≤ 2 ‖yS − ŷS‖1 .

Finally, we construct a series of vectors, indexed by each
i ∈ S, that transform ŷ into ỹ, one coordinate at a time. For
the following, let S(j) denote the jth element in S. First,
let ỹ(0) , ŷ; then, for j = 1, . . . ,m, let ỹ(j) be equal to
ỹ(j) with index S(j) replaced with value ỹS(j). Note that
ỹ(m) = ỹ. Using the triangle inequality, one can show that

‖f(x, ỹ)− f(x, ŷ)‖2 ≤
m∑

j=1

∥∥∥f(x, ỹ(j))− f(x, ỹ(j−1))
∥∥∥

2

≤ B ‖yS − ŷS‖1 . (11)

The last inequality uses Equation 4, since ỹ(j) and ỹ(j−1)

differ at a single coordinate, S(j). Combining Equations 7
and 9 to 11, we have that

∥∥ŷ − ŷ′
∥∥2

2
≤
(

3

2
+
B ‖w‖2
wp

)
‖yS − ŷS‖1 .

We then multiply both sides of the inequality by 1/n and
take the square root. Using 1

n

∥∥ŷ − ŷ′
∥∥

1
≤ 1√

n

∥∥ŷ − ŷ′
∥∥

2

finishes the proof.

Proposition 1 states that the inference regret is proportional
to the L1 distance from yS to ŷS , multiplied by a model-
dependent quantity, O

(
B‖w‖2
nwp

)
. Later in this section, we

discuss how to bound the features’ Lipschitz constant, B,
demonstrating that it is typically a small constant (e.g.,
1). Thus, assuming ‖w‖2 is bounded from above, and
the weight on the prior, wp, is bounded from below, the
model-dependent term should decrease with the number of
variables, n. For variables bounded in [0, 1], the Ham-
ming distance upper-bounds the L1 distance. Using this
identity, a pessimistic upper bound for the distance term is
‖yS − ŷS‖1 ≤ |S|. In this case, the regret is proportional
to O

(√
|S| /n

)
; i.e., the square root of the fraction of the

variables that are fixed. While this yields a uniform, ana-
lytic upper bound, we gain more insight by considering the
specific contexts.

For instance, suppose yS is a set of labels that has been
revealed. Then Rn(x,yS ; ẇ) is the regret of not updating
inference conditioned on new evidence, and ‖yS − ŷS‖1 is
the L1 error of the original predictions w.r.t. the true labels.
Now, suppose yS is a set of labels that are fixed from a pre-
vious round of inference. Then Rn(x,yS ; ẇ) is the regret
of an approximate inference update, and ‖yS − ŷS‖1 is the
L1 distance between the old predictions and the new pre-
dictions in the full inference update. Thus, to minimize this
regret, we must fix values that are already close to what we
think they will be in the updated MAP state. This criteria
motivates our approximate update methods in Section 4.

3.1.1 The Lipschitz Constant of the Features

In this section, we give some intuition on how to bound
the Lipschitz constant of the features, B, by consid-
ering a specific example. Suppose the model has a
single rule: X ⇒ Y . The corresponding hinge is
f(X,Y) , max{0, X − Y }. Using the fact that
|max{0, a} −max{0, b}| ≤ |a− b|, one can show that
‖f(x,y)− f(x,y′)‖2 ≤ |yi − y′i| ≤ 1, so B = 1.

PSL models typically use rules of this nature, with varying
arity (i.e., diadic, triadic, etc.). In general, B should grow
linearly with the number of groundings involving any sin-
gle variable (i.e., the maximum degree of the factor graph).
The number of groundings generated by each rule depends
on its arity and the data. For instance, the relational rule
in Section 2 will ground out once for each edge and each
label; if there are 2 labels, and the maximum degree is
bounded by a constant, ∆, then the number of groundings
generated by this rule for any single variable is at most 2∆.
Thus, in many practical models,B will be a small constant.

4 BUDGETED ONLINE INFERENCE

The bounds presented in Section 3.1 suggest that online
collective inference under budget constraints is close to
the full inference update when one is able to successfully
choose and fix variables whose inferred values will have
little or no change. We refer to the complementary pro-
cess of selecting which variables to infer as activation. In
practice, designing an activation algorithm is difficult. The
optimization problem required to choose a set of variables,
each with heterogeneous regret and optimization cost, that
do not exceed an optimization budget is an instance of the
NP-hard knapsack problem. Given the intrinsic intractabil-
ity of selecting an optimal set of variables, we present two
algorithms that employ theoretical insights from the previ-
ous section and show promise in empirical experiments.

716

4.1 BACKGROUND: ADMM OPTIMIZATION

To develop activation algorithms, we turn to the opti-
mization technique used to determine the MAP state in
HL-MRFs. Bach et al. (2012) have shown that apply-
ing consensus optimization using the Alternating Direction
Method of Multipliers (ADMM) (Boyd et al., 2011) pro-
vides scalable inference for HL-MRFs. For clearer exposi-
tion, we express the inference in terms of the set of ground
rules, G and rewrite the energy function in Section 2 as:

E(y |x; ẇ) ,
∑

g∈G
wgfg(x,y) +

wp
2
‖y‖22

Here, wgfg(x,y) is a weighted potential corresponding to
a single ground rule. ADMM substitutes the global opti-
mization problem with local optimizations for each poten-
tial using independent copies of the variables. For each
grounding g ∈ G, let yg denote the variables involved in g
and ỹg indicate the local copy of those variables. To rec-
oncile the local optimizations, ADMM introduces a con-
straint that local variable copies agree with the global “con-
sensus” for each variable i involved in the grounding; that
is, yg[i] = ỹg[i]. This constraint is transformed into an
augmented Lagrangian with penalty parameter ρ > 0 and
Lagrange multipliers αg:

min
ỹg

wg fg(x, ỹg) +
ρ

2

∥∥∥ỹg − yg +
1

ρ
αg

∥∥∥
2

(12)

ADMM iteratively alternates optimizing the local poten-
tials, then updating the consensus estimates and associated
Lagrange multipliers for each variable, as such:

ỹg ← argminỹg
wg fg(x, ỹg) +

ρ

2

∥∥∥ỹg − yg +
1

ρ
αg

∥∥∥
2

;

y[i]← meang(ỹg[i]) ; αg[i]← αg[i] + ρ(ỹg[i]− yg[i]) .

A key element of this optimization is the interplay of two
components: the weighted potential corresponding to a
grounding and the Lagrangian penalty for deviating from
the consensus estimate. As optimization proceeds, the La-
grange multipliers are updated to increase the penalty for
deviating from the global consensus. At convergence, a
balance exists between the two components, reconciling
the local minimizer and the aggregate of global potentials.

4.2 ADMM FEATURES

The goal of activation is to determine which variables are
most likely to change in a future inference. From the analy-
sis in the previous section, we can identify several basic el-
ements for each variable in the model that serve as features
for an activation algorithm. For each variable, we have its
value at convergence (y[i]), and for each grounding g, the
weight (wg), the value of the potential (fg(x, ỹg)), and the

Lagrange multipliers (αg[i]) measuring the aggregate devi-
ation from consensus. We discuss each of these features to
motivate their importance in an activation algorithm.

The value of a variable at convergence can provide a use-
ful signal in certain situations, where a model has clear se-
mantics. For example, the formulation of HL-MRFs often
lends itself to a logical interpretation with binary outcomes,
as in the cases of collective classification of attributes that
are either present or absent. In this setting, assignments
in the vicinity of 0.5 represent uncertainty, and therefore
provide good candidates for activation. Unfortunately, this
feature is not universal. Many successful HL-MRF models
adopt semantics that use continuous values to model con-
tinuous variables, such as pixel intensity in image comple-
tion tasks or Likert-scale ratings in recommender systems.
In this case, the semantics of the variable’s consensus value
may provide an ambiguous signal for activation.

The weighted potentials of each variable contribute directly
to the probability of the MAP configuration. Since the log-
probability is proportional to the negated energy, −E, high
weights and high potential values decrease the probability
of the assignment. Intuitively, activating those variables
that contribute high weighted potentials provides the best
mechanism for approaching the full inference MAP state.
A complication to this approach is that each weighted po-
tential can depend on many variables. However, the poten-
tial value is a scalar quantity and there is no general mech-
anism to apportion the loss to the contributing variables.

In contrast, the Lagrange multipliers provide a granular
perspective on each variable’s effect on Equation 12. For
each variable copy (ỹg), the Lagrange multiplier aggre-
gates the difference between the copy and the global con-
sensus across iterations. High Lagrange multipliers signal
discord between the local minimizer and the global mini-
mizer, indicating volatility. Activating variables with high
Lagrange multipliers can resolve this discord in future in-
ference using updated evidence. However, updated evi-
dence may also resolve the disagreement between the local
and global minimum, obviating an update to the variable.

4.3 ACTIVATION ALGORITHMS

Building on our analysis of ADMM optimization, we in-
troduce two activation algorithms for online collective in-
ference, “agnostic activation” and “relational activation”.
Both algorithms produce a ranking that prioritizes each
variable for inclusion in inference. The key difference be-
tween these algorithms is whether new or updated evidence
is an input to the algorithm. Agnostic activation scores
variables concurrently with inference, based on their sus-
ceptibility to change in future inferences. In contrast, rela-
tional activation runs prior to inference, with scores based
primarily on relationships between variables and updated
evidence in the factor graph.

717

Each approach has different advantages. Agnostic activa-
tion scores variables during inference, providing a perfor-
mance advantage since the scoring algorithm does not de-
lay a future run of inference. However, this technique has
a slower response to new evidence since scoring occurs be-
fore such evidence is available. Relational activation can
respond to newly-arrived evidence and choose variables re-
lated to new evidence, but this requires delaying scoring
which can add a computational overhead to inference.

Both activation algorithms output a ranking of the vari-
ables, which requires a scoring function. We introduce
two scoring functions that use the ADMM features de-
scribed Section 4.2. Our first scoring function, VALUE,
captures the intuition that uncertain variables are valuable
activation candidates using the function 1 − |0.5 − y[i]|,
where y[i] is the consensus value for variable i. The sec-
ond scoring function, WLM, uses both the weight and La-
grange multipliers of each potential. For each variable, we
define a set of weighted Lagrange multiplier magnitudes,
Aw[i] , {|wgαg[i]|}. To obtain a single scalar score, we
take the maximum value of Aw[i].

The agnostic activation algorithm simply ranks each vari-
able by their score from a scoring function, irrespective of
the new evidence. The RELATIONAL algorithm combines
the score with information about the new evidence. Using
the existing ground model, RELATIONAL first identifies all
ground potentials dependent on the new evidence. Then,
using these ground potentials as a seed set, the algorithm
performs a breadth-first search of the factor graph adding
the variables involved in each factor it encounters to the
frontier. Traversing the factor graph can quickly identify
many candidate variables, so we prioritize variables in the
frontier by S

2d
where S is the score assigned by a scoring

function and d is the minimum distance between the vari-
able and an element of the seed set in the factor graph.

The ranking output by either agnostic or relational activa-
tion lets us prioritize which variables to activate. Given
a budget for the number or percentage of variables to in-
fer, we activate a corresponding number of variables from
the ranking. The remaining variables are constrained to
their previously inferred values. We selectively ground the
model, including only those rules that involve an activated
variable. Following inference on the ground model, we use
the updated optimization state to produce new scores.

When an inactive variable is treated as a constant, it does
not have any associated Lagrange multipliers, and lacks
features for the WLM scoring function. Therefore, instead
of treating fixed variables as constants, we introduce them
as constrained variables in the optimization. This allows us
to generate features by capturing the discrepancy between a
variable’s constrained value and the value of its local copies
in groundings involving activated variables.

Our implementation of the agnostic activation algorithm is

extremely efficient; all necessary features are byproducts of
the inference optimization. Once scores are computed and
the activated atoms are selected, the optimization state can
be discarded to avoid additional resource commitments. In
relational activation, scoring is similarly efficient, but there
is an additional overhead of preserving the ground model
to allow fast traversal of the factor graph. By selectively
grounding the model, we replace queries that scan the en-
tire database, potentially many times, with precise queries
that exploit indices for faster performance. Finally, selec-
tively activating atoms produces an optimization objective
with fewer terms, allowing quicker optimization.

5 EVALUATION

To better understand the regret bounds and approximation
algorithms for online inference, we perform an empirical
evaluation on two online collective inference settings. The
first setting is a synthetic online collective classification
task where the data generator allows us to modulate the im-
portance of collective dependencies and control the amount
of noise. The second evaluation setting is a real-world col-
laborative filtering task, where user preferences are incre-
mentally revealed and the outputs of a recommender sys-
tem are correspondingly updated.

In both evaluation settings, we measure regret relative to
full inference and inference error relative to ground truth.
The results demonstrate that empirical regret follows the
form of our regret bounds. We also evaluate the approxi-
mation algorithms presented in Section 4.3, to investigate
whether features from the optimization algorithm can re-
liably determine which variables to activate. The results
show that our approximation algorithms are able to reduce
running time by upwards of 65%, with inference regret rel-
ative to full inference.

All experiments are implemented using the open-source
PSL framework and our code is available on GitHub1.

5.1 ONLINE COLLECTIVE CLASSIFICATION

Our evaluation data simulates a collective classification
problem of inferring labels for users in a social network
as new evidence is incrementally revealed. Each user is as-
signed one of two mutually exclusive labels. Some portion
of the users have observed labels, while the labels of the
remaining users are inferred. At each epoch, the label of
one more user is revealed, so the model must update the in-
ferred labels for the remaining users with unknown labels.

For each user, we generate local and collective features cor-
related with the user’s label. Local features are generated
for each user and label by drawing from a Gaussian distri-
bution conditioned on the label, such that the mean is t for

1
https://github.com/puuj/uai15-boci-code

718

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

epochs

in
fe

re
n
c
e
 r

e
g
re

t

scaled regret bound

HighLocal

Balanced

HighRelational

Figure 1: Inference regret, w.r.t. full inference, of fixing the
original MAP state (i.e., no updates) in the HIGHLOCAL,
HIGHCOLLECTIVE and BALANCED data models.

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

epochs

in
fe

re
n
c
e
 r

e
g
re

t

Do Nothing

Random 50%

Value 50%

WLM 50%

Relational 50%

(a) Inference Regret

0 5 10 15 20 25 30 35 40 45 50
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

epochs

M
A

E

Full Inference

Random 50%

Value 50%

WLM 50%

Relational 50%

(b) MAE

Figure 2: Inference regret (w.r.t. full inference) and MAE
(w.r.t. ground truth) using various approximation algo-
rithms, with 50% activation, in the COMPLEX data model.

the true label and 1−t for the incorrect label. The collective
features are links between users, generated randomly using
the following process: for each pair of users with the same
label, a link is generated with probability p; for each pair of
users with different labels, a link is created with probability
1− p. We refer to p as the affinity of the network.

We model the data using the PSL rules described in Sec-
tion 2 and learn weights for the model. Varying the param-
eters of the data generator impacts inference in the learned
model, since the learned weights are proportional to the dis-
criminative power of their associated rules. For example,
varying the distance between the conditional means of the
local features controls the importance of the local evidence
rule: when the means are far apart, local evidence has high
discriminative power; however, when the means are close,
local evidence does not provide much signal.

We introduce three data models: HIGHLOCAL (t = .8, p =
.75), HIGHCOLLECTIVE (t = .55, p = .9), and BAL-
ANCED (t = .7, p = .75). We combine these three con-
ditions in a fourth data model, COMPLEX, which samples
uniformly from the three settings on a per-user basis re-
sulting in heterogeneous evidence. For each condition, we
generate 10 trials, each with a training social network used
to learn the model parameters and a separate test social
network to evaluate inference quality. Both the training
and test graph have 100 users, with 60 observed user la-

bels in the training graph and 10 observed user labels in
the test graph. To infer user attributes, we use the simple
collective classification model introduced in Section 2. We
simulate the process of online inference by creating a se-
quence of observations consisting of 50 epochs. In each
epoch, the true label of a previously unknown user is re-
vealed, resulting in 60 observed user labels at the end of the
sequence. For each trial, we generate 10 such sequences
from a breadth-first traversal of the network from a ran-
domly chosen user, resulting in a total of 5000 inferences.

In the first experiment, shown in Figure 1 we measure
the inference regret of fixing variables to the initial MAP
state (i.e., not updating inference) over 50 epochs, com-
paring the HIGHLOCAL, HIGHCOLLECTIVE and BAL-
ANCED conditions. Our theoretical analysis predicts that
the worst-case regret grows at rate O

(
1/
√

epoch
)
. The ex-

perimental results exhibit the same growth rate, which is
very pronounced for the HIGHCOLLECTIVE data model,
where variables are strongly interdependent, and less so
for HIGHLOCAL, where variables are largely independent.
The key insight is that the collective nature of the inference
task determines the regret of online updates.

In the second experiment (Figure 2), we compare the ap-
proximate scoring algorithms with a budget of 50% of un-
knowns to running full inference on the COMPLEX net-
work. We measure significance across 100 total sequences
using a paired t-test with rejection threshold .05. For in-
ference regret, we compare against the static algorithm,
DONOTHING, which does not update the MAP state, and a
random baseline, RANDOM, that fixes an arbitrary subset of
50% of the variables. We compare these to three approxi-
mation algorithms described in Section 4.1: VALUE, which
uses the value assigned to the variable; WLM, which uses
the maximum of the weighted Lagrange multipliers; and
RELATIONAL, which uses WLM to prioritize exploration.

All methods exhibit low regret relative to full inference,
contrasting the high regret of the static algorithm, although
VALUE exhibits somewhat higher regret. The WLM and
RELATIONAL methods have significantly lower regret rel-
ative to RANDOM, in 98% and 100% of epochs, respec-
tively. We also compare the mean average error (MAE),
with respect to ground truth, of using full inference vs. the
approximations. This illustrates that the approximation al-
gorithms remain competitive with full inference, although
VALUE again lags in accuracy. Here, the WLM and RELA-
TIONAL methods have significantly lower error than RAN-
DOM in 80% and 100% of epochs, respectively. Compar-
ing the running times highlights the computational benefit
of using the approximation algorithms. The average run-
ning time for a single trial (which includes training and 10
random sequences of revealed variables) using full infer-
ence is 3076 seconds, while approximate inference requires
only 955 seconds, a reduction of 69%, with inference time
varying less than 3% across methods.

719

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

% observed

in
fe

re
n

c
e

 r
e

g
re

t

Do Nothing

Random 25%

Value 25%

WLM 25%

Relational 25%

(a) Inference Regret (25% act.)

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

0.2335

0.234

0.2345

0.235

0.2355

0.236

0.2365

% observed

R
M

S
E

Full Inference

Random 25%

Value 25%

WLM 25%

Relational 25%

(b) RMSE (25% act.)

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

% observed

in
fe

re
n

c
e

 r
e

g
re

t

(c) Inference Regret (50% act.)

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

0.23

0.231

0.232

0.233

0.234

0.235

0.236

% observed

R
M

S
E

(d) RMSE (50% act.)

Figure 3: Inference regret (w.r.t. full inference) and RMSE
(w.r.t. ground truth) for the Jester dataset.

5.2 COLLABORATIVE FILTERING

Our second evaluation task is a collaborative filtering task
that employs a collective model to infer the preferences of
users. We use the Jester dataset (Goldberg et al., 2001)
which includes ratings from 24,983 users on a set of 100
jokes. The task in this setting is to infer the user’s rating
of each joke. We use the model from Bach et al. (2013)
which assigns ratings to jokes based on the joke’s simi-
larity to other jokes rated highly by the user. Joke simi-
larity is measured using the mean-adjusted cosine similar-
ity of the observed ratings of two jokes. (Refer to Bach
et al. (2013) for further model details.) We sample 200
users who have rated all 100 jokes and split them into 100
training users and 100 testing users. We generate 10 se-
quences, each of which consists of a training and testing
phase. Model weights are learned using 75% of the training
users’ ratings observed. During testing, we incrementally
reveal [25%, 30%, 40%, . . . , 75%] of the testing users’ rat-
ings, performing online collective inference at each epoch.

We compare inference regret, relative to full inference, for
the RANDOM, VALUE, WLM and RELATIONAL approxi-
mate methods. We also plot the RMSE, relative to ground
truth, for full inference and all approximate methods. Fig-
ure 3a-b show results for 25% activation, and Figure 3c-d
show 50% activation. Inference regret follows a similar
pattern for both budgets, with VALUE showing increasing
regret over epochs, and the remaining methods exhibiting
level or diminishing regret after the first few epochs. The
high regret for VALUE can be explained by considering the
RMSE—VALUE actually improves the results of full infer-
ence, incurring high regret but low RMSE. Our intuition for

this improvement is that VALUE fixes polarized user ratings
and allows these ratings to have greater influence on other
unknown ratings, while full inference produces more mod-
erate ratings for the entire set. The other approximation al-
gorithms remain close to the full inference RMSE (at 50%
activation) or perform slightly worse (at 25% activation).
Comparing the running times, we find a similar improve-
ment in speed. The average time for a sequence using full
inference is 137 seconds, while the approximate methods
require only 46 seconds, yielding a speedup of 66%. Ap-
proximation methods had consistent timing, varying less
than 6%.

6 CONCLUSION

In this paper, we introduce a new problem, budgeted online
collective classification, which addresses a common prob-
lem setting where online inference is necessary but full in-
ference is infeasible, thereby requiring approximate infer-
ence updates. Our contributions are: (1) a formal analy-
sis of online collective inference, introducing the concept
of inference regret to measure the quality of the approxi-
mation; (2) analytic upper bounds on the inference regret
incurred by strongly convex inference; and (3) several al-
gorithms to address the practical problem of activation (i.e.,
choosing which variables to infer at each epoch), through
a close analysis of the MAP inference optimization. Our
empirical results demonstrate that our activation algorithms
exhibit low inference regret and error that is competitive
with full inference, while reducing the time required for
inference by 65% or more.

This work inspires many exciting areas of future research.
One open question is whether one can derive a tighter regret
bound using the mechanics of the activation strategy, thus
characterizing how performance degrades as a function of
the budget. We are also interested in training an “optimal”
activation policy that is trained using the variables whose
values change the most during full inference. Finally, a
crucial assumption in our analysis is that the model struc-
ture is fixed, but it is useful to consider the setting in which
the set of variables change over time, allowing us to address
situations such as new users joining a social network.

Acknowledgments This work was partially supported by Na-
tional Science Foundation (NSF) grant IIS1218488 and by the
Intelligence Advanced Research Projects Activity (IARPA) via
DoI/NBC contract D12PC00337. The U.S. Government is autho-
rized to reproduce and distribute reprints for governmental pur-
poses notwithstanding any copyright annotation thereon. Dis-
claimer: The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or
implied, of NSF, IARPA, DoI/NBC, or the U.S. Government.

720

References
U. Acar, A. Ihler, R. Mettu, and Ö. Sümer. Adaptive infer-

ence on general graphical models. In UAI, 2008.

U. Acar, A. Ihler, R. Mettu, and Ö. Sümer. Adaptive up-
dates for MAP configurations with applications to bioin-
formatics. In IEEE Statistical Signal Processing (SSP),
pages 413–416. 2009.

S. H. Bach, M. Broecheler, L. Getoor, and D. P.
O’Leary. Scaling MPE inference for constrained contin-
uous markov random fields with consensus optimization.
In NIPS, 2012.

S. H. Bach, B. Huang, B. London, and L. Getoor. Hinge-
loss Markov random fields: Convex inference for struc-
tured prediction. In UAI, 2013.

S. H. Bach, M. Broecheler, B. Huang, and L. Getoor.
Hinge-loss Markov random fields and probabilistic soft
logic. arXiv:1505.04406 [cs.LG], 2015.

I. Beltagy, K. Erk, and R. J. Mooney. Probabilistic soft
logic for semantic textual similarity. In ACL, 2014.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein.
Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations
and Trends Machine Learning, 3(1):1–122, 2011.

W. Buntine. Theory refinement on bayesian networks. In
UAI, 1991.

H. Chan and A. Darwiche. Sensitivity analysis in Markov
networks. In IJCAI, 2005.

H. Chan and A. Darwiche. On the robustness of most prob-
able explanations. In UAI, 2006.

P.-T. Chen, F. Chen, and Z. Qian. Road traffic congestion
monitoring in social media with hinge-loss Markov ran-
dom fields. In ICDM, 2014.

S. Fakhraei, B. Huang, L. Raschid, and L. Getoor.
Network-based drug-target interaction prediction with
probabilistic soft logic. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 2014.

S. Fine, Y. Singer, and N. Tishby. The hierarchical hid-
den Markov model: Analysis and applications. Machine
Learning, 32(1):41–62, 1998.

N. Friedman and M. Goldszmidt. Sequential update of
Bayesian network structure. In UAI, 1997.

Peter Gardenfors, editor. Belief Revision. Cambridge Uni-
versity Press, New York, NY, USA, 1992.

A. Globerson and T. Jaakkola. Fixing max-product:
convergent message passing algorithms for MAP LP-
relaxations. In NIPS, 2007.

K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigen-
taste: A constant time collaborative filtering algorithm.
Information Retrieval, 4(2):133–151, 2001.

K. Laskey. Sensitivity analysis for probability assessments
in Bayesian networks. In UAI, 1993.

W. Li, P. van Beek, and P. Poupart. Performing incremen-
tal Bayesian inference by dynamic model counting. In
AAAI, 2006.

B. London, B. Huang, B. Taskar, and L. Getoor. Collective
stability in structured prediction: Generalization from
one example. In ICML, 2013.

B. London, S. Khamis, S. H. Bach, B. Huang, L. Getoor,
and L. Davis. Collective activity detection using hinge-
loss markov random fields. In CVPR Workshop on Struc-
tured Prediction: Tractability, Learning and Inference,
2013.

B. London, B. Huang, B. Taskar, and L. Getoor. PAC-
Bayesian collective stability. In AIStats, 2014.

K. Murphy. Dynamic Bayesian Networks: Representation,
Inference and Learning. PhD thesis, University of Cali-
fornia, Berkeley, 2002.

A. Nath and P. Domingos. Efficient belief propagation for
utility maximization and repeated inference. In AAAI,
2010.

J. Pujara, H. Miao, L. Getoor, and W. Cohen. Knowledge
graph identification. In ISWC, 2013.

A. Ramesh, D. Goldwasser, B. Huang, Hal Daumé III, and
L. Getoor. Learning latent engagement patterns of stu-
dents in online courses. In AAAI, 2014.

Ö. Sümer, U. Acar, A. Ihler, and R. Mettu. Adaptive exact
inference in graphical models. JMLR, 12:3147–3186,
2011.

721

Auxiliary Gibbs Sampling for Inference in Piecewise-Constant Conditional
Intensity Models

Zhen Qin
University of California, Riverside

zqin001@cs.ucr.edu

Christian R. Shelton
University of California, Riverside

cshelton@cs.ucr.edu

Abstract

A piecewise-constant conditional intensity
model (PCIM) is a non-Markovian model of
temporal stochastic dependencies in continuous-
time event streams. It allows efficient learning
and forecasting given complete trajectories.
However, no general inference algorithm has
been developed for PCIMs. We propose an
effective and efficient auxiliary Gibbs sampler
for inference in PCIM, based on the idea of
thinning for inhomogeneous Poisson processes.
The sampler alternates between sampling a finite
set of auxiliary virtual events with adaptive rates,
and performing an efficient forward-backward
pass at discrete times to generate samples.
We show that our sampler can successfully
perform inference tasks in both Markovian and
non-Markovian models, and can be employed
in Expectation-Maximization PCIM parameter
estimation and structural learning with partially
observed data.

1 INTRODUCTION

Modeling temporal dependencies in event streams has wide
applications. For example, users’ behaviors in online shop-
ping and web searches, social network activities, and ma-
chines’ responses in datacenter management can each be
viewed as a stream of events over time. Models that can
successfully learn the complex dependencies among events
(both label and timing) allow targeted online advertising,
automatic policy selection in datacenter management, user
behavior modeling, or event prediction and dependency un-
derstanding in general.

[Gunawardana et al., 2011] proposed the piecewise-
constant conditional intensity model (PCIM) which
captures the dependencies among the types of events
through a set of piecewise-constant conditional intensity

functions. A PCIM is represented as a set of decision trees,
which allow for efficient model selection. Forecasting via
forward sampling is also simple by iteratively sampling
next events based on the current history.

However, currently model selection and forecasting for
PCIMs is only effective given complete data. When
there are missing data, an inference method is needed to
answer general queries or be employed in expectation-
maximization (EM) algorithms for model selection and pa-
rameter learning. Currently, no inference algorithm has
been proposed for PCIM that can condition on general evi-
dence.

In this work, we propose the first general inference algo-
rithm for PCIMs, based on the idea of thinning for in-
homogeneous Poisson process [Lewis and Shedler, 1979].
This results in an auxiliary Gibbs sampler that alternates
between sampling a finite set of virtual event times given
the current trajectory, and then sampling a new trajectory
given the set of evidences and event times (virtual and
actual). Our method is convergent, does not involve ap-
proximations like fixed time-discretization, and the sam-
ples generated can answer any type of query. We pro-
pose an efficient state-vector representation to maintain
only necessary information for diverging trajectories, re-
ducing the exponentially increasing sampling complexity
to linear in most cases. We show empirically our infer-
ence algorithm converges to the true distribution, permits
effective query answering, and aids model selection with
incomplete data for PCIM models with both Markovian
and complex non-Markovian dynamics. We also show the
connection between PCIMs and continuous-time Bayesian
networks (CTBNs), and compare our method with an ex-
isting method on such models.

2 PREVIOUS WORK

A dynamic Bayesian network (DBN)
[Dean and Kanazawa, 1988] models temporal depen-
dencies between variables in discrete time. For systems
that evolve asynchronously without a global clock, it is

722

often not clear how timestamps should be discretized.
Health records, computer server logs, and social networks
are examples of asynchronous event data streams. For such
systems, too slow a sampling rate would poorly represent
the data, while too fast a sampling rate makes learning and
inference more costly.

Continuous-time models have drawn attention recently in
applications ranging from social networks [Du et al., 2013,
Saito et al., 2009, Linderman and Adams, 2014] to ge-
netics [Cohn et al., 2009] to biochemical networks
[Golightly and Wilkinson, 2011]. Continuous Time
Bayesian Networks (CTBN) [Nodelman et al., 2002] are
homogeneous Markovian models of the joint trajectories
of discrete finite variables, analogous to DBNs. Non-
Markovian continuous models allow the rate of an event to
be a function of the process’s history. Poisson Networks
[Rajaram et al., 2005] constrain this function to depend
only on the counts of the number of events during a finite
time window. Poisson cascades [Simma and Jordan, 2010]
define the rate function to be the sum of a kernel applied to
each historic event, and requires the modeler to choose a
parametric form for temporal dependencies.

A PCIM defines the intensity function as decision trees,
with internal nodes’ tests mapping time and history to
leaves. Each leaf is associated with a constant rate. A
PCIM is able to model non-Markovian temporal depen-
dencies, and is an order of magnitude faster to learn than
Poisson networks. Applications include modeling super-
computer event logs and forecasting future interests of web
search users. While PCIMs have been extended in a num-
ber of ways [Parikh et al., 2012, Weiss and Page, 2013],
there is no general inference algorithms.

Inference algorithms developed for continuous systems
are mainly for Markovian models or specifically de-
signed for a particular application. For CTBNs, there
are variational approaches such as expectation propagation
[El-Hay et al., 2010] and mean field [Cohn et al., 2009],
which do not converge to the true value as computation
time increases. Sampling based approaches include im-
portance sampling [Fan et al., 2010] and Gibbs sampling
[Rao and Teh, 2011, Rao and Teh, 2013] that converge to
the true value. The latter is the current state-of-the-
art method designed for general Markov Jump Processes
(MJPs) and its extensions (including CTBNs). It uses
the idea of uniformization [Grassmann, 1977] for Markov
models, similar to thinning [Lewis and Shedler, 1979] for
inhomogeneous Poisson processes. We note that our infer-
ence method generalizes theirs to non-Markovian models.

3 PCIM BACKGROUND

Assume events are drawn from a finite label set L. An event
then can be represented by a time-stamp t and a label l.
An event sequence x = {(ti, li)}n

i=1, where 0 < t1 <

� = 0.01 � = 2

� = 0.5

Are there � 1 A
events in [t-1,t)?

�A

Are there � 1 B
events in [t-1,t)?

�B

� = 0.01 � = 2 � = 0.1 � = 0.01

Y N

Y N Y N Y N

Y N

Are there � 1 B
events in [t-2,t-1)?

Are there � 1 A
events in [t-5,t)?

Are there � 1 A
events in [t-2,t-1)?

Figure 1: Decision tree representing S and ✓ for events of
labels A and B. Note the dependency among event labels
(the rate of B depends on A). [Gunawardana et al., 2011]

. . . < tn. We use hi = {(tj , lj) | (tj , lj) 2 x, tj < ti)}
for the history of event i, when it is clear from context
which x is meant. We define the ending time t(y) of an
event sequence y as the time of the last event in y, so that
t(hi) = ti�1. A conditional intensity model (CIM) is a set
of non-negative conditional intensity functions indexed by
label {�l(t|x; ✓)}|L|

l=1. The data likelihood is

p(x|✓) =
Y

l2L

nY

i=1

�l(ti|hi; ✓)
1l(li)e�⇤l(ti|hi;✓) (1)

where ⇤l(t|h; ✓) =
R t

t(h)
�l(⌧ |h; ✓)d⌧ . The indicator func-

tion 1l(l
0
) is one if l

0
= l and zero otherwise. �l(t|h; ✓)

is the expected rate of event l at time t given history h
and model parameters ✓. Conditioning on the entire history
causes the process to be non-Markovian. The modeling as-
sumptions for a CIM are quite weak, as any distribution for
x in which the timestamps are continuous random variables
can be written in this form. Despite the weak assumptions,
the per-label conditional factorization allows the modeling
of label-specific dependence on past events.

A PCIM is a particular class of CIM that restricts �(h) to
be piecewise constant (as a function of time) for any his-
tory, so the integral for ⇤ breaks down into a finite number
of components and forward sampling becomes feasible. A
PCIM represents the conditional intensity functions with
decision trees. Each internal node in a tree is a binary test
of the history, and each leaf contains an intensity. If the
tests are piecewise-constant functions of time for any event
history, the resulting function �(t|h) is piecewise-constant.
Examples of admissible tests include

• Was the most recent event of label l?
• Is the time of the day between 6am and 9am?
• Did an event with label l happen at least n times be-

tween 5 seconds ago and 2 seconds ago?
• Were the last two events of the same label?

Note some tests are non-Markovian in that they require
knowledge of more than just which event was most recent.
See Fig. 1 for an example of a PCIM model.

The decision tree for label l maps the time and history to a

723

leaf s 2 ⌃l, where ⌃l is the set of leaves for l. The resulting
data likelihood can be simplified:

p(x|S, ✓) =
Y

l2L

Y

s2⌃l

�
cls(x)
ls e��lsdls(x). (2)

S is the PCIM structure represented by the decision trees;
the model parameters ✓ are rates at the leaves. cls(x) is the
number of times label l occurs in x and is mapped to leaf
s. dls(x) is the total duration when the event trajectory for
l is mapped to s. c and d are the sufficient statistics for
calculating data likelihood.

[Gunawardana et al., 2011] showed that given the structure
S, by using a product of Gamma distributions as a conju-
gate prior for ✓, the marginal likelihood of the data can be
given in closed form, and thus parameter estimation can be
done in closed form. Furthermore, imposing a structural
prior allows a closed form Bayesian score to be used for
greedy tree learning.

4 AUXILIARY GIBBS SAMPLING FOR
PCIM

In this section we introduce our new inference algorithm
for PCIM, called ThinnedGibbs, based on the idea of thin-
ning for inhomogeneous Poisson processes. We handle in-
complete data in which there are intervals of time during
which events for particular label(s) are not observed.

4.1 Why Inference in PCIM is Difficult

Filling in partially observed trajectories for PCIM is hard
due to the complex dependencies between unobserved
events and both past and future events. See Fig. 2 for an
example. While the history (the event at t) says it is likely
that there should be events in the unobserved area (with an
expected rate of 2), future evidence (no events in R) is con-
tradictory: If there were indeed events in the unobserved
area, those events should stimulate events happening in R.

Such a phenomenon might suggest existing algorithms
such as the forward-filtering-backward-sampling (FFBS)
algorithm for discrete-time Markov chains. However,
there are two subtleties here: First, we are dealing with
non-Markovian models. Second, we are dealing with
continuous-time systems, so the number of time steps over
which to propagate is infinite.

4.2 Thinning

Thinning [Lewis and Shedler, 1979] can be used to turn a
continuous-time process into a discrete-time one, without
using a fixed time-slice granularity. We select a rate �⇤

greater than any in the inhomogeneous Poisson process and
sample from a homogeneous process with this rate. To get a

� = 0.1

Are there � 1 l
events in [t-2,t-1)?

�l

Y N

� = 2
t t+1 t+2

R

Figure 2: A simple PCIM with a partially observed trajec-
tory. The vertical solid arrow indicates an evidence event.
Areas between parentheses are unobserved. History alone
indicates there should be events filled in, while the future
(no events in R) provides contradictory evidence.

sample from the original inhomogeneous process, an event
at time t is thinned (dropped) with probability 1� �(t)

�⇤ .

This process can also be reversed. If given the set of
thinned event times (samples from the inhomogeneous pro-
cess), extra events can be added to a sample from the orig-
inal constant-rate process by sampling from a Poisson pro-
cess with rate �⇤ � �(t). The cycle can then repeat by
thinning the new total set of times (ignoring how they were
generated). At each cycle, the times (after thinning) are
drawn from the original inhomogeneous process. It is this
type of cycle we will employ in our sampler.

The difficulty is a PCIM is not an inhomogeneous Pois-
son process. Its intensity depends on the entire history of
events, not just the current time. For thinning, this means
that we cannot independently sample whether each event is
to be thinned. Furthermore, we wish to sample from the
posterior process, conditioned on evidence. All evidence
(both past and future) affect the probability of a specific
thinning configuration.

4.3 Overview of Our Method

To overcome both of these problems, we extend thin-
ning to an auxiliary Gibbs sampler in the same way
that [Rao and Teh, 2011, Rao and Teh, 2013] extended
Markovian-model uniformization [Grassmann, 1977] (a
specific example of thinning in a Markov process) to a
Gibbs sampler. To do this we introduce auxiliary variables
representing the events that were dropped. We call these
events virtual events.

As a standard Gibbs sampler, our method cycles through
each variable in turn. In our case, a variable corresponds
to an event label. For event label l, let xl be the sampled
event sequence for this label. Let Yl be all evidence (for l
and other labels) and all (currently fixed) samples for other
labels. Our goal is to sample from p(xl | Yl).

Let vl be the virtual events (the auxiliary variable) associ-
ated with l and zl = xl [vl (all event times, virtual and
non-virtual). Our method first samples from p(vl | xl, Yl)
and then samples from p(xl | zl, Yl). The first step adds vir-

724

tual events given the non-virtual events are “correct.” The
second step treats all events as potential events and drops or
keeps events. The dropped events are removed completely.
The kept events, xl, remain as the new sampled trajectory.

The proof of correctness follows analogously to that of
[Rao and Teh, 2013] for Markovian systems. However, the
details for sampling from p(vl | xl, Yl) and p(xl | zl, Yl)
differ. We describe them next.

4.4 Sampling Auxiliary Virtual Events with Adaptive
Rates

Sampling from p(vl | xl, Yl) amounts to adding just the
virtual (dropped) events. As the full trajectory (xl for all
l) is known, the rate at any time step for a virtual event
is independent of any other virtual events. Therefore, the
process is an inhomogeneous Poisson process for which the
rate at t is equal to �⇤��l(t|h) where h is fully determined
by xl and Yl. Recall that �l(t|h) is piecewise-constant in
time, so sampling from such an inhomogeneous Poisson
process is simple.

The auxiliary rate, �⇤, must be strictly greater than the
maximum rate possible for irreducibility. We use an aux-
iliary rate of �⇤ = 2max(�(t|h)) to sample virtual events
in the unobserved intervals. This choice balances mixing
time (better with higher �⇤) and computational complexity
(better with lower �⇤).

A naı̈ve way to pick �⇤ is to find �max: the maximum rate
in the leaves of PCIM, and use 2�max. However, there
could be unobserved time intervals with a possible maxi-
mum rate much smaller than �max. Using �max in those
regions would generate too many virtual events, most of
which will be dropped in the next step leading to computa-
tional inefficiency. We therefore use an adaptive strategy.

Our adaptive �⇤(t|h) cannot depend on xl (this would
break the simplicity of sampling mentioned above). There-
fore, we determine �⇤(t|h) by passing (t, h) down the
PCIM tree for �l. At each internal node, if the branch does
not depend on xl, we can directly take one branch. Other-
wise, the test is related to the sampled events, and we take
the maximum rate of taking both branches. This method
results in �⇤(t|h) as a piecewise-constant function of time
(for the same reasons that �l(t|h) is piecewise-constant).

Consider Fig. 3 as an example. When sampling event l = A
on the interval [1, 5), we would not take the left branch at
the root (no matter what events for A have been sampled),
but must maximize over the other two leaves (as different
xl values would result in different leaves). This results in a
�⇤ = 4 over this interval, which is smaller than 6.

Are there � 1 B
events in [t-5,t)?

�A

Y N

� = 3
1 3 8

A

5
B

�⇤ = 4 �⇤ = 6

� = 2 � = 1

Y N

Are there � 1 A
events in [t-1,t)?

Figure 3: Adaptive auxiliary rate example. When sampling
A, the branch to take at the root does not depend on un-
observed events for A. If the test is related to the sampled
event, we take the maximum rate from both branches. The
red arrows indicate the branches to take between time [1, 5],
and �⇤ = 2⇥ 2 in that interval, instead of 6.

4.5 The Naı̈ve FFBS Algorithm

Once these virtual events are added back in, we take zl (the
union of virtual events and “real” sampled events) as a sam-
ple from the Poisson process with rate �⇤ and ignore which
were originally virtual and which were originally “real.”
We then thin this set to get a sample from the conditional
marginal over l.

The restriction to consider events only at times in zl trans-
forms the continuous-time problem into a discrete one.
Given zl with m possible event times (zl,1, zl,2, . . . , zl,m),
let b = {bi}m

i=1 be a set of binary variables, one per event,
where bi = 1 if event i is included in xl (otherwise bi = 0
and the event is not included in xl). Thus sampling b is
equivalent to sampling xl (zl is known) as it specifies which
events in zl are in xl. Let Y i:j

l be the portion of Y between
times zl,i and zl,j , and bi:j = {bk|i k j} We wish to
sample b (and thereby xl) from p(b | Y) /
 Y

i

p(Y i�1:i
l , bi | b1:i�1, Y 1:i�1

l)

!
p(Y m:1

l | b) (3)

where the final Y m:1
l signifies all of the evidence after the

last virtual event time zl,m and can be handled similarly to
the other terms.

The most straight-forward method for such sampling con-
siders each possible assignment to b (of which there are
2m). For each interval, we multiply terms from Eq. 3 of the
form p(Y i�1:i

l , bi | b1:i�1, Y 1:i�1
l) =

p(Y i�1:i
l | b1:i�1, Y 1:i�1

l)p(bi | b1:i�1, Y 1:i
l) (4)

where the first term is the likelihood of the trajectory inter-
val from zl,i�1 to zl,i and the second term is the probability
of the event being thinned, given the past history. The first
can be computed by tallying the sufficient statistics (counts
and durations) and applying Eq. 2. Note that these suf-
ficient statistics take into account b1:i�1 which specifies

725

events for l during the unobserved region(s), and the like-
lihood must also be calculated for labels l0 6= l for which
�l0(t|h) depends on events from l. The second term is equal
to �l(t|h)

�⇤(t) if bi = 1 (and 1� �l(t|h)
�⇤(t) if bi = 0). The numer-

ator’s dependence on the full history similarly dictates a
dependence on b1:i�1.

This might be formulated as a naı̈ve FFBS algorithm: To
generate one sample, we propagate possible trajectories
forward in time, multiplying in Eq. 4 at each inter-event
interval to account for the evidence. Every time we see
a virtual event, each possible trajectory diverges into two
(depending on whether the virtual event is to be thinned or
not). By the end, we have all 2m possible trajectories, each
with its probability (Eq. 3). We sample one trajectory as
the output, in proportion of the calculated likelihoods. As
we explicitly keep all possible trajectories, the sampled tra-
jectory immediately tells us which virtual events are kept,
so no actual backward pass is needed.

4.6 An Efficient State-Vector Representation

The naı̈ve FFBS algorithm is clearly not practical, as the
number of possible trajectories grows exponentially with
the number of auxiliary virtual events (m). We propose
a more efficient state-vector representation to only keep
the necessary information for each possible trajectory. The
idea takes advantage of the structure of the PCIM and leads
to state merges, similar to what happens in FFBS for hidden
Markov models (HMMs).

The terms in Eq. 4 depend on b1:i�1 only through the tests
in the internal nodes of the PCIM trees. Therefore, we do
not have to keep track of all of b1:i�1 to calculate these like-
lihoods, but only the current state of such tests that depend
on events with label l. For example, a test that asks “Is the
last event of label l?” only needs to maintain a bit as the
indicator. The test “Are there more than 3 events of label q
in the last 5 seconds?” for q 6= l has no state, as b1:i�1 does
not affect its choice. By contrast, a test such as “Is the last
event of label q?” does depend on b, even if q 6= l.

As we propagate forward, we merge b1:i sequences that re-
sult in the same set of states for all internal tests inside the
PCIM. See Fig. 4 as a simple example. Though there are
8 possible trajectories, they merge to only 2 states that we
can sample from. Similar to FFBS for HMM, we need to
maintain the transition probabilities in the forward pass and
use them in a backward sampling pass to recover the full
trajectory, but such information is also linear.

Note that this conversion to a Markov system for sam-
pling is not possible in the original continuous-time sys-
tem. Thinning has allows it by randomly selecting a few
discrete time points, thereby restricting the possible state
space to be finite.

The state space depends on the actual tests in the PCIM

� = 0.1

Was the most recent
event label A?

�A

Y N

� = 2

A

B

true true false

true

false

true

false

b1 b2 b3

b1=1

b1=0

b2=1

b2=0

b3=1

b3=0
b3=1

b3=0

Figure 4: Dotted events are the virtual events that we sam-
ple as binary variables (bi is 1 if event i is kept). The state
diagram below the trajectory indicates the state of the test
as we diverge (keep or drop a virtual event). Though there
are 23 possible configurations, state merges can reduce the
exponentially increasing complexity to linear in this case.

model. See Tbl. 1 for the tests we currently support and
their state representations. The LastStateTest and StateTest
are used to support discrete finite variable systems such as
CTBN, as we will use in Sec. 5 and in experiments. Note
the EventCountTest was the only supported test in the orig-
inal PCIM paper. We can see that for tests that only depend
on the current time (i.e. TimeTest), the diverging history
does not affect them, so no state is needed. For Marko-
vian tests (LastEventTest and LastStateTest), we only need
a Boolean variable. For the non-Markovian test (Event-
CountTest), the number of possible states does grow expo-
nentially with the number of virtual events maintained in
the queue. This is the best we can do and still be exact. It
is much better than growing with the number of all virtual
events. However, note that commonly lag2 = 0 and n is
a small number. In this case, the state space size at any
point is bounded as

�
m0

n

�
, where m0 is the maximum num-

ber of sampled events in any time interval of duration lag1
(which is upper bounded by m). If n is 1, this is linear in
the number of samples generated in during lag1 time units.

As noted above, if the test is not related to the sampled
event (for example, in sampling event l = A with test “are
there �3 B events in the last 5 seconds”), the state of the
test is null. This is because the evidence and sampled val-
ues for B (not the current variable for Gibbs sampling) can
answer this test without reference to samples of l.

See Alg. 1 for the algorithm description for resampling
event l. The complete algorithm iterates this procedure for
each event label to get a new sample. The helper func-
tion UpdateState(s,b,t) returns the new state given the old
state (s), the new time (t), and whether an event occurs at
t (b). SampProbMap(M) takes a mapping from objects to
positive values (M) and randomly returns one of the ob-
jects with probability proportional to the associate value.
AddtoProbMap(M,o,p) checks to see if o is in M. If so, it
adds p to the associated probability. Otherwise, it adds the

726

Table 1: Tests and their corresponding state representations.

Test Example State Representation Property
TimeTest Is the time between 6am and 9am? Null independent of b
LastEventTest Is the last event A? Boolean Markovian
EventCountTest Are there >= n A event in [t �

lag1, t� lag2]?
A queue maintaining all the times of A
between [t�lag2, t], and the most recent
n events between [t� lag1, t� lag2].

Non-Markovian

LastStateTest Is the last sublabel of var A=0? Boolean Markovian
StateTest Is the current sublabel of var A=0? Null independent of b

A

B
1.5

0.05 2.3

� = 0.1

Are there � 1 A
events in [t�2, t�1)?

�A

Y N

� = 1.5� = 1

Is the most recent
event of label A?

Y N

A

B
1.5

1.00.05 2.3 3.3

0.1 1 1.5 0.1 1� : 2.9 2 1.5 2.9 2�⇤ � � :

A

B
1.5

1.00.05 2.3 3.3

[0.05]
true

[0.05,1.0]
true

[0.05]
true

[0.05,1.0]
false

[0.05]
false

[1.0,2.3]
true

[2.3]
true

[1.0]
false

[]
false

[]
false

[2.3]
true

[3.3]
true

[2.3,3.3]
true

A

B
1.5

1.00.05 2.3 3.3

[0.05]
true

[0.05,1.0]
true

[0.05]
true

[0.05,1.0]
false

[0.05]
false

[1.0,2.3]
true

[2.3]
true

[1.0]
false

[]
false

[]
false

[2.3]
true

[3.3]
true

[2.3,3.3]
true

(a) (b)

(c) (d)

Figure 5: Extended Example, see Section 4.7

mapping o! p to M.

4.7 Extended Example

Fig. 5 shows an example of resampling the events for label
A on the unobserved interval [0.8, 3.5). On the far left is
the PCIM rate tree for event A. Box (a) shows the sam-
ple from previous iteration (single event at 2.3). Dashed
lines and � show the piecewise-constant intensity function
given the sample. Box (b) shows the sampling of virtual
events. For this case �⇤ = 3 for all time. �⇤ � � is the
rate for virtual events. The algorithm samples from this
process, resulting in two virtual events (dashed). In box (c)
all events become potential events. The state of the root
test is a queue of recent events. The state of the other test
is Boolean (whether A is more recent). On the bottom is
the lattice of joint states over time. Solid arrows indicate
bi = 1 (the event is kept). Dash arrows indicate bi = 0
(the event is dropped). Each arrow’s weight is as per Eq. 4.
The probability of a node is the sum over all paths to the
node of the product of the weights on the path (calculated
by dynamic programming). In box (d) a single path is sam-
pled with backward sampling, shown in bold. This path
corresponds to keeping the first and last virtual events and
dropping the middle one.

QA|B=0 =

�1 1

2 �2

�

QA|B=1 =

�10 10

20 �20

�

AB

CTBN PCIM

�A

Last B
subevent=0?

Last A
subevent=0?

Last A
subevent=0?

Generated
subevent=0?

Generated
subevent=0?

Generated
subevent=0?

Generated
subevent=0?

�=20�=10�=0�=0�=2�=1�=0 �=0

Y N

Y N Y N

Y NY NY NY N

Figure 6: Explicit conversion from a CTBN to a PCIM by
using specific tests. Only rates for variable A shown. The
colored arrows and boxes show one-to-one correspondence
of a path in the tree and an entry in the rate matrix of CTBN.
Diagonal elements in the CTBN are redundant and do not
need to be represented in the PCIM.

5 REPRESENTING CTBNS AS PCIMS

A non-Markovian PCIM is more general than the Marko-
vian CTBN model. We can, therefore represent a CTBN
using a PCIM. In this way, we can extend PCIMs and we
can compare our PCIM method with existing methods for
CTBNs.

727

Algorithm 1 Resampling event l

input: The previous trajectory (xl,Yl)
output: The newly sampled x

0
l

1: for each unobserved interval for l do
2: Find piecewise constant �⇤(t|h) using Yl

3: Find piecewise constant �(t|h) using xl, Yl

4: Sample virtual events vl with rate �⇤(t|h)� �(t|h)

5: Let zl = xl [vl, m = |zl|, and s0 be the initial state
6: AddtoProbMap(S0,s0,1.0)
7: for i 1 to m do
8: for each {(si�1, ·)! p} in Si�1 do
9: pkeep = p(Ei�1:i, bi = 1 | si�1, E1:i�1)

10: pdrop = p(Ei�1:i, bi = 0 | si�1, E1:i�1)

11: skeep
i UpdateState(si�1, true, zl,i)

12: sdrop
i UpdateState(si�1, false, zl,i)

13: AddtoProbMap(Si,(s
keep
i , zl,i), p⇥pkeep)

14: AddtoProbMap(Si,(s
drop
i , ;), p⇥pdrop)

15: AddtoProbMap(Ti(s
keep
i), (si�1, zl,i), p⇥pkeep)

16: AddtoProbMap(Ti(s
drop
i), (si�1, ;), p⇥pdrop)

17: Update Sm by propagating until ending time
18: x

0
l ; and (s

0
m, t) SampProbMap(Sm)

19: if t 6= ; then x
0
l x

0
l [{t}

20: for i m� 1 to 1 do
21: (s

0
i, t) SampProbMap(Ti+1(s

0
i+1))

22: if t 6= ; then x
0
l x

0
l [{t}

23: return x
0
l

We associate a PCIM label with each CTBN variable. We
also augment the notion of a PCIM label to include a sub-
label. For each CTBN variable, its PCIM label has one
sublabel for each state of the CTBN variable. Therefore, a
PCIM event with label X and sublabel x corresponds to a
transition of the CTBN variable X from its previous value
to the value x. The PCIM trees’ tests can also check the
sublabel associated with the possible event.

We augment the auxiliary Gibbs sampler to not only sam-
ple which virtual events are kept, but also which sublabel is
associated with each. This involves modifying the bi vari-
ables from the previous section to be multi-valued. Other-
wise, the algorithm proceeds the same way.

The last two tests in Tbl. 1 are explicitly for this type of
sublabelled event model. We can use them to turn a con-
ditional intensity matrix from the CTBN into a PCIM tree.
Fig. 6 shows the conversion of the “twonode” model.

6 EXPERIMENTS

We implement our method as part of an open source code
base, and all the code and data will be publicly available.

We perform two sets of experiments to validate our method.

Figure 7: The toroid network and observed patterns
[El-Hay et al., 2010].

102 103
10−3

10−2

10−1

100

of samples

KL
 D

iv
er

ge
nc

e

ThinnedGibbs
AuxGibbs

Figure 8: Number of samples versus KL divergence for the
toroid network. Both axes are on a log scale.

First we perform inference with our method on both
Markovian and non-Markovian models, and compare the
result with the ground-truth statistics. For both we show
our result converges to the correct result. Ours is the
first that can successfully perform inference tasks on non-
Markovian PCIMs. For the second set of experiments, we
use ThinnedGibbs in EM for both parameter estimation
and structural learning for a non-Markovian PCIM. Our in-
ference algorithm can indeed help producing models that
achieve higher data likelihood on holdout test data than sev-
eral baseline methods.

6.1 Verification on the Ising Model

We first evaluate our method, ThinnedGibbs, on a network
with Ising model dynamics. The Ising model is a well-
known interaction model with applications in many fields
including statistical mechanics, genetics, and neuroscience.
This is a Markovian model and has been tested by several
existing inference methods designed for CTBNs.

Using this model, we generate a directed toroid net-
work structure with cycles following [El-Hay et al., 2010].

728

� = 2

� = 0.5

Are there � 1 A
events in [t-0.5,t)?

�A

Is the most recent
event label B?

�B

� = 1 � = 5 � = 1 � = 10

Y N

N Y N Y N

Y N

Are there � 1 A
events in [t-0.5,t)?

Is absolute time in the
first half of a time unit?

Are there � 1 A
events in [t-1,t)?

Is the most recent
event label B?

� = 1 � = 5

Y N

Y

A

B

0.1 0.2 1.0 3.0 3.4 3.6 3.7

4.74.02.01.80.60.4

Figure 9: Non-Markovian PCIM and evidence. The ending
time is 5.

Nodes can take values �1 and 1, and follow their parents’
states according to a coupling strength parameter (�). A
rate parameter (⌧) determines how fast nodes toggle be-
tween states. We test with � = 0.5 and ⌧ = 2. The net-
work and the evidence patterns are shown in Fig. 7. The
nodes are not observed between t = 0 and t = 1. We
query the marginal distribution of nodes at t = 0.5 and
measure the sum of the KL-divergences of all marginals
against the ground truth. We compare with the state-of-the-
art CTBN Auxiliary Gibbs method [Rao and Teh, 2013].
Other existing methods either produce similar or worse re-
sults [Celikkaya and Shelton, 2014]. We vary the sample
size between 50 and 5000, and set the burn-in period to be
10% of this value. We run the experiments for 100 times,
and plot the means and standard deviations.

Results in Fig. 8 verify that our inference method in-
deed produces results that converge to the true distribution.
Our method reduces to that of [Rao and Teh, 2013] in this
Markovian model. Differences between the two lines are
due to slightly different initializations of the Gibbs Markov
chain and not significant.

6.2 Verification on a Non-Markovian Model

We further verify our method on a much more challeng-
ing non-Markovian PCIM (Fig. 9). This model contains
several non-Markovian EventCountTests. We have obser-
vations for event A at t = 0.4, 0.6, 1.8, 4.7 and for event
B at t = 0.1, 0.2, 3.4, 3.6, 3.7. Event A is not observed on
[2.0, 4.0) and event B is not observed on [1.0, 3.0).

In produce ground truth, we discretized time and converted
the system to a Markovian system. Note that because the
time since the last A event is part of the state, as the dis-
cretization becomes finer, the state space increases. For

102 103
10

12

14

16

18

20

22

24

of samples

Ex
pe

ct
ed

 n
um

be
r o

f e
ve

nt
s

oc
cu

rri
ng

True E[#A]
ThinnedGibbs E[#A]
True E[#B]
ThinnedGibbs E[#B]

Figure 10: Number of samples versus the inferred expected
number of events. The horizontal axis is on a log scale.

this small example, this approach is just barely feasible. We
continued to refine the discretization until the answer stabi-
lized. The ground-truth expected total number of A events
between [0, 5] is 22.3206 and the expected total number of
B events is 11.6161. That is, there are about 18.32 A events
and 6.62 B events in the unobserved areas. Note that if the
evidence is changed to have no events these numbers drop
to 1.6089 and 8.6866 respectively and if the evidence af-
ter the unobserved intervals is ignored the expectations are
22.7183 and 8.6344 respectively. Therefore the evidence
(both before and after the unobserved intervals) is impor-
tant to incorporate in inference.

We compare our inference method to the exact values,
again varying the sample size between 50 and 5000 and
setting the burn-in period to be 10% of this value. We ran
the experiments 100 times and report the mean and stan-
dard deviation of the two expectations. Our sampler has
very small bias and therefore the average values match the
true value almost exactly. The variance decreases as ex-
pected, demonstrating the consistent nature of our method.
See Fig. 10. We are not aware of existing methods that can
perform inference on this type of model to which we could
compare.

6.3 Parameter Estimation and Structural Learning

We further test ThinnedGibbs by using it in EM, for both
parameter estimation (given the tree structure, estimate the
rates in the leaves), and structural learning (learn both the
structure and rates). We use Monte Carlo EM that iterates
between two steps: First, given a model we generate sam-
ples conditioned on evidence with ThinnedGibbs. Second,
given the samples, we treat them as complete trajectories
and perform parameter estimation and structural learning,
which is efficient for PCIM. We initialize the model from

729

4 6 8 10 12 14 16 18 20 22
−1350

−1300

−1250

−1200

−1150

−1100

−1050

−1000

−950

of training examples

Lo
g

lik
el

ih
oo

d
on

 te
st

in
g

da
ta

ThinnedGibbs
True Model
Partial Data
Complete Data

Figure 11: Parameter estimation. Testing log-likelihood as
a function of the number of training samples.

4 6 8 10 12 14 16 18 20 22
−2200

−2000

−1800

−1600

−1400

−1200

−1000

−800

of training examples

Lo
g

lik
el

ih
oo

d
on

 te
st

in
g

da
ta

ThinnedGibbs
True Model
Partial Data
Complete Data
EMUP

Figure 12: Structure and parameter estimation. Testing log-
likelihood as a function of the number of training examples.

the partial trajectories, assuming no events occur in the un-
observed intervals. EM terminates when the parameters of
PCIMs in two consecutive iterations are stable (all rates
change less than 10% from the previous ones), or the num-
ber of iterations surpasses 10. For structural learning, the
structure needs to be the same between iterations.

We use the model in Fig. 1 and generate complete trajecto-
ries for time range [0, 10). We vary the number of training
samples (5, 10, 15, and 20) and use a fixed set of 100 trajec-
tories as the testing data. For each training size, we use the
same the training data for all algorithms and runs. We ran-
domly generate an unobserved interval with length 0.6⇥T
for both event labels. For each training sample, ThinnedG-
ibbs fills it in to generate a new sample after burning in 10
steps. For each configuration, we run ThinnedGibbs for 5
times. We measure the data likelihood of the holdout test-
ing data on the learned models.

For parameter estimation, we compare with the true model
that generated the data, the model learned with only par-

tial data in which we assume no events happened during
unseen intervals (Partial Data), and a model learned with
complete training data (Complete Data). The results are
summarized in Fig. 11. We can see that the model learned
by EM algorithm using ThinnedGibbs can indeed produce
significantly higher testing likelihood than using only par-
tial data. Of course, we do not do as well as if none of the
data had been hidden (Complete Data).

If learning the structure, there is one other possibility: We
could use the original fast PCIM learning method, but in-
dicate (by new event labels) when an unobserved interval
starts and stops. We augment the bank of possible decisions
to include testing if each pseudo-events have occurred most
recently. In this way, the PCIM directly models the process
that obscures the data. Of course, at test time, branches
modeling such unobserved times are not used. Such model
should serve as a better baseline than learning from par-
tially observed data, because it can potentially learn unob-
served patterns and only use the dependencies in the ob-
served intervals for a better model. We call this model
EMUP (explicit modeling of unobserved patterns).

For structure learning, we fix the bank of possible
PCIM tests as EventCountTests with (l, n, lag1, lag2) 2
{A, B}⇥ {1, 2}⇥ {2, 3, 4, 5, 6}⇥ {0, 1, 2} (omitting tests
for which lag1 lag2). For EMUP we also allow testing
if currently in unobserved interval. The results are summa-
rized in Fig. 12. We can see that EMUP does outperform
models using only partial data. However, Structural EM
with ThinnedGibbs still performs better. The performance
gain is less than that in the parameter estimation task, prob-
ably because there are more local optimums for structural
EM, especially with fewer training examples.

7 DISCUSSION AND FUTURE WORK

We proposed the first effective inference algorithm,
ThinnedGibbs, for PCIM. Our auxiliary Gibbs sampling
method effectively transforms a continuous-time problem
into a discrete one. Our state-vector representation of di-
verging trajectories takes advantage of state merges and
reduces complexity from exponential to linear for most
cases. We build the connection between PCIM and CTBN,
and show our method generalizes the state-of-art inference
method for CTBN models. In experiments we validate our
idea on non-Markovian PCIMs, which is the first to do so.

Our method converges to the exact conditional distribution.
If the true state of the model grows exponentially, the com-
plexity of ThinnedGibbs follows. We believe this technique
could also be applied to other non-Markovian processes.
The challenge lies in computing the forward-pass likeli-
hoods when the rate function is not piecewise-constant.

Acknowledgement

This work was supported by DARPA (FA8750-12-2-0010).

730

References

[Celikkaya and Shelton, 2014] Celikkaya, E. B. and Shelton,
C. R. (2014). Deterministic anytime inference for stochastic
continuous-time Markov processes. In ICML. 8

[Cohn et al., 2009] Cohn, I., El-Hay, T., Kupferman, R., and
Friedman, N. (2009). Mean field variational approximation
for continuous-time Bayesian networks. In UAI. 2

[Dean and Kanazawa, 1988] Dean, T. and Kanazawa, K. (1988).
Probabilistic temporal reasoning. In AAAI. 1

[Du et al., 2013] Du, N., Song, L., Gomez-Rodriguez, M., and
Zha, H. (2013). Scalable influence estimation in continuous-
time diffusion networks. In NIPS. 2

[El-Hay et al., 2010] El-Hay, T., Cohn, I., Friedman, N., and
Kupferman, R. (2010). Continuous-time belief propagation.
In ICML. 2, 7

[Fan et al., 2010] Fan, Y., Xu, J., and Shelton, C. R. (2010).
Importance sampling for continuous time Bayesian networks.
Journal of Machine Learning Research, 11(Aug):2115–2140.
2

[Golightly and Wilkinson, 2011] Golightly, A. and Wilkinson,
D. J. (2011). Bayesian parameter inference for stochastic bio-
chemical network models using particle Markov chain Monte
Carlo. Interface Focus. 2

[Grassmann, 1977] Grassmann, W. K. (1977). Transient solu-
tions in Markovian queueing systems. Computers & Opera-
tions Research, 4(1):47–53. 2, 3

[Gunawardana et al., 2011] Gunawardana, A., Meek, C., and Xu,
P. (2011). A model for temporal dependencies in event
streams. In NIPS. 1, 2, 3

[Lewis and Shedler, 1979] Lewis, P. A. W. and Shedler, G. S.
(1979). Simulation of nonhomogeneous Poisson processes by
thinning. Naval Research Logistics Quarterly, 26(3):403–413.
1, 2, 3

[Linderman and Adams, 2014] Linderman, S. W. and Adams,
R. P. (2014). Discovering latent network structure in point pro-
cess data. In ICML. 2

[Nodelman et al., 2002] Nodelman, U., Shelton, C. R., and
Koller, D. (2002). Continuous time Bayesian networks. In
UAI. 2

[Parikh et al., 2012] Parikh, A., Gunawardana, A., and Meek, C.
(2012). Cojoint modeling of temporal dependencies in event
streams. In UAI Workshops. 2

[Rajaram et al., 2005] Rajaram, S., Graeoel, T., and Herbrich, R.
(2005). Poisson-networks: A model for structured point pro-
cess. In AIStats. 2

[Rao and Teh, 2011] Rao, V. and Teh, Y. W. (2011). Fast MCMC
sampling for Markov jump processes and continuous time
Bayesian networks. In UAI. 2, 3

[Rao and Teh, 2013] Rao, V. and Teh, Y. W. (2013). Fast
MCMC sampling for Markov jump processes and exten-
sions. Journal of Machine Learning Research, 14:3207–3232.
arXiv:1208.4818. 2, 3, 4, 8

[Saito et al., 2009] Saito, K., Kimura, M., Ohara, K., and Mo-
toda, H. (2009). Learning continuous-time information diffu-
sion model for social behavioral data analysis. In ACML, pages
322–337. 2

[Simma and Jordan, 2010] Simma, A. and Jordan, M. (2010).
Modeling events with cascades of Poisson processes. In UAI.
2

[Weiss and Page, 2013] Weiss, J. and Page, D. (2013). Forest-
based point processes for event prediction from electronic
health records. In ECML-PKDD. 2

731

Memory-Efficient Symbolic Online Planning for Factored MDPs

Aswin Raghavan
School of EECS

Oregon State University
Corvallis, OR, USA

nadamuna@eecs.orst.edu

Roni Khardon
Department of Computer Science

Tufts University
Medford, MA, USA

roni@cs.tufts.edu

Prasad Tadepalli
School of EECS

Oregon State University
Corvallis, OR, USA

tadepall@eecs.orst.edu

Alan Fern
School of EECS

Oregon State University
Corvallis, OR, USA
afern@eecs.orst.edu

Abstract

Factored Markov Decision Processes (MDP) are
a de facto standard for compactly modeling se-
quential decision making problems with uncer-
tainty. Offline planning based on symbolic oper-
ators exploits the factored structure of MDPs, but
is memory intensive. We present new memory-
efficient symbolic operators for online planning,
prove the soundness of the operators, and show
convergence of the corresponding planning algo-
rithms. An experimental evaluation demonstrates
superior scalability on benchmark problems.

1 INTRODUCTION

The success of online planning in Markov Decision Pro-
cesses (MDPs) depends crucially on the extent to which
the information gathered from search is generalized to un-
seen states. In the absence of generalization and heuris-
tic guidance, the planner must explore the entire reachable
state space. In factored MDPs, the size of the state and
action spaces is exponential in the number of state and ac-
tion variables, causing algorithms that are polynomial in
the number of states and/or actions to be impractical. The
current state-of-the-art online algorithms based on e.g. ,
Real-Time Dynamic Programming (RTDP) (Barto et al.,
1995) and UCT (Kocsis & Szepesvári, 2006), search in
terms of atomic or “flat” states. They are unable to take
advantage of the factored structure present in the MDP de-
scriptions which allows strong generalization among states
(Boutilier et al., 1999).

In contrast, symbolic decision theoretic planners, such as
SPUDD (Hoey et al., 1999), do take advantage of the fac-
tored structure. These algorithms interleave Dynamic Pro-
gramming (DP) (Bertsekas & Tsitsiklis, 1996) updates with
steps of model minimization (Givan et al., 2003) in a se-
lected representation such as Algebraic Decision Diagrams
(ADD) (Bahar et al., 1993). These offline planners some-

times scale to large MDPs, but depend on compactly repre-
senting the optimal value function of the entire MDP (Hoey
et al., 1999). Due to this requirement, these algorithms ex-
ceed practical memory and time limits in many problems
of interest.

Symbolic Real-Time Dynamic Programming (sRTDP)
(Feng et al., 2002; Feng & Hansen, 2002) aims to com-
bine the benefits of the symbolic methods and online plan-
ning by incorporating symbolic state generalization into the
computation of the online planner. This effectively im-
poses state constraints capturing reachability from the cur-
rent world state into the symbolic computation. However,
sRTDP is a general framework, and its performance is sen-
sitive to the definition of generalized states. Existing defini-
tions in prior work lead to algorithms that exceed memory
limits in many cases. Despite the aim for generalization,
the resulting planner is often inferior to the corresponding
algorithms working in the flat state space (e.g. RTDP).

Our main contribution is the introduction of new symbolic
generalization operators that guarantee a more moderate
use of space and time, while providing non-trivial general-
ization. Using these operators, we present symbolic online
planning algorithms that combine forward search from an
initial state with backwards generalized DP updates. The
first algorithm, Path Dynamic Programming (PDP) (Sec-
tion 3.1), samples fixed-length trajectories by acting greed-
ily and refines one path in an ADD for each visited state. It
uses either an operator based on value invariance (PDP-V)
or one based on policy invariance (PDP-⇡). Both operators
yield anytime algorithms that guarantee convergence to the
optimal value and action for the current world state, while
maintaining bounded growth in the size of the symbolic
representation.

In spite of the slow growth of the value function repre-
sentation, intermediate computations in PDP leading to
that representation can potentially exceed memory limits.
This motivates our second operator that performs a more
careful control of space in its generalization. The result-
ing planning algorithm, Pruning Path Dynamic Program-
ming (pPDP) (Section 4), applies the pruning procedure of

732

Raghavan et al. (2013) to control the size of intermediate
results. The algorithm is convergent and provides general-
ization only when it does not increase space requirements
compared to flat state search. Thus, it is guaranteed not be
worse than flat state space search. It is the first symbolic al-
gorithm to yield a sound generalization while guaranteeing
not to use more memory than flat RTDP.

We empirically demonstrate (Section 5) the performance
of PDP and pPDP on three benchmark domains from the
recent International Probabilistic Planning Competitions
(IPPC), where the proposed algorithms scale significantly
better than previous results.

2 PROBLEM FORMULATION

2.1 Algebraic Decision Diagrams (ADD)

An Algebraic Decision Diagram (ADD) (Bahar et al.,
1993; Bryant, 1992) represents a real-valued function
Bn ! R over n boolean variables compactly in the form
of a rooted Directed Acyclic Graph (DAG), where each in-
terior node has an associated test variable and two outgoing
edges labeled by true or false that lead to its children. An
example ADD is shown on the right of Figure 1. Every as-
signment of variables to truth values traces a unique path
to a leaf from the root. Each leaf node contains the value
of the ADD function for all assignments x that reach that
node. If D is the ADD, D[x] represents its evaluation on x.
In the example, the assignment reboot c1=0, running c1=0,
and running c1’=0 leads to the value 0.95. A Binary Deci-
sion Diagram (BDD) is an ADD with 0/1 leaves.

We assume that the ADD is ordered in that there is a fixed
total ordering on the variables that all directed paths in the
ADD follow. Ordered ADDs have a canonical representa-
tion for any function (although their compactness depends
on the ordering) and they support polynomial time opera-
tions over the functions they represent. The unary “restrict
operator” fixes the value of a variable x to x or x̄ in ADD
D and returns a new ADD denoted by D#x. In general, a
binary ADD operation C = A op B gives an ADD such
that C[x] = A[x] op B[x] for every x. The result C is
computed symbolically and in polynomial time in the size
of the ADDs A and B. Any binary operation can be used as
op, for example, {+,�,⇥, ÷, max, min}. Marginalization
operations such as maxV D, minV D,

P
V D are defined

naturally over all possible restrictions of D over values of
variables in the set V , e.g. maxx D ⌘ max(D#x, D#x̄).
We also use the operator �C for ADDs, where A�C B =
(1� C)A + CB, for a binary valued ADD C. That is, the
result takes the values from B if C is true and otherwise
from A. This is similar to the ITE(C,B,A) notation in the
BDD literature. This operation can cause merging of paths
within the ADD due to reduction, e.g. if A and B agree on
many values.

A partial assignment is a truth assignment to a subset of
variables in D. An assignment is full if it assigns values
to all variables. An extension of a partial assignment is a
full assignment which is consistent with it. Every path in
the ADD from the root to the leaf defines a partial assign-
ment over the internal variables in that path. For example,
the path to 0.95 traversed in the example above, defines a
partial assignment to three of the variables but leaves other
variables, for example running c2, unspecified.

The path function for an ADD D maps a full assignment x
to the partial assignment defined by the path traced by x in
D and is denoted by �(D,x). The path function is repre-
sented as an ordered BDD that returns 1 for all assignments
consistent with the partial assignment and 0 otherwise. For
an assignment x, ADD D and � = �(D,x), let ✏(�) de-
note the set of all extensions of �.

Two additional transformations are useful. The first con-
verts a BDD B to an ADD D by mapping the 0-leaf in B
to �1, denoted by D = B. The second, a complementing
operation, converts an ADD D to a BDD B by mapping
the 0-leaf in D to 1 and all other real-valued leaves to 0,
denoted by B = D.

2.2 Factored State and Action MDPs

An MDP (Puterman, 2014) is a tuple (S, A, T, R) where
S is a finite state-space, A is a finite action space, T :
S ⇥ A ⇥ S ! [0, 1] denotes the transition function
T (s, a, s0) = Pr(s0|s, a), R : S ⇥ A ! R denotes the
immediate reward of taking action a in state s. In this pa-
per, we focus on finite-horizon planning where the goal is
to maximize the expected cumulative reward over a speci-
fied horizon H . A non-stationary policy ⇡ = (⇡1, . . . ,⇡H)
is a sequence of mappings such that each ⇡i : S ! A
determines the action to take in a state when there are i
steps-to-go. The value function of a policy ⇡ with i steps-
to-go is denoted by V ⇡

i (s), which gives the expected total
reward of following ⇡ starting in state s for i steps. The
value function of the optimal i-horizon policy is denoted
by V ⇤i (s).

In a factored MDP (Boutilier et al., 1999) the state space
S and action space A are specified by finite sets of state
variables X = (X1, . . . , Xl) and action variables A =
(A1, . . . , Am). We will assume that the variables are dis-
crete and binary so that |S| = 2l and |A| = 2m.

The transition and reward functions are defined in terms
of state and action variables using a Dynamic Bayesian
Network (DBN), a two-time-step graphical model that cap-
tures the variables at time t that influence the value of each
X 0i at time t + 1 via the conditional probability functions
P (X 0i|Parents(X 0i)). The reward function is represented as
a node at time t+1. Following Hoey et al. (1999), the func-
tions are represented using ADDs (Bahar et al., 1993) to

733

Figure 1: Example of a Factored MDP with Factored Ac-
tions. The ADD on the right shows the conditional proba-
bility distribution for running c1.
compactly capture sparsity and context-specific dependen-
cies often found in factored MDPs (Boutilier et al., 1999).

For example, Figure 1 shows a DBN for the SysAdmin
problem (Guestrin et al., 2001) (see Section 5). The DBN
encodes that the computers ‘c1’, ‘c2’ and ‘c3’ are arranged
in a directed ring so that the running status of each is in-
fluenced by its reboot action and the status of its prede-
cessor. The ADD (right panel) shows that the proposition
‘running c1’ cannot become false if it is ‘rebooted’, and
otherwise the next state depends on the status of the neigh-
bors. If currently running, it fails w.p. 0.3 if its neighboring
computer ‘c3’ is not operational, and w.p. 0.05 otherwise.
A failed computer becomes operational w.p. 0.05.

In previous work we generalized the symbolic approach of
SPUDD (Hoey et al., 1999) and introduced algorithms that
handle factored states and factored actions. This includes
Factored Action Regression (FAR) (Raghavan et al., 2012),
a symbolic version of Value Iteration (VI). By leveraging
ADD operations (near-)optimal value functions/policies
are deduced in propositional logic without enumerating the
states and actions. Symbolic VI using FAR works by iter-
ating Equation 1,

Q = [R + �
X

X0
1

P X0
1 ⇥ . . .

X

X0
l

P X0
l ⇥ (Vn)0] (1)

with V0 = 0 and Vn+1 = maxA1...Am
Q. Here (Vn)0

swaps the state variables X in the diagram Vn with next
state variables X 0, each summation computes the expecta-
tion over one X 0i and marginalizes (and removes) X 0i from
the ADD. Therefore, the ADD Vn+1 is the result of one
backward DP update for all states.

Below we also use a decision diagram representation of
policies. Following (Raghavan et al., 2013) the policy is
represented as a BDD over state and action variables and
evaluates to 1 on the policy action for a given state. This
can be calculated using diagram operations as ⇡n+1 =
maxA Q�Q, where D is the complementing operator
(Section 2.1). Since maxA Q�Q � 0 everywhere and > 0
on paths that include suboptimal actions this identifies the
greedy policy with respect to Q. Below we slightly abuse
notation and denote this operation as ⇡n+1 = arg maxA Q.

Unlike other approaches to factored MDPs based on func-
tion approximation (Guestrin et al., 2001; Koller & Parr,
2000), the symbolic algorithms do not require engineered
basis functions but rely on compactly representing value
functions and policies. FAR and Opportunistic Policy It-
eration (Raghavan et al., 2013), a memory-efficient sym-
bolic variant of Modified Policy Iteration (Puterman &
Shin, 1978) using FAR, are currently the most effective
symbolic algorithms for factored MDPs. As mentioned
above, in many cases these methods fail due to the mem-
ory exhaustion caused by progressively larger ADDs Vn as
n increases. Symbolic Online Planning aims to reduce the
memory usage by restricting to the state space reachable
from the current world state.

2.3 Symbolic Online Planning

In order to facilitate the presentation of online symbolic
methods we next consider an update that explicitly controls
which states are updated. Let X be a BDD representing
some set of states, and let X be the corresponding con-
straint ADD mapping states in X to 1, and states not in X
to �1. The operator B⇤(V, X) performs an exact update
(a Bellman backup) for the values of states in X and copies
the values from V for other states using �. This operator
can be implemented via the ADD expression:

B⇤(V, X)
�
= V �X [max

A
(R + �EX0

1
. . . EX0

l
(X ⇥ V 0))] (2)

where multiplication by X is not necessary for correct-
ness but it helps control space. The product of V 0 with X
fixes the value of states that are not in the set X to �1.
Therefore, the sum and product operations also result in
�1 without increasing the size of ADDs for these states.
The constraint X can be pushed inside the summations due
to the distributive property of ADD operations (Raghavan
et al., 2013). Note that sRTDP uses an operator equivalent
to B⇤(V, X) via a more memory intensive ADD expres-
sion.

We can now explain more general algorithms. Let X de-
note a set of states or “a generalized state” and s denote
an atomic state or “flat state”. FAR (Equation 1) uses the
backup of Equation 2 with X = 1, which means it updates
the values of all states.

Real-Time Dynamic Programming (RTDP) (Barto et al.,
1995) is an online planning algorithm that only updates the
values of reachable states. RTDP works by simulating tra-
jectories from a starting state and setting X = s for each
encountered flat state s. While each update is time and
space-efficient, convergence can take a long time in fac-
tored MDPs.

sRTDP (Feng et al., 2002) generalizes RTDP updates, uses
an update similar to Equation 2 by setting X to an arbi-
trary set of states. The set X is defined by an equivalence
relation over states (e.g. the bisimulation relationship (Gi-
van et al., 2003)), which is in practice, heuristically chosen

734

to trade off the efficiency of the update with the benefit of
generalization. An unwise choice of X in Equation 2 can
lead to unreasonable space (or time) requirements. Despite
its goal of generalization, the performance of sRTDP can
be inferior to RTDP in the online setting where both space
and time are limited.

Next we describe our formulations of generalized states
X that lead to efficient updates both in time and space.
Convergence of RTDP (and sRTDP) can be retained if X
includes state s. Efficiency comparable to RTDP can be
achieved if the generalized value functions and policies can
be captured with about the same amount of memory. We
give equivalence relationships that are more restricted than
bisimulation (Li et al., 2006), and lead to efficient symbolic
online algorithms.

3 PDP

Our algorithms are instantiations of Trial-Based Real Time
Dynamic Programming (RTDP) (Barto et al., 1995; Keller
& Helmert, 2013) with a particular generalized backup
function and a fixed trial length. They have two parameters
: a lookahead integer H > 0 that is the length of trajecto-
ries and a real valued " that controls approximation error in
the values of states.

In contrast to most online planners which use a tabular rep-
resentation, we maintain one value ADD V d, d 2 [0, H�1]
per level of the lookahead tree. We chose this over a global
ADD (as in sRTDP) because it allows representing non-
stationary policies and value functions compactly, as well
as allowing different levels of approximation per level, e.g.,
for increasingly coarse representations of the future . In ad-
dition, to simplify the presentation, we explicitly maintain
a policy BDD ⇡d, for each level d.

Our algorithms start from an initial state and sample a tra-
jectory hs0, a0, . . . , aH�2, sH�1i by following the greedy
policy ⇡0, . . . ,⇡H�1. Then, the ADDs are updated in the
backward direction: V H�1 is updated from the ADD 0,
V H�1 is used to update V H�2 and so on till V 0, which
includes s0 but may be more general.

The general pseudocode for all the algorithms is shown
in Figure 2. They have an update of the form V =
V �M maxA Q. The algorithm requires three properties:
(A) M is a path over state variables (hence the name Path
Dynamic Programming), (B) Q is an ADD over state and
action variables with updated values for a super-set of the
states in M . (C) The current state si is included in path M .

Proposition 1. Any instance of the PDP algorithm (Figure
2) satisfying properties B and C converges to the optimal
value (and action) for s0.

Proof (sketch): The proof directly follows from the con-
vergence of Trial-Based RTDP (Barto et al., 1995). First,

Algorithm 3.1: (ADDs V 0, . . . , V H�1, ⇡0, . . . ,⇡H�1)

Initialize each V i (H � i + 1)Rmax, ⇡i NoOp.
Sample trajectory hs0, a0, . . . , aL�1, sLi using ⇡.
for i L� 1 downto 0

do

8
>>>><
>>>>:

if PDP-V then (Q, M) Equations 4, 5
if PDP-⇡ then (Q, M) Equations 6, 8
if pPDP then (Q, M) Equations 9, 11
V i V i �M maxA Q
⇡i ⇡i �M arg maxA Q

if beyond time or trajectory budget
then return ⇡0(s0)

Figure 2: Pseudocode for Path Dynamic Programming
(PDP). A�X B = (1�X)A + XB.

it can be shown that PDP maintains the invariants Vi � V ⇤i
for all i. Second, it uses greedy action selection to sample
trajectories and each trajectory always includes the state s0.
Hence if each update is equivalent to DP update on some
states, the value and policy at s0 converge to their optimal
values.

3.1 PDP-V

The main idea for PDP is to restrict the update to one path
in the ADD, instead of one state in RTDP, and PDP-V uses
one path in the value ADD. However, this requires a careful
control of the set M as shown below.

B(V, s) = V �M max
A

Q (3)

Q = R +
X

X0
1

P1 ⇥ . . .
X

X0
l

Pl ⇥ (�(V, s)⇥ V 0)

(4)

M = �(max
A

Q, s) ^ �(V, s) (5)

For a given state s and value ADD V , the values of all states
that are extensions of the current path �(V, s) are updated
in the ADD Q (Equation 4). The ADD maxA Q has up-
dated values for the path extensions of �(V, s) and �1
otherwise. But using this update with M = �(V, s) might
lose compactness if many of the extensions of �(V, s) have
different values. Additionally, the new path �(maxA Q, s)
can be shorter than �(V, s) whereas only the extensions
�(V, s) have correctly updated values. Sound generaliza-
tion and compactness are both achieved by restricting the
update to the path refinement of �(V, s) by setting M to
be the intersection of the set of states that share the same
path as state s before and after the update. This is the main
difference between PDP and sRTDP. It guarantees that the
updated V has the same number of leaves as the flat state
update, an important guarantee for a symbolic method.

Proposition 2. Let V be an ADD, s a state, W = B(V, s)

735

and M the path according to Equation 5.
(a) For all states q 2 ✏(M), W [q] = B⇤(V, q)[q].
(b) W grows by at most one leaf node over V .

Proof (sketch): (a) follows because ADD Q is a sound
update for states in �(V, s) (because the constraint �(V, s)
can be pushed inside the summation as in Raghavan et al.
(2013)). The BDD M represents a subset of states that
satisfy �(V, s) due to Equation 51. (b) is true because the
path M leads to a leaf in maxA Q. For paths in 1�M the
values are copied from V and do not add leaves to W .

The first part of Proposition 2 guarantees the convergence
of PDP-V according to Proposition 1. In practice, it is
observed that the paths in symbolic VI often remain un-
changed between consecutive iterations while the values
have not converged. PDP-V updates these efficiently and
succinctly, gaining a speedup proportional to the number
of states in the path. However, in order to find the mask
M in PDP-V we have to calculate updated values for all
extensions of �(V, s) in Equation 4, and in some cases this
preparatory step exceeds memory limits. Section 4 gives
an algorithm that does not have this disadvantage.

3.2 PDP-⇡

PDP-⇡ similarly restricts the update to one path. However,
is appeals to the notion of policy irrelevance (Jong, 2005;
Li et al., 2006; Hostetler et al., 2014), that captures states
having the same optimal action. Recall that PDP main-
tains a policy representation in addition to the value ADDs.
PDP-⇡ updates states that share a path in ⇡ before and after
a DP update to the policy. The memory efficiency of path
refinement is retained with respect to the policy represen-
tation.

PDP-⇡ starts with a trivial policy (e.g. NoOp) and refines
the policy for generalized states visited by trajectories. In
this way, PDP-⇡ behaves more like a policy search method.
It is well known that in some cases paths in the policy BDD
remain unchanged during iterations of symbolic VI even
though the values keep changing. PDP-⇡ captures these
succinctly (Section 5).

Let ⇡(s) be the policy action, i.e., a complete assignment
to action variables for state s according to BDD ⇡, ⇡(s) =
arg maxA ⇡#s. In case of a tie, some action variables are
set to false (including the case when they are unspecified by
⇡#s). Let �⇡(s) be the path over state variables according
to the greedy action in ⇡, �⇡(s) = �(⇡, s ^ ⇡(s)). The
update is similar to PDP-V except it uses �⇡ and arg max

1Note that the proposition does not hold for the path �(W, s)
(rather than M) due to the � operator which might merge an up-
dated path with a path that was not updated.

instead.

Q = (R +
X

X0
1

P1 ⇥ . . .
X

X0
l

Pl ⇥ (�⇡(s)⇥ V 0)) (6)

µ = arg max
A

Q (7)

M = �µ(s) ^ �⇡(s) (8)

The ADD Q contains updated values for the states in
�⇡(s) rather than �(V, s) as in PDP-V. The mask M uses
µ = arg maxA Q to denote the greedy policy BDD ex-
tracted from Q. Finally, the policy BDD is updated as
⇡ = ⇡ �M arg maxA Q. Clearly, the property in Proposi-
tion 2 (a) holds here as well and therefore by Proposition 1
the algorithm PDP-⇡ converges.

4 pPDP

The idea in pPDP is to repeatedly prune the intermediate
ADDs of Equation 4 so that the ADD Q has space com-
plexity no larger than the DP update of a flat state. We use
the pruning operator proposed in (Raghavan et al., 2013)
to control the size of the ADD. Briefly, the pruning opera-
tor denoted by P(D, C) for an ADD D and a constraint C
represented as a BDD returns an ADD which is no larger
than D. The result of pruning removes some of the paths
from D that violate the constraint C but not all.

Lemma 1. (Raghavan et al., 2013). Let G = P(D,⇡)
then
(1) Every path in G is a sub-path of a path in D.
(2) If a path p in G does not lead to �1, then for all ex-
tensions y 2 ✏(p), G(y) = D(y).
(3) If a path p in G does lead to�1, then for all extensions
y 2 ✏(p) either ⇡(y) = �1 or D(y) = �1.

Part (1) gives a strong memory guarantee that G is no larger
than D. Pruning accomplishes this by leaving some paths
in G unchanged if only some (not all) of their extensions
violate the constraint. pPDP uses the flat state C = s as the
constraint. Let Ps(D) denote P(D, s) for any ADD D and
a flat state s.

Q = Ps(R + Ps(
X

X0
1

P1 ⇥ . . . Ps(
X

X0
l

Pl ⇥ V 0))) (9)

As the expectation is computed over X 0i , state and action
variables are introduced into the paths of V 0. The paths that
do not cover the current state are pruned and point to �1.
Hence it is efficient to compute the ADD Q in memory.

Proposition 3. (1) Q contains O(2m) paths over state and
action variables that do not lead to �1.
(2) Every path p that does not lead to �1 is a DP update
for the Q-value of all states and actions in p.

Proof (Sketch) : (1) is due to using the state s as the con-
straint. Any path that has assignments to state variables

736

Figure 3: Example illustrating the mask M in pPDP. V is
set to Rmax initially. Q is computed using Equation 9 for
the state s1 = 1, s2 = 1. The ADD maxA Q gives an
incorrect value for s1 = 1, s2 = 0, compared to W , the
update using PDP-V (Equation 3).

differing from s is pruned and leads to �1. The paths
that do not lead to �1 have different assignments to ac-
tion variables for a maximum of O(2m) paths. (2) is due
to part two of Lemma 1 because the pruning operator does
not alter the paths that are consistent with state s.

The pruning operator removes portions of the diagram in
subtle ways and therefore we have to be careful in choosing
the mask M . Consider using the path M = �(maxA Q, s)
which at first appears to be a natural choice. Unfortunately,
this path does not give sound generalization because of the
maximization.

To illustrate this, consider the hypothetical diagram Q
shown on the left of Figure 3 where the state s assigns
s1 = 1 and s2 = 1 and paths disagreeing with this assign-
ment have been replaced with �1. The diagram maxA Q
is shown on the right and gives a value of 10 for state
s1 = 1 and s2 = 0. This is incorrect since the true value
of Q from the path s1 = 1, a = 1, s2 = 0 can be larger
than 10. In maxA Q the true value of the states on this path
is ignored and assumed to be �1, and therefore the value
calculated for the partial assignment s1 = 1 is not correct
for all extensions.

To guarantee correctness we require that all the values in
the sub-diagram below the node to be different than �1.
Therefore, states whose values are valid in maxA Q are
those where for all actions A, (Q 6= �1), denoted by the
BDD 8A(Q 6= �1). In this example, (Q 6= �1) when
{s1 = 1, A = 0} _ {s1 = 1, A = 1, s2 = 1}, and quantifi-
cation yields the mask M = {s1 = 1, s2 = 1}. Note that
the BDDs (Q 6= �1) and 8A(Q 6= �1) cannot be zero
because all actions are updated in state s. Therefore, in the
worst case, the mask M is equal to the state s and the step
degenerates to a flat RTDP update. Formally, the operator
used in pPDP is

B̂(V, s) = V �M Ps(max
A

Q) (10)

M = �(8A(Q 6= �1), s) (11)

Proposition 4. Given an ADD V and state s, let W =
B̂(V, s) as in Equation 10, and let M be the path from 11.

Then, 8q 2 ✏(M), W [q] = B⇤(V, q)[q].

The proof follows from the soundness of pruning (Lemma
1) and the fact that all path extensions of M lead to a value
not equal to �1 in Q. Therefore, by Proposition 1 pPDP
converges as well. In cases where PDP exceeds memory
limits pPDP can capture some of the sound generalizations,
precisely those that can be captured without increasing the
size of intermediate Q ADD. The only overhead in pPDP is
the time required for the pruning operations which is neg-
ligible.

5 EXPERIMENTS

We now evaluate the empirical impact of our proposed
generalization operators within the family of RTDP-syle
algorithms. To do this we compare our algorithms
PDP-V, PDP-⇡, and pPDP to the following baselines:
1) RTDP(Table) is a simple table-based implementa-
tion of RTDP with state values initialized to Rmax. 2)
RTDP(ADD) is like RTDP(Table) (i.e. no state general-
ization), except that each state backup is done symbolically
using the FAR operator. This can be more efficient for fac-
tored actions compared to enumerating actions. 3) sRTDP
(Feng et al., 2002), where our implementation uses FAR for
updates in order to exploit factored actions. 4) LR2TDP
(Kolobov et al., 2012) is an extension of RTDP(Table) to
solve finite horizon MDPs using iterative deepening and
labeling, which was successful in recent planning competi-
tions. 5) FAR (Raghavan et al., 2012) as described above.
FAR is limited to 500 minutes of offline planning and then
the resulting policy is executed online. This algorithm is
only applicable to some of the small problem instances in
our experiments and is included to give an optimal baseline
value when possible.

All planners were implemented in a common framework,
except for LR2TDP, for which we used the publicly avail-
able code. For PDP-V and pPDP, we initialized each V i

with Rmax (scaled by i). For PDP-⇡, we initialized ⇡i to
the NoOp policy. Planning domains and problems are spec-
ified in the Relational Dynamic Influence Diagram Lan-
guage (RDDL) (Sanner, 2010), which we convert to an
ADD-based representation. The ADD variable ordering
puts parents(X 0i) above X 0i , where the X 0is are ordered
(ascending) by the number of parents that are action vari-
ables. Note that the parents include current state variables
and action variables so that this defines an ordering over all
variables. In all experiments, our symbolic operators allow
an approximation error of " = 0.1 with the upper bound
merging strategy (St-Aubin et al., 2001).

Our experiments below are on 5 problem instances of vary-
ing sizes from three domains of the 2011 and 2014 Inter-
national Probabilistic Planning Competitions (IPPCs). A
memory limit of 4G is imposed to restrict the size of the

737

ADDs, beyond which the planner can no longer proceed
which we denote as “EML”(Exceeded Memory Limit). A
planner is evaluated on a problem by running 30 trials of
horizon 40 and averaging the total reward across the trials.
We report the averages and 95% confidence intervals for
each problem. Planners use a specified time limit per deci-
sion and we give results for different time limits. The value
functions and policies are reinitialized after each decision.

Academic Advising Problem: The Academic Advising
domain (Guerin et al., 2012), from IPPC 2014, is a stochas-
tic cost minimization problem that models the process of
selecting the courses for a student in order to complete de-
gree requirements, where the courses have complex pre-
requisite structure. The state space encodes which courses
have been taken and whether they were passed or not. The
actions at each step correspond to selecting one or more
courses to take next. We consider two variants of the do-
main, a non-concurrent variant, which only allows a single
course to be selected at each decision point, and a concur-
rent version, which allows multiple courses to be selected.
The dynamics encode the probability that a course is passed
if taken. Missing requirements and retaking of courses are
penalized.

Figure 42 shows the performance vs. time for the differ-
ent planners on IPPC 2014 problem instances for the non-
concurrent and concurrent variants. All algorithms use
a planning lookahead horizon of 16 steps. In the non-
concurrent variant and shortest time limit (top left panel),
we see that sRTDP fails to scale beyond the two smallest
problems, and that FAR is able to solve these two prob-
lems as well. In larger instances both of these methods
EML. In contrast, PDP-V, PDP-⇡ and pPDP are able to
give good performance across problem sizes. Moreover,
for the smallest instances where FAR is able to compute
an optimal policy, these algorithms yield near optimal per-
formance. This result demonstrates the importance of us-
ing update operators that attempt to trade-off generalization
and memory usage.

The flat search methods RTDP(Table), RTDP(ADD), and
LR2TDP do not perform well. For the largest three in-
stances, these methods have a return no better than that of
a NoOp policy. This shows the importance of generaliza-
tion across states in order to achieve good performance in
reasonable time.

Comparing performance across time limits (increasing time
from left to right) we see the following. The flat search
methods are not able to improve by much as the time limit
is increased. PDP-V, PDP-⇡ and pPDP also do not improve
significantly with more time.Importantly they are able to
avoid EML as more trajectories are sampled with larger
time limits. PDP-V shows the most improvement on the
largest instance as time increases. This shows that, in this

2Charts best viewed in color.

domain, the use of generalization by our methods is the
dominating factor in improving performance, and is even
more effective than increasing the time limit.

Figure 4 (bottom) shows results for the same problem in-
stances, but with concurrency (of 5 for the first instance
and 2 for others). Here, both sRTDP and FAR (not shown)
EML even for the smallest instances. The flat search
methods degrade quickly as the problem instances become
larger. Our proposed methods (with one exception) outper-
form the competitors, especially for the larger instances.
The exception is PDP-⇡ on the largest instance, which re-
sults in EML after 18 seconds of planning due to the size
of the intermediate ADDs in Equation 6. If we increase
the time further (not shown here), PDP-V also does EML.
On the-other-hand pPDP does not result in EML due to its
guarantees on bounding the diagram size (including inter-
mediate diagrams), possibly at the expense of less aggres-
sive generalization.

SysAdmin Problem : SysAdmin (Guestrin et al., 2001)
models a computer network with n computers. Comput-
ers can fail with some probability, which requires a reboot
action to correct. Neighbors of a failed computer have a
higher probability of failing. The reward is based on the
number of running computers with a cost associated with
a reboot action. Unlike the academic advising domain, the
number of reachable states in this domain is practically the
entire state space. To allow sRTDP to produce non-EML
results we consider networks of 10 computers connected
in a star network. Following Raghavan et al. (2012), we
consider problems that vary the maximum number of com-
puters that can be rebooted per decision (1, 3, 5, 7, or 10),
which gives a progressively growing factored action space.

Figure 5 gives results for three different time-limit settings.
Due to the highly random nature of the problem, we used a
short lookahead of four steps for all algorithms. The curve
above the bar graphs shows the performance of the optimal
policy found by FAR.

sRTDP exhibits interesting behavior in this domain. It
performs worse than using no state generalization (i.e.
RTDP(ADD)) in the first four instances and then optimally
for the largest instance. The increased complexity of the
sRTDP backup causes poor performance in the smaller ac-
tion spaces—sRTDP samples fewer trajectories than our al-
gorithms. On the largest instance as the value ADD be-
comes more compact (more states have similar values),
sRTDP is able to exploit generalization. This shows the
difficulty of predicting apriori how much space and time
the sRTDP generalization operator may require. In this do-
main, PDP-V and pPDP scale similarly to RTDP(ADD),
because the reward function involves counting the number
of computers, which makes the path formula �(R, s) the
same as s. This means that these algorithms achieve very
little state generalization in this domain. However, they

738

Figure 4: Academic Advising Problem : Performance vs. Time for time limits 6, 12 and 18 seconds per decision without
(with) concurrency in the top (bottom) panels respectively. Error bars show 95% confidence intervals. The state space is
22x, x is the number of courses shown on the x-axis.

do outperform RTDP(Table) due to the use of the factored
FAR backup compared to a backup based on action enu-
meration.

In this domain, PDP-⇡ clearly outperforms PDP-V and
pPDP. In this case, policy irrelevance is able to capture
abstract states more succinctly. For example, in the first
instance, any state in which the computer at the center
of the network is down has the same path formula : ⇠
running c1) reboot c1. Note that the values of these
states are not equal and depend on the status of other com-
puters. As parallelism increases, nodes near the center get
added to these rules regardless of the status of nodes farther
away. Clearly, in this domain, generalization based on pol-
icy irrelevance is more appropriate than value irrelevance.

Finally we see that as the time limit increases there is a
small improvement in performance for most algorithms. It
is clear that the increase in performance due to larger time
limits is not as significant as using the appropriate general-
ization mechanism, in this case policy irrelevance.

Crossing Traffic Problem: This IPPC 2011 domain mod-
els the arcade game Frogger, where the agent moves in a
2-D grid to cross a road to reach a goal location, while
avoiding right-to-left moving cars that enter the road ran-
domly from the rightmost column. The reward is -1 for
each move and -40 for collision.

The boolean encoding of this domain has |S| = O(22(n2))
for an n ⇥ n grid, with two bits per cell for the presence
of the agent and car respectively. However, depending on
the current location of the agent, many of these bits can be
ignored for predicting the optimal value and action.

Figure 6 shows the results for different time limits and
problem instances involving 3x3, 4x4, and 5x5 grids. There
is larger variance in this domain, compared to the others,
due to collisions. We see that sRTDP performs well in the

first three instances and is able to improve with more time
per decision. However, in instances 4 and 5 sRTDP exceeds
memory limits when given more time. PDP-V and PDP-⇡
scale to these instances and times without EML. PDP-⇡
performs better than PDP-V initially but PDP-V is able to
improve more than PDP-⇡ with more time per decision. We
see that these algorithms outperform RTDP(ADD), show-
ing that generalization is clearly useful in this domain.
Again we see that generalizing appropriately is the dom-
inating factor toward performance compared to increasing
the time limit. pPDP never performs worse than the flat
search methods RTDP(Table) and RTDP(ADD), and out-
performs them in some cases. Its less aggressive general-
ization, however, leads to overall worse performance com-
pared to our other algorithms.

Large instances : The preprocessing of translating RDDL
to propositional logic does not scale for the large instances
from the IPPC. For the purpose of showing the scaling
of our algorithms, we refactored the RDDL domain - by
decomposing the “robot-at(x,y)” propositions into two in-
dependent propositions “robot-at(x)” and “robot-at(y)” be-
cause the actions’ effects are independent along x and y di-
mensions. Figure 8 shows the performance of PDP, PDP-⇡,
pPDP and sRTDP for grids of sizes 6⇥ 6 and 7⇥ 7.

The algorithms are given much more time per decision to
demonstrate the comparative scaling. The charts show the
percentage out of 30 trials that the agent reached the goal.
We see that in the 6x6 grid (left panel) PDP-V outperforms
sRTDP by a large amount. sRTDP is able to scale with
time without EML and slowly converges to optimal perfor-
mance. By comparison, sRTDP does not perform well in
the 7 by 7 problem (right panel) whereas PDP-V is able
to make progress. PDP-⇡ performs worse (better) than
sRTDP in the former (latter) instance. The flat search meth-
ods are not able to make any progress in this problem due

739

Figure 5: SysAdmin Problem vs. concurrent actions : The state space is 210 and action space is O(2x), x is the maximum
number of parallel actions.

Figure 6: Crossing Traffic Problem : The odd numbered instances have 3⇥ 3, 4⇥ 4, and 5⇥ 5 grids arrival probability of
30%. The even numbered instances have the same grid sizes but with arrival probability of 60%.

Performance vs. Time for 6, 12 and 18 seconds per decision. Error bars show 95% confidence intervals.

Figure 8: Crossing Traffic (large instances) : Performance
vs. Time with 30, 60, 90 and 120 seconds per decision.
Error bars show 95% confidence intervals.

Figure 9: A generalized state discovered by PDP-V in the
Crossing Traffic problem. The grid denotes a flat state s0

and the tiles in blue denote the generalized state �(V0, s0).

to the large stochastic branching factor. pPDP is able to
improve on the flat search in the first instance but falls back
to the flat method in the larger problem.

Finally, we present a generalized state found by PDP-V to
illustrate the effectiveness of generalization in these prob-
lems. Figure 9 shows an instance of the Crossing Traffic
problem. All the cells in the grid, including the location
of the agent and each car, constitute a flat state. The cells
within blue denote the cells that appear in the path formula
�(V0, s0) after running PDP-V from s0. We see that PDP-

V is able to ignore the assignments to many cells that are
irrelevant for optimal online planning.

6 SUMMARY

We presented the first fully symbolic planning algorithms
for factored MDPs that generalize simulated experience
soundly and efficiently. This work is orthogonal to re-
search on improving the anytime performance of RTDP al-
gorithms via smart sampling (McMahan et al., 2005; Walsh
et al., 2010) and heuristics (Kolobov et al., 2012; Keller
& Helmert, 2013). There were several observations from
our experimental results. First, in all domains, we saw that
using the appropriate form of generalization was the dom-
inating factor towards good performance compared to in-
creasing the time-limit for algorithms without state gener-
alization. Second, we saw that the most appropriate form
of generalization can differ across domains and sometimes
problem instances within a domain. This suggests that it
is fruitful to investigate mechanisms for tuning or select-
ing among generalization methods. Third, pPDP never
exceeded memory limits, while other generalization ap-
proaches did occasionally. Further, previous versions of
sRTDP, very frequently exceeded memory limits. This sug-
gests that pPDP is perhaps the safest choice for generaliza-
tion, especially for large problems and short time limits.

Acknowdgements

This work was supported by NSF under grants IIS-0964705
and IIS-0964457.

740

References
Bahar, R Iris, Frohm, Erica A, Gaona, Charles M, Hachtel,

Gary D, Macii, Enrico, Pardo, Abelardo, & Somenzi, Fabio.
1993. Algebraic Decision Diagrams And Their Applications.
In: Computer-Aided Design.

Barto, Andrew G, Bradtke, Steven J, & Singh, Satinder P. 1995.
Learning To Act Using Real-Time Dynamic Programming. Ar-
tificial Intelligence, 72(1).

Bertsekas, Dimitri P., & Tsitsiklis, John N. 1996. Neuro-Dynamic
Programming.

Boutilier, Craig, Dean, Thomas, & Hanks, Steve. 1999. Decision-
Theoretic Planning: Structural Assumptions And Computa-
tional Leverage. Journal Of Artificial Intelligence Research
(JAIR), 11(1).

Bryant, Randal E. 1992. Symbolic Boolean Manipulation With
Ordered Binary-Decision Diagrams. ACM Computing Surveys
(CSUR), 24(3).

Feng, Zhengzhu, & Hansen, Eric A. 2002. Symbolic Heuristic
Search for Factored Markov Decision Processes. In: Eigh-
teenth National Conference on Artificial Intelligence.

Feng, Zhengzhu, Hansen, Eric A, & Zilberstein, Shlomo. 2002.
Symbolic Generalization For Online Planning. In: Proceed-
ings of the Nineteenth Conference on Uncertainty in Artificial
Intelligence (UAI).

Givan, Robert, Dean, Thomas, & Greig, Matthew. 2003. Equiv-
alence Notions And Model Minimization In Markov Decision
Processes. Artificial Intelligence, 147(1).

Guerin, Joshua T, Hanna, Josiah P, Ferland, Libby, Mattei,
Nicholas, & Goldsmith, Judy. 2012. The Academic Advising
Planning Domain. WS-IPC 2012.

Guestrin, Carlos, Koller, Daphne, & Parr, Ronald. 2001. Mul-
tiagent Planning With Factored MDPs. Advances In Neural
Information Processing Systems (NIPS).

Hoey, Jesse, St-Aubin, Robert, Hu, Alan, & Boutilier, Craig.
1999. SPUDD: Stochastic Planning Using Decision Diagrams.
In: Proceedings Of The Fifteenth Conference On Uncertainty
In Artificial Intelligence (UAI).

Hostetler, Jesse, Fern, Alan, & Dietterich, Tom. 2014. State Ag-
gregation In Monte Carlo Tree Search. In: Twenty-Eighth
AAAI Conference on Artificial Intelligence (AAAI).

Jong, Nicholas K. 2005. State Abstraction Discovery From Irrel-
evant State Variables. In: Proceedings of the Nineteenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI).

Keller, Thomas, & Helmert, Malte. 2013. Trial-Based Heuristic
Tree Search For Finite Horizon MDPs. In: Twenty-Third Inter-
national Conference on Automated Planning and Scheduling
(ICAPS).

Kocsis, Levente, & Szepesvári, Csaba. 2006. Bandit Based
Monte-Carlo Planning. In: Proceedings of the 17th European
Conference on Machine Learning (ECML).

Koller, Daphne, & Parr, Ronald. 2000. Policy Iteration For Fac-
tored MDPs. In: Proceedings of the Sixteenth Conference on
Uncertainty in Artificial Intelligence (UAI).

Kolobov, Andrey, Dai, Peng, Mausam, Mausam, & Weld,
Daniel S. 2012. Reverse Iterative Deepening for Finite-
Horizon MDPs with Large Branching Factors. In: Twenty-
Second International Conference on Automated Planning and
Scheduling (ICAPS).

Li, Lihong, Walsh, Thomas J, & Littman, Michael L. 2006. To-
wards a Unified Theory of State Abstraction for MDPs. In:
Proceedings of the Ninth International Symposium on Artifi-
cial Intelligence and Mathematics (ISAIM).

McMahan, H Brendan, Likhachev, Maxim, & Gordon, Geof-
frey J. 2005. Bounded Real-Time Dynamic Programming:
RTDP with Monotone Upper Bounds and Performance Guar-
antees. In: Proceedings of the 22nd International Conference
on Machine Learning (ICML).

Puterman, Martin L. 2014. Markov Decision Processes: Discrete
Stochastic Dynamic Programming.

Puterman, Martin L, & Shin, Moon Chirl. 1978. Modified Policy
Iteration Algorithms for Discounted Markov Decision Prob-
lems. Management Science.

Raghavan, Aswin, Joshi, Saket, Fern, Alan, Tadepalli, Prasad,
& Khardon, Roni. 2012. Planning in Factored Action Spaces
with Symbolic Dynamic Programming. In: Twenty-Sixth AAAI
Conference on Artificial Intelligence (AAAI).

Raghavan, Aswin, Khardon, Roni, Fern, Alan, & Tadepalli,
Prasad. 2013. Symbolic Opportunistic Policy Iteration for
Factored-Action MDPs. In: Advances in Neural Information
Processing Systems (NIPS).

Sanner, Scott. 2010. Relational Dynamic Influence Diagram Lan-
guage (RDDL): Language Description. Unpublished ms. Aus-
tralian National University.

St-Aubin, Robert, Hoey, Jesse, & Boutilier, Craig. 2001. APRI-
CODD: Approximate Policy Construction using Decision Di-
agrams. Advances in Neural Information Processing Systems
(NIPS).

Walsh, Thomas J, Goschin, Sergiu, & Littman, Michael L. 2010.
Integrating Sample-Based Planning and Model-Based Rein-
forcement Learning. In: Twenty-Fourth AAAI Conference on
Artificial Intelligence (AAAI).

741

The Survival Filter: Joint Survival Analysis with a Latent Time Series

Rajesh Ranganath
Computer Science Dept.

Princeton University
Princeton, NJ 08540

Adler Perotte
Biomedical Informatics Dept.

Columbia University
New York, NY 10032

Noémie Elhadad
Biomedical Informatics Dept.

Columbia University
New York, NY 10032

David M. Blei
Computer Science Dept.

Statistics Dept.
Columbia University
New York, NY 10027

Abstract

Survival analysis is a core task in applied statistics,
which models time-to-failure or time-to-event
data. In the clinical domain, for example, mean-
ingful events are defined as the onset of different
diseases for a given patient. Survival analysis is
limited, however, for analyzing modern electronic
health records. Patients often have a wide range
of diseases, and there are complex interactions
among the relative risks of different events. To
this end, we develop the survival filter model, a
time-series model for joint survival analysis that
models multiple patients and multiple diseases.
We develop a scalable variational inference algo-
rithm and apply our method to a large data set
of longitudinal patient records. The survival fil-
ter gives good predictive performance when com-
pared to two baselines and identifies clinically
meaningful patterns of disease interaction.

1 INTRODUCTION

Electronic health records enable unprecedented opportunity
to understand and form predictions about disease [Jensen
et al., 2012, Hripcsak and Albers, 2013]. With historical
data about the trajectories of millions of patients, we can
learn patterns of disease risk and exploit these patterns to
provide better care to future patients.

The classical statistics tool for analyzing the progression
of a disease is survival analysis, a method that estimates
each patients hazard or risk for a disease in question [Cox,
1972]. Survival analysis is widely used in medical science
to characterize and understand the progression of individual
diseases [Shepherd et al., 1995, Stupp et al., 2005].

Classical survival analysis, however, cannot accommodate
the complex health data that we now have collected; it is
only formulated to analyze one disease at a time. In modern
electronic health record data, patients often have several

diseases (called “comorbidities”) with complex interactions
among them. Specifically, the occurrence of one disease
often affects the progression of others. We need new tools
to account for this complexity.

Consider the data in Figure 1, where time is in the x-axis.
The top panel shows the setting that classical survival anal-
ysis requires. All patients begin at the same time, and we
measure one disease outcome. (In this case, it is whether
the patient is diagnosed with diabetes.) The bottom panel
illustrates the real-world setting of electronic health records.
Patients begin at different times and we simultaneously
measure many different diseases. These data can poten-
tially reveal interactions between patterns of progression,
but classical survival analysis cannot provide such infer-
ences. For example, Patient 1 in the bottom panel illustrates
that diabetes and hypertension are significant risk factors for
developing a myocardial infarction. A traditional survival
analysis may be constructed to capture this specific inter-
action, but cannot simultaneously capture the relationship
between risk factors for diabetes (e.g., obesity) and the onset
of diabetes.

We build on survival analysis to develop the survival filter,
a new probabilistic model for estimating multivariate risk
patterns from large-scale electronic health records. The
survival filter is a latent-variable time series model of diag-
nostic codes. Each patient is represented as a sequence of
latent variables. At each time point, a patient’s hazards for
each disease relates to his or her latent representation.

The survival filter can be thought of as a joint survival anal-
ysis model where each patient’s sequence of latent represen-
tations loosely represents his or her state of health. Given a
large data set of patients over time—data of the form of the
bottom panel of Figure 1—survival filter inference charac-
terizes each patient and captures complex global patterns of
interactions for a large set of diseases.

Using the survival filter, we study 13,000 patients from
NewYork-Presbyterian Hospital; these data span over 20
years and contain 8,800 types of diagnoses. It scales well to
this size of data and uncovers meaningful relationships be-

742

tween diseases that would otherwise be difficult to identify.

2 SURVIVAL ANALYSIS

In this section we review survival analysis and hazards.

Survival Analysis. Survival analysis studies the time
duration until the occurrence of an event. Example events
include failure of a machine, heart attack, and retirement.

Observations in survival analysis have two types. The first
type of observation indicates the event has occurred (called
“failure”) at a specific time (failure time). The second type
indicates the event has not occurred before the observed
time. These observations are called censored observations
because the true failure time is censored in the observed
data. Formally, the observations in survival analysis can be
represented as pairs (t, c) where t is a time, and c is a binary
value that indicates whether the observation is censored.

The simplest model for survival analysis assumes that the
failure times are drawn from some unknown distribution F
over positive values. The setup assumes that all observations
are synchronized at their starts. Given this modeling choice,
a nonparametric estimate of the CDF of F , also denoted by
F , is the Kaplan-Meier estimator [Kaplan and Meier, 1958].
The Kaplan-Meier estimator is the nonparametric maximum
likelihood estimator of 1 − F (t), also called the survival
function, in the presence of censored data.

The time measurements in survival analysis can be treated
as continuous or discrete (e.g., months or years). In this
article we will focus discrete survival times.

Hazards. An alternative view of survival analysis is
through hazard functions. Hazard functions represent the
instantaneous chance of failing at time t given survival up
to time t. In the discrete time setting, the hazard is the con-
ditional probability of failing at time t given that the failure
occurs at time t or later,

h(t) = P (T = t|T ≥ t). (1)

The Nelson-Aalen [Nelson, 1972] estimator forms the non-
parametric maximum likelihood estimator of the sum of
hazard function over time (cumulative hazard). The CDF F
of the underlying distribution implied by the hazards is

F (t) = 1− exp

(
t∑

s=0

h(s)

)
.

Unlike the cumulative distribution function and survival
function, we can specify the hazard function locally in each
discrete time block by a number between zero and one. We
will use this property when we develop the survival filter.

3 THE SURVIVAL FILTER FOR
ELECTRONIC HEALTH RECORDS

In this section we first describe electronic health records
and corresponding survival problems. We then describe our
model, the survival filter.

Electronic Health Records. The Electronic Health Record
(EHR) comprises all documentation entered for a patient
throughout their interactions with a healthcare institution. It
contains a wide range of observations through time, rang-
ing from free-text notes authored by clinicians, medication
orders, laboratory test results, procedures, demographic in-
formation, and diagnosis codes.

Diagnosis codes (also called billing codes) are structured
codes from a standard taxonomy, namely the ICD9 hierar-
chy (International Classification of Diseases, 9th revision).
ICD9 codes are used in all healthcare institutions. While
the ICD9 hierarchy contains approximately 16,000 codes,
in practice about 9,000 of them are commonly documented.
After each visit, a clinician assigns each patient a set of
ICD9 codes to reflect the diseases or concerns that were
taken care of during the visit.

For instance, after a visit to their primary provider, a pa-
tient is assigned ICD9 codes for “Essential Hypertension,”
and “Diabetes”. At their next visit to their ophthalmologist,
the patient can have the ICD9 code for “Nonproliferative
Diabetic Retinopathy.” In this example, while the patient
has diabetes at both visits, the ICD9 code for diabetes is
only observed at the first visit. Furthermore, note that the
ICD9 codes are correlated. Retinopathy, an eye condition,
is a common complication for patients with diabetes, and
hypertension and diabetes are known comorbidities.

EHR data are longitudinal records, represented as a collec-
tion of per-patient time series ICD9 codes. Note that an
extremely sparse set of ICD9 codes will be used for any
given patient.1 Our goal is to use these data to run a joint
survival analysis of every ICD9 code. Specifically, we seek
a method that:

• estimates the per-patient risk for all ICD9 codes at any
given visit time;

• handles multiple survival problems that are not aligned
in time across patients;

• scales to 9,000 ICD9 codes;

• captures interaction between survival problems (e.g.,
retinopathy, diabetes, and hypertension).

This differs significantly from the setup of traditional sur-
vival analysis, where patients are forced to start at the same

1In our representation, we use “visit time,” not clock time, as
the time unit. Visit time better represents time when studying the
temporal course of diseases [Hripcsak et al., 2015].

743

Patient 1 - Diabetes
Patient 2 - Diabetes
Patient 3 - Diabetes

Time

Patient 1

Diabetes
Asthma

Sinusitis
Hypertension

Myocardial Infarction

Time

Patient 2

Diabetes
Asthma

Sinusitis
Hypertension

Myocardial Infarction

Patient 3

Diabetes
Asthma

Sinusitis
Hypertension

Myocardial Infarction

{
{

{

Figure 1: A comparison of standard survival analysis (top frame) and the survival filter (bottom frame). A filled circle
represents an observed event, while an empty circle represents a censored one. In the case of standard survival analysis,
patients in a cohort are aligned by an event. In the survival filter, patients are not aligned and unlike standard survival
analysis, many conditions are considered simultaneously.

time and where we can only analyze a single disease. We
now describe the survival filter, a model that addresses these
goals to perform large-scale joint survival analysis of EHR.

Survival Filter. In the discrete time setting, let the observa-
tion pair (t, c) of time and censoring indicator be represented
as a binary vector indexed by the clock with length equal
to the observation time. This binary vector has a one in the
last entry in the case of failure and is all zero in the case of
censoring. We adopt this view of the observations for the
survival filter.

Let P be the number of patients. Let np be the number of
time intervals for patient p, and C be the number of codes.
Then the observation xp,t,c is one if the code c is marked
in the tth time interval for patient p and zero if code c has
not yet occurred for patient p. To generate this data we
propose a latent time series model where each patient has
a K dimensional latent path which along with a C × K
weight matrix W produces the hazard for each of the C
codes. Let D be a distribution over the positive reals. The
generative process for this model is

W ∼ D
zp,1 ∼ Normal(zµ, σ2

z0)

zp,t ∼ Normal(zp,t−1, σ2
z)

xp,t,c ∼ Bernoulli(1− exp(−W>c exp(zp,t))).

The hazard of a code c for patient p at a time t is 1 −
exp(−W>c exp(zp,t)). The positivity of W and exp(zp,t)
guarantee that 1− exp(−W>c exp(zp,t)) is a valid hazard
(probability) between zero and one. Larger Wc,k indicate
larger hazards for code c when factor k is active.

This model handles the criteria described above. First, it
provides a simultaneous analysis of all ICD9 codes. Second,
it handles misaligned patients by defining the hazards to be a
function of the a shared latent space rather than a function of
a fixed shared clock h(t) (as in the classical setting). Third,
through the matrix W it captures the relationship between
different survival problems. Specifically, when Wc,k and
Wd,k are large, the events c and d are more likely to co-
occur. Finally, as we will show in Section 4, we can perform
efficient computation for the survival filter.

We consider two different priors on W : the log-normal and
the gamma. The gamma distribution is sparsifying when
its shape is less than one (this can be seen from the PDF),
while the log-normal distribution has a heavier tail. Recent
results [Mimno et al., 2014] have shown that log-normal
distributions achieve better predictive results and diversity
among the weights in a Poisson network model. We derive
inference and compare both the log-normal and gamma
prior in the experimental section.

Related Work. Survival analysis methods have been gen-
eralized in many ways beyond the Kaplan-Meier estimator.

744

One example of such an extension is recurrent event mod-
els [Clayton, 1994] which allow for multiple events rather
than single events. Cox proportional hazards [Cox, 1972]
introduces fixed covariates to scale the patient hazards based
on their covariates. Time varying Cox proportional hazard
models [Fisher and Lin, 1999] are like Cox proportional haz-
ards, but have a set of covariates that change with time for
each patient. Cox-proportional hazard methods are similar
to ours in that they define different clocks through the co-
variates, but differ in that they require covariates and do not
capture the relationship between different survival problems.
The model with the most similar goal is MEPSUM [Dean
et al., 2014]. MEPSUM is a mixture model for multiple
kinds of events happening simultaneously. The relationship
between events is captured via the latent class label as each
latent class contains a nonparametric hazard function for
every type of event. Unlike our model, their model assumes
that patients are synchronized in time when there are no co-
variates. Additionally the formulation of their model means
that it scales with the number of codes rather than the num-
ber of failures, which makes it impractical in large sparse
datasets such as those found in electronic health records.

4 INFERENCE

The main computational problem in working with the sur-
vival filter is computing the posterior distribution of the
weights and latent patient trajectory. Computing the poste-
rior of the survival filter analytically is intractable since our
likelihood cannot be integrated out. Thus posterior compu-
tations require approximations. In this section, we develop
a scalable mean field variational inference [Jordan et al.,
1999] algorithm to approximate the posterior distribution of
the survival filter.

Variational inference transforms the posterior inference
problem into an optimization problem. The optimization
problem defined by variational inference seeks to find a dis-
tribution q in an approximating family that is close in KL
divergence to the posterior distribution. This is equivalent
to maximizing the following [Bishop, 2006]:

L(q) := Eq[log p(x, z,W)− log q(z,W)].

This function is called the evidence lower bound (ELBO) as
it forms a lower bound on log p(x).

Variational Approximation. Recall for the survival filter
the latent variables are (1) zpt for all latent states associated
with patient p at time index t and (2) W , the matrix shared

across observations. The joint distribution can be written as

p(x,z,W) =
K∏

k=1

C∏

c=1

p(Wc,k)

P∏

p=1

p(zp,1,k)
∏

c:ap,1

p(xp,1,c | zp,1,W)

np∏

t=2

K∏

k=1

p(zp,t,k | zp,t−1,k)
∏

c:ap,t

p(xp,t,c | zp,t,W).

The mean field family posits a variational distribution where
the latent variables are independent of each other. Each
factorized q belongs to the same family as in the generative
process. Formally, the approximating distribution is

q(z,W) =

K∏

k=1

C∏

c=1

q(Wc,k |λc,k0, λc,k1)

P∏

p=1

np∏

t=1

K∏

k=1

p(zp,t,k |µp,t,k, σ2
p,t,k),

where λc,k0, λc,k1, µp,t,k, and σp,t,k are variational pa-
rameters. These variational parameters are then set via an
optimization procedure to maximize the ELBO.

Classical Optimization. Typical optimization methods
for mean field variational inference iteratively optimize the
variational parameters associated with each latent variable
by holding the others fixed. These update are easy to de-
rive when the model’s log complete conditional (the log of
the distribution of each latent variable conditioned on the
rest) has analytic expectation with respect to the variational
approximation. This analytic property most commonly oc-
curs in conditionally conjugate exponential families models
where the complete conditional is in the exponential family
[Ghahramani and Beal, 2001]. Unfortunately, none of the
latent variables in our model fall into this class. Instead,
we derive a variational algorithm based on sampling from
the variational approximation [Salimans and Knowles, 2013,
Kingma and Welling, 2014, Rezende et al., 2014, Ranganath
et al., 2014, Titsias and Lázaro-Gredilla, 2014].

Sampling based Variational Inference. We briefly re-
view stochastic optimization before discussing sampling
based variational inference. In the following, we use λ as
an example parameter. Let L(λ) be a function to be maxi-
mized and let ∇̂λL(λ) be a draw from a random variable
whose expectation is the true gradient ∇λL(λ). Let ρt be
the learning rate, then stochastic optimization updates to the
current parameter λt can be made with

λt+1 = λt + ρt∇̂λL(λ).

745

Algorithm 1 Stochastic Variational Inference for the Sur-
vival Filter

Input: data X
Initialize λ randomly, t = 1.
repeat

Sample a batch of datapoint x1...B
for b = 1...b in parallel do

Use stochastic optimization with Eq. 4 to find the
optimal µb,v and σb,v

end for
Compute the noisy global gradient for λ (Example:
Eq. 8)
Update λ with RMSProp

until change in validation metric is small

This update converges to a local maximum when the learn-
ing rate satisfies the Robbins Monro conditions

∞∑

t=1

ρt =∞

∞∑

t=1

ρ2t <∞.

Stochastic optimization has become a widely used tool in
variational inference.

Returning to variational inference, the variational objective
is an expectation with respect to the variational approxima-
tion. Sampling based variational inference works by writing
the gradient of the ELBO as an expectation followed by a
stochastic optimization driven by Monte Carlo estimates
of the gradient written as an expectation. The gradient as
an expectation step comes in two main flavors: (1) those
based on transformations and (2) those based on the score
function (gradient of the log probability) of the variational
approximation. We use both of these techniques to derive an
inference algorithm for the survival filter (See the appendix
for derivation details).

Algorithm. Algorithm 1 summarizes the parallelized
stochastic variational inference algorithm we use to approx-
imate posteriors of the variational approximation.

Scalability To scale to a large number of censored codes,
we need to be able to efficiently compute the likelihood
for a patient p(xp). Let ap,t be the set of codes that have
not occurred before time t for patient p. Define Rp,t as
the relative log likelihood of the failed codes minus the
previously failed codes:

Rp,t =
∑

c:xp,t,c=1

log p(xp,t,c = 1)− log p(xp,t,c = 0)

−
∑

c:[C]\ap,t
log p(xp,t,c = 0).

Note that Rp,t can be computed on the order of the number
of failures for patient p

By the generative process, we have that the likelihood is

logp(xp) =

np∑

t=1

C∑

c∈ap,t
log p(xp,t,c)

=

np∑

t=1

C∑

c=1

log p(xp,t,c = 0) +Rp,t

=

np∑

t=1

C∑

c=1

log(1− (1− exp(−W>c exp(zp,t)))) +Rp,t

=

np∑

t=1

C∑

c=1

−Wc exp(zp,t) +Rp,t

= −
(

C∑

c=1

Wc

)(
np∑

t=1

exp(zp,t)

)
+

np∑

t=1

Rp,t. (2)

This means that the likelihood for a patient can be computed
in time O((C + np)K + npspK) where sp is the number
of failures for patient p instead of of O(CnpK). Thus
the runtime scales with the number of uncensored codes
rather than by the total number of codes. This efficiency in
computing the likelihood will allow for the construction of
efficient inference algorithms that scale with the number of
failures in the data.

5 EMPIRICAL STUDY

In this section, we describe our experimental setup and
results.

Datasets. Our dataset comprises the longitudinal records
of 13,180 patients from a large, metropolitan healthcare in-
stitution, NewYorkPresbyterian Hospital. IRB approval was
obtained for these experiments. The patient records contain
documentation pertaining to all visit types, including outpa-
tient visits, emergency department visits, as well as hospital
admissions and intensive care stays (thus with varying ICD9
codes through time for a given patient). The only criteria to
include patients in the dataset was at least 5 visits overall
to the institutions and among them at least 3 to a primary
provider care clinic. We truncated the longitudinal records
of patients to 50 visits at most, and thus the mode of the
visits was 50. Note that even though the time unit for our
analysis is visit, the patient records actually have a wide
range of durations (mean 14.5 years; std dev 8 years; median
15.5 years).

For the 13,180 patients, there were overall 8,722 unique
ICD9 codes present in at least one visit. On average, each
visit had 3.61 ICD9 codes assigned (std dev 2.28; median
3.05), and patients had an average of 189 (std dev 178;
median 138) ICD9 codes in their longitudinal records, corre-

746

sponding to 57 unique codes on average (std dev 36; median
49).

Thus, our dataset represents a large set of patients with a
wide range of conditions, as reflected by the large number
of ICD9 codes in the dataset.

For our experiments, we held out 100 patient records for
validation and parameter tuning and 1,000 patient records
for testing purposes.

Evaluation Metrics. Standard evaluations in traditional
survival analysis rely on concordance; essentially how well
can the model rank patients according to the order in which
the outcome is observed. This assumes a common clock,
or t0 for all patients, an assumption not held for the sur-
vival filter model. Instead, we propose the following three
metrics: predictive log likelihood on held out data to assess
model fitness, and two metrics well defined in the case of
multiple, simultaneous survival analyses. All three metrics
are computed by looking forward in the patient time series.
We keep the approximate posterior of the shared weights
from the training cohort fixed throughout testing.

The first metric computes the log likelihood of all ICD9
codes that have not yet occurred at each visit conditional on
all the patient history prior to the visit. Thus, log likelihood
is:

log p(xc,p,t) =−W>c zp,t−1I(xc,p,t = 0)

+ log(1− exp(−W>c zp,t−1))I(xc,p,t = 1),

where I is the indicator function. For each patient in the test
set, the predictive log likelihood is computed at each visit
after the third visit. Procedurally, this means that we test
at visit 4 conditioning on the first three visit, followed by
testing at visit 5, conditioning on the first four, and so on.

The second metric computes the Mean Average Ranking of
the codes that failed (i.e., first time observed) at visit t in
the set of all ICD9 codes that have not yet failed (i.e., not
yet observed) at that visit. The ICD9 ranks are computed by
ordering the hazards the model assigns to each code at visit
t based on the patient’s latent state at visit t− 1.

The third metric is Recall at D (in our experiments, D is set
to 10). Recall at D computes how many failed codes (i.e.,
first time observed) are in the top D codes, as ordered by
the hazards assigned by the model to each code.

Baselines We consider two baselines for this problem.
The first baseline, which we call Mean Disease Risk, consid-
ers the frequency of ICD9 codes over the entire population.
Given the training set of longitudinal records, a mean hazard
is computed for each ICD9 code. Thus, this baseline outputs
a fixed hazard prediction through time for any new patient
visit.

The second baseline is patient specific, and is called Person
Disease Risk. It computes a single hazard for all ICD9 codes

Factor A

Lumbargo
Osteoarthrosis

Myalgia and myositis
Pain in joint
Pain in limb

Backache
Arthropathy

Pain in joint involving lower leg
Cervicalgia

Pain in joint involving shoulder region

Factor B

Depressive disorder
Anxiety state

Major depressive disorder, recurrent
Major depressive disorder, single episode

Dysthymic disorder
Adjustment disorder

Unknown cause of morbidity or mortality
Panic disorder without agoraphobia

Unspecified personality disorder
Palpitations

Factor C

HIV counseling
Pregnant state, incidental

Vaginitis
Special gynecological examination
Routine gynecological examination

Counseling and advice on contraception
Mother with single liveborn

Supervision of other normal pregnancy
Normal delivery

Leiomyoma of uterus

Factor D

Headache
Dizziness and giddiness

Migraine
Disorder of optic nerve and visual pathways

Visual field defect
Unspecified endocrine disorder

Cushing's syndrome
Optic atrophy

Neoplasm of endocrine glands
Visual discomfort

Figure 3: Example factors for the survival filter represented
by the ICD9 codes with highest hazard for each factor.

based on the empirical frequency of failures at all previous
visits. This baseline captures in essence the level of sickness
of a patient, as sicker patients experience more code failures
(i.e., observe more ICD9 codes).

Hyperparameters. We set the prior variance on the initial
state of the latent trajectories to 10 and the prior mean −3.
The large variance accounts for the fact that patient’s records
start at different points. We set the transition variance to .1.
For log-normal weights we set the log scale to log(10−10),
and the shape to 30. This distribution places a lot of mass
near zero. To encourage sparsity of the gamma weights, we
set the shape to .02 and the rate to 0.3.

RMSProp also contains a scaling parameter. For the local
maximization step we use a decreasing schedule given by
(1 + t)−.8 and for the global gradients we set the constant
to .1.

We explore several different sizes for the latent space rang-
ing from K = 5 to K = 100.

Results. Figure 2 plots the evaluation metrics as a function
of K for the log-normal model. We find that the model with
K = 25 does best with the best predictive log likelihood
and a nearly best performance on Mean Average Ranking.
All of the models outperform the plotted mean disease risk
baseline on all metrics. We find that the gamma models
performs worse than the log-normal model for all K with
a best test log likelihood of −284874. Finally, all of the
models outperform the person disease risk baseline on log
likelihood (-359079).

Figure 3 displays four of the factors found by the log-normal
survival filter with K = 25. These components represent
clinically meaningful groups of conditions.

747

0 20 40 60 80 100 120
K

−2.84
−2.82
−2.80
−2.78
−2.76
−2.74
−2.72
−2.70

Lo
g-

lik
el

ih
oo

d

1e5

0 20 40 60 80 100 120
K

430
440
450
460
470
480
490
500
510
520

A
ve

ra
ge

 R
an

k

0 20 40 60 80 100 120
K

0.125

0.130

0.135

0.140

0.145

0.150

R
ec

al
l a

t 1
0

Figure 2: The survival filter (blue dots) outperforms the mean disease risk baseline (dashed red line) for all values of K on
all metrics.

6 DISCUSSION

In this paper, we have developed the survival filter, a la-
tent timeseries model for joint survival analysis. The main
advantages of the survival include jointly modeling time-to-
event data for a large set of events and without specifying
alignment across individuals, and an efficient mean field
variational inference algorithm that scales in the number of
events. We demonstrated the use of the survival filter by
measuring the predictive likelihood on a real-world clinical
data set and demonstrate superior performance relative to
baselines and interpretable latent factors.

The survival filter is a general joint survival analysis model
and can be used to study survival problems beyond those
in electronic health records. It can be used in any situation
where there are multiple simultaneous surival problems that
are not necessarily aligned by a true clock. For example, the
survival filter can be used to make movie recommendations.
In this setting the codes are movies, and the patients are the
users. Here, failure of a particular code at time t means that
a movie was watched at time t and the hazards capture the
chance that a movie is watched by a user at time t.

Acknowledgements Rajesh Ranganath is supported by an
NDSEG fellowship. David M. Blei is supported by NSF
BIGDATA NSF IIS-1247664, ONR N00014-11-1-0651, and
DARPA FA8750-14-2-0009. Noémie Elhadad and Adler
Perotte are supported by NSF IIS-1344668.

7 APPENDIX

Sample-based gradients Transformation based ap-
proaches [Kingma and Welling, 2014, Rezende et al., 2014,
Titsias and Lázaro-Gredilla, 2014] write the ELBO as an ex-
pectation with respect to the a standard distribution without
variational parameters and moves the differential operator
inside of the expectation. Formally let r(y) be a standard
distribution and let T be a transformation such that T (y, λ)
is distributed as qλ, then the ELBO can be written as

L(λ) = Er[log p(x, T (y, λ))− log q(T (y, λ))].

When T and the model and approximation are differentiable
the gradient of the ELBO is given by the ELBO as

∇λL(λ) = Er[∇z[log p(x, T (y, λ))− log q(T (y, λ))]∇λT].

See Kingma and Welling [2014] for a complete derivation
of this identity. In our use below, r will be the standard
normal transformation and T will be z = σy + µ.

Score function based approaches [Ranganath et al., 2014,
Mnih and Gregor, 2014] are based on the following identity

∇λL(λ) = Eq[∇λ log q(z|λ)(log p(x, z)− log q(z))].
(3)

See Ranganath et al. [2014] for a derivation of this.

The convergence time of stochastic optimization is related
to its noise, so in the sequel we derive analytically when
possible.

Gradient for q(zp,t). The variational approximation
q(zp,t,k|µp,t,k, σ2

p,t,k) is a normal distribution with mean
µp,t,k and variance σ2

p,t,k. The gradient for the variational
parameters can be mostly computed analytically.

∇µp,t,kL = − exp(µp,t,k +
1

2
σ2
p,t,k)

C∑

c=1

E[Wc]

− 1

σ2
z

(2µp,t,k − µp,t−1,k − µp,t+1,k)

+∇µp,t,kE[Rp,t],

∇σ2
p,t,k
L = −1

2
exp(µp,t,k +

1

2
σ2
p,t,k)

C∑

c=1

E[Wc]

− 1

σ2
z

−∇σ2
p,t,k

E[Rp,t] +
1

2σ2
p,t,k

. (4)

E[Wc] can be computed analytically for both the gamma
and log-normal distribution. Recall the definition of Rp,t

Rp,t =
∑

c:xp,t,c=1

log p(xp,t,c = 1)− log p(xp,t,c = 0)

−
∑

c:[C]\ap,t
log p(xp,t,c = 0).

748

Its expected value is

Eq[Rp,t] =
∑

c:xp,t,c=1

E[log p(xp,t,c = 1)]

+ E[Wc]
>E[exp(zp,t)]

+
∑

c:[C]\ap,t
E[Wc]

>E[exp(zp,t)].

Its derivative with respect to its mean is computed by the
transformation approach using the identity z = y

√
σ2
p,t,k +

µp,t,k where y is drawn from a standard normal N .

∇µp,t,kEq[Rp,t]

=
∑

c:xp,t,c=1

Eq(Wc)Ey∼N

[
Wc,k exp(z)

exp(−W>c exp(z))− 1

]

+ E[Wc,k] exp(µp,t,k +
1

2
σ2
p,t,k)

+
∑

c:[C]\ap,t
E[Wc,k] exp(µp,t,k +

1

2
σ2
p,t,k).

Similarly it’s derivative with respect to the variance is given
as

∇σ2
p,t,k

Eq[Rp,t]

=
1

2
(
∑

c:xp,t,c=1

Eq(Wc)Ey∼N

[
yWc,k exp(z)

exp(−W>c exp(z))− 1

]

+ E[Wc,k] exp(µp,t,k +
1

2
σ2
p,t,k)

+
∑

c:[C]\ap,t
E[Wc,k] exp(µp,t,k +

1

2
σ2
p,t,k)).

We can compute noisy, unbiased estimates of this gradient
by sampling from the variational approximation for Wc,k

and sampling y from the standard normal.

The gradient can be computed in time O((C + np)K +
npspK) rather than O(CnpK). The only portion of the
gradient that we cannot compute analytically is the portion
associated with failing codes. This portion requires sam-
pling from the variational approximation. This means we
can exploit the sparsity of the failures as we only have to
sample small fractions of the W matrix rather than the en-
tire W matrix. This results in an order of magnitude less
samples from the underlying random generator for each
noisy gradient and produces lower variance gradients than
sampling entirely.2

The gradient of the variational parameters of the first and
last point can be expressed similarly.

2Variance can be a problem in sampling based variational ap-
proximations [Kingma and Welling, 2014, Rezende et al., 2014,
Ranganath et al., 2014].

Gradients for Log-Normal W. Similar to the time series
zp,t, the only component of the gradient of the variational
parameters of W that is not analytically tractable is due
to the failures. To symmetrize this update with the latent
time series, we represent the log-normal distribution as an
exponentiated normal. That is Wc,k = exp(W̃c,k), where
W̃c,k is normally distributed with mean µw and variance
σ2
w. In this setup, the variational approximation for W̃c,k is

normally distributed with variational parameters λ0c,k (the
mean) and λ1c,k (the variance). The gradient for the mean of
the variational approximation is given by

∇λ0
c,k

= − 1

σ2
w

(µw −Wc,k) (5)

− exp(λ0c,k +
1

2
λ1c,k)

P∑

p=1

np∑

v=1

E[exp(zp,t,k)] (6)

+∇λ0
c,k

E[Rp,t]. (7)

and the gradient of the variance is

∇λ0
c,k

= − 1

2σ2
w

− exp(λ0c,k +
1

2
λ1c,k)

P∑

p=1

np∑

v=1

1

2
E[exp(zp,t,k)]

+∇λ1
c,k

E[Rp,t] + +
1

2λ1c,k
.

The gradients of R are symmetric to the time series updates
for both the mean and variance parameter.

Note that the gradient can be computed in time pro-
portional to the number of failures (O((C + np)K +(∑P

p=1 npsp

)
K)) rather than the number of codes mul-

tiplied by the number of visits (O(CK
∑P
p=1 np)) as sum

of E[exp(zp,t,k)] across all patients and visits can be shared
for each code.

Gradients for Gamma W Finally, we consider the gradi-
ent of the parameters of the variational approximation of W
when W is drawn from a gamma distribution in the gener-
ative process. In this setup, the variational approximation
for each entry in the weight matrix is gamma distributed
with shape λ0c,k and scale λ1c,k. Similarly the only part of
the gradient for this approximation that cannot be computed
analytically is due to the failures. The gradient with respect
to the shape is

∇λ0
c,k

= −βwλ1c,k + (αw − 1)Ψ(1)(λ0c,k) + 1

+ (1− λ0c,k)Ψ(1)(λ0c,k)

− λ1c,k
P∑

p=1

np∑

v=1

1

2
E[exp(zp,t,k)]

+∇λ0
c,k

E[Rp,t].

749

where Ψ is the digamma function and Ψ(1) is its derivative.
The gradient with respect to the scale parameter is

∇λ1
c,k

= βwλ
0
c,k +

(αw − 1)

λ1c,k
+

1

λ0c,k

− λ0c,k
P∑

p=1

np∑

v=1

1

2
E[exp(zp,t,k)]

+∇λ1
c,k

E[Rp,t].

Similar to the log-normal case this gradient scales with
number of failures, and the log p(x = 0) terms can be
computed analytically.

Rather than using transformations to compute gradient of the
expected value of log p(x = 1), we use score style gradients.
We already know how to evaluate log p(x = 1), so the all
we need to compute the gradient is the score function of the
gamma distribution for both the shape α and the scale κ.
The score function of the shape is

∇λ0
c,k

log q(wc,k) = − log(λ1c,k)−Ψ(λ0c,k) + log(wc,k)

The score function of the scale is

∇κ log q(wc,k) = −
λ0c,k
λ1c,k

+
wc,k

λ1c,k
2 .

Plugging this into Eq. 3 and approximating the expectation
by Monte Carlo yields a noisy gradient of the ELBO.

Data subsampling. Given the noisy gradients just derived,
we can use stochastic optimization to maximize the ELBO.
This procedure is inefficient in that every single observation
has to be iterated over in order to compute the gradient of the
variational parameters for shared W . Another way this pro-
cedure is computationally wasteful is that at early iterations
work done on all of the local parameters is based on the ran-
domly initialized variational parameters for shared structure.
These inefficiencies can be prohibitive when dealing with
large datasets or large data instances.

Stochastic variational inference (SVI) [Hoffman et al., 2013]
addresses this by using stochastic optimization. SVI works
by first identifying local parameters, latent variables associ-
ated with a datapoint, and global parameters, shared latent
variables. Next a datapoint is sampled, the optimal vari-
ational distribution for the local parameters is computed
based on the current value of the global parameters, and a
noisy gradient based on the sampled data point is computed.
SVI generalizes this to drawing batches of datapoints rather
than drawing a single datapoint at each update.

In the survival filter the global parameters are the weights
and the local parameters are the latent trajectory. For a fixed
variational approximation on W , we compute the optimal
local variational parameters by running a stochastic opti-
mization procedure with noisy gradient given by Eq. 4. An

example global gradient for log-normal weights is given by

− 1

σw
(µw −Wc,k)

− P

B
(exp(λ0c,k +

1

2
λ1c,k)

B∑

b=1

npb∑

v=1

E[exp(zpb,t,k)]

+∇λ0
c,k

E[Rpb,t]). (8)

where we have reweighted the data term to maintain unbi-
asedness of the gradient.

Our approach differs from standard SVI in that we use
stochastic optimization to compute the optimal local vari-
ational parameters. This approach allows differs from the
double stochastic approaches in sampling based variational
methods [Titsias and Lázaro-Gredilla, 2014, Ranganath
et al., 2014] in that we do run a complete maximization
procedure for each data point that is sampled rather than
simply follow a noisy gradient. This maximization step can
be time consuming, so we find the optimal local variational
approximation in parallel.

Learning Rates. The standard robbins monro learning
rate can be challenging to set in that it does not account for
varying length scales or different amounts of noise in each
gradient of the coordinate. We instead use RMSProp3 which
scales the gradient by the square root of a running average
of the squared gradient. This handles varying length scales
as multiplying the objective by a constant does not change
the step. RMSProp controls for noise as the moving average
of the squared gradient is larger when the variance of the
gradient is larger.

References
C. Bishop. Pattern Recognition and Machine Learning.

Springer New York., 2006.

D. Clayton. Some approaches to the analysis of recurrent
event data. Statistical Methods in Medical Research, 3
(3):244–262, 1994.

D. R. Cox. Regression models and like-tables. Journal of
the Royal Statistical Society: Series B (Statistical Method-
ology), 43(2):187–220, 1972.

D. O. Dean, D. J. Bauer, and M. J. Shanahan. A discrete-
time multiple event process survival mixture (MEPSUM)
model. Psychological methods, 19(2):251, 2014.

L. D. Fisher and D. Y. Lin. Time-dependent covariates in
the Cox proportional-hazards regression model. Annual
review of public health, 20(1):145–157, 1999.

Z. Ghahramani and M. Beal. Propagation algorithms for
variational Bayesian learning. In NIPS 13, pages 507–
513, 2001.
3
www.cs.toronto.edu/˜tijmen/csc321/slides/lecture_slides_lec6.

pdf

750

M. Hoffman, D. Blei, C. Wang, and J. Paisley. Stochas-
tic variational inference. Journal of Machine Learning
Research, 14(1303–1347), 2013.

G. Hripcsak and D. J. Albers. Next-generation phenotyping
of electronic health records. Journal of the American
Medical Informatics Association, 20(1):117–121, 2013.
ISSN 1067-5027. doi: 10.1136/amiajnl-2012-001145.

G. Hripcsak, D. J. Albers, and A. Perotte. Parameterizing
time in electronic health record studies. Journal of the
American Medical Informatics Association, 2015.

P. B. Jensen, L. J. Jensen, and B. Søren. Mining electronic
health records: towards better research applications and
clinical care. Nature Reviews. Genetics, 13(6):395–405,
2012. ISSN 1471-0056. doi: 10.1038/nrg3208.

M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. In-
troduction to variational methods for graphical models.
Machine Learning, 37:183–233, 1999.

E. L. Kaplan and P. Meier. Nonparametric estimation from
incomplete observations. Journal of the American statis-
tical association, 53(282):457–481, 1958.

D. Kingma and M. Welling. Auto-encoding variational
Bayes. International Conference on Learning Represen-
tations, 2014.

D. Mimno, G. Gopalan, and D Blei. Necessary evil or first
choice? Non-conjugate priors and Poisson community
models. In NIPS Workshop on Variational Inference,
2014.

A. Mnih and K. Gregor. Neural variational inference and
learning in belief networks. In ICML, 2014.

W. Nelson. Theory and applications of hazard plotting for
censored failure data. Technometrics, 14(4):945–966,
1972.

R. Ranganath, S. Gerrish, and D. Blei. Black box varia-
tional inference. In International Conference on Artifical
Intelligence and Statistics, 2014.

D. Rezende, S. Mohamed, and D. Wierstra. Stochastic back-
propagation and approximate inference in deep generative
models. ArXiv e-prints, January 2014.

T. Salimans and D. Knowles. Fixed-form variational poste-
rior approximation through stochastic linear regression.
Bayesian Analysis, 8(4):837–882, 2013.

J. Shepherd, S. M. Cobbe, I. Ford, C. G. Isles, A. R. Lorimer,
P. W. Macfarlane, J. H. McKillop, and C. J. Packard.
Prevention of coronary heart disease with pravastatin in
men with hypercholesterolemia. New England Journal
of Medicine, 333(20):1301–1308, 1995. doi: 10.1056/
NEJM199511163332001. PMID: 7566020.

R. Stupp, W. P. Mason, M. J. van den Bent, M. Weller,
B. Fisher, M. J. B. Taphoorn, K. Belanger, A. A. Brandes,
C. Marosi, U. Bogdahn, J. Curschmann, R. C. Janzer,
S. K. Ludwin, T. Gorlia, A. Allgeier, D. Lacombe, J. G.

Cairncross, E. Eisenhauer, and R. O. Mirimanoff. Ra-
diotherapy plus concomitant and adjuvant temozolomide
for glioblastoma. New England Journal of Medicine,
352(10):987–996, 2005. doi: 10.1056/NEJMoa043330.
PMID: 15758009.

M. Titsias and M. Lázaro-Gredilla. Doubly stochastic varia-
tional Bayes for non-conjugate inference. In Proceedings
of the 31st International Conference on Machine Learn-
ing (ICML-14), pages 1971–1979, 2014.

751

Communication Efficient Coresets for Empirical Loss Minimization

Sashank J. Reddi
Machine Learning Department

Carnegie Mellon University
sjakkamr@cs.cmu.edu

Barnabás Póczos
Machine Learning Department

Carnegie Mellon University
bapoczos@cs.cmu.edu

Alex Smola
Machine Learning Department

Carnegie Mellon University
alex@smola.org

Abstract

In this paper, we study the problem of empirical
loss minimization with l2-regularization in dis-
tributed settings with significant communication
cost. Stochastic gradient descent (SGD) and its
variants are popular techniques for solving these
problems in large-scale applications. However,
the communication cost of these techniques is
usually high, thus leading to considerable per-
formance degradation. We introduce a novel ap-
proach to reduce the communication cost while
retaining good convergence properties. The key
to our approach is the construction of a small
summary of the data, called coreset, at each it-
eration and solve an easy optimization problem
based on the coreset. We present a general frame-
work for analyzing coreset-based optimization
and provide interesting insights into existing al-
gorithms from this perspective. We then propose
a new coreset construction and provide its con-
vergence analysis for a wide class of problems
that include logistic regression and support vec-
tor machines. Preliminary experiments show en-
couraging results for our algorithm on real-world
datasets.

1 INTRODUCTION

Empirical loss minimization is one of the most fundamental
principles in supervised learning. The key idea is to mini-
mize the loss on the training data subject to some regular-
ization on the model that is being learned. More formally,
given the training data P = {(x1, y1), . . . , (xn, yn)} from
a probability distribution on X ×Y , we are interested in the
following generic optimization problem:

min
w
f(w) ≡ λ

2
‖w‖2 +

1

n

n∑

i=1

`(xi, yi, w) (1)

Throughout this paper we assume that ` is convex. Further-
more, we assume that X = Rd and Y = R. Note that the
objective function above is strongly convex (a function f
is strongly convex with modulus λ if f(w) − λ

2 ‖w‖2 is a
convex function). Problems conforming to Equation (1) in-
clude popular supervised learning algorithms like support
vector machines and regularized logistic regression. For
example, when xi ∈ Rd, yi ∈ {−1, 1} and `(xi, yi, w) =
log(1 + exp(−yiw>xi)) (logistic loss), the optimization
problem in Equation (1) corresponds to regularized logistic
regression. The loss function ` is not necessarily smooth
as in, for example, support vector machines (SVM) where
`(xi, yi, w) = max(0, 1− yiw>xi) (hinge loss).

Several algorithms have been proposed in the literature for
solving optimization problems of the aforementioned form.
We will briefly review a few key approaches in Section 2;
however, the algorithms are either largely synchronous or
communication intensive. For example, one of the popu-
lar approaches for solving such optimization problems is
stochastic subgradient descent. At each iteration of the al-
gorithm, a single training example is chosen at random and
used to determine the subgradient of the objective func-
tion. While such an approach reduces the computation
complexity at each iteration, the communication cost is
prohibitively expensive in distributed environment.

In this paper, we study the problem described in Equa-
tion (1) in the setting where the data is distributed across
nodes and hence, communication is expensive in compari-
son to the computation time. The main theme of this paper
is to reduce communication cost by constructing and opti-
mizing over a small summary of the training data — which
acts as a proxy for the entire data set. Such a summary of
the training points is called a coreset. While this methodol-
ogy has been successfully applied to data clustering prob-
lems like k-means and k-median (we refer the reader to
[4, 5] for a comprehensive survey), it remains largely unex-
plored for supervised learning and optimization problems.
The goal of this paper is to advance the frontier in this di-
rection. In light of the above, the primary contributions of
this paper are as follows:

752

• We describe a general framework for designing
coreset-based algorithms. This also provides insights
into existing algorithms from the coresets viewpoint.

• We propose a novel coreset-based algorithm with low
communication cost and provable guarantees on the
convergence to the optimal solution.

• We demonstrate the efficiency of the proposed algo-
rithm on a few real-world datasets. In particular, we
show that the proposed approach reduces the commu-
nication cost significantly.

Our paper is structured as follows. We begin with a discus-
sion on the related work in Section 2. In Section 3, we de-
scribe a general framework for the coreset-based method-
ology. We then propose a coreset-based algorithm in Sec-
tion 4 and provide its convergence analysis. We finally con-
clude by demonstrating the empirical performance of the
algorithm in Section 5.

2 RELATED WORK

As noted earlier, problem in Equation (1) arises frequently
in the machine learning and optimization literatures and
hence has been a subject of extensive research. Conse-
quently, we cannot hope to do full justice to all the related
work. We instead mention the key relevant works here and
refer the reader to the appropriate references for a more
thorough coverage.

First-order methods: In large-scale machine learning and
convex optimization applications, first-order methods are
popular due to their cheap iteration cost. The classic ap-
proach in first order methods is the gradient descent ap-
proach. For strongly convex functions f with L-lipschitz
gradient, gradient descent has linear convergence rate i.e.,
f(wt)−f(w∗) ≤ ε inO(log(1/ε)) iterations where wt and
w∗ are the tth iterate of gradient descent and the optimal so-
lution respectively [10]. The constants can be further im-
proved by the means of accelerating techniques [10]. On
the other hand, when ` is non-smooth, gradient descent
methods have sub-linear convergence rates.

While gradient descent methods have appealing conver-
gence properties, they have two major shortcomings: (1)
they require evaluation of n gradients at each iteration, typ-
ically leading to high computational cost, and (2) the com-
munication costs is also high. A popular modification of
this algorithm in large-scale settings is the stochastic gradi-
ent descent. While the computational cost per iteration de-
creases, the linear convergence property is lost. This is due
to the variance introduced by stochasticity of the approach.
Recently, there has been a surge in interest to address this
issue by incremental methods (see [13, 7]). By reducing the
variance, these approaches achieve low iteration complex-
ity while retaining the good convergence properties. How-

ever, all these approaches still do not address the other ma-
jor shortcoming — namely, high communication cost.

Active Set & Cutting plane Methods: Our approach is
also related to the classic active set and cutting plane meth-
ods used in the optimization and the machine learning liter-
atures [11]. The basic idea is to find a working set of con-
straints, i.e., those inequality constraints of the optimiza-
tion problem that are either fulfilled with equality or are
otherwise important to the optimization problem. These
methods are particularly popular in the SVM literature.
Scheinberg et al. [12] and Joachims et al. [6] provide more
details on these approaches. However, these approaches
are inherently sequential and not communication friendly.
Moreover, it is observed that these approaches are typically
outperformed by subgradient methods [14]. While the ba-
sic theme of these methods is similar to that of ours inso-
far that we compute a similar summary of the training data
at each iteration, the key distinction is the approach and
methodology used in constructing the summary. Moreover,
our approach is much more general and can be applied to a
wide range of loss functions.

Coresets: Our approach is closely related to the paradigm
of coresets used in the theory literature [2, 4, 5]. The basic
idea of coresets is to extract a small amount of relevant in-
formation from the given data and work on this extracted
data. Coresets have been proposed on a variety of data
clustering problems such as k-means, k-medians, and pro-
jective clustering. This approach is particularly important
for NP-hard problems like k-means. For example, core-
sets of size O(k/ε4) and independent of n (number of the
data points) have been proposed for the k-means problem
[2, 4]. If k is small, such an approach makes it possible to
find optimal solution of k-means simply by an exhaustive
search. Furthermore, coresets can seamlessly handle dis-
tributed and streaming settings and hence, are suitable to
large-scale real-world applications. We refer the reader to
the excellent (but outdated) survey on coresets [1] for more
details. Recently, a unifying coreset framework has been
proposed for data clustering problems [4], which provides a
more comprehensive treatment; interested readers may also
refer to the references therein. While there has been some
progress in borrowing ideas from coresets in the context of
SVMs [15], this intersection remains largely unexplored.

Distributed Methods: Owing to large-scale machine
learning applications, there has been a recent surge of in-
terest in distributed training of models. The basic idea
is to solve subproblems in parallel, followed by averag-
ing at each iteration. For example, [17, 9] propose an al-
gorithm with a trade-off between computation and com-
munication costs. The Alternating Direction Method of
Multipliers (ADMM) [3] and its variants are also popu-
lar approaches that fall in this category. However, these
strategies are either synchronous and communication un-
friendly since no communication occurs during the compu-

753

tation phase. Mini-batch approaches have received consid-
erable attention recently. We refer the reader to [8] and ref-
erences therein for a more thorough analysis of mini-batch
approaches based on stochastic gradient descent.

3 A GENERAL FRAMEWORK

We describe our general methodology in this section. Be-
fore delving into the details of the framework, we introduce
a few definitions and notations in order to simplify our ex-
position. We denote the objective function in Equation (1)
by f(w;P). Recall that P is the training set. The optimal
solution of Equation (1) is denoted by w∗ i.e.,

w∗ = argmin
w

f(w;P) ≡ λ

2
‖w‖2 +

1

n

n∑

i=1

`(xi, yi, w).

We use R∗ to denote ‖w∗ − w0‖, the distance of optimal
solution from the initial point. Next, we define the key in-
gredient in our approach.
Definition 1. (Coreset) For given functions f and g, we
call a set C an ε-coreset of P on a set Ω if |g(w;C) −
f(w;P)| ≤ ε for all w ∈ Ω.

Note that the above definition is slightly different from the
one typically used in the coreset literature (see [4]) in two
ways: (i) the set C is not necessarily a subset of P . In par-
ticular, when the function is of the form described in Equa-
tion 1, typically, coresets are constructed for the specific
function of g being the weighted sum of loss and coreset
C being a subset of P . However, this is not necessarily
the case here. (ii) the coreset is restricted to the domain
w ∈ Ω. Another noteworthy point is that while coresets
are classically defined as a multiplicative approximation,
we use the notion of additive approximation. All these re-
laxations allow us to view other related algorithms through
the lens of coresets. The key desirable property of a coreset
is that the cardinality of the set C is small, which will help
us reduce the overall communication complexity of the al-
gorithm. For brevity, we drop C and P from the notations
g(w;C) and f(w;P) respectively whenever C and P are
clear from the context.

With this background we are ready to state our algorithm.
At each iteration of the algorithm, the key component of
our framework is to compute a new coreset-based on the
current solution and solve the optimization problem based
on that coreset. The pseudocode is given as Algorithm 1.

First, we note that algorithm is still abstract because it does
not specify details about the function gt−1(w;Ct−1, wt−1)
and coreset Ct−1. Furthermore, feasible region of the sub-
problem Ω(wt−1, Rt−1) at each iteration is unspecified.
These details depend on the specific coreset construction
and hence, are explained during the description of the core-
set. We now state a general result on performance of Algo-
rithm 1 based on some important properties of the coreset.

Algorithm 1 Generic Iterative Coreset Algorithm
INPUT: Initial w0, coefficients {γ1, . . . , γT }

1: for t = 1 to T do
2: Compute the coreset Ct−1 with the corresponding

function gt−1(w;Ct−1, wt−1)
3: Solve the following subproblem

wt = argmin
w∈Ω(wt−1,Rt−1)

gt−1(w;Ct−1, wt−1)

4: Rt = γt ·Rt−1

5: end for

For ease of analysis, throughout the paper, we assume that
γt is chosen in such a way that Rt = ‖wt−w∗‖. The anal-
ysis for the case where Rt is an upper bound on ‖wt−w∗‖
is similar.

Theorem 1. Suppose we have the following conditions on
the function gt−1 for 1 ≤ t ≤ T :

1. gt−1 is an upper bound on f and is strongly convex
with modulus λ′t−1, for some λ′t−1 > 0.

2. The feasible region Ω(wt−1, Rt−1) is convex and con-
tains the optimal solution w∗.

3. Ct−1 is an ∆t−1-coreset of P on Ω(wt−1, Rt−1) with
respect to functions gt−1 and f . More precisely, we
need gt−1(w;Ct−1, wt−1) ≤ f(w;P) + ∆t−1 for all
w ∈ Ω(wt−1, Rt−1).

Then for the iterates {wt}Tt=1 of Algorithm 1 we have,

Rt = ‖wt − w∗‖ ≤
√

2∆t−1

λ+ λ′t−1

.

Proof. We have the following inequalities:

gt−1(w∗) ≤ f(w∗) + ∆t−1,

gt−1(wt) + 〈∂gt−1(wt), w∗ − wt〉

+
λ′t−1

2
·‖wt − w∗‖2 ≤ gt−1(w∗)

The first inequality follows from condition 3 of the the-
orem. The second inequality follows from the fact that
gt−1 is strongly convex with modulus λ′t−1 (condition 1).
Adding the above two inequalities we get

gt−1(wt) + 〈∂gt−1(wt), w∗ − wt〉 (2)

+
λ′t−1

2
·‖wt − w∗‖2 ≤ f(w∗) + ∆t−1.

Because f is strongly convex with modulus λ, we have

f(w∗) + 〈∂f(w∗), wt − w∗〉+
λ

2
· ‖wt − w∗‖2 ≤ f(wt).

754

Combining it with the fact that gt−1 is an upper bound on
function f (condition 1), we have

f(w∗) + 〈∂f(w∗), wt − w∗〉 (3)

+
λ

2
·‖wt − w∗‖2 ≤ gt−1(wt).

Adding Equations (2) and (3), we get the following.

〈∂gt−1(wt), w∗ − wt〉+ 〈∂f(w∗), wt − w∗〉 (4)

+
(λ+ λ′t−1)

2
· ‖wt − w∗‖2 ≤ ∆t−1

To complete the proof we need the following intermediate
result.

Lemma 1. Suppose gt−1 satisfies the conditions in Theo-
rem 1, then for iterates wt, for 1 ≤ t ≤ T , of Algorithm 1
we have

〈∂gt−1(wt), w∗ − wt〉 ≥ 0 (5)
〈∂f(w∗), wt − w∗〉 ≥ 0 (6)

Proof. We prove the inequality in Equation (5). The in-
equality in Equation (6) can be proved in a similar manner.
Let A = Ω(wt−1, Rt−1) and IA : Rd → R+ be the indica-
tor function corresponding to A i.e.,

IA(w) =

{
0 if w ∈ A
+∞ if w /∈ A

Recall that the wt is the optimal solution of the following:

wt = argmin
w∈A

gt−1(w).

From the optimality condition of wt, we have ∂gt−1(wt) +
∂IA(wt) = 0. Therefore, we have

〈∂gt−1(wt), w∗ − wt〉 = 〈−∂IA(wt), w∗ − wt〉 (7)

Since A is convex (condition 2 of Theorem 1), the subgra-
dient will be the normal cone of A. Using the fact that
w∗, wt ∈ A (condition 2 of Theorem (1)) and from the def-
inition of the normal cone, we have

〈−∂IA(wt), w∗ − wt〉 ≥ 0.

Using the above inequality in Equation (7), we get the re-
quired result.

Using the inequalities from Lemma 1 in Equation (4) it is
easy to see that the result follows.

The above result gives an upper bound on the distance of
the iterate wt in Algorithm 1 from the optimal solution w∗.
Note that the bound depends on ∆t−1 which in turn typi-
cally depends on the optimality of wt−1. It is easy to see
that convergence to the optimal solution is possible as long

as limt→∞∆t = 0. It is also worth noting that result does
not assume anything on the size of the coreset Ct. How-
ever, as we shall see, the communication and computation
complexity of the algorithm will critically depend on |Ct|
at each iteration.

Before discussing our algorithm based on this framework,
we consider a popular instantiation of this framework —
gradient descent. For this discussion, we assume that the
loss function ` is differentiable and has L-lipschitz gradi-
ent i.e., ‖∂`(xi, yi, w)−∂`(xi, yi, w′)‖ ≤ L‖w−w′‖. This
smoothness condition on the gradient gives us the follow-
ing useful result.

Lemma 2. [10] For any function h : Rd → R with L-
Lipschitz continuous gradient ∂h, we have

h(x) ≤ h(y) + 〈∂h(y), x− y〉+ L

2
‖x− y‖2, ∀x, y ∈ Rd.

The update for gradient descent is the following:

wt+1 = wt − γ∂f(w;P), (8)

where γ is the learning rate and is typically set to 1/L.
Such an update can be obtained by minimizing the upper
bound on f in Lemma 2. We briefly explain how gradient
descent like method fits our framework. We choose the
coreset1 Ct = ∂f(wt;P) and the function gt as follows:

gt(w;Ct, wt) = f(wt;P) + 〈∂f(wt), w − wt〉

+
L+ λ

2
· ‖w − wt‖2 (9)

First note that the function gt is an upper bound of f and
is strongly convex with modulus L + λ. This can be ob-
tained from Lemma 2. Hence, gt satisfies condition 1 of
Theorem 1. Next, we set Ω(wt, Rt) = B(wt, Rt) where
B(w,R) represents a ball of radius R centered around w.
Since this is convex and Rt = ‖wt − w∗‖, it is easy to see
that condition 2 of Theorem 1 holds.

Finally, gt−1 is an ∆t−1-coreset with ∆t−1 ≤ LR2
t−1/2.

This can be obtained by a straightforward reasoning based
on the Taylor expansion of f and Lemma 2. Thus all the
conditions of Theorem 1 hold. Hence, using Theorem 1 we
obtain the following corollary.

Corollary 1. The iterateswt of gradient descent algorithm
like algorithm (minimizing upper bound in Equation 9 sub-
ject to the constraint on w ∈ Ω(wt, Rt)) satisfy

Rt = ‖wt − w∗‖ ≤
√

2LR2
t−1

2(L+ 2λ)
= Rt−1

√
1

(1 + 2λ
L)

.

1Recall that the coreset could be any summary of the data, and
not necessarily one of its subsets.

755

In general, dropping the constraint that w ∈ Ω, recovers
the gradient descent algorithm. The above corollary repro-
duces the well-known linear convergence rate for gradient
descent [10]. Note the dependence of the convergence rate
on the condition number L/λ. While the result does not
lead to any new convergence rates, it provides an interest-
ing insight that gradient descent can be viewed as solving
an optimization problem on a coreset based on the gradi-
ents at each iteration. However, it is important to note
that the communication cost is still high when the condi-
tion number is large since the gradient needs to be com-
municated at each iteration. Hence, gradient descent is not
suitable for settings of our interest — that is, distributed
settings where communication is expensive.

A natural question that arises is whether we can construct
more interesting coresets than the gradients of the function.
We provide an affirmative answer to this question in the
next few sections.

4 CORESET ALGORITHM

In this section, we propose a new coreset-based algorithm.
Before discussing the details of the coreset contribution, it
is worth mentioning two additional assumptions; however,
we should emphasize that the first assumption is only for
the ease of exposition.

1. The loss function ` is of the form `(xi, yi, w) =
`(yiw

>xi). Note the slight abuse of notation in the
usage of `. In what follows, the quantity yiw>xi is
referred to as margin.

2. ` is L-lipschitz continuous i.e., |`(yiw>xi) −
`(yiw

′>xi)| ≤ L|yiw>xi − yiw′>xi|.

Loss functions that satisfy the above properties include
popular choices such as logistic loss (used in logistic re-
gression) and hinge loss (used in SVM). The significance
of these assumptions will become clear as we proceed. We
also need the following definitions for our discussion.

Definition 2. (Cover) We call a set of points S as ε-cover
of a set of points Q if for all q ∈ Q there exists a point
s ∈ S such that ‖s− q‖ ≤ ε.

Let N(x) for a point x in the cover denote the set of points
in Q that are closer to x than any other point in the cover
S. With slight abuse of notation, let ε(Q) = [S, β], where
S is an ε-cover of Q, and β is the vector of cardinalities of
the sets {N(x)|x ∈ S}. Note that ‖β‖1 = |Q|.
The key insight to our coreset construction of the algorithm
is that typically at each iteration there exist only a few im-
portant data points that are critical from the optimization
perspective. For example, consider an iterative algorithm
for SVMs. Intuitively, at each iteration, the points that are

close to the margin are crucial in comparison to those away
from it. Furthermore, due to the piecewise linear nature
of the hinge loss, the points far away from the margin can
be represented by a linear function precisely. Hence, it is
possible to obtain a good summary of the data through few
points near the margin and a linear function. With this in-
tuition, we now present our coreset construction.

We define the set P ′ = {x′i}ni=1 where x′i = yixi. Our
coreset construction consists of two primary steps:

Step 1: Identify points whose loss can be approximated by
a linear function and construct a single linear function as a
coreset for these points. Generally, these are points where
gradient approximation is good. We denote such a function
by LINEARAPPROX. The description of this function will
depend on `.

Step 2: Construct a cover or equivalent functional approx-
imation for the rest of the points in the set P ′. Since ` is
assumed to be lipschitz, such a cover also provides approx-
imation guarantees on the empirical loss on P ′.

It should be emphasized that while we use the concept
of cover for simplicity, a similar analysis can be carried
out for clustering based algorithms. In fact, as we will
see later, all our experiments are based on clustering. At
each iteration, we use disjoint sets Gt and Et to denote the
points concerned with these two steps respectively. Note
that Gt ∪ Et = P ′. We use lt ∈ Rd to denote the lin-
ear approximation of loss for points in Gt. Our coreset is
Ct = (It, βt, lt) where [It, βt] = εt(Et) and function gt in
Algorithm 1 is as follows.2

gt(w;Ct) =
λ

2
‖w‖2 +

1

n

(∑

xe∈It
βet `(w

>xe) + w>lt

)
+ ht

(10)

where ht = (2LR∗|Et|ε + |Gt|δ + c)/n for some δ > 0
and constant c. The pseudocode, based on the above key
steps, is given as Algorithm 2. The size of the coreset Ct
depends on the cardinality of set Et.

For simplicity, we assume that w0 = 0 for our analysis.
In this case, we have R∗ = ‖w∗‖. One of the key com-
ponents of Algorithm 2 is the function LINEARAPPROX.
As mentioned earlier, in general, this function depends on
the loss function `. We choose Ω(w0, R0) = B(w0, R0)
and Ω(wt, Rt) = Ω(wt−1, Rt−1) ∩ B(wt, Rt) for t ∈
[1, . . . , T − 1]. Recall that we assume the coefficients
{γ1, . . . , γT } are chosen in a way such that Rt = ‖wt −
w∗‖. We prove the following result for Algorithm 2. The
proof of Theorem 2 relies on result of the generic coreset
algorithm, Theorem 1.

Theorem 2. Suppose gt is as defined in Equation (10) and

2Hereinafter we include the parameter wt in the coreset de-
scription Ct.

756

Algorithm 2 Iterative Coreset Algorithm
INPUT: Initial w0, coefficients {γ1, . . . , γT } and
{ε1, . . . , εT }

1: for t = 1 to T do
2: [Gt−1, lt−1] = LINEARAPPROX(P ′, wt−1, Rt−1)
3: [It−1, βt−1] = εt−1(P ′\Gt−1)
4: Coreset Ct−1 = (It−1, βt−1, lt−1)
5: Solve the following subproblem

wt = argmin
w∈Ω(wt−1,Rt−1)

gt−1(w;Ct−1)

6: Rt = γt ·Rt−1

7: end for

LINEARAPPROX satisfies the following condition:

max
w∈B(wt,Rt)

∣∣∣∣∣∣
∑

xg∈Gt
`(w>xg)− [w>lt + c]

∣∣∣∣∣∣
≤ |Gt|δ (11)

where [Gt, lt] = LINEARAPPROX(P ′, wt) and c ∈ Rd and
for all t ∈ {0, . . . , T − 1}, then we have

Rt+1 = ‖wt+1 − w∗‖ ≤
√

2LR∗|Et|εt + |Gt|δ
λn

.

Proof. We first observe that gt (in Equation (10)) is
strongly convex with modulus λ. Moreover, gt is an up-
per bound on f due to the following relation:

1

n

(∑

xe∈It
βe
t `(w

>xe) + w>lt

)
+ ht

=
1

n

(∑

xe∈It
βe
t `(w

>xe) + w>lt + 2LR∗|Et|εt + |Gt|δ + c

)

≥ 1

n

∑

xe∈It
βe
t `(w

>xe) + 2LR∗|Et|εt +
∑

xg∈Gt
`(w>xg)

≥ 1

n

 ∑

xp∈Et
`(w>xp) +

∑

xg∈Gt
`(w>xg)

 =

1

n

∑

x∈P ′
`(w>x)

The first inequality follows from the definition of
ht. The second step follows from the condition on
LINEARAPPROX in the theorem statement. The third step
follows from the fact that ` is L-lipschitz continuous and
‖βt‖1 = |Et|. Combining the above with regularization
term proves the fact that gt is an upper bound on f .

It is easy to see that the feasible region B(wt, Rt) is convex
and contains the optimal solution w∗. To obtain an upper

bound on the function gt, we observe the following:

1

n

(∑

xe∈It
βe
t `(w

>xe) + w>lt

)
+ ht

≤ 1

n

(∑

xe∈It
βe
t `(w

>xe) + 2LR∗|Et|εt

+
∑

xg∈Gt
`(w>xg) + 2|Gt|δ

)

=
1

n

(∑

x∈P ′
`(w>x) + 4LR∗|Et|εt + 2|Gt|δ

)

The first and second inequalities follow from the condition
of the theorem statement and the lipschitz continuous na-
ture of the loss function `.

Therefore, Ct with the corresponding function gt is an ∆t-
coreset where ∆t ≤ (4LR∗|Et|εt + 2|Gt|δ)/n. The above
reasoning shows that the function gt satisfies all the condi-
tions of Theorem 1. Applying Theorem 1 on the function
gt, we get the required result.

It can be observed that the conditions εT → 0 and δ → 0
as T →∞ ensure convergence of the algorithm to the opti-
mal solution. In general, we can guarantee that our solution
is arbitrary close to the optimal solution by choosing δ and
εt appropriately. Furthermore, we can ensure linear con-
vergence of our algorithm by decreasing εt by a constant
factor at each iteration.

It is also important to study the coreset size and the design
choice of εt and δ since they determine the communication
cost of our algorithm. Let δ = 2LR∗min{ε1, . . . , εT }. For
this value of δ, we observe the following:

1. The size of the coreset depends on the cardinality of
Gt. In general, larger the cardinality of Gt, smaller
is the size of the coreset. Furthermore, as a gen-
eral rule of thumb, if ` is asymptotically linear i.e.,
lim|m|→∞ |`(m)− (cm+ d)| = 0 for some constants
c, d, the performance of our algorithm will depend on
the rate of asymptotic linearity.

2. We typically require εt+1 ≤ εt for all t ∈ {0, . . . , T −
1}. With such a choice, if |Gt| does not decrease, size
of the coreset may increase. However, observe thatRt
decreases. Thus, typically more points satisfy Equa-
tion (11), and the cardinality of Gt usually decreases.

3. Suppose a subset of P ′ satisfies Equation (11) at itera-
tion t then it will always satisfy the condition in future
iterations. This is due to the fact that feasible region
shrinks at each iteration. Hence, size of the coreset is
always non-increasing.

While the above remarks provide informal reasoning for
the size of the coreset, it does not provide a formal analysis.

757

In order to gain a better understanding, we discuss the im-
plementation of this algorithm and provide a more formal
analysis in the case of logistic regression and SVMs. To
this end, let us first discuss the function LINEARAPPROX
for specific cases.

LINEARAPPROX for differentiable loss functions: The
linear approximation in the differentiable case can be ob-
tained through the first-order Taylor expansion of the loss
function. More formally, we have

`(w>xk) = `(w>t xk) + ∂`(w>t xk)(w>xk − w>t xk)

+
∂2`(z)

2
(w>xk − w>t xk)2

for some z = w̃>t x where ‖w̃t − wt‖ ≤ Rt since
our feasible region satisfies ‖w − wt‖ ≤ Rt. The key
step is to bound the term ∂2l(z). This bound will de-
pend on the structure of the loss function. We now de-
rive these bounds for logistic regression. We want the
following to ensure that the condition in Theorem 2 with
lt =

∑
xk∈Gt ∂`(w

>
t xk)xk and c =

∑
xk∈Gt [`(w

>
t xk) −

∂`(w>t xk)w>t xk]:

∂2l(z)

2
(w>xk − w>t xk)2 ≤ δ

for all xk ∈ Gt. The above statement is true when

∂2l(z)

2
R2
t ‖xk‖2 ≤ δ (12)

This can be obtained by a straightforward application of the
Cauchy-Schwartz inequality. The final step is to derive an
upper bound on ∂2l(z). For logistic loss we have

∂2l(z) =
1

(1 + exp(−z))(1 + exp(z))
.

Without loss of generality, we can assume z > 0. Then we
have ∂2l(z) ≤ 1/(1 + exp(z)). Using the above inequality
it is easy to see that Equation (12) is satisfied if

R2
t ‖xk‖2

2(1 + exp(z))
≤ δ.

We observe that

R2
t ‖xk‖2

2(1 + exp(z))
=

R2
t ‖xk‖2

2(1 + exp(w>t xk + z − w>t xk))

≤ R2
t ‖xk‖2

2(1 + exp(w>t xk) exp(−Rt‖xk‖))

This follows from the fact that z = w̃>t x where ‖w̃t −
wt‖ ≤ Rt. Hence, for logistic regression, the goal of
LINEARAPPROX is to identify all points satisfying

Vt(xk) =
R2
t ‖xk‖2

2(1 + exp(w>t xk) exp(−Rt‖xk‖)
≤ δ

and place these points in the set Gt. The linear function to
be used for approximation is obtained from the first-order
Taylor expansion. The pseudocode for LINEARAPPROX in
case of logistic regression is given in Algorithm 3.

Algorithm 3 LINEARAPPROX for Logistic Regression
INPUT: P ′, wt, Rt

1: Gt = {xk ∈ P ′ | Vt(xk) ≤ δ}
2: lt = −∑xk∈Gt

xk
(1+exp(w>t xk))

Furthermore, we can also obtain a relationship between the
margin of xk with respect to the optimal solution and the
iteration at which the point xk moves to the set Gt. We
note the following:

R2
t ‖xk‖2

2(1 + exp(z))
=

R2
t ‖xk‖2

2(1 + exp(w>∗ xk + z − w>∗ xk))

≤ R2
t ‖xk‖2

2(1 + exp(M∗k) exp(−2Rt‖xk‖)

≤ R2
t ‖xk‖2 exp(2Rt‖xk‖)

2 exp(M∗k)
≤ exp(3Rt‖xk‖)

2 exp(M∗k)

where M∗k = |w>∗ xk|. The first step follows from triangle
inequality and the fact that z = w̃>t x where ‖w̃t − wt‖ ≤
Rt and ‖w̃∗ − wt‖ ≤ Rt. The final step follows from the
fact that x2 ≤ exp(x) for x ≥ 0. Therefore, from above
inequality it is easy to see that Equation (12) is satisfied
when the following holds

Rt ≤ max

{ √
δ

‖xk‖
,
M∗k + log(2δ)

3‖xk‖

}
. (13)

LINEARAPPROX for SVM

For SVM, the implementation of LINEARAPPROX is pretty
straightforward. Due to the piecewise linear nature of the
hinge loss, the condition in Equation (10) is satisfied with
δ = 0 if w>xk is greater than 1 (or less than 1) for the
whole feasible region ‖w − wt‖ ≤ Rt. This is satisfied
when

Rt ≤
|1− w>t xk|
‖xk‖

The pseudocode for LINEARAPPROX in case of SVM is
given in Algorithm 4.

Algorithm 4 LINEARAPPROX for SVM
INPUT: P ′, wt, Rt

1: Gt = {xk ∈ P ′ |Rt ≤ |1− w>t xk|/‖xk‖}
2: lt = −∑xk∈Gt I(w

>
t xk < 1)xk

Similarly to the case of logistic regression, we analyze how
the margin of xk affects when it get included in the set Gt.
For this, note the following:

1− w>t xk = 1− w>∗ xk − (wt − w∗)>xk

758

Effective passes through Dataset
0 10 20

O
bj

ec
tiv

e
- O

pt
im

al

0

0.2

0.4

0.6
SVRG
SGD
Coreset

Communication Cost
0 1 2 3

O
bj

ec
tiv

e
- O

pt
im

al

0

0.2

0.4

0.6
SVRG
SGD
Coreset

Effective passes through Dataset
0 10 20

Te
st

 E
rro

r R
at

e

0

0.2

0.4

0.6

0.8

1
SVRG
SGD
Coreset

Effective passes through Dataset
0 10 20 30

O
bj

ec
tiv

e
- O

pt
im

al

0

0.1

0.2

0.3

0.4

0.5
SVRG
SGD
Coreset

Communication Cost
0 1 2 3

O
bj

ec
tiv

e
- O

pt
im

al

0

0.1

0.2

0.3

0.4

0.5
SVRG
SGD
Coreset

Effective passes through Dataset
0 10 20 30

Te
st

 E
rro

r R
at

e

0

0.2

0.4

0.6
SVRG
SGD
Coreset

Figure 1: l2-regularized logistic regression on ijcnn1 (top) and cod-rna (bottom) datasets. We compare our algorithm with
mini-batch SVRG and SGD. Training loss residual is shown with respect to passes through the dataset and communication
cost (left and central columns). Test error with respect to the passes through the dataset is shown in the right column.

Again, the above quantity will not change sign when w>xk
is greater than 1 (or less than 1) for the whole feasible re-
gion ‖w − wt‖ ≤ Rt. Based on the expression above, this
is satisfied when

‖wt − w∗‖‖xk‖ ≤ |1− w>∗ xk| = M∗k

It is obtained by application of the Cauchy-Schwartz in-
equality. Note the difference in the definition of M∗k in
comparison to logistic regression. Hence, condition in
Equation (10) will be satisfied when

Rt ≤
M∗k
‖xk‖

(14)

Let us make a final remark before proceeding to the ex-
perimental section. It should be emphasized that based on
Equations (13) and (14), the cardinality of Gt critically
depends on the margin of the training points. If the mar-
gin of the training points is large, then the coreset size is
small and consequently the communication and computa-
tion costs are low. Hence, our algorithm is naturally adap-
tive to the hardness of the optimization problem.

5 EXPERIMENTS

We present our empirical results in this section. To evaluate
the performance of our algorithm, we focus on the task of
regularized logistic regression. Recall that Equation (1) in
this case is of the following form:

min
w
f(w) ≡ λ

2
‖w‖2 +

1

n

n∑

i=1

log(1 + exp(−yiw>xi)).

In our Matlab implementation, we measure simulated com-
munication costs. We use the following datasets.

Dataset # examples # features
ijcnn1 49,990 22
cod-rna 59,535 8
w8a 64,700 300
covertype 581,012 54

All these datasets can be accessed from the LIBSVM web-
site.3 Similarly to [7], each dataset is scaled to [−1, 1]. We
split each dataset in 3:1 ratio for training and testing pur-
poses respectively.

The regularization parameter λ in Equation (1) is 1/n. Re-
call that n is the size of the training set. This results in
a high condition number and consequently increases the
difficulty of the problem [10]. All the experiments were
conducted for 10 random seeds and results are reported by
averaging over these 10 runs.

We use PROXSVRG [16] for solving the subproblems of
Algorithm 2 at each iteration. SVRG is an incremental
first-order method that can be used for solving optimiza-
tion problems conforming to Equation (1). The origin is
used as the initial point for the for all our experiments. The
number of “inner iterations” in the PROXSVRG algorithm
is set to the recommended value of m = 2n. The step size
parameter for each dataset is chosen so as to give the fastest
convergence for PROXSVRG.

For our experiments, we choose T = 20 and γ1 = γ2 =
· · · = γT = γ in Algorithm 2 where γ is chosen such
that upper bound on RT is 0.01. Such a choice is rea-

3http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

759

Effective passes through Dataset
0 10 20 30

O
bj

ec
tiv

e
- O

pt
im

al

0

0.2

0.4

0.6
SVRG
SGD
Coreset

Communication Cost
0 1 2 3

O
bj

ec
tiv

e
- O

pt
im

al

0

0.2

0.4

0.6
SVRG
SGD
Coreset

Effective passes through Dataset
0 10 20 30

Te
st

 E
rro

r R
at

e

0

0.2

0.4

0.6

0.8

1
SVRG
SGD
Coreset

Effective passes through Dataset
0 10 20 30

O
bj

ec
tiv

e
- O

pt
im

al

0

0.05

0.1

0.15

0.2
SVRG
SGD
Coreset

Communication Cost
0 1 2

O
bj

ec
tiv

e
- O

pt
im

al
0

0.05

0.1

0.15

0.2
SVRG
SGD
Coreset

Effective passes through Dataset
0 10 20 30

Te
st

 E
rro

r R
at

e

0

0.05

0.1

0.15

0.2

0.25
SVRG
SGD
Coreset

Figure 2: l2-regularized logistic regression on more datasets w8a (top) and covertype (bottom). Similar to the previous
case, we compare our algorithm with mini-batch SVRG and SGD.

sonable in the case of linearly convergent algorithms —
which is the scenario we anticipate for our algorithm. As
mentioned earlier, we use a clustering based algorithm in-
stead of the cover. The main rationale behind such a choice
is the availability of coresets for data clustering problems.
As a heuristic, we directly use k-means coresets for Algo-
rithm 2. The sensitivity based coreset for k-means is used
in all our experiments. We refer interested reader to [4, 5]
for more details of the coreset. We set the coreset size to
be 500 for ijcnn1 and cod-rna datasets. This value is set
to 1000 and 3000 for w8a and covertype datasets respec-
tively. Note that these coreset sizes are much smaller in
comparison to the training data.

We compare our algorithm with SVRG [7] and SGD. A
mini-batch version of these methods is used in order to re-
duce the communication cost of these approaches. We use
a mini-batch size b = 10 in all our experiments. The num-
ber of inner iterations in SVRG is m =

⌈
2n
b

⌉
in all our

experiments in order to limit the total inner iterations to the
recommended 2n iterations. For SGD, we use the learning
rate of α/

√
t where α is the step size used for the all the

algorithms for that dataset.

We report the training loss residual i.e., objective value in
Equation (1) achieved by the algorithms minus the optimal
objective value (obtained by running gradient descent for
a very long time) and the test error rate of the algorithms
with respect to the number of effective passes through the
dataset . This includes the cost for calculating the gradi-
ents and the coresets. This provides information about the
computation complexity of the algorithm. To measure the
communication cost of the algorithm, we use the ratio of
the number of d dimensional vectors communicated to the
size of the training data.

Figures 1 and 2 show the performance of the algorithms on
the aforementioned datasets. We have several observations
from these empirical results. First, we observe that SVRG
outperforms SGD in terms of all the metrics of our interest.
This observation is not surprising given the linear conver-
gence of SVRG in comparison to the sub-linear conver-
gence of SGD (see [7] for more details). We then observe
that our algorithm is competitive to SVRG in terms of
training loss residual and test error rate (shown in the first
and the third columns of the figures respectively). How-
ever, our major gain is in the communication cost of the al-
gorithm. As seen in these figures, our algorithm performs
much better in comparison to other algorithms in terms of
communication cost. In other words, for the same com-
munication cost, our algorithm has a much lower objective
value when compared to SVRG and SGD. We believe that
the performance of our algorithm can be further improved
by utilizing the coresets of the previous iteration and is a
part of our ongoing investigation. For future work, it will
be interesting to test the performance of the algorithm on a
real distributed environment.

6 CONCLUSION

This paper introduces a novel general strategy for designing
communication efficient empirical loss minimization algo-
rithms. The key to our approach is the concept of coresets
— the idea of constructing a small summary of the train-
ing data and optimizing over this summary. We illustrated
this strategy on two popular supervised learning problems
— logistic regression and support vector machines. We
presented convergence analysis for our algorithm. Further-
more, preliminary experiments show encouraging results in
terms of both computational and communication costs.

760

References

[1] Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R.
Varadarajan. Geometric approximation via core-
sets. In Combinatorial and Computational Geometry,
MSRI, pages 1–30. University Press, 2005.

[2] Maria-Florina Balcan, Steven Ehrlich, and Yingyu
Liang. Distributed k-means and k-median cluster-
ing on general communication topologies. In Christo-
pher J. C. Burges, Lon Bottou, Zoubin Ghahramani,
and Kilian Q. Weinberger, editors, NIPS, pages 1995–
2003, 2013.

[3] Stephen Boyd. Distributed optimization and statisti-
cal learning via the alternating direction method of
multipliers. Foundations and Trends® in Machine
Learning, 3(1):1–122, 2010.

[4] Dan Feldman and Michael Langberg. A unified
framework for approximating and clustering data. In
Proceedings of the Forty-third Annual ACM Sympo-
sium on Theory of Computing, STOC ’11, pages 569–
578, New York, NY, USA, 2011. ACM.

[5] Dan Feldman, Melanie Schmidt, and Christian
Sohler. Turning big data into tiny data: Constant-size
coresets for k-means, pca and projective clustering. In
Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’13, pages
1434–1453. SIAM, 2013.

[6] Thorsten Joachims. Training linear svms in linear
time. In Proceedings of the 12th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and
Data Mining, KDD ’06, pages 217–226, New York,
NY, USA, 2006. ACM.

[7] Rie Johnson and Tong Zhang. Accelerating stochastic
gradient descent using predictive variance reduction.
In C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahra-
mani, and K.Q. Weinberger, editors, Advances in
Neural Information Processing Systems 26, pages
315–323. Curran Associates, Inc., 2013.

[8] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J.
Smola. Efficient mini-batch training for stochastic op-
timization. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, KDD ’14, pages 661–670, New
York, NY, USA, 2014. ACM.

[9] Dhruv Mahajan, S. Sathiya Keerthi, S. Sundararajan,
and Léon Bottou. A functional approximation based
distributed learning algorithm. CoRR, abs/1310.8418,
2013.

[10] Y. Nesterov. Introductory Lectures on Convex Opti-
mization: A Basic Course. Mathematics and its appli-
cations. Kluwer Academic Publishers, 2004.

[11] J. Nocedal and S.J. Wright. Numerical Optimization.
Springer series in operations research and financial
engineering. Springer, 1999.

[12] Katya Scheinberg. An efficient implementation of
an active set method for svms. Journal of Machine
Learning Research, 7:2237–2257, December 2006.

[13] Mark Schmidt, Nicolas Le Roux, and Francis Bach.
Minimizing finite sums with the stochastic average
gradient. Technical report, 2013.

[14] Shai Shalev-Shwartz, Yoram Singer, and Nathan Sre-
bro. Pegasos: Primal estimated sub-gradient solver
for svm. In Proceedings of the 24th International
Conference on Machine Learning, ICML ’07, pages
807–814, New York, NY, USA, 2007. ACM.

[15] Ivor W. Tsang, James T. Kwok, Pak ming Cheung,
and Nello Cristianini. Core vector machines: Fast
svm training on very large data sets. Journal of Ma-
chine Learning Research, 6:363–392, 2005.

[16] Lin Xiao and Tong Zhang. A proximal stochastic
gradient method with progressive variance reduction.
SIAM Journal on Optimization, 24(4):2057–2075, jan
2014.

[17] Martin A. Zinkevich, Alex Smola, Markus Weimer,
and Lihong Li. Parallelized stochastic gradient de-
scent. In Advances in Neural Information Processing
Systems 23, pages 2595–2603, 2010.

761

Large-scale randomized-coordinate descent methods with non-separable linear
constraints

Sashank J. Reddi ⇤ Ahmed Hefny⇤ Carlton Downey Avinava Dubey
Machine Learning Department

Carnegie Mellon University

Suvrit Sra †

Massachusetts Institute of Technology

Abstract

We develop randomized block coordinate de-
scent (CD) methods for linearly constrained con-
vex optimization. Unlike other large-scale CD
methods, we do not assume the constraints to be
separable, but allow them be coupled linearly.
To our knowledge, ours is the first CD method
that allows linear coupling constraints, without
making the global iteration complexity have an
exponential dependence on the number of con-
straints. We present algorithms and theoreti-
cal analysis for four key (convex) scenarios: (i)
smooth; (ii) smooth + separable nonsmooth; (iii)
asynchronous parallel; and (iv) stochastic. We
discuss some architectural details of our methods
and present preliminary results to illustrate the
behavior of our algorithms.

1 INTRODUCTION

Coordinate descent (CD) methods are conceptually among
the simplest schemes for unconstrained optimization—they
have been studied for a long time (see e.g., [1, 4, 28]), and
are now enjoying greatly renewed interest. Their resur-
gence is rooted in successful applications in machine learn-
ing [15, 16], statistics [8, 17], and many other areas—
see [31, 32, 35] and references therein for more examples.

A catalyst to the theoretical as well as practical suc-
cess of CD methods has been randomization. (The idea
of randomized algorithms for optimization methods is of
course much older, see e.g., [29].) Indeed, generic non-
randomized CD has resisted complexity analysis, though
there is promising recent work [14, 34, 40]; remarkably
for randomized CD for smooth convex optimization, Nes-
terov [25, 26] presented an analysis of global iteration com-
plexity. This work triggered several improvements, such as

⇤Indicates equal contribution.
† A part of this work was performed when the author was at

Carnegie Mellon University

[32, 33], who simplified and extended the analysis to in-
clude separable nonsmooth terms. Randomization has also
been crucial to a host of other CD algorithms and analy-
ses [5, 16, 20, 23, 30, 31, 33, 35–37].

Almost all of the aforementioned CD methods assume es-
sentially unconstrained problems, which at best allow sep-
arable constraints. In contrast, we develop, analyze, and
implement randomized CD methods for the following com-
posite objective convex problem with non-separable linear
constraints

minx F (x) := f(x) + h(x) s.t. Ax = 0. (1)

Here, f : Rn ! R is assumed to be continuously dif-
ferentiable and convex, while h : Rn ! R [{1} is
lower semi-continuous, convex, coordinate-wise separable,
but not necessarily smooth; the linear constraints (LC) are
specified by a matrix A 2 Rm⇥n, for which m ⌧ n, and
a certain structure (see §4) is assumed. The reader may
wonder whether one cannot simply rewrite Problem (1) in
the form of f + h (without additional constraints) using
suitable indicator functions. However, the resulting regu-
larized problem then no longer fits the known efficient CD
frameworks [32], since the nonsmooth part is not block-
separable.

Problem (1) subsumes the usual regularized optimization
problems pervasive in machine learning for the simplest
(m = 0) case. In the presence of linear constraints (m >
0), Problem (1) assumes a form used in the classic Alter-
nating Direction Method of Multipliers (ADMM) [9, 10].
The principal difference between our approach and ADMM
is that the latter treats the entire variable x 2 Rn as a
single block, whereas we use the structure of A to split
x into b smaller blocks. Familiar special cases of Prob-
lem (1) include SVM (with bias) dual, fused Lasso and
group Lasso [38], and linearly constrained least-squares re-
gression [11, 19].

Recently, Necoara et al. [23] studied a special case of Prob-
lem (1) that sets h ⌘ 0 and assumes a single sum con-
straint. They presented a randomized CD method that starts
with a feasible solution and at each iteration updates a pair

762

of coordinates to ensure descent on the objective while
maintaining feasibility. This scheme is reminiscent of the
well-known SMO procedure for SVM optimization [27].
For smooth convex problems with n variables, Necoara
et al. [23] prove an O(1/✏) rate of convergence. More re-
cently, in [22] considered a generalization to the general
case Ax = 0 (assuming h is coordinatewise separable).

Unfortunately, the analysis in [22] yields an extremely pes-
simistic complexity result:
Theorem 1 ([22]). Consider Problem (1) with h being co-
ordinatewise separable, and A 2 Rm⇥n with b blocks.
Then, the CD algorithm in [22] takes no more than
O(bm/✏) iterations to obtain a solution of ✏-accuracy.
This result is exponential in the number of constraints and
too severe even for small-scale problems!

We present randomized CD methods, and prove that for
important special cases (mainly h ⌘ 0 or A is a sum con-
straint) we can obtain global iteration complexity that does
not have an intractable dependence on either the number of
coordinate blocks (b), or on the number of linear constraints
(m). Previously, Tseng and Yun [39] also studied a linearly
coupled block-CD method based on the Gauss-Southwell
choice; however, their complexity analysis applies only to
the special m = 0 and m = 1 cases.

To our knowledge, ours is the first work on CD for prob-
lems with more than one (m > 1) linear constraints that
presents such results.

Contributions. In light of the above background, the pri-
mary contributions of this paper are as follows:

� Convergence rate analysis of a randomized block-CD
method for the smooth case (h ⌘ 0) with m � 1
general linear constraints.

� A tighter convergence analysis for the composite func-
tion optimization (h 6= 0) than [22] in the case of sum
constraint.

� An asynchronous CD algorithm for Problem (1).

� A stochastic CD method with convergence analysis
for solving problems with a separable loss f(x) =

(1/N)
PN

i=1 fi(x).

Table 1 summarizes our contributions and compares it with
existing state-of-the-art coordinate descent methods. The
detailed proofs of all our theoretical claims are available in
the appendix.

Additional related work. As noted, CD methods have a
long history in optimization and they have gained tremen-
dous recent interest. We cannot hope to do full justice to all
the related work, but refer the reader to [32, 33] and [20] for
more thorough coverage. Classically, local linear conver-
gence was analyzed in [21]. Global rates for randomized

Paper LC Prox Parallel Stochastic
[23] YES ⇥ ⇥ ⇥
[39] YES YES ⇥ ⇥
[22] YES YES ⇥ ⇥
[7] ⇥ YES YES ⇥
[5] ⇥ `1 YES YES

[33] ⇥ YES YES ⇥
Ours YES YES YES YES

Table 1: Summary comparison of our method with other CD
methods; LC denotes ‘linear constraints’; Prox signifies an exten-
sion using proximal operators (to handle h 6= 0).

block coordinate descent (BCD) were pioneered by Nes-
terov [25], and have since then been extended by vari-
ous authors [2, 32, 33, 40]. The related family of Gauss-
Seidel like analyses for ADMM have also recently gained
prominence [13]. A combination of randomized block-
coordinate ideas with Frank-Wolfe methods was recently
presented in [18], though algorithmically the Frank-Wolfe
approach is very different as it relies on non projection
based oracles.

2 PRELIMINARIES

In this section, we further explain our model and assump-
tions. We assume that the entire space Rn is decomposed
into b blocks, i.e., x = [x>1 , · · · , x>b]> where x 2 Rn,
xi 2 Rni for all i 2 [b], and n =

P
i ni. For any x 2 Rn,

we use xi to denote the ith block of x. We model commu-
nication constraints in our algorithms by viewing variables
as nodes in a connected graph G := (V, E). Specifically,
node i 2 V ⌘ [b] corresponds to variable xi, while an edge
(i, j) 2 E ⇢ V ⇥V is present if nodes i and j can exchange
information. We use “pair” and “edge” interchangeably.

For a differentiable function f , we use fi1···ip
and

ri1···ip
f(x) (orrxi1 ···xip

f(x)) to denote the restriction of
the function and its partial gradient to coordinate blocks
(xi1 , · · · , xip). For any matrix B with n columns, we use
Bi to denote the columns of B corresponding to xi and
Bij to denote the columns of B corresponding to xi and
xj . We use U to denote the n⇥n identity matrix and hence
Ui is a matrix that places an ni dimensional vector into the
corresponding block of an n dimensional vector.

We make the following standard assumption on the partial
gradients of f .

Assumption 1. The function has block-coordinate Lips-
chitz continuous gradient, i.e.,

krif(x)�rif(x + Uih)k Likhik for all x 2 Rn, .

Assumption 1 is similar to the typical Lipschitz continuous
gradients assumed in first-order methods and it is neces-
sary to ensure convergence of block-coordinate methods.

763

When functions fi and fj have Lipschitz continuous gradi-
ents with constants Li and Lj respectively, one can show
that the function fij has a Lipschitz continuous gradient
with Lij = Li + Lj [22; Lemma 1]. The following result
is standard.
Lemma 2. For any function g : Rn ! R with L-Lipschitz
continuous gradient rg, we have

g(x) g(y) + hrg(y), x� yi+ L
2 kx� yk2 x, y 2 Rn.

Following [32, 39], we also make the following assumption
on the structure of h.
Assumption 2. The nonsmooth function h is block sepa-
rable, i.e., h(x) =

P
i hi(xi).

This assumption is critical to composite optimization us-
ing CD methods. We also assume access to an oracle that
returns function values and partial gradients at any points
and iterates of the optimization algorithm.

3 ALGORITHM
We are now ready to present our randomized CD methods
for Problem (1) in various settings. We first study com-
posite minimization (§3.1) and later look at asynchronous
(§3.2) and stochastic (§3.3) variants. The main idea under-
lying our algorithms is to pick a random pair (i, j) 2 E of
variables (blocks) at each iteration, and to update them in
a manner which maintains feasibility and ensures progress
in optimization.

3.1 Composite Minimization

We begin with the nonsmooth setting, where h 6⌘ 0. We
start with a feasible point x0. Then, at each iteration we
pick a random pair (i, j) 2 E of variables and minimize
the first-order Taylor expansion of the loss f around the
current iterate while maintaining feasibility. Formally, this
involves performing the update

Z(f, x, (i, j),↵) := arg min
Aijdij=0

f(x) + hrijf(x), diji (2)

+(2↵)
�1kdijk2 + h(x + Uijdij),

where ↵ > 0 is a stepsize parameter and dij is the update.
The right hand side of Equation (2) upper bounds f at x +
Uijdij , as seen by using Assumption 1 and Lemma 2. If
h(x) ⌘ 0, minimizing Equation (2) yields

� ↵(AiA
>
i + AjA

>
j)+ (Airif(x) + Ajrjf(x))

di �↵rif(x) + A>i �

dj �↵rjf(x) + A>j � (3)

Algorithm 1 presents the resulting method.

Note that since we start with a feasible point x0 and the
update dk satisfies Adk = 0, the iterate xk is always fea-
sible. However, it can be shown that a necessary condi-
tion for Equation (2) to result in a non-zero update is that

Ai and Aj span the same column space. If the constraints
are not block separable (i.e. for any partitioning of blocks
x1, . . . , xb into two groups, there is a constraint that in-
volves blocks from both groups), a typical way to satisfy
the aforementioned condition is to require Ai to be full
row-rank for all i 2 [b]. This constraints the minimum
block size to be chosen in order to apply randomized CD.

Theorem 3 describes convergence of Algorithm 1 for the
smooth case (h ⌘ 0), while Theorem 6 considers the nons-
mooth case under a suitable assumption on the structure of
the interdependency graph G—both results are presented
in Section 4.

1: x0 2 Rn such that Ax0 = 0
2: for k � 0 do
3: Select a random edge (ik, jk) 2 E with probability

pikjk

4: dk Uikjk
Z(f, xk, (ik, jk),↵k/Likjk

)
5: xk+1 xk + dk

6: k k + 1
7: end for

Algorithm 1: Composite Minimization with Linear Constraints

3.2 Asynchronous Parallel Algorithm for Smooth
Minimization

Although the algorithm described in the previous section
solves a simple subproblem at each iteration, it is inher-
ently sequential. This can be a disadvantage when address-
ing large-scale problems. To overcome this concern, we
develop an asynchronous parallel method that solves Prob-
lem (1) for the smooth case.

Our parallel algorithm is similar to Algorithm 1, except for
a crucial difference: now we may have multiple proces-
sors, and each of these executes the loop 2–6 independently
without the need for coordination. This way, we can solve
subproblems (i.e., multiple pairs) simultaneously in paral-
lel, and due to the asynchronous nature of our algorithm,
we can execute updates as they complete, without requir-
ing any locking.

The critical issue, however, with implementing an asyn-
chronous algorithm in the presence of non-separable con-
straints is ensuring feasibility throughout the course of the
algorithm. This requires the operation xi xi + � to be
executed in an atomic (i.e., sequentially consistent) fash-
ion. Modern processors facilitate that without an additional
locking structure through the “compare-and-swap” instruc-
tion [30]. Since the updates use atomic increments and
each update satisfies Adk = 0, the net effect of T updates
is
PT

k=1 Adk = 0, which is feasible despite asynchronicity
of the algorithm.

The next key issue is that of convergence. In an asyn-
chronous setting, the updates are based on stale gradients

764

that are computed using values of x read many iterations
earlier. But provided that gradient staleness is bounded,
we can establish a sublinear convergence rate of the asyn-
chronous parallel algorithm (Theorem 4). More formally,
we assume that in iteration k, stale gradients are computed
based on xD(k) such that k � D(k) ⌧ . The bound
on staleness, denoted by ⌧ , captures the degree of paral-
lelism in the method: such parameters are typical in asyn-
chronous systems and provides a bound on the delay of the
updates [20].

Before concluding the discussion on our asynchronous al-
gorithm, it is important to note the difficulty of extend-
ing our algorithm to nonsmooth problems. For example,
consider the case where h = IC (indicator function of
some convex set). Although a pairwise update as suggested
above maintains feasibility with respect to the linear con-
straint Ax = 0, it may violate the feasibility of being in the
convex set C. This complication can be circumvented by
using a convex combination of the current iterate with the
update, as this would retain overall feasibility. However,
it would complicate the convergence analysis. We plan to
investigate this direction in future work.

3.3 Stochastic Minimization

An important subclass of Problem (1) assumes separable
losses f(x) = 1

N

PN
i=1 fi(x). This class arises naturally

in many machine learning applications where the loss sep-
arates over training examples. To take advantage of this
added separability of f , we can derive a stochastic block-
CD procedure.

Our key innovation here is the following: in addition to
randomly picking an edge (i, j), we also pick a function
randomly from {f1, · · · , fN} and perform our update us-
ing this function. This choice substantially reduces the cost
of each iteration when N is large, since now the gradient
calculations involve only the randomly selected function
fi (i.e., we now use a stochastic-gradient). Pseudocode is
given in Algorithm 2.

1: Choose x0 2 Rn such that Ax0 = 0.
2: for k � 0 do
3: Select a random edge (ik, jk) 2 E with probability

pikjk

4: Select random integer l 2 [N]
5: xk+1 xk + Uikjk

Z(fl, x
k, (ik, jk),↵k/Likjk

)
6: k k + 1
7: end for

Algorithm 2: Stochastic Minimization with Linear Constraints

Notice that the per iteration cost of Algorithm 2 is lower
than Algorithm 1 by a factor of N . However, as we will
see later, this speedup comes at a price of slower conver-
gence rate (Theorem 5). Moreover, to ensure convergence,

decaying step sizes {↵k}k�0 are generally chosen.

4 CONVERGENCE ANALYSIS
In this section, we outline convergence results for the al-
gorithms described above. The proofs are somewhat tech-
nical, and hence left in the appendix due to lack of space;
here we present only the key ideas.

For simplicity, we present our analysis for the following
reformulation of the main problem:

min
y,z

f(y, z) +
Xb

i=1
h(yi, zi) (4)

subject to
Xb

i=1
yi = 0,

where yi 2 Rny and zi 2 Rnz . Let y = [y>1 · · · y>b]> and
z = [z>1 · · · z>b]>. We use x to denote the concatenated
vector [y>z>]> and hence we assume (unless otherwise
mentioned) that the constraint matrix A is defined as fol-
lows

A

✓
y
z

◆
=

✓ Pb
i=1 yi

0

◆
. (5)

It is worth emphasizing that this analysis does not result
in any loss of generality. This is due to the fact that Prob-
lem (1) with a general constraint matrix Ã having full row-
rank submatrices Ãi’s can be rewritten in the form of Prob-
lem (4) by using the transformation specified in Section E
of the appendix. It is important to note that this reduction
is presented only for the ease of exposition. For our exper-
iments, we directly solve the problem in Equation 2.

Let ⌘k = {(i0, j0), . . . , (ik�1, jk�1)} denote the pairs se-
lected up to iteration k � 1. To simplify notation, assume
(without loss of generality) that the Lipschitz constant for
the partial gradientrif(x) andrijf(x) is L for all i 2 [n]
and (i, j) 2 E.

Similar to [23], we introduce a Laplacian matrix L 2 Rb⇥b

that represents the communication graph G. Since we also
have unconstrained variables zi, we introduce a diagonal
matrix D 2 Rb⇥b.

Lij =

⇢ P
r 6=i

pir

2L i = j

�pij

2L i 6= j
Dij =

⇢
pi

L i = j
0 i 6= j

We use K to denote the concatenation of the Laplacian L
and the diagonal matrix D. More formally,

K =

L⌦ Iny

0
0 D ⌦ Inz

�
.

This matrix induces a norm kxkK =
p

x>Kx on the feasi-
ble subspace, with a corresponding dual norm

kxk⇤K =

s
x>
✓

L+ ⌦ Iny
0

0 D�1 ⌦ Inz

�◆
x

765

Let X⇤ denote the set of optimal solutions and let x0 denote
the initial point. We define the following distance, which
quantifies how far the initial point is from the optimal, tak-
ing into account the graph layout and edge selection prob-
abilities

R(x0) := max
x:f(x)f(x0)

max
x⇤2X⇤

kx� x⇤k⇤K (6)

Note. Before delving into the details of the convergence re-
sults, we would like to draw the reader’s attention to the im-
pact of the communication network G on convergence. In
general, the convergence results depend on R(x0), which
in turn depends on the Laplacian L of the graph G. As a
rule of thumb, the larger the connectivity of the graph, the
smaller the value of R(x0), and hence, faster the conver-
gence.

4.1 Convergence results for the smooth case

We first consider the case when h = 0. Here the sub-
problem at kth iteration has a very simple update dikjk

=
Uik

dk � Ujk
dk where dk = ↵k

2L (rjk
f(xk) � rik

f(xk)).
We now prove that Algorithm 1 attains an O(1/k) conver-
gence rate.

Theorem 3. Let ↵k = 1 for k � 0, and let {xk}k�0 be
the sequence generated by Algorithm 1; let f⇤ denote the
optimal value. Then, we have the following rate of conver-
gence:

E[f(xk)]� f⇤ 2R2(x0)

k

where R(x0) is as defined in Equation 6.

Proof Sketch. We first prove that each iteration leads to de-
scent in expectation. More formally, we get

Eikjk
[f(xk+1)|⌘k] f(xk)� 1

2rf(xk)>Krf(xk).

The above step can be proved using Lemma 2. Let �k =
E[f(xk)]� f⇤. It can be proved that

1

�k
 1

�k+1
� 1

2R2(x0)

This follows from the fact that

f(xk+1)� f⇤ kxk � x⇤k⇤Kkrf(xk)kK
 R(x0)krf(xk)kK 8k � 0

Telescoping the sum, we get the desired result.

Note that Theorem 3 is a strict generalization of the analy-
sis in [23] and [22] due to: (i) the presence of unconstrained
variables z; and (ii) the presence of a non-decomposable
objective function. it is also worth emphasizing that our

convergence rates improve upon those of [22], since they
do not involve an exponential dependence of the form bm

on the number of constraints.

We now turn our attention towards the convergence analy-
sis of our asynchronous algorithm under a consistent read-
ing model [20]. In this context we would like to empha-
size that while our theoretical analysis assumes consistent
reads, we do not enforce this assumption in our experi-
ments.

Theorem 4. Let ⇢ > 1 and ↵k = ↵ be such that ↵ <
2/(1+ ⌧ + ⌧⇢⌧) and ↵ < (⇢�1)/(

p
2(⌧ +2)(⇢⌧+1 +⇢)).

Let {xk}k�0 be the sequence generated by asynchronous
algorithm using step size ↵k and let f⇤ denote the optimal
value. Then, we have the following rate of convergence for
the expected values of the objective function

E[f(xk)]� f⇤ R2(x0)

µk

where R(x0) is as defined in Equation 6 and µ =
↵2

k

2

⇣
1
↵k
� 1+⌧+⌧⇢⌧

2

⌘
.

Proof Sketch. For ease of exposition, we describe the case
where the unconstrained variables z are absent. The anal-
ysis of case with z variables can be carried out in a sim-
ilar manner. Let D(k) denote the iterate of the vari-
ables used in the kth iteration (the existence of D(k) fol-
lows from the consistent reading assumption). Let dk =
↵k

2L

⇣
ryjk

f(xD(k))�ryik
f(xD(k))

⌘
and dk

ikjk
= xk+1�

xk = Uik
dk � Ujk

dk. Using Lemma 2 and the assump-
tion that staleness in the variables is bounded by ⌧ , i.e.,
k � D(k) ⌧ and definition of dk

ij , we can derive the
following bound:

E[f(xk+1)] E[f(xk)]� L

✓
1

↵k
� 1 + ⌧

2

◆
E[kdk

ikjk
k2]

+
L

2
E

"
⌧X

t=1

kdk�t
ik�tjk�t

k2
#

.

In order to obtain an upper bound on the norms of dk
ikjk

,
we prove that

E
h
kdk�1

ik�1jk�1
k2
i
 ⇢E

⇥
kdk

ikjk
k2
⇤

This can proven using mathematical induction. Using the
above bound on kdk

ikjk
k2, we get

E[f(xk+1)]

E[f(xk)]� L

✓
1

↵k
� 1 + ⌧ + ⌧⇢⌧

2

◆
E[kdk

ikjk
k2]

This proves that the method is a descent method in expec-
tation. Following similar analysis as Theorem 3, we get the
required result.

766

Note the dependence of convergence rate on the staleness
bound ⌧ . For larger values of ⌧ , the stepsize ↵k needs to
be decreased to ensure convergence, which in turn slows
down the convergence rate of the algorithm. Nevertheless,
the convergence rate remains O(1/k).

The last smooth case we analyze is our stochastic algo-
rithm.

Theorem 5. Let ↵i =
p
�0L/(M

p
i + 1) for i � 0 in

Algorithm 2. Let {xk}k�0 be the sequence generated by
Algorithm 2 and let f⇤ denote the optimal value. We denote
x̄k = arg min0ik f(xk). Then, we have the following
rate of convergence for the expected values of the objective:

E[f(x̄k)]� f⇤ O

✓
1
4
p

k

◆

where �0 = f(x0)� f⇤.

The convergence rate is O(1/k1/4) as opposed to O(1/k)
of Theorem 3. On the other hand, the iteration complex-
ity is lower by a factor of N ; this kind of tradeoff is typ-
ical in stochastic algorithms, where the slower rate is the
price we pay for a lower iteration complexity. We believe
that the convergence rate can be improved to O(1/

p
k), the

rate generally observed in stochastic algorithms, by a more
careful analysis.

4.2 Nonsmooth case

We finally state the convergence rate for the nonsmooth
case (h 6⌘ 0) in the case of a sum constraint. Similar to
[22], we assume h is coordinatewise separable (i.e. we can
write h(x) =

Pb
i=1

P
j xij), where xij is the jth coor-

dinate in the ith block. For this analysis, we assume that
the graph G is a clique 1 with uniform probability, i.e.,
� = pij = 2/b(b� 1).

Theorem 6. Assume Ax =
P

i Aixi. Let {xk}k�0 be the
sequence generated by Algorithm 1 and let F ⇤ denote the
optimal value. Assume that the graph G is a clique with
uniform probability. Then we have the following:

E[F (xk)� F ⇤] b2LR2(x0)

2k + b2LR2(x0)
�0

,

where R(x0) is as defined in Equation 6.

This convergence rate is a generalization of the conver-
gence rate obtained in Necoara and Patrascu [22] for a sin-
gle linear constraint (see Theorem 1 in [22]). It is also an

1We believe our results also easily extend to the general case
along the lines of [31–33], using the concept of Expected Separa-
ble Overapproximation (ESO). Moreover, the assumption is not
totally impractical, e.g., in a multicore setting with a zero-sum
constraint (i.e. Ai = I), the clique-assumption introduces little
cost.

improvement of the rate obtained in Necoara and Patrascu
[22] for general linear constraints (see Theorem 4 in [22])
when applied to the special case of a sum constraint. Our
improvement comes in the form of a tractable constant,
as opposed to the exponential dependence O(bm) shown
in [22].

5 APPLICATIONS
To gain a better understanding of our approach, we state
some applications of interest, while discussing details of
Algorithm 1 and Algorithm 2 for them. While there are
many applications of problem (1), due to lack of space we
only mention a few prominent ones here.

Support Vector Machines: The SVM dual (with bias
term) assumes the form (1); specifically,

min
↵

1
2

X
i,j
↵i↵jyiyjz

>
i zj �

Xn

i=1
↵i

s.t.
X

i
↵iyi = 0, 0 ↵i C 8 i 2 [n]. (7)

Here, zi denotes the feature vector of the ith training ex-
ample and yi 2 {1,�1} denotes the corresponding la-
bel. By letting f(↵) = 1

2

P
i,j ↵i↵jyiyjz

>
i zj �

P
i ↵i and

h(↵) =
P

i I(0 ↵i C) and A = [y1, . . . , yn] this
problem can be written in form of Problem (1). Using Al-
gorithm 1 for SVM involves solving a sub-problem similar
to one used in SMO in the scalar case (i.e., ↵i 2 R) and
can be solved in linear time in the block case (see [3]).

Generalized Lasso: The objective is to solve the following
optimization problem.

min�
1
2kY �X�k22 + �kD�k1

where Y 2 RN denotes the output, X 2 RN⇥n is the input
and D 2 Rq⇥n represents a specified penalty matrix. This
problem can also be seen as a specific case of Problem (1)
by introducing an auxiliary variable t and slack variables
u, v. Then, f(�, t) = 1

2kY � X�k22 +
P

i ti, h(u, v) =
I(u � 0)+I(v � 0) and, t�D��u = 0 and t+D��v = 0
are the linear constraints. To solve this problem, we can use
either Algorithm 1 or Algorithm 2. In general, optimization
of convex functions on a structured convex polytope can be
solved in a similar manner.

Unconstrained Separable Optimization: Another inter-
esting application is for unconstrained separable optimiza-
tion. For any problem minx

P
i fi(x)—a form generally

encountered across machine learning—can be rewritten us-
ing variable-splitting as min{xi=x,8i2[N]} fi(xi). Solving
the problem in distributed environment requires consider-
able synchronization (for the consensus constraint), which
can slow down the algorithm significantly. However, the
dual of the problem is

min
�

X

i

f⇤i (�i) s.t
XN

i=1
�i = 0.

767

where f⇤i is the Fenchel conjugate of fi. This reformu-
lation perfectly fits our framework and can be solved in
an asynchronous manner using the procedure described in
Section 3.2.

Other interesting application include constrained least
square problem, multi-agent planning problems, resource
allocation—see [22, 23] and references therein for more
examples.

6 EXPERIMENTS

In this section, we present our empirical results. In particu-
lar, we examine the behavior of random coordinate descent
algorithms analyzed in this paper under different commu-
nication constraints and concurrency conditions. 2

6.1 Effect of Communication Constraints
Our first set of experiments test the affect of the connectiv-
ity of the graph on the convergence rate. In particular, re-
call that the convergence analysis established in Theorem 3
depends on the Laplacian of the communication graph. In
this experiment we demonstrate how communication con-
straints affect convergence in practice. We experiment with
the following graph topologies of graph G: Ring, Clique,
Star + Ring (i.e., the union of edges of a star and a ring)
and Tree + Ring. On each layout we run the sequential
Algorithm 1 on the following quadratic problem

min C
XN

i=1
kxi � (i mod 10)1k2

s.t.
XN

i=1
Aixi = 0, (8)

Note the decomposable structure of the problem. For this
experiment, we use N = 1000 and xi 2 R50. We have
10 constraints whose coefficients are randomly generated
from U [0, 1] and we choose C such that the objective eval-
uates to 1000 when x = 0.

The results for Algorithm 1 on each topology for 10000 it-
erations are shown in Figure 1. The results clearly show
that better connectivity implies better convergence rate.
Note that while the clique topology has significantly better
convergence than other topologies, acceptable long-term
performance can be achieved by much sparser topologies
such as Star + Ring and Tree + Ring.

Having a sparse communication graph is important to lower
the cost of a distributed system. Furthermore, it is worth
mentioning that the sparsity of the communication graph
is also important in a multicore setting; since Algorithm 1

2All experiments were conducted on a Google Compute En-
gine virtual machine of type “n1-highcpu-16”, which comprises
16 virtual CPUs and 14.4 GB of memory. For more details, please
refer to https://cloud.google.com/compute/docs/
machine-types#highcpu.

h
0 2000 4000 6000 8000600

700

800

900

1000

Iteration

O
bj

ec
tiv

e
Va

lu
e

Tree + Ring
Star + Ring
Ring
Clique

Figure 1: Objective value vs. number of iterations for different
graph topologies. Note that larger the connectivity of the graph,
faster is the convergence.

requires computing (AiA
>
i + AjA

>
j)+ for each commu-

nicating pair of nodes (i, j). Our analysis shows that this
computation takes a significant portion of the running time
and hence it is essential to minimize the number of variable
pairs that are allowed to be updated.

6.2 Concurrency and Synchronization

As seen earlier, compared to Tree + Ring, Star + Ring is
a low diameter layout (diameter = 2). Hence, in a sequen-
tial setting, it indeed results in a faster convergence. How-
ever, Star + Ring requires a node to be connected to all
other nodes. This high-degree node could be a contention
point in a parallel setting. We test the performance of our
asynchronous algorithm in this setting. To assess how the
performance would be affected with such contention and
how asynchronous updates would increase performance,
we conduct another experiment on the synthetic problem
(8) but on a larger scale (N = 10000, xi 2 R100, 100
constraints).

Our concurrent update follows a master/slave scheme.
Each thread performs a loop where in each iteration it elects
a master i and slave j and then applies the following se-
quence of actions:

1. Obtain the information required for the update from
the master (i.e., information for calculating the gradi-
ents used for solving the subproblem).

2. Send the master information to the slave, update the
slave variable and get back the information needed to
update the master.

3. Update the master based (only) on the information ob-
tained from steps 1 and 2.

We emphasize that the master is not allowed to read its own
state at step 3 except to apply an increment, which is com-
puted based on steps 1 and 2. This ensures that the mas-
ter’s increment is consistent with that of the slave, even if
one or both of them was being concurrently overwritten by

768

another thread. More details on the implementation can be
found in [12].

Given this update scheme, we experiment with three levels
of synchronization: (a) Double Locking: Locks the master
and the slave through the entire update. Because the objec-
tive function is decomposable, a more conservative locking
(e.g. locking all nodes) is not needed. (b) Single Locking:
Locks the master during steps 1 and 3 (the master is un-
locked during step 2 and locks the slave during step 2). (c)
Lock-free: No locks are used. Master and slave variables
are updated through atomic increments similar to Hogwild!
method.

Following [30], we use spinlocks instead of mutex locks
to implement locking. Spinlocks are preferred over mu-
tex locks when the resource is locked for a short period of
time, which is the case in our algorithm. For each locking
mechanism, we vary the number of threads from 1 to 15.
We stop when f0 � ft > 0.99(f0 � f⇤), where f⇤ is com-
puted beforehand up to three significant digits. Similar to
[30], we add artificial delay to steps 1 and 2 in the update
scheme to model complicated gradient calculations and/or
network latency in a distributed setting.

Figure 2 shows the speedup for Tree + Ring and Star + Ring
layouts. The figure clearly shows that a fully synchronous
method suffers from contention in the Star + Ring topology
whereas asynchronous method does not suffer from this
problem and hence, achieves higher speedups. Although
the Tree + Ring layouts achieves higher speedup than Star +
Ring, the latter topology results in much less running time
(⇠ 67 seconds vs 91 seconds using 15 threads).

6.3 Practical Case Study: Parallel Training of Linear
SVM

In this section, we explore the effect of parallelism on ran-
domized CD for training a linear SVM based on the dual
formulation stated in (7). Necoara et. al. [22] have shown
that, in terms of CPU time, a sequential randomized CD
outperforms coordinate descent using Gauss-Southwell se-
lection rule. It was also observed that randomized CD out-
performs LIBSVM [6] for large datasets while maintaining
reasonable performance for small datasets.

In this experiment we use a clique layout. For SVM train-
ing in a multicore setting, using a clique layout does not in-
troduce additional cost compared to a more sparse layout.
To maintain the box constraint, we use the double-locking
scheme described in Section 6.2 for updating a pair of dual
variables.

One advantage of coordinate descent algorithms is that they
do not require the storage of the Gram matrix; instead they
can compute its elements on the fly. That comes, however,
at the expense of CPU time. Similar to [22], to speed up
gradient computations without increasing memory require-

0 5 10 150

5

10

15

P

Sp
ee

du
p

Optimal
Double lock
Single lock
Lock free

0 5 10 150

5

10

15

P
Sp

ee
du

p

Optimal
Double lock
Single lock
Lock free

Figure 2: Speedup for Tree + Ring (top) and Star + Ring
(bottom) topologies and different levels of synchronization.
Note for Star + Ring topology, speedup of asynchronous
algorithm is significantly higher than that of synchronous
version.

ments, we maintain the primal weight vector of the linear
SVM and use it to compute gradients. Basically, if we
increment ↵i by �i and ↵j by �j , then we increment the
weight vector by �iyixi + �jyjxj . This increment is ac-
complished using atomic additions. However, this implies
that all threads will be concurrently updating the primal
weight vector. Similar to [30], we require these updates to
be sparse with small overlap between non-zero coordinates
in order to ensure convergence. In other words, we require
training examples to have sparse features with small over-
lap between non-zero features.

We report speedups on two datasets used in [22].3 Ta-
ble 2 provides a description of both the datasets. For
each dataset, we train the SVM model until f0 � ft >
0.9999(f0�f⇤), where f⇤ is the objective reported in [22].
In Figure 3, we report speedup for both the datasets. The
figure shows that parallelism indeed increases the perfor-
mance of randomized CD training of linear SVM.

3Datasets can be downloaded from http://www.csie.
ntu.edu.tw/˜cjlin/libsvmtools/datasets.

769

Dataset
of

instances
of

features
Avg # of
non-zero
features

a7a 16100 122 14
w8a 49749 300 12

Table 2: Datasets used for linear SVM Speedup experiment

0 5 10 150.5

1

1.5

2

2.5

3

3.5

P

Sp
ee
du
p

0 5 10 151

2

3

4

5

P

Sp
ee
du
p

Figure 3: Speedup for linear SVM training on a7a (top)
and w8a datasets.

7 DISCUSSION AND FUTURE WORK

We presented randomized coordinate descent methods for
solving convex optimization problems with linear con-
straints that couple the variables. Moreover, we also pre-
sented composite objective, stochastic, and asynchronous
versions of our basic method and provided their conver-
gence analysis. We demonstrated the empirical perfor-
mance of the algorithms. The experimental results of asyn-
chronous algorithm look very promising.

There are interesting open problems for our problem
in consideration: First, we would like to obtain high-
probability results not just in expectation; another interest-
ing direction is to extend the asynchronous algorithm to
the non-smooth setting. Finally, while we obtain O(1/k)
for general convex functions, obtaining an accelerated
O(1/k2) rate is a natural question.

Acknowledgments

SS is partly supported by NSF grant: IIS-1409802. We
thanks the anonymous reviewers for the helpful comments.

References

[1] A. Auslender. Optimisation Méthodes Numériques.
Masson, 1976.

[2] A. Beck and L. Tetruashvili. On the convergence of
block coordinate descent type methods. SIAM Jour-
nal on Optimization, 23(4):2037–2060, 2013. doi:
10.1137/120887679.

[3] P. Berman, N. Kovoor, and P. M. Pardalos. A linear-
time algorithm for the least-distance problem. Techni-
cal report, Pennsylvania State University, Department
of Computer Science, 1992.

[4] D. P. Bertsekas. Nonlinear Programming. Athena
Scientific, Belmont, MA, second edition, 1999.

[5] J. Bradley, A. Kyrola, D. Bickson, and C. Guestrin.
Parallel coordinate descent for L1-regularized loss
minimization. In L. Getoor and T. Scheffer, editors,
Proceedings of the 28th International Conference on
Machine Learning, pages 321–328. Omnipress, 2011.

[6] C.-C. Chang and C.-J. Lin. Libsvm: A library for sup-
port vector machines. ACM Trans. Intell. Syst. Tech-
nol., 2(3):27:1–27:27, May 2011. ISSN 2157-6904.
doi: 10.1145/1961189.1961199. URL http://
doi.acm.org/10.1145/1961189.1961199.

[7] O. Fercoq and P. Richtárik. Accelerated, parallel and
proximal coordinate descent. CoRR, abs/1312.5799,
2013.

[8] J. Friedman, T. Hastie, H. Höfling, R. Tibshirani, et al.
Pathwise coordinate optimization. The Annals of Ap-
plied Statistics, 1(2):302–332, 2007.

[9] D. Gabay and B. Mercier. A dual algorithm for the so-
lution of nonlinear variational problems via finite ele-
ment approximation. Computers & Mathematics with
Applications, 2(1):17–40, 1976. doi: http://dx.doi.
org/10.1016/0898-1221(76)90003-1. URL http:
//www.sciencedirect.com/science/
article/pii/0898122176900031.

[10] R. Glowinski and A. Marrocco. Sur l’approximation,
par éléments finis d’ordre un, et la résolution, par
pénalisation-dualité d’une classe de problèmes
de dirichlet non linéares. Revue Française
d’Automatique, Informatique, et Recherche
Opérationelle, 1975.

[11] G. H. Golub and C. F. Van Loan. Matrix Compu-
tations. John Hopkins University Press, Baltimore,
MD, 3rd edition, 1996.

[12] A. Hefny, S. Reddi, and S. Sra. Coordinate descent al-
gorithms with coupling constraints: Lessons learned.
In NIPS Workshop on Software Engineering For Ma-
chine Learning, 2014.

770

[13] M. Hong and Z.-Q. Luo. On the linear convergence of
the alternating direction method of multipliers. arXiv
preprint arXiv:1208.3922, 2012.

[14] M. Hong, X. Wang, M. Razaviyayn, and Z.-Q. Luo.
Iteration Complexity Analysis of Block Coordinate
Descent Methods. arXiv:1310.6957, 2013.

[15] C. J. Hsieh and I. S. Dhillon. Fast coordinate descent
methods with variable selection for non-negative
matrix factorization. In Proceedings of the 17th
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining(KDD), pages 1064–
1072, August 2011.

[16] C. J. Hsieh, K. W. Chang, C. J. Lin, S. S. Keerthi, and
S. Sundararajan. A dual coordinate descent method
for large-scale linear SVM. In W. Cohen, A. McCal-
lum, and S. Roweis, editors, ICML, pages 408–415.
ACM, 2008.

[17] C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, and P. D.
Ravikumar. Sparse inverse covariance matrix estima-
tion using quadratic approximation. In NIPS, pages
2330–2338, 2011.

[18] S. Lacoste-Julien, M. Jaggi, M. Schmidt, and
P. Pletscher. Block-coordinate frank-wolfe op-
timization for structural svms. arXiv preprint
arXiv:1207.4747, 2012.

[19] C. L. Lawson and R. J. Hanson. Solving Least
Squares Problems. Prentice–Hall, Englewood Cliffs,
NJ, 1974. Reissued with a survey on recent develop-
ments by SIAM, Philadelphia, 1995.

[20] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Srid-
har. An asynchronous parallel stochastic coordinate
descent algorithm. arXiv:1311.1873, 2013.

[21] Z.-Q. Luo and P. Tseng. On the convergence of the
coordinate descent method for convex differentiable
minimization. Journal of Optimization Theory and
Applications, 72(1):7–35, 1992.

[22] I. Necoara and A. Patrascu. A random coordinate
descent algorithm for optimization problems with
composite objective function and linear coupled con-
straints. Comp. Opt. and Appl., 57(2):307–337, 2014.

[23] I. Necoara, Y. Nesterov, and F. Glineur. A random co-
ordinate descent method on large optimization prob-
lems with linear constraints. Technical report, Tech-
nical Report, University Politehnica Bucharest, 2011,
2011.

[24] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro.
Robust stochastic approximation approach to stochas-
tic programming. SIAM J. on Optimization, 19(4):
1574–1609, Jan. 2009. ISSN 1052-6234. doi: 10.
1137/070704277.

[25] Y. Nesterov. Efficiency of coordinate descent methods
on huge-scale optimization problems. Core discus-
sion papers, Université catholique de Louvain, Center
for Operations Research and Econometrics (CORE),

2010.
[26] Y. Nesterov. Efficiency of coordinate descent methods

on huge-scale optimization problems. SIAM Journal
on Optimization, 22(2):341–362, 2012.

[27] J. C. Platt. Sequential minimal optimization: A fast
algorithm for training support vector machines. Tech-
nical report, ADVANCES IN KERNEL METHODS
- SUPPORT VECTOR LEARNING, 1998.

[28] B. T. Polyak. Introduction to Optimization. Optimiza-
tion Software Inc., 1987. Nov 2010 revision.

[29] L. A. Rastrigin. Statisticheskie Metody Poiska Ek-
stremuma (Statistical Extremum Seeking Methods).
Nauka, Moscow, 1968.

[30] B. Recht, C. Re, S. J. Wright, and F. Niu. Hogwild: A
Lock-Free Approach to Parallelizing Stochastic Gra-
dient Descent. In J. Shawe-Taylor, R. S. Zemel, P. L.
Bartlett, F. C. N. Pereira, and K. Q. Weinberger, edi-
tors, NIPS, pages 693–701, 2011.

[31] P. Richtárik and M. Takáč. Distributed coordinate
descent method for learning with big data. ArXiv e-
prints, Oct. 2013.

[32] P. Richtárik and M. Takáč. Iteration com-
plexity of randomized block-coordinate descent
methods for minimizing a composite function.
arXiv:1107.2848v1, July 2011.

[33] P. Richtárik and M. Takáč. Parallel coordi-
nate descent methods for big data optimization.
arXiv:1212.0873v1, Dec 2012.

[34] A. Saha and A. Tewari. On the nonasymptotic con-
vergence of cyclic coordinate descent methods. SIAM
Journal on Optimization, 23(1):576–601, 2013.

[35] S. Shalev-Shwartz and T. Zhang. Stochastic dual
coordinate ascent methods for regularized loss min-
imization. JMLR, 14, 2013.

[36] S. Shalev-Shwartz and T. Zhang. Acceler-
ated mini-batch stochastic dual coordinate ascent.
arXiv:1305.2581v1, 2013.

[37] R. Tappenden, P. Richtárik, and J. Gondzio. Inexact
coordinate descent: complexity and preconditioning.
arXiv:1304.5530, 2013.

[38] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and
K. Knight. Sparsity and smoothness via the fused
lasso. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 67(1):91–108, 2005.

[39] P. Tseng and S. Yun. A block-coordinate gradient de-
scent method for linearly constrained nonsmooth sep-
arable optimization. Journal of Optimization Theory
and Applications, 2009.

[40] P.-W. Wang and C.-J. Lin. Iteration complexity of
feasible descent methods for convex optimization.
JMLR, 15:1523–1548, 2014.

771

An Upper Bound on the Global Optimum in Parameter Estimation

Khaled S. Refaat and Adnan Darwiche
Computer Science Department

University of California, Los Angeles
{krefaat,darwiche}@cs.ucla.edu

Abstract

Learning graphical model parameters from in-
complete data is a non-convex optimization prob-
lem. Iterative algorithms, such as Expectation
Maximization (EM), can be used to get a lo-
cal optimum solution. However, little is known
about the quality of the learned local optimum,
compared to the unknown global optimum. We
exploit variables that are always observed in the
dataset to get an upper bound on the global op-
timum which can give insight into the quality of
the parameters learned by estimation algorithms.

1 Introduction

Probabilistic graphical models (PGMs) have been useful
to many fields, including computer vision, bioinformat-
ics, natural language processing, and statistical physics;
see [20, 32, 17, 22]. A graphical model represents a joint
probability distribution compactly using a structure popu-
lated with parameters. In this paper, we consider two types
of graphical models: Markov Random Fields (MRFs) and
Bayesian networks (BNs).

An MRF consists of an undirected graph defining condi-
tional independence relationships between variables, and
a factor for every maximal clique in the graph; see [15,
16, 24]. A Bayesian network consists of a directed
acyclic graph associated with conditional probability ta-
bles; see [4].

Learning graphical model parameters from data is typi-
cally reduced to finding the maximum likelihood param-
eters: ones that maximize the probability of a dataset, due
to their attractive statistical properties [6]. However, due
to the complexity of learning maximum likelihood param-
eters, other simplified methods have also been proposed
in literature such as pseudo-likelihood [2], ratio match-
ing [10], composite maximum likelihood [30], contrastive
divergence [9], and more recently the LAP algorithm [23].

A key distinction is commonly drawn between complete
and incomplete datasets. In a complete dataset, the value
of each variable is known in every example in the dataset,
whereas in an incomplete dataset, some variables may have
missing values. Computationally, learning from incom-
plete data can be much harder than learning from complete
data, as we discuss next.

When the data is complete, learning maximum likelihood
parameters can be done efficiently in BNs by one pass
through the dataset, and by solving a convex optimization
problem in MRFs. However, in MRFs, evaluating the ob-
jective or computing the gradient requires doing inference,
to compute the partition function, which is #P-hard [27]. It-
erative algorithms, such as gradient descent [28], conjugate
gradient (CG) [8], L-BFGS [21], iterative proportional fit-
ting (IPF) [13], and more recently EDML [25] can be used
to get the global optimum solution.

On the other hand, if the data is incomplete, the optimiza-
tion problem is generally non-convex, i.e. has multiple lo-
cal optima. Iterative algorithms, such as expectation max-
imization (EM) [5, 18] and gradient descent can be used
to get a local optimum solution; see Chapter 19 in [24].
The fixed points of these algorithms correspond to the sta-
tionary points of the likelihood function. Hence, these al-
gorithms are not guaranteed to converge to global optima.
As such, they are typically applied to multiple seeds (initial
parameter estimates), while retaining the best estimates ob-
tained across all seeds. However, little is known about the
quality of the learned estimates, compared to the unknown
global optimum.

In this paper, we propose an upper bound on the unknown
global optimum that can give insight into the quality of the
learned estimates, as compared to the global optimum. It
may also help derive branch-and-bound methods to get the
global optimum. Our proposed technique exploits variables
that are always observed and requires solving a convex op-
timization problem. In case of BNs, this convex optimiza-
tion problem can be solved efficiently.

The paper is organized as follows. In Section 2, we de-

772

fine our notation and give an introduction to the problem
of learning graphical model parameters. We propose the
MRF and BN upper bounds in Sections 3, and 4, respec-
tively. The experimental results are given in Section 5. We
review some of the related work in Section 6, and conclude
in Section 7.

2 Learning Parameters

In this section, we define our notation, and review how pa-
rameter estimation for graphical models is formulated as an
optimization problem.

2.1 Notation

Upper case letters (X) denote variables and lower case let-
ters (x) denote their values. Variable sets are denoted by
bold-face upper case letters (X) and their instantiations by
bold-face lower case letters (x).

We use θ to denote the set of all network parameters. Pa-
rameter learning in graphical models is the process of esti-
mating these parameters θ from a given dataset.

A dataset is a multi-set of examples. Each example is an
instantiation of some network variables. We will use D to
denote a dataset and d1, . . . ,dN to denote its N examples.
The following is a dataset over four binary variables:

example E B A C
1 e b a ?
2 ? b a ?
3 e b a ?

This dataset has three examples, d1, d2 and d3. For a bi-
nary variable X , we will use x and x to denote its two
values. Moreover, a “?” indicates a missing value of a vari-
able in an example. The first example above corresponds to
instantiation e, b, a, while the second example corresponds
to instantiation b, a.

A variable X is fully observed in a dataset iff the value
of X is known in each example of the dataset (i.e., “?”
cannot appear in the column corresponding to variable X).
Variables A and B are fully observed in the above dataset.
Moreover, a variable X is hidden in a dataset iff its value
is unknown in every example of the dataset (i.e., only “?”
appears in the column of variable X). Variable C is hidden
in the above dataset. When all variables are fully observed
in a dataset, the dataset is said to be complete. Otherwise,
the dataset is incomplete. The above dataset is incomplete.
Finally, we will use DO to denote the dataset which results
from removing variables outside O from dataset D.

2.2 Markov Random Fields

An MRF is an undirected graph over variables X, popu-
lated with factors. The MRF parameters are given by the

vector θ = (. . . , θXf
, . . .), where Xf are the variables of

factor f . Component θXf
is a parameter set for a factor f ,

assigning a number θxf > 0 for each instantiation xf of
variable set Xf .

Given a dataset D with examples d1, . . . ,dN , the log like-
lihood of parameter estimates θ is defined as:

``(θ|D) =
N∑

i=1

logZθ(di)−N logZθ. (1)

Here, Zθ is the partition function, Zθ =
∑

x

∏
f θxf and

Zθ(di) =
∑

x∼di
∏
f θxf (di ∼ x means that instanti-

ations di and x are compatible). For simplicity, we will
assume a tabular representation of factors as opposed to an
exponential representation as given in [24, Chapter 19]. In
our experiments, however, we use the exponential repre-
sentation to avoid the need for explicit non-negativity con-
straints.

The first term in Equation 1 is called the data term, whereas
the second term is called the model term. If the data is com-
plete, Equation 1 can be formulated as a convex optimiza-
tion problem, and the data term becomes trivial to evaluate.
However, when the data is incomplete, Equation 1 is non-
convex.

2.3 Bayesian Networks

A Bayesian network is a directed acyclic graph populated
with conditional probability tables (CPTs). Generally, we
will use X to denote a variable in a Bayesian network
and U to denote its parents. For every variable instanti-
ation x and parent instantiation u, the Bayesian network
includes a parameter θx|u that represents the probabil-
ity Pr(X=x|U=u). This implies the requirement that∑
x θx|u = 1, for each parent instantiation u.

Given a dataset D with examples d1, . . . ,dN , the log like-
lihood of parameter estimates θ is defined as:

``(θ|D) =∑N
i=1 logPrθ(di).

Here, Prθ is the distribution induced by the network struc-
ture and parameters θ. One typically seeks maximum like-
lihood parameters

θ? = argmax
θ

``(θ|D).

It is not uncommon to also assume a Dirichlet prior on net-
work parameters. In particular, for each variable X with
values x1, . . . , xn, and parent instantiation u, a Dirichlet
prior is specified using exponents ψx1|u, . . . , ψxn|u. This
prior induces a density ∝ ∏n

i=1[θxi|u]
ψxi|u−1 over the pa-

rameters θx1|u, . . . , θxn|u of variable X given parent in-
stantiation u. It is also common to assume that expo-
nents are > 1, which guarantees a unimodal density. With

773

H3	

O1	

H1	 O2	

H2	

H4	

(a) Graph

O1	

H1	

H3	

O1	 O1	

O2	

H2	

H4	

(b) Components

O1	

O2	

(c) Auxiliary
graph

Figure 1: Auxiliary MRF graph under fully observed vari-
ables O = {O1, O2}.

H1	

O1	 O2	

O3	

(a) Graph

H1	

O1	

(b) Components

O1	 O2	

O3	

(c) Auxiliary graph

Figure 2: Auxiliary MRF graph under fully observed vari-
ables O = {O1, O2, O3}.

Dirichlet priors, the objective function becomes

``(θ|D) + log ρ(θ).

Here, ρ(θ) is proportional to the prior density on parame-
ters θ, and is given by

ρ(θ) =
∏

Xu

∏

x

[θx|u]
ψx|u−1.

Parameters that optimize the above objective function are
called MAP estimates as they maximize the posterior den-
sity of the parameters given the dataset.

When every exponent ψx|u is equal to 1 (uninformative
prior), we get ρ(θ) = 1 and MAP estimates reduce to max-
imum likelihood estimates. Moreover, when every expo-
nent ψx|u is equal to 2, MAP estimates reduce to maxi-
mum likelihood estimates with Laplace smoothing. This
is a common technique to deal with the problem of insuf-
ficient counts (i.e., instantiations that never appear in the
dataset, leading to zero probabilities and division by zero).
We will use Laplace smoothing in our experiments.

3 An Upper Bound for MRFs

In this section, we utilize variables that are always observed
in a dataset to obtain an upper bound on the likelihood.
The bound is obtained by solving a convex optimization
problem over an auxiliary MRF, which is defined next.

3.1 Decomposition

The auxiliary MRF is obtained by first decomposing the
MRF graph G using variables O that are fully observed in
the dataset.

O3	

O1	 O2	

H1	

(a) Graph

O1	 O2	

H1	

(b) Components

O3	

O1	 O2	

(c) Auxiliary
graph

Figure 3: Auxiliary MRF graph under fully observed vari-
ables O = {O1, O2, O3}.

Definition 1 Let G|O be the result of deleting variables
O from graph G. A component of G|O is a maximal set
of nodes S that are connected in G|O. A variable B is a
boundary for component S iff edge B − S appears in G,
B 6∈ S and S ∈ S.

Boundary variables must be included in O. Moreover,
component variables cannot intersect with O. Figures 1–
3 depict the components and boundaries of some MRF
graphs.

We are now ready to define the auxiliary MRF by defining
its graph. The auxiliary MRF will then have one factor over
each maximal clique of this graph.

Definition 2 The auxiliary graph for graph G and vari-
ables O is denoted AG|O and defined as follows: (1) The
nodes of AG|O are the variables O; (2) AG|O has an edge
X − Y iff the edge exists in G or X and Y are boundary
variables of some component of G|O.

Figures 1–3(c) depict some auxiliary MRF graphs.

3.2 Optimization

We will next use the auxiliary MRF graph to formulate a
convex optimization problem, called the auxiliary problem.
The solution of this auxiliary problem will provide an upper
bound on the likelihood.

Definition 3 Given an MRF graphG, and a corresponding
dataset D with fully observed variables O, the auxiliary
optimization problem is that of learning the parameters of
auxiliary MRF AG|O from dataset DO.

The auxiliary optimization problem is always convex. This
follows since the graph AG|O contains only variables O,
which are fully observed in the dataset D. Hence, the aux-
iliary optimization problem corresponds to learning the pa-
rameters of an MRF under complete data (DO is a complete
dataset in this case).

The following theorem shows that the solution of the con-
vex optimization problem provides an upper bound on the
likelihood.

Theorem 1 Let G be an MRF graph and D be a corre-

774

sponding dataset with fully observed variables O. Let f(θ)
be the likelihood function for MRF graphG, and let g(θ) be
the likelihood function for its auxiliary MRF graph AG|O.
We then have f(θ) ≤ g(θ∗), where θ∗ is the global opti-
mum for g(θ).

Proof Let F1(X1), . . . , Fn(Xn) be the factors of auxiliary
MRFAG|O, representing parameters θ (i.e., each Fj(xj) is
a parameter in θ). Note that Xj is a maximal clique of
the auxiliary graph and Xj ⊆ O. Let the dataset D be
{d1, . . . ,dN}. The convex optimization problem g(θ) is
then

maximize g(θ) =
N∑

i=1

logZθ(di)−N logZθ (2)

where

Zθ =
∑

o

n∏

j=1

Fj(xj), xj ∼ o (3)

Zθ(di) =
n∏

j=1

Fj(xj), xj ∼ di (4)

We will now expand the above equations for optimizing the
auxiliary likelihood g(θ) so we can optimize the original
likelihood f(θ). The basic observation is that f(θ) can be
written in terms of marginals over the fully observed vari-
ables. However, these marginals are not free to take any
values, as they have to correspond to some original param-
eters that realize such marginals. Hence, we must constrain
these marginals, which correspond to auxiliary parameters
Fi(xi), in terms of the original parameters. We do this next.

First, note that for each factor fk(Yk) of the original MRF
G, there is some factor Fj(Xj) of the auxiliary MRF, such
that Yk ∩O ⊆ Xj . We will therefore assign each original
factor fk to a corresponding auxiliary factor Fj , writing f jk
to denote this assignment.

Next, for each auxiliary factor Fj(Xj), let Zj be the vari-
ables appearing in original factors f jk , but not in the auxil-
iary factor Fj . Consider now the following equation, which
defines auxiliary parameters Fj(xj) in terms of original pa-
rameters f jk(yk):

Fj(xj) =
∑

zj

∏

k

f jk(yk), yk ∼ xjzj (5)

The original optimization problem f(θ) can now be de-
fined using Equations 2, 3 and 4, subject to the equality
constraints of Equation 5 (i.e., we are now optimizing the
original parameters f jk(yk)). By relaxing these equality
constraints, and optimizing over the auxiliary parameters
Fj(xj), we get back the auxiliary optimization problem.
Since the latter is obtained by relaxing constraints, we have
f(θ) ≤ g(θ?). �

Figure 4: A chain MRF with alternating fully observed
variables, and its corresponding auxiliary MRF.

Figure 5: A binary tree MRF with alternating fully ob-
served levels, and its corresponding auxiliary MRF.

Note that when all variables are fully observed in the
dataset D (i.e., the dataset is complete), the auxiliary MRF
graph corresponds to the original MRF graph, and the
bound becomes exact.

3.3 Computing the Bound

The proposed upper bound can be computed using standard
methods for estimating parameters under complete data.
These methods require inference on the auxiliary MRF,
whose complexity depends on the treewidth of its under-
lying graph. This treewidth can be larger or smaller than
the treewidth of the original MRF, depending on the pat-
terns of data incompleteness. We will illustrate this next
using a set of examples, in which fully observed nodes are
shaded, while hidden nodes are left unshaded.

Figures 4 and 5 show MRFs of bounded treewidth and
certain patterns of data incompleteness that lead to auxil-
iary MRFs with bounded treewidth. In particular, Figure 4
shows a chain with alternating fully observed and hidden
variables, which results in an auxiliary MRF with treewidth
1, regardless of the chain length. Figure 5 shows a complete
binary tree with alternating fully observed levels, leading
to an auxiliary MRF with treewidth 2, regardless of the tree
depth.

Figure 6 shows an example where the auxiliary MRF has a
lower treewidth. However, Figure 7 shows an n × n grid,
leading to an auxiliary MRF with treewidth 2n − 1. Simi-
larly, Figure 8 shows an MRF with treewidth 1, yet an aux-
iliary MRF of treewidth n.

775

Figure 6: An MRF structure that leads to an auxiliary MRF
of lower treewidth.

Figure 7: A grid with alternating fully observed rows, and
its corresponding auxiliary MRF.

4 An Upper Bound for Bayesian Networks

We now present a similar upper bound on the likelihood
function for a Bayesian network structure G. Again, the
bound is defined based on the set of fully observed vari-
ables O in a dataset.

Definition 4 ([26]) LetG|O be the result of deleting edges
in DAG G that are outgoing from variables O. A
component of G|O is a maximal set of variables S that are
connected in G|O. A variable B is a boundary for compo-
nent S iff edge B → S appears in G, B 6∈ S and S ∈ S.

Figure 9 depicts an example DAG with its components and
boundaries. Note that the boundary variables B of a com-
ponent must all be fully observed, B ⊆ O. Moreover, for
any component S, the variables S ∩O must be leaf nodes
in G|O.

We will next interpret the boundary variables B of each
component S as the parents of observed variables in com-
ponent S. This interpretation will be used to define an aux-
iliary distribution over the fully observed variables.

Definition 5 The auxiliary distribution for DAG G and
variables O is denoted PG|O and defined as follows: (1)
PG|O is over the variables O, (2) PG|O is the product of
factors Pr(L|B), where B is the boundary variables of
some component S and L = S ∩O.

Figure 8: An MRF structure with treewidth 1, and its cor-
responding auxiliary MRF of treewidth n.

	 	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 V

X Y

Z

(a) DAG

	 	 	 	 V 	 	 	 	

	 	 	 	 V

X

	 	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 V

X Y

Z

(b) Components

Figure 9: A DAG and its components under fully observed
variables O = {V,X,Z}.

Each probability Pr(l|b) will be interpreted as an auxiliary
parameter θl|b. We can now state our upper bound.

Theorem 2 Let G be a DAG and D be a corresponding
dataset with fully observed variables O. Let f(θ) be the
likelihood function for G and D, and let g(θ) be the likeli-
hood function for the auxiliary distribution PG|O. We then
have f(θ) ≤ g(θ∗), where θ∗ is the global optimum for
g(θ).

Proof We now sketch the proof of this theorem, which is
similar to the one for MRFs. That is, we express auxil-
iary parameters in terms of original parameters, allowing
us to formulate the original optimization problem as an
optimization problem with non-convex equality constraints
(which relate auxiliary and original parameters). By relax-
ing these equality constraints, we obtain a convex optimiza-
tion problem that provides an upper bound on the original
optimization problem. Hence, it suffices to show the non-
convex equality constraints in this case.

Consider a factor Pr(X |U) of the auxiliary distribution,
and the corresponding parameters θx|u. Variables X must
then be leaves of some component S in G|O, and U must
correspond to the boundary variables of component S. One
can then express each auxiliary parameter θx|u in terms
of original parameters that pertain only to the variables
in component S. In particular, let Pr(.) be the distribu-
tion induced by the original DAG G and let y be an in-
stantiation of variables S \ X. We then have Pr(x|u) =∑

y Pr(x,y|u). Moreover, Pr(x,y|u) can be expressed
in terms of original parameters pertaining only to variables
S. This follows since, given U, S is independent of all
other variables in DAG G. �

One difference from the upper bound for MRFs is that this
bound can be computed more efficiently. In particular, the
optimal estimate θ? can be identified using a single pass
through the dataset DO. Similarly, g(θ?) can be computed
using a single pass through the dataset, once the estimate
θ? is identified.

776

5 Experimental Results

Our experiments are structured as follows. Given a network
G, we generate a dataset D while ensuring that a certain
percentage of variables are fully observed, with all others
hidden. Using dataset D, we estimate the parameters of
network G using EM.

We compare the local optimum learned by EM, to the pro-
posed bound gotten using decomposition, and to the bound
that assumes all distributions are valid (which we call the
naive bound).

The naive bound is computed by discarding the graph struc-
ture and assigning a probability to every data example
based on its number of occurrences in the dataset. This
effectively assumes a fully connected graph. Consider, for
example, a simple dataset with a data example d1 that is
repeated twice and another d2 that is repeated 3 times. The
naive bound assigns a probability 2

5 to d1, and 3
5 to d2, and

computes the likelihood: (25)
2 × (35)

3.

Before we present our results, we have the following ob-
servations on our data generation model. First, we made
all unobserved variables hidden (as opposed to missing at
random) as this leads to a more difficult learning problem,
especially for EM. Second, it is not uncommon to have a
significant number of variables that are always observed
in real-world datasets. For example, in the UCI repository:
the internet advertisements dataset has 1558 variables, only
3 of which have missing values; the automobile dataset has
26 variables, where 7 have missing values; the dermatol-
ogy dataset has 34 variables, where only age can be miss-
ing; and the mushroom dataset has 22 variables, where only
one variable has missing values [1].

In our experiments, we use the following networks: alarm,
andes, asia, win95pts, diagnose, pigs, spect, water, to-
gether with chains, trees, and grids. Network win95pts (76
variables) is an expert system for printer troubleshooting in
Windows 95, whereas Network pigs is used for diagnosing
the PSE disease. Network andes is an intelligent tutoring
system. Network diagnose is from the UAI 2008 evalua-
tion. Network spect is a naive Bayes network induced from
a dataset in the UCI ML repository, with 1 class variable
and 22 attributes. Chains, trees, and grids are randomly
generated networks. The other networks are commonly
used benchmarks.

Figures from 10 to 25 show the objective function val-
ues gotten by EM for different benchmarks and for differ-
ent percentages of fully observed variables, together with
the proposed bound (decomposition bound), and the naive
bound. We have the following observations on the results.

In most cases, our proposed bound was much tighter than
the naive bound. One can also see that the proposed bound
coincides (or almost coincides) with the EM’s curve in Fig-

50 60 70 80 90
−12000

−11000

−10000

−9000

−8000

−7000

−6000

Observed %

Li
ke

lih
oo

d

Naive Bound
Decomposition Bound
EM

Figure 10: Upper bound for network Alarm.

ures 11, 15, 18, 19, 20, 21, 22, 23, 24, and 25. This shows
that the bound can be tight in many cases. When the bound
coincides with the EM curve, it provides a certificate that
EM is getting the global optimum in these cases.

Moreover, in Figures 10, 14, and 17, as the number of fully
observed variables increases, the gap between the proposed
bound and EM’s curve tends to shrink, which suggests that
the bound becomes tight and that EM gets close to the
global optimum in these cases. On the other hand, for cases
where the proposed bound was not close to the EM’s curve,
it could be that EM is getting a local optimum, or the bound
is not tight, in these cases.

Furthermore, we note that the excellent performance of the
upper bound on Network Spect in Figure 15, and on tree
networks in Figures 20, 21, and 22 is partially because hid-
den variables associated with leaf nodes in these networks
can be ignored from the computation of the likelihood, as
their values are summed out.

We finally conduct an experiment to see how often EM ap-
proaches the bound if started from different seeds; using a
3× 3 grid while fully observing 50% of the variables. Fig-
ure 26 shows the difference in likelihood between the upper
bound and EM for this benchmark, when started from dif-
ferent seeds (x-axis). One can see that EM gets close to the
bound in many cases for this benchmark. We note, how-
ever, that a more comprehensive study is needed for assess-
ing the quality of EM estimates under different seeds—a
study that can be significantly aided by the proposed upper
bound.

6 Related Work

Decomposing Bayesian networks based on fully observed
variables was proposed in [26] to speed-up parameter esti-
mation. Our bound relies on this decomposition as a first
step in formulating the auxiliary optimization problem.

Variational methods (see [14]) can provide lower bounds
on the likelihood in graphical models. Moreover, an upper
bound for the likelihood in the context of Gaussian mix-
tures was proposed in [3]. However, this bound only works

777

50 60 70 80 90
−2500

−2000

−1500

−1000

Observed %

Li
ke

lih
oo

d

Naive Bound
Decomposition Bound
EM

Figure 11: Upper bound for network Asia.

50 60 70 80 90
−11000

−10000

−9000

−8000

−7000

−6000

Observed %

Li
ke

lih
oo

d

Naive Bound
Decomposition Bound
EM

Figure 12: Upper bound for network Win95pts.

50 60 70 80 90
−10

−8

−6

−4

−2

0 x 104

Observed %

Li
ke

lih
oo

d

Naive Bound
Decomposition Bound
EM

Figure 13: Upper bound for network Diagnose.

50 60 70 80 90
−10

−8

−6

−4

−2

0 x 104

Observed %

Li
ke

lih
oo

d

Naive Bound
Decomposition Bound
EM

Figure 14: Upper bound for network Andes.

50 60 70 80 90
−1.4

−1.2

−1

−0.8

−0.6 x 104

Observed %

Li
ke

lih
oo

d

Naive Bound
Decomposition Bound
EM

Figure 15: Upper bound for network Spect.

50 60 70 80 90
−3.4

−3.2

−3

−2.8

−2.6

−2.4 x 104

Observed %

Li
ke

lih
oo

d

Naive Bound
Decomposition Bound
EM

Figure 16: Upper bound for network Water.

50 60 70 80 90
−4

−3

−2

−1

0 x 105

Observed %

Li
ke

lih
oo

d

Naive Bound
Decomposition Bound
EM

Figure 17: Upper bound for network Pigs.

50 60 70 80 90
−2.5

−2

−1.5

−1

−0.5 x 104

Observed %

Li
ke

lih
oo

d

Naive Bound
Decomposition Bound
EM

Figure 18: Upper bound for a chain network (50 nodes).

778

50 60 70 80 90
−10

−8

−6

−4

−2

0 x 104

Observed %

Li
ke

lih
oo

d

Naive Bound
Decomposition Bound
EM

Figure 19: Upper bound for a chain network (180 nodes).

50 60 70 80 90
−3

−2.5

−2

−1.5

−1

−0.5 x 104

Observed %

Li
ke

lih
oo

d

Naive Bound
Decomposition Bound
EM

Figure 20: Upper bound for a tree network (63 nodes).

50 60 70 80 90
−6

−5

−4

−3

−2

−1

0x 104

Observed %

Li
ke

lih
oo

d

Naive Bound
Decomposition Bound
EM

Figure 21: Upper bound for a tree network (127 nodes).

50 60 70 80 90
−15

−10

−5

0 x 104

Observed %

Li
ke

lih
oo

d

Naive Bound
Decomposition Bound
EM

Figure 22: Upper bound for a tree network (255 nodes).

50 60 70 80 90
−4000

−3500

−3000

−2500

−2000

Observed %

Li
ke

lih
oo

d

Naive Bound
Decomposition Bound
EM

Figure 23: Upper bound for a 3× 3 MRF grid.

50 60 70 80 90
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6 x 104

Observed %

Li
ke

lih
oo

d

Naive Bound
Decomposition Bound
EM

Figure 24: Upper bound for a 6× 6 MRF grid.

50 60 70 80 90
−1.4

−1.2

−1

−0.8

−0.6 x 104

Observed %

Li
ke

lih
oo

d

Naive Bound
Decomposition Bound
EM

Figure 25: Upper bound for a 9× 9 MRF grid.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Initial Point

Li
ke

lih
oo

d
D

iff
.

Figure 26: Likelihood difference between decomposition
bound and EM started from different points.

779

asymptotically. An upper bound on maximum likelihood
that only works for phylogenetic trees was proposed in [7].
Techniques for computing upper and lower bounds on like-
lihoods in sigmoid and noisy-OR networks were proposed
in [12].

Some work also exists for obtaining upper and lower
bounds on the partition function. In particular, mean field
theory, e.g. [33, 14], provides such a lower bound (tighter
bounds have also been derived [19]). In contrast, upper
bounds are not widely available [31]. For the special case
of the Ising Model, a recursive procedure was proposed for
upper bounding the log partition function [11]. An up-
per bound on the partition function of an arbitrary MRF
was proposed in [31] based on solving a convex variational
problem. While bounds on the partition function can be
used to get an upper bound on the likelihood, the non-
convex term related to the data remains non-convex, which
does not make the bound easy to compute. The bound we
proposed, however, is based on solving a convex optimiza-
tion problem.

7 Conclusion

We proposed a technique for obtaining an upper bound on
the global optimum in parameter estimation. The technique
applies to incomplete datasets and exploits variables that
are always observed in the dataset. The bound is computed
by solving a convex optimization problem, which can be
solved by a single pass through the dataset in Bayesian net-
works. The proposed bound can be useful in providing a
certificate of global optimality for parameters learned by
estimation algorithms. Empirically, we showed that the
bound can be tight, and can be used to show that an es-
timation algorithm is obtaining the global optimum or an
estimate that is very close to the optimum.

Acknowledgments

This work was supported by ONR grant #N00014-12-1-
0423 and NSF grant #IIS-1118122.

References
[1] K. Bache and M. Lichman. Uci machine learning reposi-

tory. Technical report, Irvine, CA: University of California,
School of Information and Computer Science, 2013.

[2] J. Besag. Statistical Analysis of Non-Lattice Data. The
Statistician, 24:179–195, 1975.

[3] Christophe Biernacki. An asymptotic upper bound of the
likelihood to prevent gaussian mixtures from degenerating.
Technical report, Université de Franche-Comté, 2004.

[4] Adnan Darwiche. Modeling and Reasoning with Bayesian
Networks. Cambridge University Press, 2009.

[5] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum
likelihood from incomplete data via the EM algorithm. Jour-
nal of the Royal Statistical Society B, 39:1–38, 1977.

[6] R. A. Fisher. On the mathematical foundations of theoretical
statistics. Philosophical Transactions of the Royal Society of
London Series, 1922.

[7] Michael D. Hendy and Barbara R. Holland. Upper bounds
on maximum likelihood for phylogenetic trees. Bioinfor-
matics, 2003.

[8] Magnus R. Hestenes and Eduard Stiefel. Methods of con-
jugate gradients for solving linear systems. Research of the
National Bureau of Standards, 1952.

[9] G. Hinton. Training products of experts by minimizing con-
trastive divergence. In Neural Computation, 2000.

[10] A. Hyvärinen. Estimation of non-normalized statistical
models using score matching. JMLR, 2005.

[11] T. S. Jaakkola and M. Jordan. Recursive algorithms for ap-
proximating probabilities in graphical models. In Advances
in Neural Information Processing Systems, 1996.

[12] Tommi S. Jaakkola and Michael I. Jordan. Computing upper
and lower bounds on likelihoods in intractable networks. In
Proceedings of the Conference on Uncertainty in Artificial
Intelligence, 1998.

[13] Radim Jirousek and Stanislav Preucil. On the effective im-
plementation of the iterative proportional fitting procedure.
Computational Statistics & Data Analysis, 19(2):177–189,
1995.

[14] M. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. Saul.
Learning in Graphical Models, chapter “An introduction to
variational methods for graphical models. Cambridge, MA:
MIT Press, 1999.

[15] R. Kindermann and J. L. Snell. Markov Random Fields and
their Applications. American Mathematical Society, 1980.

[16] Daphne Koller and Nir Friedman. Probabilistic Graphical
Models: Principles and Techniques. MIT Press, 2009.

[17] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Condi-
tional random fields: Probabilistic models for segmenting
and labeling sequence data. In ICML, 2001.

[18] S. L. Lauritzen. The EM algorithm for graphical associ-
ation models with missing data. Computational Statistics
and Data Analysis, 19:191–201, 1995.

[19] S. L. Lauritzen. Graphical Models. Oxford, U.K.: Oxford
Univ. Press, 1996.

[20] S Z. Li. Markov random field modeling in image analysis.
Springer-Verlag, 2001.

[21] D. C. Liu and J. Nocedal. On the Limited Memory BFGS
Method for Large Scale Optimization. Mathematical Pro-
gramming, 45(3):503–528, 1989.

[22] E. Marinari, G. Parisi, and J.J. Ruiz-Lorenzo. Numerical
simulations of spin glass systems. Spin Glasses and Random
Fields, 1997.

780

[23] Yariv Dror Mizrahi, Misha Denil, and Nando de Freitas.
Linear and parallel learning of Markov random fields. In
In International Conference on Machine Learning (ICML),
2014.

[24] Kevin Patrick Murphy. Machine Learning: A Probabilistic
Perspective. MIT Press, 2012.

[25] Khaled S. Refaat, Arthur Choi, and Adnan Darwiche.
EDML for learning parameters in directed and undirected
graphical models. In Advances in Neural Information Pro-
cessing Systems 26, pages 1502–1510, 2013.

[26] Khaled S. Refaat, Arthur Choi, and Adnan Darwiche. De-
composing parameter estimation problems. In Advances
in Neural Information Processing Systems 27, pages 1565–
1573, 2014.

[27] Dan Roth. On the hardness of approximate reasoning. Arti-
ficial Intelligence, 1996.

[28] S. Russel, J. Binder, D. Koller, and K. Kanazawa. Local
learning in probabilistic networks with hidden variables. In
Proceedings of the Fourteenth International Joint Confer-
ence on Artificial Intelligence, 1995.

[29] R. Shachter. Evidence absorption and propagation through
evidence reversals. In Proceedings of the Conference on
Uncertainty in Artificial Intelligence, 1990.

[30] C. Varin, N. Reid, and D Firth. An overview of composite
likelihood methods. Statistica Sinica, 2011.

[31] Martin J. Wainwright, Tommi S. Jaakkola, and IEEE Alan
S. Willsky, Fellow. A new class of upper bounds on the
log partition function. IEEE Transactions on Information
Theory, 2005.

[32] C. Yanover, O. Schueler-Furman, and Y. Weiss. Minimiz-
ing and learning energy functions for side-chain prediction.
In Speed, Terry and Huang, Haiyan (eds.), Research in
Computational Molecular Biology, volume 4453 of Lecture
Notes in Computer Science, 2007.

[33] J. Zhang. The application of the gibbs-bogoliubov-feynman
inequality in mean-field calculations for Markov random-
fields. IEEE Tran. on Image Process., 5(7):1208–1214,
1996.

781

A Markov Game Model for Valuing Player Actions in Ice Hockey

Kurt Routley
School of Computing Science

Simon Fraser University
Vancouver, BC, Canada

kdr4@sfu.ca

Oliver Schulte
School of Computing Science

Simon Fraser University
Vancouver, BC, Canada

oschulte@cs.sfu.ca

Abstract

A variety of advanced statistics are used to
evaluate player actions in the National Hockey
League, but they fail to account for the context
in which an action occurs or to look ahead to
the long-term effects of an action. We apply the
Markov Game formalism to develop a novel ap-
proach to valuing player actions in ice hockey
that incorporates context and lookahead. Dy-
namic programming is used to learn Q-functions
that quantify the impact of actions on goal scor-
ing resp. penalties. Learning is based on a
massive dataset that contains over 2.8M events
in the National Hockey League. The impact of
player actions is found to vary widely depend-
ing on the context, with possible positive and
negative effects for the same action. We show
that lookahead makes a substantial difference to
the action impact scores. Players are ranked ac-
cording to the aggregate impact of their actions.
We compare this impact ranking with previous
player metrics, such as plus-minus, total points,
and salary.

1 INTRODUCTION

A fundamental goal of sports statistics is to understand
which actions contribute to winning in what situation. As
sports have entered the world of big data, there is increas-
ing opportunity for large-scale machine learning to model
complex sports dynamics. The research described in this
paper applies AI techniques to model the dynamics of ice
hockey; specifically the Markov Game model formalism
[Littman, 1994], and related computational techniques such
as the dynamic programming value iteration algorithm. We
make use of a massive dataset about matches in the Na-
tional Hockey League (NHL). This dataset comprises all
play-by-play events from 2007 to 2014, for a total of over
2.8M events/actions and almost 600K play sequences. The

Markov Game model comprises over 1.3M states. Whereas
most previous works on Markov Game models aim to com-
pute optimal strategies or policies [Littman, 1994] (i.e.,
minimax or equilibrium strategies), we learn a model of
how hockey is actually played, and do not aim to com-
pute optimal strategies. In reinforcement learning (RL)
terminology, we use dynamic programming to compute an
action-value Q-function in the on policy setting [Sutton and
Barto, 1998]. In RL notation, the expression Q(s, a) de-
notes the expected reward of taking action a in state s.

Motivation Motivation for learning a Q-function for
NHL hockey dynamics includes the following.

Knowledge Discovery. The Markov Game model provides
information about the likely consequences of actions. The
basic model and algorithms can easily be adapted to study
different outcomes of interest, such as goals and penalties.

Player Evaluation. One of the main tasks for sports statis-
tics is evaluating the performance of players [Schumaker
et al., 2010]. A common approach is to assign action
values, and sum the corresponding values each time a
player takes the respective action. An advantage of this
additive approach is that it provides highly interpretable
player rankings. A simple and widely used example in ice
hockey is the +/- score: for each goal scored by (against)
a player’s team when he is on the ice, add +1 (-1) point.
Researchers have developed several extensions of +/- for
hockey [Macdonald, 2011; Spagnola, 2013; Schuckers and
Curro, 2013].

There are two major problems with the previous action
count approaches used in ice hockey. (1) They are unaware
of the context of actions within a game. For example, a
goal is more valuable in a tied-game situation than when
the scorer’s team is already four goals ahead [Pettigrew,
2015]. Another example is that if a team manages two
successive shots on goal, the second attempt typically has
a higher chance of success. In the Markov Game model,
context = state. Formally, the Q function depends both on
the state s and the action a. Richer state spaces therefore
capture more of the context of an action. (2) Previous ac-

782

tion scores are based on immediate positive consequences
of an action (e.g. goals following a shot). However, an
action may have medium-term and/or ripple effects rather
than immediate consequences in terms of visible rewards
like goals. Therefore evaluating the impact of an action
requires lookahead. Long-term lookahead is especially im-
portant in ice hockey because evident rewards like goals oc-
cur infrequently [Lock and Schuckers, 2009]. For example,
if a player receives a penalty, this leads to a manpower dis-
advantage for his team, known as a powerplay for the other
team. It is easier to score a goal during a powerplay, but this
does not mean that a goal will be scored immediately after
the penalty. For another example, if a team loses the puck
in their offensive zone, the resulting counterattack by the
other team may lead to a goal eventually but not immedi-
ately. The dynamic programming value iteration algorithm
of Markov Decision Processes provides a computationally
efficient way to perform unbounded lookahead.

Evaluation Our evaluation learns Q-functions for two re-
ward events, scoring the next goal and receiving the next
penalty. We observe a wide variance of the impact of ac-
tions with respect to states, showing context makes a sub-
stantial difference. We provide examples of the context de-
pendence to give a qualitative sense of how the Markov
Game model accounts for context. To evaluate player per-
formance, we use the Q-function to quantify the value of
a player’s action in a context. The action values are then
aggregated over games and seasons to get player impact
scores. Player impact scores correlate with plausible alter-
native scores, such as a player’s total points, but improve
on these measures, as our impact score is based on many
more events.

Contributions We make our extensive dataset available
on-line, in addition to our code and the learned Markov
game model [Routley et al., 2015]. The main contributions
of this paper may be summarized as follows:

1. The first Markov Game model for a large ice hockey
state space (over 1.3M), based on play sequence data.

2. Learning a Q-function that models play dynamics in
the National Hockey League from a massive data set
(2.8M events). We introduce a variant of AD-Trees
as a data structure to (1) compute and store the large
number of sufficient statistics required [Moore and
Lee, 1998], and (2) support value iteration updates.

3. Applying the Q-function to define a context-aware
look-ahead measure of the value of an action, over
configurable objective functions (rewards).

4. Applying the context-aware action values to score
hockey player actions, including how players affect
penalties as well as goals.

Paper Organization. We review related work in measur-
ing player contributions and machine learning in sports in
Section 2. We then give some background information on
the ice hockey domain and NHL play-by-play sequences
data. Our Markov Game model translates the hockey do-
main features into the Markov formalism. We describe how
we implement a scalable value iteration for the ice hockey
domain. The evaluation section addresses the impact of
context and lookahead. We apply the model to rank the
aggregate performance of players and describe the result-
ing player ranking. We view our work as taking the first
step, not the last, in applying AI modelling techniques to
ice hockey. Therefore, we conclude with a number of po-
tential extensions and open problems for future work.

2 RELATED WORK

Evaluating Actions and Players in Ice Hockey Several
papers aim to improve the basic +/- score with statistical
techniques [Macdonald, 2011; Gramacy et al., 2013; Spag-
nola, 2013]. A common approach is to use regression tech-
niques where an indicator variable for each player is used
as a regressor for a goal-related quantity (e.g., log-odds of
a goal for the player’s team vs. the opposing team). The
regression weight measures the extent to which the pres-
ence of a player contributes to goals for his team or pre-
vents goals for the other team. These approaches look at
only goals, no other actions. The only context they take
into account is which players are on the ice when a goal
is scored. Regression could be combined with our Markov
game model to capture how team impact scores depend on
the presence or absence of individual players.

The closest predecessor to our work in ice hockey is the
Total Hockey Rating (THoR) [Schuckers and Curro, 2013].
This assigns a value to all actions, not only goals. Actions
were evaluated based on whether or not a goal occurred in
the following 20 seconds after an action. This work used
data from the 2006/2007 NHL season only. THoR assumes
a fixed value for every action and does not account for the
context in which an action takes place. Furthermore, the
window of 20 seconds restricts the lookahead value of each
action. Our Q-learning method is not restricted to any par-
ticular time window for lookahead.

Expected Possession Value [Cervone et al., 2014] uses
spatial-temporal tracking data for basketball to build the
POINTWISE model for valuing player decisions and player
actions. Conceptually, their approach to defining action
values is the closest predecessor to ours: The counterpart
to the value of a state in a Markov game is called expected
possession value (EPV). The counterpart to the impact of
an action on this value is called EPV-added (EPVA). Cer-
vone et al. emphasize the broad potential of the context-
based impact definitions: “we assert that most questions
that coaches, players, and fans have about basketball, par-

783

ticularly those that involve the offense, can be phrased and
answered in terms of EPV.”

While the definition of action impact is conceptually very
similar, Cervone et al. use neither AI terminology nor AI
techniques, which we cover in this paper. Moreover, all
the underlying details are different between our model and
theirs: The NHL does not yet have and therefore we do not
use spatial tracking data, which is the main focus of Cer-
vone et al.. Cervone et al. discuss the advantages of using a
discrete state space for stochastic consistency, but consider
it computationally infeasible for their data. We show that
leveraging AI data structures and algorithms makes han-
dling a large discrete state space feasible for ice hockey.
Including the local action history in the state space allows
us to capture the medium-term effects of actions. This is
more important for ice hockey than for basketball, because
scoring in basketball occurs at much shorter intervals.

Markov Decision Process Models for Other Sports
MDP-type models have been applied in a number of sports
settings, such as baseball, soccer and football. For review,
please see Cervone et al. [2014]. Our work is similar in
that our method uses value iteration on a Markovian state
space, however, previous Markov models in sports use a
much smaller state space. The goal of these models is to
find an optimal policy for a critical situation in a sport or
game. In contrast, we learn in the on-policy setting whose
aim is to model hockey dynamics as it is actually played.

3 DOMAIN DESCRIPTION: HOCKEY
RULES AND HOCKEY DATA

We outline the rules of hockey and describe the dataset
available from the NHL.

3.1 HOCKEY RULES

We give a brief overview of rules of play in the NHL [Na-
tional Hockey League, 2014]. NHL games consist of three
periods, each 20 minutes in duration. A team has to score
more goals than their opponent within three periods in or-
der to win the game. If the game is still tied after three
periods, the teams will enter a fourth overtime period,
where the first team to score a goal wins the game. If
the game is still tied after overtime during the regular sea-
son, a shootout will commence. During the playoffs, over-
time periods are repeated until a team scores a goal to win
the game. Teams have five skaters and one goalie on the
ice during even strength situations. Penalties result in a
player sitting in the penalty box for two, four, or five min-
utes and the penalized team will be shorthanded, creating a
manpower differential between the two teams. The period
where one team is penalized is called a powerplay for the
opposing team with a manpower advantage. A shorthanded

goal is a goal scored by the penalized team, and a power-
play goal is a goal scored by the team on the powerplay.

3.2 DATA FORMAT

The NHL provides information about sequences of play-
by-play events, which are scraped from http://www.
nhl.com and stored in a relational database. The real-
world dataset is formed from 2, 827, 467 play-by-play
events recorded by the NHL for the complete 2007-2014
seasons, regular season and playoff games, and the first
512 games of the 2014-2015 regular season. A break-
down of this dataset is shown in Table 1. The type of
events recorded by the NHL from the 2007-2008 regular
season and onwards are listed in Table 2. There are two
types of events: actions performed by players and start
and end markers for each play sequence. Every event is
marked with a continuous timestamp, and every action is
also marked with a zoneZ and which team, Home or Away,
carries out the action.

Table 1: Size of Dataset
Number of Teams 32
Number of Players 1,951
Number of Games 9,220
Number of Sequences 590,924
Number of Events 2,827,467

Table 2: NHL Play-By-Play Events Recorded

Action Event Start/End Event
Faceoff Period Start
Shot Period End
Missed Shot Early Intermission Start
Blocked Shot Penalty
Takeaway Stoppage
Giveaway Shootout Completed
Hit Game End
Goal Game Off

Early Intermission End

4 MARKOV GAMES

A Markov Game [Littman, 1994], sometimes called a
stochastic game, is defined by a set of states, S, and a col-
lection of action sets, one for each agent in the environ-
ment. State transitions are controlled by the current state
and one action from each agent. For each agent, there is
an associated reward function mapping a state transition to
a reward. An overview of how our Markov Game model
fills in this schema is as follows. There are two players,
the Home Team H and the Away Team A. In each state,

784

only one team performs an action, although not in a turn-
based sequence. This reflects the way the NHL records
actions. Thus at each state of the Markov Game, exactly
one player chooses No-operation. State transitions follow
a semi-episodic model [Sutton and Barto, 1998] where play
moves from episode to episode, and information from past
episodes is recorded as a list of context features. The past
information includes the goal score and manpower. A se-
quence in the NHL play-by-play data corresponds to an
episode in Markov decision process terminology. Within
each episode/sequence, our game model corresponds to a
game tree with perfect information as used in AI game re-
search [Russell and Norvig, 2010]. We introduce the fol-
lowing generic notation for all states, following [Russell
and Norvig, 2010; Littman, 1994].

• Occ(s) is the number of occurrences of state s as ob-
served in the play-by-play data.

• Occ(s, s′) is the number of occurrences of state s be-
ing immediately followed by state s′ as observed in
the play-by-play data. (s, s′) forms an edge in the
transition graph of the Markov Game model.

• The transition probability function TP is a mapping
of S × S → (0, 1]. We estimate it using the observed

transition frequency
Occ(s, s′)

Occ(s)
.

We begin by defining context features, then play sequences.

4.1 STATE SPACE: CONTEXT FEATURES

Previous work on Markov process models for ice hockey
[Thomas et al., 2013] defined states in terms of hand-
selected features that are intuitively relevant for the game
dynamics, such as the goal differential and penalties. We
refer to such features as context features. Context features
remain the same throughout each play sequence.

Table 3: Context Features
Notation Name Range

GD Goal Differential [-8,8]
MD Manpower Differential [-3,3]
P Period [1,7]

A context state lists the values of relevant features at a
point in the game. These features are shown in Table 3,
together with the range of integer values observed. Goal
Differential GD is calculated as Number of Home Goals
- Number of Away Goals. A positive (negative) goal dif-
ferential means the home team is leading (trailing). Man-
power Differential MD is calculated as Number of Home
Skaters on Ice - Number of Away Skaters on Ice. A posi-
tive manpower differential typically means the home team

is on the powerplay (away team is penalized), and a nega-
tive manpower differential typically means the home team
is shorthanded (away team is on the powerplay).1 Period
P represents the current period number the play sequence
occurs in, typically ranging in value from 1 to 5. Periods
1 to 3 are the regular play of an ice hockey game, and pe-
riods 4 and onwards are for overtime and shootout periods
as needed.

Potentially, there are (17 × 7 × 7) = 833 context states.
In our NHL dataset, 450 context states occur at least once.
Table 4 includes statistics for the top-20 context states over
all 590, 924 play sequences, and lists 52, 793 total goals
and 89, 612 total penalties. Positive differences are for the
home team and negative differences are for the away team.
For example, a Goal Difference of 7.1% means the home
team is 7.1% more likely to score a goal in that context state
than the away team. Similarly, a Penalty Difference of -
33.2% means the away team is 33.2% more likely to receive
a penalty in that context state than the home team. Our
Markov model is very well calibrated, due to the frequency
estimation method, meaning that its predictions match the
observed frequencies of goals and penalties. We explain
below how the model predictions are computed.

A number of previous papers on hockey dynamics have
considered the context features of play sequences. The im-
portant trends that it is possible to glean from statistics such
as those shown in Table 4 have been discussed in several
papers. Our data analysis confirms these observations on
a larger dataset than previously used. Notable findings in-
clude the following.

1. Home team advantage: the same advantages in terms
of context features translate into higher scoring rates.

2. Penalties are more frequent than goals, except for the
overtime period 4 (cf. [Schuckers and Brozowski,
2012]).

3. Gaining a powerplay substantially increases the con-
ditional probability of scoring a goal [Thomas et al.,
2013].

4. Gaining a powerplay also significantly increases
the conditional probability of receiving a penalty
[Schuckers and Brozowski, 2012].

5. Shorthanded goals are surprisingly likely: a man-
power advantage translates only into a goal scoring
difference of at most 64.8%, meaning the shorthanded
team scores the next goal with a conditional probabil-
ity of 17.6%. (Home team powerplay when P = 1.)

While such patterns provide interesting and useful insights
into hockey dynamics, they do not consider action events.

1Pulling the goalie can also result in a skater manpower ad-
vantage.

785

Table 4: Statistics for Top-20 Most Frequent Context States. GD = Goal Differential, MD = Manpower Differential, P =
Period.

Observed Model Predicts
GD MD P #Sequences #Goals #Penalties Goal Difference Penalty Difference Goal Difference Penalty Difference

0 0 1 78,118 5,524 11,398 7.06% -2.26% 7.06% -2.26%
0 0 2 38,315 2,935 5,968 7.60% -2.92% 7.60% -2.92%
0 0 3 30,142 2,050 3,149 5.85% -2.19% 5.85% -2.19%
1 0 2 29,662 2,329 4,749 2.02% 2.17% 2.02% 2.17%
1 0 3 25,780 2,076 3,025 4.34% 3.54% 4.34% 3.54%
-1 0 2 25,498 1,970 4,044 8.63% -8.70% 8.63% -8.70%
1 0 1 24,721 1,656 4,061 5.31% 3.42% 5.31% 3.42%
-1 0 3 22,535 1,751 2,565 0.74% -18.28% 0.74% -18.28%
-1 0 1 20,813 1,444 3,352 4.57% -8.05% 4.57% -8.05%
2 0 3 17,551 1,459 2,286 6.92% -0.87% 6.92% -0.87%
2 0 2 15,419 1,217 2,620 2.71% 2.90% 2.71% 2.90%
-2 0 3 13,834 1,077 1,686 -2.32% -12.57% -2.32% -12.57%
0 1 1 12,435 1,442 2,006 64.77% 31.70% 64.77% 31.70%
-2 0 2 11,799 882 1,927 3.85% -15.72% 3.85% -15.72%
0 -1 1 11,717 1,260 2,177 -54.76% -44.79% -54.76% -44.79%
3 0 3 10,819 678 1,859 0.29% 1.24% 0.29% 1.24%
-3 0 3 7,569 469 1,184 7.04% -6.25% 7.04% -6.25%
0 1 2 7,480 851 1,157 56.99% 25.67% 56.99% 25.67%
0 0 4 7,024 721 535 5.69% -10.65% 5.69% -10.65%
0 -1 2 6,853 791 1,150 -52.47% -37.39% -52.47% -37.39%

This means that analysis at the sequence level does not con-
sider the internal dynamics within each sequence, and that
it is not suitable for evaluating the impact of hockey ac-
tions. We next extend our state space to include actions.

4.2 STATE SPACE: PLAY SEQUENCES

We expand our state space with actions and action histo-
ries. The basic set of 8 possible actions is listed in Table 2.
Each of these actions has two parameters: which team T
performs the action and the zone Z where the action takes
place. Zone Z represents the area of the ice rink in which
an action takes place. Z can have values Offensive, Neu-
tral, or Defensive, relative to the team performing an action.
For example, Z = Offensive zone relative to the home team
is equivalent to Z = Defensive zone relative to the away
team. A specification of an action plus parameters is an
action event. Using action description language notation
[Levesque et al., 1998], we write action events in the form
a(T,Z). For example, faceoff (Home,Neutral) denotes
the home team wins a faceoff in the neutral zone. We usu-
ally omit the action parameters from generic notation and
write a for a generic action event.

A play sequence h is a sequence of events starting with ex-
actly one start marker, followed by a list of action events,
and ended by at most one end marker. Start and end mark-
ers are shown in Table 2, adding shots and faceoffs as
start markers, and goals as end markers. We also allow
empty history ∅ as a valid play sequence. A complete
play sequence ends with an end marker. A state is a pair

s = 〈x, h〉 where x denotes a list of context features and h
an action history. State s represents a play sequence con-
sisting of action events a1, a2, . . . , an and with a particular
GD,MD, and P as the context. If the sequence h is empty,
then state s is purely a context node. Table 5 shows an ex-
ample of a NHL play-by-play action sequence in tabular
form. Potentially, there are (7 × 2 × 3)40 = 4240 action
histories. In our dataset, 1,325,809 states, that is, combina-
tions of context features and action histories, occur at least
once. We store sequence data in SQL tables (see Table 5).
SQL provides fast retrieval, and native support for the nec-
essary COUNT operations.

Table 5: Sample Play-By-Play Data in Tabular Format

GameId Period Sequence Number Event Number Event
1 1 1 1 PERIOD START
1 1 1 2 faceoff(Home,Neutral)
1 1 1 3 hit(Away,Neutral)
1 1 1 4 takeaway(Home,Defensive)
1 1 1 5 missed shot(Away,Offensive)
1 1 1 6 shot(Away,Offensive)
1 1 1 7 giveaway(Away,Defensive)
1 1 1 8 takeaway(Home,Offensive)
1 1 1 9 missed shot(Away,Offensive)
1 1 1 10 goal(Home,Offensive)
1 1 2 11 faceoff(Away,Neutral)

. . .

4.3 STATE TRANSITIONS

If h is an incomplete play sequence, we write h ? a for the
play sequence that results from appending a to h , where a
is an action event or an end marker. Similarly if s = 〈x, h〉,

786

then s ? a ≡ 〈x, h ? a〉 denotes the unique successor state
that results from executing action a in s. This notation uti-
lizes the fact that context features do not change until an
end marker is reached. For example, the goal differen-
tial does not change unless a goal event occurs. If h is a
complete play sequence, then the state 〈x, h〉 has a unique
successor 〈x′, ∅〉, where the mapping from x to x′ is deter-
mined by the end marker. For instance, if the end marker
is goal(Home, ∗), then the goal differential increases by 1.
A sample of our state transition graph is shown in Figure 1.
Note that R(s) is the reward value for the state, and will be
discussed in Section 4.4. In Figure 1, the reward encodes
the objective of scoring a goal.

Figure 1: State Transition Graph

Since the complete action history is encoded in the state,
action-state pairs are equivalent to state pairs. For exam-
ple, we can write Q(s ? a) to denote the expected reward
from taking action a in state s, where Q maps states to
real numbers, rather than mapping action-state pairs to real
numbers, as is more usual.

4.4 REWARD FUNCTIONS: NEXT GOAL AND
NEXT PENALTY

A strength of Markov Game modelling is value iteration
can be applied to many reward functions depending on
what results are of interest. We focus on two: scoring the
next goal, and receiving the next penalty (a cost rather than
a reward). These are two important events that change the
course of an ice hockey game. For example, penalties af-
fect goal scoring differentials, as shown in Table 4. Penal-
ties are also one path to goals that a coach may want to
understand in more detail. For instance, if a team receives
an unusual number of penalties, a coach may want to know
which players are responsible and by which actions. The
next goal objective can be represented in the Markov Game

model as follows.

1. For any state s with a complete play sequence that
ends in a Home resp. Away goal, we set RH (s) := 1
resp. RA(s) := 1 . For other states the reward is 0.

2. Any state s with a complete play sequence that ends
in a Home resp. Away goal is an absorbing state (no
transitions from this state).

With these definitions, the expected reward represents the
probability that if play starts in state s, a random walk
through the state space of unbounded length ends with a
goal for the Home team resp. the Away team. The cost
function for Receiving the Next Penalty can be represented
in exactly the same way.

5 CONSTRUCTING THE STATE
TRANSITION GRAPH

The main computational challenge is to build a data struc-
ture for managing the state space. The state space is large
because each (sub)sequence of actions defines a new state.
Since we are modelling the actual hockey dynamics in the
on policy setting, we need consider only action sequences
observed in some NHL match, rather than the much larger
space of all possible action sequences. We use the classic
AD-tree structure [Moore and Lee, 1998] to compute and
store sufficient statistics over observed action sequences.
The AD-tree is a tree of play sequences where a node is
expanded only with those successors observed in at least
one match. The play sequence tree is augmented with ad-
ditional edges that model further state transitions; for ex-
ample, a new action sequence is started after a goal. The
augmented AD-tree structure compactly manages sufficient
statistics, in this case state transition probabilities. It also
supports value iteration updates very efficiently.

We outline an algorithm for Context-Aware State Tran-
sition Graph construction. The root node initializes the
graph, and is an empty node with no context or event in-
formation. For each node, the context information GD,
MD, and P are set when the new node is created, and
the new action a is added to the sequence along with the
zone Z that a occurs in. The reward R(s) is also applied
to each node. The node counts Occ(s) and edge counts
Occ(s, s′) are applied to each node and edge respectively,
and are used to generate transition probabilities TP for the
value iteration using observed frequencies. The NHL play-
by-play event data records goals, but no separate event for
the shot leading to the goal exists. Following [Schuckers
and Curro, 2013], we record the shot leading to the goal in
addition to the goal itself by injecting a shot event into the
event sequence prior to the goal.

787

6 VALUE ITERATION

Recall that since states encode action histories, in our
model learning the expected value of states is equivalent to
learning a Q-function (Section 4.3). In reinforcement learn-
ing terms, there is no difference between the value function
V and the Q-function in our model. We can therefore ap-
ply standard value iteration over states [Sutton and Barto,
1998] to learn a Q-function for our ice hockey Markov
Game. Algorithm 1 shows pseudo-code. We compute sepa-
rate Q-functions for the Home team and for the Away team.
Since we are in the on policy setting, we have a fixed pol-
icy for the other team. This means we can treat the other
team as part of the environment, and reduce the Markov
Game to two single-agent Markov decision processes. In
our experiments, we use a relative convergence of 0.0001
as our convergence criterion, and 100,000 as the maximum
number of iterations.

Algorithm 1 Dynamic Programming for Value Iteration
Require: Markov Game model, convergence criterion c,

maximum number of iterations M
1: lastV alue = 0
2: currentV alue = 0
3: converged = false
4: for i = 1; i ≤M ; i← i+ 1 do
5: for all states s in the Markov Game model do
6: if converged == false then
7: Qi+1(s) =

R(s)+
1

Occ(s)

∑
(s,s′)∈E(Occ(s, s

′)×Qi(s′))
8: currentV alue = currentV alue+ |Qi+1(s)|
9: end if

10: end for
11: if converged == false then
12: if currentV alue−lastV aluecurrentV alue < c then
13: converged = true
14: end if
15: end if
16: lastV alue = currentV alue
17: currentV alue = 0
18: end for

7 EVALUATION AND RESULTS

We discuss the results of action values in Section 7.1 and
player values in Section 7.2.

7.1 ACTION IMPACT VALUES

The main quantity we consider is the impact of an action
as a function of context (= Markov state). This is defined
as follows:

impact(s, a) ≡ QT (s ? a)−QT (s)

where T is the team executing the action a. In a zero-sum
game, the state value is usually defined as the final result
following optimal play [Russell and Norvig, 2010]. Intu-
itively, the value specifies which player has a better posi-
tion in a state. Since we are not modelling optimal play, but
actual play in an on policy setting, the expected difference
in rewards is the natural counterpart. The impact quantity
measures how performing an action in a state affects the
expected reward difference. Figure 2 shows a boxplot for
the action impact values as they range over different con-
texts, i.e., states in the Markov Game model. (Boxplots
produced with MATLAB R2014a.) The red dots are out-
liers beyond 2.7 s.d. A cutoff of -0.2 and 0.2, shown by
the horizontal dashed line, was used for the impact values
on both boxplots. While the Q-values are based on the fre-
quency of states, we weight all states equally in discussing
the properties of the Q-function. The boxplot does not in-
clude Q-values for states whose frequency is below 5%. It
is clear from Figure 2 that depending on the context and
event history, the value of an action can vary greatly. The
context-dependence is observed for both scoring goals and
receiving penalties.

Impact on Scoring the Next Goal. All actions, with the
exception of faceoffs won in the offensive zone, have at
least one state where the action has a positive impact, and
another state with a negative impact. Two examples of how
the value of the same action can depend on the context in-
clude the following, which we found by examining states
with extreme impact values.

Blocked Shot. Blocking the first shot on net when killing
a penalty decreases a team’s scoring rate (impact =
−0.0864). But blocking the second shot on net increases
the scoring rate (impact = 0.1399).

Penalty. Receiving a penalty when on the powerplay is
very bad (impact = −0.1789). But if a player, while on
the penalty kill, receives a penalty while goading their op-
ponent into an offsetting penalty, the penalty actually in-
creases their team’s scoring rate (impact = 0.0474).

The THoR player ratings compute the impact of actions
based on goals that immediately follow the action ([Lock
and Schuckers, 2009; Schuckers et al., 2011]; see Sec-
tion 2). The values given for each action in [Lock and
Schuckers, 2009] are displayed as an asterisk in Fig-
ure 2(a). The THoR values agree with our median impact
values in terms of whether an action generally has posi-
tive or negative impact. For example, penalties are known
to generally be good for the opposing team, and shots are
good for the shooter’s team. THoR values are close to the
median Markov model values in 6 out of 10 cases. This
comparison suggests THoR aggregates action values over
many contexts the Markov game models explicitly. In a le-

788

sion study described in the supplementary material, we ex-
amine directly defining the value of an action as the average
impact of the action over all states. Using the averge im-
pact as a fixed action value leads to a loss of information, as
measured by the entropy of the prediction for which team
scores the next goal. Another lesion study described in the
supplementary material assesses the importance of propa-
gating information between states, especially from one play
sequence to subsequent ones. Our results show that goal
impact values of the actions change substantially depend-
ing on how much information the model propagates.

Impact on Receiving Penalties. The range of action val-
ues with the probability of the next penalty as the objec-
tive function is shown in Figure 2(b). Faceoffs in the Of-
fensive Zone and takeaways cause penalties for the oppo-
nent. Giveaways and goals tend to be followed by a penalty
for the player’s team. The latter finding is consistent with
the observation that there are more penalties called against
teams with higher leads [Schuckers and Brozowski, 2012].
A possible explanation is referees are reluctant to penalize
a trailing team.

Figure 3: 2013-2014 Player Goal Impact Vs. Season Points

7.2 PLAYER VALUATIONS

As players perform actions on behalf of their team, it is
intuitive to apply the impact scores of team actions to the
players performing the action, yielding player valuations.
To calculate player valuations, we apply the impact of an
action to the player as they perform the action. Next, we
sum the impact scores of a player’s actions over a single
game, and then over a single season, to compute a net sea-
son impact score for the player. This procedure is equiv-
alent to comparing the actions taken by a specific player
to those of the league-average player, similar to previous
work [Pettigrew, 2015; Cervone et al., 2014]. We compare

Table 6: 2013-2014 Top-8 Player Impact Scores For Goals

Name Goal Impact Points +/- Salary
Jason Spezza 29.64 66 -26 $5,000,000
Jonathan Toews 28.75 67 25 $6,500,000
Joe Pavelski 27.20 79 23 $4,000,000
Marian Hossa 26.12 57 26 $7,900,000
Patrick Sharp 24.43 77 12 $6,500,000
Sidney Crosby 24.23 104 18 $12,000,000
Claude Giroux 23.89 86 7 $5,000,000
Tyler Seguin 23.89 84 16 $4,500,000

impact on Next Goal Scored with three other player rank-
ing metrics: points earned, salary, and +/-. To avoid con-
founding effects between different seasons, we use only the
most recent full season, 2013-2014. Player impact scores
are shown in Table 6. Tables for all seasons are available as
well [Routley, 2015]. Figure 3 shows that next goal impact
correlates well with points earned. A point is earned for
each goal or assist by a player. Since these players have a
high impact on goals, they also tend to have a positive +/-
rating. Jason Spezza is an anomaly, as he has the highest
impact score but a very negative +/- score. This is because
his Ottawa team performed poorly overall in the 2013-2014
season: The team overall had a goal differential of -29, one
of the highest goal differentials that season. This example
shows that impact scores distinguish a player who gener-
ally performs useful actions but happens to be on a poor
team.

In Table 7, we see player impact with respect to Next
Penalty Received. High impact numbers indicate a ten-
dency to cause penalties for a player’s own team, or prevent
penalties for the opponent. We compare the Q-function
impact numbers to Penalties in Minutes (PIM), +/-, and
salary. Players with high Q-function numbers have high
penalty minutes as we would expect. They also have low
+/-, which shows the importance of penalties for scoring
chances. Their salaries tend to be lower. There are how-
ever notable exceptions, such as Dion Phaneuf, who draws
a high salary although his actions have a strong tendency to
incur penalties.

Table 7: 2013-2014 Top-8 Player Impacts For Penalties

Name Penalty Impact PIM +/- Salary
Chris Neil 62.58 211 -10 $2,100,000
Antoine Roussel 54.26 209 -1 $625,000
Dion Phaneuf 52.52 144 2 $5,500,000
Zac Rinaldo 48.65 153 -13 $750,000
Rich Clune 47.08 166 -7 $525,000
Tom Sestito 46.34 213 -14 $650,000
Zack Smith 44.55 111 -9 $1,500,000
David Perron 42.49 90 -16 $3,500,000

789

(a) Impact on the probability of Scoring the Next Goal. Higher
numbers are better for the team that performs the action.

(b) Impact on the probability of Receiving the Next Penalty.
Higher numbers are worse for the team that performs the action.

Figure 2: Action Impact Values vary with context. The central mark is the median, the edges of the box are the 25th and
75th percentiles. The whiskers are at the default value, approximately 2.7 s.d.

8 CONCLUSION

We have constructed a Markov Game Model for a mas-
sive set of NHL play-by-play events with a rich state space.
Tree-based data structures support efficient parameter esti-
mation and storage. Value iteration computes the values
of each action given its context and sequence history—
the Q-function of the model. Compared to previous work
that assigns a single value to actions, the Q-function in-
corporates two powerful sources of information for valuing
hockey actions: (1) It takes into account the context of the
action, represented by the Markov Game state. (2) It mod-
els the medium-term impact of an action by propagating its
effect to future states. Propagating action effects across se-
quences utilizes the ordering of play sequences in a game,
rather than treating sequences as an unordered independent
set. Analysis of the computed Q-function shows the impact
of an action varies greatly with context, and medium-term
ripple effects make a difference. We apply our model to
evaluate the performance of players in terms of their ac-
tions’ total impact. Impact scores for the next goal corre-
late with points. The impact of players on the next penalty
has to our knowledge not been previously considered, and
shows some surprises, as some highly-paid players hurt
their team by causing penalties. In sum, the Q-function
is a powerful AI concept that captures much information
about hockey dynamics as the game is played in the NHL.

Future Work The NHL data provides a rich dataset for
real-world event modelling. A number of further AI tech-
niques can be applied to utilize even more of the available
information than our Markov Game model does. A promis-

ing direction is to extend our discrete Markov Game model
with data about continuous quantities. These include (i)
the time between events, (ii) the absolute game time of the
events, (iii) location of shots [Krzywicki, 2005]. Our use
of reinforcement learning techniques has been mainly for
finding patterns in a rich data set, in the spirit of descrip-
tive statistics and data mining. Another goal is to predict a
player or team’s future performance based on past perfor-
mance using machine learning techniques. For example,
sequence modelling would be able to generalize from play
sequence information. A promising model class are Piece-
wise Constant Conditional Intensity Models for continuous
time event sequences [Gunawardana et al., 2011; Parikh
et al., 2012]. These models are especially well suited for
sequences with a large set of possible events, such as our
action events. Another extension is to evaluate players with
respect to similar players [Cervone et al., 2014], for in-
stance, players who play the same position. A potential
future application for improving play and advising coaches
is in finding strengths and weaknesses of teams: We can
use the Q-function to find situations in which a team’s mix
of actions provides a substantially different expected result
from that of a generic team.

Acknowledgements

This work was supported by a Discovery Grant from the
National Sciences and Engineering Council of Canada. We
received helpful comments from Tim Swartz and anony-
mous UAI referees. We are grateful for constructive dis-
cussions in SFU’s Sports Analytics Research Group. Zeyu
Zhang assisted with the preparation of the on-line datasets.

790

References

Cervone, D., DAmour, A., Bornn, L., and Goldsberry, K.
(2014). Pointwise: Predicting points and valuing deci-
sions in real time with nba optical tracking data. In 8th
Annual MIT Sloan Sports Analytics Conference, Febru-
ary, volume 28.

Gramacy, R., Jensen, S., and Taddy, M. (2013). Estimating
player contribution in hockey with regularized logistic
regression. Journal of Quantitative Analysis in Sports,
9:97–111.

Gunawardana, A., Meek, C., and Xu, P. (2011). A model
for temporal dependencies in event streams. In Advances
in Neural Information Processing Systems, pages 1962–
1970.

Krzywicki, K. (2005). Shot quality model: A logistic re-
gression approach to assessing nhl shots on goal.

Levesque, H., Pirri, F., and Reiter, R. (1998). Foundations
for the situation calculus. Linköping Electronic Articles
in Computer and Information Science, 3(18).

Littman, M. L. (1994). Markov games as a framework for
multi-agent reinforcement learning. In Proceedings of
the eleventh international conference on machine learn-
ing, volume 157, pages 157–163.

Lock, D. and Schuckers, M. (2009). Beyond +/-: A rat-
ing system to compare nhl players. Presentation at joint
statistical meetings.

Macdonald, B. (2011). An improved adjusted plus-minus
statistic for nhl players.

Moore, A. W. and Lee, M. S. (1998). Cached suffi-
cient statistics for efficient machine learning with large
datasets. J. Artif. Intell. Res. (JAIR), 8:67–91.

National Hockey League (2014). National hockey league
official rules 2014-2015.

Parikh, A. P., Gunawardana, A., and Meek, C. (2012).
Conjoint modeling of temporal dependencies in event
streams. In UAI Bayesian Modelling Applications Work-
shop.

Pettigrew, S. (2015). Assessing the offensive productivity
of nhl players using in-game win probabilities. In 9th
Annual MIT Sloan Sports Analytics Conference.

Routley, K. (2015). A markov game model for valuing
player actions in ice hockey. Master’s thesis, Simon
Fraser University.

Routley, K., Schulte, O., and Zhao, Z. (2015). Q-
learning for the nhl. http://www.cs.sfu.ca/

˜oschulte/sports/.

Russell, S. and Norvig, P. (2010). Artificial Intelligence: A
Modern Approach. Prentice Hall.

Schuckers, M. and Brozowski, L. (2012). Referee ana-
lytics: An analysis of penalty rates by national hockey

league officials. In MIT Sloan Sports Analytics Confer-
ence.

Schuckers, M. and Curro, J. (2013). Total hockey rat-
ing (thor): A comprehensive statistical rating of national
hockey league forwards and defensemen based upon all
on-ice events. In 7th Annual MIT Sloan Sports Analytics
Conference.

Schuckers, M. E., Lock, D. F., Wells, C., Knickerbocker,
C. J., and Lock, R. H. (2011). National hockey league
skater ratings based upon all on-ice events: An adjusted
minus/plus probability (ampp) approach. Unpublished
manuscript.

Schumaker, R. P., Solieman, O. K., and Chen, H. (2010).
Research in sports statistics. In Sports Data Mining,
volume 26 of Integrated Series in Information Systems,
pages 29–44. Springer US.

Spagnola, N. (2013). The complete plus-minus: A case
study of the columbus blue jackets. Master’s thesis, Uni-
versity of South Carolina.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learn-
ing : an introduction. MIT Press, Cambridge, Mass.

Thomas, A., Ventura, S., Jensen, S., and Ma, S. (2013).
Competing process hazard function models for player
ratings in ice hockey. The Annals of Applied Statistics,
7(3):1497–1524.

791

Learning Latent Variable Models by Improving Spectral Solutions
with Exterior Point Method

Amirreza Shaban Mehrdad Farajtabar Bo Xie Le Song Byron Boots
College of Computing,

Georgia Institute of Technology
{amirreza, mehrdad, bo.xie}@gatech.edu {lsong, bboots}@cc.gatech.edu

Abstract

Probabilistic latent-variable models are a funda-
mental tool in statistics and machine learning.
Despite their widespread use, identifying the pa-
rameters of basic latent variable models contin-
ues to be an extremely challenging problem. Tra-
ditional maximum likelihood-based learning al-
gorithms find valid parameters, but suffer from
high computational cost, slow convergence, and
local optima. In contrast, recently developed
spectral algorithms are computationally efficient
and provide strong statistical guarantees, but are
not guaranteed to find valid parameters. In this
work, we introduce a two-stage learning algo-
rithm for latent variable models. We first use a
spectral method of moments algorithm to find a
solution that is close to the optimal solution but
not necessarily in the valid set of model param-
eters. We then incrementally refine the solution
via an exterior point method until a local optima
that is arbitrarily near the valid set of parame-
ters is found. We perform several experiments on
synthetic and real-world data and show that our
approach is more accurate than previous work,
especially when training data is limited.

1 INTRODUCTION & RELATED WORK

Probabilistic latent variable models are a fundamental tool
in statistics and machine learning that have successfully
been deployed in a wide range of applied domains includ-
ing robotics, bioinformatics, speech recognition, document
analysis, social network modeling, and economics. De-
spite their widespread use, identifying the parameters of
basic latent variable models like multi-view models and
hidden Markov models (HMMs) continues to be an ex-
tremely challenging problem. Researchers often resort to
local search heuristics such as expectation maximization
(EM) (Dempster et al., 1977) that attempt to find parame-

ters that maximize the likelihood of the observed data. Un-
fortunately, EM has a number of well-documented draw-
backs, including high computational cost, slow conver-
gence, and local optima.

In the past 5 years, several techniques based on method of
moments (Pearson, 1894) have been proposed as an alter-
native to maximum likelihood for learning latent variable
models (Hsu et al., 2009; Siddiqi et al., 2010; Song et al.,
2010; Parikh et al., 2011, 2012; Hsu and Kakade, 2012;
Anandkumar et al., 2012a,c,b; Balle et al., 2012; Cohen
et al., 2013; Song et al., 2014). These algorithms first es-
timate low-order moments of observations, such as means
and covariances, and then apply a sequence of linear alge-
bra to recover the model parameters. Moment estimation is
linear in the number of training data samples, and parame-
ter estimation, which relies on techniques like the singular
value decomposition (SVD) is typically fast and numeri-
cally robust.

For example, moment-based algorithms have been pro-
posed for learning observable representations of HMMs,
which explicitly avoid recovering HMM transition and ob-
servation matrices (Hsu et al., 2009; Siddiqi et al., 2010;
Song et al., 2010). These spectral algorithms first perform
a SVD of second-order moments of adjacent observations,
and then use this result, along with additional low-order
moments, to recover parameters for filtering, predicting,
and simulating from the system. Unlike previous maximum
likelihood-based approaches, spectral algorithms are fast,
statistically consistent, and do not resort to local search.

Spectral algorithms were recently extended to the more dif-
ficult problem of estimating the parameters of latent vari-
able models including the stochastic transition and obser-
vation matrices of HMMs (Anandkumar et al., 2012c).1

Again, the estimators are based on SVD and a sequence of
linear operations, applied to low-order moments of obser-
vations and come with learning guarantees under mild rank

1In contrast to the observable representation identified by the
previous spectral learning algorithms (Hsu et al., 2009; Siddiqi
et al., 2010; Song et al., 2010).

792

conditions. This work has been further extended to learning
parameters of parametric and nonparametric multi-view
latent variable models (Anandkumar et al., 2012b; Song
et al., 2014) by introducing a symmetric tensor decom-
position algorithm that unifies several previous method of
moments-based approaches.

One of the benefits of method of moments over EM and
other local search heuristics is that moment-based algo-
rithms come with theoretical guarantees such as statistical
consistency and finite sample bounds. In other words, un-
der mild assumptions, method of moments can guarantee
that as the amount of training data increases, the learned
parameters are converging to the true parameters of the
model that generated the data (Hsu et al., 2009; Anandku-
mar et al., 2012b). This is especially promising because
the resulting parameters can be used to initialize EM in
a two-stage learning algorithm (Zhang et al., 2014; Balle
et al., 2014), resulting in the best of both worlds: param-
eters found by method of moments provide a good initial-
ization for a maximum likelihood approach.

Unfortunately, spectral method of moments algorithms and
two-stage learning algorithms have worked less well in
practice. With finite samples, method of moments estima-
tors are not guaranteed to find a valid set of parameters. Al-
though error in the estimated parameters are bounded, the
parameters themselves may lie outside the class of valid
models. For example, the learned transition matrix of a
HMM may have small negative entries. A consequence is
that the learned model cannot be used or even serve as an
initialization for EM.

To fix these problems, the method of moments solution is
typically projected onto the space of valid model parame-
ters: e.g. by flipping the sign of negative parameters and
renormalizing the model (Cohen et al., 2013), or projecting
the parameters onto the `1-ball (Duchi et al., 2008). While
these heuristics produce a useable model, it invalidates any
theoretical guarantees: the resulting model may no longer
be close to the true parameters. As demonstrated in Balle
et al., models that are learned by method of moments and
then “corrected” in this way, do not necessarily serve as a
good initialization to EM (Balle et al., 2014).

1.1 EXTERIOR POINT METHODS

Consider the problem of minimizing objective function
r(v) : Rn → R+, subject to the constraint v ∈ A . Gen-
erally, a series of unconstrained optimization problem are
solved to achieve a local optima in the limit. The optimiza-
tion problem in the kth step can be written as:

minimize r(v) + lk(v)

with the local optima v(k). By defining the function lk(v)
appropriately, one can then show that v∗ = limk→∞ v(k)

is a local optima of the original constrained optimization

XX*

Figure 1: Exterior point methods versus projection fol-
lowed by interior point methods. The dashed line shows the
feasible set and the optimal solution is labeled X∗. Start-
ing from the method of moments solution X , the exterior
point method (green arrows) converges to a point arbitrar-
ily close to the feasible set. Current optimization methods
for learning latent variable models first project the method
of moments solution into the feasible set (blue arrow) and
then use an interior point method (red arrows show interior
point method trajectory). Assuming that the initial solution
is near to the optimal solution, as in this example, the pro-
jection step may change the convergence point to a point
far from the optimal solutionX∗.

problem (Bloom, 2014). In Interior point methods every
intermediate solution v(k) is in the feasible set, however,
in exterior point methods, only the convergence point of
the sequence needs to be feasible (Byrne, 2008). Exam-
ples of interior and exterior point methods are Barrier func-
tion methods (Boyd and Vandenberghe, 2004), and exact
penalty function methods (Fletcher, 2013) respectively. In
exterior point methods, the function lk(v) usually has a
positive value for solutions outside the feasible set to dis-
courage these solutions and a value of zero for feasible in-
puts. In interior point methods, the function lk(v) → ∞
when v approaches to the boundary of the constraint set.
Polyak (2008), and Yamashita and Tanabe (2010) propose
primal-dual exterior point methods for convex and non-
convex optimization problems respectively. In Section 3,
we show that by defining lk(v) appropriately, the algo-
rithm converges to a local optima arbitrarily close to the
feasible set by doing simple forward-backward splitting
steps (Combettes and Pesquet, 2011).

An important advantage of exterior point methods is that
they are likely to achieve a better local minimum than in-
terior point methods when the feasible set is narrow by al-
lowing solutions to exist outside the feasible set during the
intermediate steps of the optimization (Yamashita and Tan-
abe, 2010).

1.2 THE PROPOSED METHOD

One of the primary drawbacks of using method of moments
for learning latent variable models, is that the estimated pa-

793

rameters can lie outside the class of valid models (Balle
et al., 2014). To combat this problem, we propose a two-
stage algorithm for learning the parameters of latent vari-
able models.

In the first stage, the parameters are estimated via a spec-
tral method of moments algorithm (similar to Anandkumar
et al. (2012c)). Like previous method of moments-based
learning algorithms, if the estimated moments are inaccu-
rate, then the estimated parameters of this model may lie
outside of the model class.

In the second stage, the estimate is refined by an iterative
optimization scheme. Unlike previous work that projects
method of moments onto the feasible space of model pa-
rameters and then uses the projected parameters to initial-
ize EM (Zhang et al., 2014; Balle et al., 2014), we use ex-
terior point methods for non-convex optimization directly
initialized with the result of method of moments without
modification. The exterior point method iteratively refines
the solution until a local optima that is arbitrarily close to
the valid set of model parameters is found. A comparison
between the two approaches is illustrated in Figure 1.

1.3 BASICS AND NOTATION

We use following notation to distinguish scalars, vectors,
matrices, and third-order tensors: scalars are denoted by
either lowercase or uppercase letters, vectors are written as
boldface lowercase letters, matrices correspond to boldface
uppercase letters, and third-order tensors are represented by
calligraphic letters. In this paper, (A)ij means the entry in
the ith row and jth column of the matrixA, we use similar
notation to index entries of vectors and third-order tensors.
Furthermore, the ith column of the matrix A is denoted as
(A)i, i.e.,A = [(A)1, (A)2, . . . , (A)n]. We show a n×m
matrix with entries one by 1n×m, n×n identity matrices by
In, and n×n×n identity tensors by In. We use Rn×m+ to
show the set of n by m matrices with non-negative entries,
and ∆n is the set of all n + 1-dimensional vector on the
n-dimensional simplex.

We also define the following functions for ease of notation:
sum(X) = X>1 computes column sum of the matrix X ,
and the function diag(v), which returns a diagonal matrix
where its diagonal elements are a vector v. For matrices
or 3-way tensors, diag(·) returns diagonal elements of the
given input in vector form.

1.3.1 n-mode product (Lathauwer et al., 2000)

The n-mode product of a tensor A ∈ RI1×I2×I3 by a ma-
trix B ∈ RJn×In for 1 ≤ n ≤ 3, shown as A×n B, is an
K1 × K2 × K3 tensor, for which Ki = Ii for all dimen-
sions except the n-th one which is Kn = Jn. The entries

are given by:

(A×n B)i1...jn...i3 =
∑

in

(A)i1...in...i3(B)jnin . (1)

We benefit from following properties of n-mode product in
future sections:

• Given a tensor A ∈ RI1×I2×I3 and a matrix C ∈
RJn×In of the same size asB, one can show that:

(A×n B)×n C = A×n (CB). (2)

• For a matrixD ∈ RJm×Im(n 6= m):

(A×n B)×mD = (A×mD)×n B.

• For matricesA,B, and C with appropriate sizes:

A×1 B ×2 C = BAC>.

2 PARAMETER ESTIMATION VIA
METHOD OF MOMENTS

In this section we derive two method of moments algo-
rithms for estimating the parameters of latent variable mod-
els, one for multi-view models and one for HMMs. If the
estimated parameters lie outside the feasible set of solu-
tions, they are used to initiate an exterior point method
(Section 3).

2.1 MULTI-VIEW MODELS

In a multi-view model, observation variables o1, o2, . . . , ol
are conditionally independent given a latent variable h
(Figure 2a). Assume each observation variable can take one
of no different values. The observation vector xt ∈ Rno is
defined as follows:

xt = ej iff ot = j for 0 < j ≤ no, (3)

where ej is the jth canonical basis. In this paper, we con-
sider the case where l = 3, however, the techniques can be
easily extended to cases where l > 3. Let h ∈ {1, . . . , ns}
be a discrete random variable and Pr {h = j} = (w)j ,
wherew ∈ ∆ns−1, then the conditional expectation of ob-
servation vector xt for t ∈ {1, 2, 3} is:

E[xt | h = i] = uti, (4)

where uti ∈ ∆no−1. We define the observation matrix as
U t = [ut1, . . . ,u

t
ns] for t ∈ {1, 2, 3}, and the diagonal

ns×ns×ns tensor H, where diag (H) = w for ease of
notation. The following proposition relates U ts and w to
the moments of xts.

Proposition 1. (Anandkumar et al., 2012b) Assume that
columns of U t are linearly independent for each t =
{1, 2, 3}. Define

M = E(x1 ⊗ x2 ⊗ x3)

Then
M = H×1 U

1 ×2 U
2 ×3 U

3 (5)

794

...

... ...

h

o1 o2 ol

q1

o2o1

qtq2

ot
(a) a multi-view model.

...

... ...

h

o1 o2 ol

q1

o2o1

qtq2

ot
(b) A hidden Markov model.

Figure 2: The two latent variable models discussed in the text.

In the next proposition, the moments of xts are related to a
specific U t:
Proposition 2. (Anandkumar et al., 2012b) Assume that
columns of Ut are linearly independent for each t =
{1, 2, 3}. Let (a, b, c) be a permutation of {1, 2, 3}. De-
fine

x′a = E(xc ⊗ xb)E(xa ⊗ xb)−1xa

x′b = E(xc ⊗ xa)E(xb ⊗ xa)−1xb

Mc = E(x′a ⊗ x′b)
Mc = E(x′a ⊗ x′b ⊗ xc)

Then
Mc = U c diag(w)U c>

Mc = H×1 U
c ×2 U

c ×3 U
c (6)

Also, define mc = E(xc) = U cw. Anandkumar et al.
(2012b) transform Mc to a orthogonally decomposable
tensor and recover the matrices U ts and w from it. Our
approach here is slightly different and is more similar to
Anandkumar et al. (2012c): we reduce the problem into the
orthogonal decomposition of a matrix derived fromMc.

First, let S = V Σ−1/2, where columns of V are or-
thonormal eigenvectors of Mc and Σ is a diagonal ma-
trix whose elements are corresponding eigenvalues of V .
The columns of Ũ c = S>U c diag(w)1/2 are orthonormal
vectors (Anandkumar et al., 2012b). Using this and Equa-
tion (6) we have:

Mη =Mc ×1 S
> ×2 S

> ×3 η
>

=H×1 (S>U c)×2 (S>U c)×3 (η>U c)

=Ins ×1 Ũ
c ×2 Ũ

c ×3 (η>U c)

=Ũ c diag(η>U c)(Ũ c)>

(7)

where η is a random vector sampled from the no dimen-
sional normal distribution. For the first equality we used
property in Equation (2), in the second equality we used
the fact that H = Ins ×1 diag(w)1/2 ×2 diag(w)1/2,
and finally in the last equality we used equality Ins ×3

(η>U c) = diag(η>U c). In Anandkumar et al. (2012c)
it is shown that η>U c has distinct values with a high
probability. Thus, Ũ c can be recovered by a SVD de-
composition of Mη . Then w = ((Ũ c)+S>mc) ∧ 2,

Algorithm 1 Moment-based parameter estimation

Input: Estimated third order moment M̂c for c =
{1, 2, 3}
Output: Estimated parameters Û1, Û2, Û3, ŵ
——————————————————————-
for each t ∈ {1, 2, 3} do
M̂t ← M̂t ×3 1 (compute second-order moment)
m̂t ← M̂t ×2 1×3 1 (compute first-order moment)
S ← V Σ−1/2 (V ΣV > is M̂t’s eigenvalue decomposi-
tion)
η ← drawn randomly from Normal distribution
Mη ← M̂t ×1 S

> ×2 S
> ×3 η

> (Eq. 7)
Ũ t ←K (columns of K are Mη’s eigenvectors)
ŵt ← ((Ũ t)+S>m̂t) ∧ 2

Û t ← S+>Ũ t diag (ŵt)
−1/2

end for
ŵ ← ŵ1+ŵ2+ŵ3

3

where ∧ is element-wise power operator. Having com-
puted w, one can recover U c via the equation U c =

S+>Ũ c diag (w)
−1/2. Finally, we take the average of 3

copies of w which are computed for different values of
c. The overall moment-based approach is shown in Algo-
rithm 1.

2.2 HIDDEN MARKOV MODELS

Hidden Markov models generate sequences of observa-
tions x1,x2, . . . ∈ Rno . Each xt is independent of all
other observations given the corresponding hidden state
qt ∈ {1, 2, . . . , ns} (Figure 2b). Similar to multi-view
models, ns and no are the number of hidden states and
number of observations respectively. Note that observa-
tions are represented as indicator vectors xt, which are
all zero except for exactly one element which is set to 1.
The conditional probability distribution of xt given qt is
defined via an observation matrix O ∈ Rno×ns according
to Pr {xt = ei|qt = j} = (O)ij . The stochastic transition
matrix T ∈ Rns×ns is defined as Pr {qt+1 = i|qt = j} =
(T)ij for all t > 1 and the initial state probability distribu-

795

tion is π ∈ ∆ns−1. If X = (x1,x2, . . . ,xT) is a sequence
of observations, then we define forward and backward vari-
ables as

Pr {x1, . . . ,xt, qt = j} = αt(j)

Pr {xt+1, . . . ,xT , qt = j} = βt(j)
(8)

These will help computing the probability of observations.
For example,

f(X; [O,T ,π]) =

ns∑

i=1

ns∑

j=1

αt(i)(T)ij(O)>j xtβt+1(j) (9)

for all 1 ≤ t ≤ T (Levinson et al., 1983). Note that the val-
ues of function αt(.) and βt(.) can be computed efficiently
using dynamic programming.

Under mild conditions, HMM parameter estimation re-
duces to estimating multi-view model parameters, using
considering triple of observation (x1,x2,x3).

Proposition 3. (Anandkumar et al., 2012b) let h = q2

then:

• x1,x2,x3 are conditionally independent given h.

• The distribution of h is w = Tπ.

• For all j ∈ {1, 2, . . . , ns}

E[x1|h = j] = O diag (π)T> diag (w)
−1/2

ej
E[x2|h = j] = Oej
E[x3|h = j] = OTej

under mild conditions.

Thus, provided that O and T both have full column rank,
the parameters of HMM can be recovered as O = U2,
T = O+U3, and π = T−1w.

It is also important to note that, using the above proposition
and Equation (9) we can alternatively write each entries of
tensorM = E(x1 ⊗ x2 ⊗ x3) as:

(M)ijk = f((ei, ej , ek); [O,T ,π]). (10)

3 EXTERIOR POINT METHODS

While exact parameters can be recovered from the popula-
tion moments, in practice we work with empirical moments
M̂ , and M̂ which are computed using a finite set of train-
ing data. Thus, the estimated parameters are not necessarily
exact and do not necessarily minimize the estimation error
||M̂ − H ×1 U

1 ×2 U
2 ×3 U

3||F .

In this section, we show that estimated parameters from
Section 2 can directly initialize an iterative exterior point
method that minimizes the above error while obeying con-
straints on model parameters. Although this initial seed
may violate these constraints, we show that under mild con-
ditions the parameters satisfy the model constraints once

the algorithm converges. First, we prove the convergence
of the algorithm for multi-view models and then show how
the algorithm can be applied to HMMs.

3.1 MULTI-VIEW MODELS

Let v ∈ Rns(3no+1) be a vector comprised of the parame-
ters of the multi-view model {U1,U2,U3,diag(H)}, and
R(v) = (M̂−H×1U

1×2U
2×3U

3) be the residual esti-
mation tensor. For ease of notation, we also define function
s(·) : Rns(3no+1) → R3ns+1 that computes column sum of
U1, U2, U3, and diag(H). As discussed above, the esti-
mated parameters in the previous section do not necessarily
minimize the estimation error ||R(v)||F and also may vi-
olate the constraints for the model parameters. With these
limitations in mind, we rewrite the factorization in Equa-
tion (6) in the form of an optimization problem:

minimize
1

2
||R(v)||2F .

s.t. v ∈Rns(3no+1)
+ , s(v) = 1

(11)

Defining optimization problem in this form has two ad-
vantages over maximum likelihood optimization schemes.
First, since M̂ is computed in the previous stage, the opti-
mization cost is asymptotically independent of the number
of training samples which makes the proposed optimiza-
tion algorithm faster than EM for large training sets. Sec-
ond, the value of this objective function ||R(v)||F is also
defined outside of the feasible set. We use this property to
extend the optimization problem for a simple exterior point
method in Section 3.1.1, below.

3.1.1 The Optimization Algorithm

Instead of solving constrained optimization problem in
Equation (11), we solve the following unconstrained op-
timization problem:

minimize
1

2
||R(v)||2F+

λ1

2
||s(v)− 1||2p

+λ2|v|−,
(12)

where |v|− is the absolute sum of all negative elements in
the vector v, i.e., |v|− =

∑
i |(v)i|−. We set p = 2 in our

method. For p = 1, there exists a λ1 and a λ2 such that
the solution to this unconstrained optimization is also the
solution to the objective in Equation (11). A thorough sur-
vey on solving non-differentiable exact penalty functions
can be found in (Fletcher, 2013). Our approach, however,
is different in the sense that for p = 2 the solution of our
optimization algorithm is not guaranteed to satisfy the con-
straints in Equation (11), however, we show in Theorem
7 that the solution will be arbitrarily close to the simplex.
In return for this relaxation, the above optimization prob-
lem can be easily solved by a standard forward-backward
splitting algorithm (Combettes and Pesquet, 2011). In this

796

Algorithm 2 The exterior point algorithm

Input: Estimated third order moment M̂, initial point
(obtained from Algorithm 1) v(0) is comprised of
{Û1, Û2, Û3,diag(Ĥ)}, parameters λ1, and λ2, se-
quence {βk}, and constant c > 0
Output: Convergence point v∗

——————————————————————-
k ← 0
while not converged do
k ← k + 1
if |v(k−1)|− > 0 then
αk ← max{c, βk}

else
αk ← βk

end if
ṽ(k) ← v(k−1) − αk∇g(v(k−1))
v(k) ← prox(ṽ(k)) (see Equation (15))

end while

method, the function is split into a smooth part:

g(v) =
1

2
||R(v)||2F +

λ1

2
||s(v)− 1||22 (13)

and a non-smooth part λ2|v|−. We then minimize the
objective function by alternating between a gradient step
on the smooth part ∇g(v) (forward) and proximal step of
the non-smooth part (backward). The overall algorithm is
shown in Algorithm 2 where prox(ṽ(k)) function is defined
as

v(k) = argmin
y

(αkλ2|y|− +
1

2
||ṽ(k) − y||2F). (14)

and optimized by following transformation (Shalev-
Shwartz and Zhang, 2013):

(v(k))i =

(ṽ(k))i + αkλ2 (ṽ(k))i < −αkλ2

0 −αkλ2 ≤ (ṽ(k))i < 0

(ṽ(k))i 0 ≤ (ṽ(k))i

(15)

We only need to find the gradient of function g(v) for the
given model parameter v. Following lemma shows the gra-
dient of g(v) can be computed efficiently.

Lemma 4. Let r(v) = 1
2 ||R(v)||2F . The following are true

for all 0 < i ≤ ns:

a. ∂r(v)
∂Hiii = −R(v)×1 u

1
i ×2 u

2
i ×3 u

3
i

b. ∇u1
i
r(v) = −Hiii ×R(v)×2 u

2
i ×3 u

3
i

c. ∇u2
i
r(v) = −Hiii ×R(v)×1 u

1
i ×3 u

3
i

d. ∇u3
i
r(v) = −Hiii ×R(v)×1 u

1
i ×2 u

2
i

Next we show that by using the forward-backward splitting
steps in Algorithm 2 there are lower bounds for λ1 and λ2

in which the iterative algorithm converges to a local opti-
mum arbitrarily close to the simplex. For this purpose, we

assume that estimated parameters remain in a compact set
during the optimization, then we use the following corol-
lary to bound the gradient of function r(v).
Corollary 5. For every v which is comprised of the
multi-view parameters and is in the compact set F =
{v | ∀i, 0 < i ≤ ns, 1 < t ≤ 3 : ||(U t)i||2 ≤
L, ||diag(H)||2 ≤ L}, every element of the gradient of the
function r(v) is bounded as:

|∂r(v)

∂(v)i
| ≤ L3||R(v)||F (16)

Although, the norm of the residual error can also be
bounded by L in Equation (16), since we initiate the al-
gorithm with method of moments estimation, its value
remains considerably smaller than its upper bound dur-
ing the iterative procedure in Algorithm 2. Let Υ >
supk ||R(v(k))||F ; the next lemma shows that for a large
enough λ2 and after a fixed number of iterations, all of the
elements in v(k) become non-negative.
Lemma 6. Assuming that sequence {v(k)} produced by
Algorithm 2 is in the set F , and λ2 is selected such that:

λ2 > L3Υ + λ1(
√
noL+ 1), (17)

there is a constant K such that for k > K we have
|v(k)|− = 0. Also, for k > K the proximal operator in
Algorithm 2 reduces to the orthogonal projection operator
into the convex set C = Rns(3no+1)

+ :

∀k > K : prox(ṽ(k)) = projC (ṽ(k)) (18)

The proof is provided in the Appendix. According to the
above lemma, afterK iterations of forward-backward split-
ting steps, all entries of v(k) have non-negative values and
the optimization algorithm reduces to gradient projection
steps (Bertsekas, 1999) into the set Rns(3no+1) for opti-
mizing non-convex function g(v). There is a lot of research
on the convergence guarantees of gradient projection meth-
ods for non-convex optimization with different line search
algorithms (Bertsekas, 1999), which also can be used in
Algorithm 2. The only requirement of our method is that
stepsize αk should be strictly bounded away from zero for
k ≤ K which is guaranteed in Algorithm 2 by taking the
max{c, βk} for k ≤ K for an arbitrary constant c > 0. Fi-
nally, the following theorem shows that by choosing large
enough λ1 and λ2, the algorithm ends up with a solution
arbitrarily close to the simplex.

Theorem 7. For every ε1 > 0, set λ1 > L3Υ
ε1

and
λ2 > L3Υ + λ1(

√
noL + 1), in Equation (12). For the

convergence point of the sequence {v(k)} ⊂ F which is
generated by Algorithm 2 we have:

|v∗|− = 0, ||s(v∗)− 1||2 ≤ ε1

The proof of Theorem 7 is provided in the Appendix.

To summarize, we initiate our exterior point method with
the result of the method of moments estimator in Sec-

797

tion 2.1. By choosing large enough λ1, and λ2, the conver-
gence point of the exterior point method will be at a local
optimum of g(v) with the constraint v ∈ Rns(3no+1)

+ in
which the column sum of parameters set is arbitrarily close
to 1. It is important to note that the proven lower bounds
for λ1, and λ2 are sufficient condition for the convergence.
In practice, cross-validation can find the best parameter to
balance the speed of mapping to the simplex with optimiz-
ing the residual function.

3.2 HIDDEN MARKOV MODELS

In Section 2.2 we showed that method of moments param-
eter estimation for HMMs essentially reduces to parameter
estimation of of multi-view models. After finding param-
eters from the method of moments algorithm, Algorithm 2
can be used to further refine the solution. In order to use
this algorithm, we just need to define the residual estima-
tion term for HMMs, define the function g(·), and compute
its gradient. Assuming the parameters of the HMM T , O,
and π are as defined in Section 2.2, let vector z be com-
prised of these parameters. Similar to the multi-view case
when the estimated moments are not exact, the equality in
Equation (10) does not hold, and we define the residual
prediction error of the model for the triples (ei, ej , ek) as
(R(z))ijk = (M̂)ijk − f((ei, ej , ek); [O,T ,π]). Thus,
the optimization problem is:

minimize g(z) + λ2|z|−, (19)

where g(z) is defined as:

g(z) =
1

2
||R(z)||2F +

λ1

2
||s(z)− 1||22. (20)

The following lemma shows that the gradient of the first
term in above equation can be represented by forward and
backward variables in Equation (8) efficiently.

Lemma 8. Let r(z) = 1
2 ||R(z)||2F , for all 0 < a, b ≤ ns

and 0 < c ≤ no following holds:

a. ∂r(z)
∂(π)a

=
∑

(R(z))ijk(O)>a x1β1(a)

b. ∂r(z)
∂(T)ab

=
∑

(R(z))ijk
∑2
t=1 αt(a)(O)>b xt+1βt+1(b)

c. ∂r(z)
∂(O)cb

= 1
(O)cb

∑
(R(z))ijk

∑
t:xt=ec

αt(b)βt(b)

where the outer sums are over 0 < i, j, k < no and x1 =
ei, x2 = ej , and x3 = ek (ei is the ith canonical basis).

To summarize: to estimate the parameters of a HMM, we
initialize Algorithm 2 with the method of moments esti-
mate of the parameters. Then, using lemma 8, we compute
∇g(z) at each iteration to solve the optimization (Equa-
tion (19)).

4 EXPERIMENTAL RESULTS

We evaluate the performance of our proposed method
(EX&SVD) on both synthetic and real world datasets. We
compare our approach to several state-of-the-art alterna-
tives including EM initialized with 10 random seeds (EM),
EM initialized with the method of moments result de-
scribed in Section 2 after projecting the estimated parame-
ters into simplex (EM&SVD), and the recently published
symmetric tensor decomposition method (STD) (Anand-
kumar et al., 2012b). To evaluate the performance gain
due to exterior point algorithm, we also included results
from method of moments without the additional optimiza-
tion (SVD) Section 2.

To ensure a fair time comparison, all of the methods were
implemented in Matlab. In all methods, the iteration was
stopped whenever the change in obj(t−1)−obj(t)

|avg(obj(t),obj(t−1))| was
less than δ. We set parameter δ in EM-based approaches,
and exterior point algorithm to 10−4 (Murphy; Parikh et al.,
2012), and 10−3 respectively.

Parameters λ1, and λ2 controls the speed of mapping pa-
rameters into the simplex while estimation error term is op-
timized simultaneously. We find the best parameters using
cross-validation. In our experiments, we sampleN training
and M testing points from each model. For the evaluation
we use M = 2000 test samples and calculate normalized
`1 error = 1

M

∑M
i=1

|P(Xi)−P̂(Xi)|
P(Xi)

.

We found that, empirically, spectral methods and exterior
point algorithm outperform EM for small sample sizes. In
these situations, we believe that EM is overfitting, result-
ing in poor performance on the test dataset. Similar results
are also reported in (Parikh et al., 2012). As the number
of training data points increases, EM begins to outperform
the spectral methods. However, our experiments show that
EX&SVD constantly outperforms other methods in terms
of estimation error while remaining an order of magnitude
faster than EM.

It is important to note that the gap between estimation error
of EX&SVD and EM&SVD is considerably larger in the
situations where the number of training data points is rela-
tively small compared to the number of model parameters.
In these situations, estimation error in the SVD method is
not accurate and the error of projection into the simplex is
relatively high in EM&SVD method. However, when the
SVD parameter estimates are used to initialize our exterior
point algorithm we get considerably better parameter esti-
mates. When the SVD estimate of the parameters is accu-
rate (due to the large training set and small number of pa-
rameters) EM&SVD and EX&SVD estimations are close
to each other. We believe that this observation strongly sup-
ports our approach to use exterior point method to find a set
of parameters in the valid set of models (rather than a naive
projection).

798

4.1 MULTI-VIEW MODEL EXPERIMENTS

To test the performance of the proposed method on learning
multi-view models in different settings, we generate obser-
vations from randomly sampled models. The first set of
models has 5 hidden states and 10 discrete observations per
view, and the second set of models has 10 hidden states and
20 observations per view.

Figure 3 shows the average error of the implemented al-
gorithms run on 10 different datasets generated by i.i.d
sampled models. Each dataset consisted of up to 100,000
triples of observations sampled from each model. We used
log-log scale for better demonstration of results. In these
experiments, EM is initialized with 10 different random
seeds and the best model is reported. Both EM&SVD
and EX&SVD are initialized with 1 sample from our SVD
decomposition method. As discussed earlier, EM outper-
forms SVD and the tensor decomposition method with re-
spect to estimation error as the number of training samples
increases. However, both EX&SVD and EM&SVD out-
perform EM, which shows the effectiveness of using the
method of moments result as an initial seed for optimiza-
tion. The performance of the EX&SVD method is sig-
nificantly better especially in the small sample size region
where the method of moments result is far from the simplex
and projection step in EM&SVD method change the value
of initial seed a lot. As the number of training samples in-
creases, the error induced by the projection decreases and
the results of the two methods converge.

Comparing the results from the two model classes, we see
that the difference between the performance of EX&SVD
and other methods is more pronounced as the number of
parameters increases. This is due to the fact that the error
of SVD increases as the number of parameters increases;
which, in turn, is due to poor population estimates of the
moments. The error of projecting the SVD result into
the simplex is also high in the EM&SVD method. As il-
lustrated in Figure 3, the result of SVD is comparable to
STD while SVD is orders of magnitude faster. Consider-
ing the large number of parameters in this experiment, it is
not strange that both method of moments algorithms (STD
and SVD) do not show a good performance, however, both
EM&SVD and EX&SVD outperform EM which shows the
method of moments estimation are a better initialization
point than a random selection.

To study the performance of different methods under dif-
ferent parameter set sizes in more detail, we investigate the
performance of the different algorithms in estimating pa-
rameters of models with different numbers of hidden states.
To this end, we sample N = 4000 training points from
models with different numbers of hidden states and evalu-
ate the performance of different method in estimating these
models parameters. The average error of 10 independent
runs is reported in figure 4 for different values of ns. In

Training Set Size (×104)
0.01 0.02 0.04 0.1 0.2 0.5 1 2 5 7 10

Er
ro

r

0.07

0.1

0.2

0.4

0.8

1.5 EM
EM&SVD
SVD
EX&SVD
STD

Training Set Size (×104)
0.01 0.02 0.04 0.1 0.2 0.5 1 2 5 7 10

Ti
m

e
(s

)

0.2

1

5

25

125

500
1000

Training Set Size (×104)
0.01 0.02 0.04 0.1 0.2 0.5 1 2 5 7 10

Er
ro

r

0.07

0.1

0.2

0.4

0.8

1.5 EM
EM&SVD
SVD
EX&SVD
STD

Training Set Size (×104)
0.01 0.02 0.04 0.1 0.2 0.5 1 2 5 7 10

Ti
m

e
(s

)

0.2

1

5

25

125

500
1000

Figure 3: Error vs. #training (first column), and Time vs.
#training (second column) for multi-view models. ns = 5,
no = 10 in the first row, and ns = 10, no = 20 in the
second row.

each case we set no to twice the value of ns. As ns in-
creases, the number of model parameters also increases
while the number of training points remains fixed. This
results in the estimation error increasing as the models get
larger for all of the methods. However, the difference be-
tween the performance of EX&SVD and other methods be-
comes more pronounced with ns, which shows the effec-
tiveness of our method in learning models with large state
spaces and relatively smaller datasets.

number of hidden states
2 4 6 8 10 12

Er
ro

r

0.07

0.1

0.2

0.4

0.8

1.5 EM
EM&SVD
SVD
EX&SVD
STD

number of hidden states
2 4 6 8 10 12

Ti
m

e
(s

)

0.2

1

5

25

125

500
1000

Figure 4: Error vs. ns (left), time vs. ns (right) for multi-
view model for #training = 4000.

4.2 HIDDEN MARKOV MODEL EXPERIMENTS

We also evaluate the performance of our algorithm by es-
timating the parameters of HMMs on synthetic and real-
world datasets. Similar to the multi-view case, we ran-
domly sample parameters from two different classes of
models to generate synthetic datasets. The first set of mod-
els again has 5 hidden states and 10 discrete observations,
and the second set of models has 10 hidden states and 20
observations. Figure 5 shows the average error of the im-
plemented algorithms run on 10 different datasets gener-
ated by i.i.d sampled models. Each dataset consisted of

799

Training Set Size (×104)
0.01 0.02 0.04 0.1 0.2 0.5 1 2 5 7 10

Er
ro

r

0.04

0.07
0.1

0.2

0.4

0.8

1.5
EM
EM&SVD
SVD
EX&SVD

Training Set Size (×104)
0.01 0.02 0.04 0.1 0.2 0.5 1 2 5 7 10

Ti
m

e
(s

)

0.2

1

5

25

125

500
1000

Training Set Size (×104)
0.01 0.02 0.04 0.1 0.2 0.5 1 2 5 7 10

Er
ro

r

0.02

0.07
0.1

0.2

0.4

0.8

1.5
EM
EM&SVD
SVD
EX&SVD

Training Set Size (×104)
0.01 0.02 0.04 0.1 0.2 0.5 1 2 5 7 10

Ti
m

e
(s

)

5

25

125

500
1000
2000

Figure 5: Error vs. #training (first column), and time vs.
#training (second column) for HMM models. ns = 5,
no = 10 (first row), and ns = 10, no = 20 (second row).

up to 100,000 triples of observations sampled from each
model. Although, estimated parameters in the SVD method
do not have good performance in terms of normalized l1
error, using them to initiate an iterative optimization pro-
cedure improves performance as demonstrated by both the
EM&SVD and the EX&SVD methods. On the other hand,
our algorithm can also outperform EM&SVD, especially
in the low and medium sample size regions when the er-
ror of projection step is relatively high. For medium and
large training set sizes, EM&SVD and EX&SVD are al-
most the same speed, and both are considerably faster than
EM alone.

4.2.1 Splice Dataset

In this experiment we consider the task of recognizing
splice sites on a DNA sequence (Bache and Lichman,
2013). The dataset consist of 3190 examples. Each exam-
ple is a sequence of 60 fields in which every field is filled
by either A,T,C, or G. The label of each example could be
Intron/Exon site, Exon/Intron site, or neither. For train-
ing, we train a HMM with ns = 4 for each class using
different methods and use the rest of examples for test-
ing. For each test example we compute the probability
of the sequence for each model, and choose the label cor-
responding to the model with the highest test probability.
For each test example in our method, we compute the his-
togram of triples in the test sequence, and choose the label
corresponding to the model whose probability distribution
over different triples has the lowest `1 distance to the com-
puted histogram. This method of classification is a natu-
ral fit for our method, since our optimization method finds
model parameters such that its probability distribution over
different triples has minimum distance to the empirically
estimated distribution of tripes M̂. Figure 6 shows the av-
erage classification error of each method for 10 randomly

Training Set Size
200 500 1000 2000

Er
ro

r

0.4

0.45

0.5

0.55

0.6

EM
EM&SVD
SVD
EX&SVD

Training Set Size
0.02 0.05 0.1 0.2

Ti
m

e
(s

)

1

5

25

125

500
1000

10000

Figure 6: Error vs. #training (left), time vs. #training
(right) for splice dataset.

chosen training set with several different sized training sets.
The results are consistent with the experiments on the syn-
thetic datasets in terms of speed and accuracy, despite EM
outperforms EM&SVD in real world dataset. However, our
method performs considerably better than EM.

5 CONCLUSION

We present a new approach to learning latent variable mod-
els such as multi-view models and HMMs. Recent work on
learning such models by method of moments has produced
exciting theoretical results that explicitly bound the error in
the learned model parameters. Unfortunately, these results
have failed to translate into accurate and numerically robust
algorithms in practice. In particular, the parameters learned
by method of moments may lie outside of the feasible set
of models. This is especially likely to happen when the
population moments are estimated inaccurately from small
quantities of training data. To overcome this problem, we
propose a two-stage algorithm for learning the parameters
of latent variable models. In the first stage, we learn an ini-
tial estimate of the parameters by method of moments. In
the second stage, we use an exterior point algorithm that in-
crementally refines the solution until the parameters are at
a local optima and arbitrarily close to valid model parame-
ters. We prove convergence of the method and perform sev-
eral experiments to compare our method to previous work.
An empirical evaluation on both synthetic and real-world
datasets demonstrates that our algorithm learns models that
are generally more accurate than method of moments or
EM alone. By elegantly contending with parameters that
may be outside of the model class, we are able to learn
models that are much more accurate than EM initialized
with method of moments when only a limited amount of
training data is available.

Acknowledgement

The research was supported in part by NSF IIS-1116886,
NSF/NIH BIGDATA 1R01GM108341, and NSF CAREER
IIS-1350983.

800

References
A. Anandkumar, D. P. Foster, D. Hsu, S. M. Kakade, and

Y. Liu. Two svds suffice: Spectral decompositions for
probabilistic topic modeling and latent dirichlet alloca-
tion. CoRR, abs/1204.6703, 2012a.

A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Tel-
garsky. Tensor decompositions for learning latent vari-
able models. arXiv preprint arXiv:1210.7559, 2012b.

A. Anandkumar, D. Hsu, and S. M. Kakade. A method of
moments for mixture models and hidden markov mod-
els. In Proc. Annual Conf. Computational Learning The-
ory, pages 33.1–33.34, 2012c.

K. Bache and M. Lichman. UCI machine learning reposi-
tory, 2013. URL http://archive.ics.uci.edu/ml.

B. Balle, A. Quattoni, and X. Carreras. Local loss opti-
mization in operator models: A new insight into spectral
learning. In Proceedings of the International Conference
on Machine Learning, 2012.

B. Balle, W. Hamilton, and J. Pineau. Methods of moments
for learning stochastic languages: Unified presentation
and empirical comparison. In Proceedings of the Inter-
national Conference on Machine Learning, pages 1386–
1394, 2014.

D. P. Bertsekas. Nonlinear Programming. Athena Scien-
tific, Belmont, MA, second edition, 1999.

V. J. Bloom. Exterior-Point Algorithms for Solving Large-
Scale Nonlinear Optimization Problems. PhD thesis,
George Mason University, 2014.

Stephen Boyd and Lieven Vandenberghe. Convex Opti-
mization. Cambridge University Press, Cambridge, Eng-
land, 2004.

C. Byrne. Sequential unconstrained minimization algo-
rithms for constrained optimization. Inverse Problems,
24(1), 2008.

S. B. Cohen, K. Stratos, M. Collins, D. P. Foster, and L. Un-
gar. Experiments with spectral learning of latent-variable
PCFGs. In Proceedings of NAACL, 2013.

P. L. Combettes and J. Pesquet. Proximal splitting meth-
ods in signal processing. In Fixed-point algorithms for
inverse problems in science and engineering, pages 185–
212. Springer, 2011.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society B, 39(1):1–22,
1977.

J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandrae.
Efficient projections onto the `1-ball for learning in high
dimensions. In Proceedings of the International Confer-
ence on Machine Learning, 2008.

R. Fletcher. Practical methods of optimization. John Wiley
& Sons, 2013.

D. Hsu and S.M. Kakade. Learning mixtures of spheri-
cal gaussians: moment methods and spectral decompo-
sitions, 2012. URL arXiv:1206.5766.

D. Hsu, S. Kakade, and T. Zhang. A spectral algorithm for
learning hidden markov models. In Proc. Annual Conf.
Computational Learning Theory, 2009.

L. D. Lathauwer, B. D. Moor, and J. Vandewalle. A mul-
tilinear singular value decomposition. SIAM journal
on Matrix Analysis and Applications, 21(4):1253–1278,
2000.

S. E. Levinson, L. R. Rabiner, and M. M. Sondhi. An in-
troduction to the application of the theory of probabilis-
tic functions of a Markov process to automatic speech
recognition. Bell System Technical Journal, 62(4):1035–
1074, April 1983.

K. Murphy. Hidden markov model (hmm) toolbox for mat-
lab. URL https://github.com/probml/pmtk3.

A. Parikh, L. Song, and E. P. Xing. A spectral algorithm
for latent tree graphical models. In Proceedings of the
International Conference on Machine Learning, 2011.

A. P. Parikh, L. Song, M. Ishteva, G. Teodoru, and E.P.
Xing. A spectral algorithm for latent junction trees.
In Conference on Uncertainty in Artificial Intelligence,
2012.

K. Pearson. Contributions to the mathematical theory of
evolution. Transactions of the Royal Society of London,
185:71–110, 1894.

R. A Polyak. Primal–dual exterior point method for convex
optimization. Optimisation Methods and Software, 23
(1):141–160, 2008.

S. Shalev-Shwartz and T. Zhang. Accelerated proximal
stochastic dual coordinate ascent for regularized loss
minimization. Mathematical Programming, pages 1–41,
2013.

S. Siddiqi, B. Boots, and G. J. Gordon. Reduced-rank hid-
den Markov models. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and
Statistics (AISTATS-2010), 2010.

L. Song, B. Boots, S. Siddiqi, G. Gordon, and A. J. Smola.
Hilbert space embeddings of hidden markov models. In
International Conference on Machine Learning, 2010.

L. Song, A. Anamdakumar, B. Dai, and B. Xie. Non-
parametric estimation of multi-view latent variable mod-
els. In International Conference on Machine Learning
(ICML), 2014.

H. Yamashita and T. Tanabe. A primal-dual exterior point
method for nonlinear optimization. SIAM Journal on
Optimization, 20(6):3335–3363, 2010.

Y. Zhang, X. Chen, D. Zhou, and M. I Jordan. Spectral
methods meet em: A provably optimal algorithm for
crowdsourcing. In Advances in Neural Information Pro-
cessing Systems 14, pages 1260–1268, 2014.

801

Missing Data as a Causal and Probabilistic Problem

Ilya Shpitser
Mathematical Sciences

University of Southampton
Southampton, UK SO14 6WD
i.shpitser@soton.ac.uk

Karthika Mohan
Dept. of Computer Science

Univ. of California, Los Angeles
Los Angeles, CA 90095

karthika@cs.ucla.edu

Judea Pearl
Dept. of Computer Science

Univ. of California, Los Angeles
Los Angeles, CA 90095
judea@cs.ucla.edu

Abstract

Causal inference is often phrased as a missing
data problem – for every unit, only the response
to observed treatment assignment is known, the
response to other treatment assignments is not.
In this paper, we extend the converse approach
of [7] of representing missing data problems to
causal models where only interventions on miss-
ingness indicators are allowed. We further use
this representation to leverage techniques devel-
oped for the problem of identification of causal
effects to give a general criterion for cases where
a joint distribution containing missing variables
can be recovered from data actually observed,
given assumptions on missingness mechanisms.
This criterion is significantly more general than
the commonly used “missing at random” (MAR)
criterion, and generalizes past work which also
exploits a graphical representation of missing-
ness. In fact, the relationship of our criterion to
MAR is not unlike the relationship between the
ID algorithm for identification of causal effects
[22, 18], and conditional ignorability [13].

1 INTRODUCTION

Missing data is a ubiquitous problem in data analysis, and
can arise due to imperfect data collection, or various types
of censoring, for instance via loss to followup, or death. In
addition, causal inference can be viewed as a missing data
problem, since the fundamental problem of causal infer-
ence [4] is that for every unit only the response to observed
treatment assignment is known, the responses to other, hy-
pothetical treatment assignments are not known.

Handling missing data entails either dealing with a la-
tent variable model or finding plausible assumptions under
which recoverability, that is unbiased inferences about all
cases from the observed cases, is possible. Well-known ap-
proaches of the former type include fitting a latent variable

model via gradient descent [17], the EM algorithm [1], or
performing Monte Carlo averaging via multiple imputation
[16]. Well-known approaches of the latter type include the
Kaplan-Meier estimator in survival analysis [5], and adjust-
ments based on Missing Completely At Random (MCAR),
and Missing At Random (MAR) assumptions [15].

While methods based on inference in a latent variable
model are more generally applicable, they are also method-
ologically and computationally challenging. At the same
time, recoverability methods based on MCAR and MAR
rely on strong assumptions on how missingness comes
about. When neither MCAR nor MAR holds, data is said
to be Missing Not At Random (MNAR), and in this case
a characterization of recoverability is an open problem,
although many sufficient conditions for recoverability are
known [7, 6].

In this paper, we take the converse view to “causality as
missing data,” and view missing data as a particular type
of partly causal, and partly probabilistic inference prob-
lem [2, 7]. We then represent this problem using partly
causal, and partly probabilistic graphical models, and ex-
ploit techniques developed for similar models in the con-
text of identification of causal effects to develop a general
algorithm for recoverability under MNAR. In fact, the rela-
tionship between our algorithm and MAR is not unlike the
relationship between the ID algorithm for identification of
causal effects [22, 18, 19], and the conditional ignorability
assumption in causal inference [13].

The paper is organized as follows. We introduce the no-
tation and concepts we will need in section 2. In section
3, we use missingness graphs and missingness models to
formally define missing data as a type of causal inference
problem where only interventions on certain variables are
allowed. We introduce recoverability and give examples of
where recoverability is possible in MNAR settings in sec-
tion 4. We introduce a general algorithm for recoverabil-
ity we call MID in section 5, and show it is sound. Sec-
tion 6 illustrates a complex case where the entire recursive
structure of MID is necessary. Section 7 discusses non-
recoverability, and section 8 contains our conclusions.

802

2 PRELIMINARIES

Variables are capital letters, values are small letters. Vari-
able sets are bold capital letters, value sets are bold small
letters. A state space for a variable A is XA. A state space
for a set of variables A is the Cartesian product of the indi-
vidual state spaces: XA ≡ ×A∈AXA. For a set of values a,
and B ⊆ A, denote by aB a projection of a to B. Denote
aB as a shorthand for a{B}. We will denote a vector of 0s
as 0. 0B means “a set of 0 values to B.”

2.1 GRAPH THEORY AND NOTATION

A directed graph consists of a set of nodes and directed
arrows (→) connecting pairs of nodes. A mixed graph con-
sists of a set of nodes and directed and/or bidirected arrows
(↔) connecting pairs of nodes. A path is a sequence of
distinct edges where any edge in a sequence that ends in a
node A implies the subsequent edge must start with A, and
each such node A may only occur at most once in this way
in the sequence. A directed path from a node X to a node
Y is a path consisting of directed edges where all edges on
the path point away from X and towards Y .

If the edge X → Y exists in a graph G, we say X
is a parent of Y and Y is a child of X . If a di-
rected path from X to Y exists in G, we say X is
an ancestor of Y , and Y is a descendant of X . We
denote by paG(A), chG(A),deG(A), anG(A),ndG(A) the
sets of parents, children, descendants, ancestors, and non-
descendants of A in G, respectively. These are defined
disjunctively for sets, e.g. paG(A) =

⋃
A∈A paG(A).

Let faG(A) = paG(A) ∪ {A}, pasG(A) = paG(A) \ A,
ndpG(A) = ndG(A) \ paG(A). Given a graph G, we say a
vertex set A is ancestral if anG(A) = A. By convention,
in any directed graph, A ∈ anG(A) ∩ deG(A). A directed
graph is said to have a directed cycle if there is X,Y such
thatX ∈ anG(Y)∩chG(Y). A directed graph without such
cycles is called a directed acyclic graph (DAG).

A conditional DAG (CDAG) G(V | W) is a DAG with
vertices V ∪W with the property that paG(W) = ∅. We
will denote vertices in V as circles, and vertices in W
as squares. Note that we do not require that all V ∈ V
must have parents. We simply distinguish certain parent-
less nodes in G as W. We will interpret vertices in V as
associated with random variables and vertices in W as as-
sociated with variables that have been “set to a constant” in
some way. One example of a CDAG is a mutilated graph
that arises in the analysis of interventional distributions.
When considering d-separation on vertices in V in a CDAG
[9], we will treat it as ordinary d-separation in a DAG, ex-
cept all nodes in W are implicitly conditioned on.

If vertices not in W in a CDAG correspond to a variable
partition into observed and missing variables, we will ex-
plicitly denote the set of vertices corresponding to miss-

ing variables as M, and the other vertices as O, like so:
G(O,M |W). A CDAG where W is empty is written as
G(V) or G(O,M) as a shorthand.

A conditional acyclic directed mixed graph (CADMG)
G(V | W) is a mixed graph with two types of edges →
and ↔ with no directed cycles, where no arrowhead may
point to an element of W. We will sometimes omit vari-
ables from CDAGs and CADMGs if they are obvious to
avoid notation clutter, e.g. we will write G(V |W) simply
as G. Given a CDAG G(O,M | W), define GB(G) to be
an edge subgraph obtained from G by removing all arrows
pointing away from B.

Define a latent projection of G(O,M | W) onto O ∪W
[23] to be a CADMG G(O)(O,M | W) ≡ G†(O | W)
such that for any V1, V2 ∈ O ∪W:

• There is an edge V1→V2 if and only if there is a di-
rected path V1→ . . .→V2 in G(O,M | W) with all
intermediate nodes in M.

• There is an edge V1↔V2 if and only if there
is a marginally d-connected path V1← . . .→V2 in
G(O,M |W) with all intermediate nodes in M.

Latent projections are a simplified representation of an in-
finitely large class of hidden variable CDAGs with struc-
tural features in common. In this paper, we use them only
to simplify the statements and proofs of our results. The re-
sults themselves will always be about models represented
by DAGs (and CDAGs).

Given a CDAG G(V | W), and A ⊆ V ∪W, define
GA(V | W) ≡ G(V ∩ A | W ∩ A) be a subgraph of
G containing the vertex set A and any edge in G between
elements in A.

Given a CADMG G(V |W), and V ∈ V, define the dis-
trict (or c-component [22, 18]) of V in G(V | W) to be
disG(V) = {A ∈ V | V↔ . . .↔A}. The set of districts of
G(V |W) is denoted by D(G(V |W)), and it partitions
V.

For any V ∈ O in a CDAG G(O,M | W) where for ev-
ery M ∈ M, deG(M) ∩ O 6= ∅, define the clan of V
as claG(V) ≡ anGDV ∪M(DV), where DV = disG(O)

(V).
For example, in G shown in Fig. 1 (c), where {X,W} are
missing, claG(RX) = claG(SW) = {W,RX , SW }, and
claG(RW) = claG(SX) = {X,RW , SX}.
For any D ∈ D(G(O)(O,M | W)), and D1, D2 ∈ D,
claG(D1) = claG(D2). Thus we will write claG(D) ≡
claG(D), for any D ∈ D. In fact, the set of clans partitions
O ∪M in G with the property above.

Given a CDAG G, a total ordering ≺ on vertices in G is
topological given G if A ≺ B implies A 6∈ deG(B). Given
an ordering ≺ topological given G, define for any vertex V

803

in G, preG,≺(V) = {W 6= V |W ≺ V } . Given ≺ topo-
logical for G with a vertex set V, if there is a subgraph G′
of G with a vertex set V′ ⊂ V, we will view≺with respect
to G′ as the natural subordering restricted to V′. Note that
this subordering will also be topological with respect to G′.
A counterfactual (potential outcome) Y (a) [8, 14] is a re-
sponse Y to a hypothetical assignment of a set of treat-
ments A to values a. Given a set of potential outcomes
Y1(a), . . . Yk(a), where Y = {Y1, . . . Yk}, we may con-
sider a joint distribution

p({Y1, . . . Yk}(a)) ≡ p(Y(a)) ≡ p(Y | do(a)).

The do(.) notation is discussed extensively in [10].

3 MISSING GRAPHS AND
MISSINGNESS MODELS

Given a CDAG G(V | W), we say pW(V) (a mapping
from XW to p(V)) is Markov relative to G if

pW(V) =
∏

V ∈V
pW(V | paG(V) \W), (1)

and each term pW(V | paG(V) \W) only depends on
W ∩ paG(V).

Definition 1 (missingness graph) Given a DAG
G(O,M), a DAG Gm is called a missingness graph
for G if Gm has the vertex set O ∪M ∪RM ∪ SM, where
RM = {RM | M ∈ M}, SM = {SM | M ∈ M}, G =
GmO∪M, and for all M in M, paGm(SM) = {M,RM},
chGm(SM) = ∅, and chGm(RM) ∩ (O ∪M) = ∅.

By convention, if M = ∅, then S∅ = R∅ = ∅. We will
refer to O∪RM ∪SM as V, and to V∪M as A. We call
elements of RM indicators, and elements of SM proxies.

Define M(Gm(A)) to be the missingness model for
a missingness graph Gm(A) as a set of distributions
{p(A)} over the following set of counterfactuals A ≡
{A(r)|R ⊆ RM, r ∈ XR} , such that (∀M ∈M) XRM =
{0, 1}, XSM = XM ∪ {missing}, and the missingness
mechanism that determines the value of SM is as follows:
SM (0RM) = M and SM (1RM) = missing. In addition:
(∀R ⊆ RM, r ∈ XR, V ∈ A),

V (r) ⊥⊥ {ndpGmR (V)}(r) | {paGmR (V)}(r). (2)

To obtain the set A, we first define

{A(r)|r ∈ XRM
} ≡ {SM(r),O,M|r ∈ XRM

} ,

and obtain the others via modified recursive substitution as
in definition 43 in [11], pp. 100-101.

A missingness model is thus really a particular type of
a graphical causal model where we only define interven-
tions on a subset of variables [11]. In particular, we allow

G(O,M) to represent an ordinary hidden variable statis-
tical model. (2) is just the DAG local Markov property
linking p(A(r)) and GmR , for every r. If we had chosen to
split variables in R into random and intervened versions,
and display both explicitly in the graph rather than only
displaying the random version of variables, and keeping in-
tervened versions implicit, as we do in GmR , we would end
up with Single World Intervention Graphs (SWIGs), and
the appropriate local Markov property for those graphs, as
discussed in [11].

Standard results on DAG models imply (2) is equivalent
to (1) for p(A(r)) and GmR (if we let W = ∅, and keep
fixed versions of R implicit in the graph). We may also let
W = R, and treat R as a split node as in a SWIG.

4 RECOVERABILITY

We call p(V) the manifest distribution. A functional of
p(A), f(p(A)) is said to be recoverable given p(V) in Gm
if there is a functional g of p(V), such that f(p(A)) =
g(p(V)) for every element of M(Gm). In this paper, we
will concentrate on recoverability of p(O ∪M), although
many other kinds of recoverability problems are also inter-
esting, for instance recovering the causal effect in a causal
model with missingness.

We explicitly represent missingness as a causal inference
problem because this allows us to rephrase recoverability
as identifiability of causal effects. If we were allowed to
assign RM without affecting other variables, we could use
proxies SM to recover the behavior of the underlying miss-
ing variables M, due to the following result.

Lemma 1 In a DAG G where M 6= ∅, for any p(A) ∈
M(Gm(V,M)), and RM ∈ RM, p(Y) ∈ M(Gm(V ∪
{M},M \ {M})V∪M\{SM ,RM}), where Y is
{
{V ∪M \ {RM}}(r, 0RM)

∣∣R ⊆ RM\{M}, r ∈ XR

}
.

Proof: {V ∪ M}(r, 0RM) obeys (2) for GmR∪{RM}.
Since A \ {RM} is ancestral in GmR∪{RM}, {V ∪ M \
{RM}}(r, 0RM) obeys (2) for (GmR∪{RM})A\{RM}. Our

conclusion follows since M = SM (0RM). �

In other words, fixing RM to 0 gives a new model where
M is effectively observed since M = SM (0RM). This
implies that if we were able to fix all of RM, we could
recover p(O ∪M).

Corollary 1 p({O,SM}(0RM
)) = p(O∪M) for any Gm,

and any p(A) ∈M(Gm).

This corollary implies that our recoverability problem is
solved by expressing a particular interventional distribution

804

as a function of the manifest in a restricted causal model.
We will attack this problem via two standard results for
causal models that hold in restricted causal models as well,
as shown in [11], propositions 45 and 46.

Theorem 1 For any p(A) ∈ M(Gm(V,M)), and (∀R ⊆
RM, r ∈ XR),

p(A(r)) =
∏

V ∈A
p(V | paGm(V) \R, rpaGm (V)∩R). (3)

Theorem 2 For any p(A) ∈ M(Gm(V,M)), and (∀R ⊆
RM, r ∈ XR),

p({(V ∪M) \R}(r) | r) = p((V ∪M) \R | r). (4)

(3) is known as the truncated factorization [10], manipu-
lated distribution [21], or the g-formula [12]. (4) is known
as the consistency property.

We now illustrate how constraints of the missingness model
encoded by Gm, as well as (3) and (4) lead to recoverability.

4.1 EXAMPLES OF RECOVERABILITY

Consider Fig. 1, where X,C,W may possibly be high-
dimensional. In Fig. 1 (a), X is missing according to a
mechanism governed by an independent proxy RX , so

p(X) = p(SX(0RX)) = p(SX | RX = 0).

The assumption present in this model which allows
us to recover the underlying missing variable, namely
(SX(0RX) ⊥⊥ RX) is known as missing completely at ran-
dom (MCAR) assumption.1 This assumption is the miss-
ingness analogue of ignorability (lack of confounding be-
tween the missingness indicator RX and the proxy SX(r)
under assignment r to RX).

In Fig. 1 (b), X is missing according to a mechanism gov-
erned by a proxy RX which has a (statistical) dependence
on X through C, which is a fully observed variable. In this
case,

p(X,C) = p(SX(0RX) | C)p(C) = p(SX | RX = 0, C)p(C).

The assumption present in this model which allows
us to recover the underlying missing variable, namely
(SX(0RX) ⊥⊥ RX | C) is known as the missing at random
(MAR) assumption. This assumption is the missingness
analogue of conditional ignorability (lack of confounding
between the indicator RX and the proxy SX(r) under as-
signment r to RX given that we conditioned on a set of
variables C).

In Fig. 1 (c), it is not the case that

{SW (0RW), SX(0RX)} ⊥⊥ {RX , RW }.
1⊥⊥ is the independence symbol.

X

SX

RX

(a)

X

C

SX

RX

(b)

X

W RW

RX

SW

SX

(c)

Figure 1: (a) A missingness model satisfying the missing
completely at random (MCAR) assumption. (b) A miss-
ingness model satisfying the missing at random (MAR) as-
sumption. (c) A missingness model where missingness is
not at random (MNAR), but where recoverability is never-
theless possible.

That is, data on X,W is not missing completely at random
(nor at random, since there is no fully observed variable
to screen off the dependence of proxies under indicator as-
signment from indicators.) Nevertheless, despite the fact
that data on p(X,W) is missing not at random (MNAR),
we now show that p(X,W) is recoverable. We will exploit
the fact that the missingness model implies

{SW (0RW), RX(0RW)} ⊥⊥ {SX(0RX), RW } . (5)

It is not difficult to show that p(RW , RX , SW , SX) is equal
to

p({SW , RX}(RW)) · p(SX(RX), RW) =

(p(SW | RX , RW)p(RX | RW)) · (p(SX | RX , RW)p(RW))

This implies p(X,W) = p(X)p(W) is equal to

∑

RX

p({SW , RX}(0RW))

 ·

∑

RW

p(SX(0RX), RW)

 =

p(SW | 0RW) ·

∑

RW

p(SX | 0RX , RW)p(RW)

The key to this example is the joint independence (5); inde-
pendences of this type arise in hidden variable DAG mod-
els. We give an example later where recoverability is based
not on an ordinary independence, but on a generalized in-
dependence, or Verma constraint [23, 20]. In the following
sections, we give a general recursive scheme for solving
recoverability problems under MNAR using these types of
constraints.

4.2 KNOWN RESULTS FOR MISSINGNESS
GRAPHS

Recently [7] and [6] have used missingness graphs to de-
rive conditions for recoverability when data is MNAR. In
particular, the following characterization appears in [7] (as
theorem 2).

805

Theorem 3 For any p(A) ∈ M(Gm(V,M)), if no ele-
ments of RM are adjacent in Gm(V,M), then p(O ∪M)
is recoverable from p(O,SM,0RM

) if and only if M 6∈
paG(RM) for any M ∈M. Moreover, p(O ∪M) is equal
to

p(O,SM,0RM)
∏

RM∈RM

p
(
0RM

∣∣∣paG(RM) \M,SpaG(RM)∩M,0RpaG(RM)∩M

) .

This result can be generalized in three directions. We may
consider cases where variables are unobserved and no miss-
ingness mechanism exists. We may consider recoverability
of other queries than p(O∪M), for instance causal effects
or marginal distributions. Finally, we may consider cases
where elements of RM are adjacent. This case is impor-
tant because it represents important classes of missingness
such as monotonic missingness due to loss to followup. A
unit that drops out of a longitudinal study at time t often re-
mains dropped out at times t+1, In our framework, we
would code this by requiring that for all t′ > t, RMt′ = 1
if RMt′−1

= 1, where Mt is unit’s status at time t. But
this coding is only possible if indicators are allowed to be
adjacent in the graph. In addition, allowing indicators to be
adjacent allows us to model non-monotone missing data,
where a unit may be missing at a particular time t, but then
becomes observed at a later time t+ k.

In this paper, we consider the problem of recovering p(O∪
M) given that every missing variable has an indicator and
a proxy (e.g. no completely hidden variables), and that in-
dicators RM are allowed to be adjacent. We give a re-
coverability algorithm that generalizes earlier work in this
setting.

5 A GENERAL RECOVERABILITY
ALGORITHM

The algorithm, which we call MID, work as follows. It
tries, for every RM ∈ RM, to recover

p(0RM | paGm(RM) \RM,0paGm (RM)∩RM
)

via a subroutine DIR. If every such conditional distribu-
tion is recovered, MID recovers p(O ∪M) via (3), other-
wise MID fails.

The subroutine DIR (so named for its resemblance to the
way the ID algorithm operates when identifying controlled
direct effects) has three cases. The first case, which is suf-
ficient for obtaining the soundness part of Theorem 3, at-
tempts to check if indicators for missing parents of RM are
non-parental non-descendants ofRM , in which case recov-
erability of the conditional distribution for RM is immedi-
ate.

Otherwise, DIR uses the other two cases to isolate RM
and its parents into smaller subproblems based on a partic-
ular type of ancestral set A†, or the clan D† of RM . DIR

is recursive, which means the input must also keep track of
a set W representing variables the clan subproblem ends
up depending on.

The situation is somewhat analogous to the way in which
the ID algorithm attempts to identify controlled direct ef-
fects p(Y | do(vpaG(Y))) = p(Y (vpaG(Y))), with three
major differences. First, we are attempting identification
in a setting where some variables start off being treated as
hidden, but in the course of the recursion of DIR become
observed due to fixing indicators to 0. In ID variables are
always either hidden or observed and do not change status.
Second, since we are only allowed to intervene on indica-
tors, we are attempting to identify

p(RM (0RM∩paG(RM)) | {paG(RM) \RM}(0RM∩paG(RM))).

Finally, there is not necessarily a fully interventional in-
terpretation for the intermediate objects pW(.) that arise
during the execution of DIR, since W may contain ele-
ments outside RM. This is a necessary consequence of our
insistence on not imposing a causal model on p(M ∪ O).
Intermediate objects that arise during the execution of ID
can always be interpreted as interventional distributions.

5.1 SOUNDNESS

MID and its subroutine DIR appear below as algorithm 1.
In this section, we prove that MID is sound.

Corollary 1 implies that if were able to express
p({O,SM}(0RM

)) as a function of the manifest distri-
bution, we would solve the recoverability problem for
p(O ∪M). If we happen to know

p(0RM | paGm(RM) \RM,0RM∩paGm (RM))

for every RM ∈ RM as a function of the manifest, this
would suffice due to the following result.

Lemma 2 UnderM(Gm), if for every RM ∈ RM,

p(0RM | paGm(RM) \RM,0paGm (RM)∩RM
)

is a functional fRM (.) of p(O,SM,0RM
), then

p({O,SM}(0RM
)) =

p(O,SM,0RM
)∏

RM∈RM
fRM (p(O,SM,0RM

))
.

Proof: p({O,SM}(0RM
)) =

∑
M p({A \RM}(0RM

)).

p({A \RM}(0RM
)) =

p(A \RM,0RM
)∏

RM∈RM
fRM (p(O,SM,0RM

))

is implied by (3). But no denominator is a function of M,
so we can apply the sum to the numerator first. � Finding
functionals fRM (.) for every RM in order to apply Lemma
2 is the job of the subroutine DIR.

806

Algorithm 1 Gm(V,M) a missingness graph, p(V)
a manifest distribution from p(A) ∈ M(Gm(V,M)),
pW(V) a family of manifest distributions from elements
of p(A) ∈M(Gm(V,M)), ≺ a topological order on Gm.

procedure MID(Gm(V,M), p(V))
for each RM ∈ RM,

p̃(0RM | paGm(RM) \RM,0paGm (RM)∩RM
)

← DIR(Gm, p, RM)

if (∃RM ∈ RM), s.t. DIR(Gm, p, RM) = ∅,

return “cannot recover.”

else return

p(O,SM,0RM)∏
RM∈RM

p̃(0RM | paGm(RM) \RM,0paGm (RM)∩RM
)
.

end procedure
procedure DIR(Gm(V,M |W), pW(V), RM)

if RM∩(paGm (RM)\W) ⊆ ndpGm(RM), return

pW

0RM

∣∣∣∣∣∣

paGm(RM) \ (M ∪W ∪RM)
0RM∩paGm (RM)

,SM∩paGm (RM)

0RM∩(paGm (RM)\W)

 .

else A† ← {RM}.
while

(
anGm(A†) ∪ SanGm (A†)∩M 6⊆ A†

)
do

A† ← anGm(A†) ∪ SanGm (A†)∩M.
if A† ⊂ A,

return DIR(GmA† , pW∩A†(V ∩A†), RM).
D← disGm

(V)
(RM), D† ← claGm(RM).

if D ⊂ V,

Z† ← pasGm
(V)

(D) ∩RM

Y† ← pasGm
(V)

(D) \RM

Mo
D† ← {M ∈ (M ∩D†) | RM ∈ Z†}

Mh
D† ← (M ∩D†) \Mo

D†

V† ← D ∪Mo
D†

G̃m ← GmD†(V†,Mh
D† |Y†)

pY†(D)←
∏

V ∈D
pW

(
V

∣∣∣∣∣
preGm

(V)
,≺(V) \ Z†,

0preGm
(V)

,≺(V)∩Z†

)

return DIR(G̃m, pY†(D), RM)
end if
return ∅.

end procedure

Soundness of DIR

The subroutine DIR invoked by MID aims to recover
fRM (p) = p(0RM | paGm(RM) \ RM,0paGm (RM)∩RM

)
by recursively attempting to restrictRM and paGm(RM) to
either an appropriate ancestral subset containing these ver-
tices, or an appropriate clan of Gm, and, in the base case,
exploiting the independence structure, and properties of the
subproblem that is left.

To prove the soundness of DIR, we must establish, by
induction on algorithm structure, certain results about the
subproblems it considers. We will represent subproblems
as a pair consisting of a CDAG G̃m that is a subgraph of the
original graph Gm, and a conditional fragment of the miss-
ingness model which can be viewed as a set of all interven-
tional distributions relevant to the subproblem, which also
possibly depend on variables W from larger subproblems.

Given an element p(A) ofM(Gm(A)), B ⊆ A, and W ⊆
A \ B, a conditional fragment of p(A) with respect to B
and W, denoted by FW,B, is a mapping from elements w
in XW to

Fw,B ≡ {pw(B(r)w) | R ⊆ RM ∩B, r ∈ XR} .

Note that we cannot view pw(B(r)w) as a joint response
of B to an intervention setting R∪W to r∪w, because W
may contain elements outside R that we are not allowed to
intervene on.

For each call to DIR, we want to show that all interven-
tional distributions in the input fragment are Markov with
respect to the appropriately modified input graph, that we
have enough information in the subproblem to possibly
obtain fRM (p), and that the manifest distribution of the
fragment for the current (inner) call can be obtained from
the manifest distribution of the fragment for the previous
(outer) call.

Definition 2 FW,B is causal Markov relative to a CDAG
Gm(B | W) if (∀w ∈ XW, pw(B(r)w) ∈ Fw,B),
pw(B(r)w) is Markov relative to Gm(B |W)R.

This definition is how we will relate fragments and corre-
sponding subgraphs, and the following two results estab-
lish this relationship for the two recursive cases relevant
for DIR.

Lemma 3 For FW,A causal Markov relative to Gm(A |
W), let D ∈ D(Gm(V)), D† ≡ claGm(D), W† ≡
pasGm

(V)
(D), W∗ ≡ W† \W. Then for any w† ∈ XW† ,

Fw†,D† ≡
{
p̃w†(D

†(r)w†)
∣∣r ∈ XR,R ⊆ RM ∩D

}
is

causal Markov relative to GmfaGm (D†)(D
† |W†), where for

any w consistent with w†, p̃w†(D†(r)w†) is
∏

V ∈D†

pw(V |(r ∪w†)paGm (V)∩(R∪W∗),paGm(V) \ (R ∪W†))

807

Proof: For any CDAG G(O,M | W), faG(claG(D)) is
equal to claG(D) ∪ pasG(O)

(D) for any D ∈ D(G(O)). The
proof is now immediate. Elements p̃w†(D†(r)w†) of each
Fw†,D† are Markov relative to (GmfaGm (D†))R by construc-
tion. The definition of p̃w†(D†(r)w†) implies it is the same
object for any w consistent with w†. �

Lemma 4 For FW,A causal Markov relative to Gm(A |
W), let V† ⊆ A ∪ W be ancestral, W† ≡ W ∩
V†, A† ≡ A ∩ V†. Then for any w† ∈ XW† ,
Fw†,D† ≡

{
p̃w†(A

†(r)w†)
∣∣r ∈ XR,R ⊆ RM ∩A†

}
is

causal Markov relative to GmA†(A† | W†), where for any
w consistent with w†, p̃w†(A†(r)w†) is

∏

V ∈A†
pw(V | rpaGm (V)∩R,paGm(V) \ (R ∪W†))

Proof: Immediate. Elements pw†(A
†(r)w†) of each

Fw†,A† are Markov relative to (GmA†)R by construction.
The definition of p̃w†(D†(r)w†) implies it is the same ob-
ject for any w consistent with w†. �

The next two results re-express p(RM | paGm(RM)) from
a function of the larger fragment of the outer recursive call
to a function of the smaller fragment of the inner call.

Lemma 5 Assume FW,A is causal Markov relative to
Gm(A |W), and FW†,D† is defined as in Lemma 3. Then
for any RM ∈ D†, pW(RM | paGm(RM) \W) is equal
to pW†(RM | paGm

faGm (D†)
(RM) \W†).

Proof: Since RM ∈ D†, this follows by Lemma 3. That is,
pW†(RM | paGm

faGm (D†)
(RM) \W†) is equal to pW(RM |

W†
paGm (RM)∩(W†\W)

,paGm(RM) \W†), which is equal
to pW(RM | paGm(RM) \W). �

Lemma 6 Assume FW,A is causal Markov relative to
Gm(A |W), and FW†,A† is defined as in Lemma 4. Then
for any RM ∈ A†, pW(RM | paGm(RM) \W) is equal
to pW†(RM | paGm

A†
(RM) \W†).

Proof: Since RM ∈ A†, this follows by Lemma 4. That
is, pW†(RM | paGm

A†
(RM) \W†) is equal to pW(RM |

paGm(RM) \W). �

The next two results express the analogue of the manifest
distribution of the smaller fragment as a function of the
manifest distribution of the larger fragment. We assume
Mo

D† , M
h
D† , V

†, Z†, Y†, and G̃m are defined as in the dis-
trict case of DIR. Let W† = Y† ∪Z†, and O† = D∩O.

Lemma 7 Assume FW,A is causal Markov relative to
Gm(A | W), and FW†,D† is defined as in Lemma 3.

Then the marginal pY†,0
Z†
(O†,Mo

D† ,SMh

D†
,RMh

D†
) of

pW†(D†) ∈ FW†,D† is equal to∏
V ∈V† pW(V | preGm

(V)
,≺(V) \ Z†,0preGm

(V)
,≺(V)∩Z†).

Proof: Fix w and w† consistent with w, such that w†
Z† =

0. We get the following set of equalities, where the first
is by assumption on missingness models, the second by
(4), (3) and the definition of Mo

D† , the third by defini-
tion, the fourth by Lemma 3, and the last by standard re-
sults on district factorization of hidden variable DAG mod-
els found in [22]. If we range over all possible w†

Y† , the
last expression reduces to

∏
V ∈V† pW(V |preGm

(V)
,≺(V) \

Z†,0preGm
(V)

,≺(V)∩Z†).

pw†(O
†,Mo

D† ,SMh

D†
,RMh

D†
)

= pw†(O
†,SMo

D†
(RMo

D†
= 0),SMh

D†
,RMh

D†
)

= pw†(O
†,SMo

D†
,SMh

D†
,RMh

D†
)

=
∑

Mh

D†

pw†(O
†,SMo

D†
,SMh

D†
,RMh

D†
,Mh

D†)

=
∑

Mh

D†

∏

V ∈D†
pw(V | w†

paGm (V)∩(W†\W)
,paGm(V) \W†)

=
∏

V ∈D
pw(V |preGm

(V)
,≺(V) \W†,w†

preGm
(V)

,≺(V)∩W†)

�

Lemma 8 Assume FW,A is causal Markov relative to
Gm(A | W), and FW†,A† is defined as in Lemma 4.
Then the element pW†(V ∩ A†) of FW†,A† is equal to∑

V\A† pW(V).

Proof: pW†(V ∩ A†) is equal to
∑

A†\V pW†(A†) (by
definition), which is equal to

∑
A†\V

∑
A\A† pW(A)

by Lemma 4. But since both V,A† are subsets of
A, this is just

∑
A\(V∩A†) pW(A), which is equal to∑

V\A†
∑

A\V pW(A) =
∑

V\A† pW(V). �

The following result establishes the validity of the base
case of DIR, where pW(RM | paGm(RM) \W) is ex-
pressed in terms of the manifest distribution for the current
fragment.

Lemma 9 Assume FW,A is causal Markov relative to
Gm(A | W). Then if RM∩(paGm (RM)\W) ⊆
ndpGm(RM), then

pW(0RM | paGm(RM)\(W∪RM),0RM∩(paGm (RM)\W))

is equal to pW

0RM

∣∣∣∣∣∣

paGm(RM) \ (M ∪W ∪RM)
0RM∩paGm (RM)

,SM∩paGm (RM)

0RM∩(paGm (RM)\W)

.

808

Proof: We get the following set of equalities, where the first
follows by assumption, and the fact that pW(A) is Markov
relative to Gm, the second is by the properties of the miss-
ingness model, and the third is by (4):

pW

(
0RM

∣∣∣∣
paGm(RM) \ (W ∪RM)
0RM∩(paGm (RM)\W)

)
=

pw

0RM

∣∣∣∣∣∣

paGm(RM) \ (M ∪W ∪RM)
paGm(RM) ∩M,0RM∩paGm (RM)

0RM∩(paGm (RM)\W)

 =

pW

0RM

∣∣∣∣∣∣

paGm(RM) \ (M ∪W ∪RM),
SM∩paGm (RM)(0RM∩paGm (RM)

)

0RM∩paGm (RM)
,0RM∩(paGm (RM)\W)

 =

pW

0RM

∣∣∣∣∣∣

paGm(RM) \ (M ∪W ∪RM)
0RM∩paGm (RM)

,SM∩paGm (RM)

0RM∩(paGm (RM)\W)

 .

�

Before putting all these results together to show soundness
of DIR, we must prove one additional utility lemma that
shows the set A† constructed by DIR is ancestral.

Define an automorphism from vertex sets in Gm,
ρM,Gm(B), as anGm({RM} ∪B) ∪ SanGm ({RM}∪B). Let
A† be the fixed point of ρM,Gm with the starting input of
the empty set.

Lemma 10 A† is an ancestral set in Gm.

Proof: A simple proof by contradiction follows by defini-
tion of ρM,Gm . �

We now show the main result of this paper.

Theorem 4 MID is sound.

Proof: Assuming DIR returns the answer for every RM ∈
RM, Corollary 1, and Lemma 2 ensure that MID recovers
p(M ∪O) from p(V).

The soundness of DIR follows by induction on the recur-
sive call structure. The inductive hypothesis is that the in-
put conditional fragment F

W̃,Ã
is causal Markov relative

to the appropriate graph derived from the input graph G̃m,
that the input manifest p̃

W̃
(V) is the function of the origi-

nal manifest p(V), and that p̃
W̃
(RM | paG̃m(RM)\W̃) =

p(RM | paGm(RM)).

The base case trivially holds for the original inputs to DIR.
If the inductive hypothesis is true, and DIR returns after
the first conditional, soundness follows by Lemma 9.

If DIR returns after the second conditional, then Lemma
10 ensures the constructed set A† is ancestral, and the in-
duction for the following recursive call is maintained via
Lemmas 4, 8 and 6.

If DIR returns after the third conditional, Lemma 3
ensures Fw̃,D† is causal Markov relative to GmfaGm (D†)

for all values of w̃, including those that set Z† to
0. Lemma 5, and the inductive hypothesis ensures
pW†(RM | paGm

faGm (D†)
(RM) \W†) is equal to pW(RM |

paGm(RM) \W). Finally, Lemma 7 ensures the manifest
for the recursive call is a function of the input manifest.
In fact, because we set Z† to 0, properties of missingness
models ensure we can treat Mo

D† as observed in subsequent
recursive calls, which means we no longer need to consider
SMo

D†
.

Since induction follows for all cases, so does our conclu-
sion. �

6 A COMPLEX RECOVERABLE
EXAMPLE

We now work through an example where all cases of MID
and DIR are necessary. Consider the graph shown in Fig.
2 (a). Here C and D are shown in green to indicate that
they are fully observed. This is a more complex version
of the example in Fig. 1 (c). Unlike that case, here,
there are no conditional independences that hold between
proxies and indicators. However, if we were to divide by
p(D | C) and sum out C, in the resulting distribution
pD(SA, SB , RA, RB , A,B), for any fixed value d ofD, we
would have

({SA(0RA), RB} ⊥⊥ {SB(0RB), RA(0RB)})pd
This is a type of Verma constraint [23] or generalized inde-
pendence constraint [20].

Our goal is to recover p(A,B,C,D) given the missing-
ness model corresponding to this graph, and in particular
the above constraint. We must recover p(0RB | A,D)
and p(0RA | 0RB , B,D) from p(RA, RB , SA, SB , C,D).
In either case, we note that D is not an element
of claGm(RA) = claGm(RB), which implies we can
use the clan case of DIR and consider a subproblem
shown in Fig. 2 (b), with the corresponding mani-
fest p̃D(RA, RB , SA, SB , C) = p(SA, SB , RA, RB |
D,C)p(C). In the new subproblem (for either RA or
RB), C is not a part of the ancestral set A† constructed
by DIR in the ancestral case, so we consider a new sub-
problem shown in Fig. 2 (c), with the corresponding man-
ifest p̃D(RA, RB , SA, SB) =

∑
c p̃D(SA, SB , RA, RB |

D, c)p̃D(c). This new subproblem now resembles the ex-
ample in Fig. 1 (c), and is solved similarly. In particular,
we recover p(0RB | D,A) as

p̃D(SA | 0RA , 0RB)p̃D(0RB)∑
RB

p̃D(SA | 0RA , RB)p̃D(RB)

and p(0RA | 0RB , B,D) as p̃D(0RA | 0RB , SB). We
then obtain p(A,B,C,D) by dividing the manifest distri-
bution for observed cases p(0RA , 0RB , SA, SB , C,D) by
the above two probabilities.

809

RA

B

D

C

RB

A

SA SB

(a)

RA

B

D

C

RB

A

SA SB

(b)

RA

B

D

RB

A

SA SB

(c)

Figure 2: (a) An example where recoverability is possi-
ble via MID. (b),(c) Graphs corresponding to subproblems
considered by MID in recovering p(A,B,C,D).

7 NONRECOVERABILITY

The generality of MID naturally raises the question of
whether it is complete, that is whether whenever it outputs
“cannot recover” then it is possible to construct two ele-
ments of the missingness model that agree on the manifest
but disagree on the underlying joint distribution. We leave
this difficult question aside in this paper in the interests of
space, but note that an approach similar to one used to show
completeness for causal effects identification [18] seems
promising. That is, use MID as a guide for constructing
a “zoo” of structures where recoverability does not seem to
be possible, and then construct a general method for show-
ing non-recoverability for this “zoo.”

Some results on non-recoverability do exist. For example,
it can be shown that p(A) is not recoverable in the miss-
ingness model with the graph in Fig. 3 (a) [7], and sim-
ilarly that p(A,B) is not recoverable in the missingness
model with the graph in Fig. 3 (b). Characterization of
non-recoverability is an open problem.

8 DISCUSSION AND CONCLUSIONS

We have represented missing data as a type of a restricted
causal inference problem. Using the machinery of graphi-
cal causal models, we have given a general algorithm for
recoverability of a joint distribution in MNAR settings.
Though we do not require this, our formalism allows the
joint distribution we recover to come from a statistical,
rather than a causal model – all causal assumptions may be
restricted to the missingness model governing the behavior
of proxies of missing variables under interventions on indi-
cators. We show that the MCAR, MAR, MNAR taxonomy
is not sufficiently granular to classify cases where recover-
ability is possible. In particular, there are MNAR examples
where constraints akin to Verma constraints permit recov-
erability.

Aside from the algorithm, our formalism allows us to seam-
lessly integrate issues of identification of causal effects, and
recoverability. For instance, it is known that in the graph
shown in Fig. 3 (c) (where we treat↔ edges as indicating

A

RA

(a)

A B

RB RA

(b)

C A Y

RY SY

(c)

Figure 3: (a) p(A) is not recoverable. (b) p(A,B) is not
recoverable. (b) A graph with hidden variables where p(Y)
is not recoverable, but p(Y (a)) is.

the presence of an unobserved parent), p(Y) is not recover-
able. However, if the graph on C,A, Y represents a causal
model, we can show that p(Y (a)) is recoverable. In partic-
ular

p(Y (a)) = p(SY (a, 0RY)) =

∑
c p(SY , 0RY | a, c)p(c)∑
c p(0RY | a, c)p(c)

A similar observation appears in [6], example 3.

By explicitly representing missingness via an intervenable
indicator, and a proxy as a response to this intervention, our
formalism allows us to reason explicitly about the interpre-
tation of censoring by death using the existing language of
interventions. That is if SX is observed patient history, and
1RX implies it is missing due to the patient dying, then we
may either disallow considering SX(0RX) (e.g. “resurrect-
ing the patient”) for that patient, allow SX(0RX), but treat
it as making statements about exchangeable but different
patients who happened to be alive that transfer over to the
dead patient in a hypothetical alternative history where the
patient never died, and so on.

Note that if we assume a known relationship p(SM (rRM) |
M) between M and SM (rRM) other than direct equality,
we can use the approach in this paper to address certain
coarsening [3] and measurement error settings. We do not
consider these extensions explicitly here for space reasons,
but they are straightforward.

Acknowledgements

This research was supported in parts by grants from
NIH R01 AI104459-01A1, NSF #IIS-1302448 and ONR
#N00014-10-1-0933 and #N00014-13-1-0153.

References
[1] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum

likelihood from incomplete data via the EM algorithm. Jour-
nal of the Royal Statistical Society, Series B, 39:1–38, 1977.

[2] Constantine E. Frangakis, Donald B. Rubin, Ming-Wen An,
and Ellen MacKenzie. Principal stratification designs to es-
timate input data missing due to death. Biometrics, 63:641–
662, 2007.

[3] Daniel F. Heitjan and Donald Rubin. Ignorability and coarse
data. Annals of Statistics, 19(4):2244–2253, 1991.

[4] Paul W. Holland. Statistics and causal inference. Journal of
the American Statistical Association, 81:945–960, 1986.

810

[5] E.L. Kaplan and P. Meier. Nonparametric estimation from
incomplete observations. Journal of the American Statisti-
cal Association, 53:457–481, 1958.

[6] Karthika Mohan and Judea Pearl. Graphical models for re-
covering probabilistic and causal queries from missing data.
In Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence,
and K.Q. Weinberger, editors, Advances in Neural Informa-
tion Processing Systems 27, pages 1520–1528. Curran As-
sociates, Inc., 2014.

[7] Karthika Mohan, Judea Pearl, and Jin Tian. Graphical mod-
els for inference with missing data. In C.J.C. Burges, L. Bot-
tou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, ed-
itors, Advances in Neural Information Processing Systems
26, pages 1277–1285. Curran Associates, Inc., 2013.

[8] J. Neyman. Sur les applications de la thar des probabilities
aux experiences agaricales: Essay des principle. excerpts
reprinted (1990) in English. Statistical Science, 5:463–472,
1923.

[9] Judea Pearl. Probabilistic Reasoning in Intelligent Systems.
Morgan and Kaufmann, San Mateo, 1988.

[10] Judea Pearl. Causality: Models, Reasoning, and Inference.
Cambridge University Press, 2000.

[11] Thomas S. Richardson and Jamie M. Robins. Sin-
gle world intervention graphs (SWIGs): A unification
of the counterfactual and graphical approaches to causal-
ity. preprint: http://www.csss.washington.
edu/Papers/wp128.pdf, 2013.

[12] J.M. Robins. A new approach to causal inference in mortal-
ity studies with sustained exposure periods – application to
control of the healthy worker survivor effect. Mathematical
Modeling, 7:1393–1512, 1986.

[13] Paul R. Rosenbaum and Donald B. Rubin. The central role
of the propensity score in observational studies for causal
effects. Biometrika, 70:41–55, 1983.

[14] D. B. Rubin. Estimating causal effects of treatments in ran-
domized and non-randomized studies. Journal of Educa-
tional Psychology, 66:688–701, 1974.

[15] D. B. Rubin. Inference and missing data (with discussion).
Biometrika, 63:581–592, 1976.

[16] D. B. Rubin. Multiple Imputation for Nonresponse in Sur-
veys. New York: Wiley & Sons, 1987.

[17] Stuart Russell, John Binder, Daphne Koller, and Keiji
Kanazawa. Local learning in probabilistic networks with
hidden variables. In Proceedings of the 14th international
joint conference on Artificial intelligence (IJCAI-95), pages
1146–1152. Morgan Kaufmann Publishers Inc. San Fran-
cisco, CA, USA, 1995.

[18] Ilya Shpitser and Judea Pearl. Identification of joint inter-
ventional distributions in recursive semi-Markovian causal
models. In National Conference on Artificial Intelligence,
volume 21. AUAI Press, 2006.

[19] Ilya Shpitser and Judea Pearl. Complete identification meth-
ods for the causal hierarchy. Journal of Machine Learning
Research, 9(Sep):1941–1979, 2008.

[20] Ilya Shpitser, Thomas S. Richardson, and James M. Robins.
An efficient algorithm for computing interventional distri-
butions in latent variable causal models. In Uncertainty in
Artificial Intelligence, volume 27. AUAI Press, 2011.

[21] P. Spirtes, C. Glymour, and R. Scheines. Causation, Predic-
tion, and Search. Springer Verlag, New York, 1993.

[22] Jin Tian and Judea Pearl. On the testable implications of
causal models with hidden variables. In Uncertainty in Arti-
ficial Intelligence, volume 18, pages 519–527. AUAI Press,
2002.

[23] T. S. Verma and Judea Pearl. Equivalence and synthesis
of causal models. Technical Report R-150, Department of
Computer Science, University of California, Los Angeles,
1990.

811

Improved Asymmetric Locality Sensitive Hashing (ALSH) for Maximum Inner
Product Search (MIPS)

Anshumali Shrivastava
Department of Computer Science

Computing and Information Science
Cornell University

Ithaca, NY 14853, USA
anshu@cs.cornell.edu

Ping Li
Department of Statistics and Biostatistics

Department of Computer Science
Rutgers University

Piscataway, NJ 08854, USA
pingli@stat.rutgers.edu

Abstract
Recently we showed that the problem of Max-
imum Inner Product Search (MIPS) is efficient
and it admits provably sub-linear hashing al-
gorithms. In [23], we used asymmetric trans-
formations to convert the problem of approxi-
mate MIPS into the problem of approximate near
neighbor search which can be efficiently solved
using L2-LSH. In this paper, we revisit the prob-
lem of MIPS and argue that the quantizations
used in L2-LSH is suboptimal for MIPS com-
pared to signed random projections (SRP) which
is another popular hashing scheme for cosine
similarity (or correlations). Based on this obser-
vation, we provide different asymmetric transfor-
mations which convert the problem of approxi-
mate MIPS into the problem amenable to SRP
instead of L2-LSH. An additional advantage of
our scheme is that we also obtain LSH type space
partitioning which is not possible with the exist-
ing scheme. Our theoretical analysis shows that
the new scheme is significantly better than the
original scheme for MIPS. Experimental evalu-
ations strongly support the theoretical findings.
In addition, we also provide the first empirical
comparison that shows the superiority of hashing
over tree based methods [21] for MIPS.

1 Introduction
In this paper, we revisit the problem ofMaximum Inner
Product Search (MIPS), which was studied in our recent
work [23]. In this work we present the first provably fast
algorithm for MIPS, which was considered hard [21, 15].
Given an input query pointq ∈ RD, the task of MIPS is to
find p ∈ S, whereS is a giant collection of sizeN , which
maximizes (approximately) theinner product qT p:

p = argmax
x∈S qT x (1)

The MIPS problem is related to the problem ofnear neigh-
bor search (NNS). For example, L2-NNS

p = argmin
x∈S ∣∣q − x∣∣22 = argmin

x∈S (∣∣x∣∣22 − 2qT x) (2)

or, correlation-NNS

p = argmax
x∈S

qT x∥q∥∥x∥ = argmax
x∈S

qT x∥x∥ (3)

These three problems are equivalent if the norm of ev-
ery elementx ∈ S is constant. Clearly, the value of the
norm∣∣q∣∣2 has no effect for the argmax. In many scenarios,
MIPS arises naturally at places where the norms of the el-
ements inS have significant variations [15]. As reviewed
in our prior work [23], examples of applications of MIPS
include recommender system [16, 5, 15], large-scale object
detection with DPM [9, 7, 14, 14], structural SVM [7], and
multi-class label prediction [21, 15, 25].

Asymmetric LSH (ALSH) : Locality Sensitive Hashing
(LSH) [13] is popular in practice for efficiently solving
NNS. In our prior work [23], the concept of “asymmet-
ric LSH” (ALSH) was formalized and one can transform
the input queryQ(p) and data in the collectionP (x) in-
dependently, where the transformationsQ andP are dif-
ferent. In [23] we developed a particular set of transfor-
mations to convert MIPS into L2-NNS and then solved the
problem by standard hashing i.e. L2-LSH [6]. In this pa-
per, we name the scheme in [23] asL2-ALSH . Later we
showed in [24] the flexibility and the power of the asym-
metric framework developed in [23] by constructing a prov-
ably superior scheme for binary data. Prior to our work,
asymmetry was applied for hashing higher order similar-
ity [22], sketching [8], hashing different subspaces [3], and
data dependent hashing [20] which unlike locality sensi-
tive hashing do not come with provable runtime guarantees.
Explicitly constructing asymmetric transformation tailored
for a particular similarity, given an existing LSH, was the
first observation made in [23] due to which MIPS, a sought
after problem, became provably fast and practical.

It was argued in [17] that the quantizations used in tradi-
tional L2-LSH is suboptimal and it hurts the variance of the
hashes. This raises a natural question that L2-ALSH which
uses L2-LSH as a subroutine for solving MIPS could be
suboptimal and there may be a better hashing scheme. We
provide such a scheme in this work.

812

Our contribution : Based on the observation that the quan-
tizations used in traditional L2-LSH is suboptimal, in this
study, we propose another scheme for ALSH, by devel-
oping a new set of asymmetric transformations to convert
MIPS into a problem of correlation-NNS, which is solved
by “signed random projections” (SRP) [11, 4]. The new
scheme thus avoids the use of L2-LSH. We name this new
scheme asSign-ALSH. Our theoretical analysis and exper-
imental study show that Sign-ALSH is more advantageous
than L2-ALSH for MIPS.

For inner products asymmetry is unavoidable. In case of
L2-ALSH, due to asymmetry, we loose the capability to
generate LSH like random data partitions for efficient clus-
tering [12]. We show that for inner products with Sign-
ALSH there is a novel formulation that allows us to gen-
erate such partitions for inner products. With existing L2-
ALSH such formulation does not work.

Apart from providing a better hashing scheme, we also pro-
vide comparisons of the Sign-ALSH with cone trees [21].
Our empirical evaluations on three real datasets show that
hashing based methods are superior over the tree based
space partitioning methods. Since there is no existing com-
parison of hashing based methods with tree based methods
for the problem of MIPS, we believe that the results shown
in this work will be very valuable for practitioners.

2 Review: Locality Sensitive Hashing (LSH)
The problem of efficiently finding nearest neighbors has
been an active research since the very early days of com-
puter science [10]. Approximate versions of the near neigh-
bor search problem [13] were proposed to break the linear
query time bottleneck. The following formulation for ap-
proximate near neighbor search is often adopted.

Definition: (c-Approximate Near Neighbor orc-NN)
Given a set of points in aD-dimensional spaceRD, and
parametersS0 > 0, δ > 0, construct a data structure which,
given any query pointq, does the following with probabil-
ity 1 − δ: if there exists anS0-near neighbor ofq in S, it
reports somecS0-near neighbor ofq in S.

Locality Sensitive Hashing(LSH) [13] is a family of func-
tions, with the property that more similar items have a
higher collision probability. LSH trades off query time with
extra (one time) preprocessing cost and space. Existence
of an LSH family translates into provably sublinear query
time algorithm for c-NN problems.

Definition: (Locality Sensitive Hashing (LSH))A familyH is called(S0, cS0, p1, p2)-sensitive if, for any two points
x, y ∈ RD, h chosen uniformly fromH satisfies:

• if Sim(x, y) ≥ S0 thenPrH(h(x) = h(y)) ≥ p1

• if Sim(x, y) ≤ cS0 thenPrH(h(x) = h(y)) ≤ p2

For efficient approximate nearest neighbor search,p1 > p2

andc < 1 is needed.

Fact 1: Given a family of(S0, cS0, p1, p2) -sensitive hash
functions, one can construct a data structure forc-NN
with O(nρ logn) query time and spaceO(n1+ρ), where
ρ = log p1

log p2
< 1.

LSH is a generic framework and an implementation of LSH
requires a concrete hash function.

2.1 LSH for L2 distance

[6] presented an LSH family forL2 distances. Formally,
given a fixed window sizer, we sample a random vectora
with each component from i.i.d. normal, i.e.,ai ∼N(0,1),
and a scalarb generated uniformly at random from[0, r].
The hash function is defined as:

hL2
a,b(x) = ⌊aT x + b

r
⌋ (4)

where⌊⌋ is the floor operation. The collision probability
under this scheme can be shown to be

Pr(hL2
a,b(x) = hL2

a,b(y)) (5)

= 1 − 2Φ(−r/d) − 2√
2π(r/d) (1 − e−(r/d)2/2) = Fr(d)

whereΦ(x) = ∫ x−∞ 1√
2π

e−x2

2 dx andd = ∣∣x − y∣∣2 is the
Euclidean distance between the vectorsx andy.

2.2 LSH for correlation

Another popular LSH family is the so-called “sign random
projections” [11, 4]. Again, we choose a random vectora
with ai ∼ N(0,1). The hash function is defined as:

hSign(x) = sign(aT x) (6)

And collision probability is

Pr(hSign(x) = hSign(y)) = 1 − 1

π
cos−1 (xT y∥x∥∥y∥) (7)

This scheme is known assigned random projections (SRP).

3 Review of ALSH for MIPS and L2-ALSH

In [23], it was shown that the framework of locality sen-
sitive hashing is restrictive for solving MIPS. The inherent
assumption of the same hash function for both the transfor-
mation as well as the query was unnecessary in the classi-
cal LSH framework and it was the main hurdle in finding
provable sub-linear algorithms for MIPS with LSH. For the
theoretical guarantees of LSH to work there was no require-
ment of symmetry. Incorporating asymmetry in the hashing
schemes was the key in solving MIPS efficiently.

Definition [23]: (AsymmetricLocality Sensitive Hashing
(ALSH)) A family H, along with the two vector func-
tions Q ∶ RD ↦ RD′ (Query Transformation) andP ∶

813

RD ↦ RD′ (Preprocessing Transformation), is called(S0, cS0, p1, p2)-sensitive if for a givenc-NN instance with
queryq, and the hash functionh chosen uniformly fromH
satisfies the following:

• if Sim(q, x) ≥ S0 thenPrH(h(Q(q))) = h(P (x))) ≥ p1

• if Sim(q, x) ≤ cS0 thenPrH(h(Q(q)) = h(P (x))) ≤ p2

Herex is any point in the collectionS.

Note that the query transformationQ is only applied on
the query and the pre-processing transformationP is ap-
plied to x ∈ S while creating hash tables. By letting
Q(x) = P (x) = x, we can recover the vanilla LSH. Us-
ing different transformations (i.e.,Q ≠ P), it is possible
to counter the fact that self similarity is not highest with
inner products which is the main argument of failure of
LSH. We just need the probability of the new collision
event{h(Q(q)) = h(P (y))} to satisfy the conditions of
definition of ALSH forSim(q, y) = qT y.

Theorem 1 [23] Given a family of hash functionH and
the associated query and preprocessing transformationsP
andQ, which is(S0, cS0, p1, p2) -sensitive, one can con-
struct a data structure forc-NN with O(nρ logn) query
time and spaceO(n1+ρ), whereρ = logp1

logp2
.

[23] provided an explicit construction of ALSH, which we
call L2-ALSH . Without loss of generality, one can assume

∣∣xi∣∣2 ≤ U < 1, ∀xi ∈ S (8)

for someU < 1. If this is not the case, then we can always
scale down the norms without altering theargmax. Since
the norm of the query does not affect theargmax in MIPS,
for simplicity it was assumed∣∣q∣∣2 = 1. This condition
can be removed easily (see Section 5 for details). In L2-
ALSH, two vector transformationsP ∶ RD ↦ RD+m and
Q ∶ RD ↦ RD+m are defined as follows:

P (x) = [x; ∣∣x∣∣22 ; ∣∣x∣∣42 ;; ∣∣x∣∣2m

2] (9)

Q(x) = [x; 1/2; 1/2;; 1/2], (10)

where [;] is the concatenation.P (x) appendsm scalers of
the form∣∣x∣∣2i

2 at the end of the vectorx, while Q(x) simply
appendsm “1/2” to the end of the vectorx. By observing

∣∣P (xi)∣∣22 = ∣∣xi∣∣22 + ∣∣xi∣∣42 + ... + ∣∣xi∣∣2m

2 + ∣∣xi∣∣2m+1
2∣∣Q(q)∣∣22 = ∣∣q∣∣22 +m/4 = 1 +m/4

Q(q)T P (xi) = qT xi + 1

2
(∣∣xi∣∣22 + ∣∣xi∣∣42 + ... + ∣∣xi∣∣2m

2)
one can obtain the following key equality:

∣∣Q(q) − P (xi)∣∣22 = (1 +m/4) − 2qT xi + ∣∣xi∣∣2m+1
2 (11)

Since∣∣xi∣∣2 ≤ U < 1, we have∣∣xi∣∣2m+1 → 0 at the tower
rate (exponential to exponential). Thus, as long asm is not

too small (e.g.,m ≥ 3 would suffice), we have

argmax
x∈S qT x ≃ argmin

x∈S ∣∣Q(q) −P (x)∣∣2 (12)

This scheme is the first connection between solving un-
normalized MIPS and approximate near neighbor search.
TransformationsP andQ, when norms are less than 1, pro-
vide correction to the L2 distance∣∣Q(q)−P (xi)∣∣2 making
it rank correlate with the (un-normalized) inner product.

3.1 Intuition for the Better Scheme : Why Signed
Random Projections (SRP)?

Recently in [17, 18], it was observed that the quantization
of random projections used by traditional L2-LSH scheme
is not desirable when the data is normalized and in fact the
shift b in Eq. (4) hurts the variance leading to less informa-
tive hashes. The sub-optimality of L2-LSH hints towards
existence of better hashing functions for MIPS.

As previously argued, when the data are normalized then
both L2-NNS and correlation-NNS are equivalent to MIPS.
Therefore, for normalized data we can use either L2-LSH
which is popular LSH for L2 distance or SRP which is pop-
ular LSH for correlation to solve MIPS directly. This raises
a natural question ”Which will perform better ?”.

If we assume that the data are normalized, i.e., all the norms
are equal to 1, then both SRP and L2-LSH are monotonic
in the inner product and their correspondingρ values for
retrieving max inner product can be computed as

ρSRP = log (1 − 1
π

cos−1(S0))
log (1 − 1

π
cos−1(cS0)) (13)

ρL2−LSH = log (Fr(√2 − 2S0))
log (Fr(√2 − 2cS0)) (14)

where the functionFr(.) is given by Eq. (5). The
values of ρSRP and ρL2−LSH for different S0 ={0.1,0.2, ..,0.9,0.95} with respect to approximation ratio
c is shown in Figure 1. We use standard recommendation of
r = 2.5 for L2-LSH. We can clearly see thatρSRP is consis-
tently better thanρL2−LSH given anyS0 andc. Thus, for
MIPS with normalized data L2-LSH type of quantization
given by equation 5 seems suboptimal. It is clear that when
the data is normalized then SRP is always a better choice
for MIPS as compared to L2-LSH. This motivates us to ex-
plore the possibility of better hashing algorithm for general
(unnormalized) instance of MIPS using SRP, which will
have impact in many applications as pointed out in [23].

Asymmetric transformations give us enough flexibility to
modify norms without changing inner products. The trans-
formations provided in [23] used this flexibility to convert
MIPS to standard near neighbor search inL2 space for
which we have standard hash functions. For binary data,
[24] showed a strictly superior construction, the asymmet-
ric minwise hashing, which outperforms all ALSHs made
for general MIPS.

814

00.20.40.60.81

0.6

0.8

1

c

ρ

0.5

0.1

Normalized Data. 0.5

L2−LSH
SRP

00.20.40.60.81

0.2

0.4

0.6

0.8

1

c

ρ

0.95

0.5

0.9

0.8

Normalized Data

L2−LSH
SRP

Figure 1: Values ofρSRP andρL2−LSH (Lower is better)
for normalized data. It is clear that SRP is more suited for
retrieving inner products when the data is normalized

Signed random projections are popular hash functions
widely adopted for correlation or cosine similarity. We use
asymmetric transformations to convert approximate MIPS
into approximate maximum correlation search and thus we
avoid the use of sub-optimal L2-LSH. The collision prob-
ability of the hash functions is one of the key constituents
which determine the efficiency of the obtained ALSH al-
gorithm. We show that our proposed transformation with
SRP is better suited for ALSH compared to the existing
L2-ALSH for solving general MIPS instance.

4 The New Proposal: Sign-ALSH

4.1 From MIPS to Correlation-NNS

We assume for simplicity that∣∣q∣∣2 = 1 as the norm of the
query does not change the ordering, we show in the next
section how to get rid of this assumption. Without loss of
generality let∣∣xi∣∣2 ≤ U < 1, ∀xi ∈ S as it can always be
achieved by scaling the data by large enough number. We
define two vector transformationsP ∶ RD ↦ RD+m and
Q ∶ RD ↦ RD+m as follows:

P (x) = [x; 1/2 − ∣∣x∣∣22 ; 1/2 − ∣∣x∣∣42 ;; 1/2 − ∣∣x∣∣2m

2]
(15)

Q(x) = [x; 0; 0;; 0], (16)

Using ∣∣Q(q)∣∣22 = ∣∣q∣∣22 = 1, Q(q)T P (xi) = qT xi, and

∣∣P (xi)∣∣22= ∣∣xi∣∣22 + 1/4 + ∣∣xi∣∣42 − ∣∣xi∣∣22 + 1/4 + ∣∣xi∣∣82 − ∣∣xi∣∣42 + ...

+ 1/4 + ∣∣xi∣∣2m+1
2 − ∣∣xi∣∣2m

2

=m/4 + ∣∣xi∣∣2m+1
2

we obtain the following key equality:

Q(q)T P (xi)∥Q(q)∥2∥P (xi)∥2 = qT xi√
m/4 + ∣∣xi∣∣2m+1

2

(17)

The term∣∣xi∣∣2m+1 → 0, again vanishes at the tower rate.
This means we have approximately

argmax
x∈S qT x ≃ argmax

x∈S
Q(q)T P (xi)∥Q(q)∥2∥P (xi)∥2 (18)

This provides another solution for solving MIPS using
known methods for approximate correlation-NNS. Asym-
metric transformationsP andQ provide a lot of flexibility.
Note that transformationsP andQ are not unique for this
task and there are other possibilities [2, 19]. It should be
further noted that even scaling data and query differently is
asymmetry in a strict sense because it changes the distribu-
tion of the hashes. Flexibility in choosing the transforma-
tionsP andQ allow us to use signed random projections
and thereby making possible to avoid suboptimal L2-LSH.

4.2 Fast MIPS Using Sign Random Projections

Eq. (18) shows that MIPS reduces to the standard approxi-
mate near neighbor search problem which can be efficiently
solved by sign random projections, i.e.,hSign (defined by
Eq. (6)). Formally, we can state the following theorem.

Theorem 2 Given ac-approximate instance of MIPS, i.e.,
Sim(q, x) = qT x, and a queryq such that∣∣q∣∣2 = 1 along
with a collectionS having∣∣x∣∣2 ≤ U < 1 ∀x ∈ S. LetP and
Q be the vector transformations defined in Eq. (15) and Eq.
(16), respectively. We have the following two conditions for
hash functionhSign (defined by Eq. (6))

• if qT x ≥ S0 then

Pr[hSign(Q(q)) = hSign(P (x))]
≥ 1 − 1

π
cos−1 ⎛⎝ S0√

m/4 +U2m+1
⎞⎠

• if qT x ≤ cS0 then

Pr[hSign(Q(q)) = hSign(P (x))]
≤ 1 − 1

π
cos−1 ⎛⎜⎝

min{cS0, z
∗}√

m/4 + (min{cS0, z∗})2m+1
⎞⎟⎠

wherez∗ = (m/2
2m+1−2)2−m−1

.

815

Proof: WhenqT x ≥ S0, we have, according to Eq. (7)

Pr[hSign(Q(q)) = hSign(P (x))]
= 1 − 1

π
cos−1 ⎛⎜⎝

qT x√
m/4 + ∣∣x∣∣2m+1

2

⎞⎟⎠
≥ 1 − 1

π
cos−1 ⎛⎝ qT x√

m/4 +U2m+1
⎞⎠

WhenqT x ≤ cS0, by noting thatqT x ≤ ∥x∥2, we have

Pr[hSign(Q(q)) = hSign(P (x))]
= 1 − 1

π
cos−1 ⎛⎜⎝

qT x√
m/4 + ∣∣x∣∣2m+1

2

⎞⎟⎠
≤ 1 − 1

π
cos−1 ⎛⎝ qT x√

m/4 + (qT x)2m+1
⎞⎠

For this one-dimensional functionf(z) = z√
a+zb

, where

z = qT x, a =m/4 andb = 2m+1 ≥ 2, we know

f ′(z) = a − zb (b/2 − 1)(a + zb)3/2
One can also check thatf ′′(z) ≤ 0 for 0 < z < 1, i.e.,f(z)
is a concave function. The maximum off(z) is attained at

z∗ = (2a
b−2)1/b = (m/2

2m+1−2)2−m−1
If z∗ ≥ cS0, then we need

to usef(cS0) as the bound. ◻
Therefore, we have obtained, in LSH terminology,

p1 = 1 − 1

π
cos−1 ⎛⎝ S0√

m/4 +U2m+1
⎞⎠ (19)

p2 = 1 − 1

π
cos−1 ⎛⎜⎝

min{cS0, z
∗}√

m/4 + (min{cS0, z∗})2m+1
⎞⎟⎠ ,

(20)

z∗ = (m/2
2m+1 − 2

)2
−m−1

(21)

Theorem 1 allows us to construct data structures with worst
caseO(nρ logn) query time guarantees forc-approximate
MIPS, whereρ = log p1

log p2
. For any givenc < 1, there always

exist U < 1 andm such thatρ < 1. This way, we obtain
a sublinear query time algorithm for MIPS. Becauseρ is
a function of 2 parameters, the best query time choosesU
andm, which minimizes the value ofρ. For convenience,
we define

ρ∗ =min
U,m

log(1 − 1
π

cos−1 (S0√
m/4+U2m+1))

log(1 − 1
π

cos−1 (min{cS0,z∗}√
m/4+(min{cS0,z∗})2m+1))

(22)

See Figure 2 for the plots ofρ∗, which also compares the
optimalρ values for L2-ALSH in the prior work [23]. The
results show that Sign-ALSH is noticeably better.

00.20.40.60.81
0.6

0.7

0.8

0.9

1

c

ρ*

S = 0.5US = 0.1U

S = 0.5US = 0.1U

S
0
 = 0.5U

S
0
 = 0.1U

Sign
L2

00.20.40.60.81
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c

ρ*
S

0
 = 0.9U

S
0
 = 0.5U

Sign
L2

Figure 2: Optimal values ofρ∗ (lower is better) with re-
spect to approximation ratioc for differentS0, obtained by
a grid search over parametersU andm, givenS0 and c.
The curves show that Sign-ALSH (solid curves) is notice-
ably better than L2-ALSH (dashed curves) in terms of their
optimalρ∗ values. The results for L2-ALSH were from the
prior work [23]. For clarity, the results are in two figures.

4.3 Parameter Selection

00.20.40.60.81
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m = 2, U = 0.75

c

ρ

S
0
 = 0.9U

S
0
 = 0.1U

Figure 3: The solid curves are the optimalρ values of Sign-
ALSH from Figure 2. The dashed curves represent theρ
values for fixed parameters:m = 2 and U = 0.75 (left
panel). Even with fixed parameters, theρ does not degrade.

Figure 3 presents theρ values for(m, U) = (2, 0.75)
We can see that even if we use fixed parameters, the per-

816

formance would only degrade little. This essentially frees
practitioners from the burden of choosing parameters.

5 Removing Dependency on Norm of Query

Changing norms of the query does not affect the
argmaxx∈C qT x, and hence, in practice for retrieving top-
k, normalizing the query should not affect the performance.
But for theoretical purposes, we want the runtime guaran-
tee to be independent of∣∣q∣∣2. Note, both LSH and ALSH
schemes solve thec-approximate instance of the problem,
which requires a thresholdS0 = qT x and an approximation
ratio c. These quantities change if we change the norms.
We can use the same idea used in [23] to get rid of the norm
of q. TransformationsP andQ were precisely meant to re-
move the dependency of correlation on the norms ofx but
at the same time keeping the inner products same. LetM
be the upper bound on all the norms i.e.M =maxx∈C ∣∣x∣∣2.
In other wordsM is the radius of the space.

Let U < 1, define the transformations,T ∶ RD → RD as

T (x) = Ux

M
(23)

and transformationsP,Q ∶ RD → RD+m are the same for
the Sign-ALSH scheme as defined in Eq (15) and (16).

Given the queryq and any data pointx, observe that the
inner products betweenP (Q(T (q))) andQ(P (T (x))) is

P (Q(T (q)))TQ(P (T (x))) = qT x × (U2

M2
) (24)

P (Q(T (q))) appends firstm zeros components toT (q)
and then m components of the form1/2 − ∣∣q∣∣2i

.
Q(P (T (q))) does the same thing but in a different or-
der. Now we are working inD + 2m dimensions. It is
not difficult to see that the norms ofP (Q(T (q))) and
Q(P (T (q))) is given by

∣∣P (Q(T (q)))∣∣2 =√m

4
+ ∣∣T (q)∣∣2m+1

2 (25)

∣∣Q(P (T (x)))∣∣2 =√m

4
+ ∣∣T (x)∣∣2m+1

2 (26)

The transformations are very asymmetric but we know that
it is necessary.

Therefore the correlation or the cosine similarity between
P (Q(T (q))) andQ(P (T (x))) is

Corr = qT x × (U2

M2)√
m
4
+ ∣∣T (q)∣∣2m+1

2

√
m
4
+ ∣∣T (x)∣∣2m+1

2

(27)

Note ∣∣T (q)∣∣2m+1
2 , ∣∣T (x)∣∣2m+1

2 ≤ U < 1, therefore both∣∣T (q)∣∣2m+1
2 and ∣∣T (x)∣∣2m+1

2 converge to zero at a tower
rate and we get approximate monotonicity of correlation

with the inner products. We can apply sign random projec-
tions to hashP (Q(T (q))) andQ(P (T (q))).
As 0 ≤ ∣∣T (q)∣∣2m+1

2 ≤ U and0 ≤ ∣∣T (x)∣∣2m+1
2 ≤ U , it is

not difficult to getp1 andp2 for Sign-ALSH, without con-
ditions on any norms. Simplifying the expression, we get
the following value of optimalρu (u for unrestricted).

ρ∗u = min
U,m,

log(1 − 1
π

cos−1 (S0×(U2

M2)
m
4
+U2m+1))

log(1 − 1
π

cos−1 (cS0×(4U2

M2)
m

)) (28)

s.t. U2m+1 < m(1 − c)
4c

, m ∈ N+, and0 < U < 1.

With this value ofρ∗u, we can state our main theorem.

Theorem 3 For the problem ofc-approximate MIPS in a
bounded space, one can construct a data structure having
O(nρ∗u logn) query time and spaceO(n1+ρ∗u), whereρ∗u <
1 is the solution to constraint optimization (28).

Note, for all c < 1, we always haveρ∗u < 1 because the
constraintU2m+1 < m(1−c)

4c
is always true for big enoughm.

The only assumption for efficiently solving MIPS that we
need is that the space is bounded, which is always satisfied
for any finite dataset.ρ∗u depends onM , the radius of the
space, which is expected.

6 Random Space Partitioning for Inner
Product

In this section, we show that due to the nature of the new
transformationsP andQ there is one subtle but surprising
advantage of Sign-ALSH over L2-ALSH.

One popular application of LSH (Locality Sensitive Hash-
ing) is random partitioning of the data for large scale clus-
tering, where similar points map to the same partition (or
bucket). Such partitions are very useful in many applica-
tions [12]. With classical LSH, we simply useh(x) to gen-
erate partition forx. SincePrH(h(x) = h(y)) is high if
sim(x, y) is high, similar points are likely to go into the
same partition under the usual LSH mapping. For general
ALSH, this property is lost because of asymmetry.

In case of ALSH, we only know thatPr(h(P (x)) =
h(Q(y)) is high if sim(x, y) is high. Therefore, given
x we cannot determine whether to assign partition using
h(P (.)) orh(Q(.)). NeitherPr(h(P (x)) = h(P (y)) nor
PrH(h(Q(x)) = h(Q(y)) strictly indicates high value of
sim(x, y) in general. Therefore, partitioning property of
classical LSH does not hold anymore with general ALSHs.
However for the case of inner products using Sign-ALSH,
there is a subtle observation which allows us to construct
the required assignment function, where pairs of points
with high inner products are more likely to get mapped in

817

the same partition while pairs with low inner products are
more likely to map into different partitions.

In case of Sign-ALSH for MIPS, we have the transforma-
tionsP (Q(T (x))) andQ(P (T (x))) given by

P (Q(T (x))) = [x; 1/2 − ∣∣T (x)∣∣22;; 1/2 − ∣∣T (x)∣∣2m

2 ,0, ...,0]
Q(P (T (x))) = [x; 0, ...,0,1/2 − ∣∣T (x)∣∣22;; 1/2 − ∣∣T (x)∣∣2m

2].
After this transformation, we multiply the generatedD +
2m dimensional vector by a random vectora ∈ RD+2m

whose entries are i.i.d. Gaussian followed by taking the
sign. For illustration leta = [w; s1, ...sm, t1, ...tm] where
w ∈ RD bi andci are numbers. All components ofa are
i.i.d. from N(0,1). With this notation, we can write the
final Sign-ALSH as

hSign(P (Q(T (x)))) = Sign(wT T (x) + m∑
i=1 si(1/2 − ∣∣T (x)∣∣2i

2))
hSign(Q(P (T (x)))) = Sign(wT T (x) + m∑

i=1 ti(1/2 − ∣∣T (x)∣∣2i

2))
The key observation here is thathSign(P (Q(T (x)))) does
not depend onti andhSign(Q(P (T (x)))) does not de-
pend onsi. If we define

hw(x) = Sign(wT T (x) + m∑
i=1 αi(1/2 − ∣∣T (x)∣∣2i

2)) (29)

whereαi are sampled i.i.d. fromN(0,1) for everyx in-
dependently of everything else. Then,under the random-
ization of w, it is not difficult to show that

Prw(hw(x) = hw(y)) = Pr(hSign(P (x)) = hSign(Q(y)))
for anyx, y. The termPr(hSign(P (x)) = hSign(Q(y)))
satisfies the LSH like property and therefore, in any parti-
tions usinghw, points with high inner products are more
likely to be together. Thus,hw(x) is the required assign-
ment. Note,hw is not technically an LSH because we are
randomly samplingαi for all x independently. The con-
struction ofhw using independent randomizations could be
of separate interest. To the best of our knowledge, this is
the first example of LSH like partition using hash function
with independent randomization for every data point.

The functionhw is little subtle here, we samplew i.i.d from
Gaussian and use the samew for all x, but while computing
hw we useαi independent of everything for everyx. The
probability is under the randomization ofw and indepen-
dence of allαi ensures the asymmetry. We are not sure if
such construction is possible with L2-ALSH. For LSH par-
titions with binary data, the idea used here can be applied
on asymmetric minwise hashing [24].

7 Ranking Evaluations
In [23], the L2-ALSH scheme was shown to outperform
other reasonable heuristics in retrieving maximum inner
products. Since our proposal is an improvement over L2-
ALSH, in this section we first present comparisons with
L2-ALSH, in particular on ranking experiments.

7.1 Datasets

We use three publicly available dataset MNIST, WEB-
SPAM and RCV1 for evaluations. For each of the three
dataset we generate two independent partitions, the query
set and the train set. Each element in the query set is used
for querying, while the training set serves as the collec-
tion C that will be searched for MIPS. The statistics of the
dataset and the partitions are summarized in Table 1

Dataset Dimension Query size Train size
MNIST 784 10,000 60,000

WEBSPAM 16,609,143 5,000 100,000
RCV1 47,236 5,000 100,000

Table 1: Datasets used for evaluations.

7.2 Evaluations

In this section, we show how the ranking of the two ALSH
schemes, L2-ALSH and Sign-ALSH, correlates with inner
products. Given a query vectorq, we compute the top-10
gold standard elements based on the actual inner products
qT x, ∀x ∈ C, here our collection is the train set. We then
generateK different hash codes of the queryq and all the
elementsx ∈ C and then compute

Matchesx = K∑
t=11(ht(Q(q)) = ht(P (x))), (30)

where1 is the indicator function and the subscriptt is
used to distinguish independent draws ofh. Based on
Matchesx we rank all the elementsx. Ideally, for a better
hashing scheme,Matchesx should be higher for element
x having higher inner products with the given queryq. This
procedure generates a sorted list of all the items for a given
query vectorq corresponding to the each of the two asym-
metric hash functions under consideration.

For L2-ALSH, we used the same parameters used and rec-
ommended in [23]. For Sign-ALSH, we used the recom-
mended choice shown in Section 4.3, which isU = 0.75,
m = 2. Note that Sign-ALSH does not have parameterr.

We compute precision and recall of the top-10 gold stan-
dard elements, obtained from the sorted list based on
Matchesx. To compute this precision and recall, we start
at the top of the ranked item list and walk down in order.
Suppose we are at thekth ranked item, we check if this ele-
ment belongs to the gold standard top-10 list. If it is one of
the top-10 gold standard elements, then we increment the
count ofrelevant seenby 1, else we move tok + 1. By kth

step, we have already seenk elements, so thetotal items
seenis k. The precision and recall at that point are

Precision = relevant seen
k

, Recall = relevant seen
10

We show performance forK ∈ {64,128,256,512}. Note
that it is important to balance both precision and recall. The

818

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

Recall (%)

P
re

ci
si

on
 (

%
)

Top 10

64 Hashes

MNIST

L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

Recall (%)

P
re

ci
si

on
 (

%
)

Top 10

64 Hashes

WEBSPAM

L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

Recall (%)

P
re

ci
si

on
 (

%
)

Top 10

64 Hashes
RCV1

L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

Recall (%)

P
re

ci
si

on
 (

%
)

Top 10

128 Hashes
MNIST

L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

Recall (%)

P
re

ci
si

on
 (

%
)

Top 10

128 Hashes

WEBSPAM

L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

Recall (%)

P
re

ci
si

on
 (

%
)

Top 10

128 Hashes
RCV1

L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Recall (%)

P
re

ci
si

on
 (

%
)

Top 10

256 Hashes
MNIST

L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Recall (%)

P
re

ci
si

on
 (

%
)

Top 10

256 Hashes

WEBSPAM

L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

Recall (%)

P
re

ci
si

on
 (

%
)

Top 10

256 Hashes
RCV1

L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

Recall (%)

P
re

ci
si

on
 (

%
)

Top 10

512 Hashes

MNIST

L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Recall (%)

P
re

ci
si

on
 (

%
)

Top 10

512 Hashes
WEBSPAM

L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Recall (%)

P
re

ci
si

on
 (

%
)

Top 10

512 Hashes
RCV1

L2−ALSH
Sign−ALSH

Figure 4: Precision-Recall curves (higher is better). We compare L2-ALSH (using parameters recommended in [23]) with
our proposed Sign-ALSH using(m = 2, U = 0.75) for retrieving top-10 elements. Sign-ALSH is noticeably better.

method which obtains higher precision at a given recall is
superior. Higher precision indicates higher ranking of the
top-10 inner products which is desirable. We report aver-
aged precisions and recalls.

The plots for all the three datasets are shown in Figure 4.
We can clearly see, that our proposed Sign-ALSH scheme
gives significantly higher precision recall curves than the
L2-ALSH scheme, indicating better correlation of top in-
ner products with Sign-ALSH compared to L2-ALSH. The
results are consistent across datasets.

8 Comparisons of Hashing Based and Tree
Based Methods for MIPS

We have shown in the previous Section that Sign-ALSH
outperforms L2-ALSH in ranking evaluations. In this Sec-
tion, we consider the actual task of finding the maximum

inner product. Our aim is to estimate the computational
saving, in finding the maximum inner product, with Sign-
ALSH compared to the existing scheme L2-ALSH. In ad-
dition to L2-ALSH which is a hashing scheme, there is an
another tree based space partitioning method [21] for solv-
ing MIPS. Although, in theory, it is know that tree based
methods perform poorly [25] due to their exponential de-
pendence on the dimensionality, it is still important to un-
derstand the impact of such dependency in practice. Un-
fortunately no empirical comparison between hashing and
tree based methods exists for the problem of MIPS in the
literature. To provide such a comparison, we also consider
tree based space partitioning method [21] for evaluations.
We use the same three datasets as described in Section 7.1.

Tree based and hashing based methodologies are very dif-
ferent in nature. The major difference is in the stopping

819

criteria. Hashing based methods create buckets and stop
the search once they find a good enough point, they may
not succeed with some probability. On the other hand, tree
based methods use branch and bound criteria to stop ex-
ploring further. So it is possible that a tree based algo-
rithm finds the optimal point but continues to explore fur-
ther requiring more computations. The usual stopping cri-
teria thus makes tree based methods unnecessarily expen-
sive compared to hashing based methods where the criteria
is to stop after finding a good point. Therefore, to ensure
fair comparisons, we allow the tree based method to stop
the evaluations immediately once the algorithm finds the
maximum inner product and prevent it from exploring fur-
ther. Also, in case when hashing based algorithm fails to
find the best inner product we resort to the full linear scan
and penalize the hashing based algorithm for not succeed-
ing. All this is required to ensure that tree based algorithm
is not at any disadvantage compare to hashing methods.

We implemented the bucketing scheme with Sign-ALSH
and L2-ALSH. The bucketing scheme requires creating
many hash tables during the preprocessing stage. Dur-
ing query phase, given a query, we compute many hashes
of the query and probe appropriate buckets in each table.
Please refer [1] for more details on the process. We use the
same fixed parameters for all the evaluations, i.e., (m=2,
U=0.75) for Sign-ALSH and (m=3, U=0.83, r=2.5) for L2-
ALSH as recommended in [23]. The total number of inner
products evaluated by a hashing scheme, for a given query,
is the total number of hash computation for the query plus
the total number of points retrieved from the hash tables. In
rare cases, with very small probability, if the hash tables are
unable to retrieve the gold standard maximum inner prod-
uct, we resort to linear scan and also include the total num-
ber of inner products computed during the linear scan. We
stop as soon as we reach the gold standard point.

We implemented Algorithm 5 from [21], which is the best
performing algorithm as shown in the evaluations. For
this algorithm, we need to select one parameter which is
the minimum number of elements in the node required for
splitting. We found that on all the three datasets the value
of 100 for this parameter works the best among{500, 200,
100, 50}. Therefore, we use 100 in all our experiments.
The total number of inner products evaluated by tree based
algorithm is the total number of points reported plus the to-
tal number of nodes visited, where we compute the branch
and bound constraint. Again we stop the search process as
soon as we reach the point with gold standard maximum
inner product. As argued, we need this common stopping
condition to compare with hashing based methods, where
we do not have any other stopping criteria [13].

For every query we compute the number of inner products
evaluated by different methods for MIPS. We report the
mean of the total number of inner products evaluated per
query in Table 2. We can clearly see that hashing based

Sign-ALSH L2-ALSH Cone Trees
MNIST 7,944 9,971 11,202

WEBSPAM 2,866 3,813 22,467
RCV1 9,951 11,883 38,162

Table 2: Average number of inner products evaluated per
query by different MIPS algorithms. Both Sign-ALSH and
L2-ALSH [23] outperform cone trees [21]. Sign-ALSH is
always superior compared to L2-ALSH for MIPS.

methods are always better than the tree based algorithm.
Except on MNIST dataset, hashing based methods are sig-
nificantly superior, which is also not surprising because
MNIST is an image dataset having low intrinsic dimen-
sionality. Among the two hashing schemes Sign-ALSH is
always better than L2-ALSH, which verifies our theoreti-
cal findings and supports our arguments in favor of Sign-
ALSH over L2-ALSH for MIPS.

9 Conclusion

The MIPS (maximum inner product search) problem has
numerous important applications in machine learning,
databases, and information retrieval. [23] developed the
framework of Asymmetric LSH and provided an explicit
scheme (L2-ALSH) for approximate MIPS in sublinear
time. L2-ALSH uses L2-LSH as a subroutine which uses
suboptimal quantizations. In this study, we present another
asymmetric transformation scheme (Sign-ALSH) which
converts the problem of maximum inner products into the
problem of maximum correlation search, which is subse-
quently solved by sign random projections, thereby avoid-
ing the use of L2-LSH.

Theoretical analysis and experimental study demonstrate
thatSign-ALSH can be noticeably more advantageous than
L2-ALSH . The new transformations with Sign-ALSH can
be adapted to generate LSH like random data partitions
which is very useful for large scale clustering. Such an
adaptation is not possible with existing L2-ALSH. This
was a rather unexpected advantage of the proposed Sign-
ALSH over L2-ALSH. We also establish by experiments
that hashing based algorithms are superior to tree based
space partitioning methods for MIPS.

It should be noted that for MIPS over binary data our recent
work asymmetric minwise hashing [24] should be used.
We showed that for binary domain asymmetric minwise
hashing is both empirically and provably superior, please
see [24] for more details.

10 Acknowledgement

The work is partially supported by NSF-III-1360971, NSF-
Bigdata-1419210, ONR-N00014-13-1-0764, and AFOSR-
FA9550-13-1-0137. We would like to thank the reviewers
of AISTATS 2015 and UAI 2015. We also thank Sanjiv
Kumar and Hadi Daneshmand for pleasant discussions.

820

References

[1] A. Andoni and P. Indyk. E2lsh: Exact euclidean lo-
cality sensitive hashing. Technical report, 2004.

[2] Y. Bachrach, Y. Finkelstein, R. Gilad-Bachrach,
L. Katzir, N. Koenigstein, N. Nice, and U. Paquet.
Speeding up the xbox recommender system using a
euclidean transformation for inner-product spaces. In
Proceedings of the 8th ACM Conference on Recom-
mender Systems, RecSys ’14, 2014.

[3] R. Basri, T. Hassner, and L. Zelnik-Manor. Approxi-
mate nearest subspace search with applications to pat-
tern recognition. InComputer Vision and Pattern
Recognition, 2007. CVPR’07. IEEE Conference on,
pages 1–8. IEEE, 2007.

[4] M. S. Charikar. Similarity estimation techniques from
rounding algorithms. InSTOC, pages 380–388, Mon-
treal, Quebec, Canada, 2002.

[5] P. Cremonesi, Y. Koren, and R. Turrin. Performance
of recommender algorithms on top-n recommenda-
tion tasks. InProceedings of the fourth ACM confer-
ence on Recommender systems, pages 39–46. ACM,
2010.

[6] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokn.
Locality-sensitive hashing scheme based onp-stable
distributions. InSCG, pages 253 – 262, Brooklyn,
NY, 2004.

[7] T. Dean, M. A. Ruzon, M. Segal, J. Shlens, S. Vijaya-
narasimhan, and J. Yagnik. Fast, accurate detection of
100,000 object classes on a single machine. InCom-
puter Vision and Pattern Recognition (CVPR), 2013
IEEE Conference on, pages 1814–1821. IEEE, 2013.

[8] W. Dong, M. Charikar, and K. Li. Asymmetric dis-
tance estimation with sketches for similarity search
in high-dimensional spaces. InProceedings of the
31st annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 123–130. ACM, 2008.

[9] P. F. Felzenszwalb, R. B. Girshick, D. McAllester,
and D. Ramanan. Object detection with discrimi-
natively trained part-based models.Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
32(9):1627–1645, 2010.

[10] J. H. Friedman and J. W. Tukey. A projection pursuit
algorithm for exploratory data analysis.IEEE Trans-
actions on Computers, 23(9):881–890, 1974.

[11] M. X. Goemans and D. P. Williamson. Improved
approximation algorithms for maximum cut and sat-
isfiability problems using semidefinite programming.
Journal of ACM, 42(6):1115–1145, 1995.

[12] T. H. Haveliwala, A. Gionis, and P. Indyk. Scalable
techniques for clustering the web. InWebDB, pages
129–134, 2000.

[13] P. Indyk and R. Motwani. Approximate nearest neigh-
bors: Towards removing the curse of dimensionality.
In STOC, pages 604–613, Dallas, TX, 1998.

[14] T. Joachims, T. Finley, and C.-N. J. Yu. Cutting-
plane training of structural svms.Machine Learning,
77(1):27–59, 2009.

[15] N. Koenigstein, P. Ram, and Y. Shavitt. Efficient re-
trieval of recommendations in a matrix factorization
framework. InCIKM, pages 535–544, 2012.

[16] Y. Koren, R. Bell, and C. Volinsky. Matrix factoriza-
tion techniques for recommender systems.

[17] P. Li, M. Mitzenmacher, and A. Shrivastava. Coding
for random projections. InICML, 2014.

[18] P. Li, M. Mitzenmacher, and A. Shrivastava. Coding
for random projections and approximate near neigh-
bor search. Technical report, arXiv:1403.8144, 2014.

[19] B. Neyshabur and N. Srebro. On symmetric and
asymmetric lshs for inner product search. Technical
report, arXiv:1410.5518, 2014.

[20] B. Neyshabur, N. Srebro, R. R. Salakhutdinov,
Y. Makarychev, and P. Yadollahpour. The power of
asymmetry in binary hashing. InAdvances in Neural
Information Processing Systems, pages 2823–2831,
2013.

[21] P. Ram and A. G. Gray. Maximum inner-product
search using cone trees. InKDD, pages 931–939,
2012.

[22] A. Shrivastava and P. Li. Beyond pairwise: Prov-
ably fast algorithms for approximate k-way similarity
search. InNIPS, Lake Tahoe, NV, 2013.

[23] A. Shrivastava and P. Li. Asymmetric lsh (alsh) for
sublinear time maximum inner product search (mips).
In NIPS, Montreal, CA, 2014.

[24] A. Shrivastava and P. Li. Asymmetric minwise hash-
ing for indexing binary inner products and set con-
tainment. InWWW, 2015.

[25] R. Weber, H.-J. Schek, and S. Blott. A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spaces. InProceedings
of the 24rd International Conference on Very Large
Data Bases, VLDB ’98, pages 194–205, San Fran-
cisco, CA, USA, 1998. Morgan Kaufmann Publishers
Inc.

821

Learning Optimal Chain Graphs with Answer Set Programming

Dag Sonntag
ADIT, IDA,

Linköping University

Matti Järvisalo
HIIT, Dept. Comp. Sci.,
University of Helsinki

Jose M. Peña
ADIT, IDA,

Linköping University

Antti Hyttinen
HIIT, Dept. Comp. Sci.,
University of Helsinki

Abstract

Learning an optimal chain graph from data is
an important hard computational problem. We
present a new approach to solve this problem
for various objective functions without making
any assumption on the probability distribution at
hand. Our approach is based on encoding the
learning problem declaratively using the answer
set programming (ASP) paradigm. Empirical re-
sults show that our approach provides at least as
accurate solutions as the best solutions provided
by the existing algorithms, and overall provides
better accuracy than any single previous algo-
rithm.

1 INTRODUCTION

Learning an optimal structure for a graphical model is a
well-known and important hard computational problem.
Indeed, various learning algorithms have been proposed
over the years for different classes of graphical models.
These algorithms can be categorized into in-exact (often
local search style) approaches and exact approaches. The
algorithms in the former category typically scale better, but
are not in general guaranteed to produce optimal solutions
without restrictive assumptions on the probability distribu-
tion at hand. The algorithms in the latter category, due to
the NP-hardness of the underlying optimization problem,
require more computational resources, but in turn can pro-
vide optimal solutions in much more general settings.

Two important, widely studied and applied classes of prob-
abilistic graphical models are Bayesian networks (whose
structure is represented by directed acyclic graphs), and
Markov networks (represented by undirected graphs). In
this paper we focus on chain graphs (CGs), a superclass
of both Bayesian and Markov networks. CGs are hybrid
graphs that can contain both directed and undirected edges,
but are not allowed to contain semidirected cycles. This

makes CGs more expressive than Bayesian and Markov
networks in the sense that CGs can model both symmet-
ric (like Markov networks) and asymmetric (like Bayesian
networks) relations between random variables, and hence
allow for a wider range of independence models to be rep-
resented. For example, for 20 random variables, CGs can
represent approximately 1000 times as many models as
Bayesian networks (Sonntag et al., 2015). There exist mul-
tiple interpretations of CGs in the literature. Here we focus
on the classical LWF interpretation by Frydenberg (1990);
Lauritzen and Wermuth (1989).

In this work we take on the challenging task of develop-
ing exact structure learning algorithms for CGs. To our
best knowledge, to date only three learning algorithms CGs
have been proposed: PC (Studený, 1997), LCD (Ma et al.,
2008), and CKES (Peña et al., 2014). Each of these algo-
rithms implement forms of local search, and are guaranteed
to find (inclusion) optimal solutions only under restrictive
assumptions on the input. Specifically, PC and LCD as-
sume that the probability distribution at hand is faithful to a
CG. The CKES algorithm, on the other hand, assumes that
the probability distribution at hand satisfies the so-called
composition property. While this assumption is consid-
erably weaker than the faithfulness assumption, it leaves
room for developing CG learning algorithms that can pro-
vide optimal solutions in more general settings.

The main contribution of this paper is a versatile approach
to learning CGs. Our approach improves on the earlier CG
learning algorithms in that it is guaranteed to find (e.g., in-
clusion) optimal CGs without making assumptions on the
probability distribution at hand. Moreover, our approach
can easily be adapted to produce optimal CGs wrt other
objective functions such as CGs that represent the largest
number of independencies, or CGs with the least number
of edges. Our approach is based on encoding the CG learn-
ing problem in a modular way using the answer set pro-
gramming (ASP) paradigm. This enables the use of re-
cent advances in state-of-the-art exact ASP optimization
solvers that allow for a complete search in the space of
CGs. Moreover, due to the expressive constraint modelling

822

language offered by ASP, our approach allows for inte-
grating user knowledge into the search. This can, for ex-
ample, be deployed to enforce certain substructures in the
produced solutions or to adopt advanced objective func-
tions taking non-binary information about independence
constraints into account.

We also present results from an empirical comparison of
our approach with the existing CG learning algorithms.
As the existing algorithms make assumptions about the
probability distribution at hand, the experiments involve
only probability distributions that satisfy the assumptions
of the existing algorithms (although unnecessary for our
approach) in order to avoid biasing the results in our favour.
Even in such restricted settings, the results of the evaluation
indicate that our approach provides at least as accurate so-
lutions as the best solutions provided by the existing algo-
rithms, and overall provides better accuracy than any single
previous algorithm.

This work is motivated by recent work on harnessing
declarative programming (including ASP, Boolean satisfi-
ability, maximum satisfiability, and integer programming
solvers) to learn optimal Bayesian networks (Cussens and
Bartlett, 2013; Berg et al., 2014; Parviainen et al., 2014),
Markov networkss (Corander et al., 2013) and causal struc-
tures (Hyttinen et al., 2013, 2014). However, to our best
knowledge, this work is the first investigation into learning
optimal CGs with declarative programming.

The rest of this paper is organized as follows. We start by
reviewing CGs, their semantics, and the three existing CG
learning algorithms (Section 2). We then continue by pre-
senting and extending a set of inference rules for comput-
ing separations and non-separations in CGs (Section 3). In
Section 4 we present an implementation of the CG learning
approach, using the rules from the previous section. This
implementation is then evaluated wrt the existing CG learn-
ing algorithms in Section 5.

2 CHAIN GRAPHS

In this section, we review concepts related to chain graphs
as relevant to this work.

Unless otherwise stated, all the graphs in this paper are de-
fined over a finite set of N nodes. Moreover, the graphs
are simple, i.e., contain at most one edge between any pair
of nodes. The elements of N are not distinguished from
singletons. We consider graphs which may contain both
undirected and directed edges. For a given graph G, we
use x1 − x2 (resp., x1 → x2) to denote that G contains
an undirected (resp., directed edge) between two nodes x1
and x2.

The skeleton of G is the undirected graph that has the same
adjacencies as G. A route between a node x1 and a node
xn in G is a sequence of (not necessarily distinct) nodes

x1, . . . , xn such that xi → xi+1, xi ← xi+1, or xi − xi+1

for all 1 ≤ i < n. A route x1, . . . , xn inG is a semidirected
cycle if (i) xn = x1, (ii) x1 → x2 is in G, and (iii) xi →
xi+1 or xi − xi+1 is in G for all 1 < i < n. A chain graph
(CG) is a graph that contains no semidirected cycles.

A section of a route ρ in a CG is a maximal (wrt set inclu-
sion) undirected subroute of ρ. A section x2−. . .−xn−1 of
ρ is a collider section of ρ if x1 → x2 − . . .− xn−1 ← xn
is a subroute of ρ. Moreover, ρ is Z-open with Z ⊆ N if
(i) every collider section of ρ has a node in Z, and (ii) no
non-collider section of ρ has a node in Z. Let X , Y and
Z denote three disjoint subsets of N . If there is no Z-open
route in a CG G between nodes in X and nodes in Y , X
is separated from Y given Z in G, denoted by X⊥⊥GY |Z,
meaning that X and Y are represented as conditionally in-
dependent given Z in G. Otherwise, X is non-separated
from Y given Z in G, denoted by X 6⊥⊥ GY |Z. An in-
dependence model M is a set of statements of the form
X ⊥⊥MY |Z, meaning that X is independent of Y given
Z. The independence model represented by G, denoted by
I(G), is the set of represented independencies X⊥⊥GY |Z.
We denote by X⊥⊥pY |Z (resp. X 6⊥⊥pY |Z) that X is in-
dependent (resp. dependent) of Y given Z under a proba-
bility distribution p. The independence model induced by
p, denoted by I(p), is the set of statements X⊥⊥pY |Z. A
distribution p is faithful to a CG G when X ⊥⊥ pY |Z iff
X⊥⊥GY |Z for all pairwise disjoint subsets X , Y , Z of N .
Two CGs are Markov equivalent if they represent the same
independence model.

Let X , Y , Z and W denote four disjoint subsets of N .
An independence model M is a semi-graphoid if it has the
following properties: (i) symmetry: X ⊥⊥MY |Z implies
Y ⊥⊥MX|Z; (ii) decomposition: X⊥⊥MY ∪W |Z implies
X ⊥⊥MY |Z; (iii) weak union: X ⊥⊥MY ∪ W |Z implies
X⊥⊥MY |Z ∪W ; and (iv) contraction: X⊥⊥MY |Z ∪W
and X ⊥⊥ M W |Z together imply X ⊥⊥ MY ∪ W |Z. A
semi-graphoidM is a graphoid if it has the property (v) in-
tersection: X ⊥⊥ MY |Z ∪ W and X ⊥⊥ MW |Z ∪ Y to-
gether imply X⊥⊥M Y ∪ W |Z. A graphoid M is com-
positional if X⊥⊥MY |Z and X⊥⊥MW |Z together imply
X⊥⊥MY ∪W |Z. The independence model induced by a
probability distribution is a semi-graphoid, and the inde-
pendence model induced by a strictly positive probability
distribution is a graphoid (Studený, 2005). While the inde-
pendence model induced by a probability distribution is not
a compositional graphoid in general, independence models
induced by Gaussian probability distributions are composi-
tional (Studený, 2005).

The elementary statements of a semi-graphoidM are those
of the form x⊥⊥My|Z, where x, y ∈ N . A semi-graphoid
M is determined by its elementary statements, meaning
that every statement in M follows from the elementary
statements by repeatedly applying the semi-graphoid prop-
erties (Studený, 2005, Lemma 2.2). Thus one can equiv-

823

x

z

y x

z

y

(a) A graph G (b) A CG H

x⊥⊥Hy|z
y⊥⊥Hx|z

x⊥⊥My|∅
y⊥⊥Mx|∅
x⊥⊥My|z
y⊥⊥Mx|z

(c) The independence
model of H

(d) Another indepen-
dence model M

Figure 1: Example

alently work with the elementary statements of a semi-
graphoid. We do so in the rest of the article. In other words,
we restrict the independence model represented by a CG or
induced by a probability distribution to its elementary state-
ments.

A CG G is inclusion optimal wrt an independence model
M if (i) I(G) ⊆M , and (ii) there exists no CGH such that
I(G) ⊂ I(H) ⊆ M . We say that an inclusion optimal G
is independence optimal if there exists no CG H such that
I(H) ⊆M and |I(H)| > |I(G)|.

Example 1 Although the graphG shown in Figure 1a only
contains directed and undirected edges, it is not a CG since
it contains the semidirected cycle x → z − y → x. The
graph H in Figure 1b is a CG; its independence model
I(H) shown in Figure 1c. For example, x⊥⊥Hy|z holds
because the only route between x and y is x → z − y and
z is in the conditioning set. Moreover, I(H) fulfills the
graphoid properties since it is symmetric and only contains
one pair of independencies. Finally, I(H) ⊂ I(M) holds
for the independence model M shown in Figure 1d. This
means that H is inclusion optimal wrt M , since removing
an edge from H would cause either x⊥⊥Hz|∅ or y⊥⊥Hz|∅
to be true, neither of which are in M . Also note that M is
not faithful to any CG since there is no CG H ′ such that
I(H ′) = I(M).

2.1 Algorithms for Learning CGs

We continue by a short overview of existing algorithms for
CG learning. To our knowledge, only three such have been
proposed earlier.

The first algorithm, proposed in (Studený, 1997), is a PC-
like algorithm that first finds a skeleton, and then orients
the edges according to a specific set of rules. The sec-
ond algorithm, LCD, proposed by (Ma et al., 2008), uses
a divide-and-conquer approach that allows for fast learning

of CGs especially in the space of sparse CGs. If the prob-
ability distribution at hand is faithful to a CG G, then both
Studený’s algorithm and LCD are guaranteed to find a CG
H that is Markov equivalent with G.

The third algorithm for learning CGs, CKES, proposed
in (Peña et al., 2014), can be viewed as an extension of the
KES (Nielsen et al., 2003) Bayesian network learning algo-
rithm. CKES works by iteratively adding (resp. removing)
edges between the variables in the CG that are dependent
(resp. independent) in the probability distribution at hand.
The CKES algorithm guarantees to produce a CG that is
inclusion optimal wrt the independence model induced by
the probability distribution at hand in case the model is a
compositional graphoid.

3 INFERENCE RULES FOR FINDING
SEPARATIONS IN CHAIN GRAPHS

In this work, we rely on inference rules by Studený (1998)
that allow for efficiently computing the separations and
non-separations in a given CG G. We will represent these
rules in our ASP encoding of CG learning, as detailed in
Section 4. The rules are based on four sets of nodes UCx ,
V Cx , WC

x , and ZCx , that are saturated for each node x ∈ N
wrt the conditioning set C ⊆ N \ {x}. A node x is then
separated from each node y ∈ N \ (UCx ∪ V Cx) given the
conditioning set C, i.e., x⊥⊥GN \ (UCx ∪V Cx)|C. The rules
are shown in Figure 2. For some intuition, note that

• y ∈ V Cx iff there exists a C-open route from x to y
in G which contains the subroute ai → ai+1 − · · · −
ai+k = y, k ≥ 1,

• y ∈ UCx iff there exists a C-open route from x to y in
G which does not contain the subroute ai → ai+1 −
· · · − ai+k = y, k ≥ 1,

• y ∈ WC
x iff there exists a z ∈ UCx ∪ V Cx and a route

z = a0 → a1 − · · · − ar = y in G, r ≥ 1, and

• y ∈ ZCx iff there exists a z ∈ UCx ∪V Cx and a route z =
a0 → a1 − · · · − ar = y, r ≥ 1, with {a1, . . . , ar} ∩
C 6= ∅.

Note that rule 7 in Figure 2 corrects a small typo in the
original paper (Studený, 1998).

The correctness of these rules can be stated as follows.

Theorem 1 (Adapted from (Studený, 1998))
Given a CG G over a node set N , starting with
UCx = V Cx = ZCx = WC

x = ∅ for each node x ∈ N and
C ⊆ N , apply the rules in Figure 2 until fixpoint. Then
y /∈ UCx ∪ V Cx iff x⊥⊥Gy|C.

824

0. C ⊂ N , x /∈ C ⇒ x ∈ UCx
1. x ∈ UCa , x− y, y /∈ C ⇒ y ∈ UCa
2. x ∈ UCa , y → x, y /∈ C ⇒ y ∈ UCa
3. x ∈ UCa ∪ V Ca , x→ y, y /∈ C ⇒ y ∈ V Ca
4. x ∈ V Ca , x− y, y /∈ C ⇒ y ∈ V Ca
5. x ∈ UCa ∪ V Ca , x→ y ⇒ y ∈WC

a

6. x ∈WC
a , x− y ⇒ y ∈WC

a

7. x ∈WC
a , x ∈ C ⇒ x ∈ ZCa

8. x ∈ ZCa , x− y ⇒ y ∈ ZCa
9. x ∈ ZCa , y → x, y /∈ C ⇒ y ∈ UCa

Figure 2: Studený’s inference rules

3.1 Refining Studený’s Rules

It turns out that the W sets in Studený’s original rules are
actually redundant. In detail, the W sets can be removed
by replacing the original rules 5–7 by the rules 10–11 pre-
sented in Figure 3.

10. x ∈ UCa ∪ V Ca , x→ y, y ∈ C ⇒ y ∈ ZCa
11. x ∈ V Ca , x− y, y ∈ C ⇒ y ∈ ZCa

Figure 3: Replacement for Studený’s rules 5–7

Proposition 1 Given a CG G over a node set N , starting
with UCx = V Cx = ZCx = WC

x = ∅ for each node x ∈ N
and C ⊆ N , the following computations give the same UCx
and V Cx sets:

• Apply the rules 0–9 in Figure 2 until fixpoint.

• Apply rules 0–4 and rules 8–9 in Figure 2 together
with rules 10–11 in Figure 3 until fixpoint.

Proof (sketch). Without loss of generality, perform the
original and the refined computation by running the fol-
lowing three steps repeatedly until fixpoint. Step 1: Run
rules 0-4 until fixpoint. Step 2: Run rules 5-8 (original
computation) or rules 8,10-11 (refined computation) until
fixpoint. Step 3: Run rule 9 until fixpoint. In order to prove
the lemma, it suffices to prove that ZCx is the same at the
end of step 2 for both computations.

Consider arbitrary UCx and V Cx . Recall that by using the
original rules 0-9, a node y ∈ ZCx only if there exists a

node z ∈ UCx ∪ V Cx and a route z = a0 → a1 − · · · −
ar = y, r ≥ 1, with {a1, . . . , ar} ∩ C 6= ∅. Let as denote
the first node in the subroute a1 − · · · − ar that is in C.
Observe that as−1 ∈ UCx ∪ V Cx if s = 1, and as−1 ∈ V Cx
otherwise. One can check that we have exactly as ∈ ZCx
both by applying rules 10-11 in the refined computation and
by applying rules 5-7 in the original computation. After
this, y ∈ ZCx is obtained both in the original and in the
refined computation by repeatedly applying rule 8. �

3.2 Additional Rules

On top of the “replacement” rules 10–11, we further iden-
tify additional rules that can be applied soundly together
with Studený’s original rules, i.e., without affecting the re-
sulting U and V sets. While these rules, shown in Fig-
ure 4, are redundant, encoding the rules declaratively as
part of the ASP encoding presented in this work improves
the overall running times of our approach in practice.

Proposition 2 Given a CG G over a node set N , starting
with UCx = V Cx = ZCx = WC

x = ∅ for each node x ∈ N
and C ⊆ N , the following computations give the same UCx
and V Cx sets:

• Apply the rules 0–9 in Figure 2 until fixpoint.

• Apply the rules 0–9 in Figure 2 together with rules
12–17 in Figure 4 until fixpoint.

Proof (sketch). Consider rule 12. According to the head of
the rule, there exists a C-open route from a to x which does
not contain the subroute ai → ai+1 − · · · − ai+k = x with
k ≥ 1. Then, preceding this route with the edge b← awith
b /∈ C results in a C-open route from b to x which does not
contain the subroute ai → ai+1 − · · · − ai+k = x with
k ≥ 1. Then, the body of the rule holds. The correctness
of the rest of the rules can be proven in the same way. �

12. x ∈ UCa , a→ b, b /∈ C ⇒ x ∈ UCb
13. x ∈ V Ca , a→ b, b /∈ C ⇒ x ∈ V Cb
14. x ∈ ZCa , a→ b, b /∈ C ⇒ x ∈ ZCb
15. x ∈ UCa , y ∈ UCx ⇒ y ∈ UCa
16. x ∈ UCa , y ∈ V Cx ⇒ y ∈ V Ca
17. x ∈ UCa , y ∈ ZCx ⇒ y ∈ ZCa

Figure 4: Additional sound rules

825

4 LEARNING CHAIN GRAPHS VIA ASP

In this section we detail our method of learning CGs us-
ing ASP. The approach is constraint-based and allows for
the objective function to take additional domain knowledge
into account. We start with a short informal account of
ASP.

4.1 Answer Set Programming

Answer set programming (ASP) is a rule-based declarative
constraint satisfaction paradigm that is well-suited for rep-
resenting and solving various computationally hard prob-
lems (Gelfond and Lifschitz, 1988; Niemelä, 1999; Simons
et al., 2002). ASP offers an expressive declarative mod-
elling language in terms of first-order logical rules, allow-
ing for intuitive and compact representations of NP-hard
optimization tasks. When using ASP, the first task is to
model the problem in terms of ASP rules (constraints) so
that the set of solutions implicitly represented by the ASP
rules corresponds to the solutions of the original problem.
One or multiple solutions of the original problem can then
be obtained by invoking an off-the-shelf ASP solver on
the constraint declaration. The algorithms underlying the
ASP solver Clingo (Gebser et al., 2011) that we use in
this work are based on state-of-the-art Boolean satisfiability
solving techniques (Biere et al., 2009). These techniques
have during the last 10-15 years emerged as robust and ef-
ficient means of solving various hard search and optimiza-
tion problems and even in cases surpassed specialized al-
gorithms while at the same time offering great flexibility
as general NP-procedures for declarative problem solving.
As a self-contained explanation of ASP syntax and seman-
tics would exceed the page limit, we only aim to give an
intuitive reading of our ASP encoding for learning CGs.

4.2 Encoding the CG structure learning problem

Our exact ASP encoding of the CG structure learning prob-
lem is modular, consisting of three parts: (1) a set of con-
straints representing the space of CGs with a given set of
nodes, including constraints ruling out semidirected cycles
(Section 4.2.1); (2) a set of rules exactly encoding the Stu-
dený inference rules and thereby the separations and non-
separations of a given CG (Section 4.2.2); (3) a set of
soft constraints exactly representing a well-defined objec-
tive function used for finding the optimal CG structure of
a problem (Section 4.2.3). Note that parts 2 and 3 are de-
pendent on the input data. Specifically, part 2 represents
the dependencies and independencies that are determined
by the data. Additional information about the dependen-
cies and independencies can also be added to part 2, such
as the confidence of their correctness. This information can
then be used by the objective function in part 3 as discussed
in Section 4.2.3. Essentially, by calling an ASP solver with
the whole ASP encoding, consisting of parts 1–3, the solver

will perform an intelligent implicit search over the space of
CGs (using part 1), and will output a CG that produces the
best objective function score (based on part 3) by deriv-
ing the separations and non-separations in the CGs (using
part 2). Furthermore, in Section 4.3 we discuss how addi-
tional domain knowledge can be incorporated.

4.2.1 Encoding CGs

We start with part 1, i.e., by describing an ASP program
encoding of the space of CGs. This base encoding is pre-
sented in Figure 5.

In the encoding, the input predicate node represents the fact
that x is a node. We use the predicates edge and arc to rep-
resent the undirected and directed edges, respectively, of
the CG G, i.e., these predicates represent the actual CG
described by a solution to the ASP program. More pre-
cisely, we have that edge(X,Y) is true iff x − y ∈ G, and
arc(X,Y) is true iff x → y ∈ G Informally, the “guess”
part of the program, consisting of the two first rules, en-
codes a non-deterministic guess of the edges in G, which
means that the ASP solver will implicitly consider all pos-
sible graphs during search. The next three rules enforce the
fact that, for any pair x, y of nodes in a CG G, there can be
at most one type of an edge (undirected, directed, or nei-
ther) between them. The predicate ancestor(X,Y) is true
iff there is a semidirected route from a node x to node y,
and is used to enforce that CGs cannot contain semidirected
cycles. This constraint is enforced transitively by the last
five rules in Figure 5.

%%% guess graph:
% directed edges
{ arc(X,Y) } :- node(X;Y), X!=Y,

not edge(X,Y),
not arc(Y,X).

% undirected edges
{ edge(X,Y) } :- node(X;Y), X!=Y,

not arc(X,Y),
not arc(Y,X).

%%% at most one edge between node pairs:
% symmetric undirected edge relation
edge(Y,X) :- edge(X,Y).
% disallow cases with both directed and
% undirected edges over a pair of nodes
:- edge(X,Y), arc(X,Y).
% disallow pairwise opposite arcs
:- arc(X,Y), arc(Y,X).

%%% disallow partially directed cycles
ancestor(X,X) :- node(X).
ancestor(X,Y) :- arc(X,Y).
ancestor(X,Y) :- edge(X,Y).
ancestor(X,Y) :- ancestor(X,Z),

ancestor(Z,Y).
:- ancestor(X,Y), arc(Y,X).

Figure 5: ASP encoding of chain graphs

826

4.2.2 Encoding Studeny’s Rules

For inferring the separations that hold in a given CG G, we
encode Studený’s inference rules—or more precisely, the
modified rule set consisting of the rules 0–4, 8–9, and 10–
11 (recall Section 3)—in ASP. As shown in Figure 6, the
ASP modelling language allows for very natural encoding
of these rules. The predicates inU(X,A,C), inV(X,A,C),
and inZ(X,A,C), respectively, are used for representing
the facts that a node x ∈ UCa , x ∈ V Ca , and x ∈ ZCa ,
respectively. The auxiliary predicate in(C,X), although
its defining rule may seem somewhat complicated, simply
represents the fact that node x ∈ C ⊆ N . As a tech-
nical detail, we use an index-representation for the con-
ditioning sets and the nodes: the index of a given set
C ⊆ N = {1..|N |} is represented as a binary vector
b|N | . . . b2b1, where bi = 1 iff node i ∈ C. The sets
C ⊆ N are represented by the input predicate set. Finally,
the predicate derived dep(X,A,C) is defined to be true iff
x 6⊥⊥Ga|C, where G is the graph represented by the predi-

% in(C,X): node X in set C
in(C,X) :- set(C), node(X),

2**(X-1) & C != 0.
% rule 0
inU(X,X,C) :- set(C), node(X),

not in(C,X).
% rule 1
inU(Y,A,C) :- inU(X,A,C), edge(X,Y),

not in(C,Y), not in(C,A).
% rule 2
inU(Y,A,C) :- inU(X,A,C), arc(Y,X),

not in(C,Y), not in(C,A).
% rule 3
inV(Y,A,C) :- inU(X,A,C), arc(X,Y),

not in(C,Y), not in(C,A).
inV(Y,A,C) :- inV(X,A,C), arc(X,Y),

not in(C,Y), not in(C,A).
% rule 4
inV(Y,A,C) :- inV(X,A,C), edge(X,Y),

not in(C,Y), not in(C,A).
% rule 8
inZ(Y,A,C) :- inZ(X,A,C), edge(X,Y),

not in(C,A).
% rule 9
inU(Y,A,C) :- inZ(X,A,C), arc(Y,X),

not in(C,Y), not in(C,A).
% rule 10
inZ(Y,A,C) :- inU(X,A,C), arc(X,Y),

not in(C,A), in(C,Y).
inZ(Y,A,C) :- inV(X,A,C), arc(X,Y),

not in(C,A), in(C,Y).
% rule 11
inZ(Y,A,C) :- inV(X,A,C), edge(X,Y),

not in(C,A), in(C,Y).

% Derived connections
derived_dep(X,Y,C) :- inU(Y,X,C), X != Y,

not in(C,Y), not in(C,X).
derived_dep(X,Y,C) :- inV(Y,X,C), X != Y,

not in(C,Y), not in(C,X).

Figure 6: ASP encoding of Studeny’s rules

cates edge and arc, exactly following the conditions stated
in Theorem 1.

4.2.3 Optimization

We proceed by detailing how different objective functions
can be encoded within our approach. As noted earlier, the
goal of an objective function is to assign a score to every
CG G, and the set of optimal CGs is defined as those CGs
which minimizes the objective function value. We con-
sider three different objective functions that characterize
different types of optimality conditions for CGs. Follow-
ing Hyttinen et al. (2014)—who focused on causal struc-
ture discovery—each of the objective functions is (in some
cases partially) based on how well the separations and non-
separations of the given CG G corresponds to the indepen-
dencies and dependencies determined from the data. In the
following, we denote by CG(N) the set of CGs over the set
of nodes N , and by I the (complete) set of independencies
and dependencies given as input (determined before-hand
from the data).

The first two objective functions follow the general idea
of minimizing a sum of costs over incorrect separations
and non-separations in G wrt the independences and de-
pendences determined by the data. As a generalization, we
associate for each (in)dependence statement determined by
the data a cost (weight) w(x⊥⊥y|C) and w(x6⊥⊥y|C), which
is incurred on the solution G iff the corresponding separa-
tion statement does not hold in G. This allows for formal-
izing a general weighted objective function

min
G∈CG(N)

∑
(x6⊥⊥y|C)∈I w(x6⊥⊥y|C) · T [x⊥⊥y|C] +
∑

(x⊥⊥y|C)∈I w(x⊥⊥y|C) · T [x6⊥⊥y|C], (1)

where T [c] is an indicator for the condition c being true for
graph G.

By setting the weights w appropriately, this gives vari-
ous interesting special cases. For example, to represent
independence optimal CGs as the optimal solutions, let
w(x 6⊥⊥y|C) = ∞ (i.e., all dependencies have to be rep-
resented in any CG G) and w(x⊥⊥y|C) = 1 (i.e., each in-
dependence relation not represented by G adds a unit cost
to G).

On the level of our ASP encodings of the objec-
tive functions considered, we use the input predicates
indep(X,Y,C,W) and dep(X,Y,C,W), to represent
w(x⊥⊥y|C) andw(x6⊥⊥y|C), respectively. Using these pred-
icates, the general weighted objective function is expressed
as the ASP statements shown in Figure 7.

In addition to allowing for associating the same (unit)
weight to all (in)dependence statements, the general
weighted objective function also allows for using more
elaborate weighting schemes where each (in)dependence
statement have a different weight. In contrast, most

827

% Minimize the sum of the weights of
% unsatisfied (in)dependence constraints
:˜indep(X,Y,C,W), derived_dep(X,Y,C).

[W,X,Y,C]
:˜dep(X,Y,C,W), not derived_dep(X,Y,C).

[W,X,Y,C]

Figure 7: Encoding the general weighted objective

constraint-based structure learning methods only allow
for binary information about an independence statement,
which means that possible additional information about
the independence statements, such as the level of confi-
dence in them, is lost. In fact, as suggested by Hytti-
nen et al. (2014), by developing weighting schemes, one
can bring the constraint-based approaches closer to score-
based methods which have traditionally used local scores
as weights within the implemented objective functions. For
example, a weighting scheme that was proposed and shown
to produce good solutions by Hyttinen et al. (2014) uses
the log of the Bayesian probability of (in)dependence state-
ments (Margaritis and Bromberg, 2009) as weights.

As an alternative to expressing optimality in terms of
weighting incorrectly represented (in)dependencies, we
also consider a novel objective function that aims at min-
imizing the number of edges in the CG while at the same
time representing all conditional dependencies in the data.
The underlying idea of the objective function is to mini-
mize the model complexity and although independence op-
timal solutions can no longer be guaranteed wrt the inde-
pendence model of the data, any solution will still be inclu-
sion optimal. Formally, this gives the alternative objective
function

min
G∈CG(N)

|{(x, y) : x < y, x− y ∈ G}|+

|{(x, y) : x→ y ∈ G}|+∑

(x6⊥⊥y|C)∈I
w(x6⊥⊥y|C) · T [x⊥⊥Gy|C], (2)

wherew(x6⊥⊥y|C) =∞. This objective function is encoded
in ASP as shown in Figure 8, which in itself demonstrates
the versatility of our declarative approach.

4.3 Imposing Additional Constraints

One of the major strengths with our CG learning approach
is the possibility to incorporate further constraints to guide
the search for optimal solutions, in order to e.g. speed up
the search for solutionor to focus the search on specific so-
lutions of interest. In terms of domain knowledge, if we
know that variable x is the direct cause of variable y in the
system we are modelling, we can simply add the constraint
arc(x, y) as input to the ASP solver. In terms of including
redundant constraints for speeding up search, one can e.g.

% satisfy all dependence constraints
:- dep(X,Y,C,_), not derived_dep(X,Y,C).

% minimize undirected and directed edges
:˜ edge(X,Y), X<Y. [1,X,Y]
:˜ arc(X,Y). [1,X,Y]

Figure 8: Encoding the minimize-edges objective

encode the set of redundant rules for how the sets UCx , V Cx
and ZCx can be computed as discussed in Section 3.2. An
encoding of the rules are shown in Figure 9. In fact, we ob-
served that the solver running times decreased by approxi-
mately 50% after adding these rules to the ASP encoding.

In terms of focusing search specific solutions of interest, we
now describe an ASP encoding for restricting the search to
only consider so-called largest chain graphs (Frydenberg,
1990; Volf and Studený, 1999). Largest CGs are repre-
sentatives of Markov equivalence classes of CGs. Given
a Markov equivalence class, the largest CG in the class is
the CG which includes a maximal number of undirected
edges. More formally, largest chain graphs are defined as
follows.

A complex in a CG G is a path v1, . . . , vk in G with k ≥ 3,
such that v1 → v2, vi − vi+1 for i = 2, . . . , k − 2, and
vk−1 ← vk, and there are no other edges between the nodes
v1, . . . , vk in G. A complex edge is a directed edge that
belongs to a complex. A directed edge u → v covers a
directed edge x → y in a CG G u is an ancestor of x and
y is an ancestor of v in G. A directed edge u → v is
protected in G if it covers a complex edge. Note that every
complex edge is protected. Now, a CG G is the largest CG
in a Markov equivalence class iff every directed edge of G
is protected.

An ASP encoding of the largest CG constraint is presented
in Figure 10. Here, the predicate complex(X,Y) indi-
cates that x → y is a complex edge. The auxiliary pred-
icate almost undirected path(X,Y, Z) indicates the exis-
tence of a path x → y − · · · − z such that there are no
other edges between the nodes in the path. This predicate

inU(Z,Y,C) :- inU(Z,X,C), arc(X,Y),
not in(C,X), not in(C,Y), not in(C,Z).

inV(Z,Y,C) :- inV(Z,X,C), arc(X,Y),
not in(C,X), not in(C,Y), not in(C,Z).

inZ(Z,Y,C) :- inZ(Z,X,C), arc(X,Y),
not in(C,X), not in(C,Y).

inU(Y,A,C) :- inU(X,A,C), inU(Y,X,C).
inV(Y,A,C) :- inU(X,A,C), inV(Y,X,C).
inZ(Y,A,C) :- inU(X,A,C), inZ(Y,X,C).

Figure 9: Encoding redundant domain knowledge

828

% derive complex arcs X->Y - ... <-Z
complex(X,Y) :- arc(X,Y), arc(Z,Y), X!=Z,

not edge(X,Z),
not arc(X,Z), not arc(Z,X).

complex(X,Y) :- almost_undirected_path(X,Y,V),
almost_undirected_path(Z,V,Y),
X!=Z, not edge(X,Z),
not arc(X,Z), not arc(Z,X).

almost_undirected_path(X,Y,Z) :- arc(X,Y),
edge(Y,Z), not arc(X,Z).

almost_undirected_path(X,Y,Z) :-
almost_undirected_path(X,Y,V),
edge(V,Z), not arc(X,Z).

% arc U->V covers arc X->Y
covers(U,V,X,Y) :- ancestor(U,X),

ancestor(Y,V),
arc(X,Y), arc(U,V).

% all arcs must be protected
1 {covers(U,V,X,Y) : complex(X,Y)} :-arc(U,V).

Figure 10: ASP encoding of the largest CG constraint

is used for deriving the predicate complex. The predicate
covers(U, V,X, Y) encodes that u → v covers the edge
x → y. The final cardinality constraint states that every
directed edge u→ v must cover at least one complex edge
x→ y, i.e., u→ v has to be protected.

5 EMPIRICAL EVALUATION

We report here on an empirical evaluation comparing our
declarative ASP-based approach with existing CG struc-
ture learning algorithms in terms of accuracy of the pro-
duced solutions. For solving the ASP encodings, we used
the state-of-the-art ASP solver Clingo version 4.4.0. The
CG learning algorithms we compare to are LCD (Ma et al.,
2008) and CKES (Peña et al., 2014), for which we obtained
implementations from the respective authors. We excluded
the PC-like algorithm (Studený, 1997) from the compar-
ison since Ma et al. (2008) have shown that it is outper-
formed by LCD.

For the ASP approach, we illustrate its diversibility by ap-
plying three different objective functions.

(i) ASP-Indep, which implements the general weighted
optimization function with w(x6⊥⊥y|C) =∞ and
w(x⊥⊥y|C) = 1 (cf. Section 4.2.3, Equation 1);

(ii) ASP-Weight, which implements the general weighted
optimization function using a probability-based
weighting scheme from (Hyttinen et al., 2014, Sec-
tion 4.3), following a Bayesian paradigm to assign
probabilities to (in)dependence statements, using code
from the authors;

(iii) ASP-Edge, which implements the minimize edges op-
timization function, (cf. Section 4.2.3, Equation 2).

Since the LCD algorithm assumes faithfulness, to some
CG, from the probability distribution it is trying to learn,
and does not work properly otherwise, we enforced this
assumption for the experiments. However, we want to em-
phasize that our approach works also without such assump-
tions. Hence, due to this strong fairness towards LCD and
CKES, the empirical results may to some extent present
overly positive results for LCD and CKES.

Assuming a faithful underlying probability distribution,
we applied the following process. First, a set of CGs
G were generated with corresponding probability distribu-
tions. These probability distributions were then sampled
into datasets, each determining a set of independence and
dependence statements, forming the inputs to the different
algorithms. We then evaluated the learning results, i.e., the
CGs output as solutions by the algorithms, by comparing
them to the original CG G.

For the experiments, we generated 100 “original” CGs over
N = 7 nodes, with an average node-degree of 2, as well
as corresponding Gaussian probability distributions. For
each distribution, we obtained 500 samples. We used the
simplified Wilks independence test (Wilks, 1938) for LCD,
CKES, ASP-Indep and ASP-Edge. For the ASP-Weight
variant, we used the more advanced, non-binary indepen-
dence test following (Hyttinen et al., 2014). Taking into
account that CKES typically ends up in different local op-
tima (Peña et al., 2014), we ran the CKES algorithm three
times on each input, and report the best found solution—
wrt independence optimality to the independence model
determined by the data—as the final solution produced by
CKES.

To evaluate the accuracy of the learnt CGs we compared
their represented independence model with the indepen-
dence model of the original CG G by calculating the true
positive rate (TPR) and false positive rate (FPR) of learnt
dependencies. A higher TPR means that more dependen-
cies are correctly identified by the algorithm, while a lower
FPR means that more independencies are correctly identi-
fied.

The accuracy of the results is plotted in the ROC space
in Figure 11.1 We observe that LCD does not achieve
as high TPR as the other algorithms, but does obtain rel-
atively low FPR. This is in line with earlier results (Ma
et al., 2008; Peña et al., 2014) that show that LCD includes
edges relatively cautiously. CKES, in turn, achieves rela-
tively high TPR, but with higher FPR, which is in line with
previous evidence suggesting that CKES can have prob-
lems identifying the correct independencies in a probabil-

1Note that the points are not statistical test results obtained
independently of each other. Rather, they are learning results of
algorithms for which the dependencies and independencies log-
ically constrain each other. As a result, some of the algorithms
are not able to produce results with low FPRs at all, making the
curves non-concave.

829

Figure 11: Comparison of solution accuracy

ity distribution and hence is relatively generous in includ-
ing edges (Peña et al., 2014). In contrast, relative to LCD
and CKES, we observe that the ASP-based approach under
the different objective functions perform well both in the
low FPR range (similarly or better than LCD which in turn
dominates CKES in the range) and the higher FPR range
(similarly or better than CKES which is in turn dominates
LCD in the range). Thus the overall best-performing ap-
proaches are the ASP encoding variants. Among the ASP
encoding variants, we observe that the ASP-Weight variant
shows best performance in the low FPR range < 0.01. The
variants ASP-Weight and ASP-Indep, using instantiations
of the general weighted objective function, fare better than
ASP-Edge that optimally minimizes the number of edges
in the output CG.

As for scalability of our approach, the average and median
running times over 100 inputs in terms of the number of
variables are shown in Table 1, using a single core of an
Intel i5 processor running at 3.4 GHz. For a fair compar-
ison, we note that CKES and LCD do exhibit much faster
running times, e.g., 1-10 seconds per run at N = 7. Note
that the median ASP running times are much lower then the
average running times. We observed that relatively scarce
outliers have a big negative influence on the averages. The
running times include both the time it takes to reach an op-
timal solution as well as the additional time it takes for the
solver to prove that the found solution is optimal. In fact,

Table 1: ASP running times under different objectives

N Median / Average (sec)
ASP-Indep ASP-Edge ASP-Weight

3 0.02 / 0.02 0.02 / 0.02 0.02 / 0.02
4 0.03 / 0.03 0.04 / 0.04 0.03 / 0.03
5 0.11 / 0.15 0.33 / 0.35 0.24 / 0.46
6 0.93 / 2.06 7.84 / 10.10 5.00 / 270.35
7 21.35 / 243.10 366.86 / 489.71 60.70 / 2471.81

typically proving optimality consumes the majority of the
running time of the solver. Moreover, during the search, the
solver actually reports increasingly good solutions, consti-
tuting an anytime learning algorithm.

6 CONCLUSIONS

In this article we presented a first exact approach to chain
graph structure learning. In the approach the computation-
ally hard problem is cast as a constraint optimization prob-
lem using the declarative programming of answer set pro-
gramming. In contrast to previously proposed CG learning
algorithms, our approach enables finding provably optimal
solutions to the learning problem without making assump-
tions on the data. It is at the same time more general since
it enables the use of various types of objective functions for
optimization and specifying domain knowledge in terms
of hard constraints. Via an empirical evaluation we also
showed that the approach exhibits better overall accuracy
than any single previously proposed CG structure learning
algorithm. A topic for further work is to study ways of scal-
ing up the approach to higher numbers of variables while
still maintaining optimality guarantees. It would also be
interesting to extend the approach to accommodate the al-
ternative multivariate regression (Cox and Wermuth, 1993,
1996) and Andersson-Madigan-Perlman (Andersson et al.,
2001; Levitz et al., 2001) CG interpretations.

Acknowledgements This work was supported in part by
the Swedish Research Council (2010-4808), Academy of
Finland (grants 251170 COIN Centre of Excellence in
Computational Inference Research, 276412, and 284591),
and Research Funds of the University of Helsinki.

830

References

Andersson, S., Madigan, D., and Perlman, M. (2001). An
alternative Markov property for chain graphs. Scandina-
vian Journal of Statistics, 28:33–85.

Berg, J., Järvisalo, M., and Malone, B. (2014). Learn-
ing optimal bounded treewidth Bayesian networks via
maximum satisfiability. In Proc. AISTATS, volume 33
of JMLR Proceedings, pages 86–95. JMLR.org.

Biere, A., Heule, M., van Maaren, H., and Walsh, T., ed-
itors (2009). Handbook of Satisfiability, volume 185 of
Frontiers in Artificial Intelligence and Applications. IOS
Press.

Corander, J., Janhunen, T., Rintanen, J., Nyman, H. J., and
Pensar, J. (2013). Learning chordal markov networks by
constraint satisfaction. In Proc. NIPS, pages 1349–1357.

Cox, D. and Wermuth, N. (1993). Linear dependencies rep-
resented by chain graphs. Statistical Science, 8:204–218.

Cox, D. and Wermuth, N. (1996). Multivariate Dependen-
cies: Models, Analysis and Interpretation. Chapman and
Hall.

Cussens, J. and Bartlett, M. (2013). Advances in
Bayesian network learning using integer programming.
In Proc. UAI, pages 182–191. AUAI Press.

Frydenberg, M. (1990). The chain graph Markov property.
Scandinavian Journal of Statistics, 17:333–353.

Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M.,
Schaub, T., and Schneider, M. T. (2011). Potassco: The
Potsdam answer set solving collection. AI Communica-
tions, 24(2):107–124.

Gelfond, M. and Lifschitz, V. (1988). The stable model
semantics for logic programming. In Proc. ICLP, pages
1070–1080.

Hyttinen, A., Eberhardt, F., and Järvisalo, M. (2014).
Constraint-based causal discovery: Conflict resolution
with answer set programming. In Proc. UAI, pages 340–
349. AUAI Press.

Hyttinen, A., Hoyer, P. O., Eberhardt, F., and Järvisalo,
M. (2013). Discovering cyclic causal models with latent
variables: A general SAT-based procedure. In Proc. UAI,
pages 301–310. AUAI Press.

Lauritzen, S. and Wermuth, N. (1989). Graphical mod-
els for association between variables, some of which are
qualitative and some quantitative. The Annals of Statis-
tics, 17:31–57.

Levitz, M., Perlman, M., and Madigan, D. (2001). Sepa-
ration and completeness properties for AMP chain graph
Markov models. The Annals of Statistics, 29:1751–1784.

Ma, Z., Xie, X., and Geng, Z. (2008). Structural learning
of chain graphs via decomposition. Journal of Machine
Learning Research, 9:2847–2880.

Margaritis, D. and Bromberg, F. (2009). Efficient Markov
network discovery using particle filters. Computational
Intelligence, 25(4):367–394.

Nielsen, J., Kočka, T., and Peña, J. (2003). On local optima
in learning Bayesian networks. In Proc. UAI, pages 435–
442. AUAI Press.

Niemelä, I. (1999). Logic programs with stable model se-
mantics as a constraint programming paradigm. Annals
of Mathematics and Artificial Intelligence, 25(3-4):241–
273.

Parviainen, P., Farahani, H. S., and Lagergren, J. (2014).
Learning bounded tree-width Bayesian networks us-
ing integer linear programming. In Proc. AISTATS,
volume 33 of JMLR Proceedings, pages 751–759.
JMLR.org.

Peña, J. M., Sonntag, D., and Nielsen, J. (2014). An inclu-
sion optimal algorithm for chain graph structure learn-
ing. In Proc. AISTATS, volume 33 of JMLR Proceedings,
pages 778–786. JMLR.org.

Simons, P., Niemelä, I., and Soininen, T. (2002). Extending
and implementing the stable model semantics. Artificial
Intelligence, 138(1-2):181–234.

Sonntag, D., Peña, J., and Gómez-Olmedo, M. (2015).
Approximate counting of graphical models via MCMC
revisited. International Journal of Intelligent Systems,
30:384–420.

Studený, M. (1997). On recovery algorithms for chain
graphs. International Journal of Approximate Reason-
ing, 17:265–293.

Studený, M. (1998). Bayesian networks from the point
of view of chain graphs. In Proc. UAI, pages 496–503.
Morgan Kaufmann.

Studený, M. (2005). Probabilistic Conditional Indepen-
dence Structures. Springer.

Volf, M. and Studený, M. (1999). A graphical characteri-
zation of the largest chain graphs. Int. J. Approx. Rea-
soning, 20(3):209–236.

Wilks, S. (1938). The large-sample distributiom of the like-
lihood ratio for testing composite hypotheses. The An-
nals of Mathematical Statistics, 20:595–601.

831

How matroids occur in the context of learning Bayesian network structure

Milan Studený
the Institute of Information Theory and Automation of the CAS,

Pod Vodárenskou věžı́ 4, Prague, 182 08, Czech Republic

Abstract

It is shown that any connected matroid having a
non-trivial cluster of BN variables as its ground
set induces a facet-defining inequality for the
polytope(s) used in the ILP approach to globally
optimal BN structure learning. The result applies
to well-known k-cluster inequalities, which play
a crucial role in the ILP approach.

1 INTRODUCTION

The motivation for this theoretical paper is learning
Bayesian network (BN) structure. Some hidden connection
of the theory of matroids to a recent trend in optimal BN
structure learning is revealed; specifically, matroids are
related to the application of integer linear programming
(ILP) methods in this area. To explain the motivation, in
this introductory section, the latest developments in the ILP
approach to learning BN structure are recalled. Matroid
theory is also briefly mentioned and the structure of the rest
of the paper is described.

1.1 ILP APPROACH TO LEARNING

The usual score-based approach to BN structure learning
consists in maximizing a scoring criterion G 7→ Q(G,D),
where G is an acyclic directed graph and D the observed
database (Neapolitan, 2004). The valueQ(G,D) says how
much the BN structure defined by the graph G fits the
database D. Nevertheless, some researchers are used to
identify the BN structure with the respective equivalence
class of graphs and prefer to talk about learning the class.

Since the classic heuristic greedy equivalence search (GES)
algorithm (Chickering, 2002) is known not to guarantee to
find a globally optimal BN structure, researches started to
look for alternative methods. One of them was based on
the idea of dynamic programming (Silander, Myllymäki,
2006), which, however, was limited in the number of BN

variables (= nodes of the graph) because of the exponential
growth of memory demands.

This limitation has been overcome by the ILP approach
based on family-variable vector representation of the
graphs suggested independently in (Jaakkola, Sontag,
Globerson, Meila, 2010) and (Cussens, 2010). An impor-
tant technical step to overcome the limitation was the idea
of the reduction of the search space developed by de Cam-
pos and Ji and published in a later journal paper (2011).

Jaakkola et al. (2010) introduced an important class
of cluster-based inequalities approximating the respective
family-variable polytope and came with a method of grad-
ual adding these special constraints. Cussens (2010) first
applied the family-variable vector representation in the re-
stricted context of pedigree learning. However, his next
paper (Cussens, 2011), which was inspired by (Jaakkola
et al., 2010), dealt with general BN structure learning and
came with a standard cutting plane approach offering a
more efficient way of adding the (cluster) inequality con-
straints, based on solving a special simple sub-ILP prob-
lem. Moreover, his experiments with general-purpose cut-
ting planes, the so-called Gomory cuts, lead him to the idea
to introduce a wider class of k-cluster inequalities, where
k is a natural number less than the cardinality of the cluster.
Bartlett and Cussens (2013) extended later the cutting plane
method to a more general branch-and-cut approach; they
included a lot of fine improvements and achieved much
better running times. One of the morals of their paper
was that using additional facet-defining inequalities for the
family-variable polytope can speed up the computation.

An alternative ILP approach based on characteristic-imset
representation of BN structures appeared in (Hemmecke,
Lindner, Studený, 2012); its motivational sources date back
to the method of imsets from (Studený, 2005). Unlike the
family-variable vectors, the characteristic imsets uniquely
correspond to BN structures. However, although this ILP
approach is also feasible, the computational experiments
reported in (Studený, Haws, 2014) have not resulted in bet-
ter running times in comparison with the 2013-year version
of GOBNILP software (Cussens and Bartlett, 2015).

832

Our recent manuscript (Cussens, Haws, Studený, 2015)
has been devoted to the comparison of the facet-defining
inequalities for the family-variable polytope and for the
characteristic-imset polytope. Note that the facet-defining
inequalities appear to be the most useful ones in the cutting
plane approach to solving ILP problems; see the reasons in
§ 9.1-9.2 of (Wolsey, 1998). In (Cussens et al., 2015), we
established a one-to-one correspondence between extreme
supermodular set functions and certain facet-defining in-
equalities for both polytopes. An important special case
of such facet-defining inequalities are the above mentioned
k-cluster constraints, which can be transformed to the
characteristic-imset context.

1.2 MATROID THEORY

The theory of matroids had been formed in the 1930’s as
an abstract theory of independence and since then became
one of important topics in combinatorial optimization. The
reader is referred to Oxley’s book (1992) for numerous
examples of how matroids pervade various branches of
discrete mathematics and for how they appear to be useful
in computer science.

In (Cussens et al., 2015) we observed an interesting relation
of the above mentioned k-cluster inequalities to the so-
called connected uniform matroids, which gives an elegant
interpretation to those inequalities.

In this paper, I extend our former observation and, using
an old result by Nguyen (1978) from matroid theory, show
that any connected matroid over a cluster of BN variables
involving at least two variables induces a facet-defining in-
equality both for the family-variable polytope and for the
characteristic-imset polytope.

In my opinion, this theoretical result broadens the class of
available facet-defining inequalities which can be used in
the cutting plane approach to solving ILP problems arising
in the optimal BN structure learning area.

1.3 PAPER STRUCTURE

In § 2 formal definitions of basic concepts are given: from
the area of BN structure learning, the theory of polytopes,
and matroid theory. The next § 3 then recalls a few obser-
vations on the cone of supermodular set functions and the
results from (Cussens et al., 2015), (Nguyen, 1978) that are
needed. These allows one to formulate and prove the main
result in § 4. An illustrating example is given in § 5. The
conclusions and the discussion are in § 6.

2 BASIC CONCEPTS

LetN be a finite set of BN variables; to avoid a trivial case,
assume n := |N | ≥ 2. In statistical context, the elements
of N correspond to random variables; in graphical context,

they correspond to nodes of (acyclic directed) graphs. Its
subsets C ⊆ N with |C| ≥ 2, called clusters in this paper,
will serve as ground sets of the matroids discussed here.

2.1 STRUCTURE LEARNING CONCEPTS

The symbol DAGs (N) will denote the collection of all
acyclic directed graphs over N , which means the graphs
having N as the set of nodes. Given G ∈ DAGs (N) and
a ∈ N , the symbol paG(a) := { b ∈ N : b → a in G},
is the parent set of the node a. A well-known equivalent
definition of acyclicity of a directed graph G over N is the
existence of a total order a1, . . . , an of nodes in N such
that, for every i = 1, . . . , n, paG(ai) ⊆ {a1, . . . , ai−1};
we say then the order and the graph are consonant.

A BN model is a pair (G,P), where G ∈ DAGs (N)
and P a probability distribution on the joint sample space
XN :=

∏
a∈N Xa, the Cartesian product of individual non-

empty finite sample spaces Xa for variables a ∈ N , which
factorizes according to G. An equivalent characterization
of the factorization property is that P is Markovian with
respect to G, which means it satisfies the conditional inde-
pendence restrictions determined by G (Lauritzen, 1996).
The BN structure defined by G is formally the class of
Markovian probability distributions with respect to G.

Different graphs over N could be Markov equivalent,
which means they define the same BN structure. The
classic graphical characterization of equivalent graphs by
Verma and Pearl (1991) states that two graphs are Markov
equivalent if and only if they have the same adjacencies and
immoralities. Recall that an immorality in G ∈ DAGs (N)
is an induced subgraph ofG of the form a→ c← b, where
the nodes a and b are not adjacent in G. Markov equiva-
lence of G,H ∈ DAGs (N) will be denoted by G ∼ H .

The task of learning the BN structure is to determine it on
the basis of an observed (complete) database D, which is
a sequence x1, . . . , xm, m ≥ 1 of elements of the joint
sample space XN . This is often done by maximizing some
quality criterion, also called a score or a scoring criterion,
which is a bivariate real function (G,D) 7→ Q(G,D),
where G ∈ DAGs (N) and D a database. Examples of
such criteria are Schwarz’s (1978) Bayesian information
criterion (BIC) and Bayesian Dirichlet equivalence (BDE)
score (Heckerman, Geiger, Chickering, 1995). The reader
is referred to (Neapolitan, 2004) for the definition of a
relevant concept of statistical consistency.

A crucial technical assumption from the computational
point of view (Chickering, 2002) is that Q should be
additively decomposable, which means, it has the form

Q(G,D) =
∑

a∈N
qD(a | paG(a)) , (1)

where the summands qD(∗ | ∗) are called local scores. All
criteria used in practice satisfy this requirement.

833

Given an observed database D, the goal is to maximize
G 7→ Q(G,D). Since the aim is learn the BN structure, a
natural assumption is that the criterion Q to be maximized
is score equivalent (Bouckaert, 1995), which means, for
every database D and G,H ∈ DAGs (N),

Q(G,D) = Q(H,D) whenever G ∼ H.

Most of the criteria used in practice satisfy that.

2.2 POLYTOPES FOR LEARNING

We recall a few basic concepts from polyhedral geometry;
see (Barvinok, 2002) or (Ziegler, 1995) for more details.

Below we deal with the Euclidean real vector spaces RΓ,
where Γ 6= ∅ is a non-empty finite index set. Given two
vectors v, w ∈ RΓ, their scalar product will be denoted by

〈v, w〉Γ :=
∑

i∈Γ

vi · wi ,

or just by 〈v, w〉 if there is no danger of confusion.

A polytope P is the convex hull of finitely many vectors
from RΓ; we only consider non-empty P. The dimension
of P, denoted by dim(P), is the dimension of its affine
hull, which is nothing but a translate of a linear subspace.
The maximal number of affinely independent vectors in P
is then dim(P) + 1.

Given o ∈ RΓ and u ∈ R, a linear inequality 〈o, v〉 ≤ u
for v ∈ RΓ is called valid for P if it holds for any v ∈ P.
The inequality is then called tight for a vector w ∈ P if
〈o, w〉 = u. Given such valid linear inequality for P the
corresponding face of P is its subset F ⊆ P of the form

F = { v ∈ P : 〈o, v〉 = u }.

One usually deals with valid inequalities that are tight for
at least one vector w ∈ P in which case F 6= ∅. Then
we will name the respective inequality face-defining. The
function v ∈ RΓ 7→ 〈o, v〉 is typically a linear objective
to be maximized; with little abuse of terminology we will
then call o ∈ RΓ an objective.

A facet of a polytope P is its face of the dimension
dim(P) − 1. The corresponding inequality will be then
called facet-defining. Given a (non-empty) facet F ⊆ P of
a full-dimensional polytope P in RΓ, its facet-defining in-
equality is unique up to a positive multiple (of both o ∈ RΓ

and u ∈ R). A well-known fundamental result in poly-
hedral geometry is that every full-dimensional polytope P
with non-empty facets is specified as the set of vectors
v ∈ RΓ satisfying all facet-defining inequalities for P.
Thus, P is a bounded polyhedron and the facet-defining in-
equalities provide its minimal description in terms of in-
equalities.

2.2.1 Family-Variable Polytope

The index set for our family-variable vectors will be

Υ := { (a |B) : a ∈ N & ∅ 6= B ⊆ N \ {a} } .

Given G ∈ DAGs (N), the symbol ηG will denote the
family-variable vector encoding it:

ηG(a |B) =

{
1 if B = paG(a),
0 otherwise, for (a |B) ∈ Υ.

The family-variable polytope is defined as the convex hull
of the collection of all such vectors:

F := conv ({ ηG ∈ RΥ : G ∈ DAGs (N) }) .

Clearly, dim(F) = |Υ| = n · (2n−1 − 1).

One can re-write (1) in terms of ηG in this way:

Q(G,D) =
∑

a∈N

∑

B⊆N\{a}
qD(a |B) · ηG(a |B), (2)

which allows one to interpret Q as (the restriction of) a
linear function of ηG. In particular, the maximization
of Q over DAGs (N) turns into the task to maximize a
linear function with the objective o(a |B) = qD(a |B)
for (a |B) ∈ Υ over the family-variable polytope F. In
other words, the local scores become the components of
the respective objective vector o ∈ RΥ.

The assumption of score equivalence ofQ then implies the
respective objective satisfies, for everyG,H ∈ DAGs (N),

G ∼ H ⇒ 〈o, ηG〉Υ = 〈o, ηH〉Υ . (3)

Thus, if (3) holds for o ∈ RΥ we will say that it is a score
equivalent objective, abbreviated as an SE objective.

Given a cluster C ⊆ N , |C| ≥ 2, of BN variables and a
natural number k = 1, . . . , |C| − 1 the inequality

k ≤
∑

a∈C

∑

B⊆N\{a} : |B∩C|<k
ηG(a |B)

is valid for any G ∈ DAGs (N): as the induced subgraph
GC is acyclic, the first k nodes in a total order of nodes in
C consonant with GC have at most k − 1 parents in C. In
particular, the inequality is valid for any η ∈ F in place of
ηG and one can transform it into a standardized form:

∑

a∈C

∑

B⊆N\{a} : |B∩C|≥k
η(a |B) ≤ |C| − k . (4)

We will call (4) the k-cluster inequality for C; its version
for k = 1 is simply the cluster inequality for C. Every
k-cluster inequality is facet-defining for F and the objective
defining (4) is SE; see (Cussens et al., 2015, Corol 4).

834

Example 1 Consider N = {a, b, c, d} = C and k = 2.
Then (4) takes the following form:

[η(a | bc) + η(a | bd) + η(a | cd) + η(a | bcd)]

+ [η(b | ac) + η(b | ad) + η(b | cd) + η(b | acd)] (5)
+ [η(c | ab) + η(c | ad) + η(c | bd) + η(c | abd)]

+ [η(d | ab) + η(d | ac) + η(d | bc) + η(d | abc)] ≤ 2 .

2.2.2 Characteristic-Imset Polytope

The characteristic imset of G ∈ DAGs (N), introduced in
(Hemmecke et al., 2012) and denoted below by cG, is an
element of the vector space RΛ where

Λ := {S ⊆ N : |S| ≥ 2 } .

Recall from (Studený, Haws, 2013) that cG is a many-to-
one linear function of ηG, the transformation is η 7→ cη :

cη(S) =
∑

a∈S

∑

B :S\{a}⊆B⊆N\{a}
η(a |B) (6)

for S ∈ Λ. Thus, given G ∈ DAGs (N), (6) can serve as
the definition of cG in which one substitutes η = ηG. A
fundamental observation is that, for G,H ∈ DAGs (N),
G ∼ H if and only if cG = cH (Hemmecke et al., 2012).
In particular, the characteristic imset is a unique represen-
tative of the corresponding BN structure.

The characteristic-imset polytope is defined as follows:

C := conv ({ cG ∈ RΛ : G ∈ DAGs (N) }) .

One can show that dim(C) = |Λ| = 2n−n−1. Of course,
C is the image of F by the linear mapping (6).

A notable fact is that any valid inequality for C induces a
valid inequality for F: if 〈z, c〉Λ ≤ u, where z ∈ RΛ and
u ∈ R, is a valid inequality for c ∈ C, substitute (6) into
〈z, cη〉Λ ≤ u and re-arrange the terms after the compo-
nents of η. Indeed, since the image of ηG by (6) is just cG,
one gets an inequality valid for any ηG, G ∈ DAGs (N).
Moreover, the induced inequality for η ∈ F is given by an
SE objective: if G ∼ H , one has cG = cG and, therefore,
〈z, cG〉Λ = 〈z, cH〉Λ.

In fact, there is a one-to-one correspondence between the
valid inequalities for C and the valid inequalities for F
given by SE objectives (Cussens et al., 2015). Thus, these
special valid inequalities for F can also be viewed as the
valid inequalities for C, that is, interpreted in the context
of C. This concerns many facet-defining inequalities for F:
the k-cluster inequality (4) takes the following form in the
characteristic-imset context, see (Cussens et al., 2015, § 9):

∑

S⊆C, |S|≥k+1

z(S) · c(S) ≤ |C| − k ,

where z(S) = (−1)|S|−k−1 ·
(|S|−2
|S|−k−1

)
for any such S.

Example 2 Consider N = {a, b, c, d}. Then the 2-cluster
inequality for C = {a, b, c, d} takes the form

c(abc) + c(abd) + c(acd) + c(bcd)− 2 · c(abcd) ≤ 2 .

Indeed, the substitution of (6) in it gives just (5).

2.3 CONCEPTS FROM MATROID THEORY

Let us recall some definitions and basic facts from matroid
theory; see (Oxley, 1992, chapters 1,2,4) for more details.

A matroid is a pair (C, I) where C is a finite set, called its
ground set, and I a non-empty class of subsets ofC, called
the independent sets (of the matroid), which is closed under
subsets: I ∈ I, J ⊆ I implies J ∈ I and satisfies the
independence augmentation axiom :

if I, J ∈ I and |J | < |I|
then a ∈ I \ J exists with J ∪ {a} ∈ I.

We will also say that the matroid is on the set C.

A number of equivalent descriptions of the matroid (C, I)
exists. Any matroid can be described by the class B of its
bases, which are inclusion-maximal independent sets. The
above independence augmentation axiom implies that the
sets in B have the same cardinality. The shared cardinality
of bases of a matroid is called its rank. A well-known fact
is that B ⊆ P(C) is the class of bases of a matroid on C
iff it is a non-empty class of subsets of C satisfying the
following basis exchange axiom :

if I, J ∈ B and a ∈ I \ J
then b ∈ J \ I exists with (I \ {a}) ∪ {b} ∈ B.

The class D of dependent sets of (C, I) consists of those
subsets of C that are not independent sets. The circuits
of the matroid are the inclusion-minimal dependent sets. A
class C ⊆ P(C) is the class of circuits of a matroid on C iff
it is a class of non-empty inclusion-incomparable subsets of
C satisfying the following circuit elimination axiom :

if K,L ∈ C, K 6= L and a ∈ K ∩ L
then M ∈ C exists with M ⊆ (K ∪ L) \ {a}.

We will also use the description of the matroid (C, I) in
terms of its rank function, which is a function r on P(C)
defined as follows:

r(J) = max { |I| : I ⊆ J & I ∈ I } for any J ⊆ C.

The rank functions of matroids on C are characterized as
integer-valued set functions r : P(C) → Z satisfying the
following three conditions:

• if I ⊆ C then 0 ≤ r(I) ≤ |I|,

835

• if J ⊆ I ⊆ C then r(J) ≤ r(I),

• if I, J ⊆ C then r(I ∪ J) + r(I ∩ J) ≤ r(I) + r(J).

A set S ⊆ C is called a separator of a matroid (C, I) if

r(S) + r(C \ S) = r(C) .

The matroid is called connected if it has no other separators
except for the trivial ones S = ∅ and S = C. Observe that
if (C, I) is connected and |C| ≥ 2 then

⋃B =
⋃ I = C,

for otherwise
⋃ I is a non-trivial separator or r ≡ 0. An

equivalent definition of a connected matroid on C is that,
for every pair a, b ∈ C, a 6= b, a circuit D ∈ C exists with
a, b ∈ D, see (Oxley, 1992, Prop 4.1.4).

The dual matroid to a matroid over C having B ⊆ P(C) as
its class of bases is the matroid on C having

B∗ := {C \B : B ∈ B}

as its class of bases. The formula for the rank function r∗

of the dual matroid is as follows:

r∗(J) = |J | − r(C) + r(C \ J) for J ⊆ C, (7)

see (Oxley, 1992, Prop 2.1.9). Another well-known basic
fact is that the dual matroid to a connected matroid is con-
nected as well, see (Oxley, 1992, Corol 4.2.8).

Example 3 Consider C = {a, b, c, d} and put

B = { {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d} }.

Clearly, B is the class of bases of a matroid on C. The
independent sets in it are subsets ofC of cardinality at most
two. The circuits are subsets ofC of cardinality 3. The rank
function only depends on the cardinality:

r(J) = min { |J | , 2 } for J ⊆ C.

The form of r implies that the only separators are S = ∅
and S = C. In particular, the matroid is connected. The
dual matroid is itself.

The above example is a special matroid in a certain sense:
for any integer 0 ≤ k ≤ |C| the uniform matroid on C of
the rank k has the collection of subsets of C of the cardi-
nality at most k as its class of independent sets.

In this paper, the attention is limited to matroids which have
clusters of BN variables C ⊆ N , |C| ≥ 2 as their ground
sets. Any matroid (C, I) on such cluster C can be inter-
preted as a matroid onN because I ⊆ P(C) can be viewed
as a class of subsets of N . This kind of trivial extension on
N leads to the rank function r : P(N)→ Z given by

r(S) = r(C ∩ S) for any S ⊆ N .

3 SUPERMODULAR FUNCTIONS

In (Cussens et al., 2015, § 7) a one-to-one correspondence
has been established between extreme supermodular set
functions and certain important facets of F, respectively of
C. The relevant concepts are recalled in this section.

A real function m : P(N)→ R on subsets of the set N of
BN variables will be called standardized if m(S) = 0 for
S ⊆ N , |S| ≤ 1, and supermodular if

∀U, V ⊆ N m(U) +m(V) ≤ m(U ∪ V) +m(U ∩ V) .

Mirror images of supermodular functions are submodular
functions, defined by the converse inequalities; recall from
§ 2.3 that rank functions of matroids are submodular.

3.1 EXTREME SUPERMODULAR FUNCTIONS

The collection of standardized supermodular functions on
P(N), viewed as a set of vectors in RP(N), is a pointed
polyhedral cone. Therefore, it has finitely many extreme
rays, which makes the following definition meaningful.

A standardized supermodular function m : P(N) → R
will be called extreme if it generates an extreme ray of the
standardized supermodular cone. Recall that a non-zero
vector v in a cone generates its extreme ray if the only
summands in (positive) convex combinations of vectors
from the cone yielding v are non-negative multiples of v.

Theorems 1 and 2 from (Cussens et al., 2015) together give
the next observation.

THEOREM 1 An inequality 〈o, η〉Υ ≤ u for η ∈ RΥ,
where o ∈ RΥ, u ∈ R, is facet-defining for F and defined
by an SE objective o iff there exists an extreme standardized
supermodular function m on P(N) such that o is given by

o(a |B) = m({a} ∪B)−m(B) for (a |B) ∈ Υ, (8)

and u is the shared value of 〈o, ηH〉Υ for full graphs H
over N , that is, for such H ∈ DAGs (N) in which every
pair of distinct nodes is adjacent.

Example 4 Consider N = {a, b, c, d} and the set function

m(S) =

2 if S = N ,
1 if |S| = 3,
0 otherwise,

for S ⊆ N .

Clearly, m is a standardized supermodular function; finer
arguments why m is extreme are given later (Example 5).
The formula (8) leads to the inequality (5). By Theorem 1,
(5) is facet-defining for the family-variable polytope F.

Moreover, Corollary 6 in (Cussens et al., 2015) says what
is the role of the inequalities from Theorem 1 in the
characteristic-imset context; here we have in mind the
correspondence of the inequalities mentioned in § 2.2.2.

836

COROLLARY 1 Facet-defining inequalities 〈o, η〉Υ ≤ u
for η ∈ F with SE objectives correspond to facet-defining
inequalities 〈z, c〉Λ ≤ u for c ∈ C tight for the 1-imset,
which is the vector in RΛ whose all components are ones.

3.2 SUBMODULARITY AND RANK FUNCTIONS

Mirror images of supermodular functions are submodular
ones, which play an important role in matroid theory. It
follows from the facts mentioned in § 2.3 that every rank
function of a matroid belongs to the cone of non-decreasing
submodular functions r with r(∅) = 0. This is a pointed
polyhedral cone and has finitely many extreme rays.

Nguyen (1978) was interested in the question when the
rank function of a matroid generates an extreme ray of that
cone. The next fact follows from his Theorem 2.1.5.

THEOREM 2 Let C be a non-empty finite set and (C, I) a
matroid on it such that C =

⋃ I . Then its rank function
r generates an extreme ray of the cone of non-decreasing
submodular functions on P(C) satisfying r(∅) = 0 iff the
corresponding matroid (C, I) is connected.

4 MAIN RESULT

LEMMA 1 Given a connected matroid (C, I) on C ⊆ N ,
|C| ≥ 2 with the rank function r : P(C)→ Z, the function

m(S) := |C ∩ S| − r(C ∩ S) for S ⊆ N , (9)

is extreme standardized supermodular function on P(N).

Proof: Let us denote by R[C], for C ⊆ N , the cone of
submodular functions r∗ on P(C) such that r∗(∅) = 0 and
r∗(C) − r∗(C \ {a}) = 0 for any a ∈ C. Any function
r∗ in R[C] is necessarily non-decreasing. The dual matroid
to (C, I) is connected; by Theorem 2, its rank function r∗

given by (7) generates an extreme ray of the non-decreasing
submodular cone. Since (C, I) is connected,

⋃ I = C
says r({a}) = 1 for any a ∈ C. Moreover, the dual ma-
troid to the dual matroid is again (C, I), which gives

1 = r({a}) = r∗∗({a}) (7)
= 1− r∗(C) + r∗(C \ {a})

for any a ∈ C; hence, r∗ belongs to the smaller cone
R[C]. This easily implies that r∗ generates an extreme
ray of R[C], which fact allows one to observe by a minor
consideration that its trivial extension

r∗(S) := r∗(C ∩ S) for S ⊆ N ,

generates an extreme ray of R[N]. Finally, the formula

m(S) = r∗(N)− r∗(N \ S) for S ⊆ N ,

defines a one-to-one linear transformation of the cone R[N]
onto the cone of standardized supermodular functions m

on P(N) (in fact, the transformation is self-inverse). In
particular, r∗ 7→ m maps generators of extreme rays to
generators of extreme rays, implying that m is extreme in
the respective cone. Thus, one can write for any S ⊆ N :

m(S) = r∗(N)− r∗(N \ S) = r∗(C)− r∗(C \ S)

(7)
= { |C| − r(C) } − { |C \ S| − r(C) + r(C ∩ S) }
= |C ∩ S| − r(C ∩ S) ,

which gives (9).

Example 5 Consider N = {a, b, c, d} = C and take the
uniform matroid on C of rank 2 from Example 3. It is a
connected matroid and, by Lemma 1, it induces through
(9) an extreme supermodular function m from Example 4.

THEOREM 3 Given a connected matroid (C, I) on a
cluster C ⊆ N , |C| ≥ 2 of BN variables, the inequality
∑

a∈C

∑

B⊆N\{a}: ∃D∈C a∈D⊆B∪{a}
η(a |B) ≤ |C|−k, (10)

where k is the rank of (C, I) and C the collection of its
circuits, is a facet-defining inequality for F.

Proof: By Lemma 1, (9) gives an extreme standardized
supermodular function; one can apply Theorem 1 then. The
upper bound u in the respective facet-defining inequality
〈o, η〉Υ ≤ u for η ∈ F is the shared value 〈o, ηH〉Υ for full
graphs H ∈ DAGs (N). Using (8) one gets u = m(N),

that is, u = m(N)
(9)
= |C| − r(C) = |C| − k.

The formula for the objective coefficients o(a |B), where
a ∈ N and B ⊆ N \ {a} (possibly empty) is then

o(a |B)
(8)
= m({a} ∪B)−m(B)

(9)
= |C ∩ {a}| − r(C ∩ ({a} ∪B)) + r(C ∩B) ,

implying o(a |B) = 0 if a ∈ N \C. In case a ∈ C one has

o(a |B) = 1−r(C∩({a}∪B))+r(C∩B) = o(a |C∩B) .

Therefore, in the rest of the proof, we assume a ∈ C and
B ⊆ C \ {a}; our goal is to verify

o(a |B) =

{
1 ∃D ∈ C with a ∈ D & D ⊆ B ∪ {a},
0 otherwise,

which clearly gives (10). We come from the above formula

o(a |B) = 1− r({a} ∪B) + r(B) . (11)

Having fixed a ∈ C, the coefficient are monotone

E ⊆ B ⊆ C \ {a} ⇒ o(a |B) ≥ o(a |E) (12)

because of submodularity of r :

o(a |B)− o(a |E)
(11)
= r(B) + r({a} ∪ E)− r(E)− r({a} ∪B) ≥ 0 .

837

As (C, I) is connected one has r({a}) = 1 for any a ∈ C,
which gives

o(a | ∅) (11)
= 1− r({a}) + r(∅) = 1− 1 + 0 = 0.

Since the dual matroid is also connected, one has

o(a |C \ {a}) (11)
= 1− r(C) + r(C \ {a}) (7)

= r∗({a}) = 1.

In particular, the objective coefficients are either zeros or
ones. In case a circuitD ∈ C exists with a ∈ D ⊆ B∪{a},
it is enough to show o(a |D \ {a}) = 1 and apply (12).
Indeed, by the definition of a circuit, D \ {a} ∈ I and
r(D \ {a}) = |D| − 1. One cannot have r(D) = |D|, for
otherwise D ∈ I contradicts the assumption D ∈ C. Thus,
r(D) = |D| − 1 and one has

o(a |D \ {a}) (11)
= 1− r(D) + r(D \ {a}) = 1 .

It remains to show that o(a |B) = 0 in the complementary
case that no such D ∈ C exists for B. By the definition of
the rank function r, a set J ⊆ B exists with J ∈ I and
|J | = r(B). It is enough to show {a} ∪ J ∈ I because
then r({a} ∪B) = |J |+ 1 (use submodularity of r) and

o(a |B)
(11)
= 1−r({a}∪B)+r(B) = 1−(|J |+1)+|J | = 0 .

Thus, assume for a contradiction that {a} ∪ J ∈ D is a
dependent set and, by the definition of circuits, find D ∈ C
with D ⊆ {a} ∪ J . Necessarily a ∈ D, for otherwise a
contradictory conclusion J ∈ D is derived. This implies
a ∈ D ⊆ {a}∪J ⊆ {a}∪B contradicting the assumption
that no such circuit D ∈ C exists for B.

The observation that the k-cluster inequalities (4) are facet-
defining for the family-variable polytope easily follows
from Theorem 3. Indeed, any uniform matroid on C ⊆ N ,
|C| ≥ 2 of the rank k, 1 ≤ k ≤ |C| − 1 is connected. This
fact is illustrated by the following simple example.

Example 6 Consider N = {a, b, c, d}, C = {a, b, c} and
k = 1. The uniform matroid on C of rank 1 has the bases
{a}, {b} and {c}. Thus, the class of its circuits is

C = { {a, b}, {a, c}, {b, c} } .
Since every pair of BN variables in C is contained in a
circuit, it is a connected matroid. To get the specific form
of the inequality (10) in this case realize that a ∈ C is
contained in two circuits D ∈ C, namely in {a, b} and in
{a, c}. Thus, one has in (10) those terms η(a |B) where
B ⊆ N \ {a} and either b ∈ B (⇔ {a, b} ⊆ B ∪ {a}) or
c ∈ B. Thus, (10) takes the form

[η(a | b) + η(a | c) + η(a | bc)
+ η(b | bd) + η(b | cd) + η(b | bcd)]

+ [η(b | a) + η(b | c) + η(b | ac)
+ η(b | ad) + η(b | cd) + η(c | acd)]

+ [η(c | a) + η(c | b) + η(c | ab)
+ η(c | ad) + η(c | bd) + η(c | abd)] ≤ 2 ,

which is just the cluster inequality (4) for C with k = 1.
Theorem 3 claims it is a facet-defining inequality for F.

Another instance of a uniform matroid was mentioned in
Example 3; in this case, the inequality (10) turns into (5)
from Example 1. The next example goes beyond the scope
of k-cluster inequalities and uniform matroids.

Example 7 Consider C = {a, b, c, d} = N and put

B = { {a, b}, {a, c}, {a, d}, {b, c}, {b, d} }.

Clearly, B is the class of bases of a matroid on C of the
rank 2. The rank function has the form

r(J) =

0 if J = ∅,
1 if J = {c, d} or |J | = 1,
2 otherwise,

for J ⊆ C,

while the class C of its circuits is

C = { {a, b, c}, {a, b, d}, {c, d} }.

As every pair of elements in C is contained in a circuit, it
is a connected matroid. Theorem 3 says that the inequality

[η(a | bc) + η(a | bd) + η(a | bcd)]

+ [η(b | ac) + η(b | ad) + η(b | acd)]

+ [η(c | d) + η(c | ab) (13)
+ η(c | ad) + η(c | bd) + η(c | abd)]

+ [η(d | c) + η(d | ab)
+ η(d | ac) + η(d | bc) + η(d | abc)] ≤ 2 .

is facet-defining for F. An interesting observation is
that the inequality (13) defines the so-called 4B-type facet
found by Bartlett and Cussens (2013); see (13) in § 6 of
their paper where {v1, v4} = {a, b} and {v2, v3} = {c, d}.

COROLLARY 2 The inequality (10) from Theorem 3 has
the following form in the characteristic-imset mode:

∑

T∈Λ, T⊆C
z(T) · c(T) ≤ |C| − k for c ∈ RΛ, (14)

where z(T) = −
∑

L⊆T
(−1)|T\L| · r(L)

are determined by the rank function r of the matroid. The
inequality (14) defines a facet of C containing the 1-imset.

Proof: This follows from Lemma 10 and the formula (20)
in (Cussens et al., 2015) saying that 〈o, η〉Υ = 〈z, cη〉Λ
where the coefficients z(T) for T ∈ Λ are given by
the Möbius transform of the corresponding standardized
supermodular function m, that is, by

z(T) =
∑

L⊆T
(−1)|T\L| ·m(L) for T ∈ Λ.

838

r r
r r

a b
c

d

e
�
�
�
�

@
@

@
@

Figure 1: Edges of the graph define a matroid.

In our case, m is given by (9), which implies z(T) = 0
whenever T \ C 6= ∅. Moreover, the Möbius transform of
the first term in (9) vanishes for T ∈ Λ, T ⊆ C, which
gives (14). The second claim follows from Corollary 1.

Example 8 Consider again the matroid from Example 7.
The formula (14) applied to the rank function r gives

z(T) =

−1 if T = C,
1 if T ∈ C,
0 otherwise,

for T ∈ Λ, T ⊆ C.

In particular, the inequality (13) has the following form in
the characteristic-imset mode:

c(abc) + c(abd) + c(cd)− c(abcd) ≤ 2 .

5 FIVE VARIABLES EXAMPLE

Note that in case of four BN variables there is no other
matroid-based facet-defining inequality for F except the
k-cluster inequalities and (13). However, there are more
matroid-based inequalities in case of five BN variables.

An important class of matroids are the so-called graphic
matroids (Oxley, 1992, § 1.1). In fact, any undirected graph
G defines a matroid on the set of its edges. Specifically, a
set I of edges in G is considered to be independent (in the
graphic matroid) if the edge-subgraph of G consisting of
edges in I is a forest, that is, has no undirected cycle.

The circuits of this graphic matroid are then the sets D of
edges in G forming edge-minimal cycles in G, which means
the removal of any edge fromD results in a forest. The idea
is illustrated by an example.

Example 9 Consider C = {a, b, c, d, e} = N and define a
matroid on C by means of the graph in Figure 1, where the
edges are identified with the elements of C. It makes no
problem to observe that the matroid has three circuits:

C = { {a, b, c, d}, {a, c, e}, {b, d, e} } ,

while the number of bases is eight: these are all 3-element
subsets of C except for {a, c, e} and {b, d, e}. Of course,
these are just the sets of edges defining spanning trees for
the graph from Figure 1. It is easy to see that the matroid
is connected and has rank k = 3. Like in Example 6 one

can determine the terms η(∗ |B) which occur in (10). For
example, a ∈ C = N is contained in two circuits D ∈ C,
namely in {a, c, e} and {a, b, c, d}. In particular, one has
in (10) those terms η(a |B) where B ⊆ N \ {a} and either
{c, e} ⊆ B or {b, c, d} ⊆ B. The same principle applies
to b, c, d and e which results in the following abbreviated
form of (10):

∑

ce⊆B ∨ bcd⊆B
η(a |B) +

∑

de⊆B ∨ acd⊆B
η(b |B)

+
∑

ae⊆B ∨ abd⊆B
η(c |B) +

∑

be⊆B ∨ abc⊆B
η(d |B) (15)

+
∑

ac⊆B ∨ bd⊆B
η(e |B) ≤ 2 .

Thus, by Theorem 3, the inequality (15) if facet-defining
for F. We leave to the reader to derive the rank function r of
the matroid and observe that its Möbius transform only has
4 non-zero values: −1 for circuits in C and +1 for C = N .
In particular, by Corollary 2, (15) has the following simple
form in the characteristic-imset mode:

c(abcd) + c(ace) + c(bde)− c(abcde) ≤ 2 .

Example 9 indicated a way one can search for connected
matroids, and, thus, for facet-defining inequalities to be
used in the ILP approach to BN structure learning. Graphic
matroids are common examples of matroids; but there are
many matroids which are not graphic, like the uniform ma-
troid from Example 3.

To utilize fully the matroid-based approach some computer
scientists may take the following exhaustive “brute-force”
approach: given a (presumably) small cluster C, |C| ≥ 2
generate by means of a computer all (permutation) types of
classes C of inclusion-incomparable subsets of C such that
∀ a, b ∈ C, a 6= b, a set D ∈ C exists with a, b ∈ D. Then
one can check (again with the help of a computer) which of
them satisfy the circuit elimination axiom. In this way one
gets all types of connected matroids on C and can trans-
form them into facet-defining inequalities for the family-
variable polytope or for the characteristic imset polytope.

Other people may prefer to search in the literature on ma-
troid theory. Indeed, researcher in this area have generated
various catalogues of (types of) matroids on small ground
sets; see, for example (Mayhew, Royle, 2008).

6 CONCLUSIONS

Theorem 3 implies that every connected matroid on a
non-trivial cluster of BN variables induces a facet-defining
inequality for the family-variable polytope; Corollary 2
says what is the form of that inequality in the context of
the characteristic-imset polytope.

839

This is a quite general theoretical result because the well-
known k-cluster inequalities, which play the key role in
contemporary ILP approaches to BN structure learning, can
be derived in this way. Specifically, they correspond to the
prominent (connected) uniform matroids.

The significance of the paper is mainly theoretical: the
area of statistical learning is related to a seemingly remote
field in discrete mathematics, namely to matroid theory.
Although matroids were previously known to have many
applications in combinatorial optimization, this particular
intimate link to BN structure learning could be surprising.
The advantage of the matroid-based approach to learning is
that the inequalities are easy to find and the verification that
they are facet-defining is immediate since testing whether
a matroid is connected is easy. The result is applicable in
both ILP approaches to BN structure learning, that is, both
in the context of the family-variable polytope and in the
context of the characteristic-imset polytope.

However, the result also has some potential for practical
future use because it may lead to bettering certain currently
used algorithms. Let me recall in more detail the original
motivation, which was the ILP approach to BN structure
learning. I have in mind the cutting plane method where
one solves an ILP optimization problem by the method
of iterative reduction of the feasible set. The solution to
a linear relaxation problem, which is a (non-integer) lin-
ear program with a larger feasible set, specified be a small
number of inequalities, is typically a fractional vector. The
next step is to solve the separation problem, that is, to find
an inequality from a reservoir of available inequalities (for
example from the class of cluster inequalities) which cuts
the current fractional solution from the true feasible region,
which is the polytope defined as the convex hull of integer
vectors in the feasible set, see (Wolsey, 1998, § 8.5)

From the point of view of computational efficiency, it is
essential to find such inequality which approximates the
polytope as close as possible near the current solution.
This leads to the suggestion to look for the most violated
inequalities by the current fractional solution; see also the
heuristic justification in (Cussens, 2011, § 4.1).

The presented result broadens the reservoir of available
facet-defining inequalities in the ILP approach to BN struc-
ture learning. In fact, it is claimed by Bartlett and Cussens
in (2013, § 6) that the inequality (13) from Example 7
has appeared to be particularly useful in their experiments.
Moreover, the other facet-defining inequalities for F, that
is, those not based on matroids, have not appeared to be
very useful. Their empirical observations are the basis
for my hope that the matroid-based inequalities may bring
some further progress in this area, perhaps even resulting
in better future running times.

Nevertheless, let me emphasize that additional problems
have to be solved to reach the practical applicability of

general matroid-based inequalities. More specifically, it is
necessary to solve the corresponding separation problem,
that is, to design a speedy algorithm for finding the (most)
violated inequalities by a current (fractional) solution in the
class of all general matroid-based inequalities. Thus, the
next step towards the practical application of the matroid-
based inequalities should be a proposal for such algorithm.

Acknowledgements

The research on this topic has been supported by the grant
GAČR n. 13-20012S. I am indebted to my colleague Fero
Matúš for giving me some guidance in matroid theory.

References

M. Bartlett, J. Cussens (2013). Advances in Bayesian net-
work learning using integer programming. In Uncertainty
in Artificial Intelligence 29, AUAI Press, 182-191.

A. Barvinok (2002). A Course in Convexity. Graduate
Studies in Mathematics 54, Providence: American Math-
ematical Society.

R.R. Bouckaert (1995). Bayesian belief networks: from
construction to evidence. PhD thesis, University of
Utrecht.

D.M. Chickering (2002). Optimal structure identification
with greedy search. Journal of Machine Learning Research
3:507-554.

J. Cussens (2010). Maximum likelihood pedigree recon-
struction using integer programming. In Proceedings of the
Workshop on Constraint Based Methods for Bioinformat-
ics (WCBMB), 9-19.

J. Cussens (2011). Bayesian network learning with cutting
planes. In F. Cozman, A. Pfeffer (eds.) Uncertainty in Ar-
tificial Intelligence 27, AUAI Press, 153-160.

J. Cussens, M. Bartlett (2015). GOBNILP software. Avail-
able at www.cs.york.ac.uk/aig/sw/gobnilp .

J. Cussens, D. Haws, M. Studený (2015). Polyhedral as-
pects of score equivalence in Bayesian network structure
learning. Submitted to Mathematical Programming A, also
available at arxiv.org/abs/1503.00829.

C.P. de Campos, Q. Ji (2011). Efficient structure learning
Bayesian networks using constraints. Journal of Machine
Learning Research 12:663-689.

D. Heckerman, D. Geiger, D.M. Chickering (1995). Learn-
ing Bayesian networks: the combination of knowledge and
statistical data. Machine Learning 20:194-243.

R. Hemmecke, S. Lindner, M. Studený (2012). Character-
istic imsets for learning Bayesian network structure. Inter-
national Journal of Approximate Reasoning 53:1336-1349.

T. Jaakkola, D. Sontag, A. Globerson, M. Meila (2010).

840

Learning Bayesian network structure using LP relaxations.
In Y.W. Teh, M. Titterington (eds.) JMLR Workshop and
Conference Proceedings 9: AISTATS 2010, 358-365.

S.L. Lauritzen (1996). Graphical Models. Oxford: Claren-
don Press.

D. Mayhew, G.F. Royle (2008). Matroids with nine ele-
ments. Journal of Combinatorial Theory B 98:415-431.

R.E. Neapolitan (2004). Learning Bayesian Networks. Up-
per Saddle River: Pearson Prentice Hall.

H.Q. Nguyen (1978). Semimodular functions and combi-
natorial geometries. Transaction of the American Mathe-
matical Society 238:355-383.

J.G. Oxley (1992). Matroid Theory. Oxford: Oxford Uni-
versity Press.

G.E. Schwarz (1978). Estimation of the dimension of a
model. Annals of Statistics 6:461-464.

T. Silander, P. Myllymäki (2006). A simple approach for
finding the globally optimal Bayesian network structure. In
R. Dechter, T. Richardson (eds.) Uncertainty in Artificial
Intelligence 22, AUAI Press, 445-452.

M. Studený (2005). Probabilistic Conditional Indepen-
dence Structures. London: Springer.

M. Studený, D.C. Haws (2013). On polyhedral approxima-
tions of polytopes for learning Bayesian networks. Journal
of Algebraic Statistics 4:59-92.

M. Studený, D. Haws (2014). Learning Bayesian network
structure: towards the essential graph by integer linear
programming tools. International Journal of Approximate
Reasoning 55:1043-1071.

T. Verma, J. Pearl (1991). Equivalence and synthesis of
causal models. In Uncertainty in Artificial Intelligence 6,
Elsevier, 220-227.

L.A. Wolsey (1998). Integer Programming. New York:
John Wiley.

G.M. Ziegler (1995). Lectures on Polytopes. New York:
Springer.

841

The Long-Run Behavior of Continuous Time Bayesian Networks

Liessman Sturlaugson and John W. Sheppard
Department of Computer Science

Montana State University
Bozeman, MT 59717

listurlaugson@gmail.com, john.sheppard@cs.montana.edu

Abstract

The continuous time Bayesian network (CTBN)
is a temporal model consisting of interdepen-
dent continuous time Markov chains (Markov
processes). One common analysis performed
on Markov processes is determining their long-
run behavior, such as their stationary distribu-
tions. While the CTBN can be transformed into
a single Markov process of all nodes’ state com-
binations, the size is exponential in the num-
ber of nodes, making traditional long-run anal-
ysis intractable. To address this, we show how
to perform “long-run” node marginalization that
removes a node’s conditional dependence while
preserving its long-run behavior. This allows
long-run analysis of CTBNs to be performed in a
top-down process without dealing with the entire
network all at once.

1 INTRODUCTION

Many problems in artificial intelligence require reasoning
about complex systems. One important and challenging
type of system is one that changes in time. Temporal mod-
eling and reasoning present additional challenges in repre-
senting the system’s dynamics while efficiently and accu-
rately inferring the system’s behavior through time. Con-
tinuous time Bayesian networks (CTBNs) were introduced
by Nodelman et al. (2002) as a temporal model capable of
representing and reasoning about finite- and discrete-state
systems without uniformly discretizing time, as found with
dynamic Bayesian networks (Murphy, 2002). CTBNs have
since been applied in a wide variety of temporal domains,
from medical prognosis (Gatti et al., 2011; Gatti, 2011) to
network security (Xu & Shelton, 2008, 2010) and reliabil-
ity modeling (Herbrich et al., 2007; Cao, 2011; Sturlaugson
& Sheppard, 2015).

While a variety of algorithms exist for querying probabili-
ties of nodes in a CTBN at a specific time given temporal

evidence, another useful type of query is to analyze a net-
work’s long-run behavior, i.e., the stationary distributions
of a CTBN’s nodes. None of the previous CTBN inference
algorithms were specifically designed to solve this prob-
lem. This paper presents the first inference algorithms for
efficiently computing the stationary distribution of nodes in
a CTBN.

The paper is organized as follows. Section 2 provides the
background for the rest of the paper. Section 3 gives the
theory and algorithms for computing stationary distribu-
tions in CTBNs. In Section 4, we demonstrate the algo-
rithms on three CTBNs. Section 5 contains the conclusion
and future work.

2 BACKGROUND

In this section, we begin by describing Markov processes
and their long-run behavior. We then introduce the CTBN
and discuss how combinations of nodes can be viewed as
Markov processes.

2.1 MARKOV PROCESSES

Although its name draws on the parallels between the con-
ditional independence encoded by Bayesian networks, the
CTBN is functionally a factored Markov process. There-
fore, we start with background on Markov processes.

2.1.1 Definition

There are variations and extensions of the Markov process
model, but the CTBN model uses the model described in
this section. We refer to a finite-state, continuous-time
Markov chain as a Markov process. In a Markov process,
a system comprises a discrete set of states, and the sys-
tem transitions probabilistically between these states. The
difference between a Markov process and a Markov chain
is that each transition occurs after a real-valued, exponen-
tially distributed sojourn time, which is the time it remains
in a state before transitioning. The parameters determining
the sojourn times and the transition probabilities are en-

842

coded in what is called an “intensity matrix.” If the inten-
sity matrix is constant throughout the lifetime of the sys-
tem, we refer to the Markov process as “homogeneous.”
Formally, we define a Markov process as follows.

Definition 2.1 (Markov Process). A finite-state,
continuous-time, homogeneous Markov process X
with a state space of size n is defined by an initial prob-
ability distribution P 0

X over the n states and an n × n
transition intensity matrix

QX =

−qX1,1 qX1,2 · · · qX1,n
qX2,1 −qX2,2 · · · qX2,n

...
...

. . .
...

qXn,1 qXn,2 · · · −qXn,n

in which each entry qXi,j ≥ 0 for i 6= j gives the transition
rate of the process moving from state i to state j, and each
entry qXi,i =

∑
j q

X
i,j is the parameter for an exponential

distribution, determining the sojourn times for the process
to remain in state i. For notational shorthand, the size of
the state-space of X will be denoted as |X|.

The value qXi,i gives the rate at which the system leaves state
xi, while the value qXi,j gives the rate at which the system
transitions from state xi to state xj . Let X(t) denote the
state of X at time t. For i 6= j, we have that

lim
h→0+

P (X(t+ h) = xj |X(t) = xi)

h
= qXi,j ,

while qXi,i =
∑
j 6=i q

X
i,j . With the diagonal entries con-

strained to be non-positive, the probability density func-
tion for the process remaining in state i is given by
qXi,i exp(−qXi,it), with t being the amount of time spent in
state i, making the probability of remaining in a state de-
crease exponentially with respect to time. The expected so-
journ time for state i is 1/

∣∣qXi,i
∣∣. The transition probabilities

from state i to state j can be calculated as θXi,j = qXi,j/q
X
i,i.

Because the sojourn time uses the exponential distribution,
which is “memory-less,” the Markov process model ex-
hibits the Markov property, namely, that all future states of
the process are independent of all past states of the process
given its present state. In other words, for 0 < s < t <∞,

P (X(t+ h)|X(t), X(s)) = P (X(t+ h)|X(t)).

Rather than looking at the Markov process as a whole, we
can also consider subsets of states, which we refer to as a
subsystem. Formally, a subsystem S defines the behavior
of a subset of states of a full Markov process X . The in-
tensity matrix QS of the subsystem S is formed from the
entries of QX that correspond to the states in S.

2.1.2 Stationary Distributions of Markov Processes

A common analysis of Markov processes is to consider
their long-run behavior. In particular, we can consider the

stationary distribution πX = {πX1 , . . . , πXn } of the pro-
cess, where

πXi = lim
t→∞

P (X(t) = i).

AssumingQX is non-singular, we can compute the station-
ary distribution by setting up the system of equations

πX = QXπX (1)

with the added constraint
∑n
i=1 π

X
i = 1 (Taylor & Karlin,

1998). The complexity of solving for πX is determined by
n, the number of states in X .

The state convergence properties of a Markov process can
be analyzed from the stationary distribution. As an applica-
tion used in the paper, this could be the expected long-term
availability of a system. Changes to the model could be
tested to optimize the reliability of the system (e.g, what
is the minimum reliability of each component to guaran-
tee the target reliability of the entire system). Stationary
distributions of Markov processes have been used to ana-
lyze long-term trends in meteorology, economics, sociol-
ogy, biology, immunology–just to name a few. As a fac-
tored Markov process, the CTBN can be used wherever
a Markov process is applicable, while allowing the model
to become more powerful and flexible through its factored
representation.

2.2 CONTINUOUS TIME BAYESIAN NETWORKS

The CTBN was first introduced in Nodelman et al. (2002)
and then further developed in Nodelman (2007) as a
continuous-time probabilistic graphical model.

2.2.1 Definition

The motivation behind CTBNs is to factor a Markov pro-
cess in much the same way that a Bayesian network factors
a joint probability distribution. Instead of conditional prob-
abilities, the CTBN uses conditional Markov processes.
The CTBN is defined formally as follows.

Definition 2.2 (Continuous Time Bayesian Network). Let
X be a set of Markov processes {X1, X2, . . . , Xn}, where
each process Xi has a finite number of discrete states. For-
mally, a continuous time Bayesian network N = 〈B,G〉
over X consists of two components. The first is an
initial distribution denoted P 0

X over X specified as a
Bayesian network B. This distribution P 0

X is only used
for determining the initial state of the process. The sec-
ond is a continuous-time transition model G, which de-
scribes the evolution of the process from its initial distri-
bution. G is represented as a directed graph with nodes
X1, X2, . . . , Xn. Let Pa(X) denote the set of parents of
X in G, and let Ch(X) denote the set of children of X
in G. Let paX denote the set of all combinations of state
instantiations to Pa(X), and let 〈paX〉 ∈ paX . A set of

843

conditional intensity matrices (CIMs), denoted QX|Pa(X),
is associated with each X ∈ X and comprises matrices
QX|〈paX〉 ∀〈paX〉 ∈ paX

For example, suppose we have a two-node CTBN with de-
pendencies as A � B. Nodes A and B each have two
states, with conditional intensity matrices as follows.

QA|b0 =

a0 a1()
a0 −1 1
a1 2 −2 , QA|b1 =

a0 a1()
a0 −3 3
a1 4 −4

QB|a0 =

b0 b1()
b0 −5 5
b1 6 −6 , QB|a1 =

b0 b1()
b0 −7 7
b1 8 −8

Nodes A and B are two distinct but interdependent subsys-
tems of a larger Markov process.

2.2.2 Amalgamation

While we have shown that the CTBN is able to represent
a Markov process as a set of interdependent subsystems,
it is also useful to show how the subsystems of a CTBN
can be merged together into “supernodes” containing the
dynamics of multiple subsystems (Nodelman et al., 2002).

First we introduce additional notation for specific state in-
stantiations and sets of state instantiations. Let 〈paX\Y 〉
denote the state instantiation 〈paX〉 excluding any state of
Y (this changes 〈paX〉 only if Y is a parent of X). Then
QX|〈paX\Y 〉,Y is the set of conditional intensity matrices
that are dependent on the state instantiation 〈paX\Y 〉 and
each state of Y ,

QX|〈paX\Y 〉,Y = {QX|〈paX\Y 〉,y|y ∈ Y }.

Let paX\Y denote the set of all combinations of state in-
stantiations to Pa(X) excluding any state of Y (again, this
changes paX only if Y is a parent of X).

The process involves combining sets of conditional in-
tensity matrices from two different nodes, QX|〈paX\Y 〉,Y
and QY |〈paY \X〉,X , and forming a new conditional inten-
sity matrix QXY |〈paXY 〉, where 〈paXY 〉 = 〈paX\Y 〉 ∪
〈paY \X〉. That is, the state instantiations for the parents of
X and Y are combined, excluding the state instantiations
for X and Y . The state instantiations for X and Y are ex-
cluded from 〈paXY 〉 because QXY |〈paXY 〉 will be defined
over all state combinations of X and Y .

Let qXi,j be entry i, j of QX|〈paX〉,yk , and let qYk,l be entry
k, l of QY |〈paY 〉,xi . The combined CIM QXY |〈paXY 〉 is
the matrix defined over the states (xi, yk), with the entries
populated as follows.

Algorithm 1 Amalgamate two nodes of a CTBN.
Amalgamate(X,Y)

1: QXY |Pa(XY) ← ∅
2: for 〈paX\Y 〉 ∈ paX\Y ; 〈paY \X〉 ∈ paY \X
3: QXY ← 0
4: for i, j = 1, . . . , |X|; l, k = 1, . . . , |Y |
5: QX ← QX|〈paX\Y 〉,xi
6: QY ← QY |〈paY \X〉,yk
7: if i = j ∧ k = l
8: qXY(i,j),(k,l) ← qXi,j + qYk,l
9: else if i = j ∧ k 6= l

10: qXY(i,j),(k,l) ← qYk,l
11: else if i 6= j ∧ k = l
12: qXY(i,j),(k,l) ← qXi,j
13: end if
14: end for
15: QXY |〈paXY 〉 ← QXY

16: QXY |Pa(XY) ← QXY |Pa(XY) ∪ {QXY |〈paXY 〉}
17: end for
18: return QXY |Pa(XY)

qXY(i,j),(k,l) =

qXi,j if i 6= j and k = l

qYk,l if i = j and k 6= l

qXi,j + qYk,l if i = j and k = l

0 otherwise

(2)

The CIM QXY |〈paXY 〉 defines the simultaneous dynamics
of X and Y , given that their parents are in states 〈paXY 〉.
Thus, the state-space of XY is the Cartesian product of
the states of X and Y , making QXY |〈paXY 〉 an |X||Y | ×
|X||Y | matrix.

Definition 2.3 (Amalgamation). Amalgamation takes two
nodes X and Y and replaces them with node XY , hav-
ing the set of conditional intensity matrices QXY |Pa(XY)

as formed by combining QX|〈paX\Y 〉,Y and QY |〈paY \X〉,X
∀〈paX\Y 〉 ∈ paX\Y and ∀〈paY \X〉 ∈ paY \X according
to Equation 2. Amalgamation can be viewed as a multipli-
cation operation over sets of conditional intensity matrices
and is denoted QXY |Pa(XY) = QX|Pa(X) ×QY |Pa(Y).

Amalgamation takes two nodes and combines all of their
CIMs, producing a set of CIMs that are conditioned on
the combined parent states of X and Y . Thus, the set
QXY |Pa(XY) contains

∏
Z∈Pa(XY) |Z| conditional inten-

sity matrices.

Algorithm 1 shows the pseudocode for amalgamating two
nodes of a CTBN. Line 1 initializes the empty set of
conditional intensity matrices for the amalgamated node.
Lines 2-18 iterate over all combinations of parent state in-
stantiations of X and Y , excluding the state of X and Y .
Line 3 initializes the conditional intensity matrix to be pop-
ulated. Lines 4-14 iterate over the state combinations of X

844

and Y . Lines 5-6 assign the conditional intensity matri-
ces to temporary variables for simpler notation. Lines 7-13
populate the parameters of the conditional intensity matrix
initialized in line 3 per Equation 2. Lines 15-17 add the
conditional intensity matrix to the set of conditional inten-
sity matrices of the amalgamated node, which is returned
in Line 19.

Definition 2.4 (Full Joint Intensity Matrix). The full joint
intensity matrix of a CTBN is the matrix resulting from
amalgamating all nodes of the CTBN,

Q =
∏

X∈N
QX|Pa(X).

The size of Q is n× n, where n =
∏
X∈N |X|.

For example, the full joint intensity matrix from the CTBN
in Section 2.2.1 is as follows.

QAB =

(a0, b0) (a0, b1) (a1, b0) (a1, b1)

(a0, b0) −6 5 1 0
(a0, b1) 6 −9 0 3
(a1, b0) 2 0 −9 7
(a1, b1) 0 4 8 −12

3 NODE MARGINALIZATION IN THE
LIMIT

Now we want to address the problem of computing station-
ary distributions for nodes in a CTBN N . Formally, we
want to compute πX for X ∈ X. We can calculate the sta-
tionary distribution for a node X having no parents in N
by simply using the approach of Equation 1 on the single
intensity matrix of X (provided that X is irreducible). For
nodes with dependencies (which is the point of the CTBN
model), each node’s stationary distribution depends on all
ancestors in the network. In the worst case, a node could
have all other nodes as ancestors (one of our experiments
is a case of this). But as we have shown, the number of
equations is exponential in the size of the network when
working with the full joint intensity matrix directly.

We need to perform node marginalization so as to remove
a node’s dependence on its parents. This will allow us to
contain the problem to individual subnetworks and not the
entire network. Marginalization methods for CTBNs have
been developed in the past, most notably expectation prop-
agation (Nodelman et al., 2005) and belief propagation (El-
Hay et al., 2010). Both of these methods approximate a
node’s unconditional intensity matrix; however, each of the
unconditional intensity matrices by these methods are com-
puted for a specific interval of constant evidence. They are
not intended to describe the dynamics of a node as t→∞,

which is what we need if we are to compute stationary dis-
tributions. The remainder of this section develops a novel
CTBN node marginalization method that computes a long-
run unconditional intensity matrix.

3.1 THEORY

The key to computing the stationary distributions of nodes
in the CTBN is to compute stationary distributions of sub-
systems of a Markov process. This allows us to work with
subsets of nodes, instead of dealing with Q all at once. Let
S be the starting subsystem and D be the destination sub-
system. We now want to compute the rate at which S tran-
sitions to D in the limit. Formally, we want a tractable way
to evaluate

qXS,D = lim
t→∞

lim
h→0+

P (X(t+ h) ∈ D|X(t) ∈ S)
h

. (3)

Theorem 3.1. For a Markov process with disjoint subsys-
tems S and D and qXS,D as defined above, then

qXS,D =
1

Z

∑

i∈S
πXi

∑

j∈D
qXi,j

where Z =
∑
i∈S π

X
i .

Proof. Because S is a set of multiple states when condi-
tioning on X(t) ∈ S, we must weight each state i in S by
the probability of being in state i at time t and renormalize.

lim
t→∞

lim
h→0+

P (X(t+ h) ∈ D|X(t) ∈ S)
h

=

lim
t→∞

lim
h→0+

1∑
i∈S P (X(t) = i)

∑

i∈S
P (X(t) = i) ×

∑

j∈D

P (X(t+ h) = j|X(t) = i)

h
=

lim
t→∞

1∑
i∈S P (X(t) = i)

∑

i∈S
P (X(t) = i) ×

∑

j∈D
lim
h→0+

P (X(t+ h) = j|X(t) = i)

h
=

lim
t→∞

1∑
i∈S P (X(t) = i)

∑

i∈S
P (X(t) = i)

∑

j∈D
qXij =

1∑
i∈S π

X
i

∑

i∈S
πXi

∑

j∈D
qXij =

1

Z

∑

i∈S
πXi

∑

j∈D
qXij

Corollary 3.2. Suppose that a Markov process X com-
prises n disjoint subsystems {S1, . . . , Sn}. Then qXSi,Si =∑n
j=1,j 6=i q

X
Si,Sj

.

845

Algorithm 2 Compute long-run unconditional intensity
matrix of a node.
MarginalizeNode(FamX)

1: for i = 1, . . . , |X|
2: for j = 1, . . . , |X| s.t. j 6= i
3: Z ←∑

k∈Si π
X
k

4: qXi,j ← 1
Z

∑
k∈Si π

X
k

∑
l∈Dj q

FamX
k,l

5: end for
6: qXi,i =

∑|X|
j=1,j 6=i q

X
i,j

7: end for
8: return QX

Proof. This follows from the definition of a Markov pro-
cess, which constrains qXi,i =

∑
j 6=i q

X
i,j . In other words,

if we know the rate at which the process leaves one sub-
system and enters every other subsystem, we also know the
rate with which the process leaves the subsystem.

3.2 ALGORITHMS

Now we apply this idea of computing long-run transi-
tion rates for Markov process subsystems to amalgamated
nodes in a CTBN. In this case, we take the subsystems to be
the states of a child node in an amalgamation of the child
and its parents. After computing the long-run transition
rates for the subsystems, we can construct an unconditional
intensity matrix for the child node.

Algorithm 2 computes a long-run unconditional intensity
matrix for nodeX from a set of amalgamated nodesFamX

that includes X and all parents of X . The variables i and
j iterate over the rows and columns, respectively, for the
unconditional intensity matrix of X . Line 3 computes the
normalization constant. The sets Si and Dj are the states
in FamX that include state i and state j ofX , respectively.
Line 4 computes the long-run transition rate of node X
from state i to state j, according to Theorem 3.1. Line 6
computes the long-run sojourn rate of state i of node X ,
according to Corollary 3.2. Line 8 returns the long-run un-
conditional intensity matrix of X that are populated by en-
tries qXi,j . The complexity of Algorithm 2 is dominated by
the computation of the stationary distribution. Assuming
QX is non-singular, its stationary distribution can be com-
puted in O(n3).

Now that we can compute a long-run unconditional inten-
sity matrix for a node, we can break the dependence of
the child on its parents. The unconditional intensity matrix
computed for the child will already incorporate the station-
ary distribution of the parents. We can repeat the process
in a top-down fashion through the network, computing the
stationary distributions of every node in the network with-
out having to deal with the entire network all at once. Al-
gorithm 3 calculates the long-run unconditional intensity
matrices for all of the nodes in a CTBN.

Algorithm 3 Compute long-run unconditional intensity
matrices of a CTBN.
MarginalizeCTBN(G)

1: G′ ← CollapseCycles(G)
2: repeat until termination
3: L1 ←

⋃

X∈G′
X s.t. Pa(X) = null

4: L2 ←
⋃

X∈L1

Ch(X) s.t. Pa(Ch(X)) ⊆ L1

5: if L2 = null then terminate
6: for X ∈ L2

7: FamX ← X
8: for Y ∈ Pa(X)
9: FamX ← Amalgamate(FamX , Y)

10: end for
11: QX′ ← MarginalizeNode(FamX)
12: for Y ∈ Pa(X)
13: remove edge (Y,X) from G′
14: end for
15: QX ← QX′

16: end for
17: end repeat

We need to turn G into a directed acyclic graph (DAG)
from which we can divide the graph into top-to-bottom lev-
els. The behavior of a node depends on all of its ances-
tors, thus to create a DAG we need to amalgamate all the
nodes of each cycle. In the next section we will show an
approximation step that avoids collapsing cycles when the
cycles themselves are too large for their amalgamation to
be tractable.

In Algorithm 3, line 1 collapses the cycles in the G by amal-
gamating all of the nodes in each cycle. Lines 2-17 iterate
over the levels of the DAG. Lines 3-4 find all of the 2nd-
level nodes, i.e., nodes with no other ancestors than their
immediate parents. If there are no more 2nd-level nodes,
then all of the nodes have been marginalized (no nodes have
parents), and line 5 terminates the loop. Lines 6-16 iterate
over all of the 2nd-level nodes. Lines 7-10 amalgamate
each 2nd-level node with all of its parents. Line 11 com-
putes the long-run unconditional intensity matrix for each
2nd-level node. Lines 12-14 remove the dependency of the
node on its parents, and line 15 updates the node’s set of
intensity matrices with the single intensity matrix from line
11. At the conclusion of the algorithm, the nodes of N are
individual unconditional Markov processes. Note that the
stationary distributions are computed along the way by Al-
gorithm 2. The complexity of the algorithm is dominated
by the maximum number of parents of any node (analogous
to tree-width in Bayesian network inference).

846

3.3 APPROXIMATION FOR CYCLES

One difficulty of node marginalization is that the dynamics
of a node depend on all of its ancestors. If the network is
a directed acyclic graph (DAG), then we can marginalize
each level in succession, and the complexity of isolation
depends on the number of immediate parents to each node.
However, cycles are allowed in CTBNs. When a cycle is
introduced, every node in the cycle must be included to
marginalize any node in the cycle, because every node in
the cycle is an ancestor of every other node in the cycle.

We can address this complication by adding an iterative
step to our long-run node marginalization algorithm that
avoids dealing with the entire cycle all at once. First, we
identify the cycles and all of the nodes they comprise. Let
XC denote the set of arbitrarily chosen nodes that cover all
of the cycles (it is possible that a single node could cover
multiple cycles). The set XC covers a cycle when at least
one node in XC is part of the cycle.

For each X ∈ XC , we temporarily remove all incoming
arcs. Previously, the node had a set of conditional intensity
matrices, whereas now we need to replace it with one un-
conditional intensity matrix. While this unconditional in-
tensity matrix depends on the dynamics of the parents that
were just removed, we simply use an unconditional inten-
sity matrix that is the average of the node’s conditional in-
tensity matrices. Formally, for each X ∈ XC , we remove
the incoming arcs to X and estimate an initial uncondi-
tional intensity matrix for X as

Q̂X ←
1

|QX|Pa(X)|
∑

QX|〈paX〉∈QX|Pa(X)

QX|〈paX〉.

Once we have done this for every cycle, the graph becomes
a DAG, and we run the MarginalizeCTBN algorithm as be-
fore.

Depending on the actual parameters, the resulting uncon-
ditional intensity matrices could be a poor approximation,
because of how we estimated the unconditional intensity
matrix of the nodes in XC . Now we can improve on our
estimates for Q̂X because, after the first iteration, we have
an unconditional intensity matrix for every immediate par-
ent ofX . So we add back all of the incoming nodes of each
X ∈ XC and call MarginalizeNode on each of these nodes.
This results in updated estimates for each Q̂X which now
take into account an estimate of the dynamics of the parents
of each X . Now we have the original DAG with updated
unconditional intensity matrices for eachX ∈ XC . We can
call MarginalizeCTBN again.

This process continues to loop around the cycles until con-
vergence. This process is analogous to loopy belief prop-
agation in cyclic graphs, such as in Markov random fields

Figure 1: Drug effect network.

and in Bayesian networks in which the acyclic constraint
has been relaxed (Koller & Friedman, 2009). The long-run
unconditional intensity matrices are approximations in this
case, because we have never viewed the cycle as a whole.
On the other hand, if the cycles have too many nodes, we
have kept the problem tractable.

4 EXPERIMENTS

We demonstrate the long-run marginalization methods on
three networks—two synthetic networks and one real-
world network. The two synthetic networks are small
enough that we can compute the stationary distributions
from the full joint intensity matrix. For the real-world net-
work, we can approximate the stationary distributions by
forward sampling the CTBN long enough into the future
such that the samples will have converged to the stationary
distribution.

4.1 DRUG EFFECT NETWORK

First, we used the drug effect network from Nodelman et al.
(2002) as shown in Figure 1. The network is a toy model
that shows the interaction of several variables on a patient’s
pain and drowsiness.

We collapse the Hungry → Eating → Full Stomach cycle
and marginalize Concentration. The unconditional inten-
sity matrix of Concentration is

QConcentration ≈

−0.02 0.01 0.01
0.25 −0.26 0.01
0.01 0.50 −0.51

 .

We then marginalize Pain and Drowsy, which yields,

QPain ≈
(
−0.56 0.56
0.28 −0.28

)

and

QDrowsy ≈
(
−0.18 0.18
0.46 −0.46

)
.

847

The calculated stationary distributions from both the
marginalized nodes and the full joint intensity matrix are

πpain ≈ 0.336

πpain-free ≈ 0.664

πdrowsy ≈ 0.713

πnon-drowsy ≈ 0.287.

However, using the full joint intensity matrix (brute-
force method) required solving a system of 864 equations.
Through our long-run node marginalization method, we
needed to solve systems of 72, 12, and 4 equations. In other
words, the complexity has been reduced by approximately
a factor of 10.

4.2 RING NETWORK

This second experiment tests our long-run marginalization
method on cyclic networks of varying length. For a ring
network of size n, we construct the network by adding n
three-state (s0, s1, s2) nodes and connecting them as fol-
lows:

X1 → X2 → · · · → Xn → X1.

Let each qki,j be an independent sample from a uniform dis-
tribution over the interval (0, 1). The conditional intensity
matrices for the nodes are defined as follows (for ease of
definition, X0 and Xn denote the same node):

QXk|Xk−1=s0 =

−qk1,1 qk1,1 0
0 −qk1,2 qk1,2
qk1,3 0 −qk1,3

 ,

QXk|Xk−1=s1 =

−qk2,1

qk2,1
2

qk2,1
2

qk2,2
2 −qk2,2

qk2,2
2

qk2,3
2

qk2,3
2 −qk2,3

 ,

QXk|Xk−1=s2 =

−qk3,1 0 qk3,1
qk3,2 −qk3,2 0
0 qk3,3 −qk3,3

 .

We vary the length of the cycle from 3 nodes to 8
nodes and, for each cycle length, apply the approximate
node marginalization method described in Section 3.3 and
compare the accuracy to the results from the brute-force
method. (Note that in this case the brute-force and ex-
act node marginalization methods are identical, because the
whole network is a cycle.) Because each network is gen-
erated with random parameters, we run a total of 100 tri-
als for each cycle length and average the results. We keep
track of the average number of iterations for the stationary
distribution estimates to converge, and we compute the av-
erage KL-divergence of the stationary distributions results
using the full joint intensity matrix from the results using
the iterative node marginalization method. These results
are shown in Table 1.

Table 1: Results for the ring networks.

Cycle Avg. Iterations Average
Length to Converge KL-Divergence

3 12.1 3.1E-4
4 10.1 5.5E-5
5 8.2 2.1E-5
6 7.6 1.7E-5
7 6.8 1.9E-5
8 6.0 1.4E-5

At least for these randomly generated networks, the itera-
tive node marginalization method maintained accurate es-
timates of the stationary distributions, and the number of
iterations to converge tended to decrease as the cycle grew.
Notice that the error decreases as the cycle length increases.
For these networks, at least, the dynamics of a node are
most influenced by the immediate parent. The second-most
influential node is the parent’s parent, and so on. As the
length of the cycle increases, the influence of the “arc that
completes the cycle” (whichever arc one chooses this to
be) exerts less influence on the dynamics of the cycle as a
whole. Therefore, temporarily removing an arc has a de-
creasing impact as the cycle becomes larger.

For a 3-node cycle, amalgamating the whole cycle will
most likely still be a tractable approach. For longer cycle
lengths, on the other hand, the applicability of the iterative
node marginalization method becomes more critical. In our
setup, every node added to the cycle triples the size of the
full joint intensity matrices and hence the system of equa-
tions to solve.

4.3 CARDIAC ASSIST SYSTEM

Third, we compared the inference methods on a larger, real-
world network. We used the model for a cardiac assist sys-
tem (CAS), presented by Cao (2011), which is broadly used
in the literature and based on a real-world system (Boudali
et al., 2007; Portinale et al., 2010). Cao (2011) shows how
the CTBN is able to encode Dynamic Fault Trees (DFTs),
which are reliability models that use Boolean logic to com-
bine series of lower-level failure events while preserving
failure sequence information (Dugan et al., 1992). The
intensity matrices of the CTBN are used to represent the
gates available in the DFT, including AND, OR, warm
spare (WSP), sequence enforcing (SEQ), probabilistic de-
pendency (PDEP), and priority AND (PAND). Our model
for this experiment is the DFT for the CAS system repre-
sented as a CTBN. Of the various repair policies evaluated
by Cao (2011), we use the repair rate of µ = 0.1 (10 hours)
for all components.

Figure 2 shows the network, while Table 2 gives the node
names. In this model, we are interested in the stationary

848

Figure 2: Cardiac assist system model.

distribution of the System node, i.e., in the long run, what
proportion of the time will the System be operational? This
corresponds to the operational availability of the subsys-
tem.

Notice that the node in which we are most interested is a
descendant of every other node in the network. Using our
node marginalization method, we can compute the station-
ary distribution of the System node as

πsystem-up ≈ 0.942

πsystem-down ≈ 0.058.

If we had attempted to work with the full joint intensity
matrix directly, we would be faced with solving a system of
over 6.6 million equations. In other words, the brute-force
method is intractable for this real-world network. Instead,
our node marginalization method divided the network into
a total of 14 subnetworks, with the two largest representing
systems of only 20 equations.

Instead of trying to solve the system of equations for this
large network, we can approximate the stationary distri-
bution by forward sampling the CTBN and observing the
convergence of the state probabilities. Because this is an
approximation method, we ran multiple trials to quantify
the average behavior of the approximation. We ran 100 tri-
als and averaged the results. For each trial, we sampled
the network so that we had 10K transitions for the Sys-
tem node. Because the dynamics of System depend on ev-
ery other node, we had to sample transitions from all other
nodes as well. By the time we had generated 10K transi-
tions for System, we had generated more than 100K transi-
tions on average for the other nodes. Our approximation of
the stationary distribution of System from 10K transitions
still resulted in a KL-divergence of 7.2E-3 on average. On
the other hand, our node marginalization method computed
the exact answer over 3 times faster on average.

Note that our node marginalization method produces an-

Table 2: CAS component names.

Abbreviation Name Subsystem
P primary CPU CPU
B warm spare CPU CPU

CS cross switch CPU
SS system supervision CPU
MA primary motor Motor
MB cold spare motor Motor
MS switching component Motor
PA pump A Pump
PB pump B Pump
PS cold shared pump Pump

Table 3: Expected sojourn times for CAS subsystems.

Subsystem MTBF (hrs) MTTR (hrs)
CPU 154 9.38

Pump 60K 5.00
Motor 410M 6.50

other useful output. Because the method computes uncon-
ditional intensity matrices along the way, we can observe
not only the stationary distributions of different nodes but
their long-run expected sojourn times as well. For exam-
ple, looking at the diagonal entries of the unconditional in-
tensity matrices of System, we see that, in the long-run, the
mean time between failures (MTBF) for the system is about
153 hours and the mean time to repair (MTTR) is about
9.37 hours. Which of the three subsystems contributes the
most to these values? Because of the top-down marginal-
ization process, we have already calculated the same values
for each of three subsystems, summarized in Table 3.

We have identified that the CPU subsystem contributes the
most to System failure, while the Motor subsystem, due to

849

its high reliability rates and its redundancy, very rarely con-
tributes to System failures. The Pump subsystem is identi-
fied as the fastest to be repaired. From long-run analysis on
both the stationary distributions and the expected sojourn
times, we have efficiently identified and quantified the un-
reliability of the CPU subsystem for efforts to make the
CAS more robust and reliable.

5 DISCUSSION

The experiments demonstrate the capability of the exact
and approximate node marginalzation methods developed
in this paper. We started with two synthetic networks that
were small enough to compute the stationary distributions
using the traditional approach when viewing a CTBN as
a Markov process via its full joint intensity matrix. With
the drug effect network, we showed that the exact method
computes the same values with a fraction of the computa-
tional complexity. With the cyclic network, the brute-force
and exact methods become indistinguishable. We showed
how an iterative variation of the exact node marginalization
method can effectively approximate the stationary distribu-
tions of nodes in cycles without handling the entire cycle
all at once. Lastly, we applied the node approximation
method to a non-trivial real-world network. In this case,
working with the full joint intensity matrix (the tradition,
brute-force approach) is intractable. We compare our ex-
act node marginalization method to an approximate method
based on forward sampling. For this experiment, our node
marginalization method is both more efficient and yields
the exact answer instead of an approximation.

Our methods assume that the stationary distributions of in-
dividual subnetworks can be computed efficiently. Specif-
ically, solving Equation 1 requires the matrix to be non-
singular (i.e., that the Markov process be irreducible). For
some CTBNs, this may not be the case, and some sub-
systems of the process may not be irreducible. Our exact
method breaks down in this case. However, note that the
traditional approach also breaks down, because it is also
based on Equation 1. As long as there exists a method
to compute π for a subnetwork (or at least approximate
π), this vector can be used in our top-down and/or iterative
node marginalization methods.

6 CONCLUSION

We have shown how to compute stationary distributions
and long-run expected sojourn times for CTBNs tractably
without working directly with the full joint intensity matrix.
For CTBNs with long cycles, we have shown an iterative
marginalization method that can be used to approximate
the long-run behavior. To demonstrate the methods, we
tested on three networks of varying complexity and showed
the advantage of using our marginalization methods. Fu-

ture work involves analyzing the behavior of the iterative
marginalization method, including research into network
topologies and parameters that could make the approxima-
tion poor, as well as analyzing convergence properties such
as proof of convergence.

References

Boudali, H., Crouzen, P., & Stoelinga, M. (2007). Dy-
namic fault tree analysis using input/output interactive
Markov chains. In 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (pp.
708–717).

Cao, D. (2011). Novel models and algorithms for systems
reliability modeling and optimization. Wayne State Uni-
versity.

Dugan, J., Bavuso, S., & Boyd, M. (1992). Dynamic fault-
tree models for fault-tolerant computer systems. IEEE
Transactions on Reliability, 41(3), 363–377.

El-Hay, T., Cohn, I., Friedman, N., & Kupferman, R.
(2010). Continuous-time belief propagation. In Proceed-
ings of the 27th International Conference on Machine
Learning (ICML).

Gatti, E. (2011). Graphical models for continuous time
inference and decision making. Università degli Studi di
Milano-Bicocca.

Gatti, E., Luciani, D., & Stella, F. (2011). A continu-
ous time Bayesian network model for cardiogenic heart
failure. Flexible Services and Manufacturing Journal,
1–20.

Herbrich, R., Graepel, T., & Murphy, B. (2007). Struc-
ture from failure. In Proceedings of the 2nd USENIX
workshop on tackling computer systems problems with
machine learning techniques (pp. 1–6).

Koller, D., & Friedman, N. (2009). Probabilistic Graphical
Models: Principles and Techniques. MIT Press.

Murphy, K. (2002). Dynamic Bayesian networks: repre-
sentation, inference and learning. University of Califor-
nia.

Nodelman, U. (2007). Continuous time Bayesian networks.
Stanford University.

Nodelman, U., Koller, D., & Shelton, C. (2005). Ex-
pectation propagation for continuous time Bayesian net-
works. In Proceedings of the Twenty-First Conference
Annual Conference on Uncertainty in Artificial Intel-
ligence (UAI-05) (pp. 431–440). Arlington, Virginia:
AUAI Press.

Nodelman, U., Shelton, C., & Koller, D. (2002). Con-
tinuous time Bayesian networks. In Proceedings of the
Eighteenth Conference on Uncertainty in Artificial Intel-
ligence (UAI) (pp. 378–387).

850

Portinale, L., Raiteri, D., & Montani, S. (2010). Supporting
reliability engineers in exploiting the power of dynamic
Bayesian networks. International Journal of Approxi-
mate Reasoning (IJAR), 51(2), 179–195.

Sturlaugson, L., & Sheppard, J. W. (2015). Sensitivity
analysis of continuous time Bayesian network reliability
models. SIAM/ASA Journal on Uncertainty Quantifica-
tion, 3(1), 346–369.

Taylor, H., & Karlin, S. (1998). An Introduction to Stochas-
tic Modeling. Academic Press.

Xu, J., & Shelton, C. (2008). Continuous Time Bayesian
Networks for Host Level Network Intrusion Detection.
In W. Daelemans, B. Goethals, & K. Morik (Eds.), Ma-
chine Learning and Knowledge Discovery in Databases
(Vol. 5212, pp. 613–627). Springer Berlin / Heidelberg.

Xu, J., & Shelton, C. (2010, September). Intrusion detec-
tion using continuous time Bayesian networks. Journal
of Artificial Intelligence Research (JAIR), 39(1), 745–
774.

851

Online Bellman Residual Algorithms
with Predictive Error Guarantees

Wen Sun
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

wensun@cs.cmu.edu

J. Andrew Bagnell
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

dbagnell@ri.cmu.edu

Abstract

We establish a connection between optimizing
the Bellman Residual and worst case long-term
predictive error. In the online learning frame-
work, learning takes place over a sequence of tri-
als with the goal of predicting a future discounted
sum of rewards. Our analysis shows that, to-
gether with a stability assumption, any no-regret
online learning algorithm that minimizes Bell-
man error ensures small prediction error. No sta-
tistical assumptions are made on the sequence of
observations, which could be non-Markovian or
even adversarial. Moreover, the analysis is in-
dependent of the particular form of function ap-
proximation and the particular (stable) no-regret
approach taken. Our approach thus establishes a
broad new family of provably sound algorithms
for Bellman Residual-based learning and pro-
vides a generalization of previous worst-case re-
sult for minimizing predictive error. We investi-
gate the potential advantages of some of this fam-
ily both theoretically and empirically on bench-
mark problems.

1 INTRODUCTION

Reinforcement learning (RL) is an online paradigm for op-
timal sequential decision making where an agent interacts
with an environment, takes actions, receives rewards and
tries to maximize its long-term reward, a discounted sum
of all the rewards that will be received from now on. An
important part of RL is policy evaluation, the problem of
evaluating the expected long-term rewards of a fixed pol-
icy. Temporal Difference (TD) is a famous family of algo-
rithms for policy evaluation. In practice, we are typically
interested in complex problem domains (e.g., continuous
state space RL) and function approximations (e.g., linear
functions) are used for policy evaluation. However, it has
been observed that when combined with function approxi-

mation, TD may diverge and lead to poor prediction. The
Residual Gradient (RG) was proposed (Baird, 1995) to ad-
dress these concerns. RG attempts to minimize the Bellman
Error (BE) (see definition in Sec. 2), typically with linear
function approximation, using stochastic gradient descent.
Since then comparison between the family of TD algo-
rithms and RG has received tremendous attention, although
most of the analyses heavily rely on certain stochastic as-
sumptions of the environment such as that the sequence of
observations are Markovian or from a static Markov De-
cision Process (MDP). For instance Schoknecht and Merke
(2003) showed that TD converges provably faster than RG if
the value functions are presented by tabular form. Scherrer
(2010) shows that Bellman Residual minimization enjoys a
guaranteed performance while TD does not in general when
states are sampled from arbitrary distributions that may not
correspond to trajectories taken by the system. Experimen-
tally, they also show that TD converges faster but may gen-
erate poor prediction when it is close to divergence.

Schapire and Warmuth (1996) and Li (2008) provided
worst-case analysis of long-term predictive error for vari-
ants of the linear TD and RG under a non-probabilistic on-
line learning setting. Their results rely on an elegant spec-
tral analysis of a matrix that is related to specific update
rules of the TD and RG algorithms under linear function ap-
proximation. Unfortunately, this approach makes it more
difficult to extend their worst-case (assumption free) anal-
ysis to broader families of algorithms and representations
that target the Bellman and Temporal Difference errors.

Following Schapire and Warmuth (1996) and Li (2008)’s
online learning framework, we present a simple, general
connection between long-term predictive error and no-
regret online learning that attempts to minimize BE. The
central idea is that methods such as RG should be funda-
mentally understood as online algorithms as opposed to
standard gradient methods, and that one cannot simultane-
ously make consistent predictions in the sense of BE while
doing a poor job in terms of long-run predictions. Similar
to Schapire and Warmuth (1996) and Li (2008), our anal-
ysis does not rely on any statistical assumptions about the

852

underlying system. This allows us to analyze more diffi-
cult scenarios such as Markov Decision Process with tran-
sition probabilities changing over time or even with each
transition chosen entirely adversarial. Our analysis gener-
alizes to a broader class of functions to approximate the
value function. Previous work from Robards et al. (2011)
and Engel et al. (2005) explored the possibility of using
non-linear function approximation, but to our knowledge
no further analysis on the soundness with respect to predic-
tion error are known.

Our analysis of the connection between online long-term
reward prediction and no-regret online learning provides a
unifying view of the relationship between prediction errors
and BE and consequently suggests a broad new family of
algorithms. Specifically, we present and analyze concrete
examples of how to apply several well-known no-regret on-
line algorithms such as Online Gradient Descent (OGD)
from Zinkevich (2003), Online Newton Step (ONS) from
Hazan et al. (2006) and Online Frank Wolf (OFW) from
Hazan and Kale (2012) to online prediction of long-term
rewards. Particularly, our analysis generalizes the RG algo-
rithm from Baird (1995) in the following three aspects: (1)
RG is a specific example of our family of algorithms that
runs OGD on a sequence of BE loss functions, (2) RG can
be naturally combined with more general function approx-
imation such as functions in Reproducing Kernel Hilbert
Space (RKHS), and (3) applying our analysis to RG pro-
vides asymptotically tighter bounds on the average predic-
tion error of long-term rewards than that provided in Li
(2008). We also find that ONS, which has no-regret rate of
O(log T/T), has a faster convergence of the average pre-
diction error of long-term rewards. With OFW, we are able
to achieve sparse predictors under some conditions. We an-
alyze these algorithms in detail in Sec. 4.

We emphasize that stability of online algorithms is essen-
tial for our results– the no-regret property can be shown
by example to be insufficient to achieve low predictive er-
ror. We hence introduce the definition of Online Stability
condition in Sec. 2, which intuitively measures the differ-
ence between two successive predictors. Our online sta-
bility condition is general enough such that most popular
no-regret online algorithms naturally satisfy this condition
and hence this condition does not severely limit the scope
of no-regret online algorithms. Our analysis shows that the
combination of the no-regret property and online stability
is sufficient to promise small predictive error on the long-
term rewards.

2 PRELIMINARIES

2.1 PROBLEM SETTING

We consider the sequential online learning model presented
in Schapire and Warmuth (1996); Li (2008) where no sta-

tistical assumptions about the sequence of observations are
made. The sequence of the observations forms a connected
stream of states which can either be Markovian as typi-
cally assumed in RL problem settings or even adversar-
ial. We define the observation at time step t as xt 2 Rn,
which usually represents the features of the environment
at t. Throughout the paper, we assume that feature vec-
tor x is bounded as kxk2 X, X 2 R+. The corre-
sponding reward at step t is defined as rt 2 R, where we
assume that reward is always bounded |r| R 2 R+.
Given a sequence of observations {xt} and a sequence
of rewards {rt}, the long-term reward at t is defined as
vt =

P1
k=t �

k�trs, where � 2 [0, 1) is a discount fac-
tor. Given a function space F the learner chooses a pre-
dictor f at each time step from F for predicting long-term
rewards. Throughout this paper, we assume that any pre-
diction made by a predictor f at a state x is upper bounded
as |f(x)| P 2 R+, for any f 2 F and x.

At time step t = 0, the learner receives x0, initializes a
predictor f0 2 F and makes prediction of v0 as f0(x0).
Rounds of learning then proceeds as follows: the learner
makes a prediction of vt at step t as ft(xt); the learner then
observes a reward rt and the next state xt+1; the learner
updates its predictor to ft+1. This interaction repeats and
is terminated after T steps. Throughout this paper, we call
this problem setting as online prediction of long-term re-
ward.

We define the signed Bellman Error at step t for predic-
tor ft as bt = ft(xt) � rt � �ft(xt+1), which mea-
sures effectively how self consistent ft is in its predic-
tions between time step t and t + 1. For any f⇤ 2 F ,
we define the corresponding signed Bellman Error as b⇤t =
f⇤(xt) � rt � �f⇤(xt+1). We denote the Bellman Error
(BE) as the square of the signed Bellman error b2

t .

The Signed Prediction Error of long-term reward at t for
ft is defined as et = ft(xt)� vt and e⇤t = f⇤(xt)� vt for
f⇤ accordingly. We will typically be interested in bounding
the Prediction Error (PE) e2

t of a given algorithm in terms
of the best possible PE. To lighten notation in the following
sections, all sums over time indices implicitly run from 0
to T � 1 unless explicitly noted otherwise.

2.2 NO-REGRET ONLINE LEARNING

Under our online setting, we will define loss functional lt
at step t as the traditional Bellman Error (BE):

lt(f) = (f(xt)� rt � �f(xt+1))
2. (1)

Note that lt(ft) = b2
t .

Following the setting of online prediction of long-term re-
ward, the learner computes predictor ft at time step t and
then receives the loss function lt and the loss lt(ft) (after
the learner receives rt and xt+1). We say that the online

853

algorithm is no-regret with respect to BE if:

lim
T!1

1

T

X
lt(ft)�

1

T

X
lt(f

⇤) 0, (2)

for any predictor f⇤ 2 F , including the best predictor that
minimizes

P
lt(f) in hindsight.

The sequence of predictors ft being no-regret intuitively
means that the predictors are giving nearly as consistent
predictions over time as is possible in that function class.
One might wish that the sequence of predictors being no-
regret is a sufficient condition for small prediction error.
More formally, one might expect that if Eq. 2 holds for the
sequence of predictors {ft},

P
e2
t can be upper bounded:

lim
T!1

1

T

X
e2
t C

1

T

X
e⇤2t , 8f⇤ 2 F , (3)

where C 2 R+ is a constant. Schapire and Warmuth (1996)
showed such a conclusion (Eq. 3) for TD and later on Li
(2008) proved such a conclusion for RG, both under the
assumption that f(x) is linear.

Unfortunately, however, simply being no-regret (Eq. 2) is
not a sufficient condition for upper bounding prediction er-
ror (

P
e2
t) as in the form of Eq. 3 for general function ap-

proximation form:

Theorem 2.1 There exists a sequence of {ft} that is no-
regret with respect to the loss functions {lt(f)}, but no C 2
R+ exists that makes Eq. 3 hold.

We prove Theorem 2.1 by providing an example in Ap-
pendix (see Supplementary Material) which is no-regret on
{lt(ft)} (Eq. 2 holds) but Eq. 3 does not hold.

2.3 ONLINE STABILITY

The counter example that supports Theorem 2.1 presents
a sequence of unstable predictors {ft} where two succes-
sive predictors ft and ft+1 vary wildly when predicting the
long-term reward of xt+1. Such behavior is rather unusual
for typical no-regret online learning algorithms. This sug-
gests introducing a notion of Online Stability which we de-
fined as:

Definition Online Stability: For the generated sequence
of predictors ft, we say the algorithm is online stable if:

lim
T!1

1

T

X
(ft(xt+1)� ft+1(xt+1))

2 = 0. (4)

Intuitively, the online stability means that on average
the difference between successive predictors is eventu-
ally small. That is, the difference between ft(xt+1) and
ft+1(xt+1) is small on average. Online stability is a gen-
eral condition and does not severely limit the scope of the
online learning algorithms. For instance, when f is linear,

the definition of stability of online learning in (Saha et al.,
2012) (see Eq. 3 in Saha et al. (2012)) and (Ross and Bag-
nell, 2011) implies our form of online stability. We also
show in the following section that many popular no-regret
online learning algorithms including OGD, ONS and OWF,
satisfy our online stability condition.

We show in next section that the sequence of predictors
{ft} being no-regret with respect to the loss functions
{lt(ft)} and satisfying the online stability condition is
sufficient for deriving an upper bound for prediction error
as shown in Eq. 3.

3 ONLINE LEARNING FOR
LONG-TERM REWARD PREDICTION

In this section, we combine the no-regret condition on
loss functions {lt(f)} and the online stability condition to-
gether to provide a worst-case analysis of sum of PE

P
e2
t ,

which builds a connection between the PE of long-term re-
wards, regret and online stability.

More formally, our worst-case analysis shows that if the
online algorithm running on the sequence of loss {lt(f)}
is no-regret and the generated sequence of predictors {ft}
satisfies the online stability condition, predictor error can
be upper bounded in the form of Eq. 3. The analysis does
not place any probabilistic assumption on the sequence of
observations {xt} or any assumption on the form of pre-
dictors f 2 F (e.g., f(x) does not have to be linear).

We start by first providing two important lemmas below:

Lemma 3.1 Let us define dt = ft(xt)�rt��ft+1(xt+1).
We have:
X

d2
t � (1� �)2

X
e2
t + (�2 � �)(e2

T � e2
0). (5)

Note that the difference between dt and bt is that dt uses
ft+1(xt+1) to estimate the long-term reward at step t + 1
while bt uses ft(xt+1).

Proof Schapire and Warmuth (1996) implicitly showed
that dt = (ft(x) � vt + vt � (rt + �ft+1(xt+1))) =
(et � �et+1). Squaring both sides and summing over from
t = 0 to t = T � 1, we get:

X
d2

t =
X

(et � �et+1)
2

=
X

e2
t + �2

X
e2
t+1 � 2�

X
etet+1

�
X

e2
t + �2

X
e2
t+1 � �

X
e2
t � �

X
e2
t+1

= (1� �)2
X

e2
t + (�2 � �)(e2

T � e2
0). (6)

The first inequality is obtained by applying Young’s in-
equality to 2etet+1 to get 2etet+1 e2

t + e2
t+1.

854

Lemma 3.2 For any f⇤ 2 F , the prediction error
P

e⇤2t

upper bounds the BE
P

b⇤2t as follows:
X

b⇤2t (1 + �)2
X

e⇤2t + (� + �2)(e⇤20 � e⇤2T). (7)

The proof of Lemma 3.2 is similar to the one for
Lemma 3.1. We present the proof in Appendix.

Now let us define a measure of the change in predictors be-
tween the steps of the online algorithm as ✏t = ft(xt+1)�
ft+1(xt+1), which is closely related to the online stability
condition. The bt and dt are then closely related with each
other by ✏t:

dt = ft(xt)� rt � �ft+1(xt+1)� �ft(xt+1) + �ft(xt+1)

= bt + �✏t.

Squaring both sides, we get:

d2
t = b2

t + 2bt�✏t + �2✏2 b2
t + b2

t + �2✏2t + �2✏2t

= 2b2
t + 2�2✏2t , (8)

where the first inequality is coming from applying Young’s
inequality to 2bt�✏t to get 2bt�✏t b2

t +�2✏2t . We are now
ready to state the following main theorem of this paper:

Theorem 3.3 Assume a sequence of predictors {ft} is
generated by running some online algorithm on the se-
quence of loss functions {lt}. For any predictor f⇤ 2 F ,
the sum of prediction errors

P
e2
t can be upper bounded

as:

(1� �)2
X

e2
t 2

X
(b2

t � b⇤2t) + 2�2
X

✏2t

+ 2(1 + �)2
X

e⇤2t + M, (9)

where

M = 2(� + �2)(e⇤20 � e⇤2T)� (�2 � �)(e2
T � e2

0).

By running a no-regret and online stable algorithm on the
loss functions {lt(f)}, as T ! 1, the average prediction
error is then asymptotically upper bounded by a constant
factor of the best possible prediction error in the function
class:

lim
T!1

:

P
e2
t

T
 2(1 + �)2

(1� �)2
P

e⇤2t

T
. (10)

Proof Combining Lemma. 3.1 and Lemma. 3.2, we have:
X

d2
t � 2

X
b⇤2t

� (1� �)2
X

e2
t + (�2 � �)(e2

T � e2
0)

� 2(1 + �)2
X

e⇤2t

� 2(� + �2)(e⇤20 � e⇤2T). (11)

Subtracting 2b⇤2t on both sides of Eq. 8, and then summing
over from t = 1 to T � 1, we have:
X

d2
t �

X
2b⇤2t 2

X
(b2

t � b⇤2t) + 2�2
X

✏2t .

Combining the above two inequalities together, we have:

2
X

(b2
t � b⇤2t) + 2�2

X
✏2t

� (1� �)2
X

e2
t + (�2 � �)(e2

T � e2
0)

� 2(1 + �)2
X

e⇤2t � 2(� + �2)(e⇤20 � e⇤2T). (12)

Rearrange inequality (12) and define M = 2(�+�2)(e⇤20 �
e⇤2T)� (�2 � �)(e2

T � e2
0), we obtain inequality (9).

Assume that the f̄ = arg minf2F
P

lt(f), then if the on-
line algorithm is no-regret, we have

1

T

X
b2
t � b⇤2t =

1

T

X
lt(ft)� lt(f

⇤)

 1

T

X
lt(ft)� lt(f̄)

=
1

T
Regret 0, T !1. (13)

If the online algorithm satisfies the stability condition (Eq.
4), we have: 1

T

P
✏2t = 0 when T !1.

Also, since we assume |f(x)| P and |r| R, we can
see M must be upper bounded by some constant. Hence,
we must have M

T = 0, as T !1.

Under the conditions that the online algorithm is no-regret
and satisfies online stability, we get Eq. 10 by dividing both
sides of Eq. 9 by T and taking T to infinity.

Note that in Theorem 3.3, Eq. 9 holds for any f⇤ 2 F ,
including the f⇤ that minimizes the prediction error. But
note that the one that minimizes prediction error, PE, does
not necessarily optimize the BE, which may lead to an im-
provement of the bound in Eq. 10 in practice. To see this,
note that we showed in the proof that for a no-regret algo-
rithm:

1

T

X
b2
t � b⇤2t

1

T
Regret 0, as T !1. (14)

Hence the limit of (1/T)
P

(b2
t � b⇤2t) may be negative for

some f⇤ 2 F , which could lead to a potential decrease
in the upper bound of (1/T)

P
e2
t in Eq. 10 and give us a

tighter bound in practice.

When e⇤t = 0, 8t, from Theorem 3.3, it is easy to see that
no-regret rate of (1/T)

P
(b2

t � b⇤2t) and the online stabil-
ity rate of (1/T)

P
✏2t together determine the rate of the

convergence of (1/T)
P

e2
t .

When T ! 1 and � ! 1 (specifically when � �
(1/
p

2)), our upper bound analysis in Eq. 10 is asymptot-
ically tighter than the upper bound in Li (2008) (Eq. 12)

855

provided for RG, which is a special case of our approach
as we demonstrate in the following section. As we will ad-
ditionally show, a large number of popular no-regret online
algorithms also satisfy the online stability condition, broad-
ening the family of algorithms that can be used to learn
predictors of long-term rewards.

4 ALGORITHMS

Our analysis in Sec. 3 provides a reduction from the on-
line prediction of long-term reward to the no-regret online
learning setting on a sequence of loss functions {lt(f)} de-
fined in Sec. 2.1, which enables us to develop a new set
of algorithms. In this section, we give concrete examples
of new Bellman Residual algorithms based on well-known
no-regret online learning procedures such as Online Gra-
dient Descent (OGD), Online Newton Step (ONS) and the
Online variant of Frank Wolfe (OFW). The choice of al-
gorithm depends on the size and sparsity level of features
and the available computational budget. For instance, OGD
generalizes RG and has O(n) computational complexity at
every update step which makes it suitable for applications
where sampling observations is cheap (e.g., RL for video
games). ONS provides a logarithmic no-regret rate and
could lead to faster convergence in practice, making it po-
tentially suitable for applications where obtaining samples
of observations is expensive (e.g., RL for a physical robot).
Finally, OFW introduces sparsity and can be applied to
problems where the feature dimension is larger than the
number of samples.

Although the analysis in Sec. 3 does not place any assump-
tion on predictors f 2 F , in practice to achieve the no-
regret property on the loss functions {lt(f)}, additional as-
sumptions of loss functions (e.g., convexity) are needed.
Since we discuss concrete no-regret online algorithms in
this section, for F we focus on vector spaces equipped
with inner product. Specifically, we focus on two vector
spaces: (1) Reproducing Kernel Hilbert Spaces (RKHS)
where f =

P
↵iK(xi, ·) 2 F , for some kernel K(x, ·)

and (2) spaces consisting of linear functions f(x) = wT x,
w 2W1. We now summarize the assumptions that we will
use in section:

1. We assume F (or W) is convex and bounded in a
sense that the diameter of F (or W) is upper bounded
as maxf1,f22F kf1�f2k D 2 R+, where the norm
kfk is defined by the inner product associated with the
function space: kfk2 = hf, fi;

2. We assume that kxtk2 X , 8t, |K(x1,x2)|
K, 8x1,x2, kfk F , 8f 2 F , and kwk2 W ,
8w 2W , where K 2 R+, F 2 R+, W 2 R+.

1Linear function space is a special case of RKHS. We discuss
linear function separately since some online algorithms discussed
here only work for linear functions

Any prediction f(x) is always bounded, since for RKHS,
f(x) is bounded as |f(x)| kfkkK(x, ·)k F

p
K, and

for f(x) = wT x, we also have |f(x)| kwk2kxk2
WX . For notation simplicity, we then simply assume that
f(x) is always bounded as |f(x)| P, P 2 R+.

Lemma 4.1 With the above assumptions, for any pair of xt

and xt+1, for RKHS, the loss functional lt(f) is convex and
Lipschitz continuous with respect to the norm defined by the
inner product h·, ·iK; for f(x) = wT x, the loss function
lt(w) is convex and Lipischitz continuous with respect to
either L1 norm k · k1 or L2 norm k · k2.

We present the proof of the above lemma in Appendix.

4.1 GRADIENT-BASED APPROACHES

Before diving into the detailed examples of mirror descent
and gradient based approaches, we first introduce an impor-
tant lemma about the stability of one particular online al-
gorithm: Follow the Regularized Leader (FTRL). It is well
known that gradient-based and mirror descent approaches
can be understood in the framework of FTRL. In particular,
we only focus on the case where the loss functions are con-
vex and L-Lipschitz continuous with a regularization that is
strongly-convex. We refer reader to Shalev-Shwartz (2011)
for detailed definitions of convex functions, Lipschitz con-
tinuous, and strong convexity.

The update rule of FTRL at step t can be summarized as:

ft+1 = arg min
f2F

tX

i=0

li(f) +
1

µ
R(f). (15)

Lemma 4.2 For FRTL with convex and L-Lipschitz con-
tinuous loss functions lt(f) and strongly convex regular-
ization function R(f) (with respect to kfk), we have:

X
kft � ft+1k LTµ. (16)

Setting µ = 1p
T

to achieve no-regret property, then we
have:

lim
T!1

1

T

X
kft � ft+1k = 0. (17)

Similar proofs has been shown in (Ross and Bagnell, 2011)
and (Saha et al., 2012). For completeness, we present the
proof of the above lemma in Appendix following our nota-
tion and problem setting.

4.1.1 Gradient Descent on BE

Gradient descent approaches can be understood in the
FTRL framework where the convex loss functions in FTRL
are replaced by a linear approximation:

ft+1 = arg min
f2F

tX

i=0

hgi, fi+
1

µt
R(f), (18)

856

where gt 2 @lt(ft) is a sub-gradient of lt at ft and R(f) is
a strongly convex regularizer.

We first consider the special case where f(x) = wT x is
linear. Note that our loss function is lt(w) = (wT xt �
rt��wT xt+1)

2 and its gradient gt at wt is gt = (wT
t xt�

rt � �wT
t xt+1)(xt � �xt+1). Setting the regularization

R(w) = 1
2kwk22, which is 1-strongly convex, we obtain

the RG algorithm in Baird (1995), where the update step at
t is:

wt+1 := wt � µt(w
T
t (xt � �xt+1)� rt)(xt � �xt+1),

Note that the linear loss function is convex and Lipschitz
continuous (kgtk2 is bounded based on our assumptions
that kxk2, |r| and kwk2 are all bounded). Online Gra-
dient Descent (OGD) is no-regret (Zinkevich, 2003) with
µt = 1/

p
T and from Lemma 4.2, we have:

1

T

X
(wT

t xt+1 �wT
t+1xt+1)

2

 1

T

X
kxt+1k22kwt �wt+1k22

 X2 1

T

X
kwt �wt+1k22 = 0, T !1, (19)

which exactly satisfies the online stability condition.
Hence, RG enjoys the guarantee of our main theorem 3.3.

4.1.2 Exponentiated Gradient Descent on BE

When we set the regularization R(w) =
P

i w
i(log(wi)�

1), where for vector w, wi is the i-th component of w, we
generalize RG to Exponentiated Gradient (EG) descent as
Precup and Sutton (1997) did for TD.

Since we assumed that kwk2 W , then kwk1 W 0

for W 0 2 R+. Then the regularization R(w) becomes
(1/W 0)-strongly-convex and the loss function lt(w) is Lip-
schitz continuous with respect to L1 norm k · k1. Solving
Eq.18, we obtain the update step at t as:

wi
t+1 = wi

t exp
�
� µt(w

T
t (xt � �xt+1)� rt)(x

i
t � �xi

t+1)
�
.

Similar to RG, using Lemma 4.2 (the norm in Lemma 4.2
becomes L1 norm) we can show that EG satisfies our online
stability condition:

1

T

X
(wT

t xt+1 �wT
t+1xt+1)

2

 1

T
X2
X
kwt �wt+1k22

 1

T
X2
X
kwt �wt+1k21 = 0, T !1, (20)

and is also no-regret on {lt(w)} when µt = 1/
p

T . Hence,
EG descent approach enjoys our main theorem 3.3.

4.1.3 Gradient Descent in RKHS

Now we consider functions f(x) that belongs to RKHS
HK. For the special case where R(f) = 1

2 hf, fiK , we
obtain an RG-style update based on functional gradient de-
scent (Scholkopf and Smola, 2001):

ft+1 := ft � µt

⇣
(ft(xt)� rt � �ft(xt+1))

⇥ (K(xt, ·)� �K(xt+1, ·))
⌘
. (21)

Similarly, it is straightforward to show that gradient descent
in RKHS satisfies our stability condition and no-regret con-
dition when µt = 1/

p
T . Hence, gradient descent in

RKHS also enjoys the predictive error guarantees derived
in Theorem 3.3.

4.2 IMPLICIT ONLINE LEARNING

Recently Tamar et al. (2014) has demonstrated implicit on-
line learning for temporal difference method. We consider
the same approach for Bellman Residual minimization by
applying implicit online learning from Kulis et al. (2010)
to the loss functions {lt(f)} and thus provide worst-case
guarantees. Specifically at iteration t, ft+1 is computed
implicitly as:

ft+1 = arg min
f2F

DR(f, ft) + µtlt(f) (22)

= arg min
f2F

DR(f, ft) + µt(f(xt)� �f(xt+1)� rt)
2,

where DR is a Bregman divergence. Saha et al. (2012)
show that when µt = 1/

p
t, the generating function R(f)

is positive and strongly-convex, and the loss function lt(f)
is convex and Lipschitz continuous, implicit online learn-
ing is shown to be no-regret and also satisfies Eq. 17.

4.2.1 Implicit Online Gradient Descent

Particularly, we first consider f =
P
↵iK(xi, ·) in RKHS.

Setting R(f) = 1
2 hf, fik, we have DR(f, ft) = 1

2kf �
ftk2. Then solving Eq. 22, we obtain the following update
rule:

ft+1 := ft�
µt

1 + µtkK(xt, ·)� �K(xt+1, ·)k2
⇥ (ft(xt)� �ft(xt+1)� rt)

⇥ (K(xt, ·)� �K(xt+1, ·)).

When considering linear function f(x) = wT x and
R(w) = 1

2kwk22, we obtain a similar update step:

wt+1 = wt�
µt

1 + µtkxt � �xt+1k2
⇥ (wT

t (xt � �xt+1)� rt)(xt � �xt+1).

As we will show in the experiments, compared to RG
(OGD on BE), implicit OGD on BE is less sensitive to the

857

choice of step-size, which enables us to set large step-size
to achieve faster convergence for (1/T)

P
e2
t . This phe-

nomenon is also observed by Tamar et al. (2014) when they
compare implicit temporal difference to the original TD al-
gorithm (Sutton and Barto, 1998).

4.3 ONLINE NEWTON STEP

We also analyze an online second-order method: the Online
Newton Step (ONS) (Hazan et al., 2006) for online predic-
tion of long-term reward. For ONS, we only focus on linear
function approximation f(x) = wT x. We slightly adapt
the ONS for our loss function lt(w). We first present the
following lemma:

Lemma 4.3 For loss function lt(w) = (wT xt � rt �
�wT xt+1)

2, there exists a � 2 R+, such that for all w
and w0:

lt(w) �lt(w
0) +rlt(w

0)T (w �w0)

+
�

2
(w �w0)Trlt(w

0)rlt(w
0)T (w �w0).

We present the proof of the above lemma in appendix.

With �, then the iterative update rule for ONS is:

wt = ⇧
At�1

W

wt�1 �

1

�
A�1

t�1rlt�1(wt�1)

!
, (23)

where At =
Pt

i=0rlt(wt)rlt(wt)
T + ✏In, ✏ 2 R+, and

⇧At

W is a projection to W with the norm induced by At:
⇧At

W (y) = arg minw2W(w�y)T At(w�y), which makes
this projection operator ⇧At

W not trivial and equal to solving
a convex program usually.

Since kxk2 X , kwk2 W and |r| R, we have
krlt(w)k2 G, for G 2 R+. The following lemma
shows that ONS satisfies the our online stability condition:

Lemma 4.4 The sequence {wt} generated by ONS satis-
fies the online stability condition:

1

T

X
(wT

t xt+1 �wT
t+1xt+1)

2

 1

T

X2

G2�2
n log(T + 1) = 0, T !1. (24)

The proof borrows ideas from Hazan et al. (2006) and is
presented in the Appendix. Note that the convergence rate
of 1

T

P
(ft(xt+1)�ft+1(xt+1))

2 is O(log T/T), which is
the same as the no-regret rate of ONS.

4.4 PROJECTION-FREE ONLINE LEARNING

We analyze the Online Frank Wolfe (OFW) (Hazan and
Kale, 2012) for online prediction of long-term reward. Pre-
viously introduced methods, including OGD, EG, OGD in

RKHS, Implicit OGD, and implicit OGD in RKHS, usually
need a projection operation in each update step if the newly
updated predictor is out of its pre-defined convex set F , al-
though in many cases, projection operations are simple2.
OFW is a projection-free online method and every step in-
volves solving a (typicaly very simple) linear programming
problem. Again, we restrict our analysis to linear functions
f = wT x for OFW. Without loss of generality, we as-
sume lt(w) is L-Lipschitz continuous with some L 2 R+

(Lemma 4.1).

Applying the adversarial variant of OFW to the sequence
of loss functions {lt(f)}, we have the following iterative
update step:

vt = arg min
w2W

rFt(wt)
T w,

wt+1 = (1� t�↵)wt + t�avt, (25)

where ↵ = 1
4 and Ft(w) is computed as:

Ft(w) =
1

t + 1

tX

i=0

l̂i(w)

=
1

t + 1

tX

i=0

(rli(wi)
T w + �ikw �w0k22)

=
1

t + 1

tX

i=0

⇣
(wT

i xi � ri � �wT
i xi+1)(xi � �xi+1)

T w

+ �ikw �w0k22
⌘
,

where �t = (L/D)t�1/4, w0 is the initialization.

The online stability of OFW can be shown easily:

1

T

X
(wT

t xt+1 �wT
t+1xt+1)

2

 1

T
X2
X
kwt �wt+1k22

 1

T
X2
X

t�2↵kwt � vtk22

 1

T
X2D2

X
t�2↵ = 0, T !1.

The first inequality comes from Cauchy-Schwartz inequal-
ity and the assumption that kxk2 X . The last equality
follows from the fact that 2↵ > 0, and 1

T

PT
t=1 t�⇠ = 0,

when ⇠ > 0 and T !1.

Note that the output of the OFW wt is sparse when W is
defined as W = {w : kwk1 W 0} for some W 0 2 R+

and w0 is initialized to the origin or any corner point of W .
This is because the output vt of Eq. 25 will be always one
of the corner points of W and wt hence is a linear com-
bination of corner points {w0,v0...,vt�1}, leading to the

2Usually, when W is defined as {w : kwk2 W}, an L2

projection to such W is easy and can be implemented in O(n).
The same for L2 projection in RKHS when F = {f : kfk F}.

858

Number of Steps
0 1000 2000 3000 4000

A
ve
ra
ge

P
re
d
ic
ti
on

E
rr
or

0

20

40

60

80

100

RGImplicit OGDONSOFWEGTD(0)(a)Linear0 4054003 40 4034567

T

D

(

0

)

R

G

Implicit OGD

(b) RKHS

859

Number of Steps
0 2000 4000 6000

A
ve
ra
ge

P
re
d
ic
ti
on

E
rr
or

0

1

2

3
Helicopter Hover(f(x) = wTx), . = 0:99, n = 253

RG
Implicit OGD
ONS
OFW
EG
TD(0)

(a) Linear

Figure 3: Convergence of prediction error for Helicopter
Hover with linear function approximation

Helicopter Hover The helicopter simulator has a con-
tinuous 21-dimensional state space and a continuous 4-
dimensional control. The reward is equal to the negative of
the quadratic deviation to the targeted hover state. To gen-
erate sequence of states, we apply an LQR controller using
linearized dynamics around the target hover state. We ad-
ditionally corrupt the dynamics simulation with noise sam-
pled from a Gaussian distribution. We used a degree-two
polynomial feature that maps an original 21-dimensional
state to a feature vector x 2 R253 (Fig. 3(a)) and attempt
to predict the long-term cost-to-go.

Analysis of results We fixed TD(0)’s step-size but a wide
range of step-sizes were tried, and the best choice in terms
of prediction error was used for TD(0). For RG, implicit
OGD, and EG, we set the step-size to c/

p
t, where c is a

constant. We also tried a range of c and chose the one that
leads to the best performance. For all algorithms, we pro-
vided the same random initialization. All the results are
computed by averaging over 100 random trials. As we can
see from Fig. 3, ONS and implicit OGD give good conver-
gence speed in general. Implicit OGD performed well with
both RKHS and linear function approximation. Through-
out the experiments, we found that implicit OGD was able
to use a larger c to speed up convergence while still main-
taining good stability. Surprisingly, our experimental re-
sults clearly show that our approaches have the possibility
to achieve smaller prediction error than TD(0) (e.g., Fig.
2(b), bottom). This runs counter to the fact that the up-
per bound of prediction error provided by our analysis in
Sec. 3 is looser than the upper bound of prediction error
of TD(0) from both Li (2008) and Schapire and Warmuth
(1996). Though our analysis is more general, further inves-
tigation is needed to tighten the worst-case bounds on our
approach.

6 CONCLUSION

We established a general connection between the worst-
case prediction of long term reward and Bellman errors for

stable prediction algorithms. We showed that together with
this online stability condition, any no-regret online learn-
ing algorithm optimizing Bellman errors ensures small pre-
diction errors. The stability condition is weak enough such
that most popular no-regret online algorithms satisfy it.
Our approach then suggests and provides soundness guar-
antees for online prediction of long-term reward using a
broad new family of algorithms, including Online BE New-
ton Step, Online BE Frank Wolf, Implicit BE online learn-
ing (implicit gradient descent). The analysis itself can be
applied to more general function space of hypotheses in-
cluding Reproducing Kernel Hilbert Space representations
and even to discrete hypothesis classes (i.e. trees). How-
ever we also want to point out that while our setting is very
general, one might expect that in strongly non-Markovian
situations there may fail to be a good predictor—e.g., no
linear predictor using only the features of xt can do a good
job. In that sense our theorem in this paper is relative—
essentially temporally coherent predictions (in the sense of
small Bellman error) imply doing nearly as well as can be
done at long term prediction: whether that is actually good
performance depends on the quality of both features and
hypothesis class, but not on any probabilistic assumptions.

7 DISCUSSION

Although our analysis provides broad and sound general-
izations of RG, it does not provide guarantees on what we
believe are the natural generalization of TD(0) or its vari-
ants as online algorithms on a sequence of temporal differ-
ence loss functions (TD-loss) which is defined as:

l̃t(f) = (f(xt)� rt � �ft(xt+1))
2. (26)

Note that the difference between l̃t and lt is the subsript
on the second predictor. The reason that we call it TD-
loss is that when f(x) = wT x is linear, applying OGD
to l̃t(w) with respect w exactly reveals the update step of
TD(0). By properly choosing step-size (µ = O(1/

p
T)),

OGD is no-regret on the TD-loss functions {l̃t(f)}. Simi-
lar to our analysis of Bellman error algorithms, we believe
that it is possible that no-regret property on TD-loss func-
tions and stability condition of online algorithms together
could lead us to similar predictive guarantees as shown in
Theorem 3.3. In fact our empirical results (included in Ap-
pendix) suggested that such approaches are both sound and
may outperform Bellman Residual methods. We leave it as
future work to establish regret bounds for temporal differ-
ence minimizing online algorithms.

8 ACKNOWLEDGEMENTS

This work is supported by the ONR MURI grant N00014-
09-1-1052, Reasoning in Reduced Information Spaces. We
gratefully thank Arun Venkatraman for valuable discus-
sions.

860

References

Leemon Baird. Residual algorithms: Reinforcement learn-
ing with function approximation. Proceedings of the
12th International Conference on Machine Learning
(ICML-95), pages 30–37, 1995.

Adam Coates, Pieter Abbeel, and Andrew Y Ng. Learning
for control from multiple demonstrations. Proceedings
of the 25th international conference on Machine learn-
ing - ICML ’08, pages 144–151, 2008.

Yaakov Engel, Shie Mannor, and Ron Meir. Reinforce-
ment learning with Gaussian processes. Proceedings of
the 22nd international conference on Machine learning,
2005.

Elad Hazan and Satyen Kale. Projection-free Online Learn-
ing. 29th International Conference on Machine Learn-
ing (ICML 2012), pages 521–528, 2012.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarith-
mic regret algorithms for online convex optimization.
Proceedings of the 19th annual conference on Computa-
tional Learning Theory (COLT), pages 169–192, 2006.

Brian Kulis, Peter L Bartlett, Bartlett Eecs, and Berkeley
Edu. Implicit Online Learning. Proceedings of the 27th
international conference on Machine learning (ICML),
pages 575–582, 2010.

Lihong Li. A worst-case comparison between temporal
difference and residual gradient with linear function ap-
proximation. Proceedings of the 25th international con-
ference on Machine learning - ICML ’08, pages 560–
567, 2008.

Doina Precup and Richard S. Sutton. Exponentiated Gra-
dient Methods for Reinforcement Learning. In Proceed-
ings of the 14th International Conference on Machine
Learning (ICML), 1997.

M Robards, Peter Sunehag, Scott Sanner, and B Marthi.
Sparse Kernel-SARSA(lambda) with an Eligibility
Trace. ECML PKDD, 2011.

Stephane Ross and J. Andrew Bagnell. Stability Conditions
for Online Learnability. arXiv:1108.3154, 2011.

Ankan Saha, Prateek Jain, and Ambuj Tewari. The Inter-
play Between Stability and Regret in Online Learning.
arXiv preprint arXiv:1211.6158, pages 1–19, 2012.

Robert E. Schapire and Manfred K. Warmuth. On the
worst-case analysis of temporal-difference learning al-
gorithms. Machine Learning, 22(1):95–121, 1996. ISSN
0885-6125. doi: 10.1007/BF00114725.

Bruno Scherrer. Should one compute the Temporal Differ-
ence fix point or minimize the Bellman Residual? The
unified oblique projection view. International Confer-
ence on Machine Learning (ICML 2010), 2010.

Ralf Schoknecht and Artur Merke. TD(0) Converges Prov-
ably Faster than the Residual Gradient Algorithm. In-
ternational Conference on Machine Learning (ICML
2003), pages 680–687, 2003.

Bernhard Scholkopf and Alexander J. Smola. Learning
with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. MIT Press Cambridge, MA,
USA, 2001.

Shai Shalev-Shwartz. Online Learning and Online Con-
vex Optimization. Foundations and Trends in Machine
Learning, 4(2):107–194, 2011.

Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning: An Introduction. MIT Press, 1998.

Aviv Tamar, Panos Toulis, Shie Mannor, and
Edoardo M. Airoldi. Implicit Temporal Differences.
arXiv:1412.6734, pages 1–6, 2014.

Martin Zinkevich. Online Convex Programming and Gen-
eralized Infinitesimal Gradient Ascent. In International
Conference on Machine Learning (ICML 2003), pages
421–422, 2003.

861

On the Error of Random Fourier Features

Danica J. Sutherland
Carnegie Mellon University

Pittsburgh, PA
dsutherl@cs.cmu.edu

Jeff Schneider
Carnegie Mellon University

Pittsburgh, PA
schneide@cs.cmu.edu

Abstract

Kernel methods give powerful, flexible, and the-
oretically grounded approaches to solving many
problems in machine learning. The standard ap-
proach, however, requires pairwise evaluations
of a kernel function, which can lead to scalabil-
ity issues for very large datasets. Rahimi and
Recht (2007) suggested a popular approach to
handling this problem, known as random Fourier
features. The quality of this approximation, how-
ever, is not well understood. We improve the uni-
form error bound of that paper, as well as giving
novel understandings of the embedding’s vari-
ance, approximation error, and use in some ma-
chine learning methods. We also point out that
surprisingly, of the two main variants of those
features, the more widely used is strictly higher-
variance for the Gaussian kernel and has worse
bounds.

1 INTRODUCTION

Kernel methods provide an elegant, theoretically well-
founded, and powerful approach to solving many learning
problems. Since traditional algorithms require the com-
putation of a full N × N pairwise kernel matrix to solve
learning problems on N input instances, however, scaling
these methods to large-scale datasets containing more than
thousands of data points has proved challenging. Rahimi
and Recht (2007) spurred interest in one very attractive ap-
proach: approximating a continuous shift-invariant kernel
k : X × X → R by

k(x, y) ≈ z(x)Tz(y) =: s(x, y),

where z : X → RD. Then primal methods in RD can
be used, allowing most learning problems to be solved in
O(N) time (e.g. Joachims 2006). Recent work has also
exploited these embeddings in some of the most-scalable
kernel methods to date (Dai et al. 2014).

Rahimi and Recht (2007) give two such embeddings, based
on the Fourier transform P (ω) of the kernel k: one of the
form

z̃(x) :=

√
2

D

sin(ωT
1 x)

cos(ωT
1 x)

...
sin(ωT

D/2x)

cos(ωT
D/2x)

, ωi

iid∼ P (ω) (1)

and another of the form

z̆(x) :=

√
2

D

cos(ωT
1 x+ b1)

...
cos(ωT

Dx+ bD)

 ,

ωi
iid∼ P (ω)

bi
iid∼ Unif [0,2π]

. (2)

Bochner’s theorem (1959) guarantees that for any contin-
uous positive-definite function k(x − y), its Fourier trans-
form will be a nonnegative measure; if k(0) = 1, it will be
properly normalized. Letting s̃ be the reconstruction based
on z̃ and s̆ that for z̆, we have that:

s̃(x, y) =
1

D/2

D/2∑

i=1

cos(ωT
i (x− y))

s̆(x, y) =
1

D

D∑

i=1

cos(ωT
i (x− y)) + cos(ωT

i (x+ y) + 2bi).

Letting ∆ := x− y, we have:

E cos(ωT∆) = <
∫
eω

T∆
√−1dP (ω) = <k(∆) (3)

EωEb cos(ωT(x+ y) + 2b) = 0. (4)

Thus each s(x, y) is a mean of bounded terms with expec-
tation k(x, y). For a given embedding dimension D, it is
not immediately obvious which approximation is prefer-
able: z̆ gives twice as many samples for ω, but adds ad-
ditional (non-shift-invariant) noise. The academic litera-
ture seems split on the issue: of the first 100 papers cit-
ing Rahimi and Recht (2007) in a Google Scholar search,
15 used either z̃ or the equivalent complex formulation, 14

862

used z̆, 28 did not specify, and the remainder didn’t use the
embedding. (None discussed that there was a choice.) Not
included in the count are are Rahimi and Recht’s later work
(2008a; 2008b), which used z̆; indeed, post-publication re-
visions of the original paper only discuss z̆. Practically,
we are aware of three implementations in machine learning
libraries, each of which use z̆ at the time of writing: scikit-
learn (Pedregosa et al. 2011), Shogun (Sonnenburg et al.
2010), and JSAT (Raff 2011-15).

We show that z̃ is superior for the popular Gaussian kernel,
as well as how to decide which to use for other kernels.

The primary previous analyses of these embeddings, out-
side the one in the original paper, have been by Rahimi and
Recht (2008a), who bound the increase in error of empirical
risk estimates when learning models in the induced RKHS,
and by Yang et al. (2012), who compare the ability of the
Nyström and Fourier embeddings to exploit eigengaps in
the learning problem. We instead study the approximation
directly, providing a complementary view of the quality of
these embeddings.

Section 2.1 studies the variance of each embedding, show-
ing that which is preferable depends on the kernel as well
as the particular value of ∆, but for the popular Gaussian
kernel s̃ is uniformly lower-variance. Section 2.2 studies
uniform convergence bounds, tightening constants in the
original z̃ bound and proving a comparable one (with worse
constants) for z̆, bounding the expectation of the maximal
error, and providing exponential concentration about the
mean. Section 2.3 studies the L2 convergence of each ap-
proximation; z̃ is again superior for the Gaussian kernel.
Section 3 discusses the effect of this approximation error
when used in various machine learning methods. Section 4
evaluates the two embeddings and the bounds empirically.

2 APPROXIMATION ERROR

We will give various analyses of the error due to each ap-
proximation.

2.1 VARIANCE

(3) and (4) establish that Es(∆) = k(∆). What about the
variance? We have that

Cov (s̃(∆), s̃(∆′))

= Cov

 2

D

D/2∑

i=1

cos(ωT
i ∆),

2

D

D/2∑

i=1

cos(ωT
i ∆′)

=
2

D
Cov

(
cos(ωT∆), cos(ωT∆′)

)

=
2

D

[
1
2k(∆−∆′) + 1

2k(∆ + ∆′)− k(∆)k(∆′)
]

Figure 1: The variance per dimension of s̃ (blue) and s̆
(orange) for the Gaussian RBF kernel (green).

using cos(α) cos(β) = 1
2 cos(α + β) + 1

2 cos(α − β) and
also E cos(ωT∆) = k(∆). Thus

Var s̃(∆) =
1

D

[
1 + k(2∆)− 2k(∆)2

]
. (5)

Similarly, denoting x+ y by t,

Cov (s̆(x, y), s̆(x′, y′))

=
1

D
Cov

(
cos(ωT∆) + cos(ωTt+ 2b),

cos(ωT∆′) + cos(ωTt′ + 2b)
)

=
1

D

[
1
2k(∆−∆′) + 1

2k(∆ + ∆′)− k(∆)k(∆′)

+ 1
2k(t− t′)

]

which gives

Var s̆(x, y) =
1

D

[
1 + 1

2k(2∆)− k(∆)2
]
. (6)

Thus s̃ has lower variance than s̆ if

Var cos(ωT∆) =
1

2
+

1

2
k(2∆)− k(∆)2 ≤ 1

2
. (7)

The Gaussian kernel k(∆) = exp
(
−‖∆‖

2

2σ2

)
has

Var cos(ωT∆) =
1

2

(
1− exp

(
−‖∆‖

2

σ2

))2

≤ 1

2
,

so that z̃ is always lower-variance than z̆, and the differ-
ence in variance is greatest when k(∆) is largest. This is
illustrated in Figure 1.

2.2 UNIFORM ERROR BOUND

Let f(x, y) := s(x, y) − k(x, y) denote the error of the
approximation. We will investigate ‖f‖∞, i.e. the maxi-
mal approximation error across the domain of k. We first
consider the bound given by Rahimi and Recht (2007), and
then provide a new bound on E‖f‖∞ and its concentration
around that mean.

863

2.2.1 Original High-Probability Bound

Claim 1 of Rahimi and Recht (2007) is that if X ⊂ Rd is
compact with diameter `,1

Pr (‖f‖∞ ≥ ε) ≤ 256

(
σp`

ε

)2

exp

(
− Dε2

8(d+ 2)

)
,

where σ2
p = E

[
ωTω

]
= tr∇2k(0) depends on the kernel.

It is not necessarily clear in that paper that this bound ap-
plies only to the z̃ embedding; we can also tighten some
constants. We first state the tightened bound for z̃.
Proposition 1. Let k be a continuous shift-invariant
positive-definite function k(x, y) = k(∆) defined on X ⊂
Rd, with k(0) = 1 and such that ∇2k(0) exists. Sup-
pose X is compact, with diameter `. Denote k’s Fourier
transform as P (ω), which will be a probability distribu-
tion; let σ2

p = Ep ‖ω‖2. Let z̃ be as in (1), and define
f̃(x, y) := z̃(x)Tz̃(y)− k(x, y). For any ε > 0, let

αε := min

(
1, sup
x,y∈X

1

2
+

1

2
k(2x, 2y)− k(x, y)2 + 1

3ε

)
,

βd :=

((
d
2

) −d
d+2 +

(
d
2

) 2
d+2

)
2

6d+2
d+2 .

Then, assuming only for the second statement that ε ≤ σp`,

Pr
(
‖f̃‖∞ ≥ ε

)
≤ βd

(
σp`

ε

) 2

1+ 2
d

exp

(
− Dε2

8(d+ 2)αε

)

≤ 66

(
σp`

ε

)2

exp

(
− Dε2

8(d+ 2)

)
.

Thus, we can achieve an embedding with pointwise error
no more than ε with probability at least 1− δ as long as

D ≥ 8(d+ 2)αε
ε2

[
2

1 + 2
d

log
σp`

ε
+ log

βd
δ

]
.

The proof strategy is very similar to that of Rahimi and
Recht (2007): place an ε-net with radius r over X∆ :=
{x − y : x, y ∈ X}, bound the error f̃ by ε/2 at the cen-
ters of the net by Hoeffding’s inequality (1963), and bound
the Lipschitz constant of f̃ , which is at most that of s̃, by
ε/(2r) with Markov’s inequality. The introduction of αε
is by replacing Hoeffding’s inequality with that of Bern-
stein (1924) when it is tighter, using the variance from (5).
The constant βd is obtained by exactly optimizing the value
of r, rather than the algebraically simpler value originally
used; β64 = 66 is its maximum, and limd→∞ βd = 64,
though it is lower for small d, as shown in Figure 2. The
additional hypothesis, that ∇2k(0) exists, is equivalent to
the existence of the first two moments of P (ω); a finite first
moment is used in the proof, and of course without a finite
second moment the bound is vacuous. The full proof is
given in Appendix A.1.

1Note that our D is half of the D in Rahimi and Recht (2007),
since we want to compare embeddings of the same dimension.

Figure 2: The coefficient βd of Proposition 1 (blue, for z̃)
and β′d of Proposition 2 (orange, for z̆). Rahimi and Recht
(2007) used a constant of 256 for z̃.

For the Gaussian kernel, αε ≤ 1
2 + 1

3ε and σ2
p = d/σ2; the

Bernstein bound is tighter when ε < 3
2 .

For z̆, since the embedding s̆ is not shift-invariant, we must
instead place the ε-net onX 2. The additional noise in s̆ also
increases the expected Lipschitz constant and gives looser
bounds on each term in the sum, though there are twice as
many such terms. The corresponding bound is as follows:
Proposition 2. Let k, X , `, P (ω), and σp be as in Proposi-
tion 1. Define z̆ by (2), and f̆(x, y) := z̆(x)Tz̆(y)−k(x, y).
For any ε > 0, define

α′ε := min

(
1, sup
x,y∈X

1
4 + 1

8k(2x, 2y)− 1
4k(x, y)2 + 1

6ε

)
,

β′d :=
(
d
−d
d+1 + d

1
d+1

)
2

5d+1
d+1 3

d
d+1 .

Then, assuming only for the second statement that ε ≤ σp`,

Pr
(
‖f̆‖∞ ≥ ε

)
≤ β′d

(
σp`

ε

) 2

1+ 1
d

exp

(
− Dε2

32(d+ 1)α′ε

)

≤ 98

(
σp`

ε

)2

exp

(
− Dε2

32(d+ 1)

)
.

Thus, we can achieve an embedding with pointwise error
no more than ε with probability at least 1− δ as long as

D ≥ 32(d+ 1)α′ε
ε2

[
2

1 + 1
d

log
σp`

ε
+ log

β′d
δ

]
.

β′48 = 98, and limd→∞ β′d = 96, also shown in Figure 2.
The full proof is given in Appendix A.2.

For the Gaussian kernel, α′ε ≤ 1
4 + 1

6ε, so that the Berstein
bound is essentially always superior.

2.2.2 Expected Max Error

Noting that E‖f‖∞ =
∫∞

0
Pr (‖f‖∞ ≥ ε) dε, one could

consider bounding E‖f‖∞ via Propositions 1 and 2. Un-
fortunately, that integral diverges on (0, γ) for any γ > 0.

864

If we instead integrate the minimum of that bound and 1,
the result depends on a solution to a transcendental equa-
tion, so analytical manipulation is difficult.

We can, however, use a slight generalization of Dudley’s
entropy integral (1967) to obtain the following bound:

Proposition 3. Let k, X , `, and P (ω) be as in Proposi-
tion 1. Define z̃ by (1), and f̃(x, y) := z̃(x)Tz̃(y)−k(x, y).
Let X∆ := {x − y | x, y ∈ X}; suppose k is L-Lipschitz
on X∆. Let R := Emaxi=1,...,D2

‖ωi‖. Then

E
[
‖f̃‖∞

]
≤ 24γ

√
d`√

D
(R+ L)

where γ ≈ 0.964.

The proof is given in Appendix A.3. In order to apply
the method of Dudley (1967), we must work around ‖ωi‖
(which appears in the covariance of the error process) be-
ing potentially unbounded. To do so, we bound a process
with truncated ‖ωi‖, and then relate that bound to f̃ .

For the Gaussian kernel, L = 1/(σ
√
e) and2

R ≤
(√

2
Γ ((d+ 1)/2)

Γ (d/2)
+
√

2 log (D/2)

)
/σ

≤
(√

d+
√

2 log (D/2)
)
/σ.

Thus E‖f̃‖∞ is less than

24γ
√
d `√

Dσ

(
e−1/2 +

√
d+

√
2 log(D/2)

)
. (8)

We can also prove an analogous bound for the z̃ features:

Proposition 4. Let k,X , `, and P (ω) be as in Proposi-
tion 1. Define z̆ by (2), and f̆(x, y) := z̆(x)Tz̆(y) −
k(x, y). Suppose k(∆) is L-Lipschitz. Let R :=
Emaxi=1,...,D‖ωi‖. Then, for X and D not extremely
small,

E
[
‖f̆‖∞

]
≤ 48γ′X `

√
d√

D
(R+ L)

where 0.803 < γ′X < 1.542. See Appendix A.4 for details
on γ′X and the “not extremely small” assumption.

The proof is given in Appendix A.4. It is similar to that
for Proposition 3, but the lack of shift invariance increases
some constants and otherwise slightly complicates matters.
Note also that the R of Proposition 4 is somewhat larger
than that of Proposition 3.

2By the Gaussian concentration inequality (Boucheron et al.
2013, Theorem 5.6), each ‖ω‖−E‖ω‖ is sub-Gaussian with vari-
ance factor σ−2; the claim follows from their Section 2.5.

2.2.3 Concentration About Mean

Bousquet’s inequality (2002) can be used to show exponen-
tial concentration of sup f about its mean.

We consider f̃ first. Let

f̃ω(∆) :=
2

D

(
cos(ωT∆)− k(∆)

)
,

so f(∆) =
∑D/2
i=1 f̃ωi(∆). Define the “wimpy variance”

of f̃/2 (which we use so that |f̃/2| ≤ 1) as

σ2
f̃/2

: = sup
∆∈X∆

D/2∑

i=1

Var
[

1
2 f̃ωi(∆)

]

=
1

D
sup

∆∈X∆

[
1 + k(2∆)− 2k(∆)2

]

=:
1

D
σ2
w,

using (7). Clearly 1 ≤ σ2
w ≤ 2; for the Gaussian kernel, it

is 1.
Proposition 5. Let k, X , and P (ω) be as in Proposition 1,
and z̃ be defined by (1). Let f̃(∆) = z̃(x)Tz̃(y)−k(∆) for
∆ = x − y, and σ2

w := sup∆∈X∆
1 + k(2∆) − 2k(∆)2.

Then

Pr
(
‖f̃‖∞ − E‖f̃‖∞ ≥ ε

)

≤ 2 exp

(
− Dε2

DE‖f̃‖∞ + 1
2σ

2
w + Dε

6

)
.

Proof. We use the Bernstein-style form of Theorem 12.5
of Boucheron et al. (2013) on f̃(∆)/2 to obtain that
Pr
(

sup f̃ − E sup f̃ ≥ ε
)

is at most

exp

− ε2

E sup f̃ + 1
2σ

2
f̃/2

+ ε
6

 .

The same holds for −f̃ , and E sup f̃ ≤ E sup‖f‖∞,
E sup(−f̃) ≤ E sup‖f‖∞. The claim follows by a union
bound.

A bound on the lower tail, unfortunately, is not available in
the same form.

For f̆ , note |f̆ | ≤ 3, so we use f̆/3. Letting f̆ω :=
1
D (cos(ωT∆) − k(∆)), we have σ2

f̆/3
= 1

18D (σ2
w + 1).

Thus the same argument gives us:
Proposition 6. Let k and X be as in Proposition 1, with
P (ω) defined as there. Let z̆ be as in (2), f̃(x, y) =
z̃(x)Tz̃(y)− k(x, y), and define σw as above. Then

Pr
(
‖f̆‖∞ − E‖f̆‖∞ ≥ ε

)

≤ 2 exp

(
− Dε2

4
9DE‖f̆‖∞ + 1

81 (σ2
w + 1) + 2

27Dε

)
.

865

Note that Proposition 6 actually gives a somewhat tighter
concentration than Proposition 5. This is most likely be-
cause, between the space of possible errors being larger
and the higher base variance illustrated in Figure 1, the f̆
error function has more “opportunities” to achieve its max-
imal error. The experimental results (Figure 5) show that,
at least in one case, ‖f̆‖∞ does concentrate about its mean
more tightly, but that mean is enough higher than that of
‖f̃‖∞ that ‖f̆‖∞ stochastically dominates ‖f̃‖∞.

2.3 L2 ERROR BOUND

L∞ bounds provide useful guarantees, but are very strict. It
can also be useful to consider a less stringent error measure.
Let µ be a σ-finite measure on X × X ; define

‖f‖2µ :=

∫

X 2

f(x, y)2 dµ(x, y). (9)

First, we have that

E‖f̃‖2µ = E
∫

X 2

f̃(x, y)2 dµ(x, y)

=

∫

X 2

E f̃(x, y)2 dµ(x, y) (10)

=

∫

X 2

1

D

[
1 + k(2x, 2y)− 2k(x, y)2

]
dµ(x, y)

=
1

D

[
µ(X 2) +

∫

X 2

k(2x, 2y) dµ(x, y)− 2 ‖k‖2µ
]

E‖f̆‖2µ =
1

D

[
µ(X 2) +

1

2

∫

X 2

k(2x, 2y) dµ(x, y)− ‖k‖2µ
]

where (10) is justified by Tonelli’s theorem.

If µ = PX ×PY is a joint distribution of independent vari-
ables, then

∫
X 2 k(2x, 2y) dµ(x, y) = MMK(P2X , P2Y),

where MMK is the mean map kernel (see Section 3.3). Like-
wise, ‖k‖2µ = MMK(PX , PY) using the kernel k2.3

Viewing ‖f̃‖µ as a function of ω1, . . . , ωD/2, changing ωi
to a different ω̂i changes the value of ‖f̃‖µ by at most
4 4D+1

D2 µ(X 2); this can be seen by simple algebra and is
shown in Appendix B.1. Thus McDiarmid (1989) gives us
an exponential concentration bound:

Proposition 7. Let k be a continuous shift-invariant
positive-definite function k(x, y) = k(∆) defined on X ⊆
Rd, with k(0) = 1. Let µ be a σ-finite measure on X 2,
and define ‖·‖2µ as in (9). Define z̃ as in (1) and let
f̃(x, y) = z̃(x)Tz̃(y)− k(x, y). LetM := µ(X 2). Then

Pr
(∣∣∣‖f̃‖2µ − E‖f̃‖2µ

∣∣∣ ≥ ε
)
≤ 2 exp

(−D3ε2

8(4D + 1)2M2

)

≤ 2 exp

(−Dε2

200M2

)
.

3k2 is also a PSD kernel, by the Schur product theorem.

The second version of the bound is simpler, but somewhat
looser for D � 1; asymptotically, the coefficient of the
denominator becomes 128.

Similarly, the variation of ‖f̆‖µ is bounded by at most
32D+1

D2 µ(X 2) (shown in Appendix B.2). Thus:

Proposition 8. Let k, µ, ‖·‖µ, and M be as in Proposi-
tion 7. Define z̆ as in (2) and let f̆(x, y) = z̆(x)Tz̆(y) −
k(x, y). Then

Pr
(∣∣∣‖f̆‖2µ − E‖f̆‖2µ

∣∣∣ ≥ ε
)
≤ 2 exp

(−D3ε2

512(D + 1)2M2

)

≤ 2 exp

(−Dε2

2048M2

)
.

The cost of a simpler dependence on D is higher here; the
asymptotic coefficient of the denominator is 512.

3 DOWNSTREAM ERROR

Rahimi and Recht (2008a; 2008b) give a bound on the
L2 distance between any given function in the reproducing
kernel Hilbert space (RKHS) induced by k and the closest
function in the RKHS of s: results invaluable for the study
of learning rates. In some situations, however, it is useful
to consider not the learning-theoretic convergence of hy-
potheses to the assumed “true” function, but rather directly
consider the difference in predictions due to using the z
embedding instead of the exact kernel k.

3.1 KERNEL RIDGE REGRESSION

We first consider kernel ridge regression (KRR; Saun-
ders et al. 1998). Suppose we are given n training pairs
(xi, yi) ∈ Rd × R as well as a regularization parameter
λ = nλ0 > 0. We construct the training Gram matrix K
by Kij = k(xi, xj). KRR gives predictions h(x) = αTkx,
where α = (K+λI)−1y and kx is the vector with ith com-
ponent k(xi, x).4 When using Fourier features, one would
not use α, but instead a primal weight vector w; still, it will
be useful for us to analyze the situation in the dual.

Proposition 1 of Cortes et al. (2010) bounds the change in
KRR predictions from approximating the kernel matrix K
by K̂, in terms of ‖K̂ −K‖2. They assume, however, that
the kernel evaluations at test time kx are unapproximated,
which is certainly not the case when using Fourier features.
We therefore extend their result to Proposition 9 before us-
ing it to analyze the performance of Fourier features.

4If a bias term is desired, we can use k′(x, x′) = k(x, x′) + 1
by appending a constant feature 1 to the embedding z. Because
this change is accounted for exactly, it affects the error analysis
here only in that we must use sup|k(x, y)| ≤ 2, in which case the
first factor of (11) becomes (λ0 + 2)/λ2

0.

866

Proposition 9. Given a training set {(xi, yi)}ni=1, with
xi ∈ Rd and yi ∈ R, let h(x) denote the result of ker-
nel ridge regression using the PSD training kernel matrix
K and test kernel values kx. Let ĥ(x) be the same using a
PSD approximation to the training kernel matrix K̂ and test
kernel values k̂x. Further assume that the training labels
are centered,

∑n
i=1 yi = 0, and let σ2

y := 1
n

∑n
i=1 y

2
i . Also

suppose ‖kx‖∞ ≤ κ. Then:

|h′(x)− h(x)| ≤ σy√
nλ0
‖k̂x − kx‖+

κσy
nλ2

0

‖K̂ −K‖2.

Proof. Let α = (K + λI)−1y, α̂ = (K̂ + λI)−1y. Thus,
using M̂−1 −M−1 = −M̂−1(M̂ −M)M−1, we have

α̂− α = −(K̂ + λI)−1(K̂ −K)(K + λI)−1y

‖α̂− α‖ ≤ ‖(K̂ + λI)−1‖2‖K̂ −K‖2‖(K + λI)−1‖2‖y‖

≤ 1

λ2
‖K̂ −K‖2 ‖y‖

since the smallest eigenvalues of K + λI and K̂ + λI are
at least λ. Since ‖kx‖ ≤

√
nκ and ‖α̂‖ ≤ ‖y‖/λ:

|ĥ(x)− h(x)| = |α̂Tk̂x − αTkx|
= |α̂T(k̂x − kx) + (α̂− α)Tkx|
≤ ‖α̂‖‖k̂x − kx‖+ ‖α̂− α‖‖kx‖

≤ ‖y‖
λ
‖k̂x − kx‖+

√
nκ‖y‖
λ2

‖K̂ −K‖2.

The claim follows from λ = nλ0, ‖y‖ =
√
nσy .

Suppose that, per the uniform error bounds of Section 2.2,
sup |k(x, y)− s(x, y)| ≤ ε. Then ‖k̂x − kx‖ ≤

√
nε and

‖K̂ −K‖2 ≤ ‖K̂ −K‖F ≤ nε, and Proposition 9 gives
∣∣∣ĥ(x)− h(x)

∣∣∣ ≤ σy√
nλ0

√
nε+

σy
nλ2

0

nε

≤ λ0 + 1

λ2
0

σyε. (11)

Thus

Pr (|h′(x)− h(x)| ≥ ε) ≤ Pr

(
‖f‖∞ ≥

λ2
0ε

(λ0 + 1)σy

)
.

which we can bound with Proposition 1 or 2. We can there-
fore guarantee |h(x)− h′(x)| ≤ ε with probability at least
δ if

D = Ω

(
d

(
(λ0 + 1)σy

λ2
0 ε

)2

[
log δ + log

λ2
0ε

(λ0 + 1)σy
− log σp`

])
.

Note that this rate does not depend on n. If we want
h′(x)→ h(x) at least as fast as h(x)’s convergence rate of
O(1/

√
n) (Bousquet and Elisseeff 2001), ignoring the log-

arithmic terms, we thus need D to be linear in n, matching
the conclusion of Rahimi and Recht (2008a).

3.2 SUPPORT VECTOR MACHINES

Consider a Support Vector Machine (SVM) classifier with
no offset, such that h(x) = wTΦ(x) for a kernel embed-
ding Φ(x) : X → H and w is found by

argmin
w∈H

1

2
‖w‖2 +

C0

n

n∑

i=1

max (0, 1− yi〈w,Φ(xi)〉)

where {(xi, yi)}ni=1 is our training set with yi ∈ {−1, 1},
and the decision function is h(x) = 〈w,Φ(x)〉.5 For a
given x, Cortes et al. (2010) consider an embedding in
H = Rn+1 which is equivalent on the given set of points.
They bound

∣∣∣ĥ(x)− h(x)
∣∣∣ in terms of ‖K̂ −K‖2 in their

Proposition 2, but again assume that the test-time kernel
values kx are exact. We will again extend their result in
Proposition 10:

Proposition 10. Given a training set {(xi, yi)}ni=1, with
xi ∈ Rd and yi ∈ {−1, 1}, let h(x) denote the decision
function of an SVM classifier using the PSD training matrix
K and test kernel values kx. Let ĥ(x) be the same using
a PSD approximation to the training kernel matrix K̂ and
test kernel values k̂x. Suppose sup k(x, x) ≤ κ. Then:

|ĥ(x)− h(x)|

≤
√

2κ
3
4C0

(
‖K̂ −K‖2 + ‖k̂x − kx‖+ |fx|

)1/4

+
√
κC0

(
‖K̂ −K‖2 + ‖k̂x − kx‖+ |fx|

)1/2

,

where fx = k̂(x, x)− k(x, x).

Proof. Use the setup of Section 2.2 of Cortes et al. (2010).
In particular, we will use ‖w‖ ≤ √κC0 and their (16-17):

Φ(xi) = K1/2
x ei

‖ŵ − w‖2 ≤ 2C2
0

√
κ‖K̂1/2

x −K1/2
x ‖,

where Kx =

[
K kx
kTx k(x, x)

]
and ei the ith standard basis.

Further, Lemma 1 of Cortes et al. (2010) says that ‖K̂1/2
x −

K
1/2
x ‖2 ≤ ‖K̂x − Kx‖1/22 . Let fx := k̂(x, x) − k(x, x);

Then, by Weyl’s inequality for singular values,

∥∥∥∥
[
K̂ −K k̂x − kx
k̂Tx − kTx fx

]∥∥∥∥
2

≤ ‖K̂−K‖2+‖k̂x−kx‖+|fx| .

5We again assume there is no bias term for simplicity; adding
a constant feature again changes the analysis only in that it makes
the κ of Proposition 10 2 instead of 1.

867

Thus

|ĥ(x)− h(x)|
=
∣∣∣(ŵ − w)TΦ̂(x) + wT(Φ̂(x)− Φ(x))

∣∣∣

≤ ‖ŵ − w‖‖Φ̂(x)‖+ ‖w‖‖Φ̂(x)− Φ(x)‖
≤
√

2κ
1
4C0‖K̂1/2

x −K1/2
x ‖1/22

√
κ

+
√
κC0‖(K̂1/2

x −K1/2
x)en+1‖

≤
√

2κ
3
4C0‖K̂x −Kx‖1/42

+
√
κC0‖K̂x −Kx‖1/2

≤
√

2κ
3
4C0

(
‖K̂ −K‖2 + ‖k̂x − kx‖+ |fx|

)1/4

+
√
κC0

(
‖K̂ −K‖2 + ‖k̂x − kx‖+ |fx|

)1/2

as claimed.

Suppose that sup|k(x, y) − s(x, y)| ≤ ε. Then, as in the
last section, ‖k̂x−kx‖ ≤

√
nε and ‖K̂−K‖2 ≤ nε. Then,

letting γ be 0 for z̃ and 1 for z̆, Proposition 10 gives

|ĥ(x)− h(x)| ≤
√

2C0

(
n+
√
n+ γ

)1/4
ε1/4

+ C0

(
n+
√
n+ γ

)1/2
ε1/2.

Then |ĥ(x)− h(x)| ≥ u only if

ε ≤ 2C2
0 + 4C0u+ u2 − 2(C0 + u)

√
C0(C0 + 2u)

C2
0 (n+

√
n+ γ)

.

This bound has the unfortunate property of requiring the
approximation to be more accurate as the training set size
increases, and thus can prove only a very loose upper bound
on the number of features needed to achieve a given ap-
proximation accuracy, due to the looseness of Proposi-
tion 10. Analyses of generalization error in the induced
RKHS, such as Rahimi and Recht (2008a) and Yang et al.
(2012), are more useful in this case.

3.3 MAXIMUM MEAN DISCREPANCY

Another area of application for random Fourier embed-
dings is to the mean embedding of distributions, which uses
some kernel k to represent a probability distribution P in
the RKHS induced by k as ϕ(P) = Ex∼P [k(x, ·)]. For
samples {Xi}ni=1 ∼ P and {Yj}mj=1 ∼ Q, we can estimate
the inner product in the embedding space, the mean map
kernel (MMK), by

MMK(X,Y) :=
1

nm

n∑

i=1

m∑

j=1

k(Xi, Yj) ≈ 〈ϕ(P), ϕ(Q)〉 .

The distance ‖ϕ(P) − ϕ(Q)‖ is known as the maximum
mean discrepancy (MMD), which can be estimated with:

‖ϕ(P)− ϕ(Q)‖2
= 〈ϕ(P), ϕ(P)〉+ 〈ϕ(Q), ϕ(Q)〉 − 2 〈ϕ(P), ϕ(Q)〉 .

MMK(X,X) is a biased estimator, because of the
k(Xi, Xi) and k(Yi, Yi) terms; removing them gives an
unbiased estimator (Gretton et al. 2012). The MMK can
be used in standard kernel methods to perform learning on
probability distributions, such as when images are treated
as sets of local patch descriptors (Muandet et al. 2012) or
documents as sets of word descriptors (Yoshikawa et al.
2014). The MMD has strong applications to two-sample
testing, where it serves as the statistic for testing the hy-
pothesis that X and Y are sampled from the same distri-
bution (Gretton et al. 2012); this has applications in, for
example, comparing microarray data from different exper-
imental situations or in matching attributes when merging
databases.

The MMK estimate can clearly be approximated with an
explicit embedding: if k(x, y) ≈ z(x)Tz(y),

MMKz(X,Y) =
1

nm

n∑

i=1

m∑

j=1

z(Xi)
Tz(Yj)

=

(
1

n

n∑

i=1

z(Xi)

)T

 1

m

m∑

j=1

z(Yj)

= z̄(X)Tz̄(Y).

Thus the biased estimator of MMK(X,X) is just ‖z̄(X)‖2;
the unbiased estimator is

n2

n2 − n

(
‖z̄(X)‖2 − 1

n2

n∑

i=1

‖z(Xi)‖2
)

When z(x)Tz(x) = 1, as with z̃, this simplifies to
n
n−1 ‖z̄(X)‖2 − 1

n−1 . When that is not necessarily true,
as with z̆, that simplification holds only in expectation.

This has been noticed a few times in the literature, e.g. by
Li and Tsang (2011). Gretton et al. (2012) gives differ-
ent linear-time test statistics based on subsampling the sum
over pairs; this version avoids reducing the amount of data
used in favor of approximating the kernel. Additionally,
when using the MMK in a kernel method this approximation
allows the use of linear solvers, whereas the other linear
approximations must still perform some pairwise compu-
tation. Zhao and Meng (2014) compare the empirical per-
formance of an approximation equivalent to z̆ against other
linear-time approximations for two-sample testing. They
find it is slower than the MMD-linear approximation but far
more accurate, while being more accurate and comparable
in speed to a block-based B-test (Zaremba et al. 2013).

868

Zhao and Meng (2014) also state a simple uniform er-
ror bound on the quality of this approximation. Specif-
ically, since we can write |MMKz(X,Y)− MMK(X,Y)|
as the mean of |f(Xi, Yj)|, uniform error bounds on f
apply directly to MMKz , including to the unbiased ver-
sion of MMKz(X,X). Moreover, since MMD2(X,Y) =
MMK(X,X) + MMK(Y, Y)− 2MMK(X,Y), its error is at
most 4 times ‖f‖∞. The advantage of this bound is that it
applies uniformly to all sample sets on the input space X ,
which is useful when we use MMK for a kernel method.

For a single two-sample test, however, we can get a tighter
bound. Consider X and Y fixed for now. Note that
EMMKz(X,Y) = MMK(X,Y), by linearity of expecta-
tion. The variance of MMKz(X,Y) is exactly

1

n2m2

∑

i,j

∑

i′,j′

Cov (s(Xi, Yj), s(Xi′ , Yj′)) , (12)

which can be evaluated using the formulas of Section 2.1
and so, viewed only as a function of D, is O(1/D). Alter-
natively, we can use a bounded difference approach: view-
ing MMKz̃(X,Y) as a function of the ωis, changing ωi to
ω̂i changes the MMK estimate by
∣∣∣∣∣∣

1

nm

n∑

i=1

m∑

j=1

2

D

(
cos(ω̂T

i (Xi − Yj))− cos(ωT
i (Xi − Yj))

)
∣∣∣∣∣∣
,

which is at most 4/D. The bound for z̆ is in fact the same
here. Thus McDiarmid’s inequality tells us that for fixed
sets X and Y and either z,

Pr (|MMKz(X,Y)− MMK(X,Y)|) ≤ 2 exp
(
− 1

8Dε
2
)
.

Thus E |MMKz(X,Y)− MMK(X,Y)| ≤ 2
√

2π/D. Simi-
larly, MMDz can be changed by at most 16/D, giving

Pr (|MMDz(X,Y)− MMD(X,Y)|) ≤ 2 exp
(
− 1

128Dε
2
)

and expected absolute error of at most 8
√

2π/D.

Now, if we consider the distributions P and Q to be fixed
but the sample sets random, Theorems 7 and 10 of Gretton
et al. (2012) give exponential convergence bounds for the
biased and unbiased population estimators of MMD, which
can easily be combined with the above bounds. Note that
this approach allows the domain X to be unbounded, un-
like the other bound. One could extend this to a bound
uniform over some smoothness class of distributions using
the techniques of Section 2.2, though we do not do so here.

4 NUMERICAL EVALUATION

4.1 APPROXIMATION ON AN INTERVAL

We first conduct a detailed study of the approxima-
tions on the interval X = [−b, b]. Specifically, we

evenly spaced 1 000 points on [−5, 5] and approxi-
mated the kernel matrix using both embeddings at D ∈
{50, 100, 200, . . . , 900, 1 000, 2 000, . . . , 9 000, 10 000},
repeating each trial 1 000 times, estimating ‖f‖∞ and
‖f‖µ at those points. We do not consider d > 1 here,
because obtaining a reliable estimate of sup|f | becomes
very computationally expensive even for d = 2.

Figure 3 shows the behavior of E‖f‖∞ as b increases for
various values of D. As expected, the z̃ embeddings have
almost no error near 0. The error increases out to one or two
bandwidths, after which the curve appears approximately
linear in `/σ, as predicted by Proposition 3.

Figure 3: The maximum error within a given radius in R,
averaged over 1 000 evaluations. Solid lines represent z̃
and dashed lines z̆; black is D = 50, blue is D = 100, red
D = 500, and cyan D = 1 000.

Figure 4 fixes b = 3 and shows the expected maximal error
as a function of D. It also plots the expected error ob-
tained by numerically integrating the bounds of Proposi-
tions 1 and 2 (using the minimum of 1 and the bound). We
can see that all of the bounds are fairly loose, but that the
first version of the bound in the propositions (with βd, the
exponent depending on d, and αε) is substantially tighter
than the second version when d = 1.

The bounds on E‖f‖∞ of Propositions 3 and 4 are un-
fortunately too loose to show on the same plot. However,
one important property does hold. For a fixed X , (8) pre-
dicts that E‖f‖∞ = O(1/

√
D). This holds empirically:

performing linear regression of logE‖f̃‖∞ against logD
yields a model of E‖f̃‖∞ = ecDm, with a 95% con-
fidence interval for m of [−0.502,−0.496]; ‖f̆‖∞ gives
[−0.503,−0.497]. The integrated bounds of Propositions 1
and 2 do not fit the scaling as a function ofD nearly as well.

Figure 5 shows the empirical survival function of the max
error forD = 500, along with the bounds of Propositions 1
and 2 and those of Propositions 5 and 6 using the empirical
mean. The latter bounds are tighter than the former for low
ε, especially for low D, but have a lower slope.

869

Figure 4: E‖f‖∞ for the Gaussian kernel on [−3, 3] with
σ = 1, based on the mean of 1 000 evaluations and on
numerical integration of the bounds from Propositions 1
and 2. (“Tight” refers to the bound with constants depend-
ing on d, and “loose” the second version; “old” is the ver-
sion from Rahimi and Recht (2007).)

The mean of the mean squared error, on the other hand,
exactly follows the expectation of Section 2.3 using µ as
the uniform distribution on X 2: in this case, E‖f̃‖µ ≈
0.66/D, E‖f̆‖µ ≈ 0.83/D. (This is natural, as the ex-
pectation is exact.) Convergence to that mean, however,
is substantially faster than guaranteed by the McDiarmid
bound of Propositions 7 and 8. We omit the plot due to
space constraints.

4.2 MAXIMUM MEAN DISCREPANCY

We now turn to the problem of computing the MMD
with a Fourier embedding. Specifically, we consider
the problem of distinguishing the standard normal dis-
tribution N (0, Ip) from the two-dimensional mixture
0.95N (0, I2) + 0.05N (0, 1

4I2). We take fixed sample sets
X and Y each of size 1 000 and compute the biased MMD
estimate with varying D for both z̃ and z̆, we used a Gaus-
sian kernel of bandwidth 1. The mean absolute errors of
the resulting estimates are shown in Figure 6. z̃ performs
mildly better than z̆.

Again, the McDiarmid bound of Section 3.3 predicts that
the mean absolute error decays as O(1/

√
D), but with too

high a multiplicative constant; the 95% confidence inter-
val for the exponent of D is [−0.515,−0.468] for z̃ and
[−0.520,−0.486] for z̆. We also know that the expected
root mean squared error decays like O(1/

√
D) via (12).

5 DISCUSSION

We provide a novel investigation of the approximation er-
ror of the popular random Fourier features, tightening ex-

Figure 5: Pr (E‖f‖∞ > ε) for the Gaussian kernel on
[−3, 3] with σ = 1 and D = 500, based on 1 000 eval-
uations (black), numerical integration of the bounds from
Propositions 1 and 2 (same colors as Figure 4), and the
bounds of Propositions 5 and 6 using the empirical mean
(yellow).

Figure 6: Mean absolute error of the biased estimator for
MMD(X,Y), based on 100 evaluations.

isting bounds and showing new ones, including an analytic
bound on E‖f‖∞ and exponential concentration about its
mean, as well as an exact form for E‖f‖µ and exponential
concentration in that case as well. We also extend previous
results on the change in learned models due to kernel ap-
proximation. We verify some aspects of these bounds em-
pirically for the Gaussian kernel. We also point out that, of
the two embeddings provided by Rahimi and Recht (2007),
the z̃ embedding (with half as many sampled frequencies,
but no additional noise due to phase shifts) is superior in
the most common case of the Gaussian kernel.

Acknowledgments

This work was funded in part by DARPA grant
FA87501220324. DJS is also supported by a Sandia Cam-
pus Executive Program fellowship.

870

References

Bernstein, Sergei (1924). “On a modification of Cheby-
shevs inequality and of the error formula of Laplace”.
Russian. In: Ann. Sci. Inst. Savantes Ukraine, Sect. Math.
1, pp. 38–49.

Bochner, Salomon (1959). Lectures on Fourier integrals.
Princeton University Press.

Boucheron, Stéphane, Gábor Lugosi, and Pascal Massart
(2013). Concentration Inequalities: A Nonasymptotic
Theory of Independence. Oxford, UK: Oxford Univer-
sity Press.

Bousquet, Olivier (2002). “A Bennett concentration in-
equality and its application to suprema of empirical
processes”. In: Comptes Rendus Mathematique 334,
pp. 495–500.

Bousquet, Olivier and André Elisseeff (2001). “Algo-
rithmic Stability and Generalization Performance”. In:
Advances in Neural Information Processing Systems,
pp. 196–202.

Cheng, Steve (2013). Differentiation under the integral
sign. Version 16. URL: http://planetmath.org/
differentiationundertheintegralsign.

Cortes, Corinna, M Mohri, and A Talwalkar (2010). “On
the impact of kernel approximation on learning accu-
racy”. In: International Conference on Artificial Intelli-
gence and Statistics, pp. 113–120.

Cucker, Felipe and Steve Smale (2001). “On the mathemat-
ical foundations of learning”. In: Bulletin of the Ameri-
can Mathematical Society 39.1, pp. 1–49.

Dai, Bo et al. (2014). “Scalable Kernel Methods via Doubly
Stochastic Gradients”. In: Advances in Neural Informa-
tion Processing Systems, pp. 3041–3049.

Dudley, Richard M (1967). “The sizes of compact subsets
of Hilbert space and continuity of Gaussian processes”.
In: Journal of Functional Analysis 1.3, pp. 290–330.

Gretton, Arthur, Karsten M Borgwardt, Malte J Rasch,
Bernhard Schölkopf, and Alex J Smola (2012). “A Ker-
nel Two-Sample Test”. In: The Journal of Machine
Learning Research 13.

Hoeffding, Wassily (1963). “Probability inequalities for
sums of bounded random variables”. In: Journal of the
American Statistical Association 58.301, pp. 13–30.

Joachims, Thorsten (2006). “Training linear SVMs in lin-
ear time”. In: ACM SIGKDD international conference on
Knowledge Discovery and Data mining.

Li, Shukai and Ivor W Tsang (2011). “Learning to Lo-
cate Relative Outliers”. In: Asian Conference on Ma-
chine Learning. Vol. 20. JMLR: Workshop and Confer-
ence Proceedings, pp. 47–62.

McDiarmid, Colin (1989). “On the method of bounded dif-
ferences”. In: Surveys in combinatorics 141.1, pp. 148–
188.

Muandet, Krikamol, Kenji Fukumizu, Francesco Dinuzzo,
and Bernhard Schölkopf (2012). “Learning from distri-

butions via support measure machines”. In: Advances in
Neural Information Processing Systems.

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learn-
ing in Python”. In: Journal of Machine Learning Re-
search 12, pp. 2825–2830.

Raff, Edward (2011-15). JSAT: Java Statistical Analysis
Tool. https://code.google.com/p/java-
statistical-analysis-tool/.

Rahimi, Ali and Benjamin Recht (2007). “Random Fea-
tures for Large-Scale Kernel Machines”. In: Advances
in Neural Information Processing Systems. MIT Press.

– (2008a). “Weighted sums of random kitchen sinks: Re-
placing minimization with randomization in learning”.
In: Advances in Neural Information Processing Systems.
MIT Press, pp. 1313–1320.

– (2008b). “Uniform approximation of functions with ran-
dom bases”. In: 46th Annual Allerton Conference on
Communication, Control, and Computing, pp. 555–561.

Saunders, C., A. Gammerman, and V. Vovk (1998). “Ridge
Regression Learning Algorithm in Dual Variables”. In:
Proceedings of the 15th International Conference on
Machine Learning, pp. 515–521.

Sonnenburg, Sören et al. (2010). “The SHOGUN Machine
Learning Toolbox”. In: Journal of Machine Learning Re-
search 11, pp. 1799–1802.

Yang, Tianbao, Yu-Feng Li, Mehrdad Mahdavi, Rong Jin,
and Zhi-Hua Zhou (2012). “Nyström Method vs Ran-
dom Fourier Features: A Theoretical and Empirical
Comparison”. In: Advances in Neural Information Pro-
cessing Systems. MIT Press.

Yoshikawa, Yuya, Tomoharu Iwata, and Hiroshi Sawada
(2014). “Latent Support Measure Machines for Bag-of-
Words Data Classification”. In: Advances in Neural In-
formation Processing Systems, pp. 1961–1969.

Zaremba, Wojciech, Arthur Gretton, and Matthew
Blaschko (2013). “B-tests: Low Variance Kernel Two-
Sample Tests”. In: Advances in Neural Information
Processing Systems.

Zhao, Ji and Deyu Meng (2014). “FastMMD: Ensemble
of Circular Discrepancy for Efficient Two-Sample Test”.
In: arXiv: 1405.2664.

871

Bayesian Structure Learning for Stationary Time Series

Alex Tank
University of Washington

alextank@uw.edu

Nicholas J. Foti
University of Washington

nfoti@uw.edu

Emily B. Fox
University of Washington

ebfox@uw.edu

Abstract

While much work has explored probabilistic
graphical models for independent data, less at-
tention has been paid to time series. The goal
in this setting is to determine conditional inde-
pendence relations between entire time series,
which for stationary series, are encoded by zeros
in the inverse spectral density matrix. We take a
Bayesian approach to structure learning, placing
priors on (i) the graph structure and (ii) spectral
matrices given the graph. We leverage a Whittle
likelihood approximation and define a conjugate
prior—the hyper complex inverse Wishart—on
the complex-valued and graph-constrained spec-
tral matrices. Due to conjugacy, we can ana-
lytically marginalize the spectral matrices and
obtain a closed-form marginal likelihood of the
time series given a graph. Importantly, our an-
alytic marginal likelihood allows us to avoid in-
ference of the complex spectral matrices them-
selves and places us back into the framework of
standard (Bayesian) structure learning. In partic-
ular, combining this marginal likelihood with our
graph prior leads to efficient inference of the time
series graph itself, which we base on a stochastic
search procedure, though any standard approach
can be straightforwardly modified to our time se-
ries case. We demonstrate our methods on ana-
lyzing stock data and neuroimaging data of brain
activity during various auditory tasks.

1 INTRODUCTION

Probabilistic graphical models (PGMs)—which compactly
encode a set of conditional independence statements—have
become a defacto tool for defining probabilistic models
over large sets of random variables. When faced with time
series, dynamic Bayesian networks (DBNs) are commonly
deployed and specify sparse between- and within-time de-

pendencies, often encoded by a template model replicated
across time to straightforwardly model the growing set of
random variables [1]. Learning template models requires
specifying the set of dependency lags to be considered
[2, 3]. In many applications, one instead aims to infer
conditional independence between entire data streams ac-
counting for interactions at all possible lags, represented by
a time series graphical model (TGM). For example, imag-
ine recording brain activity from multiple regions of the
brain over time. Inference of a TGM in this setting would
provide insight into the functional connectivity of differ-
ent brain regions, an object of substantial scientific interest
[4, 5]. TGMs have also been applied to intensive care mon-
itoring [6] and financial time series [7].

The pioneering work of Dahlhaus [8] introduced the con-
cept of undirected graphical models for stationary time se-
ries. The key insight was to transform the series to the fre-
quency domain and express the graph relationships in the
resulting spectral representation. For jointly Gaussian sta-
tionary time series, Dahlhaus [8] showed that conditional
independencies between time series are encoded by zeros
in the inverse spectral density matrices. This result is the
frequency-domain analog to Gaussian graphical modeling
in the i.i.d. (non-time-series) setting, where zeros in the
inverse covariance matrix, or precision matrix, encode the
conditional independencies between observed dimensions
[9]. Dahlhaus’ insight was first exploited to perform inde-
pendent hypothesis tests of conditional independence be-
tween each pair of time series [8], with more recent work
correcting for multiple comparisons [10, 11].

A likelihood-based approach leveraging the Whittle ap-
proximation [12] has also been introduced [13]. The Whit-
tle approximation casts the likelihood in the frequency do-
main with terms depending on the spectral density matri-
ces critical to TGM structure learning, and independently
so across frequencies. One approach scores graphs using
AIC [13]. A recent penalized likelihood variant [14] places
a joint graphical lasso [15] across frequencies to enforce a
common zero pattern in the spectral density matrices. A
penalized likelihood approach restricted to finite vector au-

872

toregressive processes has also been considered [7].

We instead consider a Bayesian approach to TGM structure
learning, with all the benefits garnered from the Bayesian
paradigm, including modeling within a generative frame-
work where information from multiple sources can inte-
grated and combined with available prior knowledge. For
example, neural data are notoriously noisy, and robust in-
ferences often rely on integrating time series across mul-
tiple trials and individuals or recording platforms (e.g.,
EEG/MEG). Our approach also leverages the Whittle like-
lihood. We then introduce a novel hyper Markov law [16],
the hyper complex inverse Wishart distribution, that serves
as a conjugate prior for the spectral density matrices whose
inverses have a zero pattern specified by a graph. For
decomposable graphs, this formulation leads to a closed-
form expression for the marginal likelihood of a multivari-
ate time series given a graph. By placing a prior on graph
structures, we achieve a fully Bayesian approach to TGM
structure learning for stationary time series. For our graph
prior, we consider a multiplicity correcting prior [17]. Our
analytic expression for the marginal likelihood is critical to
the practicality of our approach since we can avoid infer-
ence of the large set of high-dimensional, complex spec-
tral density matrices. In particular, for a length T series of
dimension p, there are T p × p spectral matrices to con-
sider. In the i.i.d. setting, inference of just a single p × p
graph-constrained covariance matrix is challenging; in this
setting, inference of the T p× p matrices is prohibitive.

Hyper Markov laws based on the hyper inverse Wishart are
a popular tool for Bayesian graphical model selection in
the i.i.d. setting [18, 19]. Indeed, many powerful Bayesian
structure learning algorithms based on this framework have
been developed, both for decomposable [20, 21] and non-
decomposable [22, 23] graphs. By framing TGM structure
learning in this common framework, we are able to apply
existing state-of-the-art inference machinery for standard
structure learning to the time series case. In this paper we
use the feature-inclusion stochastic search (FINCS) proce-
dure [20] for inference in decomposable models; however,
many other MCMC and search schemes may be used. Im-
portantly, future computational advances in Bayesian in-
ference for i.i.d. graphical models may be easily extended
using our framework to the time series case.

We test our methods on data simulated from vector autore-
gressive models with randomly generated TGMs. Our ap-
proach reaches almost perfect TGM recovery as the length
of the time series or number of independent replicates in-
creases. We then demonstrate the utility of our methods on
a global stock indices dataset and MEG neuroimaging data
of auditory attention switching tasks. In both cases we find
meaningful, intuitive structure in the data.

Our paper is organized as follows. We provide background
on graphical models and stationary time series in Sec. 2.

Our proposed TGM method is in Sec. 3, first introduced in
the context of multiple independent realizations and then
adapted to perform efficient inference of the TGM from
only a single realization. In Sec. 5, we discuss how existing
Bayesian structure learning methods may be modified to fit
our formulation. Simulated results are in Sec. 6, with our
stock and MEG analyses in Secs. 7 and 8, respectively.

2 BACKGROUND

2.1 Graphs

Let G = (V,E) be an undirected graph with vertex set
V = {1, . . . , p} and edge set E, where E ⊂ {(i, j) ∈
V × V : i 6= j}. Nodes i and j are adjacent, or neighbors,
if (i, j) ∈ E. A complete graph is one having (i, j) ∈ E for
every i, j ∈ V and complete subgraphs C ⊂ V are termed
cliques. A triple of subgraphs (A,S,B) where V = A∪B
and S = A ∩ B with S complete is called a decomposi-
tion if every path from a node in A to a node in B must
pass through S, the separator. Recursively decomposing
A and B in this fashion results in the prime components
of a graph. If the prime components are complete then the
graph is decomposable. We let the sets C = {C1, . . . , CK}
and S = {S2, . . . , SK} each denote the prime components
and their separators, respectively, generated by the decom-
position. For simplicity, we restrict our attention to decom-
posable graphs but stress that our formulation is extensible
to the non-decomposable case (see Sec. 9).

2.2 Hyper Markov distributions

For a given set of of random variables X , with realization
x ∈ X , dimensionality p, and joint density p(x), an undi-
rected graphical modelG can be constructed by stating that
an edge (i, j) /∈ E if Xi and Xj are conditionally indepen-
dent given the remaining variables, i.e. Xj ⊥⊥ Xi|XZij

where Zij = V \ {i, j}. If the graph is decomposable, the
joint density decomposes over cliques and separators:

p(x) =

∏
C∈C p(xC)∏
S∈S p(xS)

(1)

where p(xA) for A ⊂ V denotes the marginal distribution
of the set of variables xA.

A hyper Markov law [16] is a distribution over probabil-
ity measures that is concentrated on distributions that obey
the Markov properties specified by G. Examples include
the hyper Wishart and hyper Dirichlet distribution [16, 18].
Such distributions have proven pivotal in Bayesian graph-
ical modeling by serving as conjugate priors for the graph
parameters conditioned on the graph structure G. For ex-
ample, in Gaussian graphical models (GGMs), the hyper
inverse Wishart distribution provides a conjugate prior for
covariance matrices that obey a zero pattern in the pre-
cision, as specified by G. By integrating over the hyper

873

Markov distribution, one can obtain the marginal likeli-
hood of the data conditioned on the structure G alone.

2.3 Stationary time series
Let X(t) = (X1(t), ..., Xp(t))

T ∈ Rp for t ∈ Z be a
multivariate Gaussian stationary time series such that:

E(X(t)) = µ ∀t ∈ Z (2)
Cov(X(t), X(t+ h)) = Γ(h) ∀t, h ∈ Z. (3)

A time series probabilistic graphical model (TGM), G =
(V,E), may be constructed by letting (i, j) /∈ E denote
that the entire time seriesXi(:) andXj(:) are conditionally
independent given the remaining collection of time series
XZij where Zij = V \ {i, j}. For the Gaussian stationary
series we consider, one can show that conditional indepen-
dence holds between time series iff [8]

Cov(Xi(t), Xj(t+ h)|XZij) = 0 ∀h ∈ Z. (4)

The spectral density matrix of a stationary time series is
defined as the Fourier transform of the lagged covariance
matrices, Γ(h) = Cov(X(t), X(t+ h)):

S(λ) =
∞∑

h=−∞
Γ(h)e−iλh (5)

for λ ∈ [0, 2π] and S(λ) ∈ Cp×p and Hermitian positive
definite. The marginal dependencies between time series
are captured by S(λ), and from Eq. (5), S(λ)ij = 0 for
all λ ∈ [0, 2π] iff Γ(h)ij = 0 for all h ∈ Z. Further-
more, conditional independence between Gaussian station-
ary time series holds iff

S(λ)−1
ij = 0 ∀λ ∈ [0, 2π], (6)

implying that inferring zeros in the inverse spectral den-
sity matrices across frequencies equates with inferring the
TGM structure [8]. More background on the spectral ap-
proach to time series is presented in the Supplement.

3 A BAYESIAN APPROACH

There are two standard approaches to Bayesian inference
in graphical models: (1) placing a prior that jointly spec-
ifies the graph structure and associated parameters or (2)
placing a prior on graph structures and then a prior on pa-
rameters given a graph; both rely on specifying a likelihood
model. We opt for the second approach and describe the
various components in this section. At a high level, our
methods combine existing Whittle likelihood based meth-
ods [13, 14] with the hyper Markov framework to Bayesian
graphical modeling [19, 18]. In the context of our TGMs,
we introduce a conjugate hyper complex inverse Wishart
prior on graph-constrained spectral density matrices. By
integrating out the spectral density matrices, we obtain a

marginal likelihood of the time series given the graph struc-
ture, G, allowing us to straightforwardly leverage state-of-
the-art computational methods for i.i.d. Bayesian structure
learning.

3.1 Whittle likelihood

Let X = [X(1), . . . , X(T)], with x(t) ∈ Rp a realiza-
tion of a p-dimensional stationary Gaussian time series ob-
served at T time points, and X1:N = {X1, . . . ,XN} be
the collection of N independent realizations. We move to
the frequency domain by transforming each Xi using a dis-
crete Fourier transform. Let dnk ∈ Cp denote the discrete
Fourier coefficient associated with the nth time series at
frequency λk = 2πk

T :

dnk =
1

T

T−1∑

t=0

xn(t)e−iλkt. (7)

The Whittle approximation [12] assumes the Fourier coef-
ficients are independent complex normal random variables
with mean zero and covariance given by the corresponding
spectral density matrix Sk = S(λk):

dnk ∼ Nc(0, Sk) k = 0, . . . , T − 1, (8)

such that the likelihood of X1:N is approximated as

p(X1:N |S0:T−1) ≈
N∏

n=1

T−1∏

k=0

1

πp|Sk|
e−d

∗
nkS

−1
k dnk , (9)

where 1
πp|S|e

−z∗S−1z is the density of a complex normal
distribution,Nc(0, S), with S ∈ Cp×p and Hermitian posi-
tive definite. See the Supplement. The Whittle approxima-
tion holds asymptotically with large T [24, 25, 12]. This
approximation has been used in the Bayesian context in
[26, 27]

Recall that conditional independencies are encoded in the
off diagonal elements of S−1

k . If time series Xi(t) and
Xj(t) are conditionally independent, then the Whittle ap-
proximation says that as T gets large the ith and jth ele-
ments of the Fourier coefficients dnk are conditional inde-
pendent across all frequencies. Thus, ifG is decomposable,
Eq. (9) can be rewritten as

p(X1:N |G,S0:(T−1)) ≈ (10)
T−1∏

k=0

∏
C∈C

1
πN|C||SkC |N e

−trPkCS
−1
kC

∏
S∈S

1
πN|S||SkS |N e

−trPkSS
−1
kS

where

Pk =
N∑

n=1

dnkd
∗
nk (11)

is the aggregate periodogram over the N time series at fre-
quency 2πk

T . For A ⊂ V , SkA and PkA are the restriction
of both matrices to the elements in A and |A| denotes the
cardinality of the set A.

874

3.2 Hyper complex inverse Wishart prior on
graph-constrained spectral density matrices

We seek a prior for the spectral density matrices, Sk, whose
inverses each have zeros dictated by a graph G. Recall that
these Sk matrices are complex-valued and restricted to be
Hermitian positive definite. As discussed in Sec. 2.2, the
hyper inverse Wishart distribution serves as a prior for real-
valued, positive-definite matrices with pre-specified zeros
in the inverse, and is a conjugate prior for the covariance
of a zero-mean GGM. Motivated by the connection be-
tween GGMs and our TGMs, and the analogous structure
of our TGM-based Whittle likelihood of Eq. (10) to that
of a GGM with N i.i.d. observations, we propose a novel
hyper complex inverse Wishart prior with density function

p(Σ|δ,W,G) =∝ 1Σ∈M+(G)|Σ|−(δ+2p)e−trWΣ−1

(12)

for degrees of freedom δ > 0, scale matrix W ∈ Cp×p
positive definite and Hermitian, and graph G. We have
used an analogous parameterization to that of the hyper in-
verse Wishart [16]. Here, Σ ∈ M+(G) denotes that Σ is
in the set of all Hermitian positive-definite matrices with(
Σ−1

)
ij

= 0 for all (i, j) /∈ E. When G is decomposable,
the normalization constant is available and the density de-
composes over cliques and separators:

p(Σ|δ,W,G) =

∏
C∈C IWc(ΣC |δ,WC)∏
S∈S IWc(ΣC |δ,WC)

(13)

=

∏
C∈C B(WC , δ)|ΣC |−(δ+2|C|)e−trWCΣ−1

C

∏
S∈S B(WS , δ)|ΣS |−(δ+2|S|)e−trWSΣ−1

S

,

(14)

where IWc denotes the complex inverse Wishart [25] de-
tailed in the Supplement with normalizer

B(W, δ) =
|W |δ+p

π
p(p−1)

2

∏p
j=1(δ + p− j)!

. (15)

We denote our proposed prior asHIWc(δ,W,G) and spec-
ify

Sk | G ∼ HIWc(δk,Wk, G) k = 0, . . . , T − 1. (16)

In the Supplement, we show that this prior specification is
conjugate to the TGM-based Whittle likelihood of Eq. (10).
Also note that the graph,G, is shared across all frequencies.

3.3 Marginal likelihood

Due to conjugacy of our proposed hyper complex inverse
Wishart prior, the marginal likelihood of the time series
X1:N given a decomposable graph G, integrating out the
spectral density matrices S0:T−1, has a closed form which
is derived in the Supplement and given by

p(X1:N |G) ≈ π−NTp
T−1∏

k=0

h(Wk, δk, G)

h(W ∗k , δ
∗
k, G)

. (17)

Here, δ∗k = δk +N , W ∗k = Wk + Pk, and

h(W, δ,G) =

∏
C∈C B(WC , δ)∏
S∈S B(WS , δ)

. (18)

From the definition of δ∗k, we see that N , the number of
time series, acts as the effective number of observations in
this case. For the i.i.d. GGM, N represents the number
of independent vector-valued observations; in our TGM,
N plays the same role, but represents the number of inde-
pendent time series observations. Likewise, as in standard
inverse Wishart based modeling of covariances for i.i.d.
Gaussian data, based on a set of N i.i.d. complex normal
observations of Fourier coefficients dnk with covariance Sk
(see Eq. (9)), we update the prior scale matrix Wk with the
outer product Pk =

∑N
n=1 dnkd

∗
nk, which is the aggregate

periodogram (see Eq. (11)).

Having an analytic marginal likelihood of the time series
given a PGM allows us to perform inference directly over
graphs, sidestepping any thorny issues with inference di-
rectly on the T p× p spectral density matrices themselves.
This is a critical feature of the practicality of our approach.

3.4 Fractional priors for model selection

Marginal likelihoods used for model comparison [28] are
notoriously sensitive to the choice of prior parameters, or
hyperparameters. In our case, the marginal likelihood in
Eq. (17) depends strongly on the hyper complex inverse
Wishart scale matrix, Wk. Since the scale and shape of the
spectral density matrices are not known a priori, and vary
dramatically across frequencies, we employ fractional pri-
ors [29] over each Sk. Fractional priors effectively hold out
some fraction of the data, and utilize that fraction to deter-
mine an adequate hyperparameter setting for each model.
The rest of the data are then used for model comparison.
Fractional priors have been deployed for graphical model
selection in i.i.d. graphs and have a number of desirable
properties such as information consistency and demon-
strated robustness [20]. In our case, under a fractional prior
with parameter g ∈ (0, 1), the fractional marginal likeli-
hood is

p(X1:N |g,G) = π−NTp
T−1∏

k=0

h(gPk, gN,G)

h(Pk, N,G)
. (19)

Here, we see that g controls the fraction of data used for
prior formulation versus model comparison. Importantly,
we now have just a single, scalar, and interpretable param-
eter g to tune. Default settings are suggested in [29, 20].

3.5 Graph prior

There are two common approaches in the literature to spec-
ifying a prior distribution on graphs. The first approach
places a uniform distribution on the space of all possible

875

graphs [18, 30, 31]. As noted in [32], this prior puts high
weight on graphs with a medium number of edges and sig-
nificantly less weight on graphs with small or many edges.
In response to this problem, it has been proposed to place
a prior directly on the size of the graph and then consider a
conditionally uniform prior on all graphs of the same size
[32, 33, 19]. We follow this later approach and place a bi-
nomial distribution on the number of edges, k:

p(G) ∝ rk(1− r)m−k, (20)

where r is the prior probability that each of m = p(p−1)
2

possible undirected edges (i, j) ∈ V ×V is included. Since
r is unknown, we further place a Beta(a, b) prior over r.
Integrating out r gives the marginal prior over graphs

p(G) ∝ β(a+ k, b+m− k)

β(a, b)
(21)

where β(., .) is the beta function. As explored in [20], this
is a multiplicity correcting prior [34] over graphs with the
desirable property of diminishing false positive edge dis-
coveries as extra unconnected nodes are added to the graph.

4 METHODS FOR SINGLE TIME
SERIES

In some applications of interest one observes only a sin-
gle multivariate time series, N = 1, from which the graph
must be inferred. Two challenges arise in this setting: (1)
the effective number of observations informing Eq. (17) is
just one and (2) the periodogram used in computing W ∗k
is noisy regardless of the length of the series, T . The pe-
riodogram is a notoriously poor estimator of the spectral
density, and when the spectral density itself is of primary
interest, a common frequentist method is to smooth the pe-
riodogram to obtain a consistent spectral density estimator
[14, 13, 8]. One could imagine using the smoothed pe-
riodogram as a plug-in estimator in Eq. (17), scaled by
the effective degrees of freedom (see the Supplement for
more details on this plug in estimator for our formula-
tion). An alternative variance-reduction technique is the
Bartlett method [35], that divides the length T series into
M shorter series of length T

M and averages the resulting
M periodograms, but at the cost of reduced resolution (i.e.,
number of considered frequencies). This approach mimics
the implicit smoothing that occurs when we compute the
periodogram based on N truly independent series each of
length T , as in Eq. (11).

In contrast to a plug-in estimator, a natural Bayesian ap-
proach enforces smoothing across frequencies via a prior
distribution over the set of spectral densities [26]. Previ-
ous approaches have coupled elements of a Cholesky de-
composition of each spectral density matrix across frequen-
cies, however this approach is unsuitable to our case since

1) it does not enforce sparsity in the inverse spectral den-
sity and 2) a prior of this form will remove the simple
marginal likelihood structure in Eq. (17) that we harness
for efficient inference. Motivated by our aims to both share
information across frequencies and maintain the form of
the marginal, we utilize a piecewise constant prior over
spectral densities given a graph, G. We partition the in-
terval [0, 2π] into M intervals w1 =

[
0, 2π

M

)
, . . . , wj =[

2π(j−1)
M , 2πj

M

)
, . . . , wM =

[
2π(M−1)

M , 2π
]

and then draw
a separate positive definite Hermitian matrix from a HIWc

distribution for each interval:

S̃j ∼ HIWc(δ,Wj , G) j = 1, . . . ,M. (22)

Our resulting spectral density is simply

S(λ) =
M∑

j=1

1λ∈wj S̃j ∀λ ∈ [0, 2π]. (23)

Under this prior, the marginal likelihood for the single
(N = 1) time series becomes

p(X|G) ≈ π−Mp
M∏

j=1

h(Wj , δj , G)

h(W ∗j , δ
∗
j , G)

(24)

where δ∗j = δj +
∑T−1
k=0 1λk∈wj and W ∗j = Wj +∑T−1

k=0 1λk∈wjPk. By setting M = b
√
T c, we obtain an

asymptotically approximate nonparametric prior distribu-
tion over continuous spectral density matrices: for T large
enough the prior puts positive support on spectral density
matrices arbitrarily close to any continuous spectral density
over [0, 2π]. Furthermore, under this setting as T →∞, the
number of Fourier frequencies, and thus number of samples∑T−1
k=0 1λk∈wj , within each interval grows as

√
T .

5 INFERENCE

Bayesian structural learning algorithms for decomposable
graphs come in two flavors: MCMC samplers and stochas-
tic search procedures [20, 22]. By placing decomposable
graphical inference for time series in the same framework
as for the i.i.d. case via our analytic p(X1:N | G), we can
easily modify both types of existing methods for the time
series case.

Classical MCMC samplers for decomposable graphs sam-
ple from the posterior over graphs via Metropolis-Hastings
(MH) by proposing single edge addition and deletion
moves that keep the graph decomposable [18, 32]. While
it is possible to obtain any decomposable graph from any
other decomposable graph via a sequence of edge addi-
tions and deletions, the path may be hard to reach lead-
ing to prohibitive converge times for even a moderate num-
ber of vertices p. More recent graph samplers add more
global moves by either randomly generating new decom-
posable graphs [36] or by generating from a Markov chain

876

over a junction tree representation of the graph [21]. To
compute the MH acceptance ratio, these samplers rely on
computing ratios of present and proposed marginal likeli-
hoods. For simple edge additions and deletions, this ratio
simplifies into a function of only the cliques and separators
that change between moves. For our case, the ratio expands
into a product over frequencies of the same affected cliques
and separators, allowing simple modifications to the exist-
ing implementations of these samplers to handle TGMs.

All current MCMC samplers struggle to scale to even mod-
erate numbers of nodes. In contexts where point estimates
suffice, we can instead consider stochastic search proce-
dures. We utilize a modification of the efficient feature-
inclusion stochastic search (FINCS) [20] for inference in
our TGMs. FINCS interleaves three moves: 1) single edge
addition and deletion moves for local changes to the graph,
2) global sampling moves where edges are added inde-
pendently to an empty graph and the final graph is trian-
gulated to maintain decomposability, and 3) resampling
at step t a full graph from a list of past visited models,
{G1, G2, . . . , Gt−1}, in proportion to their posterior prob-
abilities. In steps 1) and 2), to enforce exploration of high
probability regions, edge additions that tend to continually
improve the model probability are preferentially selected
in proportion to a current heuristic estimate of the posterior
edge probability

q̂ij(t) =

∑t
k=1 1{i,j}∈Etp(X1:N |Gt)p(Gt)∑t

k=1 p(X1:N |Gt)
, (25)

where Et is the current edge set. Edge deletions are per-
formed proportional to q̂−1

ij (t). As in MCMC samplers
[18, 32], the junction tree representation of the graph can
be efficiently updated after each local move since the two
graphs only differ by a single clique and its corresponding
separators, allowing a quick computation of the marginal
likelihood of a proposed graph in Eq. (17). Importantly,
the FINCS algorithm depends on the data only through the
marginal likelihoods of the cliquesC—used to compute the
full graph marginal likelihood—which in our TGM case is
a product over T frequencies:

T−1∏

k=0

B(Wk,C , δ)

B(W ∗k,C , δ
∗)
. (26)

That is, our implementation simply modifies the original
FINCS definition of the clique marginal likelihood.

6 SIMULATIONS

To test our TGM methods, we consider simulated setups for
both N > 1 and N = 1 time series each generated from an
order-1 vector autoregressive process, denoted VAR(1), for
p = 20 dimensions. Specifically, we simulated data from
the model

x(t) = Ax(t− 1) + ε(t), (27)

where x(t) ∈ Rp, A ∈ Rp×p, and ε(t) ∼ N(0, Ip×p). The
inverse spectral density of a VAR(1) process is given by [7]

S(λ)−1 = I +ATA+ e−iλA+ eiλAT . (28)

Random sparse TGMs were generated by first restricting
A to be upper triangular. Following the simulated setup in
[7], we set the diagonal elements to a constantAii = .5 and
sample the upper diagonal elements as aij ∼ .5δij , where
δij ∼ Binomial(ρ) with ρ = .2 for all simulations. The
graph G was then determined by identifying the zeros in
S(λ)−1 using Eq. (28). ProposedAmatrices were accepted
when both the absolute value of all eigenvalues of A were
less than one, making the series stationary, and the graphG
determined by A was decomposable.

We note that since our formulation reduces to a standard
structure learning problem, our emphasis is less on assess-
ing performance with respect to p, which should follow
from whichever structure learning algorithm is selected;
instead, our focus is on N and T , which are specific to
the time series and spectral analysis. For example, in the
FINCS algorithm [20], it is quoted that the method can han-
dle graphs with up to roughly p = 100 nodes.

6.1 Multiple time series

To analyze how our TGM structure learning performance
varies with the number of time series replicates,N , we sim-
ulated data for N ∈ {20, 50, 100, 150, 200, 250, 300, 350}
and T ∈ {25, 50, 100500, 1000, 1500, 2000}. This pro-
cess was repeated 200 times for each combination of N
and T . Each time series is first decomposed into its dis-
crete Fourier components. We then ran 10,000 iterations
of the FINCS algorithm using the fractional marginal like-
lihood in Eq. (19) with g = 4

N , a default setting [29, 20].
Our graph prior followed the multiplicity correcting form
in Eq. (21) with a = b = 1. The graph visited with highest
posterior probability was then selected and true and false
positive rates were computed. Results are displayed in
Fig. 1. Across T , the true positive rate increases quickly
with the number of series, N , achieving an almost per-
fect true positive rate by about N = 150. We also see
that the rate of increase in the true positive rate increases
with the length of the series T , which relates to the num-
ber of considered Fourier frequencies. It is interesting to
note that for all T under consideration, the false positive
rate tends to start very low (≈ .005) for N = 20 replicates
then spike at N ∈ {50, 100} before declining again. This
occurs due to the fact that at low N , very few edges are
introduced at all, perhaps due to an Occam’s razor type ef-
fect of marginal likelihoods penalizing model complexity.
As N starts to increase, more edges are introduced, both
correct and incorrect, and as N further increases, the false
edges are pruned and true edges are retained, leading to a
decline in the false positive rate. Note that the false posi-
tive spike tends to be more pronounced for time series of

877

50 150 250 350

0.
4

0.
6

0.
8

1.
0

N

Tr
ue

 P
os

iti
ve

 R
at

e

50 150 250 350

0.
00

5
0.

01
5

0.
02

5

N

Fa
ls

e
P

os
iti

ve
 R

at
e

50 150 250 350

0
20

0
40

0
60

0
80

0

N

T
im

e
(s

)

0.6 0.8 1.0 1.2 1.4

0.
6

0.
8

1.
0

1.
2

1.
4

1

1

T
25
50
100
500
1000
1500
2000

2000 6000 10000

0.
5

0.
6

0.
7

0.
8

T

Tr
ue

 P
os

iti
ve

 R
at

e

2000 6000 10000

0.
01

4
0.

02
0

0.
02

6

T

Fa
ls

e
P

os
iti

ve
 R

at
e

2000 6000 10000

2
3

4
5

6
7

8

T

Lo
g

R
un

ni
ng

 T
im

e
(s

)

0.6 0.8 1.0 1.2 1.4

0.
6

0.
8

1.
0

1.
2

1.
4

1

1

Methods
Plug In
Piecewise
Bartlett

Figure 1: Top: As a function of the number of time series N , and plotted for various values of their length T , (left) mean
true positive rate, (middle) median false positive rate, and (right) mean running time computed across the 200 replicates.
Standard error bars are small relative to the scale of the plots and are omitted for clarity. Bottom: Same plots as a function
of T for a single time series (N = 1), and plotted for various periodogram smoothing techniques.

smaller length, T ∈ {25, 50}. One would expect to see
significant improvements, especially for small N , by lever-
aging the piecewise constant prior of Sec. 4 and explored
in Sec. 6.2 where we show that we are able to learn graphs
from just N = 1 time series. However, we chose not to
include this prior in this analysis so as not to confound its
effect with our performance. Here, the noisy periodogram
is smoothed implicitly by averaging over N .

Finally, in Fig. 1 we see that runtime increases as a func-
tion of T due to the dependence on T in the marginal like-
lihood computation of Eq. (17), though significant cost re-
ductions can be achieved through parallelizations leverag-
ing the product form.

6.2 Single time series: comparison of methods

To assess the performance of our single-time-series meth-
ods outlined in Sec. 4, we simulated a time series with
T ∈ {500, 1000, 2500, 5000, 7500, 10000}. For the piece-
wise constant prior method, we use M = b

√
T c pieces.

We compare against the Bartlett time-series-splitting ap-
proach with the number of splits set to b

√
T c. We also ex-

amine a smoothed plug-in estimator of the spectral density
using a Daniell smoother outlined in the Supplement with
m = b

√
T

2 c for a total window size of 2b
√
T

2 c+1 ≈ b
√
T c.

For each method, the FINCS algorithm was run for 10,000
iterations and the highest scoring graph was selected and
used to compute true and false positive rates. This pro-
cess was repeated 200 times with results displayed in Fig. 1

with a replicate representative of our median performance
shown in Fig. 2. The true positive rate increases for all
three methods as a function of T , achieving a final value of
about .9 for both the plug-in and piecewise constant prior
methods and .79 for the Bartlett method at T = 10000.
All methods maintain a low false positive rate around .02.
Overall, the Bartlett method performs uniformly worse in
terms of both true and false positive performance, while the
piecewise prior method performs on par with the plug-in
method, but at a fraction of the computational cost. Further
experimental simulations are given in the Supplement.

7 GLOBAL STOCK INDICES
We explore the utility of our method in discovering con-
ditional independencies between countries inherent in the
global financial system. A similar experiment was con-
ducted in [7] using a penalized-likelihood approach to
learn TGMs, but restricted to finite-order VAR mod-
els with pre-specified order. (Recall that our method
only assumes Gaussian stationarity, which includes the
class of possibly infinite order VAR processes.) Using
www.globalfinancialdata.com, we acquired the
daily closing prices of 17 stock indices in US dollars for
various countries around the world (see the Supplement for
the full list) from June 3, 1997 to June 30, 1999. Missing
prices were backfilled and only days where all exchanges
traded were considered which resulted in time series of
length 542. Following standard practice when analyzing
stock prices, we converted the closing prices, pt, on day t
to log-returns according to

878

T = 1000 T = 2500 T = 5000 T = 10000

Figure 2: Example evolution of error types for the piecewise prior method as a function of series length, T ∈
{1000, 2500, 5000, 10000} and N = 1, for a selected graph. Blue, red, black, and white entries indicate true positives,
false negatives, false positives, and true negatives, respectively. The graph was selected by choosing the graph out of 200
replications with median true positive rate at T = 2500.

rt = 100 log(pt/pt−1).

We compare the graphical models inferred under two set-
tings: (i) treating the log-returns as independent (as in [20])
and (ii) using our methods to learn a TGM treating the log-
returns as a time series. The best graphical models learned
in each scenario are depicted in Fig. 3.

For our TGM algorithm, we computed the periodogram for
the 17-dimensional time series, resulting in 542 complex-
valued matrices of dimension 17× 17. Since we only have
one realization of the time series, we smoothed the pe-
riodogram using the techniques and settings discussed in
Sec. 6.2. We then ran the FINCS algorithm for 100,000
iterations. We compare the resulting highest-probability
graph (see Fig. 3) to that learned treating the time series
as independent based on the model in [20], again using
100,000 iterations of the FINCS algorithm, but in its origi-
nally proposed form for non-temporal data.

In Figure 3, we see that in both cases we recover some geo-
graphical relationships between countries. However, the in-
dependent model returns a significantly denser graph than
that learned by our TGM approach. Since the independent
model is not taking the temporal nature of the data into
account, some edges are likely spurious due to random cor-
relations. The TGM, on the other hand, provides an inter-
pretable and intuitive structure with strong geographic con-
nections. For example, there is a distinct United Kingdom
/ eurozone cluster of Germany ‘DE’, Finland ‘FI’, Nether-
lands ‘NL’, Belgium ‘BE’, Switzerland ‘CH’, Austria ‘AT’,
Spain ‘ES’, Italy ‘IT’, Portugal ‘PT’, and the United King-
dom ‘UK’. Another distinct cluster includes the United
States ‘US’, Canada ‘CA’, Hong Kong ‘HK’ (whose cur-
rency is linked to the USD), and Australia ‘AU’ (whose
currency is correlated with the US S&P), with Japan ‘JP’
hanging off this cluster. One perhaps strange missing link
is between Ireland ‘IE’ and the UK, though the US and Ire-
land have a long history of economic connections possibly
explaining why Ireland is included in the separator between
these two distinct clusters.

In the Supplement, we include (i) a comparison of our

Figure 3: Graphical models with the highest posterior prob-
ability for the stock index data. Left: Treating the log-
returns as independent. Right: Using our TGM algorithm.
In both cases, we see regional connections, but our TGM
algorithm results in a sparser and more interpretable graph.

learned graph with that of Songsiri et. al. [7], and (ii) fur-
ther details on the stock data itself.

8 MAGNETOENCEPHALOGRAPHY
DATA

Next we learn TGMs to capture the structure of underlying
cortical dynamics from magnetoencephalography (MEG)
data collected from ten subjects who were asked to per-
form a task while maintaining focus on an audio stream
and then again while switching focus [37]. Our goal is to
discover differences in the underlying TGMs between the
non-switching and switching attention conditions. Such
differences provide further understanding into the neural
underpinnings of auditory selective selection, an important
constituent to communication.

The data were collected for each subject performing the ex-
periment in the switching (S) and non-switching (N) atten-
tion conditions. For both S and N conditions, each subject
performed the task under an auditory condition of high (U)
and low (D) pitch, and spatial conditions of left (L) and
right (R) attending. For each of the eight possible condi-
tions, MEG recordings were collected resulting in a 150-
dimensional time series of length 992 where each dimen-

879

In
te

rs
ec

tio
n

D
iff

er
en

ce

High pitch (U) Low pitch (D) Left (L) Right (R)

Figure 4: Learned TGMs for different MEG conditions. Each node on the periphery represents a brain region with loca-
tion indicating anatomical location. Top: Intersection of learned edges between switching and non-switching conditions.
Bottom: Black edges indicating those in the non-switching condition but not in the switching and red vice versa.

sion corresponds to a localized region of the brain. We
have between 17 and 30 trials for each subject, resulting in
about 200 replicate time series per condition.

Often with MEG data, many of the dimensions are domi-
nated by noise due to limited brain activity in that region.
We reduced the number of brain regions we studied from
150 to 50 by only considering those with largest variance.
In particular, for each trial we mean-centered all of the
time-series and computed the variance and retained the top
50 most volatile regions.

We computed the periodogram for each trial and averaged
across trials within each condition, resulting in eight peri-
odograms. We ran our spectral TGS version of the FINCS
algorithm on these periodograms for 100,000 iterations
with fractional prior parameter 4/Nc, whereNc is the num-
ber of trials for condition c ∈ {S, N} × {U, D, L, R}. We
also ran the algorithm for 1.7 million iterations and saw no
difference in the resulting graphs.

In Figure 4, we depict the intersections and differences be-
tween the learned graphs for each experimental condition.
We see in the top row that there are a lot of shared connec-
tions between the switching and non-switching conditions
for each auditory condition. In the bottom row, the differ-
ences between the switching and non-switching conditions
are depicted where red edges are those in the switching
condition but not the non-switching, and black edges are
the reverse. The difference plots show that there seems to
be substantial “rewiring” for many of the conditions with
many edges connecting frontal to back regions. Interest-
ingly, we again see consistencies in these rewirings across
conditions. Additionally, we reliably uncover local connec-
tions between adjacent brain regions across experimental
conditions. Such observations provide guidance for devel-
oping experiments and methods to discern the underlying
mechanisms that give rise to these different structures.

9 DISCUSSION
We introduced a Bayesian approach to graphical model
structure learning for time series. In particular, we propose
a prior—the hyper complex inverse Wishart distribution—
for the spectral density matrices in a Whittle likelihood ap-
proximation. For decomposable graphs, this prior is conju-
gate and leads to a closed-form expression of the marginal
likelihood of the time series given the graph, marginalizing
the spectral density matrices across frequencies. Being able
to integrate out this large collection of complex matrices—
one for each time point—is critical to developing a prac-
tical and scalable inference algorithm. For this, exploiting
the fact that our marginal likelihood is analogous to that for
i.i.d. Gaussian graphical models [19] but with a product
over the number of Fourier frequencies, allows us to de-
ploy straightforward modifications to existing MCMC and
stochastic search algorithms. Our simulations show that
when many time series are observed, our method recovers
the correct graph. When a single time series is observed,
we proposed a method to increase robustness of our graph
estimation using a piecewise constant prior. Our results on
the stock and MEG datasets demonstrated our ability to dis-
cover intuitive and interpretable structure in these datasets,
importantly leveraging the temporal dependencies.

Extensions to non-decomposable graphs are possible us-
ing the i.i.d. graph approaches in both [31] and [22].
A Laplace approximation to the marginal likelihood for
non-decomposable graphs is proposed in [22], which
we could similarly utilize to approximate the frequency-
specific marginal at each term in Equation (17). Paral-
lelizing the Laplace approximation computation across fre-
quencies would lead to a scalable method for inference in
non-decomposable time series graphs.
Acknowledgements: This work was supported by DARPA Grant
FA9550-12-1-0406 negotiated by AFOSR, ONR Grant N00014-
10-1-0746, NSF CAREER Award IIS-1350133, and AFOSR
Grant FA9550-12-1-0453.

880

References

[1] D. Koller and N. Friedman. Probabilistic Graphical Mod-
els: Principles and Techniques. MIT Press, 2009.

[2] B. D. Ziebart, A. K. Dey, and J. A. Bagnell. Learning selec-
tively conditioned forest structures with applications to dbns
and classification. UAI, 2007.

[3] M. R. Siracusa and J. W. Fisher III. Tractable Bayesian in-
ference of time-series dependence structure. In AISTATS,
2009.

[4] O. Sporns. Networks of the Brain. MIT Press, 2010.

[5] T. Medkour, A. T. Walden, Burgess A. P., and Strelets V.
B. Brain connectivity in positive and negative syndrome
schizophrenia. Neuroscience, 169(4):1779 – 1788, 2010.

[6] U. Gather, M. Imhoff, and R. Fried. Graphical models
for multivariate time series from intensive care monitoring.
Statistics in Medicine, 21(18), 2002.

[7] J. Songsiri and L. Vandenberghe. Topology selection
in graphical models of autoregressive processes. JMLR,
11:2671–2705, 2010.

[8] R. Dahlhaus. Graphical interaction models for multivariate
time series. Metrika, 51(2):157–172, 2000.

[9] S. L. Lauritzen. Graphical Models. Oxford University
Press, 1996.

[10] Y. Matsuda. A test statistic for graphical modelling of mul-
tivariate time series. Biometrika, 93(2):pp. 399–409, 2006.

[11] R. J. Wolstenholme and A. T. Walden. An efficient approach
to graphical modeling of time series. ArXiv e-prints, 2015.

[12] P. Whittle. The analysis of multiple stationary time series.
JRSS(B), 15(1):125–139, 1953.

[13] F. R. Bach and M. I. Jordan. Learning graphical models for
stationary time series. IEEE Transactions on Signal Pro-
cessing, 52(8):2189–2199, 2004.

[14] A. Jung, G. Hannak, and N. Görtz. Graphical LASSO based
model selection for time series. ArXiv e-prints, 2014.

[15] P. Danaher, P. Wang, and D. M. Witten. The joint graph-
ical lasso for inverse covariance estimation across multiple
classes. JRSS(B), 76(2):373–397, 2014.

[16] A. P. Dawid and S. L. Lauritzen. Hyper Markov laws in the
statistical analysis of decomposable graphical models. Ann.
Statist., 21(3):1272–1317, 1993.

[17] C. M. Carvalho and J. G. Scott. Objective Bayesian
model selection in Gaussian graphical models. Biometrika,
96(3):497–512, 2009.

[18] P. Giudici and P. J. Green. Decomposable graphical Gaus-
sian model determination. Biometrika, 86(4):785–801,
1999.

[19] B. Jones, C. Carvalho, A. Dobra, C. Hans, C. Carter,
and M. West. Experiments in stochastic computation for
high-dimensional graphical models. Statistical Science,
20(4):388–400, 2005.

[20] J. G. Scott and C. M. Carvalho. Feature-inclusion stochas-
tic search for Gaussian graphical models. J. Comp. Graph.
Stat., 17(4):790–808, 2008.

[21] P. J. Green and A. Thomas. Sampling decomposable
graphs using a Markov chain on junction trees. Biometrika,
100(1):91–110, 2013.

[22] M. Baback, E. Khan, K. M. Murphy, and B. M. Mar-
lin. Accelerating Bayesian structural inference for non-
decomposable Gaussian graphical models. In NIPS, pages
1285–1293, 2009.

[23] A. Mohammadi and E. C. Wit. Bayesian structure learning
in sparse Gaussian graphical models. Bayesian Analysis,
10(1):109–138, 2015.

[24] P. J. Brockwell and R. A. Davis. Time Series: Theory and
Methods. Springer-Verlag, New York, NY, 1991.

[25] D.R. Brillinger. Time Series: Data Analysis an Theory.
Holden-Day, 2001.

[26] O. Rosen and D. S. Stoffer. Automatic estimation of
multivariate spectra via smoothing splines. Biometrika,
94(2):335–345, 2007.

[27] R. T. Krafty, O. Rosen, D. S. Stoffer, D. J. Buysse, and M. H.
Hall. Conditional spectral analysis of replicated multiple
time series with application to nocturnal physiology. ArXiv
e-prints, 2015.

[28] R. E. Kass and A. E. Raftery. Bayes factors. Journal of the
American Statistical Association, 90:773–795, 1995.

[29] A. O’Hagan. Fractional Bayes factors for model compari-
son. JRSS(B), 57(1):99–138, 1995.

[30] P. Dellaportas, P. Giudici, and G. Roberts. Bayesian in-
ference for nondecomposable graphical Gaussian models.
Sankhy: The Indian Journal of Statistics, 65(1):43–55,
2003.

[31] A. Roverato. Hyper inverse Wishart distribution for non-
decomposable graphs and its application to Bayesian in-
ference for Gaussian graphical models. Scand. J. Stat,
29(3):391–411, 2002.

[32] H. Armstrong, C. Carter, K. Wong, and R. Kohn. Bayesian
covariance matrix estimation using a mixture of decom-
posable graphical models. Statistics and Computing,
19(3):303–316, 2009.

[33] A. Dobra, C. Hans, B. Jones, J.R. Nevins, Joseph R.,
G. Yao, and M. West. Sparse graphical models for explor-
ing gene expression data. Journal of Multivariate Analysis,
90(1):196–212, 2004.

[34] J. G. Scott and J. O. Berger. An exploration of aspects of
Bayesian multiple testing. Journal of Statistical Planning
and Inference, 136:2144–2162, 2006.

[35] M. S. Bartlett. Smoothing periodograms from time series
with continuous spectra. Nature, 161(4096):686–687, 1948.

[36] H. Zhu, N. Strawn, and D. B. Dunson. Bayesian graphi-
cal models for multivariate functional data. ArXiv e-prints,
2014.

[37] E. Larson and A.K.C. Lee. Switching auditory attention us-
ing spatial and non-spatial features recruits different cortical
networks. NeuroImage, 84:681–687, 2014.

881

Learning from Pairwise Marginal Independencies

Johannes Textor
Theoretical Biology & Bioinformatics
Utrecht University, The Netherlands

johannes.textor@gmx.de

Alexander Idelberger
Theoretical Computer Science

University of Lübeck, Germany
alex@pirx.de

Maciej Liśkiewicz
Theoretical Computer Science

University of Lübeck, Germany
liskiewi@tcs.uni-luebeck.de

Abstract

We consider graphs that represent pairwise
marginal independencies amongst a set of vari-
ables (for instance, the zero entries of a covari-
ance matrix for normal data). We characterize the
directed acyclic graphs (DAGs) that faithfully ex-
plain a given set of independencies, and derive al-
gorithms to efficiently enumerate such structures.
Our results map out the space of faithful causal
models for a given set of pairwise marginal inde-
pendence relations. This allows us to show the
extent to which causal inference is possible with-
out using conditional independence tests.

1 INTRODUCTION

DAGs and other graphical models encode conditional in-
dependence (CI) relationships in probability distributions.
Therefore, CI tests are a natural building block of al-
gorithms that infer such models from data. For exam-
ple, the PC algorithm for learning DAGs (Kalisch and
Bühlmann, 2007) and the FCI (Spirtes et al., 2000) and
RFCI (Colombo et al., 2012) algorithms for learning max-
imal ancestral graphs are all based on CI tests.

CI testing is still an ongoing research topic, to which the
UAI community is contributing (e.g. Zhang et al., 2011;
Doran et al., 2014). But at least for continuous vari-
ables, CI testing will always remain more difficult than
testing marginal independence for quite fundamental rea-
sons (Bergsma, 2004). Intuitively, the difficulty is that two
variables x and y could be dependent “almost nowhere”,
e.g., for only a few values of the conditioning variable z.
This suggests a two-staged approach to structure learning:
first try to learn as much as possible from simpler indepen-
dence tests before applying CI tests. Here, we present a
theoretical basis for extracting as much information as pos-
sible from the simplest kind of stochastic independence –
pairwise marginal independence.

(a) (b) (c)

Figure 1: (a) A marginal independence graph U whose
missing edges represent pairwise marginal independencies.
(b) A faithful DAG G entailing the same set of pairwise
marginal independencies as U . (c) A graph for which no
such faithful DAG exists.

More precisely, we will consider the following problem.
We are given the set of pairwise marginal independencies
that hold amongst some variables of interest. Such sets
can be represented as graphs whose missing edges corre-
spond to independencies (Figure 1a). We call such graphs
marginal independence graphs. We wish to find DAGs on
the same variables that entail exactly the given set of pair-
wise marginal independencies (Figure 1b). We call such
DAGs faithful. Sometimes no such DAGs exist (e.g., Fig-
ure 1c). Else, we are interested in finding the set of all faith-
ful DAGs, hoping that this set will be substantially smaller
than the set of all possible DAGs on the same variables.
Those candidate DAGs could then be probed further by us-
ing joint marginal or conditional independence tests.

Other authors have represented marginal (in)dependencies
using bidirected graphs (Drton and Richardson, 2003;
Richardson, 2003; Drton and Richardson, 2008b), instead
of undirected graphs like we do here. We hope that the
reader is compensated for this small departure from com-
munity standards by the lower amount of clutter in our fig-
ures, and the greater ease to link our work to standard graph
theoretical results. We also emphasize that we model only
pairwise, and not higher-order joint dependencies. How-
ever, for Gaussian data, pairwise independence entails joint
independence. In that case, our marginal independence
graphs are equivalent to covariance graphs (Cox and Wer-
muth, 1993; Pearl and Wermuth, 1994; Drton and Richard-
son, 2003, 2008a; Peña, 2013), whose missing edges rep-
resent zero covariances.

882

Our results generalize the work of Pearl and Wermuth
(1994) who showed (but did not prove) how to find some
faithful DAGs for a given covariance graph. We review
these and other connections to related work in Section 3
where we also link our problem to the theory of partially
ordered sets (posets). This connection allows us to iden-
tify certain maximal and minimal faithful DAGs. Based
on these “boundary DAGs” we then derive a characteri-
zation of all faithful DAGs (Section 4), and construct re-
lated enumeration algorithms (Section 5). We use these al-
gorithms to explore the combinatorial structure of faithful
DAG models (Section 6) which leads, among other things,
to a quantification of how much pairwise marginal inde-
pendencies reduce structural causal uncertainty. Finally,
we ask what happens when a set of independencies can not
be explained by any DAG. How many additional variables
will we need? We prove that this problem is NP-hard (Sec-
tion 7).

Preliminary versions of many of the results presented in
this paper were obtained in the Master’s thesis of the sec-
ond author (Idelberger, 2014).

2 PRELIMINARIES

In this paper we use the abbreviation iff for the connective
“if and only if”. A graph G = (V,E) consists of a set
of nodes (variables) V and set of edges E. We consider
undirected graphs (which we simply refer to as graphs),
directed graphs, and mixed graphs that can have both undi-
rected edges (denotes as x−y) and directed edges (denoted
as x → y). Two nodes are adjacent if they are linked by
any edge. A clique in a graph is a node set C ⊆ V such
that all u, v ∈ C are adjacent. Conversely, an independent
set is a node set I ⊆ V in which no two nodes u, v ∈ I
are adjacent. A maximal clique is a clique for which no
proper superset of nodes is also a clique. For any v ∈ V ,
the neighborhood N(v) is the set of nodes adjacent to v
and the boundary Bd(v) is the neighborhood of v including
v, i.e. Bd(v) = N(v) ∪ {v}. A node v is called simpli-
cial if Bd(v) is a clique. Equivalently, v is simplicial iff
Bd(v) ⊆ Bd(w) for all w ∈ N(v) (Kloks et al., 2000).
A clique that contains simplicial nodes is called a simplex.
Every simplex is a maximal clique, and every simplicial
node belongs to exactly one simplex. The degree d(v) of
a node v is |N(v)|. If for two graphs G = (V,E(G)) and
G′ = (V,E(G′)) we have E(G) ⊆ E(G′), then G is an
edge subgraph of G′ and G′ is an edge supergraph of G.
The skeleton of a directed graph G is obtained by replacing
every edge u→ v by an undirected edge u− v.

A path of length n− 1 is a sequence of n distinct nodes in
which successive nodes are pairwise adjacent. A directed
path x → . . . → y consists of directed edges that all point
towards y. In a directed graph, a node u is an ancestor
of another node v if u = v or if there is a directed path

u → · · · → v. For each edge u → v, we say that u is
a parent of v and v is a child of u. If two nodes u, v in
a directed graph have a common ancestor w (which can
be u or v), then the path u ← . . . ← w → . . . → v is
called a trek connecting u and v. A DAG is called transitive
if, for all u 6= v, it contains an edge u → v whenever
there is a directed path from u to v. Given a DAG G, the
transitive closure is the unique transitive graph that implies
the same ancestor relationships as G, whereas the transitive
reduction is the unique edge-minimal graph that implies the
same ancestor relationships.

In this paper we encounter several well-known graph
classes, e.g., chordal graphs and trivially perfect graphs.
We will give brief definitions when appropriate, but we di-
rect the reader to the excellent survey by Brandstädt et al.
(1999) for further details.

3 SIMPLE MARGINAL INDEPENDENCE
GRAPHS

In this section we define the class of graphs which can
be explained using a directed acyclic graph (DAG) on the
same variables. We will refer to such graphs as simple
marginal independence graphs (SMIGs).

Definition 3.1. A graph U = (V,E(U)) is called the sim-
ple marginal independence graph (SMIG), or marginal in-
dependence graph of a DAG G = (V,E(G)) if for all
v, w ∈ V , v − w ∈ E(U) iff v and w have a common
ancestor in G. If U is the marginal independence graph of
G then we also say that G is faithful to U . SMIG is the
set of all graphs U for which there exists a faithful DAG
G. Note that each DAG has exactly one marginal indepen-
dence graph.

Again, we point out that marginal independence graphs are
often called (and drawn as) bidirected graphs in the liter-
ature, though the term “marginal independence graph” has
also been used by various authors (e.g. Tan et al., 2014).

3.1 SMIGs and Dependency Models

In this subsection we recall briefly the general setting for
modeling (in)dependencies proposed by Pearl and Verma
(1987) and show the relationship between that model and
SMIGs. In the definitions below V denotes a set of vari-
ables and X , Y and Z are three disjoint subsets of V .

Definition 3.2 (Pearl and Verma (1987)). A dependency
modelM over V is any subset of triplets (X,Z, Y) which
represent independencies, that is, (X,Z, Y) ∈ M asserts
that X is independent of Y given Z.

A probabilistic dependency modelMP is defined in terms
of a probability distribution P over V . By definition
(X,Z, Y) ∈ MP iff for any instantiation x̂, ŷ and ẑ of
the variables in these subsets P (x̂ | ŷ ẑ) = P (x̂ | ẑ).

883

A directed acyclic graph dependency modelMG is defined
in terms of a DAG G. By definition (X,Z, Y) ∈ MG iff
X and Y are d-separated by Z in G (for a definition of
d-separation by a set Z see Pearl and Verma (1987)).

We define a marginal dependency model, resp. marginal
probabilistic and marginal DAG dependency model, analo-
gously as Pearl and Verma (1987) with the restriction that
the second component of any triple (X,Z, Y) is the empty
set. Thus, such marginal dependency models are sets of
pairs (X,Y). It is easy to see that the following properties
are satisfied.

Lemma 3.3. Let M be a marginal probabilistic depen-
dency model or a marginal DAG dependency model. Then
M is closed under:

Symmetry: (X,Y) ∈M ⇔ (Y,X) ∈M and
Decomposition: (X,Y ∪W) ∈M ⇒ (X,Y) ∈M.

Moreover, ifM is a marginal DAG dependency model then
it is also closed under

Union: (X,Y), (X,W) ∈M ⇒ (X,Y ∪W) ∈M.

The marginal probabilistic dependency model is not closed
under union in general. For instance, consider two inde-
pendent, uniformly distributed binary variables y and w
and let x = y ⊕ w, where ⊕ denotes xor of two bits. For
the modelMP defined in terms of probability over x, y, w
we have that ({x}, {y}) and ({x}, {w}) belong toMP but
({x}, {y, w}) does not.

In this paper we will not assume that the marginal inde-
pendencies in the data are closed under union. Instead, we
only consider pairwise independencies, which we formal-
ize as follows.

Definition 3.4. LetM be a marginal probabilistic depen-
dency model over V . Then the simple marginal indepen-
dence graph U = (V,E(U)) of M is the graph in which
x− y ∈ E(U) iff ({x}, {y}) 6∈ M.

Thus, in general, marginal independence graphs do not
contain any information on higher-order joint independen-
cies present in the data. However, under certain com-
mon parametric assumptions, dependency models would
be closed under union as well. This holds, for instance,
if the data are normally distributed. In that case, marginal
independence is equivalent to zero covariance, pairwise in-
dependence implies joint independence, and marginal in-
dependence graphs become covariance graphs.

The following is not difficult to see.

Proposition 3.5. A marginal dependency modelM which
is closed under symmetry, decomposition, and union coin-
cides with the transitive closure of {({x}, {y}) : x, y ∈
V } ∩M over symmetry and union.

This Proposition entails that if the marginal dependencies
in the data are closed under these properties, then the entire

marginal dependency model is represented by the marginal
independence graph.

3.2 SMIGs and Partially Ordered Sets

To reach our aim of a complete and constructive character-
ization of the DAGs faithful to a given SMIG, it is useful
to observe that marginal independence graphs are invariant
with respect to the insertion or deletion of transitive edges
from the DAG. We formalize this as follows.

Definition 3.6. A (labelled) poset P is a DAG that is iden-
tical to its transitive closure.

Proposition 3.7. The marginal independence graphs of a
DAG G and its transitive closure P(G) are identical.

Proof. Two nodes are not adjacent in the marginal inde-
pendence graph iff they have no common ancestor in the
DAG. Transitive edges do not influence ancestral relation-
ships.

We thus restrict our attention to finding posets that are faith-
ful to a given SMIG. Note that faithful DAGs can then be
obtained by deleting transitive edges from faithful posets;
since no DAG obtained in this way can be an edge sub-
graph of two different posets, this construction is unique
and well-defined. In particular, by deleting all transitive
edges from a poset, we obtain a sparse graphical represen-
tation of the poset as defined below.

Definition 3.8. Given a poset P = (V,E), its transitive
reduction is the unique DAG GP = (V,E′) for which
P(G) = P and E′ is the smallest set where E′ ⊆ E.

Transitive reductions are also known as Hasse diagrams,
though Hasse diagrams are usually unlabeled. Different
posets can have the same marginal independence graphs,
e.g. the posets with Hasse diagrams P1 = x → y → z
and P2 = x← y → z. Similarly, Markov equivalence is a
sufficient but not necessary condition to inducing the same
marginal independence graphs (adding an edge x → z to
P2 changes the poset and the Markov equivalence class, but
not the marginal independence graph).

3.3 Recognizing SMIGs

We first recall existing results that show which graphs ad-
mit a faithful DAG at all, and how to find such DAGs if
possible. Note that many of these results have been stated
without proof (Pearl and Wermuth, 1994), but our connec-
tion to posets will make some of these proofs straightfor-
ward. The following notion related to posets is required.

Definition 3.9 (Bound graph (McMorris and Zaslavsky,
1982)). For a poset P = (V,E), the bound graph B =
(V,E′) of P is the graph where x − y ∈ E′ iff x and y
share a lower bound, i.e., have a common ancestor in P .

884

chordalSMIG

trivially
perfect

Figure 2: Relation between chordal graphs, trivially perfect
graphs, and SMIG. In graph theory, SMIG is known as
the class of (upper/lower) bound graphs (Cheston and Jap,
2006).

Theorem 3.10. SMIG is the set of all graphs for which
every edge is contained in a simplex.

Proof. This is Theorem 2 in Pearl and Wermuth (1994)
(who referred to simplexes as “exterior cliques”). Alter-
natively, we can observe that the marginal independence
graph U of a poset P (Definition 3.1) is equal to its bound
graph (Definition 3.9). The characterization of bound
graphs as “edge simplicial” graphs has been proven by
McMorris and Zaslavsky (1982) by noting that simplicial
nodes in U correspond to possible minimal elements in P .
We note that this result predates the equivalent statement in
Pearl and Wermuth (1994).

Though all bound graphs have a faithful poset, not all
bound graphs have one with the same skeleton; see Fig-
ure 1a,b for a counterexample. However, the graphs for
which a poset with the same skeleton can be found are
nicely characterizable in terms of forbidden subgraphs.

Theorem 3.11 (Pearl and Wermuth (1994)). Given a graph
U , a DAG G that is faithful to U and has the same skeleton
exists iff U is trivially perfect (i.e., U has no P4= nor
a C4= as induced subgraph).

It is known that the trivially perfect graphs are the intersec-
tion of the bound graphs and the chordal graphs (Figure 2;
Cheston and Jap, 2006).

This nice result begs the question whether a similar char-
acterization is also possible for SMIG. As the following
observation shows, that is not the case.

Proposition 3.12. Every graph U is an induced subgraph
of some graph U ′ ∈ SMIG.

Proof. Take any graph U = (V,E) and construct a new
graph U ′ as follows. For every edge e = u − v in U , add
a new node ve to V and add edges ve − u and ve − v.
Obviously U is an induced subgraph of U ′. To see that U ′
is in SMIG, consider the DAG G consisting of the nodes
in U ′ and the edges v ← ve → u and for each newly added

node in U ′. Then U is the marginal independence graph of
G.

The graph class characterization implies efficient recogni-
tion algorithms for SMIGs.

Theorem 3.13. It can be tested in polynomial time whether
a graph U is a SMIG.

Proof. Verifying the graphical condition of Theorem 3.10
amounts to testing whether all edges reside within a sim-
plex. However, knowing that SMIGs are bound graphs, we
can apply an efficient algorithm for bound graph recog-
nition that uses radix sort and simplex elimination and
achieves a runtime of O(n+ sm) (Skowrońska and Sysło,
1984), where s ≤ n is the number of simplexes in the
graph. This is typically better than O(n3) because large m
implies small s and vice versa. Alternatively, we can apply
known fast algorithms to find all simplicial nodes (Kloks
et al., 2000).

4 FINDING FAITHFUL POSETS

We now ask how to find faithful DAGs for simple marginal
independence graphs. We observed that marginal inde-
pendence graphs cannot distinguish between transitively
equivalent DAGs, so a perhaps more natural question is:
which posets are faithful to a given graph? As pointed out
before, we can obtain all DAGs from faithful posets in a
unique manner by removing transitive edges. A further ad-
vantage of the poset representation will turn out to be that
the “smallest” and “largest” faithful posets can be charac-
terized uniquely (up to isomorphism); as we shall also see,
this is not as easy for DAGs, except for marginal indepen-
dence graphs in a certain subclass.

4.1 Maximal Faithful Posets

Our first aim is to characterize the “upper bound” of the
faithful set. That is, we wish to identify those posets for
which no edge supergraph is also faithful. We will show
that a construction described by Pearl and Wermuth (1994)
solves exactly this problem.

Definition 4.1. For a graph U = (V,E(U)), the sink graph
S(U) = (V,E(S(U))) is constructed as follows: for each
edge u − v in U , add to E(S(U)): (1) an edge u → v if
Bd(u) (Bd(v); (2) an edge u ← v if Bd(u)) Bd(v); (3)
an edge u− v if Bd(u) = Bd(v).

For instance, the sink graph of the graph in Figure 1a is the
graph in Figure 1b.

Definition 4.2 (Pearl and Wermuth (1994)). A sink orien-
tation of a graph U is any DAG obtained by replacing every
undirected edge of S(U) by a directed edge.

We first need to state the following.

885

Lemma 4.3. Every sink orientation of U is a poset.

Proof. Fix a sink orientation G and consider any chain
x → y → z. By construction, this implies that Bd(x) (
Bd(z). Hence, if x and z are adjacent in the sink graph,
then the only possible orientation is x → z. There can
be two reasons why x and z are not adjacent in the sink
graph: (1) They are not adjacent in U . But then G would
not be faithful, since G implies the edge x − z. (2) The
edge was not added to the sink graph. But this contradicts
Bd(x) (Bd(z).

This Lemma allows us to strengthen Theorem 2 by Pearl
and Wermuth (1994) in the sense that we can replace
“DAG” by “maximal poset” (emphasized):

Theorem 4.4. P is a maximal poset faithful to U iff P is a
sink orientation of U .

The following is also not hard to see.

Lemma 4.5. For a SMIG U , every DAG G that is faithful
to U is a subgraph of some sink orientation of U .

Proof. Obviously the skeleton of G cannot contain edges
that are not in U . So, suppose x → y is an edge in G but
conflicts with the sink orientation; that is, the sink graph
contains the edge y → x. That is the case only if BdU (y)
is a proper subset of BdU (x). However, in the marginal
independence graph of G, any node that is adjacent to x
(has a common ancestor) must also be adjacent to y. Thus,
the marginal independence graph of G cannot be U .

Every maximal faithful poset for U can be generated by
first fixing a topological ordering of S(U) and then generat-
ing the DAG that corresponds to that ordering, an idea that
has also been mentioned by Drton and Richardson (2008a).
This construction makes it obvious that all maximal faithful
posets are isomorphic.

For curiosity of the reader, we note that S(U) can also
be viewed as a complete partially directed acyclic graph
(CPDAG), which represents the Markov equivalence class
of edge-maximal DAGs that are faithful with U . CPDAGs
are used in the context of inferring DAGs from data (Spirtes
et al., 2000; Chickering, 2003; Kalisch and Bühlmann,
2007), which is only possible up to Markov equivalence.

4.2 Minimal Faithful Posets

A minimal faithful poset to U is one from which no further
relations can be deleted without entailing more indepen-
dencies than are given by U .

Definition 4.6. Let U = (V,E) be a graph and let I ⊆ V
be an independent set. Then I→U is the poset consisting of
the nodes in I , their neighbors in U , and directed edges
i→ j for each i, j where j ∈ N(i).

(a) (b) (c) (d)

Figure 3: (a) A graph U with three simplicial nodes I (open
circles). (b) Its unique minimal faithful poset I→U . (c,d) The
unique faithful DAGs with minimum (c) or maximum (d)
numbers of edges.

For example, Figure 3b shows the unique I→U for the graph
in Figure 3a.

Theorem 4.7. Let U = (V,E) ∈ U . Then a poset P is a
minimal poset faithful to U iff P = I→U for a set I consist-
ing of one simplicial vertex for each simplex.

Proof. We first show that if I is a set consisting of one sim-
plicial node for each simplex, then I→U is a minimal faithful
poset. Every edge e ∈ E(U) resides in a simplex, so it is
either adjacent to I or both of its endpoints are adjacent to
some i ∈ I . In both cases, I→U implies e. Also I→U does not
imply more edges than are in U . Now, suppose we delete an
edge i→ x from I→U . This edge must exist in U , else i was
not simplicial. But now I→U no longer implies this edge.
Thus, I→U is minimal. Second, assume that P is a mini-
mal faithful poset. Assume P would contain a sequence
of two directed edges x → y → z. Then P would also
contain the edge x → z. But then y → z could be deleted
fromP without changing the dependency graph, andP was
not minimal. So, P does not contain any directed path of
length more than 1. Next, observe that for each simplex in
U , the nodes must all have a common ancestor in P . With-
out paths of length > 1, this is only possible if one node i
in the simplex is a parent of all other nodes, and there are
no edges among the child nodes of i. Finally, each such i
must be a simplicial node in U ; otherwise, it would reside
in two or more simplexes, and would have to be the unique
parent in those simplexes. But then the children of i would
form a single simplex in U .

Like the maximal posets, all minimal posets are thus iso-
morphic. We point out that the minimal posets contain no
transitive edges and therefore, they are also edge-minimal
faithful DAGs. However, this does not imply that min-
imal posets have the smallest possible number of edges
amongst all faithful DAGs (Figure 3). There appears to
be no straightforward characterization of the DAGs with
the smallest number of edges for marginal independence
graphs in general. However, a beautiful one exists for the
subclass of trivially perfect graphs.

Definition 4.8. A tree poset is a poset whose transitive re-
duction is a tree (with edges pointing towards the root).

Theorem 4.9. A connected SMIG U has a faithful tree
poset iff it is trivially perfect.

886

Proof. The bound graph of a tree poset is identical to its
comparability graph (Brandstädt et al., 1999), which is the
skeleton of the poset. Comparability graphs of tree posets
coincide with trivially perfect graphs (Wolk, 1965).

Since no connected graph on n nodes can have fewer edges
than the transitive reduction of a tree poset on the same
nodes (i.e., n− 1), tree posets coincide with faithful DAGs
having the smallest possible number of edges.

How do we construct a tree for a given trivially perfect
graph? Every such graph must have a central point, which
is a node that is adjacent to all other nodes. We set this node
as the sink of the tree, and continue recursively with the
subgraphs obtained after removing the central point. Each
subgraph is also trivially perfect and can thus be oriented
into a tree. After we are done, we link the sinks of the trees
of the subgraphs to the original central point to obtain the
full tree (Wolk, 1965).

5 FINDING FAITHFUL DAGS

If a given marginal independence graph U admits faithful
DAG models, then it is of interest to enumerate these. A
trivial enumeration procedure is the following: start with
the sink graph of U , choose an arbitrary edge e, and form
all 2 or 3 subgraphs obtained by keeping e (if it is directed),
orienting e (if it is undirected), or deleting it. Apply the
procedure recursively to these subgraphs. During the recur-
sion, do not touch edges that have been previously chosen.
If the current graph is a DAG that is faithful to U , output it;
otherwise, stop the recursion.

However, we can do better by exploiting the results of the
previous section, which will allow us to derive enumeration
algorithms that generate representations of multiple DAGs
at each step.

5.1 Enumeration of Faithful DAGs

Having characterized the maximal and minimal faithful
posets, we are now ready to construct an enumeration pro-
cedure for all DAGs that are faithful to a given graph. We
first state the following combination of Theorem 4.4 and
Theorem 4.7.

Proposition 5.1. A DAG G = (V,E(G)) is faithful to a
SMIG U = (V,E(U)) iff (1) G is an edge subgraph of some
sink orientation of U and (2) the transitive closure of G is
an edge supergraph of I→U for some node set I consisting
of one simplicial node for each simplex.

From this observation, we can derive our first construction
procedure for faithful DAGs.

Proposition 5.2. A DAG G is faithful to a SMIG U =
(V,E(U)) iff it can be generated by the following steps.
(1) Pick any set I ⊆ V consisting of one simplicial node

(a)

(b)

Figure 4: Example of the procedure in Proposition 5.2 that,
given a SMIG (a), enumerates all faithful DAGs (b). For
brevity, only the graphs that correspond to a fixed topolog-
ical ordering are displayed. Only one set I (open circles)
can be chosen in step (1). Thick edges and filled nodes
highlight the DAG G. Mandatory edges (solid) link I to
the sources of G; if any such edge was absent, one of the
relationships in the poset I→U would be missing. Optional
edges (dashed) are transitively implied from the mandatory
ones and G.

for each simplex. (2) Generate any DAG on the nodes V \I
that is an edge subgraph of some sink orientation of U . (3)
Add any subset of edges from I→U such that the transitive
closure of the resulting graph contains all edges of I→U .

While step (3) may seem ambiguous, Figure 4 illustrates
that after step (2), the edges from I→U decompose nicely
into mandatory and optional ones. This means that we can
in fact stop the construction procedure after step (2) and
output a “graph pattern”, in which some edges are marked
as optional. This is helpful in light of the potentially huge
space of faithful models, because every graph pattern can
represent an exponential number of DAGs.

5.2 Enumeration of Faithful Posets

The DAGs resulting from the procedure in Proposition 5.2
are in general redundant because no care is taken to avoid
generating transitive edges. By combining Propositions 5.1
and 5.2, we obtain an algorithm that generates sparse, non-
redundant representations of the faithful DAGs.

Theorem 5.3. A poset P is faithful to U = (V,E(U)) iff
it can be generated by the following steps. (1) Pick any set
I ⊆ V consisting of one simplicial node for each simplex.
(2) Generate a poset P on the nodes V \ I that is an edge
subgraph of some sink orientation of U . (3) Add I→U to P .

A nice feature of this construction is that step (3) is unam-
biguous: every choice for I in step (1) and P in step (2)
yields exactly one poset. Figure 5 gives an explicit pseu-
docode for an algorithm that uses Theorem 5.3 to enumer-
ate all faithful posets.

Our algorithm is efficient in the sense that at every inter-

887

function FAITHFULPOSETS(U = (V (U), E(U)))
function LISTPOSETS(G,S, R, I→U)

if G is acyclic and atransitive then
Output G ∪ I→U
if skeleton of G (skeleton of S then

e← some edge consistent with E(S)\R
LISTPOSETS(G,S, R ∪ {e}, I→U)
E(G)← E(G) ∪ {e}
LISTPOSETS(G,S, R ∪ {e}, I→U)

for all node sets I of U consisting of one simplicial
node per simplex do

G ← empty graph on nodes of V (U) \ I
S ← sink graph of U on nodes of V (U) \ I
LISTPOSETS(G,S, ∅, I→U)

Figure 5: Enumeration algorithm for faithful posets.

(a)

(b)

Figure 6: (a) A graph U and its sink graph. (b) Transitive
reductions of all 6 faithful posets that are generated by Al-
gorithm FAITHFULPOSETS for the input graph (a).

nal node in its recursion tree, it outputs a faithful poset. At
every node we need to evaluate whether the current G is
acyclic and atransitive (i.e., contains no transitive edges),
which can be done in polynomial time. Also simplexes and
their simplicial vertices can be found in polynomial time
Kloks et al. (2000). Thus, our algorithm is a polynomial de-
lay enumeration algorithm similar to the ones used to enu-
merate adjustment sets for DAGs (Textor and Liśkiewicz,
2011; van der Zander et al., 2014). Figure 6 shows an ex-
ample output for this algorithm.

6 EXAMPLE APPLICATIONS

In this section, we apply the previous results to explore
some explicit combinatorial properties of SMIGs and their
faithful DAGs.

connected conn. unique
n graphs SMIGs DAG
2 1 1 0
3 2 2 1
4 6 4 1
5 21 10 2
6 112 27 4
7 853 88 10
8 11,117 328 27
9 261,080 1,460 90

10 11,716,571 7,799 366

Table 1: Comparison of the number of unlabeled connected
graphs with n nodes to the number of such graphs that are
also SMIGs. For n = 13 (not shown), non-SMIGs outnum-
ber SMIGs by more than 107 : 1.

6.1 Counting SMIGs

We revisit the question: when can a marginal independence
graph allow a causal interpretation (Pearl and Wermuth,
1994)? More precisely, we ask how many marginal inde-
pendence graphs on n variables are SMIGs. We reformu-
late this question into a version that has been investigated
in the context of poset theory. Let the height of a poset P
be the length of a longest path in P . The following is an
obvious implication of Theorem 4.7.

Corollary 6.1. The number M(n) of non-isomorphic
SMIGs with n nodes is equal to the number of non-
isomorphic posets on n variables of height 1.

Enumeration of posets is a highly nontrivial problem, and
an intensively studied one. The online encyclopedia of
integer sequences (OEIS) tabulates M(n) for n up to 40
(Wambach, 2015). We give the first 10 entries of the se-
quence in Table 1 and compare it to the number of graphs
in general (up to isomorphism). As we observe, the fraction
of graphs that admit a DAG on the same variables decreases
swiftly as n increases.

6.2 Graphs with a Unique Faithful DAG

From a causal inference viewpoint, the best we can hope
for is a SMIG to which only single, unique DAG is faithful.
The classical example is the graph ·− ·− ·, which for more
than 3 nodes generalizes to a “star” graph. However, for
5 or more nodes there are graphs other than the star which
also induce a single unique DAG. Combining Lemma 4.5
and Theorem 4.7 allows for a simple characterization of all
such SMIGs.

Corollary 6.2. A SMIG U with n nodes has a unique faith-
ful DAG iff each of its simplexes contains only one simpli-
cial node and its sink orientation equals I→U .

Based on this characterization, we computed the number of

888

n posets with n nodes faithful to Cn
1 1 1
2 3 2
3 19 9
4 219 76
5 4,231 1,095
6 130,023 25,386
7 6,129,859 910,161
8 431,723,379 49,038,872
9 44,511,042,511 3,885,510,411

10 6,611,065,248,783 445,110,425,110

Table 2: Possible labelled posets on n variables before and
after observing a complete SMIG Cn.

SMIGs with unique DAGs for n up till 9 (Table 1). Inter-
estingly, this integer sequence does not seem to correspond
to any known one.

6.3 Information Content of a SMIG

How much information does a marginal independence
graph contain? Let us denote the number of posets on
n variables by P (n). After observing a marginal inde-
pendence graph U , the number of models that are still
faithful to the data reduces to size P (n) − k(U), where
k(U) ≤ P (n) (indeed, quite often k(U) = P (n) as we
can see in Table 1). Of course, the number k(U) strongly
depends on the structure of the SMIG U . But even in the
worst case when U is a complete graph, the space of pos-
sible models is still reduced because not all DAGs entail a
complete marginal independence graph.

Thus, the following simple consequence of Theorem 4.7
helps to derive a worst-case bound on how much a SMIG
reduces structural uncertainty with respect to the model
space of posets with n variables.

Corollary 6.3. The number of faithful posets with respect
to a complete graph with n nodes is n times the number of
posets with n− 1 nodes.

Table 2 lists the number of possible posets before and after
observing a complete SMIG for up to 10 variables. In this
sense, at n = 10, the uncertainty is reduced about 15-fold.

We note that a similar but more technical analysis is possi-
ble for uncertainty reduction with respect to DAGs instead
of posets. We omit this due to space limitations.

7 MODELS WITH LATENT VARIABLES

In this section we consider situations in which a graph U
is not a SMIG (which can be detected using the algorithm
in Theorem 3.13). Similarly to the definition proposed in
Pearl and Verma (1987) for the general dependency mod-
els, to obtain faithful DAGs for such graphs we will extend

the DAGs with some auxiliary nodes. We generalize Defi-
nition 3.1 as follows.

Definition 7.1. Let U = (V,E(U)) be a graph and let
Q, with Q ∩ V = ∅, be a set of auxiliary nodes. A DAG
G = (V ∪ Q,E(G)) is faithful to U if for all v, w ∈ V ,
v − w ∈ E(U) iff v and w have a common ancestor in G.

The result below follows immediately from Proposi-
tion 3.12.

Proposition 7.2. For every graph U there exists a faithful
DAG U with some auxiliary nodes.

Obviously, if U ∈ SMIG then there exists a faithful DAG
to U with Q = ∅. For U /∈ SMIG, from the proof of
Proposition 3.12 it follows that there exists a set Q of at
most |E(U)| nodes and a DAG G such that G is faithful
to U with auxiliary nodes Q. But the problem arises to
minimize the cardinality of Q.

Theorem 7.3. The problem to decide if for a given graph
U and an integer k, there exists a faithful DAG with at most
k auxiliary nodes, is NP-complete.

Proof. It is easy to see that the problem is in NP. To prove
that it is NP-hard, we show a polynomial time reduction
from the edge clique cover problem, that is known to be
NP-complete (Karp, 1972). Recall that the problem edge
clique cover is to decide if for a graph U and an integer k
there exist a set of k subgraphs of U , such that each sub-
graph is a clique and each edge of U is contained in at least
one of these subgraphs?

Let U = (V,E) and k be an instance of the edge clique
cover problem, with V = {v1, . . . , vn}. We construct the
marginal independence graph U ′ as follows. Let W =
{w1, . . . , wn}. Then V (U ′) = V ∪ W and E(U ′) =
E ∪ {vi − wi : i = 1, . . . , n}. Obviously, U ′ can be
constructed from U in polynomial time. We claim that
U = (V,E) can be covered by ≤ k cliques iff for U ′ there
exists a faithful DAG G with at most k auxiliary nodes.

Assume first that U = (V,E) can be covered by at most k
cliques, let us say C1, . . . , Ck′ , with k′ ≤ k. Then we can
construct a faithful DAG G for U ′ with k′ auxiliary nodes
as follows. Its set of nodes is V (G) = V ∪W ∪Q, where
Q = {q1, . . . , qk′}. The edges E(G) can be defined as

{wi → vi : i = 1, . . . , n} ∪
⋃

j

{qj → v : v ∈ Cj}.

It is easy to see that G is faithful to U ′.
Now assume that a DAG G, with at most k auxiliary nodes
Q, is faithful to U ′. From the construction of U ′ it follows
that for all different nodes vi, vj ∈ V there is no directed
path from vi to vj in G. If such a path exists, then vi is an
ancestor of vj in G. Since vi−wi is an edge of U ′, the nodes
vi andwi have a common ancestor in G, which must be also

889

a common ancestor of wi and vj – a contradiction because
wi and vj are not incident in U ′. Thus, all treks connecting
pairs of nodes from V in G must contain auxiliary nodes.

Next, we slightly modify G: for each wi we remove all in-
cident edges and add the new edge wi → vi. The resulting
graph G′, is a DAG which remains faithful to U ′. Indeed,
we cannot obtain a directed cycle in the G′ since no wi has
an in-edge and the original G was a DAG. To see that the
obtained DAG remains faithful to U ′ note first that after
the modifications, wi and vi have a common ancestor in G
whereas wi and vj , with i 6= j, do not. Otherwise, it would
imply a directed path from vi to vj since wi is the only
possible ancestor of both nodes – a contradiction. Finally,
note that any trek connecting vi and vj in G cannot contain
a node from W . Similarly, no trek between vi and vj in
G′ contains a node from W . We get that vi and vj have a
common ancestor in G iff they have a common ancestor in
G′.
Thus, in G′ the auxiliary nodes Q are incident to V , but not
to nodes from W . Below we modify G′ further and obtain
a DAG G′′, in which every auxiliary node is incident with
a node in V via an out-edge only. To this aim we remove
from G′ all edges going out from a node in V to a node
in Q.

Obviously, if vi and vj have a common ancestor in G′′,
then they also have a common ancestor in G′, because
E(G′′) ⊆ E(G′). The opposite direction follows from the
fact we have shown at the beginning of this proof that for
all different nodes vi, vj ∈ V there is no directed path from
vi to vj in G. This is true also for G′. Thus, if vi and
vj have a common ancestor, say x, in G′ then x ∈ Q and
there exist directed paths x → y1 → . . . yr → vi and
x → y′1 → . . . y′r′ → vj such that also all y1, . . . , yr and
y′1, . . . , y

′
r′ belong to Q. But from the construction of G′′ it

follows that both paths belong also to G′′.
Since G′′ is faithful to U , for every auxiliary node Q the
subgraph induced by its children Ch(Q) ∩ V in G′′ is a
clique in U ′. Moreover every edge vi − vj of the graph
U belongs to at least one such clique. Thus the subgraphs
induced by Ch(q1) ∩ V, . . . ,Ch(qk′) ∩ V , with k′ ≤ k, are
cliques that cover U .

8 DISCUSSION

Given a graph that represents a set of pairwise marginal
independencies, which causal structures on the same vari-
ables might have generated this graph? Here we character-
ized all these structures, or alternatively, all maximal and
minimal ones. Furthermore, we have shown that it is possi-
ble to deduce how many exogenous variables (which corre-
spond to simplicial nodes) the causal structure might have,
and even to tell whether it might be a tree. For graphs that
do not admit a DAG on the same variables, we have studied

the problem of explaining the data with as few additional
variables as possible, and proved it to be NP-hard. This
may be surprising; the related problem of finding a mixed
graph that is Markov equivalent to a bidirected graph and
has as few bidirected edges as possible is efficiently solv-
able (Drton and Richardson, 2008a).

The connection to posets emphasizes that sets of faithful
DAGs have complex combinatorics. Indeed, if there are
no pairwise independent variables, then we obtain the clas-
sical poset enumeration problem (Brinkmann and McKay,
2002). Our current, unoptimized implementation of the al-
gorithm in Figure 5 allows us to deal with dense graphs up
to about 12 nodes (sparse graphs are easier to deal with).
We point out that our enumeration algorithms operate with
a “template graph”, i.e., the sink orientation. It is possible
to incorporate certain kinds of background knowledge, like
a time-ordering of the variables, into this template graph
by deleting some edges. Such further constraints could
greatly reduce the search space. Another additional con-
straint that could be used for linear models is the preci-
sion matrix (Cox and Wermuth, 1993; Pearl and Wermuth,
1994), though finding DAGs that explain a given precision
matrix is NP-hard in general (Verma and Pearl, 1993),

We observed that the pairwise marginal independencies
substantially reduce structural uncertainty even in the worst
case (Table 1). Causal inference algorithms could exploit
this to reduce the number of CI tests. The PC algorithm
(Kalisch and Bühlmann, 2007), for instance, forms the
marginal independence graph as a first stage before per-
forming any CI tests. At that stage, it could be immedi-
ately tested if the resulting graph is a SMIG, and if not, the
algorithm can terminate as no faithful DAG exists.

In summary, we have mapped out the space of causal struc-
tures that are faithful to a given set of pairwise marginal
independencies using constructive criteria that lead to well-
structured enumeration procedures. The central idea under-
lying our results is that faithful models for marginal inde-
pendencies are better described by posets than by DAGs.
Our results allow to quantify how much our uncertainty
about a causal structure is reduced when we invoke the
faithfulness assumption and observe a set of marginal in-
dependencies.

It future work, it would be interesting to extend our ap-
proach to small (instead of empty) conditioning sets, which
would cover cases where we only wish to perform CI tests
with low dimensionality.

890

References
W. P. Bergsma. Testing conditional independence for con-

tinuous random variables. Technical Report 2004-049,
EURANDOM, 2004.

A. Brandstädt, J. P. Spinrad, et al. Graph classes: a survey,
volume 3. Siam, 1999.

G. Brinkmann and B. D. McKay. Posets on up to 16 points.
Order, 19(2):147–179, 2002.

G. A. Cheston and T. Jap. A survey of the algorithmic
properties of simplicial, upper bound and middle graphs.
Journal of Graph Algorithms and Applications, 10(2):
159–190, 2006.

D. M. Chickering. Optimal structure identification with
greedy search. Journal of Machine Learning Research,
3:507–554, 2003.

D. Colombo, M. H. Maathuis, M. Kalisch, and T. S.
Richardson. Learning high-dimensional directed acyclic
graphs with latent and selection variables. Annals of
Statistics, 40(1):294–321, 2012.

D. R. Cox and N. Wermuth. Linear dependencies repre-
sented by chain graphs. Statistical Science, 8(3):204–
283, 1993.

G. Doran, K. Muandet, K. Zhang, and B. Schölkopf. A
permutation-based kernel conditional independence test.
In Proceedings of UAI 2014, pages 132–141, 2014.

M. Drton and T. S. Richardson. A new algorithm for maxi-
mum likelihood estimation in gaussian graphical models
for marginal independence. In Proceedings of UAI 2003,
pages 184–191, 2003.

M. Drton and T. S. Richardson. Graphical methods for ef-
ficient likelihood inference in gaussian covariance mod-
els. Journal of Machine Learning Research, 9:893–914,
2008a.

M. Drton and T. S. Richardson. Binary models for marginal
independence. Journal of the Royal Statistical Society,
Ser. B, 70(2):287–309, 2008b.

A. Idelberger. Generating causal diagrams from stochastic
dependencies (in German). Master’s thesis, Universität
zu Lübeck, Germany, 2014.

M. Kalisch and P. Bühlmann. Estimating high-dimensional
directed acyclic graphs with the PC-algorithm. Journal
of Machine Learning Research, 8:613–636, 2007.

R. M. Karp. Reducibility among combinatorial problems.
Springer, 1972.

T. Kloks, D. Kratsch, and H. Müller. Finding and counting
small induced subgraphs efficiently. Information Pro-
cessing Letters, 74:115–121, 2000.

F. McMorris and T. Zaslavsky. Bound graphs of a partially
ordered set. Journal of Combinatorics, Information &
System Sciences, 7:134–138, 1982. ISSN 0250-9628;
0976-3473/e.

J. Pearl and T. Verma. The logic of representing dependen-
cies by directed graphs. In Proceedings of AAAI 1987 –
Volume 1, pages 374–379. AAAI Press, 1987.

J. Pearl and N. Wermuth. When Can Association Graphs
Admit A Causal Interpretation?, volume 89 of Lecture
Notes in Statistics, pages 205–214. Springer, 1994.

J. M. Peña. Reading dependencies from covariance graphs.
International Journal of Approximate Reasoning, 54(1):
216–227, 2013.

T. S. Richardson. Markov properties for acyclic directed
mixed graphs. The Scandinavian Journal of Statistics,
30(1):145–157, 2003.

M. Skowrońska and M. M. Sysło. An algorithm to recog-
nize a middle graph. Discrete Applied Mathematics, 7
(2):201–208, 1984. ISSN 0166-218X.

P. Spirtes, C. N. Glymour, and R. Scheines. Causation,
prediction, and search. MIT press, 2000.

K. M. Tan, P. London, K. Mohan, S.-I. Lee, M. Fazel, and
D. Witten. Learning Graphical Models With Hubs. Jour-
nal of Machine Learning Research, 15:3297–3331, Oct
2014.

J. Textor and M. Liśkiewicz. Adjustment criteria in causal
diagrams: An algorithmic perspective. In Proceedings
of UAI 2011, pages 681–688. AUAI Press, 2011.

B. van der Zander, M. Liśkiewicz, and J. Textor. Construct-
ing separators and adjustment sets in ancestral graphs. In
Proceedings of UAI 2014, pages 907–916, 2014.

T. Verma and J. Pearl. Deciding morality of graphs is NP-
complete. In Proceedings of UAI 1993, pages 391–399,
1993.

G. Wambach. The On-Line Encyclopedia of Integer Se-
quences. http://oeis.org/A007776, 2015. Number of con-
nected posets with n elements of height 1. Accessed in
March 2015.

E. S. Wolk. A note on the comparability graph of a tree.
Proceedings of the American Mathematical Society, 16:
17–20, 1965.

K. Zhang, J. Peters, D. Janzing, and B. Schölkopf. Kernel-
based conditional independence test and application in
causal discovery. In Proceedings of UAI 2011, pages
804–8013, 2011.

891

Bethe Projections for Non-Local Inference

Luke Vilnis*

UMass Amherst
luke@cs.umass.edu

David Belanger*

UMass Amherst
belanger@cs.umass.edu

Daniel Sheldon
UMass Amherst

sheldon@cs.umass.edu

Andrew McCallum
UMass Amherst

mccallum@cs.umass.edu

Abstract

Many inference problems in structured pre-
diction are naturally solved by augmenting a
tractable dependency structure with complex,
non-local auxiliary objectives. This includes
the mean field family of variational inference
algorithms, soft- or hard-constrained inference
using Lagrangian relaxation or linear program-
ming, collective graphical models, and forms
of semi-supervised learning such as posterior
regularization. We present a method to dis-
criminatively learn broad families of inference
objectives, capturing powerful non-local statis-
tics of the latent variables, while maintain-
ing tractable and provably fast inference using
non-Euclidean projected gradient descent with a
distance-generating function given by the Bethe
entropy. We demonstrate the performance and
flexibility of our method by (1) extracting struc-
tured citations from research papers by learning
soft global constraints, (2) achieving state-of-the-
art results on a widely-used handwriting recog-
nition task using a novel learned non-convex
inference procedure, and (3) providing a fast
and highly scalable algorithm for the challeng-
ing problem of inference in a collective graphical
model applied to bird migration.

1 INTRODUCTION

Structured prediction has shown great success in modeling
problems with complex dependencies between output vari-
ables. Practitioners often use undirected graphical models,
which encode conditional dependency relationships via a
graph. However, the tractability of exact inference in these
models is limited by the graph’s treewidth, often yielding a
harsh tradeoff between model expressivity and tractability.

* Equal contribution.

Graphical models are good at modeling local dependencies
between variables, such as the importance of surrounding
context in determining the meaning of words or phrases.
However, their sensitivity to cyclic dependencies often ren-
ders them unsuitable for modeling preferences for certain
globally consistent states. For example, in the canonical
NLP task of part-of-speech tagging, there is no clear way
to enforce the constraint that every sentence have at least
one verb without increasing the likelihood that every token
is predicted to be a verb.

Concretely, exact marginal inference in a discrete graphical
model can be posed as the following optimization problem

µ⇤ = arg min
µ2M

�H(µ)� h✓, µi , (1)

where µ is a concatenated vector of node and clique
marginals, H(µ) is the entropy, M is the marginal poly-
tope, and ✓ are parameters. Here we face a tradeoff: adding
long-range dependencies directly to the model increases
the clique size and thus the complexity of the problem and
size of µ, rendering inference intractable. However, the
linear scoring function ✓ breaks down over cliques, pre-
venting us from enforcing global regularities in any other
way. In this work, we propose to augment the inference
objective (1) and instead optimize

µ⇤ = arg min
µ2M

�H(µ)� h✓, µi+ L (µ). (2)

Here, L is some arbitrary parametric function of the en-
tire concatenated marginal vector, where may depend on
input features. Since L is non-linear, it can enforce many
types of non-local properties. Interestingly, whenever L
is convex, and whenever inference is easy in the underlying
model, i.e., solving (1) is tractable, we can solve (2) using
non-Euclidean projected gradient methods using the Bethe
entropy as a distance-generating function. Unlike many
message-passing algorithms, our procedure maintains pri-
mal feasibility across iterations, allowing its use as an any-
time algorithm. Furthermore, for non-convex L , we also
show convergence to a local optimum of (2). Finally, we

892

present algorithms for discriminative learning of the pa-
rameters . In a slight abuse of terminology, we call L a
non-local energy function.

Ours is not the first work to consider modeling global pref-
erences by augmenting a tractable base inference objec-
tive with non-local terms. For example, generalized mean-
field variational inference algorithms augment a tractable
distribution (the Q distribution) with a non-linear, non-
convex global energy function that scores terms in the full
model (the P distribution) using products of marginals of
Q (Wainwright & Jordan, 2008). This is one special case
of our non-local inference framework, and we present algo-
rithms for solving the problem for much more general L ,
with compelling applications.

Additionally, the modeling utility provided by global pref-
erences has motivated work in dual decomposition, where
inference in loopy or globally-constrained models is de-
composed into repeated calls to inference in tractable in-
dependent subproblems (Komodakis et al., 2007; Sontag
et al., 2011). It has seen wide success due to its ease of im-
plementation, since it reuses existing inference routines as
black boxes. However, the technique is restricted to mod-
eling linear constraints, imposed a priori. Similarly, these
types of constraints have also been imposed on expecta-
tions of the posterior distribution for use in semi-supervised
learning, as in posterior regularization and generalized
expectation (Ganchev et al., 2010; Mann & McCallum,
2010). In contrast, our methods are designed to discrim-
inatively learn expressive inference procedures, with min-
imal domain knowledge required, rather than regularizing
inference and learning.

First, we provide efficient algorithms for solving the
marginal inference problem (2) and performing MAP pre-
diction in the associated distribution, for both convex and
non-convex global energy functions. After that, we provide
a learning algorithm for ✓ and the parametrized L func-
tions using an interpretation of (2) as approximate varia-
tional inference in a a probabilistic model. All of our algo-
rithms are easy to implement and rely on simple wrappers
around black-box inference subroutines.

Our experiments demonstrate the power and generality of
our approach by achieving state-of-the-art results on sev-
eral tasks. We extract accurate citations from research pa-
pers by learning discriminative global regularities of valid
outputs, outperforming a strong dual decomposition-based
baseline (Anzaroot et al., 2014). In a benchmark OCR
task (Taskar et al., 2004), we achieve state-of-the-art results
with a learned non-convex, non-local energy function, that
guides output decodings to lie near dictionary words. Fi-
nally, our general algorithm for solving (2) provides large
speed improvements for the challenging task of inference in
chain-structured collective graphical models (CGMs), ap-
plied to bird migration (Sheldon & Dietterich, 2011).

2 BACKGROUND

Let y = (y1, . . . , yn) denote a set of discrete variables
and x be a collection of input features. We define the
conditional distribution P✓(y|x) = exp(h✓(x), S(y)i)/Z,
where S(y) is a mapping from y to a set of sufficient
statistics, ✓(x) is a differentiable vector-valued mapping,
and Z =

P
y exp(h✓, S(y)i). Conditional random fields

(CRFs) assume that (y1, . . . , yn) are given a graph struc-
ture and S(y) maps y to a 0-1 vector capturing joint set-
tings of each clique (Lafferty et al., 2001). Going forward,
we often suppress the explicit dependency of ✓ on x. For
fixed ✓, the model is called a Markov random field (MRF).

Given a distribution P (y), define the expected sufficient
statistics operator µ(P) = EP [S(y)]. For the CRF statis-
tics S(y) above, µ is a concatenated vector of node and
clique marginals. Therefore, marginal inference, the task
of finding the marginal distribution of P✓(y|x) over y, is
equivalent to computing the expectation µ(P✓(y|x)).

For tree-structured graphical models, P✓(y|x) !
µ(P✓(y|x)) is a bijection, though this is not true
for general graphs. Furthermore, for trees the en-
tropy H(P✓(y|x)) is equal to the Bethe entropy
HB (µ(P✓(y|x))), defined, for example, in Wainwright &
Jordan (2008). The marginal polytope M is the set of µ
that correspond to some P✓ .

As mentioned in the introduction, marginal inference can
be posed as the optimization problem (1). MAP inference
finds the joint setting y with maximum probability. For
CRFs, this is equivalent to

arg min
y

h�✓(x), S(y)i . (3)

For tree-structured CRFs, marginal and MAP inference can
be performed efficiently using dynamic programming. Our
experiments focus on such graphs. However, the inference
algorithms we present can be extended to general graphs
wherever marginal inference is tractable using a convex en-
tropy approximation and a local polytope relaxation.

3 MARGINAL INFERENCE WITH
NON-LOCAL ENERGIES

We move beyond the standard inference objective (1), aug-
menting it with a non-local energy term as in (2):

µ⇤ = arg min
µ2M

�HB(µ)� h✓, µi+ L (µ).

Here, L is some arbitrary parametrized function of the
marginals, and may depend on input features x.

Intuitively, we are augmenting the inference objective (1)
by allowing it to optimize a broader set of tradeoffs – not

893

only between expected node scores, clique scores, and en-
tropy, but also global functions of the marginals. To be con-
crete, in our citation extraction experiments (Section 8.1),
for example, we employ the simple structure:

L (µ) =
X

j

 j`j(µ), (4)

Where each `j is a univariate convex function and each j

is constrained to be non-negative, in order to maintain the
overall convexity of L . We further employ

`j(µ) = ˜̀
j

�
a>j µ

�
, (5)

where aj encodes a ‘linear measurement’ of the marginals
and ˜̀

j is some univariate convex function.

4 VARIATIONAL INTERPRETATION
AND MAP PREDICTION

We next provide two complementary interpretations of (2)
as variational inference in a class of tractable probability
distributions over y. They yield precisely the same vari-
ational expression. However, both are useful because the
first helps motivate a MAP prediction algorithm, while the
second helps characterize our learning algorithm in Sec-
tion 7 as (approximate) variational EM.

Proposition 1. For fixed ✓ and L , the output µ⇤ of in-
ference in the augmented objective (2) is equivalent to the
output of standard inference (1) in an MRF with the same
clique structure as our base model, but with a modified pa-
rameter ✓̃ = ✓ �rL (µ⇤) .

Proof. Forming a Lagrangian for (2), the stationarity con-
ditions with respect to the variable µ are:

0 = �(✓ �rL (µ⇤))�rHB(µ⇤) +rµC(µ,�), (6)

where C(µ,�) are collected terms relating to the marginal
polytope constraints. The proposition follows because (6)
is the same as the stationarity conditions for

µ⇤ = arg min
µ2M

�h✓ �rL (µ⇤), µi �HB(µ). ⇤ (7)

Therefore, we can characterize a joint distribution over y
by first finding µ⇤ by solving (2) and then defining an MRF
over y with parameters ✓̃. Even more conveniently, our
inference technique in Section 6 iteratively estimates ✓̃ on
the fly, namely via the dual iterate ✓t in Algorithm 1.

Ultimately, in many prediction problems we seek a single
output configuration y rather than an inferred distribution
over outputs. Proposition 1 suggests a simple prediction
procedure: first, find the variational distribution over y
parametrized as an MRF with parameter ✓̃. Then, perform

MAP in this MRF. Assuming an available marginal infer-
ence routine for this MRF, we assume the tractability of
MAP – for example using a dynamic program. We avoid
predicting y by locally maximizing nodes’ marginals, since
this would not necessarily yield feasible outputs.

Instead of solving (2), we could have introduced global
energy terms to the MAP objective (3) that act directly
on values S(y) rather than on expectations µ, as in (2).
However, this yields a difficult combinatorial optimization
problem for prediction and does not yield a natural way to
learn the parametrization of the global energy. Section 8.1
demonstrates that using energy terms defined on marginals,
and performing MAP inference in the associated MRF, per-
forms as well or better than an LP technique designed to
directly perform MAP subject to global penalty terms.

Our second variational interpretation characterizes µ⇤ as a
variational approximation to a complex joint distribution:

Pc(y|x) = (1/Z✓,)P✓(y|x)P (y|x). (8)

We assume that isolated marginal inference in P✓(y|x) is
tractable, while P (y|x) is an alternative structured dis-
tribution over y for which we do not have an efficient in-
ference algorithm. Specifically, we assume that (1) can be
solved for P✓ . Furthemore, we assume that P (y|x) /
exp (L (S(y);x)), where L (·;x) is a convex function,
conditional on input features x. Going forward, we will
often surpress the dependence of L on x. Above, Z✓,

is the normalizing constant of the combined distribution.
Note that if L was linear, inference in both P (y|x) and
Pc(y|x) would be tractable, since the distribution would
decompose over the same cliques as P✓(y|x).

Not surprisingly, (8) is intractable to reason about, due
to the non-local terms in (2), so we approximate it with
a variational distribution Q(y). The connection between
this variational approximation and Proposition 1 is derived
in Appendix A. Here, we assume no clique structure on
Q(y), but show that minimizing a variational upper bound
on KL (Q(y)||Pc(y|x)), for a given x, yields a Q that is
parametrized compactly as the MRF in Proposition 1. We
discuss the relationship between this and general mean-
field inference in Section 5.

Although the analysis of this section assumes convexity
of L , our inference techniques can be applied to non-
convex L , as discussed in Section 6.3, and our learning
algorithm produces state-of-the-art results even in the non-
convex regime for a benchmark OCR task.

5 RELATED MODELING TECHNIQUES

Mean field variational inference in undirected graphical
models is a particular application of our inference frame-
work, with a non-convex L (Wainwright & Jordan, 2008).

894

The technique estimates marginal properties of a complex
joint distribution P using the clique marginals µ of some
tractable base distribution Q, not necessarily fully factor-
ized. This induces a partitioning of the cliques of P into
those represented directly by µ and those where we define
clique marginals as a product distribution of the relevant
nodes’ marginals in µ. To account for the energy terms of
the full model involving cliques absent in the simple base
model, the energy h✓, µi of the base model is augmented
with an extra function of µ.

L(µ) = �
X

c2C

*
✓c,
O

n2c

µn

+
(9)

where C is the set of cliques not included in the tractable
sub-model, ✓c are the potentials of the original graphical
model corresponding to the missing cliques, and

N
n µn

represents a repeated outer (tensor) product of the node
marginals for the nodes in those cliques.

Note L(µ) is non-linear and non-convex. Our work gener-
alizes (9) by allowing arbitrary non-linear interaction terms
between components of µ. This is very powerful – for ex-
ample, in our citation extraction experiments in Section 8.1,
expressing these global terms in a standard graphical model
would require many factors touching all variables. Lo-
cal coordinate ascent mean-field can be frustrated by these
rigid global terms. Our gradient-based method avoids these
issues by updating all marginals simultaneously.

Dual decomposition is a popular method for performing
MAP inference in complex structured prediction models
by leveraging repeated calls to MAP in tractable submod-
els (Komodakis et al., 2007; Sontag et al., 2011). The fam-
ily of models solvable with dual decomposition is limited,
however, because the terms that link the submodels must
be expressible as linear constraints. Similar MAP tech-
niques (Ravikumar et al., 2010; Martins et al., 2011; Fu &
Banerjee, 2013) based on the alternating direction method
of multipliers (ADMM) can be adapted for marginal infer-
ence, in problems where marginal inference in submodels
is tractable. However, the non-local terms are defined as
linear functions on settings of graphical model nodes, while
our non-linear L (µ) terms provide practitioners with an
expressive means to learn and enforce regularities of the
inference output.

Posterior regularization (PR) (Ganchev et al., 2010),
learning from measurements (LFM) Liang et al. (2009)
, and generalized expectations (GE) (Mann & McCal-
lum, 2010), are a family of closely-related techniques for
performing unsupervised or semi-supervised learning of
a conditional distribution P✓(y|x) or a generative model
P✓(x|y) using expectation-maximization (EM), where the
E-step for latent variables y does not come directly from in-
ference in the model, but instead from projection onto a set
of expectations obeying global regularity properties. In PR

and GE, this yields a projection objective of the form (2),
where the L terms come from a Lagrangian relaxation of
regularity constraints, and corresponds to dual variables.
Originally, PR employed linear constraints on marginals,
but He et al. (2013) extend the framework to arbitrary con-
vex differentiable functions. Similarly, in LFM such an in-
ference problem arises because we perform posterior in-
ference assuming that the observations y have been cor-
rupted under some noise model. Tarlow & Zemel (2012)
also present a method for learning with certain forms of
non-local losses in a max-margin framework.

Our goals are very different than the above learning meth-
ods. We do not impose non-local terms L in order to regu-
larize our learning process or allow it to cope with minimal
annotation. Instead, we use L to increase the expressiv-
ity of our model, performing inference for every test ex-
ample, using a different , since it depends on input fea-
tures. Since we are effectively ‘learning the regularizer,’ on
fully-labeled data, our learning approach in Section 7 dif-
fers from these methods. Finally, unlike these frameworks,
we employ non-convex L terms in some of our experi-
ments. The algorithmic consequences of non-convexity are
discussed in Section 6.3.

6 OPTIMIZING THE NON-LOCAL
MARGINAL INFERENCE OBJECTIVE

We now present an approach to solving (2) using non-
Euclidean projected gradient methods, which require ac-
cess to a procedure for marginal inference in the base dis-
tribution (which we term the marginal oracle), as well as
access to the gradient of the energy function L . We pose
these algorithms in the composite minimization framework,
which gives us access to a wide variety of algorithms that
are discussed in the supplementary material.

6.1 CONVEX OPTIMIZATION BACKGROUND

Before presenting our algorithms, we review several defi-
nitions from convex analysis (Rockafellar, 1997).

We call a function ' �-strongly convex with respect to a
norm k · kP , if for all x, y 2 dom('),

'(y) � '(x) +r'(x)T (y � x) +
�

2
ky � xk2P .

Proposition 2 (e.g. Beck & Teboulle (2003)). The nega-
tive entropy function �H(x) =

P
i xi log xi is 1-strongly

convex with respect to the 1-norm k · k1 over the interior of
the simplex � (restricting dom(H) to int(�)).

Given a smooth and strongly convex function ', we can
also define an associated generalized (asymmetric) distance
measure called the Bregman divergence (Bregman, 1967)

895

Algorithm 1 Bethe-RDA
Input: parameters ✓, energy function L (µ)
set ✓0 = ✓
set µ0 to prox-center MARGINAL-ORACLE(✓0)
ḡ0 = 0
repeat
�t = constant � 0
ḡt = t�1

t ḡt�1 + 1
trL(µt)

✓t = ✓ � t
t+�t

ḡt

µt = MARGINAL-ORACLE(✓t)
until CONVERGED(µt, µt�1)

generated by ',

B'(x, x0) = '(x)� '(x0)� hr'(x0), x� x0i .

For example, the KL divergence is the Bregman divergence
associated to the negative entropy function, and the squared
Euclidean distance is its own associated divergence.

Composite minimization (Passty, 1979) is a family of tech-
niques for minimizing functions of the form h = f + R,
where we have an oracle that allows us to compute min-
imizations over R in closed form (usually R here takes
the form of a regularizer). Problems of this form are often
solved with an algorithm called proximal gradient, which
minimizes h(x) over some convex set X using:

xt+1 = arg min
x2X

hrf(xt), xi+
1

2⌘t
kx� xtk22 + R(x),

for some decreasing sequence of learning rates ⌘t. Note
that because of the requirement x 2 X , proximal gradi-
ent generalizes projected gradient descent – since uncon-
strained minimization might take us out of the feasible re-
gion X , computing the update requires projecting onto X .

But there is no reason to use the squared Euclidean dis-
tance when computing our updates and performing the pro-
jection. In fact, the squared term can be replaced by any
Bregman divergence. This family of algorithms includes
the mirror descent and dual averaging algorithms (Beck &
Teboulle, 2003; Nesterov, 2009).

We base our projected inference algorithms on regularized
dual averaging (RDA) (Xiao, 2010). The updates are:

xt+1 = arg min
x2X

hḡt, xi+
�t

t
'(x) + R(x), (10)

where ḡt = 1
t

Pt
krf(xk) is the average gradient of f en-

countered so far. One benefit of RDA is that it does not re-
quire the use of a learning rate parameter (�t = 0) when us-
ing a strongly convex regularizer. RDA can be interpreted
as doing a projection onto X using the Bregman divergence
generated by the strongly convex function '+ R.

6.2 OUR ALGORITHM

These non-Euclidean proximal algorithms are especially
helpful when we are unable to compute a projection in
terms of Euclidean distance, but can do so using a different
Bregman divergence. We will show that this is exactly the
case for our problem of projected inference: the marginal
oracle allows us to project in terms of KL divergence.

However, to maintain tractability we avoid using the
entropy function H on the exponentially-large simplex
�, and instead optimize over the structured, factorized
marginal polytope M and its corresponding structured
Bethe entropy HB. For tree-structured models, H and HB
have identical values, but different inputs. It remains to
show the strong convexity of�HB so we can use it in RDA.

Proposition 3. For trees with n nodes, the negative Bethe
entropy function�HB is 1

2 (2n�1)�2-strongly convex with
respect to the 2-norm over the interior of the marginal poly-
tope M.

Proof. Consequence of Lemma 1 in Fu & Banerjee (2013).

With these definitions in hand, we present Bethe-RDA pro-
jected inference Algorithm 1. This algorithm corresponds
to instantiating (10) with R = �HB � h✓, µi and ' =
�HB. Note the simplicity of the algorithm when choos-
ing �t = 0. It is intuitively appealing that the algorithm
amounts to no more than calling our marginal inference or-
acle with iteratively modified parameters.

Proposition 4. For convex energy functions and convex
�HB, the sequence of primal averages of Algorithm 1 con-
verges to the optimum of the variational objective (2) with
suboptimality of O(ln(t)

t) at time t.

Proof. This follows from Theorem 3 of Xiao (2010) along
with the strong convexity of �HB.

If we have more structure in the energy functions, specifi-
cally a Lipschitz-continuous gradient, we can modify the
algorithm to use Nesterov’s acceleration technique and
achieve a convergence of O(1

t2). Details can be found in
Appendix D. Additionally, in practice these problems need
not be solved to optimality and give stable results after a
few iterations, as demonstrated in Figure 8.1.

6.3 INFERENCE WITH NON-CONVEX,
NON-LOCAL ENERGIES

An analogy can be made here to loopy belief propaga-
tion – even in the case of non-convex loss functions (and
even non-convex entropy functions with associated inexact
marginal oracles), the updates of our inference (and learn-
ing) algorithms are well-defined. Importantly, since one of
our motivations for developing non-local inference was to

896

Algorithm 2 Learning with non-local energies
Input: examples xi,yi and inference oracle MARG()
for distributions with the clique structure of P✓(y|x).
Output: parameters (✓,) for Pc(y|x).
repeat

//E-Step
for all (xi,yi) do

µi (Algorithm 1) // using ✓, and MARG()
⇢i (Proposition 5) // using , µi

// note Qi(yi) is a CRF with potentials ✓ + ⇢i.
end for
//M-Step (gradient-based learning of CRF parameters)
repeat

mi MARG(Qi) 8j //standard CRF inference
r✓

P
i S(yi)�mi

r
P

i
d⇢i

d

>
(S(yi)�mi)

✓ Gradient-Step(✓,r✓)
 Gradient-Step(,r)

until converged
until converged OR iter > max iters

Algorithm 3 Doubly-stochastic learning with L given by
a sum of scalar functions of linear measurements (5).

Input: examples xi,yi and MARGINAL-ORACLE()
for distributions with the clique structure of P✓(y|x).
Output: parameters (✓,) for Pc(y|x).
repeat

sample (xi,yi) randomly
µi (Algorithm 1)
r✓ S(yi)� µi

r j
 r`j(µi)a

>
j (S(yi)� µi)

✓ Gradient-Step(✓,r✓)
 Gradient-Step(,r)

until converged OR iter > max iters

generalize mean field inference, and the additional penalty
terms are non-convex in that case, we would like our algo-
rithms to work for the non-convex case as well.

Unlike loopy belief propagation, however, since we derive
our algorithms in the framework of composition minimiza-
tion, we have access to a wealth of theoretical guarantees.
Based on results from the theory of optimization with first-
order surrogate loss functions (Mairal, 2013), in Appendix
C we propose a small modification to Algorithm 1 with an
asymptotic convergence condition even for non-convex en-
ergies. In practice we find that the unmodified Algorithm
1 also works well for these problems, and experimentally
in Section 8.2, we see good performance in both inference
and learning with non-convex energy functions.

7 LEARNING MODELS WITH
NON-LOCAL ENERGIES

We seek to learn the parameters ✓ and of the underlying
CRF base model and L , respectively. Let S = {yi,xi}
be n training examples. Let Q(yi; µi) be the variational
distribution for yi resulting from applying Proposition 1.
Namely, Q(yi; µi) is an MRF with parameters

⇢i
..= ✓ �rµL (µi). (11)

We employ the notation Q(yi; µi) to highlight the role of
µi: for a given (yi,xi) pair, the family of variational distri-
butions over yi is indexed by possible values of µi (recall
we suppress the explicit dependence of ✓ and on x). Fi-
nally, define the shorthand M = {µ1, . . . , µn}.

 interacts with the data in a complex manner that prevents
us from using standard learning techniques for the expo-
nential family. Namely, we can not easily differentiate a
likelihood with respect to , since this requires differenti-
ating the output µ of a convex optimization procedure, and
the extra L term in (2) prevents the use of conjugate du-
ality relationships available for the exponential family. We
could have used automatic methods to differentiate the it-
erative inference procedure (Stoyanov et al., 2011; Domke,
2012), but found our learning algorithm works well.

We employ a variational learning algorithm, presented in
Algorithm 2, alternately updating the parameters M of our
tractable CRF-structured variational distributions, and up-
dating the parameters (✓,) assuming the following surro-
gate likelihood given by these CRF approximations:

L(✓, ; M) =
X

i

log Q(yi; µi). (12)

Given ✓ and , we update M using Algorithm 1. Given
M , we update ✓ and by taking a single step in the di-
rection of the gradient of the surrogate likelihood (12). We
avoid taking more than one gradient step, since the gradi-
ents for ✓ and depend on M and an update to ✓ and
will break the property that µ (Q(y; µi)) = µi. Therefore,
we recompute µi every time we update the parameters.

Overall, it remains to show how to compute gradients
of (12). For ✓, we have the standard CRF likelihood gradi-
ent (Sutton & McCallum, 2006):

r✓L(✓, ; M) =
X

i

S(yi)� µi . (13)

For , we have:

r L(✓, ; M) =
X

i

d⇢i

d

d

d⇢i
log Q(yi; µi). (14)

From (11), d
d⇢i

log Q(yi; µi) is also S(yi)� µiand

d⇢i

d
=

d

d

d

dµ
L (µ) (15)

897

Clearly, this depends on the structure of L . Consider the
parametrization (4). With this, we have:

@

@ j

d

dµ
L (µ) = r`j(µ)

d

dµ
`j(µ) (16)

Therefore, we have @
@ j

log Q(yi; µi) =

r`j(µ) d
dµ`j(µ)> (S(y)� µi). For linear measure-

ments (5), this amounts to

r`(µ)
�
a>j S(y)� a>j µi

�
. (17)

This has a simple interpretation: the gradient with respect
to j equals the gradient of the scalar loss `j at the current
marginals µj times the difference in linear measurements
between the ground truth labels and the inferred marginals.

Algorithm 2 has an expensive double-loop structure. In
practice it is sufficient to employ a ‘doubly-stochastic’ ver-
sion given in Algorithm 3, where we sample a training ex-
ample (xi,yi) and use this to only perform a single gra-
dient step on ✓ and . To demonstrate the simplicity of
implementing our learning algorithm, we avoid any ab-
stract derivative notation in Algorithm 3 by specializing
it to the case of (17). In our experiments, however, we
sometimes do not use linear measurements. Overall, all
our experiments use the fast doubly-stochastic approach of
Algorithm 3 solely, since it performs well. In general, our
learning algorithms are not guaranteed to converge because
we approximate the complex interaction between and µ
with alternating updates. In practice, however, terminating
after a fixed number of iterations yields models that gener-
alize well.

Finally, recall that the notation L (µi) suppresses the po-
tential dependence of on xi. We assume each j is a
differentiable function of features of xi. Therefore, in our
experiments where depends on xi, we perform gradient
updates for the parametrization of (x) via further appli-
cation of the chain rule.

8 EXPERIMENTS

8.1 CITATION EXTRACTION

Model F1
Our Baseline 94.47

Non-local Energies 95.47
Baseline (Anzaroot et al., 2014) 94.41
Soft-DD (Anzaroot et al., 2014) 95.39

Table 1: Comparison of F1 scores on Citation Extraction
dataset. We compare MAP inference F1 scores of our non-
local energy model and the specialized dual decomposition
model of Anzaroot et al. (2014). Both variants learn global
regularities that significantly improve performance.

100 101 10294

94.5

95

95.5

Max # Inference Iterations

Te
st

 A
cc

ur
ac

y

Figure 1: Citation extraction F1 when limiting maximum
number of test-time inference iterations. Most of our accu-
racy gain is captured within the first 5-10 iterations.

We first apply our algorithm to the NLP task of performing
text field segmentation on the UMass citation dataset (An-
zaroot & McCallum, 2013), which contains strings of cita-
tions from research papers, segmented into fields (author,
title, etc.). Our modeling approach, closely follows Anza-
root et al. (2014), who extract segmentations using a linear-
chain segmentation model, to which they add a large set of
‘soft’ linear global regularity constraints.

Let y be a candidate labeling. Imagine, for example, that
we constrain predicted segmentations to have no more pre-
dicted last names than first names. Then, the numbers of
first and last names can be computed by linear measure-
ments a>firstS(y) and a>lastS(y), respectively. A hard con-
straint on y would enforce a>firstS(y)� a>lastS(y) = 0. This
is relaxed in Anzaroot et al. (2014) to a penalty term

c`h
�
a>firstS(y)� a>lastS(y)

�
(18)

that is added to the MAP inference objective, where
`h(x) = max(1 � x, 0) is a hinge function. For multiple
soft constraints, the overall prediction problem is

arg min
y

h�✓, S(y)i+
X

j

cj`h
�
a>j S(y)

�
, (19)

where ✓ are the parameters of the underlying linear-chain
model. They use a dual decomposition style algorithm for
solving (19), that crucially relies on the specific structure
of the hinge terms `h. They learn the cj for hundreds of
‘soft constraints’ using a perceptron-style algorithm.

We consider the same set of measurement vectors aj , but
impose non-local terms that act on marginals µ rather
than specific values y. Further, we use smoothed hinge
functions, which improve the convergence rate of infer-
ence (Rennie, 2005). We find the variational distribution by
solving the marginal inference version of (19), an instance
of our inference framework with linear measurements (5):

arg min
µ

h�✓, µi �HB(µ) +
X

j

cj`h
�
a>j µ

�
, (20)

898

As in Anzaroot et al. (2014), we first learn chain CRF pa-
rameters ✓ on the training set. Then, we learn the cj param-
eters on the development set, using Algorithm 3, and tune
hyperparameters for development set performance. At both
train and test time, we ignore any terms in (20) for which
cj < 0.

We present our results in Table 1, measuring segment-
level F1. We can see that our baseline chain has slightly
higher accuracy than the baseline approach of Anzaroot
et al. (2014), possibly due to optimization differences. Our
augmented model (Non-Local Energies) matches and very
slightly beats their soft dual decomposition (Soft-DD) pro-
cedure. This is especially impressive because they employ
a specialized linear-programming solver and learning al-
gorithm adapted to the task of MAP inference under hinge-
loss soft constraints, whereas we simply plug in our general
learning and inference algorithms for non-local structured
prediction – applicable to any set of energy functions.

Our comparable performance provides experimental evi-
dence for our intuition that preferences about MAP con-
figurations can be expressed (and “relaxed”) as functions
of expectations. Anzaroot et al. (2014) solve a penalized
MAP problem directly, while our prediction algorithm first
finds a distribution satisfying these preferences, and then
performs standard MAP inference in that distribution.

Finally, in Figure 1 we present results demonstrating that
our algorithm’s high performance can be obtained using
only 5-10 calls per test example to inference in the under-
lying chain model. In Section B, we analyze the empirical
convergence behavior of Algorithm 1.

8.2 HANDWRITING RECOGNITION

N-Grams 2 3 4 5 6
Accuracy 85.02 96.20 97.21 98.27 98.54

Table 2: Character-wise accuracy of Structured Prediction
Cascades (Weiss et al., 2012) on OCR dataset.

Model Accuracy
2-gram (base model) 84.93

Lu
 94.01

Lu
 (MM) 94.96

Lw
 98.26

Lw
 (MM) 98.83

55-Class Classifier (MM) 86.06

Table 3: Character-wise accuracy of our baselines, and
models using learned non-local energies on Handwriting
Recognition dataset. Note that word classifier baseline is
also given in character-wise accuracy for comparison.

We next apply our algorithms to the widely-used handwrit-

ing recognition dataset of Taskar et al. (2004). We follow
the setup of Weiss et al. (2012), splitting the data into 10
equally sized folds, using 9 for training and one to test. We
report the cross-validation results across all 10 folds.

The structured prediction cascades of Weiss et al. (2012)
achieve high performance on this dataset by using ex-
tremely high order cliques of characters (up to 6-grams),
for which they consider only a small number of candi-
date outputs. Their state-of-the-art results are reproduced
in Table 2. The excellent performance of these large-clique
models is consequence of the fact that the data contains
only 55 unique words, written by 150 different people.
Once the model has access to enough higher-order context,
the problem becomes much easier to solve.

With this in mind, we design two non-convex, non-local
energy functions. These energies are intended to regularize
our predictions to lie close to known elements of the vo-
cabulary. Our base model is a standard linear-chain CRF
with image features on the nodes, and no features on the
bigram edge potentials. Let U(µ) =

P
n µn be a func-

tion that takes the concatenated vector of node and edge
marginals and sums up all of the node marginals, giv-
ing the global unigram expected sufficient statistics. Let
{ui} = {U(µ(yi))} indicate the set of all such unique vec-
tors when applying U to the train set empirical sufficient
statistics for each data case yi. Simply, this gives 55 vec-
tors ui of length 26 containing the unigram counts for each
unique word in the train set.

Our intuition is that we would like to be able to “nudge”
the results of inference in our chain model by pulling the
inferred U(µ) to be close to one of these global statistics
vectors. We add the following non-convex non-local en-
ergy function to the model:

Lu
 (µ) = min

i
kui � U(µ)k1. (21)

We learn two variants of this model, which differently
parametrize the dependence of on x. The first has a
single bias feature on the non-local energy. The second
conditions on a global representation of the sequence: con-
cretely, we approximate the RBF kernel mean map (MM)
(Smola et al., 2007) using random Fourier features (RFF)
(Rahimi & Recht, 2007). This simply involves multiplying
each image feature vector in the sequence by a random ma-
trix with ⇠ 1000 rows, applying a pointwise non-linearity,
and taking to be a linear function of the average vector.

Results of these experiments can be seen in Table 3.
Adding the non-local energy brings our performance well
above the baseline bigram chain model, and our training
procedure is able to give substantially better performance
when depends on the above input features.

The energy Lu
 , based on unigram sufficient statistics, is

not able to capture the relative ordering of letters in the vo-
cabulary words, which the structured prediction cascades

899

s 625 10k 50k
Our Method 0.19 2.7 14

IP 2.8 93 690

Table 4: Comparison of runtime (in seconds, averaged over
10 trials) between the interior point solver (IP) of Sheldon
et al. (2013) v.s. Algorithm 1 on different CGM problem
sizes s, the cardinality of the edge potentials in the under-
lying graphical model, where marginal inference is O(s).

models do capture. This motivates us to consider another
energy function. Let {wi} = {µn(yi)} be the set of unique
vectors of concatenated node marginal statistics for the
train set. This gives 55 vectors of length li ⇤ 26, where li is
the length of the ith distinct train word. Next, we define a
different energy function to add to our base chain model:

Lw
 (µ) = min

i
kwi � µk1. (22)

Once again we implement featurized and non-featurized
versions of this model. As noted in structured prediction
cascades, giving the model access to this level of high-
order structure in the data makes the inference problem ex-
tremely easy. Our model outperforms the best structured
prediction cascades results, and we note again an improve-
ment from using the featurized over the non-featurized .

Of course, since the dataset has only 55 actual labels, and
some of those are not valid for different input sequences
due to length mismatches, this is arguably a classification
problem as much as a structured prediction problem. To
address this, we create another baseline, which is a con-
strained 55-class logistic regression classifier (constrained
to only allow choosing output classes with appropriate
lengths given the input). We use our same global mean-
map features from the L⇤ (MM) variants of the structured
model and report these results in Table 3. We also tune the
number of random Fourier features as a hyperparameter to
give the classifier as much expressive power as possible.
As we can see, the performance is still significantly below
the best structured models, indicating that the interplay be-
tween local and global structure is important.

8.3 COLLECTIVE GRAPHICAL MODELS

Next, we demonstrate that that our proximal gradient-based
inference framework dramatically speeds up approximate
inference in collective graphical models (CGMs) (Sheldon
& Dietterich, 2011). CGMs are a method for structured
learning and inference with noisy aggregate observation
data. The large-scale dependency structure is represented
via a graphical model, but the nodes represent not just sin-
gle variables, but aggregate sufficient statistics of large sets
of underlying variables, corrupted by some noise model.
In previous work, CGMs have been successfully applied to
modeling bird migration. Here, the base model is a lin-

ear chain representing a time series of bird locations. Each
observed variable corresponds to counts from bird watch-
ers in different locations. These observations are assumed
to be Poisson distributed with rate proportional to the true
count of birds present. The CGM MAP task is to infer the
underlying migration patterns.

Sheldon et al. (2013) demonstrate that MAP in CGMs is
NP-hard, even for trees, but that approximate MAP can be
performed by solving a problem of the form (2):

µ⇤ = arg max
µ

h✓, µi+ HB(µ) +

nX

i

Pi(µi| yi) (23)

where Pi are (concave) Poisson log-likelihoods and each
yi is an observed bird count.

For the case where the underlying CGM graph is a tree, the
‘hard EM’ learning algorithm of Sheldon et al. (2013) is
the same as Algorithm 2 specialized to their model. There-
fore, Sheldon et al. (2013) provide additional experimen-
tal evidence that our alternating surrogate-likelihood opti-
mization works well in practice.

The learning procedure of Sheldon et al. (2013) is very
computationally expensive because they solve instances
of (23) using an interior-point solver in the inner loop. For
the special case of trees, Algorithm 1 is directly applicable
to (23). Using synthetic data and code obtained from the
authors, we compare their generic solver to Algorithm 1
for solving instances of (23). In Table 4, we see that our
method achieves a large speed-up with no loss in solution
accuracy (since it solves the same convex problem).

9 DISCUSSION AND FUTURE WORK

Our results show that our inference and learning frame-
work allows for tractable modeling of non-local depen-
dency structures, resistant to traditional probabilistic for-
mulations. By approaching structured modeling not via in-
dependence assumptions, but as arbitrary penalty functions
on the marginal vectors µ, we open many new modeling
possibilities. Additionally, our generic gradient-based in-
ference method can achieve substantial speedups on pre-
existing problems of interest. In future work, we will apply
our framework to new problems and new domains.

ACKNOWLEDGEMENTS

This work was supported in part by the Center for In-
telligent Information Retrieval, in part by DARPA under
agreement number FA8750-13-2-0020, and in part by NSF
grant #CNS-0958392. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright notation thereon. Any
opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect those of the sponsor.

900

References

Anzaroot, Sam and McCallum, Andrew. A new dataset for
fine-grained citation field extraction. In ICML Workshop
on Peer Reviewing and Publishing Models, 2013.

Anzaroot, Sam, Passos, Alexandre, Belanger, David, and
McCallum, Andrew. Learning soft linear constraints
with application to citation field extraction. In ACL,
2014.

Beck, Amir and Teboulle, Marc. Mirror descent and non-
linear projected subgradient methods for convex opti-
mization. Operations Research Letters, 31(3):167–175,
2003.

Bregman, Lev M. The relaxation method of finding the
common point of convex sets and its application to the
solution of problems in convex programming. USSR
computational mathematics and mathematical physics,
7(3):200–217, 1967.

Domke, Justin. Generic methods for optimization-based
modeling. In AISTATS, 2012.

Duchi, John, Shalev-Shwartz, Shai, Singer, Yoram, and
Tewari, Ambuj. Composite objective mirror descent. In
COLT, 2010.

Fu, Qiang and Banerjee, Huahua Wang Arindam. Bethe-
admm for tree decomposition based parallel map infer-
ence. In UAI, 2013.

Ganchev, Kuzman, Graça, Joao, Gillenwater, Jennifer, and
Taskar, Ben. Posterior regularization for structured latent
variable models. JMLR, 99:2001–2049, 2010.

He, L., Gillenwater, J., and Taskar, B. Graph-Based Poste-
rior Regularization for Semi-Supervised Structured Pre-
diction. In CoNLL, 2013.

Komodakis, Nikos, Paragios, Nikos, and Tziritas, Geor-
gios. Mrf optimization via dual decomposition:
Message-passing revisited. In IEEE ICCV, 2007.

Lafferty, John, McCallum, Andrew, and Pereira, Fer-
nando CN. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In
ICML, 2001.

Liang, Percy, Jordan, Michael I, and Klein, Dan. Learning
from measurements in exponential families. In ICML,
2009.

Mairal, Julien. Optimization with first-order surrogate
functions. In ICML, 2013.

Mann, Gideon S and McCallum, Andrew. Generalized
expectation criteria for semi-supervised learning with
weakly labeled data. JMLR, 11:955–984, 2010.

Martins, André, Figueiredo, Mário, Aguiar, Pedro, Smith,
Noah A, and Xing, Eric P. An augmented lagrangian
approach to constrained map inference. In ICML, 2011.

Nesterov, Yurii. Primal-dual subgradient methods for con-
vex problems. Mathematical programming, 120(1):221–
259, 2009.

Passty, Gregory B. Ergodic convergence to a zero of the
sum of monotone operators in hilbert space. Journal
of Mathematical Analysis and Applications, 72(2):383 –
390, 1979.

Rahimi, Ali and Recht, Benjamin. Random features for
large-scale kernel machines. In NIPS, 2007.

Ravikumar, Pradeep, Agarwal, Alekh, and Wainwright,
Martin J. Message-passing for graph-structured linear
programs: Proximal methods and rounding schemes.
JMLR, 11:1043–1080, 2010.

Rennie, Jason DM. Smooth hinge classification, 2005.

Rockafellar, R Tyrell. Convex Analysis, volume 28. Prince-
ton University Press, 1997.

Sheldon, Daniel, Sun, Tao, Kumar, Akshat, and Dietterich,
Thomas G. Approximate inference in collective graphi-
cal models. In ICML, 2013.

Sheldon, Daniel R and Dietterich, Thomas G. Collective
graphical models. In NIPS, 2011.

Smola, Alex, Gretton, Arthur, Song, Le, and Schölkopf,
Bernhard. A hilbert space embedding for distributions.
In Algorithmic Learning Theory, pp. 13–31. Springer,
2007.

Sontag, David, Globerson, Amir, and Jaakkola, Tommi. In-
troduction to dual decomposition for inference. Opti-
mization for Machine Learning, 1:219–254, 2011.

Stoyanov, Veselin, Ropson, Alexander, and Eisner, Jason.
Empirical risk minimization of graphical model param-
eters given approximate inference, decoding, and model
structure. In AISTATS, 2011.

Sutton, Charles and McCallum, Andrew. An introduction
to conditional random fields for relational learning. In-
troduction to statistical relational learning, pp. 93–128,
2006.

Tarlow, Daniel and Zemel, Richard S. Structured output
learning with high order loss functions. In AISTATS,
2012.

Taskar, Ben, Carlos, Guestrin, and Koller, Daphne. Max-
margin markov networks. In NIPS, 2004.

Wainwright, Martin J and Jordan, Michael I. Graphical
models, exponential families, and variational inference.
Foundations and Trends in Machine Learning, (1-2):1–
305, 2008.

Weiss, D., Sapp, B., and Taskar, B. Structured Prediction
Cascades. ArXiv e-prints, August 2012.

Xiao, Lin. Dual averaging methods for regularized stochas-
tic learning and online optimization. JMLR, 11:2543–
2596, 2010.

901

A Smart-Dumb/Dumb-Smart Algorithm for Efficient Split-Merge MCMC

Wei Wang
LIP6

Université Pierre et Marie Curie, 75005 Paris
benwei.wang@outlook.com

Stuart Russell
Computer Science Division

University of California, Berkeley, CA 94720
russell@cs.berkeley.edu

Abstract

Split-merge moves are a standard component
of MCMC algorithms for tasks such as multi-
target tracking and fitting mixture models with
unknown numbers of components. Achieving
rapid mixing for split-merge MCMC has been
notoriously difficult, and state-of-the-art meth-
ods do not scale well. We explore the reasons
for this and propose a new split-merge kernel
consisting of two sub-kernels: one combines a
“smart” split move that proposes plausible splits
of heterogeneous clusters with a “dumb” merge
move that proposes merging random pairs of
clusters; the other combines a dumb split move
with a smart merge move. We show that the
resulting smart-dumb/dumb-smart (SDDS) algo-
rithm outperforms previous methods. Experi-
ments with entity-mention models and Dirichlet
process mixture models demonstrate much faster
convergence and better scaling to large data sets.

1 INTRODUCTION

Markov Chain Monte Carlo (MCMC) algorithms have be-
come a central pillar of statistical inference and machine
learning. MCMC algorithms repeatedly apply a stochastic
kernel transformation to an initial state, generating a ran-
dom walk through the sample space whose stationary dis-
tribution matches a desired target distribution. Within the
general Metropolis-Hastings (MH) family of MCMC meth-
ods, which includes many specific algorithms that have
proven useful in practice, the kernel is built from a pro-
posal step followed by a stochastic acceptance step whose
probability is determined by the chosen proposal distribu-
tion. One key to efficient MH inference, then, is proposal
design.1

1Other approaches include parallelization [Chang and Fisher,
2013; Williamson et al., 2013] and taking advantage of symme-

This paper focuses on MH proposal design for split–merge
moves. Split and merge moves, which form a comple-
mentary pair comprising a kernel, are useful for problems
where an MCMC state can be thought of as consisting of
a number of components or clusters, each of which is re-
sponsible for some subset of observations. The canonical
example is the family of mixture models: a split move in
such a model converts one mixture component into two, di-
viding the observations of the original component between
the two new components; a merge move combines two
components and their observations into a single compo-
nent [Dahl, 2003; Pasula et al., 2003; Jain and Neal, 2004].
Split-merge moves are also common in multitarget track-
ing, where a “component” is a single track joining together
observations of an object over multiple time steps [Pasula
et al., 1999; Khan et al., 2005]. The state of the art for
split-merge MCMC in mixture models is considered to be
the restricted Gibbs split-merge (RGSM) algorithm of Jain
and Neal [2004].

The general idea followed in most MH proposal designs
is to make the proposal “smart” by preferentially propos-
ing states with higher probability according to the target
distribution. This tends to give higher acceptance proba-
bilities. The Gibbs sampler [Geman and Geman, 1984] is
the quintessential smart proposal: by proposing values for
some subset of variables exactly in proportion to their prob-
ability, Gibbs sampling has an acceptance probability of 1.
In the context of split-merge moves, a smart split would be
one that favors splitting a heterogeneous cluster to produce
two more homogeneous ones, and a smart merge would
favor merging similar clusters to ensure a homogeneous re-
sult. As our analysis and experiments show, however, com-
bining smart split and merge moves does not lead to high
acceptance probabilities and rapid convergence. The rea-
son is the asymmetry between subspaces withK andK+1
components: there are far more states in the latter than the
former, whereas in the case of Gibbs sampling the source
and target subspaces are identical.

try [Niepert and Domingos, 2014]. The work reported in this pa-
per can easily be combined with these approaches.

902

Our proposed solution, the smart-dumb/dumb-smart
(SDDS) algorithm, combines two kernels in parallel: one
has a smart split move and a “dumb” merge move that pro-
poses merging random pairs of clusters; the other combines
a dumb split move with a smart merge move. We show that
the resulting algorithm performs well in practice, main-
taining high acceptance rates and converging reasonably
quickly even for large data sets with many clusters, where
RGSM and other algorithms fail. To our knowledge, the
closest relative of SDDS is a parallel-computation MCMC
algorithm due to Chang and Fisher [2013], who mention
the use of a random split move as the complement of a
merge move in one part of a rather complex algorithm. A
second contribution of our paper is a fast, exact method for
sampling a split move from the posterior over all possible
splits of a given component, i.e., an efficient block-Gibbs
proposal for splits.

The paper begins (Section 2) with background material on
MCMC. Section 3 describes, for expository purposes, the
entity/mention model (EMM), a very simple Bayesian mix-
ture model with observations that are discrete tokens, and
examines split-merge MCMC in the context of the EMM.
Section 4 describes the SDDS algorithm in detail. Fi-
nally, Section 5 evaluates SDDS in comparison to other ap-
proaches, both on EMM data and on data from a Dirichlet
process mixture model (DPMM).

2 MCMC METHODS

Here we provide a brief review of the relevant aspects of
Metropolis–Hastings MCMC. Let X be a sample space (a
set of possible worlds); a sample point x ∈ X will be called
a state. Let π(·) be a target distribution of interest, such as
the posterior distribution on X given some evidence. The
goal is to generate samples from π, or something close to it,
so as to answer queries. A standard MCMC algorithm con-
structs a Markov chain from a transition kernel P (x′|x),
such that the unique stationary distribution of the chain is π;
of primary concern is the rate of convergence of the Markov
chain to its stationary distribution.

The Metropolis–Hastings (MH) algorithm [Metropolis et
al., 1953; Hastings, 1970] is a general template for building
transition kernels with the desired property. Each transition
is built from two steps: first, a new state x′ is proposed
from a proposal distribution q(x′|x), then the new state is
accepted with a probability given by

α(x′|x) = min{1, π(x
′)

π(x)

q(x|x′)
q(x′|x)} . (1)

(If the proposal is not accepted, the new state is the same
as the current state.) The ratio appearing in this expres-
sion is called the MH ratio; we have written it as the prod-
uct of the state ratio π(x′)/π(x) and the proposal ratio
q(x|x′)/q(x′|x). The only “free parameter” in designing

an MH algorithm is the proposal q(·|·), and it is this that
determines the rate of convergence.

Gibbs sampling can be understood as a special case of MH
[Gelman, 1992]. In its simplest form, it chooses a variable
Xi uniformly at random from the set of n variables whose
values define the state x and proposes a value x′i from the
distribution π(Xi|x−i), where x−i denotes the current val-
ues for all variables other than Xi. Because this proposal
distribution is proportional to the state probability, the pro-
posal ratio for Gibbs is exactly the inverse of the state ratio.
For the case where xi and x′i coincide, both ratios are 1;
when they differ, we have

q(x|x′)
q(x′|x) =

q(xi,x−i|x′i,x−i)
q(x′i,x−i|xi,x−i)

=
1
nπ(xi|x−i)
1
nπ(x

′
i|x−i)

=
π(xi,x−i)π(x−i)
π(x′i,x−i)π(x−i)

=
π(x)

π(x′)
. (2)

Hence the acceptance probability in (1) is therefore exactly
1 for Gibbs sampling.

Having a high acceptance probability—or at least, one
bounded away from zero—is a necessary but not sufficient
condition for rapid mixing in MH. Moves can be accepted
with high probability but if those moves fail to lead the
chain from one local maximum in π to another, overall
mixing may still be slow. Thus, good proposal design is
concerned with both acceptance probabilities and the abil-
ity to traverse the state space without getting stuck in local
maxima.

3 THE ENTITY/MENTION MODEL

The entity/mention model or EMM is a very simple form
of mixture model, defined here for the purposes of expo-
sition. The EMM posits a certain (unknown) number of
entities that are referred to by some set of mentions. For
example, there is a person who may variously be referred
to as “Barack Obama”, “the President”, “POTUS”, and so
on. Given a collection of mentions of various entities—for
example, in newspaper text—the task is to figure out how
many entities exist, which mentions refer to which entities,
and thence the ways in which any given entity may be men-
tioned. In its simplest form, the EMM assumes that each
mention is a token with no internal structure, drawn from
a fixed, known set of tokens. This renders the model less
interesting than the models used in NLP research, but has
the advantage of simplifying the analysis.

3.1 The EMM probability model

We assume N mentions and L possible tokens. An EMM
model is composed from the following variables and con-
ditional distributions:

• K, the number of entities, drawn from a prior P (K).

903

• For each entity k, a dictionary θk, i.e., a cate-
gorical distribution over L tokens, drawn from a
Dirichlet(αk). The set of dictionaries {θ1, . . . ,θK}
is represented by Θ.

• For each mention mn, the entity Sn for that mention
is drawn u.a.r. from the set ofK entities, and the token
for that entity is drawn from θSn . The (unknown) en-
tities {S1, . . . , SN} are represented by S and the ob-
served mentions {m1, . . . ,mN} by m.

The EMM resembles a topic model for a single document
with an unknown number of topics (entities).

In the experiments described below, we use a broad prior
for K, namely a discretized log-normal distribution with
the location parameter µ and the scale parameter σ on a
logarithmic scale:

P (K) =
1

C

1

Kσ
√
2π
e−(logK−µ)

2/2σ2

where C is an additional normalization factor arising from
discretizing the distribution.

Because the entity for any given mention is assumed to be
chosen u.a.r. from the available entities, we have

P (S|K) =

(
1

K

)N
.

Rather than sample the dictionaries, we will integrate them
out exactly, taking advantage of properties of the Dirichlet.
In particular, we have

∫

Θ

P (m,Θ|K,S) =
∏

k∈{1:K}

B(αk + nk)

B(αk)

where B(·) is the Beta function and αk and nk are both
vectors of size L, representing respectively the Dirichlet
prior counts and the observed counts of each token in the
dictionary.

3.2 Gibbs sampling for the EMM

Basic Gibbs sampling samples one variable at a time,
which means, in our entity/mention model, sampling a new
entity assignment Sn for some mentionmn, conditioned on
all other current assignments S−n of mentions to entities.
The initial assignment is chosen at random, then the Gibbs
sampler is repeated for I iterations, each cycling through all
the mentions; see Algorithm 1.

The probability P (Sn|K,S−n,m) is calculated by:

P (Sn= k|K,S−n,m) ∝ αk,l + nk,l∑
l′∈L(αk,l′ + nk,l′)

where αk,l and nk,l are respectively the prior counts for
the token l (the mention mn = l) and observed counts for

Algorithm 1 Gibbs sampling for an entity/mention model
1: procedure GIBBS SAMPLING
2: for n=1 to N do
3: Sample Sn u.a.r. from {1, . . . ,K}
4: end for
5: for i=1 to I do
6: for n=1 to N do
7: Sample Sn from P (Sn|K,S−n,m)
8: end for
9: end for

10: end procedure

token l assigned to Ek. It is divided by the sum of the prior
and observed counts for all the L tokens.

Each step of the Gibbs sampler is relatively easy to com-
pute, but of course the algorithm cannot change the number
of entities; moreover, it tends to get stuck on local maxima
because of the local nature of the changes [Celeux et al.,
2000]. Despite these drawbacks, Gibbs steps are an impor-
tant element used in association with split-merge steps in
order to optimize the allocation of mentions to entities.

3.3 Split–merge MCMC for the EMM

One way to explore states with different numbers of enti-
ties is to use birth and death moves. A birth moves creates
a new entity with no mentions, while a death move kills off
an entity that has no mentions. While such moves, com-
bined with Gibbs moves, do connect the entire state space,
they lead to very slow mixing because death moves can
only occur when Gibbs moves have removed all the men-
tions from an entity, which is astronomically unlikely when
N is much larger than K—unless the entity being killed is
one that was just born.

Split and merge moves simultaneously change the number
of entities and change the assignments of multiple mentions
in one go. The simplest approach is to pick an entity at ran-
dom and split it into two, randomly assigning the mentions
to the two new entities; the merge move operates in reverse
by picking two entities and merging into one, along with
their mentions. A naive implementation of this idea often
fails to work, because random splits often yield a state with
a very low probability, preventing acceptance. Pasula et al.
[2003] suggested a random mixing procedure that chooses
two entities and randomly assigns each of their mentions to
one of two new entities. A split occurs when the two chosen
entities happen to coincide, and a merge happens when one
of the new entities receives no mentions and is discarded.
The approach was effective for medium-sized data sets in
their experiments (300-400 mentions, 60-80 entities) but
fails when each entity has many mentions: merges become
exponentially unlikely to be proposed.

Jain and Neal [2004] proposed a Restricted Gibbs Split–

904

Merge (RGSM) algorithm to generate splits that are con-
sistent with data. Two random elements are chosen in the
beginning. A split is proposed if these two elements belong
to the same component and otherwise a merge is proposed.
To split the component ck, RGSM algorithm first assigns
the elements randomly into two new components claunch1

and claunch2 as the launch state. Restricted Gibbs is then
applied for t times inside the launch state, re-assigning el-
ements to one of the components. The modified launch
state after t Restricted Gibbs steps is used for generating
the split. The resulting split reflects the data to some ex-
tent and tends to have a higher likelihood. However, these
intermediate Restricted Gibss steps are rather computation-
ally expensive, especially for large data sets. Dahl [2003]
proposed an allocation procedure, which works by assign-
ing elements sequentially to two components. It starts with
creating two new components c1 and c2 with two random
elements. The remaining elements are sequentially allo-
cated to either c1 or c2 using the Restricted Gibbs sampler
conditioned on those previously assigned elements. This
procedure is more efficient than preparing the launch state
in RGSM.

Split–merge has been applied to different models such as
the Beta Process Hidden Markov Model [Hughes et al.,
2012] and the Hierarchical Dirichlet Process [Wang and
Blei, 2012; Rana et al., 2013]; on the other hand, the split–
merge method itself has not been improved since RGSM
was first proposed in 2004. In the next section, we exam-
ine the interaction of the MH algorithm with split–merge
moves and propose a new combination of moves that seems
to work better.

4 SMART AND DUMB PROPOSALS

In general, smart proposals that lead to high-probability
states are preferred, as they lead to faster convergence of
MCMC. What Jain and Neal [2004] did for RGSM is to
avoid the low-probability states generated by random splits.
As we mentioned in Section 1, “smart” proposals propose
states with higher probability according to the target distri-
bution. The Gibbs sampler is smart in this sense, because
its proposal distribution is proportional to the state proba-
bility and hence the MH acceptance probability is always 1
(Eq. 2). Consequently, we may instinctively conclude that
the convergence efficiency might be significantly improved
if we concentrate on the design of smart proposals. How-
ever, this is not true for MH in general. The MH ratio in
the case of a smart merge proposal will be analyzed as an
example.

Let q(x′|x) and q(x|x′) be respectively a smart merge pro-
posal and a smart split proposal. Each first picks a subset
of the variables to merge (or split) with probability Pm (or
Ps). It then proposes a particular merge (or split) according
to the target distribution fm (or fs), where fm and fs are

proportional to state probabilities:

fm =
π(x′)∑

ω∈W (x) π(ω)
, fs =

π(x)∑
ω∈W (x′) π(ω)

, (3)

where W (x) and W (x′) are respectively the set of states
for all possible merges and the set of states for all possible
splits given Ps and Pm.

The MH ratio is then given by

q(x|x′)
q(x′|x)

π(x′)
π(x)

=
Ps
Pm

π(x)∑
ω∈W (x′) π(ω)

π(x′)∑
ω∈W (x) π(ω)

π(x′)
π(x)

=
Ps
Pm

∑
ω∈W (x) π(ω)∑
ω∈W (x′) π(ω)

(4)

When both split and merge are smart, the ratio Ps
Pm

will be
very low due to a quite small Ps. It is because that the
smart split would not give a big probability mass to the part
a smart merge prefers to merge (detailed examples given in
the next subsection). The second part in Formula 4, namely
space ratio, is important in split-merge case because of the
space asymmetry.

∑
ω∈W (x) on the top is just π(x) since

when we have chosen two entities to merge (Pm), there is
only one merge possibility. However,

∑
ω∈W (x′) contain

2n possible splits (n is the number of mentions assigned to
the picked entity).

The Ps
Pm

ratio gives the first idea about why smart propos-
als have conflicts with inverse smart proposals. In case of
space asymmetry, a smart–smart proposal suffers also from
the space ratio in addition to the Ps

Pm
ratio.

4.1 Why smart proposals do not work by themselves:
A simple example

Let’s take a concrete example of split and merge to illus-
trate the problem stated above for smart proposals. Assum-
ing that there are three entities in state x as below:

x : {E1 : {A A B B}; E2 : {C C}; E3 : {C C}},

a desired split would be splitting E1 into two entities as
follows:

x′1 : {E1 : {A A}; E4 : {B B}; E2 : {C C}; E3 : {C C}}.

A smart split proposal distribution should propose the state
x′1 with a quite high probability as illustrated in the left part
of Figure 1, where the width of the arrow line indicates
the probability value. However, a smart merge proposal,
starting from state x′1, would rather have a high probability
q(x′′1 |x′1) for proposing the state x′′1 :

x′′1 : {E1 : {A A}; E4 : {B B}; E2 : {C C C C}}.

From the point of view of a smart merge, inverting the
smart split’s preferred move q(x|x′1) is highly unlikely, as

905

represented by the dashed arrow in the figure. Therefore,
considering the high value of q(x′1|x), the proposal ratio
becomes extremely low, which leads to a very low accep-
tance rate for smart split proposals.

(a) smart split (b) smart merge

Figure 1: Conflicts between smart split and smart merge
(red lines for splits and green lines for merges; thick/dashed
lines for moves preferred/dispreferred by smart proposals.)

It is a similar situation for smart merge proposals, as illus-
trated in the right part of Figure 1. A smart merge proposal
will give a high probability to generate the state x′2:

x′2 : {E1 : {A A B B}; E2 : {C C C C}}.
On the other hand, the smart split from the state x′2 will be
more likely to generate a state such as:

x′′2 : {E1 : {A A}; E3 : {B, B}; E2 : {C C C C}},
leaving only a tiny probability to propose the state x′2 to go
back to x. The same phenomenon of a low acceptance rate
will be engendered.

For the particular case of split and merge, a new entity cre-
ated by the split proposal changes the parameters of the
space, which means, for one split and its inverse merge,
there are much more possibilities for splits than those for
merges. This neighborhood issue makes the smart merge
proposal even harder to be accepted as shown in Formula 4.

4.2 Coupling with smart and dumb proposals

Smart proposals are not effective in this case because the
entity which we choose to split does not correspond to the
entities that we prefer to merge in the reverse direction.
However, if we want to distribute a higher probability to
the reverse move, q(x|x′1) for instance, it can be treated
as a dumb proposal rather than a smart one. “Dumb” pro-
posals can be considered as distributions that give uniform
probability mass over all possible moves.

An important property of MCMC methods is that detailed
balance can be guaranteed when several different proposals
are adopted on condition that each proposal satisfies the
Metropolis-Hastings algorithm [Tierney, 1994]. Therefore,
there is a solution to combine smart and dumb proposals,
namely the Smart-Dumb Dumb-Smart proposals (SDDS),
as illustrated in Figure 2.

Figure 2: Smart-Dumb Dumb-Smart design for proposals

As a consequence, there are two separate pairs of proposal
distributions. For either of them, the dumb proposal gives a
uniform distribution over all possible moves. The existence
of dumb proposals helps the acceptance of smart proposals.
In the context of these two pairs, both smart split and smart
merge can produce higher acceptance rates and faster mix-
ing.

4.3 An SDDS split–merge algorithm

Inside the SDDS algorithm, we want to propose high-
probability states with smart splits and smart merges and to
do so efficiently. The algorithm for the smart split proposal
with dumb merge and the one for smart merge proposal
with dumb split are respectively described in Algorithm 2
and Algorithm 3.

Smart split/dumb merge proposal Algorithm 2 begins
by choosing randomly between a smart split proposal and a
dumb merge proposal. If a smart split is picked, it will first
choose one entity Ek based on a function fsplit(Ek). The
function is inversely proportional to the likelihood of the
mentions mEk associated with this entity Ek, which im-
plies that the proposal tends to choose large and mixed enti-
ties. The likelihood is given byB(αk+nk)/B(αk) where
αk and nk are respectively the vectors for the Dirichlet
prior counts and the observed counts of each token in mEk .

Once the entity Ek chosen, the smart split procedure will
allocate sequentially each mention to one of two newly
created entities E′1 and E′2, according to the likelihood of
the previously assigned mentions. Given the entity Ek :
{AABBCC} for example, the procedure is illustrated in

906

Algorithm 2 Smart Split and Dumb Merge proposal
1: procedure SMART SPLIT DUMB MERGE
2: choose a move type: type ∼ (split,merge)
3: if type==split then . smart split
4: choose one entity to split
5:

Ek ∼ fsplit(Ek)

fsplit(Ek) ∝
1

P (mEk |Ek)
6: create two new empty entities E′1 and E′2
7: assign each mention inEk sequentially toE′1 or
E′2 according to the likelihood of previously assigned
mentions

8: else . dumb merge
9: choose one entity uniformly from K entities

10: choose another entity uniformly from the rest
K-1 entities

11: end if
12: calculate the acceptance ratio α
13: apply the proposal with probability α
14: end procedure

Table 1.

Table 1: Splitting one entity into two entities sequentially
steps 0 1 2 3 4 5 6
E′1 A AA AA AA AA AA
E′2 B BB BBC BBCC
P 0.5 0.6 0.625 0.714 0.5 0.714

Two new created entities are empty in the beginning. Dur-
ing each step, the allocation probability for each mention
mi is calculated by:

P (E′1|mi) ∝ α1,l′ + n1,l′∑
l′∈L(α1,l′ + n1,l′)

P (E′2|mi) ∝ α2,l + n2,l∑
l′∈L(α2,l′ + n2,l′)

(5)

where α1,l and α2,l are the Dirichlet priors for the token l
(the mention mi = l, which is A, B or C in this case) be-
ing assigned to entity E′1 and E′2, n1,l and n2,l are current
observed counts of token l assigned to E′1 and E′2 (counts
are updated during each step). The denominator sums up
the prior and observed counts for all possible tokens (A, B
and C in this case). The probability in each step is given
in the table taking all α1,l=α2,l=1 as example (smaller al-
pha makes this procedure more discriminating). The prob-
ability of this allocation procedure is then a product of the
probability in each step. This procedure avoids the time-
consuming Restricted Gibbs sampling adopted by Jain and
Neal [2004]. [Dahl, 2003] proposed a similar sequential
procedure but started by creating two new entities with two

Algorithm 3 Smart Merge and Dumb Split proposal
1: procedure SMART MERGE DUMB SPLIT
2: choose a move type: type ∼ (split,merge)
3: if type==merge then . smart merge
4: choose one entity Ei uniformly from K entities
5: choose another entity

Ej ∼ fmerge(Ej |Ei)

fmerge(Ej |Ei) ∝ P (mEi,Ej , Ej |Ei)
6: else . dumb split
7: choose one entityEk uniformly from K entities
8: create two new empty entities E′1 and E′2
9: assign each mention in Ek sequentially to E′1

or E′2 with equal probability
10: end if
11: calculate the acceptance ratio α
12: apply the proposal with probability α
13: end procedure

random mentions, which causes an initial bias when these
two random mentions are supposed to be associated with
the same entity.

The reverse dumb merge proposal would rather generate
random merges. It picks one entity uniformly from K enti-
ties and then picks another from the remaining K-1 entities.
The probability of this reverse proposal is then 2/K(K−1)
(two orders of choosing these two entities).

If a dumb merge proposal is chosen in the beginning, the
choice of two entities will have the probability 1/K(K −
1). Then we need to know the probability of the split pro-
posal that reverses this move, i.e., allocates the mentions
exactly into the two given sets. The order of mentions dur-
ing allocation influences the final probability and the dif-
ferent probabilities from all possible orders are supposed
to be summed up, which is not really feasible in practice.
Dahl [2003] applied a random permutation on the order of
mentions, which may be critical to correctness of MCMC
methods since in this way we are obtaining a random prob-
ability for the reverse split when merge is proposed and it
may not correspond to the exact probability of the inverse
move. In our case, we fix a unique order for all mentions so
that there is only one way of applying the procedure thus
only one possible probability value for the same split re-
sults, either the real split procedure or the imaged reverse
one. This unique order is chosen in an arbitrary way. The
choice of any particular order has no influence on the infer-
ence but the same order should be kept all along the exper-
iments.

Smart merge/dumb split proposal Algorithm 3 begins
from making the random choice between merge and split as
well. If smart merge proposal is picked, it will first choose

907

one entity Ei randomly from K entities. The choice of the
second entity Ej is based on how likely it is when merged
with Ei. The entity Ej is draw from a distribution given by
function fmerge(Ej |Ei), which is proportional to the like-
lihood of this resulting merge of Ej to Ei. The likelihood
of the merge is calculated by:

P (mEi,Ej , Ej |Ei) =
B(αi + ni + nj)

B(αi)
(6)

where mEi,Ej refers to all mentions assigned to Ei and
Ej , αi is vector for Dirichlet prior, and ni + nj refers to
the vector for the observed counts of each term in mEi,Ej .

The reverse dumb split proposal chooses one entityEk uni-
formly from K entities and allocates each mention ran-
domly into two new created entities, the probability of
which is 1/(K · 2n), where n is the number of mention
assigned to entity Ek.

If the dumb split proposal is chosen, it generates a ran-
dom split with the same probability 1/(K · 2n). As for
the reverse smart merge proposal, we need to consider
the merge in two different orders, namely fmerge(Ej |Ei)
and fmerge(Ei|Ej), where fmerge(Ei|Ej) is proportional
to P (mEj ,Ei , Ei|Ej) which can be calculated similarly to
Formula 6.

5 EXPERIMENTS WITH SDDS

5.1 Applying SDDS to EMM

We applied the SDDS algorithm to the entity/mention
model. During each inference step, the SDDS sampler
chooses uniformly from either smart-split/dumb-merge
proposal or dumb-split/smart-merge proposal; this is then
complemented by one single Gibbs sampling step.2 It is
worth emphasizing again that detailed balance is satisfied
when each sub-kernel fulfills the detailed balance condition
individually. Three other algorithms are tested for com-
parison. The first is a random mixing (RM) sampler in-
spired from [Pasula et al., 2003]. It works by choosing
two random entities (which could be the same one) and
then distributing corresponding mentions into two new cre-
ated entities by a randomly chosen split point. The second
is the RGSM sampler [Jain and Neal, 2004].3 The third
is a smart-smart (SS) sampler which has the same smart
split and merge moves as SDDS but lacks the paired dumb
moves.

The simulated data sets use 10 different tokens (A, B, C,
etc.). Different configurations were tested, including dif-

2The different ways of combining a designed sampler with
Gibbs sampler is an issue to be investigated; we adopted this con-
figuration for all tested algorithms for comparison.

3The stable version (5, 1, 1) is adopted for comparison, which
contains 5 intermediate Restricted Gibbs steps inside one MH step
and then one complete Gibbs sampling.

ferent data set sizes (N=100, 200, 500) and different initial
entity numbers (K0=1, 5, 10, 20). All Dirichlet priors α
are set to 0.001. For the Log-normal prior on the number
of entities K, the location parameter is set to 0.5 (10 enti-
ties) and scale parameter is set to 1. Experiments were run
for 10K/50K/200K iterations, with a time-out at 10 hours.

We are interested in the posterior distribution of K, the
number of entities, given the available evidence. We illus-
trate the evolution of the expected value of K for the vari-
ous algorithms as a function of the number of iterations, for
different values of N and K0. We also give the acceptance
rates and time needed for each iteration for comparison.

Posterior distribution of entity numbers The posterior
distributions of entity numbers are analyzed by the mean
of the value K during iterations. First of all, we fix the
initial valueK0=5 to compare results of these four different
algorithms for different data sizes, as shown in Figure 3.
We can see that for N = 100 and N=200, all samplers
except random mixing sampler can converge to the correct
posterior K=10. However, when a larger data set N=500
is used, the RGSM sampler fails to have successful split or
merge therefore the value K is trapped at initial value. The
SS sampler is capable of applying several effective splits
whereas the merge proposal does not work well because of
the reason we discussed in Section 4.1.

For the data set N=500, we have also analyzed the sen-
sitivity of the sampler to initial value K0, as illustrated in
Figure 4. It is easy to observe that RGSM sampler is always
trapped in initial K0 in this case. The SS sampler can gen-
erate well-assigned mentions for entities during smart split
procedure, whereas it can not converge to the true posterior.
It is interesting to see from the results of Random Mixing
sampler that it works well when the initial value is twice as
large as the true value. In fact, in the RM sampler, the ran-
dom split procedure encourages the acceptance of merge
proposals. However, the random split proposals themselves
are not likely to be accepted because they generate very
low-probability states. The SDDS sampler outperforms all
the others, converging to the true posterior regardless of the
initial value.

It is worth mentioning that the inferences start from random
allocations, which would generate an ensemble of messed
up entities. It is not really useful to merge messed up en-
tities. The acceptance rates for merging messed up enti-
ties should be very low as well. It is therefore logical to
observe many accepted splits in the beginning of the infer-
ence of SDDS algorithm. SDDS algorithm generates more
well-formed entities and then yields higher probabilities for
merging them.

Acceptance rates The relation between the size of data
set and the acceptance rates for both split and merge are
shown in Figure 5. We can observe that, for the data set

908

(a) N=100 (b) N=200 (c) N=500

Figure 3: The mean of K during iteration for different data size, with the initial K0=5

(a) Random Mixing (b) Restricted Gibbs Split-Merge (c) Smart Split Smart Merge (d) Smart-Dumb Dumb-Smart

Figure 4: The mean of K during iteration for different initial K0=1,5,10,20, with the data size N=500

N=100, RGSM sampler has high acceptance rates for both
split (7.8%) and merge (2.1%). However, when the data
size is N=200, the acceptance rates are decreased largely,
only 1.1% for split and 0.08% for merge. When the data
size grows to N=500, almost no effective split or merge is
happening. On the contrary, the smart proposals in SDDS
algorithm, either smart split or smart merge, maintain sat-
isfying acceptance rates even for the data set N=500, 1.9%
for smart split and 4.8% for smart merge. For the SS sam-
pler, the drop of acceptance rates is similar to RGSM sam-
pler since there is no dumb proposals to support their cor-
responding smart proposals.

Time per iteration As we stated previously, the allo-
cation procedure in our smart split proposal is less time-
consuming than the Restricted Gibbs sampling based split
proposal. The performance of the running time per iter-
ation is shown for each algorithm in Figure 5. For the
RGSM sampler, the time spent per iteration grows quickly
with the data size, whereas the time for SDDS algorithm re-
mains stable. In the case of N=500, RGSM sampler takes
488.63 milliseconds per step while SDDS algorithm takes
only 10.02 milliseconds per step. The time per iteration for
Random Mixture sampler and that for SS sampler (which
are not show in the figure) is in the same scale of SDDS
sampler and stays stable for different data sizes.

5.2 Applying SDDS to conjugate Dirichlet Process
Mixture Model

RGSM algorithm is originally proposed for Dirichlet Pro-
cess Mixture Model (DPMM). When conjugate priors are
used, the Gibbs sampling procedure can be easily con-
structed for DPMM. A particular Gibbs sampling method
is adapted in this context of DPMM model so that the Gibbs
sampler can create new components [Neal, 1992]. The pro-
posed SDDS algorithm is also applied to DPMM and is
then compared to the Gibbs sampler and RGSM sampler.

The experiments have been done with high dimensional
Bernoulli data. Given the independently and identically
distributed data set y = (y1, y2, ..., yN) , each observation
yi has m Bernoulli attributes, (yi1, yi2, ..., yim). Given the
component ci each item yi belongs to, its attributes are in-
dependent of each other. The mixture components are con-
sidered as the latent class that produces the observed data.

The simulated data for our experiments are generated in
the same way as Jain and Neal [2004] did for one high-
dimensional data set: 5 components with attribute dimen-
sion 15. Experiments are run for different sizes, N=100,
1K, and 10K. The Dirichlet process prior and the Beta prior
for attributes are respectively set to 1 and 0.1. (See Jain and
Neal [2004] for further details on this model).

;Jain and Neal [2004] have demonstrated their results by
plotting the traces of the five ;highest-wweight components

909

(a) Acceptance rates for split (b) Acceptance rates for merge (c) Time per Iteration

Figure 5: The differences of acceptance rates and time per iteration for different data sizes

(a) Data size N=100 (b) Data size N=1K (c) Data size N=10K

Figure 6: Comparison of the evolution of likelihood during the time for different data sizes

to verify if their algorithms can cover most data and de-
tect ;five components. We have provided the same plots
for the SDDS sampler. We observed the same relative per-
formance for SDDS and RGSM on the DPMM as for the
EMM, in terms of time per iteration and acceptance rates
(results not shown here). We also compared the evolution
of the likelihoods for SDDS, RGSM, and Gibbs as a func-
tion of running time (Figure 6). We see that, for N=100,
RGSM arrives at high-probability states about 0.5 second
after the SDDS algorithm does. When N=1K, SDDS gains
70 seconds over RGSM. When N=10K, SDDS outper-
forms RGSM by more than 2000 seconds. We conclude
from this limited sample of runs that the advantage of
SDDS over RGSM increases with data set size.

6 CONCLUSION

We have described the SDDS algorithm, which achieves ef-
ficient split–merge inference by combining smart and dumb
proposals. The idea is illustrated for the entity/mention
model. For the smart split proposal, we proposed a fast
and exact way of generating splits that are consistent with
data. Experiments on the entity/mention model and Dirich-
let process mixture models suggest that SDDS algorithm
mixes faster than previously known algorithms, and that
the advantage increases with data set size.

References

Gilles Celeux, Merrilee Hurn, and Christian P. Robert.
Computational and inferential difficulties with mixture
posterior distributions. Journal of the American Statisti-
cal Association, 2000.

J Chang and J. W. Fisher. Parallel sampling of dp mixture
models using sub-clusters splits. In NIPS, 2013.

David B Dahl. An improved merge-split sampler for conju-
gate dirichlet process mixture models. Technical report,
University of Wisconsin - Madison, 2003.

Andrew Gelman. Iterative and non-iterative simulation al-
gorithms. In Computing Science and Statistics: Proceed-
ings of the 13th Symposium on the Interface, 1992.

Stuart Geman and Donald Geman. Stochastic relaxation,
gibbs distributions, and the Bayesian restoration of im-
ages. IEEE Trans. Pattern Anal. Mach. Intell., 1984.

W K Hastings. Monte Carlo sampling methods using
Markov chains and their applications. Biometrika, 1970.

Michael Hughes, Emily Fox, and Erik Sudderth. Effec-
tive split-merge Monte Carlo methods for nonparametric
models of sequential data. In NIPS, 2012.

Sonia Jain and Radford Neal. A split-merge Markov chain
Monte Carlo procedure for the dirichlet process mixture

910

model. Journal of Computational and Graphical Statis-
tics, 2004.

Zia Khan, T. Balch, and F. Dellaert. Multitarget tracking
with split and merged measurements. In CVPR, 2005.

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H.
Teller, and E. Teller. Equations of state calculations by
fast computing machines. Journal of Chemical Physics,
1953.

Radford M. Neal. Bayesian mixture modeling. In Proceed-
ings of the 11th International Workshop on Maximum
Entropy and Bayesian Methods of Statistical Analysis,
1992.

Mathias Niepert and Pedro Domingos. Exchangeable vari-
able models. In ICML, 2014.

Hanna Pasula, Stuart Russell, Michael Ostland, and
Ya’acov Ritov. Tracking many objects with many sen-
sors. In IJCAI, 1999.

Hanna Pasula, Bhaskara Marthi, Brian Milch, Stuart Rus-
sell, and Ilya Shpitser. Identity uncertainty and citation
matching. In NIPS. MIT Press, 2003.

Santu Rana, Dinh Phung, and Svetha Venkatesh. Split-
merge augmented gibbs sampling for hierarchical dirich-
let processes. In Advances in Knowledge Discovery and
Data Mining. Springer, 2013.

Luke Tierney. Markov chains for exploring posterior dis-
tributions. Annals of Statistics, 1994.

Chong Wang and David M. Blei. A split-merge MCMC
algorithm for the hierarchical dirichlet process. CoRR,
2012.

Sinead Williamson, Avinava Dubey, and Eric P. Xing. Par-
allel Markov chain Monte Carlo for nonparametric mix-
ture models. In ICML, 2013.

911

Planning under Uncertainty with Weighted State Scenarios

Erwin Walraven
Delft University of Technology

Mekelweg 4, 2628 CD
Delft, The Netherlands

Matthijs T. J. Spaan
Delft University of Technology

Mekelweg 4, 2628 CD
Delft, The Netherlands

Abstract

In many planning domains external factors are
hard to model using a compact Markovian state.
However, long-term dependencies between con-
secutive states of an environment might exist,
which can be exploited during planning. In
this paper we propose a scenario representation
which enables agents to reason about sequences
of future states. We show how weights can
be assigned to scenarios, representing the likeli-
hood that scenarios predict future states. Further-
more, we present a model based on a Partially
Observable Markov Decision Process (POMDP)
to reason about state scenarios during planning.
In experiments we show how scenarios and our
POMDP model can be used in the context of
smart grids and stock markets, and we show that
our approach outperforms other methods for de-
cision making in these domains.

1 INTRODUCTION

The Markov Decision Process (MDP) formalism is a math-
ematical framework for modeling agents interacting with
their environment (Puterman, 1994). In many real-world
planning domains, however, external factors can be diffi-
cult to predict, which makes it hard to obtain a Markovian
model with the right state features and an appropriate level
of detail (Witwicki et al., 2013). In such domains, it is
hard to estimate probabilities for the occurrence of uncer-
tain events, and therefore decision making can be a chal-
lenging task.

An example of a hard-to-model external factor is renewable
energy supply such as generation of wind power. Research
has shown that the most severe problems in electricity grids
occur during peak-load hours when energy demand is high
and wind power generation is interrupted (Moura and De
Almeida, 2010), because then the supply of renewable elec-

tricity may not be sufficient to satisfy the demand of con-
sumers. A potential solution is exploiting the flexibility of
the loads of consumers, such that they can be supplied dur-
ing off-peak hours. This solution requires reasoning about
future wind speed, but many external factors influencing
wind make it hard to define a compact Markovian state
for wind. Additionally, methods to predict short-term wind
power are affected by errors and may be inaccurate (Giebel
et al., 2011).

In order to accommodate planning in domains with events
that are difficult to predict and hard to model, we propose a
framework that enables agents to reason about future states.
This approach is based on the observation that there can
be long-term dependencies between states, which can be
exploited during planning, rather than explicitly defining
a state transition model with appropriate features. In our
framework, such long-term dependencies are modeled by
scenarios, which are sequences of states. An advantage of
using scenarios is illustrated in Figure 1, in which we com-
pare wind predictions generated by a second-order Markov
chain and actual wind scenarios that have been observed in
practice. The lines in the figure visualize the 5th percentile,
mean and 95th percentile of these predictions, and show us
that scenarios provide information that is not sufficiently
modeled by a second-order Markov chain.

In our work we assign weights to scenarios, corresponding
to the likelihood that a scenario predicts future states accu-
rately, and we use the Partially Observable Markov Deci-
sion Process framework (Kaelbling et al., 1998) to reason
about scenarios during planning. We demonstrate the pro-
posed Scenario-POMDP model in two domains. Besides
wind scenarios in smart grids, we show how a Scenario-
POMDP can be applied to financial stock markets. This
domain has also been subject of study in the artificial intel-
ligence community, since stock price is hard to model and
depends on many external factors (Hassan and Nath, 2005).
An experimental evaluation shows that our method outper-
forms other methods for decision making in both domains,
indicating that scenarios are a valuable representation to
model uncertainty regarding the future.

912

10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

Time (hrs)

W
in

d
(k

m
/h

r)

Mean Markov chain
5th and 95th percentile Markov chain
Mean scenarios
5th and 95th percentile scenarios

Figure 1: Comparison between Markov chain wind predic-
tions and realistic wind scenarios starting from 51 km/hr.

The structure of this paper is as follows. Section 2 intro-
duces planning under uncertainty. In Section 3 we intro-
duce scenarios and related concepts. In Sections 4 and 5 we
show how planning with scenarios can be applied to smart
grids and stock markets. In the remaining sections we dis-
cuss related work, conclusions and future work. In the sup-
plementary material we provide problem formulations and
additional information regarding the problem domains.

2 PLANNING UNDER UNCERTAINTY

Planning under uncertainty involves agents that interact
with their environment by executing actions, and observ-
ing effects caused by these actions. This is a challeng-
ing problem if agents are uncertain about the outcome of
their action execution, and if they cannot fully observe the
environment they are acting in. The Partially Observable
Markov Decision Process (POMDP) formalism provides a
framework to plan in such uncertain environments (Kael-
bling et al., 1998).

In a POMDP, it is assumed that the environment is in a
state s ∈ S. After executing an action a ∈ A in state s, the
state of the environment transitions to another state s′ ∈ S
according to probability distribution P (s′|s, a) and a re-
ward R(s, a) is received from the environment. A state
transition from s to s′ is only conditionally dependent on
state s and action a, which is called the Markov prop-
erty. In contrast to MDPs with full observability (Puter-
man, 1994), the agent does not directly perceive the state
of the environment in a POMDP. It receives an observa-
tion o ∈ O that can be used to reason about the underlying
MDP state of the environment, using a probability distribu-
tion P (o|a, s′). Since states are not directly observable in
a POMDP, agents maintain a belief state, denoted b, which
represents a probability distribution over states. The result-
ing belief state boa after executing action a and observing o

agent

m′
aot

R

scenario
process

domain-

environment

level

Figure 2: An agent executing action a, which causes a state
transition to m′, and the agent receives state observation ot
from the scenario process at time t and receives reward R.

in belief state b can be determined using Bayes’ rule:

boa(s
′) =

P (o|a, s′)
P (o|a, b)

∑

s∈S
P (s′|s, a)b(s)

whereP (o|a, b) =∑s′∈S P (o|a, s′)
∑
s∈S P (s

′|s, a)b(s).
The state space S, action space A and observation space O
are assumed to be finite in this paper.

To act in a partially observable environment, agents use a
policy π(b), which maps belief states to actions. A pol-
icy π(b) is characterized by a value function V π(b) defin-
ing the expected discounted reward collected by the agent
when executing policy π from belief state b. The optimal
value function V ∗(b) is defined as:

V ∗(b) = max
a∈A

[∑

s∈S
R(s, a)b(s) + γ

∑

o∈O
P (o|a, b)V ∗(boa)

]

where boa is defined by Bayes’ rule, and γ is a discount
factor satisfying 0 ≤ γ < 1. Computing exact solu-
tions to POMDPs is known to be intractable (Papadim-
itriou and Tsitsiklis, 1987), but many approximate meth-
ods exist based on point-based value iteration (Pineau et
al., 2003; Spaan and Vlassis, 2005). In this paper we use
POMCP (Silver and Veness, 2010), an online Monte-Carlo
planning algorithm that is capable of dealing with a large
number of states. We assume the planning horizon to be
finite.

3 PLANNING WITH SCENARIOS

In this section we propose a scenario representation for
planning under uncertainty. First we introduce the notion
of scenarios and we explain how scenarios can be weighted
based on previous observations. We also present a general
POMDP model to reason about scenarios and future states
during planning.

3.1 SCENARIOS AND WEIGHTS

We assume that an agent interacts with an environment as
shown in Figure 2. The environment consists of a process

913

input : observation sequence o1,t, scenario set X ,
threshold ρ

output: weights w

X ′ ← ∅
d← 0
while |X ′| < ρ do

X ′ ← {x ∈ X :W (x, o1,t) ≤ d}
d← d+ 1

end
foreach x ∈ X do

if x ∈ X ′ then
wx ← 1 / (ε+W (x, o1,t))

else
wx ← 0

end
end
w∗ ←∑

x∈X wx
foreach x ∈ X do

wx ← wx / w
∗

end
Algorithm 1: WEIGHTS.

for which the domain-level state changes to m′ after ex-
ecuting an action. For simplicity, in this paper we assume
that the state of this process is observable, but our approach
is not limited to this assumption. Additionally, there is an-
other process for which a compact Markovian model does
not exist, called the scenario process. We assume that an
agent observes a numerical-valued state ot of this process
at time t, which we call a state observation, but there is no
model available defining the state transitions. The actions
executed by the agent do not influence the state transitions
of the scenario process. We assume that the rewards re-
ceived by the agent depend on the statem, as well as on the
state of the scenario process, which means that the agent
has to account for future states to optimize the long-term
reward.

In order to be able to reason about future states, we propose
a scenario representation below. A scenario is a sequence
of states of the scenario process, and implicitly models the
dependencies between multiple consecutive states.

Definition 1. (Scenario). A scenario x = (x1, . . . , xT) is a
sequence of states of the scenario process for T consecutive
timesteps, where xt is the state at time t. The sequence
containing the first t states of scenario x is denoted by x1,t.

States of the scenario process are assumed to be directly ob-
servable, represented by a sequence o1,t = (o1, o2, . . . , ot),
containing state observations from the first t timesteps. The
sequence of state observations can be compared to a sce-
nario, by comparing the individual state observations with
states in the scenario. We illustrate this with a small ex-
ample for the scenario x = (x1, x2, x3, x4) = (8, 5, 3, 2).
Suppose that the state observations are defined by the se-

t

S
c
e
n
a
r
io

1
2

3

4
o1,t

Figure 3: Scenarios and state observations until time t.

quence (o1, o2, o3) = (8, 5, 4), then the first and second
state observation are identical to the first two states defined
by scenario x, and the third state observation is different.

Weights can be assigned to scenarios, representing the like-
lihood that a scenario perfectly predicts the states that will
be observed in the future. To reason about future states,
we assume that a large scenario set X is given, contain-
ing sequences of states that can be observed in T consecu-
tive timesteps. If a sequence of states o1,t is observed until
time t, then the sequence can be used to assign weights to
the scenarios in X . In Sections 4 and 5 we discuss how
such a scenario set can be obtained in realistic domains.

An informal visual representation of scenarios is shown in
Figure 3. It shows four scenarios, labeled 1 to 4, and the
state observation sequence o1,t. As can be seen in the fig-
ure, the state observation sequence does not correspond to
any scenario until time t, but it is very similar to scenario 3.
If X is an accurate set of scenarios, then it is probable that
scenario 3 predicts future states. Therefore, the weight as-
signed to this scenario should be high in comparison to the
weights assigned to other scenarios.

The weights assigned to scenarios are inversely propor-
tional to the distance between scenarios and the state ob-
servation sequence. The distance between state observation
sequence o1,t = (o1, o2, . . . , ot) and the first t states of a
scenario x ∈ X can be measured by computing the sum
of squared errors. The function W below computes this
distance for a given scenario x ∈ X and state observation
sequence o1,t:

W (x, o1,t) =

t∑

i=1

(oi − xi)2.

We select scenarios up to a certain distance from the state
sequence until time t, and we assign weights to the scenar-
ios such that they sum to 1. The algorithm that we use to
assign weights is shown in Algorithm 1. It selects a sub-
set of scenarios X ′ containing at least ρ scenarios similar
to o1,t, based on the sum of squared errors. This step en-
sures that there is a sufficient number of scenarios with non-
zero weight, to prevent that the future is predicted by only
one or very few scenarios. A probability distribution is de-
fined over the scenarios in X ′, in which the probabilities
are inversely proportional to the computed distance. A nor-

914

m

x

t

o

m′

x′

t′

o′

Ra

Figure 4: General dynamic Bayesian network of the
Scenario-POMDP model.

malization step is performed to ensure that the sum of the
probabilities equals 1. The parameter ρ can be adjusted to
lower-bound the number of scenarios with non-zero proba-
bility.

3.2 SCENARIO-POMDP MODEL

In this section we present a POMDP model, which we can
use to model any planning problem with the type of agent-
environment interaction outlined in the previous section.
The model can be used to reason about future states of a
scenario process during planning, such that agents can rea-
son about future states to optimize the long-term reward.

We present a POMDP model with factored states, as shown
in the dynamic Bayesian network in Figure 4. Before ex-
plaining the Scenario-POMDP model in detail, we formal-
ize it below.

Definition 2. (Scenario-POMDP). A Scenario-POMDP is
a POMDP in which each state s ∈ S can be factored into
a tuple s = (m,x, t), where m is the domain-level state of
the environment, x ∈ X is a scenario and t is a time index.
A Scenario-POMDP has the following properties:

1. The scenario state variable x is partially observable,
and state variables t and m are observable1. In
state s = (m,x, t), observation xt is observed with
probability 1, determined by x and t.

2. The transitions of m are determined by a predefined
transition function. State variable t is always incre-
mented by 1 after executing an action. The scenario
state variable x is fixed.

3. The reward received in state s = (m,x, t) depends
on xt, defined by variable x and variable t, and de-
pends on domain-level state m and action a.

A Scenario-POMDP models problems in which the interac-
tion with the environment is represented by an MDP defin-
ing the domain-level actions and states, but the rewards also

1The Scenario-POMDP model can also be used if m is par-
tially observable, which requires factored observations.

input: initial domain-level state m0, horizon T , scenario
set X , threshold ρ

m← m0

for t = 1, . . . , T do
ot ← state of scenario process
o1,t ← (o1, . . . , ot)
w ←WEIGHTS(o1,t, X, ρ)
a← POMCP(m,w, t)
execute action a
m← state obtained after executing a in state m

end
Algorithm 2: Scenario-POMCP.

depend on the state of the scenario process. Actions only
affect the domain-level statem, and we assume that they do
not influence the state transitions of the scenario process.

The state variable m represents the domain-level state of
the environment, and the actual definition of m is depen-
dent on the problem domain, as we will show later. The
state variable x represents a scenario, where the scenario is
a sequence of states as introduced in Definition 1. A sce-
nario defines the state observations to be made in future
timesteps, and therefore the scenario x is considered to be
partially observable. A scenario cannot be fully observable,
because this would imply that there is prior knowledge re-
garding future states of the scenario process. In this pa-
per x denotes both a scenario and scenario state variable,
but this makes the explanations more intuitive and clear.
The state variable t is a variable representing the current
timestep, and is fully observable. The Scenario-POMDP
model can be considered as a MOMDP, which is a subclass
of POMDPs for problems with mixed observability (Ong
et al., 2010).

The observations in a Scenario-POMDP are exclusively de-
termined by the factored state variables x and t. For sce-
nario variable x and time variable t, the observation re-
ceived by the agent is the observation at time t in sce-
nario x. Suppose that the scenario x is (6, 9, 12) and the
time state variable equals 2, then the agent will receive ob-
servation 9. This explains how the observations in Figure 4
depend on the scenario variable x and time variable t.

An action a, represented by the square in the figure, only
affects the domain-level state m and does not influence the
scenario x. For each action, the reward R is dependent on
the domain-level state of the environment, as well as the
observed state of the scenario process, defined by scenario
state variable x and time variable t.

3.3 PLANNING FOR SCENARIO-POMDPs

We present a general planning algorithm, called Scenario-
POMCP, for planning problems that can be formulated as
a Scenario-POMDP. The description of the algorithm is

915

Table 1: Task Scheduling State Variables.

VARIABLE DESCRIPTION

mi
s state of task i, for i = 1, . . . , n

ma ∈ {1, . . . , n} agent owning the token
x ∈ X scenario
t ∈ {1, . . . , T} time

shown in Algorithm 2. The initial domain-level state m0,
time horizon T , scenario set X and threshold ρ are given
as input. The state observations ot are used to define o1,t
and Algorithm 1 is used as a subroutine to assign weights to
scenarios inX . The POMCP algorithm (Silver and Veness,
2010) is used as planning algorithm, which is an online
planning algorithm for POMDPs based on Monte-Carlo
tree search. This algorithm receives m, w and t as input,
and samples scenarios from X with a probability propor-
tional to their weight in the vector w. We use POMCP
because this algorithm can be adapted to sample scenar-
ios based on weights, rather than sampling states from a
belief state, and the algorithm is able to deal with a large
number of states. The latter is relevant since the number of
states of a Scenario-POMDP may grow very large. Even-
tually our algorithm executes the resulting action a before
proceeding to the next timestep. At any timestep a new
POMCP search tree is created, because there is no explicit
link between the weights of consecutive timesteps. More
implementation details are provided in the supplementary
material.

4 SCENARIOS IN SMART GRIDS

In this section we formulate matching of demand with re-
newable supply in smart grids as a Scenario-POMDP, and
we run simulations to compare the performance with other
methods.

4.1 BACKGROUND

We consider n power demanding tasks, denoted by J =
{j1, . . . , jn}, where each task ji is parameterized by a du-
ration li, release time ri, deadline di and power demand pi.
Hence, we define each task ji as a tuple ji = (li, ri, di, pi).
A task is not allowed to start before its release time, must
be finished by the deadline and cannot be preempted. The
power demand pi of task ji represents the demand per
timestep, which means that the total power consumption
of task ji equals li · pi.
There are two electricity sources: renewable energy derived
from wind and conventional generation from the electricity
grid. The available supply of conventional generation is as-
sumed infinite and there is a cost function c(u) defining the

m1
s

...

mn
s

ma

x

t

RUN

IDLE

o

m1
s

...

mn
s

′

′

m′a

x′

t′

o′

R

Figure 5: Dynamic Bayesian network of the Scenario-
POMDP for task scheduling.

cost of consuming u units from the grid. We assume that re-
newable energy supply per timestep is finite, has zero cost
and cannot be stored to be used in subsequent timesteps.
The amount of renewable supply generated by wind is rep-
resented by a scenario x = (x1, x2, . . . , xT) defining the
number of units available at each timestep, where T is the
time horizon.

A schedule S = (h1, . . . , hn) defines for each task ji a
starting time hi satisfying the following conditions:

hi ≥ ri, hi + li − 1 ≤ di, (i = 1, . . . , n).

The first condition states that task ji cannot start before
its release time ri and the second condition defines that
task ji cannot run after the deadline di. The total de-
mand D(S, t) of a schedule S = (h1, . . . , hn) at time t
is defined as D(S, t) =

∑n
i=1 IS(i, t) · pi, where IS(i, t)

is an indicator function that equals 1 if task ji runs at
time t in schedule S, and equals 0 otherwise. The number
of required grid units US,x for schedule S and fixed sce-
nario x = (x1, x2, . . . , xT) can be computed as follows:

US,x =
T∑

t=1

max (D(S, t)− xt, 0) .

The cost function c(US,x) is used as an objective function
to be minimized, in order to match demand and the renew-
able supply defined by the scenario.

4.2 SCENARIO-POMDP FORMULATION

We formulate the problem to start and defer tasks as a plan-
ning problem, in which we assume that an agent is associ-
ated with each task. A scenario x = (x1, . . . , x24) is a
sequence of wind state observations, where each xi corre-
sponds to the wind speed measured during hour i. The time

916

horizon T is equal to 24. Available renewable supply gen-
erated by wind is observed during the day, and the cost of
running a task depends on the supply from wind and the
decisions made for other tasks.

The problem is formulated as a Scenario-POMDP, using
the factored state variables in Table 1. The state vari-
ables ms,1, . . . ,ms,n define the states of the individual
tasks, which encode properties such as release time, dura-
tion and deadline. The state variable ma represents which
agent is allowed to make a decision, which is used to re-
duce the size of the action space. More details are pro-
vided in the supplement. The factored state description
is also visualized as a dynamic Bayesian network in Fig-
ure 5, which shows the correspondence with the Scenario-
POMDP model in Figure 4.

An agent is able to execute two different actions: RUN and
IDLE, corresponding to either running a task at a certain
timeslot or doing nothing. The rewards are equal to the
cost of running a task, multiplied by −1, which leads to
a higher penalty if costly conventional generation is used.
The observations automatically follow from the Scenario-
POMDP model, as explained in Section 3.

4.3 EXPERIMENTS

In the experiments we run simulations to compare the pro-
posed Scenario-POMDP formulation with other methods.
We obtained historical hourly wind data from the Sotavento
wind farm located in Galicia, Spain for 1708 days in the pe-
riod from October 2008 until May 2013.2 We consider the
dataset as a long vector defining wind for 1708 consecu-
tive days of 24 hours each, in which wind is measured in
km/hr. For each subsequence of 24 hours, we define a sce-
nario x = (x1, . . . , x24), which yields 40969 scenarios in
total. In order to discretize the observation space, we round
wind speed values to the nearest integer. The generated
power Z(x, t) at time t in scenario x can be derived using
a sigmoid power curve:

Z(x, t) = C · (1 + e6−
2
3xt)−1

where C is a variable to define the capacity of the genera-
tor (Robu et al., 2012). For each task scheduling instance,
we choose a scalar C such that Z(x, t) =

∑n
i=1 li · pi,

which ensures that the total demand equals the available
renewable supply.

We evaluate our planning algorithm on 200 task schedul-
ing instances. Each instance consists of a set containing 6
tasks: J = {j1, j2, . . . , j6}. We assign a duration between
3 and 7 to each task ji, and a release time between 8 and
12, both sampled uniformly at random. The release times
represent that tasks are released between 8AM and noon.
The deadline di is set after 24 hours, to ensure that tasks

2Consult www.sotaventogalicia.com for details.

1

1.2

1.4

1.6

1.8

Consensus MDP planner POMCP 1 POMCP 2

C
os

t i
nc

re
as

e

Figure 6: Performance comparison between planning with
scenarios and other methods, without outliers.

Table 2: Statistics for Smart Grids Experiment 1.

CONS. MDP POMCP 1 POMCP 2

Mean 1.33 1.15 1.05 1.23
Std 0.44 0.21 0.12 0.25
Max 4.22 2.55 2.07 2.84

have finished by the end of the day. The power demand pi
equals 10 for each task, such that running tasks require 10
units at each timestep. The cost of consuming one unit from
the grid is assumed to be 1. To define the renewable supply
that is available during the day in each experiment, we sam-
ple an observation sequence from the scenario set. Days in
which the renewable supply is relatively flat contain lim-
ited uncertainty. Therefore, we select scenarios where the
renewable supply from time 1 to 6 and from time 13 to 18
is higher than the supply during the remaining hours. This
guarantees that the renewable supply is unstable and varies
during the day.

In our experiments we aim to compare the performance
of Scenario-POMCP with the cost of optimal omniscient
schedules. These assume that the supply throughout the
day is known, which is a lower bound on the performance.
We use mixed-integer programming with a 1 percent MIP
gap to compute this for each instance. The scenario-based
POMCP planner runs 200 iterations with an ε-greedy ex-
ploration strategy, in which the probability to select ran-
dom actions decreases linearly from 1 to 0, and threshold ρ
in the weight computation equals 10. Additionally, we run
an MDP planner that is based on Monte-Carlo tree search,
and we also compare with a consensus task scheduling al-
gorithm (Ströhle et al., 2014). More implementation de-
tails, and additional information regarding the consensus
algorithm, are provided in the supplement.

The results of our comparison are shown in Figure 6, in
which we show the performance relative to the cost of the
optimal omniscient schedules. The cost of the optimal om-
niscient schedules is represented by 1, and the distributions
show the performance relative to this cost. For example, if
the cost is 1.2, this means that the cost is 20 percent higher
than the cost of an optimal omniscient schedule. For read-
ability reasons outliers have been omitted in the figure, and
therefore additional statistics are provided in Table 2.

917

1

1.2

1.4

1.6

1.8

0.0 0.2 0.4 0.6 0.8 1.0
Probability

C
os

t i
nc

re
as

e

Figure 7: Cost increase for increasing probability to ex-
clude the state observation sequence from X .

Table 3: Statistics for Smart Grids Experiment 2.

0.0 0.2 0.4 0.6 0.8 1.0

Mean 1.05 1.10 1.17 1.20 1.27 1.23
Std 0.12 0.21 0.35 0.37 0.38 0.25
Max 2.07 2.77 4.19 4.19 4.19 2.84

From the results we can conclude that the MDP planner
performs slightly better than the consensus planner. For
Scenario-POMCP we ran the algorithm with two different
configurations. The column labeled POMCP 1 represents
the case in which the observed state scenario is already
present in the scenario set X , and then it performs much
better than other methods. The column labeled POMCP 2
shows the results for the experiment in which the observed
state scenario is never present in the set X . In those cases
the performance is slightly worse, but still competitive with
other methods.

In practice it can be expected that accurate scenario sets
can be obtained from large historical datasets, and it is un-
likely that the observed state scenario is never present inX .
Therefore, we did an additional experiment in which the
observed state scenario is excluded from X with a certain
probability. This means that the algorithm sometimes en-
counters known scenarios, and in other cases the observed
scenario is new. The results are shown in Figure 7 and Ta-
ble 3, from which we can conclude that the performance of
Scenario-POMCP is better if it is more likely that the ob-
served state sequence is already part of the set. Therefore,
better performance can be obtained by having a scenario
set that covers all possible sequences of states accurately.

Our experiments make clear that the Scenario-POMDP
model can be used for matching demand and uncertain sup-
ply in the smart grids domain. Additional results can be
found in previous work (Walraven and Spaan, 2015).

5 SCENARIOS IN OPTION TRADING

In this section we show how scenarios can be used in finan-
cial stock markets.

5.1 BACKGROUND

A popular type of financial option is the European call op-
tion. This option gives the holder the right, but not the
obligation, to buy a share at a prescribed point in time for a
prescribed price regardless of the stock price. A European
call option is parameterized by a strike price E and expiry
date H , giving the holder the right to pay E for a share at
time H . The value of the European call option at time H
is max(S(H)−E, 0), where S(H) denotes the stock price
at time H . If the strike price is lower than the stock price
at expiry, the option holder can earn money by buying a
share and selling it immediately on the market. If the strike
price is higher, then the trader cannot gain anything. The
value of a European call option can be determined using
the Black-Scholes equation (Black and Scholes, 1973), for
which a description is provided in the supplement. Reason-
ing about the future is necessary during trading, because if
the stock price drops an option may become worthless.

5.2 SCENARIO-POMDP FORMULATION

We formulate buying and selling call options as a single-
agent planning problem. A scenario x = (x1, . . . , xt) is
defined as a sequence of stock price values, where xi is
the stock price observed at time i. We assume that there is
an agent observing the market, and depending on the stock
price it may decide to buy a call option, and if it owns a
call option the agent may decide to sell the option to make
profit. There is one type of call options the agent can buy. If
the current stock price is j, the agent can buy a call option
that expires after 10 days, with strike j.

The planning problem can be defined as a Scenario-
POMDP, and we formulate the problem using the factored
state variables in Table 4. The scenario variable x and time
variable t are identical to the state variables x and t in a
Scenario-POMDP, and they define the observations. The
state variables mo, me and mt represent the current state
of the option portfolio of the agent. The variablemo can be
either true (T) or false (F), representing whether the agent
currently owns a call option or not. If the agent owns a call
option, the strike price of the option is represented by state
variable me, and state variable mt represents the number
of days until expiry. The factored variables mo, me and
mt together define the state m of the option portfolio. The
factored state description is also visualized as a dynamic
Bayesian network in Figure 8, which shows the correspon-
dence with the Scenario-POMDP model in Figure 4.

The agent can execute three different actions: BUY, SELL
and NOOP. The action NOOP represents doing nothing,
and the actions BUY and SELL correspond to buying and
selling an option. The agent must sell once the option has
expired. The rewards correspond to either paying a certain
amount of money, or receiving a certain amount of money.
The agent always pays the Black-Scholes value of the op-

918

Table 4: Option Trading State Variables.

VARIABLE DESCRIPTION

mo ∈ {T,F} represents whether agent owns a call
me ∈ N strike price of the call
mt ∈ {0, . . . , 9} time to expiry
x ∈ X scenario
t ∈ {1, . . . , T} time

mt

x

t

o

m′t

x′

t′

o′

R

me m′e

mo m′o

NOOP

BUY

SELL

Figure 8: Dynamic Bayesian network of the Scenario-
POMDP for option trading.

tion when buying an option, and receives the Black-Scholes
value of the option when selling the option. The obser-
vations automatically follow from the Scenario-POMDP
model, as explained in Section 3. A full description of the
state transitions and rewards can be found in the supple-
ment.

5.3 EXPERIMENTS

We did several experiments to evaluate the performance of
the option trading agent on realistic data. To be able to
reason about the stock price in the future, we obtained the
historical daily close price values to build realistic scenario
sets for shares in companies A and B. For company A, we
use the data from January 2, 2001 to December 8, 2010,
and for company B we use the data from September 27,
2000 to September 12, 2008. The stock price values are
discretized, such that each price is a natural number. We
enumerated subsequences of length 40 from the datasets to
create a scenario set for each company.

To evaluate the performance, we simulate the stock mar-
ket for each company for a period of at least 1000 days,
with historical data that is more recent than the datasets
we used to create the scenario set, which ensures that both
datasets are distinct. For company A we simulate the stock

0 100 200 300 400 500 600 700 800 900 1000
−10

0

10

20

30

Time

A
cc

ou
nt

 b
al

an
ce

Scenario
MDP
Random

0 200 400 600 800 1000 1200 1400 1600

0

10

20

30

40

Time

A
cc

ou
nt

 b
al

an
ce

Scenario
MDP
Random

Figure 9: Account balance during simulations for com-
pany A (top) and company B (bottom).

price from December 9, 2010 to December 1, 2014. For
company B we simulate the stock price from September
15, 2008 to February 20, 2015. We measured the average
historical volatility using an Exponential Weighted Mov-
ing Average approach (Higham, 2008), and based on that
we assume that the volatility of the market equals 0.4. The
annual interest rate is assumed to be 0.03.

Our scenario-based agent uses Scenario-POMCP to select
actions, which is implemented with a rolling time horizon.
In our experiment the number of POMCP search iterations
is set to 200, and the parameter ρ is equal to 10. POMCP
uses UCB (Auer et al., 2002) as action selection heuristic
with parameter 100 for company A and parameter 40 for
company B.

In our experiments we aim to show that our method based
on scenarios trades better than other methods. We can do
this by keeping track of the account balance during the sim-
ulations, and we expect that an agent using the scenario
planner earns more money than other methods. We also im-
plemented an agent that is trading randomly, and an agent
using an MDP formulation of the problem, which models
the stock price as a Markov chain. The MDP-based agent
uses Monte-Carlo tree search to select actions.

To compare the performance of the methods involved, we
compare the trajectories defining the account balance dur-
ing the simulations, as shown in Figure 9. For each method
it shows the balance of the bank account for either 1000
or 1600 days. For each company, the scenario-based agent
earns consistently more money in comparison to the other
methods and, as expected, the random agent performs
poorly. Based on our experiments we conclude that plan-
ning with scenarios has shown to perform well in this do-
main.

919

6 RELATED WORK

Ströhle et al. (2014) present a method to schedule tasks,
where the uncertainty is also represented by weighted sce-
narios. Their method solves the problem for each scenario
to reach consensus. A similarity with our work is that the
method can be used to balance demand and supply, but our
Scenario-POMDP formulation has been shown to outper-
form the consensus algorithm in case of high uncertainty.
An important difference between the work by Ströhle et al.
and this paper is that we define scheduling of tasks as a
planning problem.

The problem to assign weights to expert opinions regarding
the future is studied by Carvalho and Larson (2013). The
method proposed is similar to our work because the sim-
ilarity between opinions is measured by a distance func-
tion based on squared errors, which we also use to assign
weights to scenarios, and our scenarios can also be consid-
ered as opinions regarding uncertain future events. In our
work we always recompute weights associated with sce-
narios, whereas the work on opinion pools allows experts
to update weights when new opinions become available.

Optimization using scenarios has been studied in the con-
text of stochastic programming. Multi-stage stochastic pro-
gramming problems can be considered as a subclass of
Markov Decision Processes with a finite horizon (Defourny
et al., 2011), and in this formalism the uncertainty is also
represented by future scenarios, which is similar to our rep-
resentation of state scenarios.

Exploiting factored structures in the POMCP algorithm has
been studied by Amato and Oliehoek (2015). They propose
a variant of POMCP that does not assume a factored model,
but it uses factored value functions, which reduces the num-
ber of joint actions and joint histories in the multi-agent
setting. A similarity is that we use a factored representa-
tion in each node of the POMCP search tree, which we can
exploit to sample scenarios rather than states, but factored
value functions have not been considered in our work.

7 CONCLUSIONS

In this paper we proposed a scenario-based approach to pre-
dict external factors that are difficult to model using a com-
pact Markovian state. Scenarios represent sequences of
states, and we have shown how a scenario can be weighted
based on a sequence of states that occurred in the past, cor-
responding to the likelihood that a scenario perfectly pre-
dicts future states. In order to use the scenario represen-
tation in planning problems, we proposed a model called
Scenario-POMDP, which enables agents to reason about
future states during planning. To demonstrate the proposed
model, we formulated matching of demand with renew-
able supply in smart grids as a Scenario-POMDP, and we
have shown that our model can also be used to automati-

cally trade financial options. In both cases our Scenario-
POMDP model performs better than other methods for de-
cision making in these domains.

In future work we aim to study metrics for computing the
distance between scenarios in which states are not repre-
sented by a single numerical value. Another direction for
further research is defining a belief update for scenarios
based on Bayes’ rule, to replace the Monte-Carlo backups
in our planner. Moreover, in our current work we assume
that the domain-level state of the environment is observ-
able, but we also want to study planning with scenarios for
problems in which this part of the environment is partially
observable, which requires factored observations.

Acknowledgements

The work presented in this paper is funded by the Nether-
lands Organisation for Scientific Research (NWO), as part
of the Uncertainty Reduction in Smart Energy Systems pro-
gram. We would like to thank Mathijs de Weerdt for point-
ing out the dataset of the Sotavento wind farm.

References

Amato, C. and Oliehoek, F. A. (2015). Scalable Planning
and Learning for Multiagent POMDPs. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence,
pp. 1995–2002.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-
time Analysis of the Multiarmed Bandit Problem. In:
Machine Learning 47.2-3, pp. 235–256.

Black, F. and Scholes, M. (1973). The Pricing of Options
and Corporate Liabilities. In: The Journal of Political
Economy 81.3, pp. 637–654.

Carvalho, A. and Larson, K. (2013). A Consensual Linear
Opinion Pool. In: Proceedings of the International Joint
Conference on Artificial Intelligence, pp. 2518–2524.

Defourny, B., Ernst, D., and Wehenkel, L. (2011). Multi-
stage Stochastic Programming: A Scenario Tree Based
Approach to Planning under Uncertainty. In: Decision
Theory Models for Applications in Artificial Intelli-
gence: Concepts and Solutions. Ed. by L. Sucar, E.
Morales, and J. Hoey. Information Science Publishing.

Giebel, G, Brownsword, R., Kariniotakis, G., Denhard, M.,
and Draxl, C. (2011). The State-Of-The-Art in Short-
Term Prediction of Wind Power. Deliverable of the Eu-
ropean research project ANEMOS.plus.

Hassan, M. R. and Nath, B. (2005). Stock Market Forecast-
ing Using Hidden Markov Model: A New Approach. In:
Proceedings of the 5th International Conference on In-
telligent Systems Design and Applications, pp. 192–196.

Higham, D. J. (2008). An Introduction to Financial Option
Valuation. Cambridge University Press.

920

Kaelbling, L. P., Littman, M. L., and Cassandra, A.
R. (1998). Planning and acting in partially observ-
able stochastic domains. In: Artificial Intelligence 101.1,
pp. 99–134.

Moura, P. S. and De Almeida, A. T. (2010). The role of
demand-side management in the grid integration of wind
power. In: Applied Energy 87.8, pp. 2581–2588.

Ong, S. C. W., Png, S. W., Hsu, D., and Lee, W. S.
(2010). Planning under Uncertainty for Robotic Tasks
with Mixed Observability. In: The International Journal
of Robotics Research 29.8, pp. 1053–1068.

Papadimitriou, C. H. and Tsitsiklis, J. N. (1987). The com-
plexity of Markov decision processes. In: Mathematics
of Operations Research 12.3, pp. 441–450.

Pineau, J., Gordon, G., and Thrun, S. (2003). Point-based
value iteration: An anytime algorithm for POMDPs. In:
Proceedings of the International Joint Conference on Ar-
tificial Intelligence, pp. 1025–1030.

Puterman, M. L. (1994). Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. John Wiley &
Sons, Inc.

Robu, V., Kota, R., Chalkiadakis, G., Rogers, A., and Jen-
nings, N. R. (2012). Cooperative Virtual Power Plant
Formation Using Scoring Rules. In: Proceedings of the
AAAI Conference on Artificial Intelligence, pp. 370–376.

Silver, D. and Veness, J. (2010). Monte-Carlo Planning
in Large POMDPs. In: Advances in Neural Information
Processing Systems, pp. 2164–2172.

Spaan, M. T. J. and Vlassis, N. (2005). Perseus: Random-
ized Point-based Value Iteration for POMDPs. In: Jour-
nal of Artificial Intelligence Research 24, pp. 195–220.

Ströhle, P., Gerding, E. H., De Weerdt, M. M., Stein, S., and
Robu, V. (2014). Online Mechanism Design for Schedul-
ing Non-Preemptive Jobs under Uncertain Supply and
Demand. In: Proceedings of the International Confer-
ence on Autonomous Agents and Multiagent Systems,
pp. 437–444.

Walraven, E. and Spaan, M. T. J. (2015). A Scenario State
Representation for Scheduling Deferrable Loads under
Wind Uncertainty. In: The 10th Annual Workshop on
Multiagent Sequential Decision Making under Uncer-
tainty.

Witwicki, S., Melo, F. S., Capitán, J., and Spaan, M. T.
J. (2013). A Flexible Approach to Modeling Unpre-
dictable Events in MDPs. In: Proceedings of the Interna-
tional Conference on Automated Planning and Schedul-
ing, pp. 260–268.

921

Generalization Bounds for Transfer Learning under Model Shift

Xuezhi Wang
Computer Science Dept.

Carnegie Mellon University
Pittsburgh, PA 15213

Jeff Schneider
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Transfer learning (sometimes also referred to
as domain-adaptation) algorithms are often used
when one tries to apply a model learned from a
fully labeled source domain, to an unlabeled tar-
get domain, that is similar but not identical to
the source. Previous work on covariate shift fo-
cuses on matching the marginal distributions on
observations X across domains while assuming
the conditional distribution P (Y |X) stays the
same. Relevant theory focusing on covariate shift
has also been developed. Recent work on trans-
fer learning under model shift deals with differ-
ent conditional distributions P (Y |X) across do-
mains with a few target labels, while assuming
the changes are smooth. However, no analysis
has been provided to say when these algorithms
work. In this paper, we analyze transfer learn-
ing algorithms under the model shift assumption.
Our analysis shows that when the conditional dis-
tribution changes, we are able to obtain a general-
ization error bound of O(1

λ∗
√
nl

) with respect to
the labeled target sample size nl, modified by the
smoothness of the change (λ∗) across domains.
Our analysis also sheds light on conditions when
transfer learning works better than no-transfer
learning (learning by labeled target data only).
Furthermore, we extend the transfer learning al-
gorithm from a single source to multiple sources.

1 INTRODUCTION

In a classical transfer learning setting (see Fig. 1), we have
a source domain with sufficient fully labeled data, and a tar-
get domain with data that has little or no labels. These two
domains are related but not identical, and the usual assump-
tion is that there is some knowledge that can be transferred
from the source domain to the target domain. Examples of
transfer learning applied in the real-world include, adapting

classification models for different products, and transfer-
ring across diseases on medical data (Pan et al. (2009)). A
number of different transfer learning techniques have been
introduced in the past, e.g., algorithms dealing with covari-
ate shift (Shimodaira (2000), Huang et al. (2007), Gretton
et al. (2007)). Related theoretical analyses on covariate
shift have also been developed, e.g., for sample size m in
the source domain and sample size n in the target domain,
the analysis of Mansour et al. (2009) achieves a rate of
O(m−1/2 +n−1/2), and convergence of reweighted means
in feature space achieves rate O((1/m+ 1/n)1/2) (Huang
et al. (2007)).

0 0.5 1
−2

0

2

4

X

Y

source s

source data

target t

labeled target

Figure 1: Transfer learning example: m source data points
{Xs, Y s} (red), n target data points {Xt, Y t} (blue), and
nl labeled target points (solid blue circles). HereX denotes
the input features and Y denotes the output labels.

However, not much work on transfer learning has con-
sidered the case when a few labels in the target domain
are available. Also little work has been done when con-
ditional distributions are allowed to change (defined as
model shift). Recently, algorithms dealing with trans-
fer learning under model shift have been proposed, where
the changes on conditional distributions are assumed to be
smooth (Wang et al. (2014)). However, no theoretical anal-
ysis has been provided for these approaches.

In this paper, we develop theoretical analysis for transfer
learning algorithms under the model shift assumption. Our
analysis shows that even when the conditional distributions
are allowed to change across domains, we are still able to
obtain a generalization bound of O(1

λ∗
√
nl

) with respect to

922

the labeled target sample size nl, modified by the smooth-
ness of the transformation parameters (λ∗) across domains.
Our analysis also sheds light on conditions when transfer
learning works better than no-transfer learning. We show
that under certain smoothness assumptions it is possible to
obtain a favorable convergence rate with transfer learning
compared to no transfer at all. Furthermore, using the gen-
eralization bounds we derived in this paper, we are able to
extend the transfer learning algorithm from a single source
to multiple sources, where each source is assigned a weight
that indicates how helpful it is for transferring to the target.

We illustrate our theoretical results by empirical compar-
isons on both synthetic data and real-world data. Our re-
sults demonstrate cases where we obtain the same rate as
no-transfer learning, and cases where we obtain a favor-
able rate with transfer learning under certain smoothness
assumptions, which coincide with our theoretical analysis.
In addition, experiments on the real data show that our al-
gorithm for reweighting multiple sources yields better re-
sults than existing state-of-the-art algorithms.

2 RELATED WORK

Traditional methods for transfer learning use relatively re-
strictive assumptions, where specific parts of the learn-
ing model are assumed to be carried over between tasks.
For example, Mihalkova et al. (2007) transfers relational
knowledge across domains using Markov logic networks.
Niculescu-Mizil & Caruana (2007) learns Bayes Net struc-
tures by biasing learning toward similar structures for each
task. Do & Ng (2005) and Raina et al. (2006) assume that
models for related tasks share same parameters or prior dis-
tributions of hyperparameters.

A large part of transfer learning work is devoted to the
problem of covariate shift (Shimodaira (2000), Huang et
al. (2007), Gretton et al. (2007)), where the assumption
is that only the marginal distribution P (X) differs across
domains but the conditional distribution P (Y |X) stays the
same. The kernel mean matching (KMM) method (Huang
et al. (2007), Gretton et al. (2007)), is one of the algorithms
that deal with covariate shift. Huang et al. (2007) proved
the convergence of reweighted means in the feature space,
and showed that their method results in almost unbiased
risk estimates. More recent research (Zhang et al. (2013))
focused on modeling target shift (P (Y) changes), condi-
tional shift (P (X|Y) changes), and a combination of both.
The assumption for target shift is that X depends causally
on Y , thus P (Y) can be re-weighted to match the distri-
butions on X across domains. The authors also provided
some theoretical analysis of the conditions when P (X|Y)
is identifiable. Both covariate shift and target/conditional
shift make no use of target labels Y t, even if some are avail-
able. For transfer learning under model shift, there could be
a difference in P (Y |X) that can not simply be captured by

the differences in P (X), hence neither covariate shift nor
target/conditional shift will work well under the model shift
assumption.

A number of theoretical analyses on domain adaptation
have also been developed. Ben-David et al. (2006)
presented VC-dimension-based generalization bounds for
adaptation in classification tasks. Later Blitzer et al. (2007)
extended the work with a bound on the error rate under a
weighted combination of the source data. Mansour et al.
(2009) introduced a discrepancy distance suitable for arbi-
trary loss functions and derived new generalization bounds
for domain adaptation for a wide family of loss functions.
However, most of the work mentioned above deals with
domain adaptation under the covariate shift assumption,
which means they still assume the conditional distribution
stays the same across domains, or the labeling functions in
the two domains share strong proximity in order for adapta-
tion to be possible. For example, one of the bounds derived
in Mansour et al. (2009) has a term L(h∗Q, h

∗
P) related to

the average loss between the minimizer h∗Q in the source
domain and the minimizer h∗P in the target domain, which
could be fairly large when there exists a constant offset be-
tween the two labeling functions.

In Wang et al. (2014), the authors proposed a transfer learn-
ing algorithm to handle the general case where P (Y |X)
changes smoothly across domains. However, the authors
fail to make explicit connections between the smooth-
ness assumption and the generalization bounds for transfer
learning. They do not show whether the performance will
degrade when the smoothness assumption is relaxed, and
whether the smoothness assumption yields a lower general-
ization error for transfer learning than no-transfer learning.

Similarly, most work in transfer learning with multiple
sources focuses only on P (X). For example, Mansour et
al. (2008) proposed a distribution weighted combining rule
of source hypotheses using the input distribution P (X) for
both source and target. This approach requires estimat-
ing the distribution Di(x) of source i on a target point x
from large amounts of unlabeled points typically available
from the source, which might be difficult in real applica-
tions with high-dimensional features. Other existing work
focuses on finding the set of sources that are closely re-
lated to the target (Crammer et al. (2008)), or a reweight-
ing of sources based on prediction errors (Yao and Doretto,
(2010)). Chattopadhyay et al. (2011) proposed a condi-
tional probability based weighting scheme under a joint
optimization framework, which leads to a reweighting of
sources that prefers more consistent predictions on the tar-
get. However, these existing approaches do not consider
the problem that there might exist shifts in the conditional
distribution from source to the target, and how the smooth-
ness of this shift can help in learning the target, which is
the main issue addressed in this paper.

923

3 TRANSFER LEARNING UNDER
MODEL SHIFT: A REVIEW OF THE
ALGORITHMS

Notation: Let X ∈ Rd and Y ∈ R be the input and
output space for both the source and the target domain.
We are given a set of m labeled data points, (xsi , y

s
i) ∈

(Xs, Y s), i = 1, . . . ,m, from the source domain. We are
also given a set of n target data points, Xt, from the tar-
get domain. Among these we have nl labeled target data
points, denoted as (XtL, Y tL). The unlabeled part of Xt

is denoted as XtU , with unknown labels Y tU . For sim-
plicity let z ∈ Z = X × Y denote the pair of (x, y), and
we use zs, zt, ztL for the source, target, and labeled target,
correspondingly. We assume Xs, Xt are drawn from the
same P (X) throughout the paper since we focus more on
P (Y |X)1. If necessary P (X) can be easily matched by
various methods dealing with covariate shift (e.g. Kernel
Mean Matching) without the use of Y .

Let H be a reproducing kernel Hilbert space with kernel
K such that K(x, x) ≤ κ2 < ∞ for all x ∈ X . Let
||.||k denote the corresponding RKHS norm. Let φ denote
the feature mapping on x associated with kernel K, and
Φ(X) denote the matrix where the i-th column is φ(xi).
Denote KXX′ as the kernel computed between matrix X
and X ′, i.e., Kij = k(xi, x

′
j). When necessary, we use

ψ to denote the feature map on y, and the corresponding
matrix as Ψ(Y). For a hypothesis h ∈ H, assume that
|h(x)| ≤ M for some M > 0. Also assume bounded label
set |y| ≤M . We use `2 loss as the loss function l(h(x), y)
throughout this paper, which is σ-admissible, i.e.,

∀x, y,∀h, h′, |l(h(x), y)− l(h′(x), y)| ≤ σ|h(x)− h′(x)|.
(1)

It is easy to see that σ = 4M for bounded h(x) and y. Note
the loss function is also bounded, l(h(x), y) ≤ 4M2.

Next we will briefly review two algorithms introduced in
Wang et al. (2014) that handle transfer learning under
model shift: the first is conditional distribution matching,
and the second is two-stage offset estimation.

(1) Conditional Distribution Matching (CDM).

The basic idea of CDM is to match the conditional distribu-
tions P (Y |X) for the source and the target domain. Since
there is a difference in P (Y |X) across domains, these
two conditional distributions cannot be matched directly.
Therefore, the authors propose to make a parameterized-
location-scale transform on the source labels Y s:

Y new = Y s �w(Xs) + b(Xs),

where w denotes the scale transform, b denotes the loca-
tion transform, and� denotes the Hadamard (elementwise)

1This assumption is only required in our analysis for simplic-
ity. It can be relaxed when applying the algorithms.

P(Ynew|Xs)

P(Ys|Xs)

P(YtL|XtL)≈

Figure 2: Illustration of the conditional distribution match-
ing algorithm: red (source), blue (target).

product. w and b are non-linear functions of X which al-
lows a non-linear transform from Y s to Y new.

The objective is to use the transformed conditional distri-
bution in the source domain P (Y new|Xs), to match the
conditional distribution in the target domain, P (Y tL|XtL),
such that the transformation parameter w and b can be
learned through optimization. The matching on P (Y |X) is
achieved by minimizing the discrepancy of the mean em-
bedding of P (Y |X) with a regularization term:

min
w,b

L+ Lreg,where

L = ||Û [PY new|Xs]− Û [PY tL|XtL]||2k,
Lreg = λreg(||w − 1||2 + ||b||2),

(2)

where U [PY |X] is the mean embedding of the conditional
distribution P (Y |X) (Song et al. (2009)), and Û [PY |X]
is the empirical estimation of U [PY |X] based on samples
X,Y . Further the authors make a smoothness assumption
on the transformation, i.e., w,b are parameterized using:
w = Rg,b = Rh, whereR = KXsXs(KXsXs+λRI)−1,
and g,h ∈ Rm×1 are the new parameters to optimize
in the objective. After obtaining g,h (or equivalently
w,b), Y new is computed based on the transformation. Fi-
nally the prediction on XtU is based on the merged data:
(Xs, Y new) ∪ (XtL, Y tL).

Fig 2 shows an illustration of the conditional distribu-
tion matching algorithm. As we can see from the figure,
Y s is transformed to Y new such that P (Y new|Xs) and
P (Y tL|XtL) can be approximately matched together.

Remark. Here we analyze what happens when the smooth-
ness assumption is relaxed. It is easy to derive that, when
setting w = 1,b = 0, we can directly solve for Y new by
taking the derivative of Lwith respect to Y new, and we get:

KXsXs(KXsXs + λI)−1Y new

= KXsXtL(KXtLXtL + λI)−1Y tL,
(3)

where λ is some regularization parameter to make sure the
kernel matrix is invertible. In other words, the smoothed
Y new is given by the prediction on the source using only
labeled target data. Hence Y new provides no extra infor-
mation for prediction on the target, compared with using
the labeled target data alone.

924

(2) Two-stage Offset Estimation (Offset).

The idea of Offset is to model the target function f t using
the source function fs and an offset, fo = f t − fs, while
assuming that the offset function is smoother than the target
function. Specifically, using kernel ridge regression (KRR)
to estimate all three functions, the algorithm works as fol-
lows:
(1) Model the source function using the source data, i.e.,
fs(x) = KxXs(KXsXs + λI)−1Y s.
(2) Model the offset function by the difference between
the true target labels and the predicted target labels, i.e.,
fo(XtL) = Y tL − fs(XtL).
(3) Transform Y s to Y new by adding the offset,
i.e., Y new = Y s + fo(Xs), where fo(Xs) =
KXsXtL(KXtLXtL + λI)−1fo(XtL).
(4) Train a model on {Xs, Y new} ∪ {XtL, Y tL}, and use
the model to make predictions on XtU .

We would like to answer: under what conditions these
transfer learning algorithms will work better than no-
transfer learning, and how the smoothness assumption af-
fects the generalization bounds for these algorithms.

4 ANALYSIS OF CONDITIONAL
DISTRIBUTION MATCHING

In this section, we analyze the generalization bound for the
conditional distribution matching (CDM) approach.

4.1 RISK ESTIMATES FOR CDM

We use stability analysis on the algorithm to estimate the
generalization error. First we have:

Theorem 1. (Bousquet & Elisseeff (2002), Theorem 12
and Example 3) Consider a training set S = {z1 =
(x1, y1), ..., zm = (xm, ym)} drawn i.i.d. from an un-
known distribution D. Let l be the `2 loss function which is
σ-admissible with respect to H, and l ≤ 4M2. The Kernel
Ridge Regression algorithm defined by:

AS = arg min
h∈H

1

m

m∑

i=1

l(h, zi) + λ||h||2k

has uniform stability β with respect to l with β ≤ σ2κ2

2λm .

In addition, let R = Ez[l(AS , z)] be the generalization er-
ror, and Remp = 1

m

∑m
i=1 l(AS , zi) be the empirical error,

then the following holds with probability at least 1− δ,

R ≤ Remp +
σ2κ2

λm
+ (

2σ2κ2

λ
+ 4M2)

√
ln(1/δ)

2m
.

In CDM, the prediction on the unlabeled target data points
is given by merging the transformed source data and the
labeled target data, i.e., (Xs, Y new) ∪ (XtL, Y tL). Hence

we need to bound the difference between the empirical er-
ror on the merged data and the generalization error (risk) in
the target domain.

Denote z̃i = (x̃i, ỹi) ∈ (X̃, Ỹ), where X̃, Ỹ represents the
merged data: X̃ = Xs ∪ XtL, Ỹ = Y new ∪ Y tL. Let
h∗ ∈ H be the minimizer on the merged data, i.e.,

h∗ = arg min
h∈H

1

m+ nl

m+nl∑

i=1

l(h, z̃i) + λ||h||2k.

Then the following theorem holds:

Theorem 2. Assume the conditions in Theorem 1 hold.
Also assume ||Û [PY new|Xs]−Û [PY tL|XtL]||k ≤ ε after we
optimize objective Eq. 2. The following holds with proba-
bility at least 1− δ:

| 1

m+ nl

m+nl∑

i=1

l(h∗, z̃i)− Ezt [l(h∗, zt)]|

≤ 4M(εκ+ C(λ1/2c + (nlλc)
−1/2))+

σ2κ2

λt(m+ nl)
+ (

2σ2κ2

λt
+ 4M2)

√
ln(1/δ)

2(m+ nl)
,

where λc is the regularization parameter used in estimating
Û [PY tL|XtL] = Ψ(Y tL)(KXtLXtL + λcnlI)−1Φ>(XtL),
and λt is the regularization parameter when estimating the
target function. C > 0 is some constant.

Proof. Let z̄i = (x̄i, ȳi) ∈ (X̄, Ȳ), where X̄, Ȳ are the
auxiliary samples with X̄ = Xs ∪ XtL, Ȳ = Ȳ ts ∪ Y tL,
where Ȳ ts are pseudo labels in the target domain for the
source data points Xs. Using triangle inequality we can
decompose the LHS by:

| 1

m+ nl

m+nl∑

i=1

l(h∗, z̃i)− Ezt [l(h∗, zt)]|

≤ | 1

m+ nl

m+nl∑

i=1

l(h∗, z̃i)−
1

m+ nl

m+nl∑

i=1

l(h∗, z̄i)|

+ | 1

m+ nl

m+nl∑

i=1

l(h∗, z̄i)− Ezt [l(h∗, zt)]|

The second term is easy to bound since it is simply the dif-
ference between the empirical error and the generalization
error in the target domain with effective sample size nl+m,
thus using Theorem 1, we have

| 1

m+ nl

m+nl∑

i=1

l(h∗, z̄i)− Ezt [l(h, zt)]|

≤ σ2κ2

λt(m+ nl)
+ (

2σ2κ2

λt
+ 4M2)

√
ln(1/δ)

2(m+ nl)
.

(4)

925

To bound the first term, we have

| 1

m+ nl

m+nl∑

i=1

l(h∗, z̃i)−
1

m+ nl

m+nl∑

i=1

l(h∗, z̄i)|

≤ 1

m+ nl

m+nl∑

i=1

|l(h∗, z̃i)− l(h∗, z̄i)|

≤ 1

m+ nl

m∑

i=1

4M |ynewi − U [PY t|Xt]φ(xsi)|

≤ 4M

m+ nl

m∑

i=1

(|Û [PY new|Xs]φ(xsi)− Û [PY tL|XtL]φ(xsi)|

+ |Û [PY tL|XtL]φ(xsi)− U [PY t|Xt]φ(xsi)|)

≤ 4M

m+ nl

m∑

i=1

(||Û [PY new|Xs]− Û [PY tL|XtL]||k
√
k(x, x)

+ |Û [PY tL|XtL]φ(xsi)− U [PY t|Xt]φ(xsi)|)
≤ 4M(εκ+ C(λ1/2c + (nlλc)

−1/2)),

(5)

where in the last inequality, the second term is bounded
using Theorem 6, Song et al. (2009).

Now combining Eq. 5 and Eq. 4 concludes the proof.

4.2 TIGHTER BOUNDS UNDER SMOOTH
PARAMETERIZATION

Theorem 2 suggests that using CDM, the empirical risk
converges to the expected risk at a rate of

O(λ1/2c + (nlλc)
−1/2 + λ−1t (m+ nl)

−1/2). (6)

In the following, we show how the smoothness parameter-
ization in CDM helps us obtain faster convergence rates.

Under the smoothness assumption on the transformation,
w,b are parameterized using: w = Rg,b = Rh, where
R = KXsXs(KXsXs+λRI)−1. For simplicity we assume
the same λR for both w and b. Similar to the derivation in
Eq. 5, we have

|ynewi − U [PY t|Xt]φ(xsi)|
= |Û [PY new|Xs]φ(xsi)− Û [PY tL|XtL]φ(xsi)|

+ |Û [PY tL|XtL]φ(xsi)− U [PY t|Xt]φ(xsi)|)
≤ εκ+ |Û [PwtL|XtL]φ(xsi)− U [Pwt|Xt]φ(xsi)| · |ysi |

+ |Û [PbtL|XtL]φ(xsi)− U [Pbt|Xt]φ(xsi)|
≤ εκ+ C1(λ

1/2
R + (nlλR)−1/2)M + C2(λ

1/2
R + (nlλR)−1/2)

≤ εκ+ C ′(λ1/2R + (nlλR)−1/2).

(7)

Hence we can update the bound in Eq. 5 by:

| 1

m+ nl

m+nl∑

i=1

l(h∗, z̃i)−
1

m+ nl

m+nl∑

i=1

l(h∗, z̄i)|

≤ 4M(εκ+ C ′(λ1/2R + (nlλR)−1/2)).

(8)

It is easy to see that Eq. 4 remains the same. Hence, the
rate for CDM under the smooth parametrization is:

O(λ
1/2
R + (nlλR)−1/2 + λ−1t (m+ nl)

−1/2). (9)

In transfer learning we usually assume the number of
source data is sufficient, i.e., m → ∞. Comparing Eq. 9
with Eq. 6 we can see that, when the number of labeled
points nl is small, the term (nlλc)

−1/2 in Eq. 6 and the
term (nlλR)−1/2 in Eq. 9 take over. If we further assume
that the transformation w and b are smoother functions
with respect to X than the target function with respect to
X , i.e., λR > λc, then Eq. 9 is more favorable. On the
other hand, when the number of labeled target points nl is
large enough for the first term λ

1/2
c in Eq. 6 and the first

term λ
1/2
R in Eq. 9 to take over, then it is reasonable to use

a λR closer to λc to get a similar convergence rate as in
Eq. 6. Intuitively, when the number of labeled target points
is large enough, it is not very helpful to transfer from the
source for target prediction.

Remark. Note that in Eq. 6 and Eq. 9, an ideal choice of λ
close to 1/

√
nl can minimize λ1/2 + (nlλ)−1/2. However,

note that the generalization bound is the difference between
the expected risk R and the empirical risk Remp, and a λ
that minimizes the generalization bound does not necessar-
ily minimize the expected risk R, since the empirical risk
Remp (which is also affected by λ) can still be large. To
obtain a relatively small empirical risk, λ should be deter-
mined by the smoothness of the offset/target function, since
it is the regularization parameter when estimating the off-
set/target. In practice λ is chosen by cross validation on the
labeled data, and is not necessarily close to 1/

√
nl. For ex-

ample, on real data we find that λ is usually chosen to be in
the range of 1e− 2 to 1e− 4 to accommodate a fairly wide
range of functions, which makes the second term 1/

√
nlλ

dominate the risk if nl is much smaller than 1e4.

4.2.1 Connection with Domain Adaptation Learning
Bounds

In Mansour et al. (2009), the authors provided several
bounds on the pointwise difference of the loss for two dif-
ferent hypothesis (Theorem 11, 12 and 13). It is worth not-
ing that in order to bound the pointwise loss, the authors
make the following assumptions when the labeling func-
tion fS (source) and fT (target) are potentially different:

δ2 = LŜ(fS(x), fT (x))� 1,

926

where LŜ(fS(x), fT (x)) = EŜ(x)l(fS(x), fT (x)). This
condition is easily violated under the model shift assump-
tion, where the two labeling functions can differ by a large
margin. However, with our transformation from Y s to
Y new, we can translate the above assumption to the fol-
lowing equivalent condition:

δ2 = LŜ(Y new, fT (x)) =
1

m

m∑

i=1

(ynewi − U [PY t|Xt]φ(xsi))
2

≤ (εκ+ C ′(λ1/2R + (nlλR)−1/2))2,

using the results in Eq. 7. Hence we can bound δ2 to be
small under reasonable assumptions on nl and λR.

4.2.2 Comparing with No-transfer Learning

Without transfer, which means we predict on the unlabeled
target set based merely on the labeled target set, the gen-
eralization error bound is simply: | 1nl

∑nl
i=1 l(h

tL, ztLi) −
Ezt [l(h

tL, zt)]| ≤ σ2κ2

λtnl
+(2σ2κ2

λt
+4M2)

√
ln(1/δ)
2nl

, where

htL is the KRR minimizer on {XtL, Y tL}. Then

Ezt [l(h
tL, zt)]− 1

nl

nl∑

i=1

l(htL, ztLi) = O(
1

λt
√
nl

). (10)

We can see that with transfer learning, first we obtain a
faster rate O(λ−1t (m + nl)

−1/2) in Eq. 9 with effective
sample size nl + m than O(λ−1t n

−1/2
l) in Eq. 10 with ef-

fective sample size nl. However, the transfer-rate Eq. 9
comes with a penalty term O(λ

1/2
R + (nlλR)−1/2) which

captures the estimation error between the transformed la-
bels and the true target labels. Again, in transfer learning
usually we assumem→∞, and nl is relatively small, then
the transfer-rate becomes O((nlλR)−1/2). Further if we
assume that the smoothness parameter λR for the transfor-
mation is larger than the smoothness parameter λt for the
target function (λR > λt will be sufficient if λR < 1, oth-
erwise we need to set λR > λ2t if λR ≥ 1), then we obtain
a faster convergence rate with transfer than no-transfer. We
will further illustrate the results by empirical comparisons
on synthetic and real data in the experimental section.

5 ANALYSIS ON THE OFFSET METHOD

In this section, we analyze the generalization error on the
two-stage offset estimation (Offset) approach. Interest-
ingly, our analysis shows that the generalization bounds for
offset and CDM have the same dependency on nl.

5.1 RISK ESTIMATES FOR OFFSET

(1) First, we learn a model from the source domain by min-
imizing the squared loss on the source data, i.e.,

hs = arg min
h∈H

1

m

m∑

i=1

l(h, zsi) + λs||h||2k.

Using Theorem 1, we have with probability at least 1− δ,

Rs ≤ Rsemp +
σ2κ2

λsm
+ (

2σ2κ2

λs
+ 4M2)

√
ln(1/δ)

2m
,

where Rs = Ezs [l(h
s, zs)], Rsemp = 1

m

∑m
i=1 l(h

s, zsi).
Hence

Rs −Rsemp = O(
1

λs
√
m

), (11)

(2) Second, we learn the offset by KRR on {XtL, ŷo},
where ŷo = Y tL− fs(XtL), i.e., ŷo is the estimated offset
on labeled target pointsXtL, and fs(XtL) is the prediction
on XtL using source data.

Denote ĥo as the minimizer on ẑo = {XtL, ŷo}, i.e.,

ĥo = arg min
h∈H

1

nl

nl∑

i=1

l(h, ẑoi) + λo||h||2k

= arg min
h∈H

R(h) +N(h).

(12)

Denote ho as the minimizer on zo = {XtL, yo}, where yo

is the unknown true offset:

ho = arg min
h∈H

1

nl

nl∑

i=1

l(h, zoi) + λo||h||2k

= arg min
h∈H

R′(h) +N(h),

(13)

Using Theorem 1, we have with probability at least 1− δ,

Ro ≤ Roemp +
σ2κ2

λonl
+ (

2σ2κ2

λo
+ 4M2)

√
ln(1/δ)

2nl
(14)

where Ro = Ezo [l(h
o, zo)], Roemp = 1

nl

∑nl
i=1 l(h

o, zoi).
In our estimation we use ŷo instead of yo, hence we need
to account for this estimation error.

Lemma 1. The generalization error Ro is bounded by:

Ro = R̄oemp +O(
1

λo
√
nl

), (15)

as m→∞. Here R̄oemp = 1
nl

∑nl
i=1 l(ĥ

o, ẑoi) is the empir-

ical error of our estimator ĥo on {XtL, ŷo}.

Proof. Define the Bregman Divergence associated to F of
f to g by BF (f ||g) = F (f)−F (g)− < f − g,∇F (g) >.
Let F (h) = R(h) + N(h), F ′(h) = R′(h) + N(h).
Since ho, ĥo are the minimizers, we have BF ′(ĥo||ho) +

BF (ho||ĥo) = F ′(ĥo) − F ′(ho) + F (ho) − F (ĥo) =

R′(ĥo) − R′(ho) + R(ho) − R(ĥo). In addition, us-
ing the nonnegativity of B and BF = BR + BN ,
BF ′ = BR′ +BN , we have BN (ĥo||ho) +BN (ho||ĥo) ≤
BF (ho||ĥo) + BF ′(ĥ

o||ho). Combining the two we
have BN (ĥo||ho) + BN (ho||ĥo) ≤ R′(ĥo) − R′(ho) +

927

R(ho)−R(ĥo) = 1
nl

∑nl
i=1 l(ĥ

o, zoi)− 1
nl

∑nl
i=1 l(h

o, zoi)+
1
nl

∑nl
i=1 l(h

o, ẑoi)− 1
nl

∑nl
i=1 l(ĥ

o, ẑoi) ≤ 2
nl

∑nl
i=1 σ|yoi −

ŷoi |, using |l(ĥo, zoi) − l(ĥo, ẑoi)| ≤ |2ĥo(xi) − yoi − ŷoi | ·
|yoi − ŷoi | ≤ σ|yoi − ŷoi |, σ = 4M .

Since for RKHS norm BN (f ||g) = ||f − g||2k, we
have BN (ĥo||ho) + BN (ho||ĥo) = 2||ho − ĥo||2k.
Combined with the above inequality, we have 2||ho −
ĥo||2k ≤ 2

nl

∑nl
i=1 σ|yoi − ŷoi |. Then we have |l(ho, zoi) −

l(ĥo, zoi)| ≤ σ|ho(xi) − ĥo(xi)| ≤ σ||ho − ĥo||kκ ≤
σκ
√

1
nl

∑nl
i=1 σ|yoi − ŷoi |. Hence | 1nl

∑nl
i=1 l(h

o, zoi) −
1
nl

∑nl
i=1 l(ĥ

o, ẑoi)| ≤ 1
nl

∑nl
i=1[|l(ho, zoi) − l(ĥo, zoi)| +

|l(ĥo, zoi) − l(ĥo, ẑoi)|] ≤ σκ
√

1
nl

∑nl
i=1 σ|yoi − ŷoi | +

1
nl

∑nl
i=1 σ|yoi − ŷoi |. Now we can conclude that

Roemp =
1

nl

nl∑

i=1

l(ho, zoi) ≤ R̄oemp + P, (16)

where R̄oemp = 1
nl

∑nl
i=1 l(ĥ

o, ẑoi), and P =

σκ
√

1
nl

∑nl
i=1 σ|yoi − ŷoi | + 1

nl

∑nl
i=1 σ|yoi − ŷoi |.

To bound P , first we have 1
nl

∑nl
i=1 |yoi − ŷoi | =

1
nl

∑nl
i=1 |(ytLi −ysi)− (ytLi − ŷsi)| = 1

nl

∑nl
i=1 |ysi − ŷsi | ≤√

1
nl

∑nl
i=1(ysi − ŷsi)2. Using Eq. 11, 1

nl

∑nl
i=1(ysi − ŷsi)2

is bounded by Rsemp + O(1
λs
√
m

). We can see that the
penalty term P diminishes as m → ∞. Plugging Eq. 16
into Eq. 14 concludes the proof.

(3) Now we analyze the generalization error in the target
domain. Using the assumption that the target labels yt can
also be decomposed by yo + ys, we have:

Ezt [l(h, zt)] = Ezt [(h(xt)− yt)2]

= E[(ho(xt) + hs(xt)− yo − ys)2]

≤ 2E(ho(xt)− yo)2 + 2E(hs(xt)− ys)2.
(17)

Plugging in Eq. 11 and Eq. 15, we have

Rt = Ezt [l(h, zt)] = 2Rsemp+2R̄oemp+O(
1

λo
√
nl

+
1

λs
√
m

)

In transfer learning usually we assume that the number of
source data is sufficient, i.e., m→∞, hence

Rt − 2(Rsemp + R̄oemp) = O(
1

λo
√
nl

). (18)

5.1.1 Comparing with No-transfer Learning

As with the no-transfer-rate in Sec. 4.2.2, we have

Rt −RtLemp = O(
1

λt
√
nl

), (19)

where λt is the regularization parameter when estimating
the target function. Comparing this rate with Eq. 18, and
using our assumption that we have a smoother offset than
the target function, i.e., λo > λt, we can see that we obtain
a faster convergence rate with transfer than no-transfer.

6 MULTI-SOURCE TRANSFER
LEARNING

In this section, we show that we can easily adapt the trans-
fer learning algorithm from a single source to transfer
learning with multiple-sources, by utilizing the generaliza-
tion bounds we derived in earlier sections. Transfer learn-
ing with multiple sources is similar to multi-task learning,
where we learn the target and multiple sources jointly.

A closer look at Eq. 9 for CDM, and Eq. 18 for Offset
reveals that, when nl is small and m → ∞, we have a
convergence rate of O(1

λ∗
√
nl

) for both algorithms, where
λ∗ is some parameter that controls the smoothness of the
source-to-target transfer (for Eq. 9 we can set λR = λ2∗).
This observation motivates our reweighting scheme on the
source hypotheses to achieve transfer learning under multi-
ple sources, described as the following.

Assume we have S sources and a target. First, we apply the
transfer learning algorithm from a single source to obtain a
model Ms from each source s to target t, where the pa-
rameter λs∗ is determined by cross-validation, s = 1, ..., S.
Second, we compute the weight for each source s by:

ws = p(D|Ms)p(Ms), where

p(D|Ms) = exp{−
ms∑

i=1

(ytLi − f̂s(xtLi))2},

p(Ms) ∝ exp{−α 1

λs∗
},

where f̂s(xtLi) is the prediction given by Ms.

The idea is similar to Bayesian Model Averaging (Hoet-
ing et al. (1999)), where the first term p(D|Ms) serves as
the data likelihood of the predictive model Ms from source
s, and the second term p(Ms) is the prior probability on
model Ms. In our case, p(Ms) is chosen to indicate how
similar each source to the target is, where the similarity is
measured by how smooth the change is from source s to
target t. It is easy to see that, the weights coincide with our
analysis of the generalization bounds for transfer learning,
and the choice of α should be in the order of O(1/

√
nl).

Intuitively, when the number of labeled target points nl is
small, p(Ms) has a larger effect on ws, which means we
prefer the source that has a smoother change (larger λs∗)
for the transfer. On the other hand, when nl is large, then
p(D|Ms) takes over, i.e., we prefer the source that results
in a larger data likelihood (smaller prediction errors). Fi-

928

nally, we combine the predictions by:

f̂(xtUi) =

S∑

s=1

ws∑S
s=1 ws

f̂s(xtUi)

This weighted combination of source hypotheses gives us
the following generalization bound in the target domain:

Ezt [l(h, zt)] = Ezt [(
∑

s

ws∑S
s=1 ws

hs(x
t)− yt)2]

= Ezt [(
∑

s

ws∑S
s=1 ws

(hs(x
t)− yt))2]

≤
∑

s

ws∑S
s=1 ws

Ezt [(hs(xt)− yt)2]

=
∑

s

ws∑S
s=1 ws

[R̃semp +O(
1

λs
√
nl

)],

where the third inequality uses Jensen’s inequality, and the
last equality uses the bounds we derived. Here R̃semp refers
to the empirical error for source s when transferring from s
to t (Thm. 2 for CDM and Eq. 18 for Offset).

7 EXPERIMENTS

7.1 SYNTHETIC EXPERIMENTS

In this section, we empirically compare the generalization
error of transfer learning algorithms to that of no-transfer
learning (learning by labeled target data only), on synthetic
datasets simulating different conditions.

We generate the synthetic dataset in this way: Xs, Xt

are drawn uniformly at random from [0, 4], Y s =
sin(2Xs) + sin(3Xs) with additive Gaussian noise. Y t

is the same function with a smoother location-scale trans-
formation/offset. In each of the following comparisons, we
plot the mean squared error (MSE) on the unlabeled target
points (as an estimation of the generalization error) with
respect to different number of labeled target points. The
labeled target points are chosen uniformly at random, and
we average the error over 10 experiments. The parameters
are chosen using cross validation.

In Fig. 3, we compare transfer learning using CDM with
no-transfer learning. The results show that with the ad-
ditional smoothness assumption, we are able to achieve a
much lower generalization error for transfer learning than
no-transfer learning. In Fig. 4 and 5, we compare transfer
learning using the Offset approach with no-transfer learn-
ing. The two figures show different generalization error
curves when the smoothness of the offset is different. We
can see that with a smoother offset (Fig. 4) we are able to
achieve a much lower generalization error than no-transfer
learning. With a less smooth offset (Fig. 5) we can still
achieve a lower generalization error than no-transfer learn-
ing, but the rate is slower compared to Fig. 4. Further we

analyze the case when the smoothness assumption does not
hold, by setting the source function to be sin(Xs) + ε such
that the target changes faster than the source. In this case,
transfer learning with CDM/Offset yield almost the same
generalization error as no-transfer learning (Fig. 6), i.e.,
the source data does not help in learning the target.

0 1 2 3 4
−2

−1

0

1

2

3

X

Y

source

target

W

B

0 20 40 60
0

0.2

0.4

0.6

0.8

1

Labeled target points

M
S

E

no−transfer

CDM

Figure 3: No-transfer learning vs. transfer learning (CDM)

0 1 2 3 4
−2

−1

0

1

2

3

X

Y

source

target

offset

0 20 40 60
0

0.2

0.4

0.6

0.8

1

Labeled target points

M
S

E

no−transfer

offset

Figure 4: No-transfer learning vs. transfer learning using
the Offset approach (smoother offset, λR = 0.1)

0 1 2 3 4
−2

−1

0

1

2

3

X

Y

source

target

offset

0 20 40 60
0

0.5

1

1.5

2

Labeled target points

M
S

E

no−transfer

offset

Figure 5: No-transfer learning vs. transfer learning using
the Offset approach (less smooth offset, λR = 0.001)

0 1 2 3 4
−2

0

2

4

6

X

Y

source

target

0 20 40 60

0

0.2

0.4

0.6

0.8

Labeled target points

M
S

E

no−transfer

offset

CDM

Figure 6: No-transfer learning vs. transfer learning, when
the smoothness assumption does not hold

7.2 EXPERIMENTS ON THE REAL DATA

7.2.1 Comparing Transfer Learning to No-transfer
Learning, Using Different Sources

The real-world dataset is an Air Quality Index (AQI)
dataset (Mei et al. (2014)) during a 31-day period from
Chinese cities. For each city, the input feature xi is a bag-
of-words vector extracted from Weibo posts of each day,
with 100, 395 dimensions as the dictionary size. The out-
put label yi is a real number which is the AQI of that day.

Fig. 7 shows a comparison of MSE on the unlabeled target
points, with respect to different number of labeled target

929

points, when transferring from a nearby city (Ningbo) and a
faraway city (Xi’an), to a target city (Hangzhou). The data
is shown in the left figure of Fig. 7, where the x-axis is each
day. The results are averaged over 20 experiments with uni-
formly randomly chosen labeled target points. First we ob-
serve that we obtain a lower generalization error by trans-
ferring from other cities than learning by the target city data
alone (no-transfer). In addition, the generalization error are
much lower if we transfer from nearby cities where the dif-
ference between source and target is smoother.

0 10 20 30
0

100

200

300

400

500

Day

Y

nearby city

faraway city

target

5 10 15 20 25 30
1000

2000

3000

4000

5000

6000

7000

8000

labeled target points

M
S

E

nearby city

faraway city

no−transfer

Figure 7: Comparison of MSE on unlabeled target points

7.2.2 Transfer Learning with Multiple Sources

The results in Sec. 7.2.1 indicate that, when transferring
from multiple sources to a target, it is important to choose
which source to transfer, in order to obtain a larger gain.
In this section, we show the results on the same air quality
index data by reweighting different sources (Sec. 6).

Fig. 8 shows a comparison of MSE on the unlabeled target
data (data shown in the left figure) with respect to different
number of labeled target points (nl ∈ {2, 5, 10, 15, 20}),
where the prediction is based on each source independently
(labeled as source i, i ∈ {1, 2, 3}), and based on multiple
sources (labeled as posterior). Since CDM and Offset give
similar bounds, we use two-stage offset estimation as the
prediction algorithm from each source s to target t. The
weighting on the sources is as described in Sec. 6. As can
be seen from the results, using posterior reweighting on dif-
ferent sources, we obtain results that are very close to the
results using the best source.

0 10 20 30
0

100

200

300

400

500

Day

Y

 source 1

source 2

source 3

target

5 10 15 20
0

2000

4000

6000

8000

labeled target points

M
S

E

source 1
source 2
source 3
posterior

Figure 8: Comparison of MSE on unlabeled target points,
with multiple sources

Further in Figure. 9, we show a comparison of MSE on
the unlabeled target data between the proposed approach
and two baselines, with respect to different number of la-

beled target points. The results are averaged over 20 ex-
periments. The first baseline wDA is a weighted multi-
source domain adaptation approach proposed in Mansour
et al. (2008), where the distribution Di(x) for source i on
a target point x is estimated using kernel density estima-
tion with a Gaussian kernel. Note that the original algo-
rithm proposed in Mansour et al. (2008) does not assume
the existence of a few labeled target points, thus the hy-
pothesis hi(x) from each source i is computed by using the
source data only. To ensure a fair comparison, we augment
hi(x) by using the prediction of the Offset approach given
nl labeled target points. The second baseline optDA is a
multi-source domain adaptation algorithm under an opti-
mization framework, as proposed in Chattopadhyay et al.
(2011), where the parameters γA, γI are set as described
in the paper, and θ is chosen using cross-validation on the
set {0.1, 0.2, ..., 0.9} (the final choice of θ is 0.1). Note
that our proposed algorithm gives the best performance. In
addition, our algorithm does not require density estimation
as in wDA, which can be difficult in real-world applica-
tions with high-dimensional features. Further note pos-
terior considers the change in P (Y |X) while wDA fo-
cuses on the change of P (X). A potential improvement
can be achieved by combining these two in the reweighting
scheme, which should be an interesting future direction.

5 10 15 20

2000

4000

6000

8000

labeled target points

M
S

E

posterior
wDA
optDA

Figure 9: Multi-source transfer learning: comparison of
MSE on the proposed approach (posterior) and baselines

8 CONCLUSION

In this paper, we provide theoretical analysis for algorithms
proposed for transfer learning under the model shift as-
sumption. Unlike previous work on covariate shift, the
model shift poses a harder problem for transfer learning,
and our analysis shows that we are still able to achieve a
similar rate as in covariate shift/domain adaptation, mod-
ified by the smoothness of the transformation parameters.
We also show conditions when transfer learning works bet-
ter than no-transfer learning. Finally we extend the algo-
rithms to transfer learning with multiple sources.

Acknowledgements

This work is supported in part by the US Department of
Agriculture under grant number 20126702119958.

930

References

Yishay Mansour, Mehryar Mohri, and Afshin Ros-
tamizadeh. Domain Adaptation with multiple sources.
NIPS 2008.

Yishay Mansour, Mehryar Mohri, and Afshin Ros-
tamizadeh. Domain Adaptation: Learning Bounds and Al-
gorithms. COLT 2009.

Olivier Bousquet and Andre Elisseeff. Stability and Gener-
alization. JMLR 2002.

Jiayuan Huang, Alex Smola, Arthur Gretton, Karsten Borg-
wardt, and Bernhard Schölkopf. Correcting sample selec-
tion bias by unlabeled data. NIPS 2007, 2007.

Arthur Gretton, Karsten M. Borgwardt, Malte Rasch, Bern-
hard Schölkopf, and Alex Smola. A kernel method for the
two-sample-problem. NIPS 2007, 2007.

Xuezhi Wang, Tzu-Kuo Huang, and Jeff Schneider. Active
transfer learning under model shift. ICML, 2014.

S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira. Anal-
ysis of representations for domain adaptation. NIPS 2006.

J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. Wort-
man. Learning bounds for domain adaptation. NIPS 2007.

Sinno Jialin Pan and Qiang Yang. A survey on transfer
learning. TKDE 2009, 2009.

Hidetoshi Shimodaira. Improving predictive inference un-
der covariate shift by weighting the log-likelihood function.
Journal of Statistical Planning and Inference, 90 (2): 227-
244, 2000.

Lilyana Mihalkova, Tuyen Huynh, and Raymond J.
Mooney. Mapping and revising markov logic networks for
transfer learning. Proceedings of the 22nd AAAI Confer-
ence on Artificial Intelligence (AAAI-2007), 2007.

Chuong B. Do and Andrew Y. Ng. Transfer learning for
text classification. Neural Information Processing Systems
Foundation, 2005.

Rajat Raina, Andrew Y. Ng, and Daphne Koller. Construct-
ing informative priors using transfer learning. Proceedings
of the Twenty-third International Conference on Machine
Learning, 2006.

Alexandru Niculescu-Mizil and Rich Caruana. Inductive
transfer for bayesian network structure learning. Proceed-
ings of the Eleventh International Conference on Artificial
Intelligence and Statistics (AISTATS), 2007.

J. Jiang and C. Zhai. Instance weighting for domain adap-
tation in nlp. Proc. 45th Ann. Meeting of the Assoc. Com-
putational Linguistics, pp. 264-271, 2007.

X. Liao, Y. Xue, and L. Carin. Logistic regression with
an auxiliary data source. Proc. 21st Intl Conf. Machine

Learning, 2005.

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, and
Zhikun Wang. Domian adaptation under target and condi-
tional shift. ICML 2013, 2013.

Le Song, Jonathan Huang, Alex Smola, and Kenji Fuku-
mizu. Hilbert space embeddings of conditional distribu-
tions with applications to dynamical systems. ICML 2009,
2009.

Rita Chattopadhyay, Jieping Ye, Sethuraman Pan-
chanathan, Wei Fan, and Ian Davidson. Multi-Source Do-
main Adaptation and Its Application to Early Detection of
Fatigue. KDD’11, 2011.

Yi Yao and Gianfranco Doretto. Boosting for transfer
learning with multiple sources. CVPR 2010, 2010.

Koby Crammer, Michael Kearns, and Jennifer Wortman.
Learning from Multiple Sources. JMLR 2008, 2008.

Shike Mei, Han Li, Jing Fan, Xiaojin Zhu, and Charles R.
Dyer. Inferring Air Pollution by Sniffing Social Media. The
International Conference on Advances in Social Network
Analysis and Mining (ASONAM), 2014.

Jennifer A. Hoeting, David Madigan, Adrian E. Raftery,
and Chris T. Volinsky. Bayesian Model Averaging: A Tu-
torial. Statistical Science, Vol. 14, No. 4, 382-417, 1999.

931

Clustered Sparse Bayesian Learning

Yu Wang ∗ David Wipf † Jeong-Min Yun ♯ Wei Chen∗ Ian Wassell ∗

∗ University of Cambridge, Cambridge, UK
† Microsoft Research, Beijing, China

♯Pohang University of Science and Technology, Pohang, Republic of Korea
yw323@cam.ac.uk davidwip@microsoft.com azida@postech.ac.kr wc253@cam.ac.uk ijw24@cam.ac.uk

Abstract

Many machine learning and signal processing
tasks involve computing sparse representation-
s using an overcomplete set of features or basis
vectors, with compressive sensing-based applica-
tions a notable example. While traditionally such
problems have been solved individually for dif-
ferent tasks, this strategy ignores strong correla-
tions that may be present in real world data. Con-
sequently there has been a push to exploit these s-
tatistical dependencies by jointly solving a series
of sparse linear inverse problems. In the majori-
ty of the resulting algorithms however, we must
a priori decide which tasks can most judiciously
be grouped together. In contrast, this paper pro-
poses an integrated Bayesian framework for both
clustering tasks together and subsequently learn-
ing optimally sparse representations within each
cluster. While probabilistic models have been
applied previously to solve these types of prob-
lems, they typically involve a complex hierarchi-
cal Bayesian generative model merged with some
type of approximate inference, the combination
of which renders rigorous analysis of the under-
lying behavior virtually impossible. On the other
hand, our model subscribes to concrete motivat-
ing principles that we carefully evaluate both the-
oretically and empirically. Importantly, our anal-
yses take into account all approximations that are
involved in arriving at the actual cost function to
be optimized. Results on synthetic data as well as
image recovery from compressive measurements
show improved performance over existing meth-
ods.

∗Y. Wang is sponsored by the University of Cambridge Over-
seas Trust. Y. Wang and J. Yun are partially supported by spon-
sorship from Microsoft Research Asia. W. Chen is supported by
EPSRC Research Grant EP/K033700/1 and the NSFC Research
Grant 61401018.

1 INTRODUCTION
Solving sparse linear inverse problems is a fundamental
building block in numerous machine learning, computer
vision, and signal processing applications related to com-
pressive sensing and beyond (Elhamifar & Vidal 2013;
Soltanolkotabi & Candes, 2012; Zhang & Rao, 2011; Hu
et al., 2013). In its most basic form, sparse estimation al-
gorithms are built upon the observation model

y = Φx + ϵ, (1)

where Φ ∈ RN×M is a dictionary of basis vectors that we
assume to have unit ℓ2 norm, x ∈ RM is a vector of un-
known coefficients we would like to estimate, y ∈ RN is
an observed measurement vector, and ϵ is a noise vector
distributed as N (0, νI). The objective is to estimate the
unknown generative x under the assumption that it is max-
imally sparse, meaning that ∥x∥0 is minimal. Here ∥ · ∥0

represents the canonical ℓ0 norm sparsity metric, or a count
of the number of nonzero elements in a vector. This sparse
linear inverse problem is compounded considerably by the
additional assumption that M > N , meaning the dictio-
nary Φ is overcomplete.

Now suppose that we have access to multiple measurement
vectors from L different tasks of interest that are assembled
as Y = [y1, . . . ,yL] ∈ RN×L and linked to a correspond-
ing matrix of unknown coefficients X = [x1, . . . , xL] ∈
RM×L via

yj = Φjxj + ϵj , ∀j = 1, . . . , L. (2)

If these measurement vectors and associated coefficients
maintain some degree of dependency, for example the lo-
cations of zero-valued elements (or support sets) are sta-
tistically related, then it will generally be advantageous to
jointly estimate X from Y as opposed to solving for each
xj individually (Obozinski et al., 2011). Perhaps the sim-
plest example of this is frequently referred to as simultane-
ous sparse approximation (Tropp, 2006) or multi-task com-
pressive sensing (Ji et al., 2009). In brief, these paradigms
follow from the assumption that X is maximally row s-
parse, implying that each column of X is maximally s-
parse with a common support pattern. This model has been

932

applied to compressive sensing of images and video (Ji et
al., 2009), tracking (Hong et al., 2013), and medical image
analysis (Wan et al., 2012). Moreover, it can be naturally
extended to handle a richer set of dependencies by apply-
ing a known graph structure that groups subsets of column-
s together for joint estimation (Cevher et al., 2008; Shi et
al., 2014), as opposed to strict enforcement of row sparsity
across all measurements. Other pre-defined structural as-
sumptions can be found in (Archambeau et al., 2011; Jalali
et al., 2013; Rao et al., 2013; Yang & Ravikumar, 2013).

The limitation of all of these strategies is that they are pred-
icated on prior knowledge of how tasks should be grouped
together to optimally facilitate subsequent sparse estima-
tion. In contrast, here we intend to develop a principled
multi-task learning algorithm that simultaneously clusters
tasks blindly while optimally estimating sparse coefficient
vectors informed by these clusters. We should state at the
outset that multi-task compressive sensing has been merged
with cluster learning before (Qi et al., 2008). However, this
algorithm relies on a complex hierarchical model anchored
with an approximate Dirichlet process prior distribution on
X (Blei & Jordan, 2006). Subsequent model inference
then requires an additional variational mean-field approx-
imation. Overall the fundamental underlying mechanics
of the model have not been carefully analyzed nor under-
stood, nor is there any guarantee that sparsity will neces-
sarily result. Other even more complex hierarhical models
have been applied to somewhat-related multi-task learning
problems, e.g., (Hernandez-Lobato & Hernandez-Lobato,
2013); however, these models require complex inference
procedures that must ultimately be justified by the validi-
ty of the assumed prior distributions rather than provable
properties of the resulting estimators.

The remainder of the paper is organized as follows. In
Section 2 we first motivate our design principles. A spe-
cific Bayesian model and corresponding objective function
are then developed in Section 3. Next we derive updates
rules for optimization purposes, leading to our clustered s-
parse Bayesian learning algorithm (C-SBL) in Section 4.
We theoretically and empirically analyze this framework in
Sections 5 and 6 respectively, revealing that it is consistent
with our original motivational principles. Moreover, esti-
mation results on synthetic data and real images demon-
strate improved estimation quality relative to existing al-
gorithms when using compressive measurements. Overall,
we summarize our contributions as follows:

• Analysis of specific, previously-unexamined theoreti-
cal principles that play a critical role in multi-task s-
parse estimation problems.

• Development of a robust sparse Bayesian algorithm
that adheres to these principles to an extent not seen
in any existing algorithm we are aware of.

• Although we employ a Bayesian entry point for our

algorithmic strategy, final model justification is pro-
vided entirely based on rigorous properties of the un-
derlying cost function that emerges, including all ap-
proximations involved, rather than any putative belief
in the actual validity of assumed prior distributions.

2 MOTIVATING PRINCIPLES

When deriving an algorithm for joint clustering and multi-
task sparse estimation, it is helpful to first define a few basic
attributes that ideally any procedure might possess. Here
we consider properties related to limiting behavior as the
noise variance ν varies from zero towards large values for
each task.

First assume ν → 0 and the following generative model.
Let X∗ denote the true coefficient matrix we would like to
estimate using measurements yj = Φjx

∗
j . We assume that

the columns of X∗ are partitioned into clusters with com-
mon sparsity profile or support within each cluster. Addi-
tionally let Ωk denote the column indices of X∗ associated
with cluster k = 1, . . . , K ≤ L. For any matrix Z define
ZΩk

as the sub-matrix of columns associated with the in-
dex set Ωk. Then the relevant sparse linear inverse problem,
assuming known clusters, becomes

min
{XΩk

}

∑

k

|Ωk|∥XΩk
∥row−ℓ0 s.t. yj = Φjxj , ∀j, (3)

where ∥ · ∥row−ℓ0 counts the number of nonzero rows of a
matrix, which is then weighted by the cardinality of the set
Ωk in the objective function.1

Now assume the perturbation model

X̄∗
k = Ax

k + αxRx
k , ∀k, (4)

where X̄∗
Ωk

denotes the nonzero rows of X∗
Ωk

associated
with cluster k, Ax

k is an arbitrary matrix of appropriate di-
mensions, αx > 0 is an arbitrarily small scalar, and Rx

k is a
random matrix with iid, continuously-distributed elements.
Likewise, assume that

Φj = Aϕ
j + αϕRϕ

j ,∀j, (5)

with analogous definitions to those in (4), albeit with obvi-
ously different dimensions and values. Then we have the
following:

Lemma 1. Suppose we are given any Y generated with
yj = Φjx

∗
j and ∥x∗

j∥0 < N ∀j, where X∗ satisfies (4)
∀k and Φj satisfies (5) ∀j. Then X∗ is the unique global
minimum of both (3) and

min
X

∑

j

∥xj∥0 s.t. yj = Φjxj , ∀j. (6)

1Actually, this weighting factor is irrelevant to what follows
in the noiseless case, but does play a role later when we consider
noisy conditions.

933

The proof is relatively straightforward and comes from
modifying Theorem 1 from (Baron et al., 2009). While
perhaps notationally cumbersome to present, the message
of this result is simple and widely applicable. In words,
Lemma 1 implies that, under general conditions that apply
to virtually any multi-task system of interest (since the set-
s {Ax

k} {Aϕ
j } are arbitrary and the perturbations applied

to them can be infinitesimally small), the unique maximal-
ly row-sparse solution to the clustering problem is equiv-
alent to the global solution obtained by simply evaluating
each task individually. The cluster structure itself does not
provide any direct advantage, and we could just as well
solve (6), and without noise we can theoretically resolve
any number of clusters between 1 and L.

With this in mind then, in the limit ν → 0 we would prefer
to have a clustering algorithm whose global optimum is e-
quivalent to (6). However, we need not solve this problem
directly, which in general is NP-hard. Rather we favor an
algorithm that can, to the extent possible, leverage cluster
information to steer the algorithm towards the global solu-
tion of (6) while avoiding bad local optima.

Now consider larger values of noise, i.e., ν > 0, where we
would like to solve something akin to

min
X

∑

j

∥yj − Φjxj∥2
2 + ν

∑

k

|Ωk|∥XΩk
∥row−ℓ0 . (7)

In general, when the noise level is high we cannot hope to
resolve a large number of clusters, and eventually we must
merge to a single cluster as ν becomes sufficiently large.
In this regime the issue is not so much one of avoiding bad
local minima as it is enhancing the effective signal-to-noise
ratio as much as possible. Note that the smaller K is, the
more tasks per cluster, which has a substantial benefit in
terms of signal-to-noise ratio. This can be easily visual-
ized via the special case where Φ⊤

j Φj = I ∀j. Given this
simplification, (7) has a closed-form solution given by

x∗
i,j = zi,jI

 ∑

j∈Ωc(j)

z2
i,j > ν|Ωc(j)|

 , (8)

where zj , Φ⊤
j yj , c(j) denotes the cluster index of task

j, and I is an indicator function. Thus the optimal solution
represents a hard-thresholding operation, where the thresh-
old is dictated by an average across tasks within each clus-
ter. If we have only a single cluster, meaning c(j) = 1 ∀j
and Ω1 = {1, . . . , L}, then this threshold value is maximal-
ly robust to noise given that all tasks are averaged together
to increase the SNR of the threshold.

To conclude then, there are (at least) three important con-
siderations:

1. At high SNR, local minima avoidance while finding
maximally sparse solutions is paramount. We would
also favor that, for a given clustering, maximally row-
sparse solutions can be obtained by evading any sub-
optimal local extrema where possible.

2. At low SNR when it is impossible to resolve many
clusters anyway, the issue is more about merging clus-
ters to hopefully improve the implicit SNR.

3. In intermediate regimes we would like to accomplish
a bit of both.

In Section 5 we provide theoretical evidence that our pro-
posed algorithm is favorable with respect to points 1 and
2, while Section 6 presents empirical evidence in practical
support of point 3.

3 MODEL DESCRIPTION
While perhaps not immediately obvious at first, this sec-
tion will develop a Bayesian model that ultimately reflects
the previously stated principles. Consistent with the ob-
servation model in (1), we adopt the Gaussian likelihood
function

p(Y |X) ∝
∏

j

exp

[
− 1

2ν
∥yj − Φjxj∥2

2

]
. (9)

For present purposes we will assume that the noise variance
ν is known (ultimately though this value can be learned
from the data). For the prior distribution on each xj we
build upon the basic sparse Bayesian learning framework
from (Tipping, 2001) which in the present context would
involve a zero-mean Gaussian with an independent diago-
nal covariance; however, this would not allow for task clus-
tering. Instead we assume the prior distribution

p(X|Λ,W) ∝
∏

j

exp

[
−1

2
x⊤

j Γ−1
j xj

]
, (10)

where Λ ∈ RM×K and W ∈ RL×K are hyperparame-
ter matrices; Λ is constrained to have all non-negative ele-
ments, W ∈ S is defined such that each row denoted as wj

is an element of the probability simplex, i.e.,

S , {wj :
∑

k

wj,k = 1, wj,k ∈ [0, 1]}. (11)

With some abuse of notation, we say that W ∈ S if every
row wj ∈ S . Finally, Γj is the diagonal covariance matrix
produced via

Γ−1
j =

∑

k

wj,kΛ−1
k , (12)

where Λk is defined as a diagonal matrix formed from the
k-th column of matrix Λ.

Although the unknown xj from each task are assumed to be
independent via the above distributions, they will nonethe-
less become linked via the common set of hyperparameters
that will subsequently be estimated from the data. Addi-
tionally, from (12) we are expressing what amounts to the
j-th precision matrix as a linear combination of K diagonal
precision matrix basis functions. Although we could have

934

equally considered a linear basis expansion with respect to
covariances, we chose precisions for algorithmic reasons
detailed below. Additionally, the value of K can be viewed
as an upper bound on the number of clusters we can expect
in our data; for all experiments we simply choose K = L,
the number of tasks.

Given this likelihood and prior, the posterior distribution
p(xj |yj ; Λ,W) is also a Gaussian with mean

x̂j = ΓjΦ
⊤
j

(
νI + ΦjΓjΦ

⊤
j

)−1
yj . (13)

Thus if Λ and W were known, we have access to a sim-
ple closed-form estimator for xj . The most challenging
responsibility then becomes estimating these unknown hy-
perparameters. The empirical Bayesian solution to this
problem is to first apply hyperpriors to Λ and W , integrate
out the unknown X , and then compute MAP estimates via

max
Λ>0,W∈S

∫
p(Y |X)p(X; Λ,W)p(Λ)p(W)dX. (14)

For the covariance bases we simply assume a flat hy-
perior p(Λ) = 1. In contrast, we assume p(W) ∝
exp[−1/2

∑
j,k f(wj,k)], where f is a function designed

to promote a clustering effect as will be described shortly.
Given the above, applying a −2 log transformation to (14)
produces the equivalent problem

min
Λ>0,W∈S

∑

j

[
yjΣ

−1
yj

yj + log
∣∣Σyj

∣∣
]

+
∑

j,k

f(wj,k),

(15)
where

Σyj , νI + ΦjΓjΦ
⊤
j .

To facilitate later optimization, it will help to modify the
log-det term in (15) as follows. First, using standard deter-
minant identities we have

log |Σyj | ≡ T1 + T2 (16)

, log

∣∣∣∣∣
∑

k

wj,kΛ−1
k +

1

ν
Φ⊤

j Φj

∣∣∣∣∣− log

∣∣∣∣∣
∑

k

wj,kΛ−1
k

∣∣∣∣∣ ,

where irrelevant constants have been omitted. Using the
fact that log | · | is a concave function in the space of pos-
itive definite, symmetric matrices, W ∈ S , and Jensen’s
inequality, it follows that

∑

k

wj,k log |Λk| ≥ − log

∣∣∣∣∣
∑

k

wj,kΛ−1
k

∣∣∣∣∣ . (17)

This upper bound has the appeal that it is linear in elements
of W which will facilitate the derivation of update rules to
be presented shortly. We will henceforth be concerned with
minimizing the new objective function

L(Λ,W) ,
∑

j

[
yjΣ

−1
yj

yj

]
+
∑

j,k

f(wj,k) (18)

+
∑

j

log

∣∣∣∣∣
∑

k

wj,kΛ−1
k +

1

ν
Φ⊤

j Φj

∣∣∣∣∣+
∑

j,k

wj,k log |Λk|.

Sparsity Promotion: The log-det term in the original cost
(15) is a concave, non-decreasing function of each Γj , and
hence it favors sparse diagonal elements, which in turn pro-
duces a sparse xj estimate via the left multiplication in
(13). But this sparsity can only be achieved if diagonal ele-
ments of the embedded basis functions Λk also converge to
zero.2 By virtue of the basis expansion (12) in terms of pre-
cisions, this then implies that the sparsity profile or support
of Γj will mirror the sparsity profile of the intersection of
all Λk associated with nonzero coefficients wj,k. Typically
this will encourage only a single unique basis function to
be active for a given task j.

Note that the cost function modification using Jensen’s in-
equality above does not interfere with this sparsity promo-
tion agency. In fact, the upper bound gap has a minimal
value of zero when either wj equals an indicator vector
(all zeros and a single one), or when all Λk are equal to
one another. The former will lead to a maximal ℓ0 norm
solution, the latter a maximal row-sparse solution.

Cluster Promotion: We now turn to the related clustering
issues and the role of f . For this purpose, it is instructive
to elucidate exactly what we mean by a cluster. We define
a cluster as a group of tasks that share a common diagonal
support for Γj . Without f , it is easy to show that for any
value of ν, if K = L the globally optimal solution to (18)
will involve the k-th column of W , wk, equal to a unique
indicator vector for all k, each Γj will then be represented
with a unique Λk, and no clustering will occur at all. In fact,
there will be no clustering effect for either the purpose of
avoiding local minima when ν is small, nor for improving
the effective SNR when ν is large.

To mitigate this effect, f can be chosen to encourage W to
have columns with multiple nonzero values, which is tan-
tamount to requiring that groups of tasks must share one or
more Λk basis matrices. However, because the support of
any Γj will be the intersection of Λk supports associated
with wj,k > 0, these tasks will either share only a single
Λk, or alternatively multiple different Λk will converge to
the same basis matrix (or at least one with a common sup-
port). In either case, the net effect is hard clustering, where
each task j ∈ Ωk will be assigned some effective Λk, and
the total number of unique such basis matrices will be some
K̂ < L. Additionally, within each such cluster, it can be
shown by extending the analysis in (Wipf et al., 2011) that
the net effect on the final estimation step is as if there were

2While technically division by zero is undefined, we can stil-
l accommodate (12) and all attendant update rule derivations by
considering the appropriate limiting cases along with judicious
use of the Matrix Inversion Lemma and the Moore-Pensrose Pseu-
doinverve in place of direct inverses.

935

an explicit, concave and nondecreasing penalty on the ℓ2
row norms of X̂Ωk

, which naturally favors row-sparsity.

For these reasons we choose

f(w) = βw log w, (19)

where β > 0 is a constant. This f is convex over the do-
main [0, 1] and has a minimal value between zero and one,
and therefore favors either sharing of basis functions along
columns of W or merging different Λk values together vi-
a the mechanism outlined above. Importantly, many el-
ements of W will still be pushed to exactly zero to shut
off basis matrices from other clusters, provably so in cer-
tain circumstances although space here prevents a detailed
treatment (Section 6 does provide empirical evidence for
this however). While certainly other selections for f could
potentially be more effective, this simple choice serves our
purposes sufficiently well and leads to convenient update
rules.

4 ALGORITHM DERIVATION
Optimization of (18) will involve expanding a
majorization-minimization scheme suggested in (Wipf &
Nagarajan, 2010) for single-task sparse estimation, where
auxiliary variables are introduced to upper bound various
terms in the objective function. First we use the bound

1

ν
∥yj − Φjxj∥2

2 + x⊤
j Γ−1

j xj ≥ yjΣ
−1
yj

yj (20)

for all xj , with equality iff xj is given by (13). Now define
aj as a vector formed from the diagonal of

∑
k wj,kΛ−1

k .
Because the term T1 in (16) is a concave, non-decreasing
function of aj , we define h∗(z) as the concave conju-
gate function (Boyd & Vandenberghe, 2004) of h(aj) =
log
∣∣∑

k wj,kΛ−1
k + 1

ν ΦT
j Φj

∣∣ defined as

h∗(zj) , inf
aj

(zT
j aj − h(aj)). (21)

By construction we may then upper bound T1 via

z⊤
j aj − h∗(zj) ≥ log

∣∣∣∣∣
∑

k

wj,kΛ−1
k +

1

ν
Φ⊤

j Φj

∣∣∣∣∣ (22)

for all zj ≥ 0, with equality iff zj is the gradient of T1
with respect to aj . This can be computed in closed form
using

zj = ∇aj
(T1) = diag

(∑

k

wj,kΛ−1
k +

1

ν
Φ⊤

j Φj

)−1

 .

(23)

With these upper bounds fixed, we can then optimize over
Λ and W . First, with W fixed, optimization over Λ decou-
ples and we may consider each λi,k individually. Collect-
ing relevant terms we have

min
λi,k>0

∑

j

wj,k

λi,k

(
x2

i,j + zi,j

)
+ wj,k log λi,k. (24)

Computing derivatives, equating to zero, and checking
first-order optimality conditions we arrive at the optimal
solution

λopt
i,k =

∑
j wj,k

(
x2

i,j + zi,j

)
∑

j wj,k
, ∀i, k. (25)

Finally we fix Λ and optimize over W , solving separately
for each row wj via

min
wj∈S

∑

i,k

wj,k

(
x2

i,j + zi,j

λi,k

)
+wj,k log λi,k+βwj,k log wj,k.

(26)
There exist many strategies to perform the requisite con-
vex optimization over wj . Since (26) can be computed
in closed form without the constraint

∑
k wj,k = 1, we

simply solve without the constraint and then normalize the
resulting solution, which is a form of projected gradien-
t method. In our experiments we found this procedure
to be adequate for obtaining good results, but certainly a
more precise alternative could be substituted for this step.
Additionally, although these updates can be implemented
such that each step is guaranteed to reduce or leave (18)
unchanged, this alone is insufficient to guarantee formal
convergence to a stationary point. The latter requires, for
example, that the additional conditions of Zangwill’s Glob-
al Convergence Theorem hold (Zangwill, 1969). However,
we have not encountered any convergence issues in prac-
tice.

We refer to the aggregation of these update rules as a clus-
tered sparse Bayesian learning (C-SBL) algorithm. The ba-
sic algorithm flow-chart/summary can be found in the sup-
plementary file. Finally, there are only two parameters to
set when using C-SBL, specifically ν and β. The former
can actually be learned from the data using an update rule
originally proposed in (Tipping, 2001). In contrast, for β
we adopt a simple heuristic to balance this value according
to problem size. For all the simulations reported in Section
6, ν was learned and β was set using this fixed rule without
any additional tuning as the problem settings change.

5 ANALYSIS
Low-Noise Cost Function Behavior: We now analyze
some of the properties of the underlying C-SBL cost func-
tion from (18) that make it especially suitable for the clus-
tered sparse estimation problem. First we examine the lim-
iting case ν → 0, mirroring some of our observations from
Section 2, where we discussed connections with maximal-
ly sparse solutions. We also define spark[Φ] as the smallest
number of linearly dependent columns in some matrix Φ
(Donoho and Elad, 2004). In this regard we have the fol-
lowing:

Theorem 1. Assume that an optimal solution X∗ to (6)
exists with ∥x∗

j∥0 < N and spark[Φj] = N + 1 for al-
l j. Additionally, let Λ∗,W ∗ denote any global solution

936

of limν→0 infΛ>0,W∈S L (Λ,W). Then the value of (13)
as ν → 0 given by Γ∗

jΦj

(
ΦjΓ

∗
jΦ

⊤
j

)†
yj , when combined

across all j with Γ∗
j =

(∑
k w∗

j,k(Λ∗
k)−1

)−1

, forms a glob-
ally optimal solution to (6).

This result can be proven by adapting Theorem 4 from
(Wipf et al., 2011), which applies to single task compres-
sive sensing models. Note that the spark assumption is very
mild and will be satisfied almost surely by any dictionary
constructed via (5). Therefore, the C-SBL cost function
clearly favors maximally sparse solutions in the low-noise
regime as desired. Importantly however, while the glob-
al optimum of C-SBL may be equivalent to (6), the entire
cost function landscape is not identical, and exploiting the
cluster structure, and row-sparsity within clusters, can be
advantageous in avoiding distracting local minima. Two
important distinctions play a role in this regard.

First, the inclusion of the penalty term
∑

j,k f(wj,k), by
favoring solutions in clusters, naturally steers away from
unpromising areas of the parameter space without corre-
lation structure among tasks. Secondly, if we are able to
determine the correct cluster structure, then there is a nat-
ural mechanism embedded in (18) to leverage the resulting
row-sparsity to avoid local solutions, sometimes provably
so. For example, assume for simplicity that Φj = Φ ∀j,
meaning the same dictionary is used for all tasks. Also
define the condition number of any matrix A as κ(A) =
∥A−1∥2∥A∥2, where ∥ · ∥2 is the spectral norm.

Now assume that our measurements have been partitioned
into K̄ ≤ L clusters Ωk, where YΩk

are the columns of Y
associated with cluster k. Such a clustering could be pro-
vided by an oracle, or alternatively can be viewed as an
intermediate point during the optimization process where-
by for every task j ∈ Ωk, Γj = Λk for some unique Λk.
We may then consider the remaining multi-task sparse esti-
mation problems to estimate the corresponding maximally
row-sparse X∗

Ωk
within each cluster, holding the cluster as-

signments fixed, similar to problem (3).

In this scenario, Jensen’s inequality collapses to an equal-
ity, the C-SBL cost function (18) decouples, and we may
equivalently consider each cluster k as a separate subprob-
lem to minimize

Lk(Λk) , tr
[
YΩk

Y ⊤
Ωk

(Σk)
−1
]

+ |Ωk| log |Σk|, (27)

where Σk , νI + ΦΛkΦ⊤. Then we have the following:

Theorem 2. Let spark(Φ) = N + 1. Also, let X∗
Ωk

be a
maximally row-sparse feasible solution to YΩk

= ΦXΩk

with D , ∥X∗
Ωk

∥row−ℓ0 . Define X̄∗
Ωk

as the associated
collection of nonzero rows. Then if X∗

Ωk
satisfies

inf
Ψ>0

κ
(
ΨX̄∗

Ωk
(X̄∗

Ωk
)⊤Ψ

)
<

N

D
(28)

with Ψ ∈ RD×D diagonal, then limν→0 infΛk>0 Lk(Λk)
has a unique local minimum (or stationary point) Λ∗

k, and
this point will satisfy Λ∗

kΦ⊤ (ΦΛ∗
kΦ⊤)† YΩk

= X∗
Ωk

.

The supplementary file contains details of the proof. The-
orem 2 dictates circumstances under which we are guaran-
teed to recover the maximally row-sparse solution within
each cluster (assuming we are given an algorithm that con-
verges to a stationary point), meaning we are guaranteed
to solve (18) without resorting to brute-force optimization
of the more challenging NP-hard problem (6). Moreover,
the most relevant criteria under which this occurs depends
only on the conditioning of the nonzero rows in X∗

Ωk
. In

words, if these rows contain complementary information
regarding the true sparsity profile, as evidenced by a high
condition number, no locally minimizing solutions exist.
A weaker related result has already been known in the in-
formation theory community, but this result adapted to the
present context would require that rows of X̄∗

Ωk
be strict-

ly orthogonal (Kim et al., 2012). Additionally, Theorem 2
is independent of any RIP conditions or other strong struc-
tural assumptions on Φ typical of compressive sensing re-
covery results.

Note that arguably the most common strategy for promot-
ing row-sparse solutions is to solve problems of the form

min
XΩk

∑

j

h
(
∥xj

Ωk
∥2

)
s.t.YΩk

= ΦXΩk
, (29)

where h is an arbitrary non-decreasing function, and xj
Ωk

denotes the j-th row of XΩk
. Interestingly though, special-

ized counter-examples can be used to show that, for any
such h (including the selection h(z) = z that leads to the
convex ℓ1,2 mixed-norm (Obozinski et al., 2011) common-
ly used in compressive sensing), there will always exist a Φ
and YΩk

, consistent with the stipulations of Theorem 2 such
that there is guaranteed to be a stationary point not equal to
X∗

Ωk
when solving (29). Hence the C-SBL cost function

maintains an inherent advantage at the cluster level from
an optimization standpoint.

High-Noise Cost Function Behavior: Now we briefly
consider the scenario where ν becomes large. We first
observe that the data dependent term in (18) tends to-
wards

∑
j ∥yj∥2

2/ν + O
(
ν−1

)
as ν increases. Like-

wise the remaining ν-dependent penalty term converges as
log
∣∣Γ−1

j + (1/ν)Φ⊤
j Φj

∣∣→ log
∣∣∑

k wj,kΛ−1
k

∣∣+O
(
ν−1

)
.

By Jensen’s inequality, the resulting combined factor

∑

j,k

wj,k log |Λk| +
∑

j

log

∣∣∣∣∣
∑

k

wj,kΛ−1
k

∣∣∣∣∣ (30)

has a minimal value of zero when either wj equals an in-
dicator vector for all j, or when Λk equals some Λ′ for
all k. The former scenario will cause the weight penalty

937

∑
j,k f(wj,k) to become large. However, if all Λk = Λ′,

then all of these penalty factors can effectively be mini-
mized. Assuming the contribution from O

(
ν−1

)
terms is

small, this will then minimize the overall objective func-
tion. Moreover, with all Λk = Λ′, we by definition col-
lapse to a single cluster, multi-task sparse estimation model
as was motivated in Section 2 at low SNR.

6 EXPERIMENTS

This section provides empirical validation for the proposed
C-SBL algorithm. We compare performance against the
traditional convex ℓ1 penalized regression estimator com-
monly using in compressive sensing, as well as three re-
lated sparse Bayesian algorithms that have previously been
applied to similar problems. These include the original s-
parse Bayesian learning (SBL) (Tipping, 2001), a multi-
ple measurement vector (MMV) extension of SBL (Ji et
al., 2009), and the Dirichlet Process (DP) prior adapta-
tion of multi-task Bayesian compressive sensing (Qi et al.,
2008). The latter is arguably the closest competitor to C-
SBL given its ability to learn clusters with sparse support.
An additional sparse Bayesian algorithm from (Zhang &
Rao, 2011) also addresses a multi-task sparse learning set-
ting based upon related variational principles; however, this
method cannot learn clusters, our central purpose, nor does
code appear to be available for handling different sensing
matrices Φj for different tasks. Therefore we do not in-
clude comparisons here. We will begin with synthetic data
simulations to demonstrate model properties followed by
efforts to reconstruct image sequences from compressive
measurements.

Synthetic Data: For the first experiment we generate data
from K̄ = 5 clusters. Within every cluster are 5 tasks each
for a total of L = 25 tasks. Each corresponding X∗

Ωk
is

generated with a random row-sparsity pattern distinct from
one another, and with nonzero rows distributed as X̄∗

Ωk
∼

N (0, 1) (i.e., each task has its own independent nonzero
coefficients. The associated task-specific dictionaries are
generated via Φj ∼ N (0, 1/N); we set M = 256, D ,
∥X∗

Ωk
∥row−ℓ0 = 30, and the number of measurements per

task N is varied. We then compute yj = Φjx
∗
j ∀j in each

instance and run the respective algorithms to compare the
recovery performance, averaging across 50 trials.

Results are presented in Figure 1(a), where we display the
normalized mean-squared error metric given by < ∥X̂ −
X∗∥2

2/∥X∗∥2
2 >. We observe that C-SBL has the lowest

reconstruction error among all the methods. Additionally
based on Lemma 1, X∗ will almost surely be the globally
optimal solution to (6). While it has been proven that reg-
ular SBL also has the same global optimum to (6) (Wipf et
al., 2011), this algorithm is blind to any structure between
tasks and therefore may become trapped at suboptimal lo-
cal minima, leading to relatively poorer performance. On
the other hand, C-SBL is more likely to reach the global

optima by exploiting cluster information. Interestingly, the
DP algorithm, which also putatively leverages these clus-
ters, does not perform significatively better than SBL, sug-
gesting that it is non-trivial to optimally use the additional
structure.

In contrast, with a different data generation mechanism, D-
P has demonstrated improvement over SBL but not C-SBL.
Here we recreate a close approximation to experiments
conducted in (Qi et al., 2008).3 We begin with D = 27
nonzero rows but with both amplitudes and supports shared
across tasks. An innovations component is then added,
whereby an additional 3 elements of each task are given
random nonzero values, with task-specific, randomly gen-
erated support. Figures 1(b) and 1(c) display results as dif-
ferent parameters are varied. Indeed in this revised scenari-
o DP does significantly outperform SBL; however, C-SBL
retains its advantage over all algorithms.

Finally we consider reconstructions in the presence of
noise. For this purpose we generate data in the same man-
ner as was used to generate Figure 1(a), and fix N = 75,
M = 256, and D = 30 while varying the SNR using ad-
ditive Gaussian white noise. We also include an ideal ora-
cle estimator that knows the true clusters. Results are dis-
played in Figure 1(d), where again C-SBL is observed to
perform well, and in excess of 15dB SNR nearly matches
even the oracle.

Image Clustering and Reconstruction: Here we consid-
er a real-world application motivated in (Qi et al., 2008)
that involves simultaneously reconstructing multiple im-
ages from different dynamic scenes using compressive
measurements. In this scenario, tasks are images and each
cluster represents a group of snapshots taken from a giv-
en dynamic scene that are likely to have a similar sparsity
profile in the wavelet domain. Moreover, we may expec-
t to have different cluster sizes and noise levels across s-
napshots, and moving objects behave like the innovations
applied in producing Figures 1(b) and 1(c).

For this experiment we choose 5 dynamic scenes (5 clus-
ters), each having {5, 3, 3, 4, 4} tasks respectively. Images
have a resolution of 64 × 64, although the supplementary
file contains higher resolution examples. Data are sam-
pled using the ’db4’ 2D wavelet transform using 4 scales
as provided by Matlab. Each Gaussian sensing matrix Φj

is N = 2275 × M = 5986, with iid elements generated as
before. Although undoubtedly better performance could be
obtained by selecting different transforms and/or applying
different sampling rates to different scales, this is not our
primary focus here. Overall we are merely adopting an es-
tablished benchmark and inserting C-SBL into this pipeline

3Note that certain simulation specifics needed to exactly re-
produce the results from (Qi et al., 2008) were missing (e.g. S-
NR), and we were unfortunately unable to obtain code from the
authors.

938

60 65 70 75 80 85
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Measurement Number N

M
S

E

MMV
SBL
DP
C−SBL
L

1

(a)

60 65 70 75 80 85
0

0.1

0.2

0.3

0.4

Measument Number N

M
S

E

MMV
SBL
DP
C−SBL
L

1

(b)

25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Support Number S

M
S

E

MMV
SBL
DP
C−SBL
L

1

(c)

12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

SNR (dB)
M

S
E

MMV
SBL
DP
CSBL
Oracle

(d)

Figure 1: Synthetic data reconstruction performance comparisons; in all cases M = 256. (a) MSE versus N, with D = 30.
Tasks belonging to the same cluster share the same support; nonzero coefficients are independent. (b) MSE versus N. Tasks
belonging to the same cluster share the same support and coefficients over D = 27 nonzero rows. Each task then has an
additional 3 randomly positioned, independent nonzero elements (innovations). (c) Same as (b), only now N = 70 and
the total support cardinality S , D + 3 is varied. (d) MSE versus SNR. Data generated as in Figure 1(b), with N = 75,
D = 30, and additive Gaussian white noise applied to achieve the desired SNR.

unaltered or specially tuned.

Figure 2 shows example reconstruction results of four out
of five of the different scenes. For space consideration we
only show a single reconstructed image frame from each
scene cluster and compare three algorithms: C-SBL, D-
P, and MMV. The supplementary file contains the full re-
sults and other details. Figure 3(a) shows the normalized
MSE trajectory as a function of iteration number up to con-
vergence. In terms of both MSE (Figure 3(a)) and visual
inspection (Figure 2 and supplementary), C-SBL outper-
forms other algorithms. In terms of per-iteration computa-
tional complexity all algorithms are approximately equal,
scaling quadratically in M , and linearly in N and L with
the proper implementation.

Finally, Figures 3(b) and 3(c) display the beneficial hard
clustering effect of C-SBL with regard to ground truth as
revealed through heat-maps of the estimated cluster ma-
trices W . Here column permutations are irrelevant as the
column labels are arbitrary. By employing C-SBL, tasks
within the same group (as partitioned by the ground truth
in Figure 3(b)) return nonzeros along the same columns of
the estimated W (Figure 3(c)). In this way, C-SBL uses
multiple bases Λk to model the clusters (different scenes in
Figure 2) as evidenced by multiple nonzeros in the rows of

W . However, this is the artifact of many different Λk fusing
together within a true cluster, and all of these bases within
a cluster must eventually share the same support (and typi-
cally magnitudes as well) by virtue of the support intersec-
tion property described in Section 3. Consequently, we can
infer that C-SBL correctly learns the correct five clusters
ultimately leading to the best performance (see supplemen-
tary file for DP clustering results, which fail to mirror the
ground truth).

7 CONCLUSION
In this paper we have derived a novel Bayesian model and
attendant analyses for solving multi-task sparse linear in-
verse problems by exploiting unknown cluster structure a-
mong the tasks. Although Bayesian models have been de-
ployed for solving related problems, these often involve or-
ganizing postulated distributional assumptions into a com-
plex hierarchy such that approximate inference techniques
must be applied that are difficult to unpack and rational-
ize. In contrast, herein we rely only on a simple empiri-
cal prior and then justify this parameterization using rigor-
ous properties of the underlying cost function that emerges.
This ‘semi-Bayesian’ strategy promotes understanding of
the central mechanisms at work in producing a successful
algorithm, including all approximations involved, and po-
tentially suggests targeted enhancements.

939

Figure 2: Reconstructions of 64 × 64 images from four of the five dynamic scenes (the fifth scene would not fit owing to
space considerations, but is contained in the supplementary file). From left to right: Original image, C-SBL, DP, MMV.
Sampling rate is N/M = 0.38. See supplementary file for full data, higher resolution, lower sampling rate examples.

0 10 20 30 40 50
0

1

2

3

4

5

6
x 10

−3

Iteration

M
S

E

C−SBL
MMV
DP

(a) MSE Trajectories (b) Ground Truth Cluster Pattern of W (c) Estimated Weight Matrix W by C-
SBL

Figure 3: (a) MSE versus iteration for image reconstruction. (b) Ground truth cluster patterns (c) Estimated clustering W
matrix by C-SBL.

940

References

C. Archambeau, S. Guo, and O. Zoeter (2011), Sparse
Bayesian multi-task learning. Advances in Neural Infor-
mation Processing Systems, 1755-1763, Dec.

D. Baron, M. F. Duarte, and M. B. Wakin (2009). Dis-
tributed compressive sensing. arXiv:0901.3403v1.4729v2.

D. M. Blei, and M. I. Jordan (2006). Variational inference
for Dirichlet process mixtures. Bayesian Analysis, 1(1),
Mar.

S. Boyd and L. Vandenberghe (2004). Convex optimiza-
tion. Cambridge University Press, New York.

V. Cevher, C. Hegde, M. F. Duarte, and R. G. Baraniuk
(2008). Sparse signal recovery using markov random field-
s. Advances in Neural Information Processing Systems,
257-264, Dec.

D. L. Donoho, and M. Elad (2003). Optimally sparse rep-
resentation in general (non-orthogonal) dictionaries via ℓ1
minimization. Proceedings of The National Academy of
Sciences of the United States of America, 100(5), 2197-
2202, Mar.

E. Elhamifar, and R. Vidal (2013). Sparse subspace clus-
tering: algorithm, theory, and applications. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 35(11),
2765-2780, Nov

D. Hernández-lobato, and J. M. Hernández-Lobato (2013).
Learning feature selection dependencies in multi-task
learning. Advances in Neural Information Processing Sys-
tems, 746-754, Dec.

Z. Hong, X. Mei, D. Prokhorov, and D. Tao (2013). Track-
ing via robust multi-task multi-view joint sparse represen-
tation. Computer Vision, 2013 IEEE International Confer-
ence on, 649-656, Dec.

A. Jalali, P. Ravikumar, and S. Sanghavi (2013). A dirty
model for multiple sparse regression IEEE Trans. Informa-
tion Theory, 59(12), 7947-7968, Dec.

S. Ji, D. Dunson, and L. Carin (2009). Multi-task com-
pressive sensing. IEEE Trans. Signal Processing, 57(1),
92-106, Jan.

J. Kim, O. Lee, and J. Ye (2012). Compressive music:
revisiting the link between compressive sensing and array
signal processing. IEEE Trans. Information Theory, 58(1),
278-301, Jan.

G. Obozinski, M. J. Wainwright, and M. I. Jordan (2011).

Support union recovery in high-dimensional multivariate
regression The Annals of Statistics, 39(1), 1-47, Feb.

Y. Qi, D. Liu, D. Dunson, and L. Carin (2008). Multi-task
compressive sensing with Dirichlet process priors. Pro-
ceedings of the 25th International Conference on Machine
Learning, 768-775, July.

N. Rao, C. Cox, R. Nowak, and T. Rogers (2013). Sparse
overlapping sets lasso for multitask learning and its appli-
cation to fMRI analysis. Advances in Neural Information
Processing Systems, 2202-2210, Dec.

T. Shi, D. Tang, L. Xu, and T. Moscibroda (2014). Corre-
lated compressive sensing for networked data. Conference
on Uncertainty in Artificial Intelligence, July.

M. Soltanolkotabi, and E. J. Candès (2012). A geometric
analysis of subspace clustering with outliers. The Annals
of Statistics , 40(4), 2195-2238, July.

M. Tipping (2001). Sparse Bayesian learning and the rel-
evance vector machine. Journal of Machine Learning Re-
search, 1, 211-244, June.

J. Tropp (2006). Just relax: convex programming methods
for identifying sparse signals. IEEE Trans. Information
Theory, 52(3), 1030-1051, March.

J. Wan, Z. Zhang, J. Yan, T. Li, B. Rao, S. Fang, S. Kim,
S. Risacher, A. Saykin, and L. Shen (2012). Sparse
Bayesian multi-task learning for predicting cognitive out-
comes from neuroimaging measures in alzheimer’s disease.
Computer Vision and Pattern Recognition, 2012 IEEE Con-
ference on, 940-947, June.

D. Wipf and S. Nagarajan (2010). Iterative reweighted
ℓ1 and ℓ2 methods for finding sparse solutions. Journal
of Selected Topics in Signal Processing (Special Issue on
Compressive Sensing), 4(2), April.

D. Wipf, B. Rao, and S. Nagarajan (2011). Latent vari-
able Bayesian models for promoting sparsity. IEEE Trans.
Information Theory, 57(9), Sept.

E. Yang, and P. D. Ravikumar (2013). Dirty statistical
models. Advances in Neural Information Processing Sys-
tems, 611-619, Dec.

W. Zangwill (1969). Nonlinear programming: A unified
approach. Prentice Hall, New Jersey.

Z. Zhang and B. Rao (2011). Sparse signal recovery with
temporally correlated source vectors using sparse Bayesian
learning. IEEE Journal of Selected Topics in Signal Pro-
cessing, 5(5), 912-926, Nov.

941

Bethe and Related Pairwise Entropy Approximations

Adrian Weller
Department of Engineering
University of Cambridge
aw665@cam.ac.uk

Abstract

For undirected graphical models, belief propaga-
tion often performs remarkably well for approxi-
mate marginal inference, and may be viewed as a
heuristic to minimize the Bethe free energy. Fo-
cusing on binary pairwise models, we demon-
strate that several recent results on the Bethe ap-
proximation may be generalized to a broad fam-
ily of related pairwise free energy approxima-
tions with arbitrary counting numbers. We ex-
plore approximation error and shed light on the
empirical success of the Bethe approximation.

1 INTRODUCTION

Undirected graphical models, also called Markov random
fields (MRFs), have become a central tool in machine
learning, providing a powerful and compact way to de-
scribe relationships between variables. Fundamental prob-
lems are to compute the normalizing partition function, and
to solve for the marginal distribution of a subset of vari-
ables (marginal inference). Both tasks are computation-
ally intractable (Cooper, 1990), prompting great interest
in approximate algorithms that perform well. One popu-
lar approach isbelief propagation(BP, Pearl, 1988). When
the underlying model topology is acyclic, this returns ex-
act values in linear time. If the method is applied to models
with cycles, termedloopy belief propagation(LBP), results
are often strikingly good but not always, and it may not
converge at all (McEliece et al., 1998).

Yedidia et al. (2001) demonstrated that fixed points of
LBP correspond to stationary points of theBethe free en-
ergy FB (Bethe, 1935), see§2 for definitions. Further,
Heskes (2002) showed that stable fixed points correspond
to local minima of the Bethe free energy. In this pa-
per, we summarize recent results on the Bethe approxi-
mation (Welling and Teh, 2001; Weller and Jebara, 2013,
2014a,b; Weller et al., 2014), and in each case consider

how the result may be generalized by considering the broad
class of pairwise entropy approximations specified by ar-
bitrary counting numbers, which includes the Bethe and
tree-reweightedapproximations (TRW, Wainwright et al.,
2005) as special cases. We discuss consequences and re-
lated applications, including in§5 minimizing the approxi-
mate free energy, which Weller and Jebara (2014a) recently
showed, for the specific case of the Bethe approximation on
attractive models, can be approximated to anyǫ-accuracy
with a fully polynomial-time approximation scheme(FP-
TAS).

In §6, we compare this family of entropy approximations
to the true entropy, and consider how differences interact
with the other form of approximation typically employed:
the marginal polytope, which enforces global variable con-
sistency, is relaxed to the local polytope, which enforces
only local (pairwise) consistency. We also provide fresh
insights on balanced and frustrated cycles by considering
the loop series approach of Sudderth et al. (2007).

1.1 RELATED WORK

Related work is discussed throughout the text but here we
clarify the context and contributions of our results up to
§5 that build to show how to approximate the global opti-
mum of the approximate free energy to arbitrary accuracy
for general counting numbers.

Context. All for attractive binary pairwise models:
The problem of identifying a most probable configura-
tion (MAP inference) is solvable in polynomial-time via
graph cuts (Greig et al., 1989); this generalizes to multi-
label pairwise models with submodular cost functions
(Schlesinger and Flach, 2006). However, aside from re-
stricted cases (e.g. low treewidth or thefully polynomial-
time randomized approximation scheme(FPRAS) of
Jerrum and Sinclair (1993) for uniform external field),
there is no way to estimate the partition functionZ ac-
curately in polynomial-time. LBP is a heuristic to find
the Bethe partition function by minimizing the Bethe free
energy, with log ZB = − minFB, and for these mod-

942

els we know thatZB is a lower bound and usually a
good estimate ofZ (Sudderth et al., 2007; Ruozzi, 2012;
Weller and Jebara, 2014b), but LBP may find only a lo-
cal optimum or not converge at all. Various methods (e.g.
CCCP, Yuille, 2002) were introduced which converge but
only to a local minimum ofFB with no time guarantee.
Shin (2012) introduced the first polynomial-time method
but this returns an approximately stationary point of the
BetheFB (i.e. a point where|derivative ofFB| < ǫ, which
is useful for loop series methods, but this point may have
FB value far from the global optimum; attractive not re-
quired) subject to a sparsity condition that max degree is
O(log n). Weller and Jebara (2013) derived a PTAS for
the global optimum ofFB with the same sparsity condi-
tion. Weller and Jebara (2014a) improved this, providing
the first FPTAS forlog ZB for an attractive model with any
topology. These applied only for the Bethe approximation.

Contributions. Here we broaden analysis significantly to
consider any counting numbers, relying on our new Theo-
rems 2, 5, 6 and 7, and Lemmas 3 and 4. All these extend
previous results that applied only to the Bethe approxima-
tion. It is somewhat remarkable that it emerges that an at-
tractive model admits a FPTAS forlog ZA for any count-
ing numbers. This is significant theoretically and will al-
low the benefits of non-convex free energy approximations
to be explored further in future work. Theorems 2, 5 and
6 importantly apply to general (non-attractive models), as
does Algorithm 1, allowinglog ZA with any counting num-
bers to be computed to arbitrary accuracy, though with no
polynomial-time guarantee if not attractive - still this will
be useful to learn insights from small models and to bench-
mark accuracy of faster methods.

2 PRELIMINARIES

We adopt notation consistent with (Welling and Teh, 2001;
Weller and Jebara, 2013, 2014a,b). Consider a binary pair-
wise model withn variablesX1, . . . , Xn ∈ B = {0, 1}
and graph topology(V , E) with m = |E| edges; that is
V contains nodes{1, . . . , n} wherei corresponds toXi,
and E ⊆ V × V contains an edge for each pairwise
score relationship. LetN (i) be the neighbors ofi. Let
x = (x1, . . . , xn) be one particular configuration, and de-
fine itsenergyE(x) via the relationships

p(x) =
e−E(x)

Z
, E = −

∑

i∈V
θixi −

∑

(i,j)∈E
Wijxixj , (1)

where the partition functionZ =
∑

x e−E(x) is the normal-
izing constant, and{θi, Wij} specify the potentials of the
model.1 If Wij ≥ 0, the edge(i, j) is attractive(tending to
pull its variables toward the same value); ifWij < 0 then it

1It is easily shown (Wainwright and Jordan, 2008) that any bi-
nary pairwise model may be reparameterized to the form in (1).

is repulsive(tending to push apart its variables to different
values). A model is attractive iff all its edges are attractive.

2.1 VARIATIONAL INFERENCE AND
COUNTING NUMBERS

Given any joint probability distributionp(X1, . . . , Xn)
over all variables, the Gibbs free energy is defined as
FG(p) = Ep(E) − S(p), whereS(p) is the (Shannon) en-
tropy of the distribution. By considering KL divergence, it
is easily shown (Wainwright and Jordan, 2008) that min-
imizing FG over the set of all globally valid marginals
(termed themarginal polytope) yields a value of exactly
− logZ at the true marginal distribution, given in (1).

Since this minimization is often computationally in-
tractable, two pairwise approximations are typically made:

1. The marginal polytope is relaxed to thelocal polytope
L, where onlylocal consistency is required - that is we deal
with a pseudomarginalvectorq, which in our context may
be considered{qi = q(Xi = 1) ∀i ∈ V , µij(xi, xj) =
q(xi, xj) ∀(i, j) ∈ E}, subject to constraintsqi =∑

xj∈B µij(1, xj), qj =
∑

xi∈B µij(xi, 1) ∀(i, j) ∈ E .

The local polytope constraints imply that, givenqi andqj ,

µij =

(
1 + ξij − qi − qj qj − ξij

qi − ξij ξij

)
(2)

for someξij ∈ [max(0, qi + qj − 1), min(qi, qj)].

Thus we may adopt a minimal representation with pseu-
domarginals specified by{qi ∀i ∈ V} singleton and
{ξij ∀(i, j) ∈ E} pairwise terms.

2. The entropyS is replaced by an approximationSA

that incorporates singleton and pairwise entropy terms via
counting numbers{ci ∀i ∈ V , ρij ∀(i, j) ∈ E}:

SA(q) =
∑

i∈V
ciSi −

∑

(i,j)∈E
ρijIij . (3)

HereSi(qi) is the entropy of the singleton distribution of
Xi, andIij(µij) is the mutual information of edge(i, j)
given byIij = Si +Sj −Sij, whereSij(µij) is the entropy
of the pairwise distributionµij . Note that alwaysIij ≥ 0.2

In this paper, we shall consider the approximate partition
functionZA obtained by minimizing the corresponding ap-
proximate free energyFA, defined as follows,

− log ZA = min
q∈L

FA(q), FA(q) = Eq(E) − SA(q). (4)

We shall also be interested in the approximate marginals
given by theargmin of (4).

Eaton and Ghahramani (2013) showed that any discrete model
may be arbitrarily well approximated by a binary pairwise model,
though the state space may be large.

2Some instead defineSA =
∑

i∈V c′
iSi +

∑
(i,j)∈E c′

ijSij ,
which is equivalent viac′

ij = ρij , c
′
i = ci − ∑

j∈N (i) ρij .

943

2.2 CHOICE OF COUNTING NUMBERS

In the standard Bethe entropy approximationSB, all count-
ing numbersci andρij are set to 1. This often performs
very well, yet leads to a non-convex approximate free en-
ergyFB that can be hard to optimize.

Another choice yields the well-knowntree-reweightedap-
proximation (TRW, Wainwright et al., 2005)ST . Here
again allci = 1 but now the edge weightsρij are selected
from thespanning tree polytope, resulting in allρij ≤ 1.
SinceIij ≥ 0, this immediately implies thatST ≥ SB, and
henceZT ≥ ZB. It is also known that TRW values are
bounded by true values in thatST ≥ S, henceZT ≥ Z
(whereas for many counting numbers,SA may be above or
belowS, similarly ZA may be above or belowZ; indeed,
in some cases including Bethe,SA may even be negative).
We note also thatST is concave leading to the correspond-
ing free energy approximationFT being convex, allowing
easier optimization.

Other choices of counting numbers yield a rich fam-
ily of approximations, which has been studied previ-
ously. Yedidia et al. (2005) discuss counting numbers
for the broader concept ofregions which may contain
any number of variables (in particular more than two).
This naturally relates togeneralized belief propagation
(GBP) and associatedKikuchi free energy approximations.
Pakzad and Anantharam (2005) and Heskes (2006) derived
sufficient conditions for such free energy approximations to
be convex. In this paper, we consider only pairwise count-
ing numbers. In this context, Meshi et al. (2009) explored
a wide range of pairwise counting numbers to try to find a
convex free energy approximation with performance com-
petitive to Bethe. For a subrange of models, they observed
that this was possible yet still overall, Bethe performed very
well. This is one of the motivations for this work, to under-
stand better why Bethe performs so well.

Following Yedidia et al. (2005) and Meshi et al. (2009), we
say that an approximation isvariable validif ci = 1 ∀i ∈
V , and isedge validif ρij = 1 ∀(i, j) ∈ E . Their earlier
work showed that variable valid approximations typically
perform well compared to others, and we shall focus more
attention on these models, though many of our results apply
more generally to arbitrary counting numbers. Note that if
all variables are independent, then variable validity is re-
quired to return the true entropy. If variables are connected
in a tree, then edge validity is necessary to be exact. Bethe
is unique in always being both variable and edge valid.

On a related theme, Weller et al. (2014) teased apart the
two aspects of the Bethe approximation, i.e. the polytope
and entropy as described in§2.1. Their results indicate
that even if the optimization of (4) is performed over the
marginal polytope, still the Bethe entropy approximation
typically performs better than TRW. We consider polytope
effects in§6.2.

2.3 SUBMODULARITY

A (set) functionf : 2X → R is submodularif ∀S, T ⊆
X, f(S ∩ T) + f(S ∪ T) ≤ f(S) + f(T). For finiteX ,
this is equivalent to diminishing returns, i.e.∀S ⊆ T, x ∈
X \ T, f(T ∪ {x}) − f(T) ≤ f(S ∪ {x}) − f(S).

Submodular functions have been studied extensively
(Edmonds, 1970; Lovász, 1983; Bach, 2013). In some
ways, they are a discrete analogue of convex functions and
can be minimized efficiently. The concept can be gener-
alized to consider anylattice, i.e. a partially ordered set
(L, �) such that∀x, y ∈ L, ∃ a greatest lowest bound (glb
or meet) x ∧ y ∈ L and a least upper bound (lub orjoin)
x ∨ y ∈ L. A (lattice) functionf : L → R is submodular
if ∀x, y ∈ L, f(x ∧ y) + f(x ∨ y) ≤ f(x) + f(y).

For a pairwise functionf over binary variables,f is sub-
modular ifff(0, 0)+f(1, 1) ≤ f(0, 1)+f(1, 0). It is easily
shown that the energy (or cost) of an edge(i, j) is submod-
ular iff it is attractive, i.e. iffWij ≥ 0. Further, the set of
vectors inRn with x � y if xi ≤ yi for all componentsi,
is a lattice. Herex ∧ y hasith component ofmin(xi, yi)
andx ∨ y hasith component ofmax(xi, yi).

2.4 FLIPPING VARIABLES

The method offlipping (sometimes calledswitching) bi-
nary variables will be useful for our analysis in§3.3. Given
a model on variables{Xi}, consider a new model on{X ′

i}
where we flip a subsetR of the variables, i.e. X ′

i =
1 − Xi for variablesi ∈ R ⊆ V , and X ′

i = Xi for
i ∈ V \ R. We identify new model parameters{θ′

i, W
′
ij}

as in (Weller and Jebara, 2013,§3) in order to preserve en-
ergies of all states up to a constant, hence the probability
distribution over states is unchanged. If all variables are
flipped (i.e.R = V), new parameters are given by

W ′
ij = Wij , θ′

i = −θi −
∑

j∈N (i)

Wij . (5)

If the original model was attractive, so too is the new
model. In general, if a subsetR ⊆ V is flipped, let
Et = {edges with exactlyt ends inR} for t = 0, 1, 2,
then we obtain

W ′
ij =

{
Wij (i, j) ∈ E0 ∪ E2,

−Wij (i, j) ∈ E1,

θ′
i =

{
θi +

∑
(i,j)∈E1

Wij i ∈ V \ R,

−θi − ∑
(i,j)∈E2

Wij i ∈ R.
(6)

The proof of the following result for general counting
numbers follows the argument used by Weller and Jebara
(2013) for the specific case of the Bethe approximation.

Lemma 1. Flipping variables changes affected pseudo-
marginal matrix entries’ locations but not values. For

944

any counting numbers,FA is unchanged up to a constant,
hence the locations of stationary points are unaffected.

2.5 ATTRACTIVE AND BALANCED MODELS

A model is attractive iff all its edges are attractive, i.e.
iff Wij ≥ 0 ∀(i, j) ∈ E . As suggested by§2.3, attrac-
tive models have desirable properties, e.g. a MAP assign-
ment may be found in polynomial time (Greig et al., 1989),
and as shown in§5, we can construct a FPTAS forZA for
any counting numbers. We remark that, as observed by
Harary (1953), a general model (which may contain repul-
sive edges) can be mapped to an attractive model by flip-
ping a subset of variables iff the initial model isbalanced,
that is iff it contains nofrustratedcycles, i.e. a cycle with
an odd number of repulsive edges. Hence, results that apply
to attractive models may readily be extended to the wider
class of balanced models.

3 FIRST DERIVATIVES OF FA

Combining (4) with (1), (2) and (3), yields

FA(q) = −
∑

i∈V
θiqi −

∑

(i,j)∈E
Wijξij

−
∑

i∈V
ciSi +

∑

(i,j)∈E
ρij(Si + Sj − Sij). (7)

3.1 OPTIMUM PAIRWISE PSEUDOMARGINALS

Differentiating (7) with respect toξij , we obtain

∂FA

∂ξij
= −Wij − ρij

∂Sij

∂ξij

= −Wij + ρij log

[
ξij(1 + ξij − qi − qj)

(qi − ξij)(qj − ξij)

]
.

Note that this is independent of the singleton counting num-
bers{ci}. Welling and Teh (2001) considered the specific
case of the Bethe approximation, whereρij = 1. Solving
the general case for∂FA

∂ξij
= 0 leads to a quadratic equation,

αijξ
2
ij − [1 + αij(qi + qj)]ξij + (1 + αij)qiqj = 0, (8)

where we defineαij = eWij/ρij − 1. Observe that here
Wij/ρij plays the ‘edge count modified’ role typically
performed byWij in the standard Bethe approximation.
It is easily shown that (8) has just one feasible solution
(Welling and Teh, 2001; Weller and Jebara, 2013), as given
in the following result.

Theorem 2. For general counting numbers, given single-
ton pseudomarginals, optimum pairwise terms (which min-
imize the approximate free energy) are given by

ξ∗
ij(qi, qj) =

1

2αij

(
xij −

√
x2

ij − 4αij(1 + αij)qiqj

)
,

whereαij = eWij/ρij − 1, xij = 1 + αij(qi + qj).

Henceforth we shall often considerFA as a function of just
the singleton pseudomarginals{qi}, with all pairwiseξij

terms being implicitly specified by their optimum values as
given by Theorem 2.

As noted by Weller and Jebara (2013), (8) may be rewrit-
ten asξij − qiqj = αij(qi − ξij)(qj − ξij). The terms in
parentheses are elements of the pairwise marginal (2), con-
strained to be≥ 0. By its definition,αij takes the same
sign asWij/ρij , hence the following result holds.

Lemma 3. Wij

ρij
≥ 0 ⇒ ξij ≥ qiqj ,

Wij

ρij
≤ 0 ⇒ ξij ≤

qiqj .

We remark that, given singleton marginals{qi}, a lower
edge counting number|ρij | implies a more extreme pair-
wise marginal term in the sense of greater|ξij − qiqj |. This
is true, for example, of TRW compared to Bethe.

3.2 FIRST DERIVATIVES WRT qi, ASSUMING
OPTIMUM PAIRWISE PSEUDOMARGINALS

We follow the approach of Welling and Teh (2001), noting
that at the optimum pairwise pseudomarginals,∂FA

∂ξij
= 0

for all edges, hence, holdingqj fixed∀j 6= i,

dFA

dqi

∣∣∣∣
{qj}

=
∂FA

∂qi

∣∣∣∣
{qj ,ξij}

+
∑

j∈N (i)

∂FA

∂ξij

∂ξij

∂qi

= −θi − ci
∂Si

∂qi
+

∑

j∈N (i)

ρij
∂

∂qi
(Si − Sij)

= −θi + ci log
qi

1 − qi

+
∑

j∈N (i)

ρij

(
− log

qi

1 − qi
+ log

qi − ξij

1 + ξij − qi − qj

)

= −θi + ci log
qi

1 − qi
+

∑

j∈N (i)

ρij log Qij , (9)

where as in (Weller and Jebara, 2014b), we define3

Qij =

(
qi − ξij

1 + ξij − qi − qj

) (
1 − qi

qi

)
. (10)

Considering (10) and Lemma 3 yields the following.

Lemma 4. If edge(i, j) is attractive, i.e.Wij ≥ 0, then
ρij log Qij ≤ 0.

Gradient descent methods may be used to try to minimize
FA but note these may find only a local optimum.

3NoteQij = ∂
∂qi

(Si − Sij) =
p(Xj=0|Xi=1)

p(Xj=0|Xi=0)
by (2).

945

3.3 BOUNDS ON FIRST DERIVATIVES WRT qi

We generalize the approach of Weller and Jebara (2014a)
to bound the range of first derivatives (9) for free energy ap-
proximations with arbitrary counting numbers. An impor-
tant application is the construction of anǫ-sufficient mesh
to estimatelog ZA, see§5.

Initially assume a model that is locally attractive around
Xi, i.e. Wij ≥ 0 ∀j ∈ N (i). From (9) and Lemma 4, we
obtain ∂FA

∂qi
≤ −θi + ci log qi

1−qi
.

Now flip all variables, see§2.4, to consider a model with
{X ′

i = 1 − Xi ∀i ∈ V}, keeping the same counting num-
bers. We obtainW ′

ij = Wij and can apply the result above
to yield

∂FA

∂q′
i

≤ −θ′
i + ci log

q′
i

1 − q′
i

⇔ −∂FA

∂qi
≤ θi + W+

i − ci log
qi

1 − qi
(see§2.4),

where we defineW+
i =

∑
j∈N (i):Wij ≥0 Wij . Combine

this with the earlier result to yield a sandwich inequality,

−θi + ci log
qi

1 − qi
−W+

i ≤ ∂FA

∂qi
≤ −θi + ci log

qi

1 − qi
.

Now generalize to consider the case thatXi has some
neighborsXj ∈ R to which it is adjacent by repulsive
edges, i.e. whereWij < 0. First flip just the variables
in R, see§2.4, and then apply the above sandwich result to
yield the following Theorem, where we define the nonneg-
ative valueW−

i =
∑

j∈N (i):Wij≤0 −Wij .

Theorem 5. For arbitrary counting numbers, assuming
optimum pairwise pseudomarginals, first derivatives ofFA

are sandwiched in the range

−θi+ci log
qi

1 − qi
−W+

i ≤ ∂FA

∂qi
≤−θi+ci log

qi

1 − qi
+W−

i .

Note that both upper and lower bounds are monotonic inqi

(increasing withqi if ci > 0, else nonincreasing), ranging
from −∞ to ∞, separated by the constant valueW−

i +
W+

i =
∑

j∈N (i) |Wij |. See Figure 1 for an example.

4 SECOND DERIVATIVES OF FA

We extend the analysis of Weller and Jebara (2013) to de-
rive all terms of the HessianH for free energy approxima-
tionsFA with arbitrary counting numbers.

Theorem 6 (Hij = ∂2FA

∂qi∂qj
second derivatives of

FA(q1, . . . , qn) at optimum pairwise marginalsξij).

Hij =

{
qiqj−ξij

ρijTij
if i 6= j, (i, j) ∈ E

0 if i 6= j, (i, j) /∈ E
,

Hii =
ci

qi(1 − qi)
+

∑

j∈N (i)

(
qj(1 − qj)

ρijTij
− ρij

qi(1 − qi)

)
,

Pseudo-marginal q
i

0 0.2 0.4 0.6 0.8 1

P
a
r
ti
a
l
d
e
r
iv
a
ti
v
e

∂
F

A

∂
q
i

-15

-10

-5

0

5

10

15

f
i
U

f
i
L

q
i
 s.t.

f
i
U(q

i
)=0

q
i
 s.t.

f
i
L(q

i
)=0

W
i
- + W

i
+

Shaded area shows where
partial derivative can be 0,
wherein

∣

∣

∂FA

∂qi

∣

∣ ≤ W−

i +W+

i

Parameters used in this example:
c

i
=1, θ

i
=1, W

i
-=2, W

i
+=1.9

Figure 1:An example of upper and lower bounds for∂FA
∂qi

. Blue

curves show monotonic upperfU
i (qi) and lowerfL

i (qi) bound
curves from Theorem 5, separated by constantW −

i + W +
i . In

preprocessing, the search space is shrunk to within the dashed red
lines, within which

∣∣ ∂FA
∂qi

∣∣ ≤ W −
i + W +

i =
∑

j∈N (i) |Wij |.

whereξij takes its optimum value from Theorem 2, and
Tij = qiqj(1 − qi)(1 − qj) − (ξij − qiqj)

2 ≥ 0, with
equality iffqi or qj ∈ {0, 1}. Proof in Appendix.

These second derivatives may be combined with the earlier
gradients (9) for more efficient local minimization ofFA.

4.1 SUBMODULARITY OF FA

Considering the expression forHij from Theorem 6 to-
gether with Lemma 3, observe that providedρij 6= 0 and

qi, qj /∈ {0, 1}, Wij ≥ 0 ⇔ ∂2FA

∂qi∂qj
≤ 0 (whatever the sign

of ρij). Since third derivatives exist and are finite in this
range, this yields the following result.

Theorem 7. For any counting numbers with
ρij 6= 0 ∀(i, j) ∈ E , and any discretization, an at-
tractive model yields a submodular discrete optimization
problem to estimatelog ZA. Proof in Appendix.

This means that consideringFA(q1, . . . , qn) with pairwise
marginals given by Theorem 2, for any discrete meshM =∏n

i=1 Mi, whereMi is a finite set of points forqi in [0, 1],
and for any counting numbers, then the discrete optimiza-
tion to find the point inM with lowestFA is submodular
for any attractive model (hence can be solved efficiently).

5 OPTIMIZING THE APPROXIMATE
FREE ENERGY FA

True marginal inference is NP-hard (Cooper, 1990), even
to approximate (Dagum and Luby, 1993). However,
Weller and Jebara (2014a) derived an algorithm to approxi-
mate the Bethe log-partition function,log ZB, to within any

946

Figure 2:Stylized example for optimizing the approximate free
energy over two variables. The search space is first shrunk toex-
clude the outer red region, then the inner blue region is discretized
using anǫ-sufficient mesh. The red dot indicates the (continuous)
global minimum. On the mesh: the purple dot has the closest lo-
cation, guaranteed to have value withinǫ, while the green dot is
the lowest point, hence is the discretized optimum returned.

ǫ by constructing anǫ-sufficient meshM(ǫ), i.e. a discrete
mesh over the space of singleton marginals[0, 1]n such that
the mesh pointq∗ with minq∈M(ǫ) FB(q) is guaranteed to
haveFB(q∗) within ǫ of the global optimum of− logZB.
In the case of an attractive model, the discrete optimization
problem was shown to be submodular, leading to a FPTAS
for log ZB. Using Theorems 5 and 7, we extend their ap-
proach to obtain similar results for any counting numbers.

The overall mesh method is outlined in Algorithm 1 and
illustrated in Figure 2. Note that we need search only
over the space of singleton marginals[0, 1]n, since pair-
wise terms may be computed with Theorem 2. First the
search space is shrunk using the bounds of Theorem 5,
since we need check only where∂FA

∂qi
can be 0. Within

this range,
∣∣∂FA

∂qi

∣∣ ≤ W−
i + W+

i =
∑

j∈N (i) |Wij |, see
Figure 1. Next, discrete mesh points for each variable’s
singleton marginalqi may be selected in its range such
that the step sizeδi satisfiesδi max

∣∣∂FA

∂qi

∣∣ ≈ ǫ
n . This

ensures that, wherever the global minimum is within the
space,FA cannot rise by more thann ǫ

n = ǫ at the clos-
est mesh point. This leads to a number of mesh points in
dimensioni of Ni = O(1

δi
) = O(n

ǫ

∑
j∈N (i) |Wij |). If

an upper boundW on edge strengths is known such that
|Wij | ≤ W ∀(i, j) ∈ E , then the sum of mesh points
in each dimension,N =

∑
i∈V Ni = O(nmW

ǫ), where
m = |E|.
If the model is attractive, we obtain a FPTAS since by The-
orem 7, the resulting submodular multilabel optimization

problem may be solved in timeO(N3) = O
((

nmW
ǫ

)3
)

using earlier graph cut results (Schlesinger and Flach,
2006; Greig et al., 1989; Goldberg and Tarjan, 1988). If the
model is balanced, then a subset of variables may be effi-
ciently identified such that flipping them yields an attractive

Algorithm 1 Mesh method to returnǫ-approximate global
optimumlog ZA for any counting numbers.

Input: ǫ, model parameters{θi, Wij} and counting num-
bers{ci, ρij}
Output: Estimate of global optimumlog ZA guaranteed in
[log ZA − ǫ, logZA], with corresponding pseudomarginals
asarg for the discrete optimum

1: For eachXi: Compute upper and lower bound curves
for ∂FA

∂qi
from Theorem 5, use these to shrink the search

space to a range wherein
∣∣∂FA

∂qi

∣∣ ≤ W−
i + W+

i =∑
j∈N (i) |Wij |, see Figure 1.

2: Construct anǫ-sufficient mesh as described in§5.
3: Solve the resulting discrete optimization problem (ef-

ficient by Theorem 7 if the model is attractive), see§5.

model (see§2.4), hence the FPTAS extends to balanced
models. If the model is not balanced, there is an exten-
sive range of methods available, see (Koller and Friedman,
2009,§13) or (Kappes et al., 2013) for recent surveys.

Various refinements to improve efficiency are discussed by
Weller and Jebara (2014a) for the Bethe case. All those
techniques may also be applied here, and can help signifi-
cantly in practice, though they do not improve the theoreti-
cal worst case.

Other approaches to attempt to minimize the Bethe free en-
ergy have been developed (Welling and Teh, 2001; Yuille,
2002; Heskes et al., 2003; Shin, 2012), and some general-
ize to other counting numbers, including the message pass-
ing methods of Hazan and Shashua (2008) (guaranteed to
converge for a convex free energy), Wiegerinck and Heskes
(2003) or Meshi et al. (2009), but unlessFA is convex,
none guarantees a solution close to the global optimum.

6 UNDERSTANDING APPROXIMATION
ERROR

We examine how the entropy approximationSA may lead
to error in the marginals, then consider other factors affect-
ing error in the estimate of the partition function.

6.1 EFFECT OF APPROXIMATE ENTROPY ON
MARGINALS

It has previously been observed that in cyclic graphs, there
are situations where the Bethe entropy tends to pull ap-
proximate singleton marginals toward extreme values near
0 or 1, and that this tends to occur as a ‘phase transition’
in behavior when edge weights rise above some threshold
(Heskes, 2004; Mooij and Kappen, 2005).4 One perspec-

4Note that we describe a transition in the accuracy of approx-
imate singleton marginals. A quite different symmetry-breaking
effect is the ‘ferromagnetic-paramagnetic’ transition that relates

947

tive on this is algorithmic stability (Wainwright and Jordan,
2008, §7.4). A different heuristic interpretation is that it
occurs as a result of LBP overcounting information when
going around cycles (Ihler, 2007). Here we extend the ex-
planatory approach of Weller et al. (2014) by considering
the entropy approximation and examining the effect of dif-
ferent counting numbers.

To illustrate the principles, we analyze a simple model with
n vertices connected such that each vertex has exactlyd
neighbors (such models are calledd-regular), with all edge
potentials symmetric of weightW and no singleton poten-
tials (we call these modelssymmetricandhomogeneous).
Using (9), it is easily shown that, for any counting num-
bers, there is a stationary point ofFA at a location with
qi = 1

2 ∀i ∈ V , which by symmetry clearly also give
the true singleton marginals. However, for certain count-
ing numbers, including the Bethe parameters, whenW is
above a critical threshold, this stationary point is no longer
a minimum, and new minima emerge that pull singleton
marginals away to extreme values. The following result
considers an approximation with uniform counting num-
bers (i.e. allci = c, ρij = ρ), and demonstrates conditions
for whenqi = 1

2 ∀i ∈ V is not a minimum, by explicitly
providing a direction showing that the HessianH is not
positive semidefinite.

Lemma 8. For a symmetric homogeneous d-regular model
on n vertices, letH be the Hessian of the approximate
free energy atqi = 1

2 ∀i ∈ V , using uniform counting
numbersci = c ∀i ∈ V , ρij = ρ ∀(i, j) ∈ E , then

1T H1 = n
[
4(c − dρ) + d

ρξ

]
, whereξ = 1

2σ
(

W
2ρ

)
is the

uniform optimum edge marginal term, andσ(u) = 1
1+e−u

is the standard sigmoid function. Proof in Appendix.

Hence, qi = 1
2 ∀i is not a minimum if

ω = 4(c − dρ) + d
ρξ < 0. First, note that for the

Bethe approximationc = ρ = 1, and this condition
reduces toξ > 1

4
d

d−1 ⇔ W > 2 log d
d−2 . Indeed, whenW

rises above this critical threshold, singleton marginals will
move away from1

2 (Weller et al., 2014).

In general, higher singleton counting numbersc and lower
edge counting numbersρ raiseω, making it harder to sat-
isfy the condition. The effect of the density of connectivity
d is less clear, and depends on the other parameters. For
example, consider the TRW approximation withc = 1 and
uniform edge weightsρ = 2(n−1)

nd < 1, declining with
d, which are optimum in this setting (Weller et al., 2014,
Lemma 7), thenω is positive and increases rapidly with
d (whereas Bethe suffers in this regard by keepingρ = 1
fixed).

To understand this behavior, recall the definition ofSA

in (3). As singleton counting numbersci rise, we add
moreSi which are concave, thereby increasing convexity

to the true global distribution of states (mostly aligned ornot).

−10 −5 0 5 10
0.5

0.6

0.7

0.8

0.9

1

edge weight W

av
g

 s
in

g
le

to
n

 m
ar

g
in

al

exact
Bethe
Bethe+marginal
TRW

(a)Tmax = 1

−10 −5 0 5 10
0.5

0.6

0.7

0.8

0.9

1

edge weight W
av

g
 s

in
g

le
to

n
 m

ar
g

in
al

exact
Bethe
Bethe+marginal
TRW

(b) Tmax = 3

Figure 3:Average over 20 runs of singleton marginal vs. uniform
symmetric edge weightW for: exact inference, Bethe approxima-
tion, Bethe+marginal polytope, and TRW (allρij = 2/3). Trian-
gle topology with random singleton potentialsθi ∼ [0, Tmax].
For W > 0: Bethe and Bethe+marginal overlap, exact and TRW
almost overlap. ForW < 0 (frustrated cycle): Bethe and TRW
almost overlap, as do exact and Bethe+marginal.

of FA around1
2 and making it more likely to be a mini-

mum. On the other hand, increasing edge termsρij leads
to more mutual informationIij being subtracted, thereby
increasing concavity ofFA around1

2 and potentially push-
ing marginals away from1

2 . This perspective helps to un-
derstand why a convex free energy approximation leads to
algorithmic stability (Wainwright and Jordan, 2008,§7.4).

The severity of this problem for estimating singleton
marginals is high when true marginals are near1

2 , which
typically occurs for small singleton potentials, but it is less
problematic when true marginals are themselves near 0 or
1. The effect is illustrated in Figure 3. Note how, for pos-
itive W , the Bethe marginals are pulled toward 1 whereas
TRW is almost exactly correct. The effect forW < 0 is
dominated instead by a polytope effect, which we discuss
in the next Section.

We remark that although the entropy approximation may
have a dramatic effect on the accuracy of singleton
marginals, particularly for low singleton potentials (where
true marginals are near12), the effect on estimating pair-
wise marginals and the partition function is less clear. In-

948

A

B C

(
1
2 0
0 1

2

) (
1
2 0
0 1

2

)
(

1
2 0
0 1

2

)

(
1
4

1
4

1
4

1
4

)

Figure 4: Illustration of the polytope effect on edge marginals.
A-B and A-C are strongly coupled, B-C is very weakly coupled
with all edges symmetric and attractive, and no singleton poten-
tials. Edge marginals are shown. For B-C, above the edge (red) is
the optimum in the marginal polytope (global consistency),below
the edge (blue) is the optimum for the local polytope. See§6.2.

deed, Bethe typically outperforms TRW on these measures
(Weller et al., 2014).

6.2 EFFECT OF LOCAL POLYTOPE

We revisit and expand on an example from Weller et al.
(2014) to show that the impact of each of the two aspects
(i.e. polytope and entropy, see§2.1) of an approximation
to the partition function can pull in opposite directions.
Hence, improving just the entropy approximation could
lead to aworseapproximation.

Consider the model in Figure 4, where 3 variables are con-
nected in a triangle. Two edges are strongly attractive, and
the third is very weakly attractive. The strong edgeA − B
ensures thatA and B take the same value, similarly for
B−C. Hence, in the globally consistent marginal polytope,
B andC must take the same value. The global states 000
and 111 each have probability of almost1

2 , and the pairwise
marginals are shown along the edges of Figure 4. Since the
model is almost a tree, we know thatZB ≈ Z. We shall
examine how this arises by starting with exact inference,
then switch to use the Bethe entropy approximation on the
marginal polytope, and then relax the constraint set to the
local polytope. We shall ignore the energy terms since they
are equal here for true or approximate inference.

As noted, there are 2 states that dominate the global prob-
ability distribution, hence trueS ≈ log 2. Computing
the Bethe entropy on the marginal polytope, we obtain
SB ≈ 3 log 2 − 3 log 2 = 0, which is too low bylog 2.
However, when the polytope is relaxed, a better optimum
is found by maximizing the edge entropy ofB − C as
shown under the edge in Figure 4. Since only local con-
sistency is required, there is no longer any need forB to be
equal toC and we gain the difference in edge entropy of
2 log 2 − log 2 = log 2, thus exactly offsetting the deficit
due to Bethe entropy on the marginal polytope.

This example demonstrates that focusing exclusively on
the entropy approximation, without also considering the

polytope approximation, may lead to difficulties. We high-
light another aspect of the polytope approximation, in that
it introduces half-integral vertices (Wainwright and Jordan,
2008). In a balanced cycle (even number of repulsive
edges), this is of little consequence since the optimum en-
ergy (MAP solution) is always at an integral vertex, but in a
frustrated cycle (odd number of repulsive edges, see§2.5),
the energy can cause singleton marginals to be pulled to-
wards 1

2 .5 Hence, although the Bethe entropy pulls these
marginals away from1

2 on balanced cycles, the polytope
effect pushes the other way on frustrated cycles, which in
some cases may provide a helpful ‘balance’. Since many
optimization techniques (including message passing meth-
ods) exploit the efficiencies possible with the local polytope
approximation, it may in fact be desirable overall to have
an entropy approximation such as Bethe, for this offsetting
effect. See Figure 3 in the regionW < 0 for an illustration,
where the Bethe+marginal optimization was performed us-
ing the Frank-Wolfe algorithm (Frank and Wolfe, 1956).

6.3 BOUNDS ON ZA

While the TRW approximation hasZT ≥ Z by construc-
tion, until recently there were no guarantees on the per-
formance of the Bethe approximation, though it typically
yields very good results. Sudderth et al. (2007) proved that
ZB ≤ Z for a range of attractive binary pairwise mod-
els, and conjectured that this bound holds for all attractive
models. This was proved true by Ruozzi (2012) using the
method of graph covers, and then also by Weller and Jebara
(2014b) by combining the idea of clamping variables with
analyzing properties of the derivatives ofFB.

In this Section, we use the loop series method
(Sudderth et al., 2007; Chertkov and Chernyak, 2006) to
show that for certain other models, we can prove that
ZB ≥ Z. For such models, this immediately implies that
the Bethe approximation is better for estimatingZ than any
approximation withci = 1 ∀i ∈ V (variable valid) and
ρij ≤ 1 ∀(i, j) ∈ E (from the definition ofSA, see§2.1-
2.2). In particular, for these models,Z ≤ ZB ≤ ZT .

Sudderth et al. (2007) showed thatZ/ZB = 1 + a series of
terms, one term for eachgeneralized loop, which is a sub-
graph such that no vertex has degree 1, and demonstrated
that each of the terms in the series is≥ 0 for certain mod-
els, and henceZB ≤ Z for these cases. See Appendix for
background on this approach. In particular, if there is ex-
actly one cycle in the model, then there is only one term in
the series and if the cycle is attractive, then this term is pos-
itive. We note that this immediately generalizes to a cycle
that is balanced (see§2.5 for definitions).

Here we apply similar analysis (Sudderth et al., 2007,§3-4,
or see Appendix), and observe that if there is exactly one

5This can lead the Bethe optimum of a strongly frustrated cy-
cle to occur at a location whereSB < 0.

949

cycle and it is frustrated, then the term is negative, thus
proving that for such models,ZB ≥ Z.

Interestingly, Weller and Jebara (2014b) have shown that
for the case of a model with one balanced cycle,1

2Z ≤
ZB ≤ Z, so althoughZB is lower thanZ, it cannot be by
much even for very strong edge weights; whereas for a sin-
gle frustrated cycle, there is no limit to how largeZB/Z can
rise. This suggests that for a general model, the accuracy of
ZB will depend on the blend of balanced and frustrated cy-
cles, where in a sense frustrated cycles cause greater trou-
ble than balanced cycles, though to understand how the ef-
fects combine in a model with multiple cycles will require
further analysis. SinceZB performs well even for attrac-
tive models (Sudderth et al., 2007), this indicates that, for
estimating the partition function, practitioners should use
approximations withρij < 1 (such as TRW) with caution.

The loop series method extends to models with more than
one cycle but the analysis becomes more complicated.
Again using the approach of Sudderth et al. (2007), we can
conclude more generally thatZB ≥ Z for any model such
that every generalized loop contains an odd number of re-
pulsive edges (this is a sort of generalized frustrated cycle),
and the Bethe optimum marginals for every variable that
has an odd degree≥ 3 in any generalized loop, are either
all ≤ 1

2 or all ≥ 1
2 (see Appendix).

6.4 DERIVATIVES WRT COUNTING NUMBERS

We are interested in exploring which counting numbers
lead to accurate inference as measured by errors in the esti-
mates of the partition function and marginals. Considering
(7) and using the envelope theorem (Milgrom, 1999, Theo-
rem 1), we have right derivatives:

∂ log ZA

∂ci

+

= max
q∈X

Si(qi),

∂ log ZA

∂ρij

+

= max
q∈X

[Sij(µij) − Si(qi) − Sj(qj)] , (11)

whereX is the set of allarg min FA.6 The left derivatives
correspondingly take themin rather than themax of the
same expressions. If the minimum ofFA is unique, as is
the case for any convexFA, then the right and left deriva-
tives are equal.

For tractable models, where the exact partition function
Z may be computed, this will allow exploration over the
range of counting numbers that yield accurate partition
functions. It will be interesting to investigate robustness

6This generalizes an earlier result for convex free energies
(Meshi et al., 2009, Prop 5.2), which itself generalized a result of
Wainwright et al. (2005). The envelope theorem is similar toDan-
skin’s theorem (Bertsekas, 1995). Recalllog ZA = −min FA.
Intuitively, for multiple arg min locations, each may vary at a
different rate, thus for the right derivative, we must take themax
of the derivative over all the locations.

of the quality of the partition function estimate to changes
in model potentials, and accuracy of marginals, though this
is outside the scope of the current work.

Others have investigated ways to optimize counting num-
bers. Wiegerinck and Heskes (2003) proposed a method
using linear response theory. They also discussed alpha-
divergence measures, an idea developed further by Minka
(2005), who fascinatingly frames (fractional) BP and
(power) EP under a general framework of iterative mini-
mization of alpha-divergence, yielding insight into which
measures may be expected to perform well for different ob-
jectives, though concluding that this is difficult to predict.

7 CONCLUSION

We have shown how recent results for the Bethe approxi-
mation may be extended to handle the broad range of pair-
wise approximations using any counting numbers. Our
analysis builds on earlier work (Welling and Teh, 2001;
Yedidia et al., 2005; Meshi et al., 2009; Sudderth et al.,
2007; Weller and Jebara, 2013, 2014a), providing new in-
sights and deepening our understanding of how best to per-
form inference in practice. This is important given the pop-
ularity of LBP and TRW approximations. Further, it pro-
vides a valuable toolbox for further exploration.

Areas for future investigation include trying to understand
better how to predict which approach will work well for
a given model, and analyzing the performance of message
passing algorithms with different counting numbers (where
ourǫ-accurate approach provides a valuable benchmark).

Acknowledgements

The author thanks Ofer Meshi for fruitful discussions and
for sharing code, and the anonymous reviewers for helpful
comments and suggestions.

References
F. Bach. Learning with submodular functions: A convex op-

timization perspective.Foundations and Trends in Machine
Learning, 6(2-3):145–373, 2013.

D. Bertsekas.Nonlinear Programming. Athena Scientific, 1995.

H. Bethe. Statistical theory of superlattices.Proc. R. Soc. Lond.
A, 150(871):552–575, 1935.

M. Chertkov and M. Chernyak. Loop series for discrete statistical
models on graphs.J. Stat. Mech., 2006.

G. Cooper. The computational complexity of probabilistic infer-
ence using Bayesian belief networks.Artificial Intelligence,
42:393–405, 1990.

P. Dagum and M. Luby. Approximate probabilistic reasoning in
Bayesian belief networks is NP-hard.Artificial Intelligence,
60:141–153, 1993.

F. Eaton and Z. Ghahramani. Model reductions for inference:
Generality of pairwise, binary, and planar factor graphs.Neural
Computation, 25(5):1213–1260, 2013.

950

J. Edmonds. Submodular functions, matroids, and certain poly-
hedra.Edited by G. Goos, J. Hartmanis, and J. van Leeuwen,
page 11, 1970.

M. Frank and P. Wolfe. An algorithm for quadratic program-
ming. Naval Research Logistics Quarterly, 3(1-2):95–110,
1956. ISSN 1931-9193. doi: 10.1002/nav.3800030109.

A. Goldberg and R. Tarjan. A new approach to the maximum flow
problem.Journal of the ACM, 35:921–940, 1988.

D. Greig, B. Porteous, and A. Seheult. Exact maximum a pos-
teriori estimation for binary images.J. Royal Statistical Soc.,
Series B, 51(2):271–279, 1989.

F. Harary. On the notion of balance of a signed graph.Michigan
Mathematical Journal, 2:143–146, 1953.

T. Hazan and A. Shashua. Convergent message-passing algo-
rithms for inference over general graphs with convex free en-
ergies. InUAI, 2008.

T. Heskes. Stable fixed points of loopy belief propagation are min-
ima of the Bethe free energy. InNeural Information Processing
Systems, 2002.

T. Heskes. On the uniqueness of loopy belief propagation fixed
points.Neural Computation, 16(11):2379–2413, 2004.

T. Heskes. Convexity arguments for efficient minimization of the
Bethe and Kikuchi free energies.Journal of Artificial Intelli-
gence Research, 26:153–190, 2006.

T. Heskes, K. Albers, and B. Kappen. Approximate inference and
constrained optimization. InUAI, pages 313–320, 2003.

A. Ihler. Accuracy bounds for belief propagation. InUncertainty
in Artificial Intelligence (UAI), 2007.

M. Jerrum and A. Sinclair. Polynomial-time approximation al-
gorithms for the Ising model.SIAM J. Comput., 22(5):1087–
1116, 1993.

J. Kappes, B. Andres, F. Hamprecht, C. Schnörr, S. Nowozin,
D. Batra, S. Kim, B. Kausler, J. Lellmann, N. Komodakis,
and C. Rother. A comparative study of modern inference tech-
niques for discrete energy minimization problems. InCVPR,
2013.

D. Koller and N. Friedman.Probabilistic Graphical Models -
Principles and Techniques. MIT Press, 2009.

F. Korc̆, V. Kolmogorov, and C. Lampert. Approximating
marginals using discrete energy minimization. Technical re-
port, IST Austria, 2012.

L. Lovász. Submodular functions and convexity. In A. Bachem,
M. Grötschel, and B. Korte, editors,Mathematical Program-
ming – The State of the Art, pages 235–257, Berlin, 1983.
Springer-Verlag.

R. McEliece, D. MacKay, and J. Cheng. Turbo decoding as an in-
stance of Pearl’s ”Belief Propagation” algorithm.IEEE Journal
on Selected Areas in Communications, 16(2):140–152, 1998.

O. Meshi, A. Jaimovich, A. Globerson, and N. Friedman. Con-
vexifying the Bethe free energy. InUAI, pages 402–410, 2009.

P. Milgrom. The envelope theorems. Department of
Economics, Standford University, Mimeo, 1999. URL
http://www-siepr.stanford.edu/workp/swp99016.pdf.

T. Minka. Divergence measures and message passing.Technical
Report MSR-TR-2005-173, 2005.

J. Mooij and H. Kappen. On the properties of the Bethe approxi-
mation and loopy belief propagation on binary networks.Jour-
nal of Statistical Mechanics: Theory and Experiment, 2005.

P. Pakzad and V. Anantharam. Belief propagation and statistical
physics. InPrinceton University, 2002.

P. Pakzad and V. Anantharam. Estimation and marginalization
using Kikuchi approximation methods.Neural Computation,
17(8):1836–1873, 2005.

J. Pearl.Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann, 1988.

N. Ruozzi. The Bethe partition function of log-supermodular
graphical models. InNeural Information Processing Systems,
2012.

D. Schlesinger and B. Flach. Transforming an arbitrary minsum
problem into a binary one. Technical report, Dresden Univer-
sity of Technology, 2006.

J. Shin. Complexity of Bethe approximation. InArtificial Intelli-
gence and Statistics, 2012.

E. Sudderth, M. Wainwright, and A. Willsky. Loop series and
Bethe variational bounds in attractive graphical models. In
NIPS, 2007.

M. Wainwright and M. Jordan. Graphical models, exponential
families and variational inference.Foundations and Trends in
Machine Learning, 1(1-2):1–305, 2008.

M. Wainwright, T. Jaakkola, and A. Willsky. A new class of upper
bounds on the log partition function.IEEE Transactions on
Information Theory, 51(7):2313–2335, 2005.

A. Weller and T. Jebara. Bethe bounds and approximating the
global optimum. InArtificial Intelligence and Statistics (AIS-
TATS), 2013.

A. Weller and T. Jebara. Approximating the Bethe partition func-
tion. In Uncertainty in Artificial Intelligence (UAI), 2014a.

A. Weller and T. Jebara. Clamping variables and approximate
inference. InNeural Information Processing Systems (NIPS),
2014b.

A. Weller, K. Tang, D. Sontag, and T. Jebara. Understanding the
Bethe approximation: When and how can it go wrong? In
Uncertainty in Artificial Intelligence (UAI), 2014.

M. Welling and Y. Teh. Belief optimization for binary networks:
A stable alternative to loopy belief propagation. InUncertainty
in Artificial Intelligence (UAI), 2001.

W. Wiegerinck and T. Heskes. Fractional belief propagation. In
S. Becker, S. Thrun, and K. Obermayer, editors,Advances in
Neural Information Processing Systems 15, pages 438–445.
MIT Press, 2003.

J. Yedidia, W. Freeman, and Y. Weiss. Understanding belief prop-
agation and its generalizations. InInternational Joint Con-
ference on Artificial Intelligence, Distinguished LectureTrack,
2001.

J. Yedidia, W. Freeman, and Y. Weiss. Constructing free-energy
approximations and generalized belief propagation algorithms.
IEEE Trans. Information Theory, pages 2282–2312, 2005.

A. Yuille. CCCP algorithms to minimize the Bethe and Kikuchi
free energies: Convergent alternatives to belief propagation.
Neural Computation, 14:1691–1722, 2002.

951

Efficient Transition Probability Computation for Continuous-Time Branching
Processes via Compressed Sensing

Jason Xu
Department of Statistics

University of Washington
Seattle, WA 98195

Vladimir N. Minin
Departments of Statistics and Biology

University of Washington
Seattle, WA 98195

Abstract

Branching processes are a class of continuous-
time Markov chains (CTMCs) with ubiquitous
applications. A general difficulty in statistical
inference under partially observed CTMC mod-
els arises in computing transition probabilities
when the discrete state space is large or un-
countable. Classical methods such as matrix ex-
ponentiation are infeasible for large or count-
ably infinite state spaces, and sampling-based al-
ternatives are computationally intensive, requir-
ing integration over all possible hidden events.
Recent work has successfully applied generat-
ing function techniques to computing transition
probabilities for linear multi-type branching pro-
cesses. While these techniques often require sig-
nificantly fewer computations than matrix expo-
nentiation, they also become prohibitive in ap-
plications with large populations. We propose a
compressed sensing framework that significantly
accelerates the generating function method, de-
creasing computational cost up to a logarithmic
factor by only assuming the probability mass of
transitions is sparse. We demonstrate accurate
and efficient transition probability computations
in branching process models for blood cell for-
mation and evolution of self-replicating transpos-
able elements in bacterial genomes.

1 INTRODUCTION

Continuous-time branching processes are widely used in
stochastic modeling of population dynamics, with applica-
tions including cell biology, genetics, epidemiology, quan-
tum optics, and nuclear fission [Renshaw, 2011]. With the
exception of the well-studied class of birth-death processes,
which have known expressions for many quantities relevant
to probabilistic inference [Crawford et al., 2014], branch-
ing processes pose significant inferential challenges. In

particular, closed forms for finite-time transition probabil-
ities, the conditional probability that a trajectory ends at a
given state, given a starting state and time interval, are un-
available. These transition probabilities are crucial in many
inferential approaches, comprising the observed likelihood
function when data from the process are available at a set of
discrete times. The likelihood function is of central impor-
tance in frequentist and Bayesian methods, and any statis-
tical framework involving observed data likelihood evalua-
tion requires transition probability computations. Without
the ability to fully leverage the branching structure, stud-
ies must rely on general CTMC estimation techniques or
model approximations [Rosenberg et al., 2003, Golinelli
et al., 2006, El-Hay et al., 2006].

Computation of transition probabilities is the usual bottle-
neck in model-based inference using CTMCs [Hajiaghayi
et al., 2014], requiring a marginalization over the infi-
nite set of possible end-point conditioned paths. Clas-
sically, this marginalization is accomplished by comput-
ing the matrix exponential of the infinitesimal generator
of the CTMC. However, this procedure has cubic runtime
complexity in the size of the state space, becoming pro-
hibitive even for state spaces of moderate sizes. Alterna-
tives also have their shortcomings: uniformization meth-
ods use a discrete-time “skeleton” chain to approximate
the CTMC but rely on a restrictive assumption that there
is a uniform bound on all rates [Grassmann, 1977, Ross,
1987, Rao and Teh, 2011]. Typically, practitioners resort to
sampling-based approaches via Markov chain Monte Carlo
(MCMC). Specifically, particle-based methods such as se-
quential Monte Carlo (SMC) and particle MCMC [Doucet
et al., 2000, Andrieu et al., 2010] offer a complementary
approach whose runtime depends on the number of im-
puted transitions rather than the size of the state space.
However, these SMC methods have several limitations—
in many applications, a prohibitively large number of par-
ticles is required to impute waiting times and events be-
tween transitions, and degeneracy issues are a common oc-
currence, especially in longer time series. A method by
Hajiaghayi et al. [2014] accelerates particle-based methods
by marginalizing holding times analytically, but has cubic

952

runtime complexity in the number of imputed jumps be-
tween observations and is recommended for applications
with fewer than one thousand events occurring between ob-
servations.

Recent work by Xu et al. [2014] has extended techniques
for computing transition probabilities in birth-death mod-
els to linear multi-type branching processes. This ap-
proach involves expanding the probability generating func-
tion (PGF) of the process as a Fourier series, and apply-
ing a Riemann sum approximation to its inversion formula.
This technique has been used to compute numerical tran-
sition probabilities within a maximum likelihood estima-
tion (MLE) framework, and has also been applied within
Expectation Maximization (EM) algorithms [Doss et al.,
2013, Xu et al., 2014]. While this method provides a pow-
erful alternative to simulation and avoids costly matrix op-
erations, the Riemann approximation to the Fourier inver-
sion formula requires O(N b) PGF evaluations, where b is
the number of particle types and N is the largest popu-
lation size at endpoints of desired transition probabilities.
This complexity is no worse than linear in the size of the
state space, but can also be restrictive: a two-type pro-
cess in which each population can take values in the thou-
sands would require millions of PGF evaluations to pro-
duce transition probabilities over an observation interval.
This can amount to hours of computation in standard com-
puting architectures, because evaluating PGFs for multi-
type branching processes involves numerically solving sys-
tems of ordinary differential equations (ODEs). Such com-
putations become infeasible within iterative algorithms.

In this paper, we focus our attention on the efficient compu-
tation of transition probabilities in the presence of sparsity,
presenting a novel compressed sensing framework that dra-
matically reduces the computational cost of inverting the
PGF. We apply our compressed sensing generating func-
tion (CSGF) algorithm to a branching process model used
to study hematopoiesis — a process of blood cell forma-
tion — as well as a birth-death-shift process with applica-
tions to molecular epidemiology, and see that the sparsity
assumption is valid for scientifically realistic rates of the
processes obtained in previous statistical studies. We com-
pare performance of CSGF to transition probability compu-
tations without taking advantage of sparsity, demonstrating
a high degree of accuracy while achieving significant im-
provements in runtime.

2 MARKOV BRANCHING PROCESSES

A branching process is a Markov process in which a collec-
tion of independently acting individuals, or particles, can
reproduce and die according to a probability distribution.
We consider continuous-time, multi-type branching pro-
cesses that take values over a discrete state space. In this
setting, each particle type can have a distinct mean lifespan

and reproductive probabilities, and lives for an exponen-
tially distributed length of time. At time of death, a particle
can give rise to particles of its own type as well as other
types.

Denote a linear, multi-type branching process by the ran-
dom vector X(t) taking values in a discrete state space Ω,
with Xi(t) denoting the number of type i particles present
at time t ≥ 0. For exposition and notational simplicity,
we will focus on the two-type case. Each type i particle
produces k type 1 particles and l type 2 particles with in-
stantaneous rates aj(k, l) upon completion of its lifespan,
and the rates of no event occurring are defined as

α1 := a1(1, 0) = −
∑

(k,l)6=(1,0)

a1(k, l)

α2 := a2(0, 1) = −
∑

(k,l) 6=(0,1)

a2(k, l),

so that
∑
k,l ai(k, l) = 0 for i = 1, 2. The linearity as-

sumption implies that overall rates are multiplicative in the
number of particles. For example, the infinitesimal proba-
bility of jumping to k type 1 and l type 2 particles beginning
with j type 1 particles over a short interval of time h is

Pr {X(h) = (k, l)|X(0) = (j, 0)} = j · a1(k, l) ·h+ o(h).

Subsequently, offspring of each particle evolve according
to the same set of instantaneous rates, and these rates
aj(k, l) do not depend on t so that the process is time-
homogeneous. Together these assumptions imply that each
type i particle has exponentially distributed lifespan with
rate−αi, and X(t) evolves over time as a CTMC [Guttorp,
1995].

2.1 Transition probabilities

Dynamics of a CTMC are determined by its transition func-
tion

px,y(t) = Pr(X(t+ s) = y|X(s) = x), (1)

where time-homogeneity implies independence of the
value of s on the right hand side. When the state space
Ω is small, one can exponentiate the |Ω| by |Ω| infinitesi-
mal generator or rate matrix Q =

{
qx,y

}
x,y∈Ω

, where the
entries qx,y denote the instantaneous rates of jumping from
state x to y, to compute transition probabilities:

P(t) :=
{
px,y(t)

}
x,y∈Ω

= eQt =
∞∑

k=0

(Qt)k

k!
. (2)

These transition probabilities are fundamental quantities in
statistical inference for data generated from CTMCs. For
instance, if X(t) is observed at times t1, . . . , tJ and D rep-
resents the 2 by J matrix containing the observed data, the
observed data log-likelihood is given by

`o(D;θ) =
J−1∑

j=1

log pX(tj),X(tj+1)(tj+1 − tj ;θ), (3)

953

where the vector θ parametrizes the rates aj(k, l). Max-
imum likelihood inference that seeks to find the value θ̂
that optimizes (3) as well as Bayesian methods where like-
lihood calculations arise in working with the posterior den-
sity (up to a proportionality constant) fundamentally rely
on the ability to calculate transition probabilities. Having
established their importance in probabilistic inference, we
focus our discussion in this paper on computing these tran-
sition probabilities in a continuous-time branching process.

2.2 Generating function methods

Matrix exponentiation is cubic in |Ω| and thus prohibitive in
many applications, but we may take an alternate approach
by exploiting properties of the branching process. Xu et al.
[2014] extend a generating function technique used to com-
pute transition probabilities in birth-death processes to the
multi-type branching process setting. The probability gen-
erating function (PGF) for a two-type process is defined

φjk(t, s1, s2;θ) = Eθ
(
s
X1(t)
1 s

X2(t)
2 |X1(0) = j,X2(0) = k

)

=
∞∑

l=0

∞∑

m=0

p(jk),(lm)(t;θ)sl1s
m
2 ; (4)

this definition extends analogously for anym-type process.
We suppress dependence on θ for notational convenience.
Bailey [1964] provides a general technique to derive a sys-
tem of differential equations governing φjk using the Kol-
mogorov forward or backward equations given the instan-
taneous rates aj(k, l). It is often possible to solve these sys-
tems analytically for φjk, and even when closed forms are
unavailable, numerical solutions can be efficiently obtained
using standard algorithms such as Runge-Kutta methods
[Butcher, 1987].

With φjk available, transition probabilities are related to
the PGF (4) via differentiation:

p(jk),(lm)(t) =
1

l!

1

m!

∂l

∂s1

∂m

∂s2
φjk(t)

∣∣∣∣
s1=s2=0

. (5)

This repeated differentiation is computationally intensive
and numerically unstable for large l,m, but following
Lange [1982], we can map the domain s1, s2 ∈ [0, 1] ×
[0, 1] to the boundary of the complex unit circle, setting
s1 = e2πiw1 , s2 = e2πiw2 . The generating function be-
comes a Fourier series whose coefficients are the desired
transition probabilities

φjk(t, e2πiw1 , e2πiw2) =
∞∑

l,m=0

p(jk),(lm)(t)e
2πilw1e2πimw2 .

Applying a Riemann sum approximation to the Fourier in-
version formula, we can now compute the transition prob-

abilities via integration instead of differentiation:

p(jk),(lm)(t) =

∫ 1

0

∫ 1

0

φjk
(
t, e2πiw1 , e2πiw2

)
e−2πilw1

× e−2πimw2dw1dw2

≈ 1

N2

N−1∑

u=0

N−1∑

v=0

φjk

(
t, e2πiu/N , e2πiv/N

)

× e−2πilu/Ne−2πimv/N .

(6)

In practice, the set of transition probabilities S =
{p(jk),(lm)(t)} for all l,m = 0, . . . , N , given initial values
of (j, k), can be obtained via the Fast Fourier Transform
(FFT), described in Section 4. It is necessary to choose
N > l,m, since exponentiating the roots of unity can yield
at most N distinct values:

e−2πimv/N = e−2πi(mv modN)/N .

This is related to the Shannon-Nyquist criterion [Shannon,
2001], which dictates that the number of samples required
to recover a signal must match its highest frequency. Thus,
calculating “high frequency” coefficients— when l,m take
large values—requires O(N2) numerical ODE solutions,
which becomes computationally expensive for large N .

Sparsity: Given an initial state X(0) = (j, k), the sup-
port of transition probabilities is often concentrated over
a small range of (l,m) values. For example, if X(t) =
(800, 800), then the probability that the entire process be-
comes extinct, X(t+ s) = (0, 0), is effectively zero unless
particle death rates are very high or s is a very long time
interval. In many realistic applications, p(800,800),(l,m)(s)
has non-negligible mass on a small support, for instance
only over l,m values between 770 and 820. While their
values can be computed using Equation (6) for a choice of
N > 820, requiring N2 ODE evaluations toward comput-
ing only (820 − 770)2 nonzero probabilities seems waste-
ful. Similarly, in an example with high birth rates but low
death rates, probabilities p(800,800),(l,m)(s) may be con-
centrated around some mean values of (l,m) much larger
than (j, k), and other processes may feature concentration
of probability mass in one or several modes. While spar-
sity is not always available — for instance, support may be
spread out in applications when observation times are very
far apart— a general sparsity assumption is very reason-
able when data are observed relatively frequently relative
to the branching process rates. To exploit the sparsity in
such settings, we bridge aforementioned branching process
techniques to the literature of compressed sensing.

3 COMPRESSED SENSING

Originally developed in an information theoretic setting,
the principle of compressed sensing (CS) states that an un-

954

known sparse signal can be recovered accurately and of-
ten perfectly from significantly fewer samples than dictated
by the Shannon-Nyquist rate, at the cost of solving a con-
vex optimization problem [Donoho, 2006, Candès, 2006].
CS is a robust tool to collect high-dimensional sparse data
from a low-dimensional set of measurements and has been
applied to a plethora of fields, leading to dramatic reduc-
tions in the necessary number of measurements, samples,
or computations. In our setting, the transition probabilities
play the role of a target sparse signal of Fourier coefficients.
The data reduction made possible via CS then translates to
reducing necessary computations to a much smaller ran-
dom subsample of PGF evaluations, which play the role of
measurements used to recover the signal.

3.1 Overview

In the CS framework, the unknown signal is a vector x ∈
CN observed through a measurement b = Vx ∈ CM
with M << N . Here V denotes an M × N measure-
ment matrix or sensing matrix. Since M < N , the system
is underdetermined and inversion is highly ill-posed—the
space of solutions is an infinite affine subspace, but CS the-
ory shows that recovery can be accomplished under certain
assumptions by seeking the sparsest solution. Let ψ be an
orthonormal basis of CN that allows a K-sparse represen-
tation of x: that is, x = ψs where s is a sparse vector of
coefficients such that ||s||0 < K. Candès [2006] proves
that recovery can then be accurately accomplished by find-
ing the sparsest solution

ŝ = argmin
s
||s||0 s.t. As = b (7)

where A = Vψ is the composition of the measurement
and sparsifying matrices. In practice, this non-convex ob-
jective is combinatorially intractable to solve exactly, and
is instead solved by proxy via `1-relaxation, resulting in a
convex optimization program. In place of Equation (7), we
optimize the unconstrained penalized objective

ŝ = argmin
s

1

2
||As− b||22 + λ||s||1, (8)

where λ is a regularization parameter enforcing sparsity of
s. The signal x, or equivalently s, can be recovered per-
fectly using only M = CK logN measurements for some
constant C when A satisfies the Restricted Isometry Prop-
erty (RIP) [Candès and Tao, 2005, Candès, 2008]—briefly,
this requires that V and ψ to be incoherent so that rows
of V cannot sparsely represent the columns of ψ and vice
versa. Coherence between V,ψ is defined as

µ(V,ψ) =
√
nmax

i,j
|〈V,ψj〉|,

and low coherence pairs are desirable. It has been shown
that choosing random measurements V satisfies RIP with
overwhelming probability [Candès, 2008]. Further, given

ψ, it is often possible to choose a known ideal distribution
from which to sample elements in V such that V andψ are
maximally incoherent.

3.2 Higher dimensions

CS theory extends naturally to higher-dimensional signals
[Candès, 2006]. In the 2D case which will arise in our ap-
plications (Section 5), the sparse solution S ∈ CN×N and
measurement

B = ASAT ∈ CM×M (9)

are matrices rather than vectors, and we solve

Ŝ = argmin
S

1

2
||ASAT −B||22 + λ||S||1. (10)

This can always be equivalently represented in the vector-
valued framework: vectorizing

vec(S) = s̃ ∈ CN
2

, vec(B) = b̃ ∈ CM
2

,

we now seek b̃ = Ãs̃ as in Equations (7), (8), where
Ã = A ⊗ A is the Kronecker product of A with itself.
In practice, it can be preferable to solve (10), since the
number of entries in Ã grows rapidly and thus the vector-
ized problem requires a costly construction of Ã and can
be cumbersome in terms of memory.

4 CSGF METHOD

We propose an algorithm that allows for efficient PGF in-
version within a compressed sensing framework. We fo-
cus our exposition on two-type models: linear complexity
in |Ω| is less often a bottleneck in single-type problems,
and all generating function methods as well as compressed
sensing techniques we describe extend to settings with an
arbitrary number of particle types.

We wish to compute the transition probabilities pjk,lm(t)
given any t > 0 and X(0) = (j, k). These probabilities
can be arranged in a matrix S ∈ RN×N with entries

{
S
}
l,m

= pjk,lm(t).

Without the CS framework, these probabilities are obtained
following Equation (6) by first computing an equally sized
matrix of PGF solutions

B̃ =
{
φjk

(
t, e

2πiu
N , e

2πiv
N

)}N−1

u,v=0
∈ CN×N . (11)

For largeN , obtaining B̃ is computationally expensive, and
our method seeks to bypass this step. When B̃ is computed,
transition probabilities are then recovered by taking the fast
Fourier transform S = fft(B̃). To better understand how
this fits into the CS framework, we can equivalently write

955

the fast Fourier transform in terms of matrix operations S =

FB̃F
T

, where F ∈ CN×N denotes the discrete Fourier
transform matrix (see Supplement). Thus, the sparsifying
basis ψ is the Inverse Discrete Fourier Transform (IDFT)
matrix ψ = F∗ given by the conjugate transpose of F, and
we have B̃ = ψSψT .

When the solution matrix S is expected to have a sparse
representation, our CSGF method seeks to recover S with-
out computing the full matrix B̃, instead beginning with a
much smaller set of PGF evaluations B ∈ CM×M corre-
sponding to random entries of B̃ selected uniformly at ran-
dom. Denoting randomly sampled indices I, this smaller
matrix is a projection B = ASAT in the form of Equation
(9) where A ∈ CM×N is obtained by selecting a subset of
rows of ψ corresponding to I. Uniform sampling of rows
corresponds to multiplying by a measurement matrix en-
coding the spike basis (or standard basis): formally, this fits
into the framework described in Section 3.1 as A = Vψ,
with measurement matrix rows Vj(l) = δ(j−l). The spike
and Fourier bases are known to be maximally incoherent in
any dimension, so uniformly sampling indices I is optimal
in our setting.

Now in the compressed sensing framework, computing the
reduced matrix B only requires a logarithmic proportion
|B| ∝ K log |B̃| of PGF evaluations necessary in Equation
(11). Computing transition probabilities in S is thus re-
duced to a signal recovery problem, solved by optimizing
the objective in Equation (10).

4.1 Solving the `1 problem

There has been extensive research on algorithms for solv-
ing the `1 regularization objective in Equation (8) and
related problems [Tibshirani, 1996, Beck and Teboulle,
2009a]. As mentioned previously, vectorizing the problem
so that it can be represented in the form (8) requires waste-
ful extra memory; instead we choose to solve the objective
in Equation (10) using a proximal gradient descent (PGD)
algorithm.

PGD is useful for solving minimization problems with ob-
jective of the form f(x) = g(x) + h(x) with g convex and
differentiable, and h convex but not necessarily differen-
tiable. Letting

g(S) =
1

2
||ASAT −B||22, h(S) = λ||S||1,

we see that Equation (10) satisfies these conditions. A form
of generalized gradient descent, PGD iterates toward a so-
lution with

xk+1 = argmin
z

[g(xk) +∇g(xk)T (z − xk) (12)

+
1

2Lk
||z − xk||22 + h(z)],

where Lk is a step size that is either fixed or determined
via line-search. This minimization has known closed-form
solution

xk+1 = softh(xk − Lk∇g(xk), Lkλ), (13)

where softh is the soft-thresholding operator

[softh(x, α)]i = sgn(xi) max(|xi| − α, 0). (14)

This results in an iterative soft-thresholding algorithm that
solves the convex problem (10) with rate of convergence
O(1/k) when Lk is fixed. The softh() operation is simple
and computationally negligible, so that the main compu-
tational cost is in evaluating ∇g(xk). We derive a closed
form expression for the gradient in our setting:

∇g(S) = −A∗(B−ASAT)A, (15)

where A,A∗ denote complex conjugate and conjugate
transpose of A respectively. In practice, the inner term
ASAT is obtained as a subset of the inverse fast Fourier
transform of S rather than by explicit matrix multiplication.
The computational effort in computing∇g(S) therefore in-
volves only the two outer matrix multiplications.

We implement a fast variant of PGD using momentum
terms [Beck and Teboulle, 2009b] based on an algorithm
introduced by Nesterov, and select step sizes Lk via a sim-
ple line-search subroutine [Beck and Teboulle, 2009a]. The
accelerated version includes an extrapolation step, where
the soft-thresholding operator is applied to a momentum
term

yk+1 = xk + ωk(xk − xk−1)

rather than to xk; here ωk is an extrapolation parameter for
the momentum term. Remarkably, the accelerated method
still only requires one gradient evaluation at each step as
yk+1 is a simple linear combination of previously com-
puted points, and has been proven to achieve the optimal
worst-case rate of convergence O(1/k2) among first order
methods [Nesterov, 1983]. Similarly, the line-search pro-
cedure involves evaluating a bound that also only requires
one evaluation of ∇g (see Supplement for further imple-
mentation details).

Algorithm 1 provides a summary of the CSGF method in
pseudocode.

5 EXAMPLES

We will examine the performance of CSGF in two applica-
tions: a stochastic two-compartment model used in statisti-
cal studies of hematopoiesis, the process of blood cell pro-
duction, and a birth-death-shift model that has been used
to study the evolution of transposons, mobile genetic ele-
ments.

956

Algorithm 1 CSGF algorithm.
1: Input: initial sizes X1 = j,X2 = k, time interval t,

branching rates θ, signal size N > j, k, measurement
size M , penalization constant λ > 0, line-search pa-
rameters L, c.

2: Uniformly sample M indices I ⊂ [0, . . . N − 1] /N
3: Compute B =

{
φjk(t, e2πiu/N , e2πiv/N)

}
u,v∈I×I

4: Define A = ψI· the I rows of IDFT matrix ψ
5: Initialize: S1 = Y1 = 0
6: for k = 1, 2, . . . , {max iterations} do
7: Choose Lk = line-search(L, c,Yk)
8: Update extrapolation parameter ωk = k

k+3
9: Update momentum Yk+1 = Sk + ωk(Sk − Sk−1)

10: Compute ∇g(Yk+1) according to (15)
11: Update Sk+1 = softh(Sk − Lk∇g(Yk+1), Lkλ)
12: end for
13: return Ŝ = Sk+1

5.1 Two-compartment hematopoiesis model

Hematopoiesis is the process in which self-sustaining prim-
itive hematopoietic stem cells (HSCs) specialize, or dif-
ferentiate, into progenitor cells, which further specialize
to eventually produce mature blood cells. In addition to
far-reaching clinical implications — stem cell transplan-
tation is a mainstay of cancer therapy — understanding
hematopoietic dynamics is biologically interesting, and
provides critical insights of general relevance to other areas
of stem cell biology [Orkin and Zon, 2008]. The stochas-
tic model, depicted in Figure 1, has enabled estimation of
hematopoietic rates in mammals from data in several stud-
ies [Catlin et al., 2001, Golinelli et al., 2006, Fong et al.,
2009]. Without the ability to compute transition probabili-
ties, an estimating equation approach by Catlin et al. [2001]
is statistically inefficient, resulting in uncertain estimated
parameters with very wide confidence intervals. Nonethe-
less, biologically sensible rates are inferred. Golinelli et al.
[2006] observe that transition probabilities are unknown
for a linear birth-death process (compartment 1) coupled
with an inhomogeneous immigration-death process (com-
partment 2), motivating their computationally intensive re-
versible jump MCMC implementation.

However, we can equivalently view the model as a two-type
branching process. Under such a representation, it becomes
possible to compute transition probabilities via Equation
(6). The type one particle population X1 corresponds to
hematopoietic stem cells (HSCs), and X2 represents pro-
genitor cells. With parameters as denoted in Figure 1, the
nonzero instantaneous rates defining the process are

a1(2, 0) = ρ, a1(0, 1) = ν, a1(1, 0) = −(ρ+ ν),

a2(0, 0) = µ, a2(0, 1) = −µ. (16)

Having newly formulated the model as a two-type branch-

Figure 1: HSCs can
self-renew, producing
new HSCs at rate ρ, or
differentiate into progeni-
tor cells at rate ν. Further
progenitor differentiation
is modeled by rate µ.

ing process, we derive solutions for its PGF, defined in
Equation (4), with details in the Supplement:

Proposition 5.1 The generating function for the two-type
model described in (16) is given by φjk = φj1,0φ

k
0,1, where

φ0,1(t, s1, s2) = 1 + (s2 − 1)e−µt

d
dtφ1,0(t, s1, s2) = ρφ2

1,0(t, s1, s2)− (ρ+ ν)φ1,0(t, s1, s2)

+νφ0,1(t, s1, s2).
(17)

We see that φ0,1 has closed form solution so that evaluating
φjk only requires solving one ODE numerically, and with
the ability to compute φjk, we may obtain transition prob-
abilities using Equation (6). In this application, cell pop-
ulations can easily reach thousands, motivating the CSGF
approach to accelerate transition probability computations.

5.2 Birth-death-shift model for transposons

Our second application examines the birth-death-shift
(BDS) process proposed by Rosenberg et al. [2003] to
model evolutionary dynamics of transposable elements or
transposons, genomic mobile sequence elements. Each
transposon can (1) duplicate, with the new copy moving
to a new genomic location; (2) shift to a different loca-
tion; or (3) be removed and lost from the genome, inde-
pendently of all other transposons. These respective birth,
shift, and death events occur at per-particle instantaneous
rates β, σ, δ, with overall rates proportional to the total
number of transposons. Transposons thus evolve according
to a linear birth-death-shift Markov process in continuous
time. In practice, genotyping technologies allow for this
process to be discretely monitored, necessitating computa-
tion of finite-time transition probabilities.

Rosenberg et al. [2003] estimate evolutionary rates of
the IS6110 transposon in the Mycobacterium tuberculo-
sis genome from a San Francisco community study dataset
[Cattamanchi et al., 2006]. Without transition probabili-
ties, the authors maximize an approximate likelihood by
assuming at most one event occurs per observation interval,
a rigid assumption that severely limits the range of applica-
tions. Doss et al. [2013] revisit their application, inferring
similar rates of IS6110 evolution using a one-dimensional
birth-death model that ignores shift events. Xu et al. [2014]
show that the BDS model over any finite observation inter-
val can be modeled as a two-type branching process, where

957

 0 5101520253035

0.
00

0.
02

0.
04

0.
06

0.
08

 0
 5

10
15

20
25

30
35

k, number of progenitors

j,
nu

m
be

r
of

 H
S

C
s

Tr
an

si
tio

n
pr

ob
ab

ili
ty

●

●

True probabilities
CSGF recovered probabilities

Figure 2: Illustrative example of recovered transition
probabilities in hematopoiesis model described in Sec-
tion 5. Beginning with 15 HSCs and 5 progenitors over
a time period of one week, the CSGF solution Ŝ ={
p̂(15,5),(j,k)(1)

}
, j, k = 0, . . . , 31, perfectly recovers tran-

sition probabilities S, using fewer than half the measure-
ments.

X1 denotes the number of initially occupied genomic lo-
cations and X2 denotes the number of newly occupied lo-
cations (see figure in Supplement). In this representation,
full dynamics of the BDS model can be captured, and gen-
erating function techniques admit transition probabilities,
leading to rate estimation via MLE and EM algorithms.
Transposon counts in the tuberculosis dataset are low, so
that Equation (6) can be computed easily, but their method
does not scale well to applications with high counts in the
data.

The nonzero rates defining the two-type branching process
representation of the BDS model are given by

a1(1, 1) = β, a1(0, 1) = σ, a1(0, 0) = δ,

a1(1, 0) = −(β + σ + δ), a2(0, 2) = β,

a2(0, 1) = −(β + δ), a2(0, 0) = δ. (18)

and its PGF is governed by the following system derived in
[Xu et al., 2014]:

φ0,1(t, s1, s2) = 1 +

[
β
δ−β + (1

s2−1 + β
β−δ)e(δ−β)t

]−1

d
dtφ1,0(t, s1, s2) = βφ1,0φ2 + σφ0,1 + δ − (β + σ + δ)s1,

(19)
again with φjk = φj1,0φ

k
0,1 by particle independence.

5.3 Results

To compare the performance of CSGF to the computation
of Equation (6) without considering sparsity, we first com-
pute sets of transition probabilities S of the hematopoiesis
model using the full set of PGF solution measurements B̃
as described in Equation (11). These “true signals” are

compared to the signals computed using CSGF Ŝ, recov-
ered using only a random subset of measurements B fol-
lowing Algorithm 1. Figure 2 provides an illustrative ex-
ample with small cell populations for visual clarity— we
see that the support of transition probabilities is concen-
trated (sparse), and the set of recovered probabilities Ŝ is
visually identical to the true signal.

In each of the aforementioned applications, we calculate
transition probabilities S ∈ RN×N for maximum popu-
lations N = 27, 28, . . . 212, given rate parameters θ, ini-
tial population X(0), and time intervals t. Each computa-
tion of S requires N2 numerical evaluations of the ODE
systems (17), (19). For each value of N , we repeat this
procedure beginning with ten randomly chosen sets of ini-
tial populations X(0) each with total size less than N . We
compare the recovered signals Ŝ computed using CSGF to
true signals S, and report median runtimes and measures
of accuracy over the ten trials, with details in the following
sections.

Transition probability recovery comparison, BDS model
P

ro
ba

bi
lit

y

0.
00

0.
02

0.
04

0.
06

Indices with largest probability mass

P
ro

ba
bi

lit
y

0.
00

0
0.

01
5

0.
03

0

Random subset of indices

True probabilities
CSGF recovered signal

Figure 3: Randomly selected probabilities and largest prob-
abilities recovered using CSGF are nearly identical to their
true values. Probabilities displayed here correspond to a
randomly selected BDS model trial with N=512; transi-
tion probabilities Ŝ via CSGF are recovered from a sample
B requiring fewer than 2% of ODE computations used to
compute S = fft(B̃).

Parameter settings: In the hematopoiesis
example, we set per-week branching rates
θhema = (0.125, 0.104, 0.147) and observation time
t = 1 week based on biologically sensible rates and
observation time scales of data from previous studies of
hematopoiesis in mammals [Catlin et al., 2001, Golinelli
et al., 2006, Fong et al., 2009]. For the BDS application, we
set per-year event rates θbds = (0.0156, 0.00426, 0.0187)
estimated in [Xu et al., 2014], and t = 0.35 years, the
average length between observations in the San Francisco
tuberculosis dataset [Cattamanchi et al., 2006].

In each case, we computed M2 = 3K logN2 total random
measurements to obtain B for CSGF, and we set the regu-

958

Table 1: Runtimes and error, hematopoiesis model. The third column reports total runtime of the generating function
approach without using sparsity. Total runtimes using CSGF are the sum of the runtime for computing the subset of ODE
solutions (fourth column) and runtime for PGD.

N M

Time (sec),
B̃ ∈ CN×N

Time (sec),
B ∈ CM×M

Time (sec),
PGD

εmax =
|p̂ij,kl − pij,kl|max

εrel =
εmax/|pij,kl|max

128 43 108.6 9.3 0.64 9.41× 10−4 2.25× 10−2

256 65 368.9 22.1 2.1 9.44× 10−4 4.73× 10−2

512 99 922.1 44.8 8.5 3.23× 10−4 3.60× 10−2

1024 147 5740.1 118.1 41.9 2.27× 10−4 5.01× 10−2

2048 217 12754.8 145.0 390.0 1.29× 10−4 5.10× 10−2

4096 322 58797.3 310.7 2920.3 9.43× 10−5 6.13× 10−2

Table 2: Runtimes and error, birth-death-shift model.

N M

Time (sec),
B̃ ∈ CN×N

Time (sec),
B ∈ CM×M

Time (sec),
PGD

εmax =
|p̂ij,kl − pij,kl|max

εrel =
εmax/|pij,kl|max

128 25 39.7 2.3 1.0 5.27× 10−3 2.77× 10−2

256 33 150.2 3.8 7.8 4.86× 10−3 4.71× 10−2

512 45 895.8 7.8 25.3 2.71× 10−3 4.68× 10−2

1024 68 2508.9 18.6 58.2 1.41× 10−3 5.12× 10−2

2048 101 9788.3 26.1 528.3 8.10× 10−4 4.81× 10−2

4096 150 40732.7 57.4 2234.7 4.01× 10−4 5.32× 10−2

larization parameters λhsc =
√

logM , λbds = logM , with
more regularization in the BDS application as lower rates
and a shorter observation interval leads us to expect more
sparsity. While careful case-by-case tuning to choose λ,M
would lead to optimal results, we set them in this simple
manner across all trials to demonstrate a degree of robust-
ness, still yielding promising performance results. In prac-
tice one may apply standard cross-validation procedures to
select λ,M , and because the target solution is a set of tran-
sition probabilities, checking that entries in the recovered
solution Ŝ sum close to 1 offers a simpler available heuris-
tic. Finally, though one may expedite convergence of PGD
by supplying an informed initial guess with positive val-
ues near values X(0) in practice, we initialize PGD with
an uninformative initial value S1 = 0 in all cases.

Accuracy: In both models and for all values of N , each
signal was reconstructed very accurately. Errors are re-
ported in Tables 1 and 2 for the hematopoiesis and BDS
models respectively. Maximum absolute errors for each
CSGF recovery

εmax = max
kl
|{Ŝ}kl−{S}kl | = max

kl
|p̂ij,kl(t)− pij,kl(t)|

are on the order of 10−3 at worst. Because εmax is typically
attained at large probabilities, we include the maximum ab-
solute error relative to the largest transition probability

εrel =
εmax

maxkl {S}kl
,

providing a more conservative measure of accuracy. We
still see that εrel is on the order of 10−2 in all cases. Addi-

tional analysis and discussion of accuracy in terms of rel-
ative error are included in the Supplement, although the
measures here arguably give more insight to the perfor-
mance of our algorithm. Visually, the accuracy of CSGF
is stark: Figure 3 provides a side-by-side comparison of
randomly selected transition probabilities recovered in the
BDS model for N = 29.

Running Times: Tables 1 and 2 show dramatic improve-
ments in runtime using CSGF, reducing the number of
ODE computations logarithmically. For instance, with
N = 4096, we see the time spent on PGF evaluations nec-
essary for CSGF is less than 0.1% of the time required to
compute S in the BDS model, and around 0.5% of compu-
tational cost in the less sparse hematopoiesis application.
Including the time required for solving Equation (10) via
PGD, we see that computing Ŝ using CSGF reduces run-
time by two orders of magnitude, requiring less than 6% of
total computational time spent toward computing S in the
worst case. We remark that ODE solutions are computed
using a C implementation of efficient solvers via package
deSolve, while we employ a naive R implementation of
PGD. We emphasize the logarithmic reduction in required
numerical ODE solutions; an optimized implementation of
PGD reducing R overhead will yield further real-time effi-
ciency gains.

6 DISCUSSION

We have presented a novel adaptation of recent generating
function techniques to compute branching process transi-

959

tion probabilities within the compressed sensing paradigm.
While generating function approaches bypass costly ma-
trix exponentiation and simulation-based techniques by ex-
ploiting mathematical properties in the branching structure,
our contribution now makes these techniques scalable by
additionally harnessing the available sparsity structure. We
show that when sparsity is present in the set of transition
probabilities, computational cost can be reduced up to a
logarithmic factor over existing methods. Note that sparsity
is the only additional assumption necessary to apply our
CSGF method—no prior knowledge about where transition
probabilities have support is necessary. Further, while our
algorithm uses proximal gradient descent to solve the re-
sulting constrained optimization problem, the framework
we propose is very general, and users may choose among
many standard optimization techniques to best suit their ap-
plication.

Many real-world applications of branching process mod-
eling feature such sparsity, and we have seen that CSGF
achieves accurate results with significant efficiency gains
in two such examples with realistic parameter settings from
the scientific literature. Transition probabilities are of-
ten important, interpretable quantities in their own right,
and are necessary within any likelihood-based probabilistic
framework for partially observed CTMCs. Their tractabil-
ity using CSGF opens doors to applying Bayesian and fre-
quentist tools alike to settings in which such methods were
previously infeasible. Finally, we note that other statis-
tically relevant quantities such as expectations of parti-
cle dwell times and restricted moments can be computed
using similar generating function techniques [Minin and
Suchard, 2008], and the CSGF framework applies analo-
gously when sparsity is present.

Acknowledgements We thank Alan Mackey, Hari
Narayanan, and Noah Simon for helpful discussions and
guidance. VNM was supported by NIH grants R01-
AI107034 and U54-GM111274. JX was supported by an
NDSEG fellowship.

References

C Andrieu, A Doucet, and R Holenstein. Particle Markov
chain Monte Carlo methods. Journal of the Royal
Statistical Society: Series B (Statistical Methodology),
72(3):269–342, 2010.

NTJ Bailey. The Elements of Stochastic Processes; with
Applications to the Natural Sciences. New York: Wiley,
1964.

A Beck and M Teboulle. Gradient-based algorithms
with applications to signal recovery. In Palomar DP
and Eldar YC, editors, Convex Optimization in Signal
Processing and Communications. Cambridge University
Press, Cambridge, UK, 2009a.

A Beck and M Teboulle. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems.
SIAM Journal on Imaging Sciences, 2(1):183–202,
2009b.

JC Butcher. The Numerical Analysis of Ordinary
Differential Equations: Runge-Kutta and General Linear
Methods. Wiley-Interscience, 1987.

EJ Candès. Compressive sampling. In Proceedings of
the International Congress of Mathematicians: Madrid,
August 22-30, 2006: invited lectures, pages 1433–1452,
2006.

EJ Candès. The restricted isometry property and its im-
plications for compressed sensing. Comptes Rendus
Mathematique, 346(9):589–592, 2008.

EJ Candès and T Tao. Decoding by linear program-
ming. IEEE Transactions on Information Theory, 51
(12):4203–4215, 2005.

SN Catlin, JL Abkowitz, and P Guttorp. Statistical in-
ference in a two-compartment model for hematopoiesis.
Biometrics, 57(2):546–553, 2001.

A Cattamanchi, PC Hopewell, LC Gonzalez, DH Osmond,
L Masae Kawamura, CL Daley, and RM Jasmer. A
13-year molecular epidemiological analysis of tubercu-
losis in San Francisco. The International Journal of
Tuberculosis and Lung Disease, 10(3):297–304, 2006.

FW Crawford, VN Minin, and MA Suchard. Estimation for
general birth-death processes. Journal of the American
Statistical Association, 109(506):730–747, 2014.

DL Donoho. Compressed sensing. IEEE Transactions on
Information Theory, 52(4):1289–1306, 2006.

CR Doss, Ma Suchard, I Holmes, MM Kato-Maeda, and
VN Minin. Fitting birth–death processes to panel data
with applications to bacterial DNA fingerprinting. The
Annals of Applied Statistics, 7(4):2315–2335, 2013.

A Doucet, S Godsill, and C Andrieu. On sequential Monte
Carlo sampling methods for Bayesian filtering. Statistics
and computing, 10(3):197–208, 2000.

T El-Hay, N Friedman, D Koller, and R Kupferman. Con-
tinuous time Markov networks. In Proceedings of the
Twenty-second Conference on Uncertainty in AI (UAI),
Boston, Massachussetts, July 2006.

Y Fong, P Guttorp, and J Abkowitz. Bayesian infer-
ence and model choice in a hidden stochastic two-
compartment model of hematopoietic stem cell fate de-
cisions. The Annals of Applied Statistics, 3(4):1695–
1709, 12 2009.

D Golinelli, P Guttorp, and JA Abkowitz. Bayesian in-
ference in a hidden stochastic two-compartment model
for feline hematopoiesis. Mathematical Medicine and
Biology, 23(3):153–172, 2006.

960

WK Grassmann. Transient solutions in Markovian queue-
ing systems. Computers & Operations Research, 4(1):
47–53, 1977.

P Guttorp. Stochastic modeling of scientific data. CRC
Press, 1995.

M Hajiaghayi, B Kirkpatrick, L Wang, and A Bouchard-
Côté. Efficient continuous-time Markov chain estima-
tion. In Proceedings of the 31th International Conference
on Machine Learning, ICML 2014, Beijing, China,
21-26 June 2014, pages 638–646, 2014.

K Lange. Calculation of the equilibrium distribution
for a deleterious gene by the finite Fourier transform.
Biometrics, 38(1):79–86, 1982.

VN Minin and MA Suchard. Counting labeled transitions
in continuous-time Markov models of evolution. Journal
of Mathematical Biology, 56(3):391–412, 2008.

Y Nesterov. A method of solving a convex program-
ming problem with convergence rate O(1/k2). Soviet
Mathematics Doklady, 27(2):372–376, 1983.

SH Orkin and LI Zon. Hematopoiesis: An evolving
paradigm for stem cell biology. Cell, 132(4):631–644,
2008.

VA Rao and YW Teh. Fast MCMC sampling for Markov
jump processes and continuous time Bayesian networks.
In Proceedings of the 27th International Conference on
Uncertainty in Artificial Intelligence. 2011.

E Renshaw. Stochastic Population Processes: Analysis,
Approximations, Simulations. Oxford University Press
Oxford, UK, 2011.

NA Rosenberg, AG Tsolaki, and MM Tanaka. Estimat-
ing change rates of genetic markers using serial sam-
ples: applications to the transposon IS6110 in Mycobac-
terium tuberculosis. Theoretical Population Biology, 63
(4):347–363, 2003.

SM Ross. Approximating transition probabilities and
mean occupation times in continuous-time Markov
chains. Probability in the Engineering and Informational
Sciences, 1(03):251–264, 1987.

CE Shannon. A mathematical theory of communica-
tion. ACM SIGMOBILE Mobile Computing and
Communications Review, 5(1):3–55, 2001.

R Tibshirani. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society. Series B
(Methodological), pages 267–288, 1996.

J Xu, P Guttorp, MM Kato-Maeda, and VN Minin.
Likelihood-based inference for discretely observed
birth-death-shift processes, with applications to evo-
lution of mobile genetic elements. ArXiv e-prints,
arXiv:1411.0031, 2014.

961

Extend Transferable Belief Models with Probabilistic Priors

Chunlai Zhou
Computer Science Department

School of Information
Renmin University of China

Beijing, CHINA 100872
czhou@ruc.edu.cn

Yuan Feng
Centre for Quantum Computation and Intelligent Systems

Faculty of Engineering and Information technology
University of Technology, Sydney

Broadway, NSW 2007 AUSTRALIA
Yuan.Feng@uts.edu.au

Abstract

In this paper, we extend Smets’ transferable be-
lief model (TBM) with probabilistic priors. Our
first motivation for the extension is about eviden-
tial reasoning when the underlying prior knowl-
edge base is Bayesian. We extend standard
Dempster models with prior probabilities to rep-
resent beliefs and distinguish between two types
of induced mass functions on an extended Demp-
ster model: one for believing and the other es-
sentially for decision-making. There is a natu-
ral correspondence between these two mass func-
tions. In the extended model, we propose two
conditioning rules for evidential reasoning with
probabilistic knowledge base. Our second moti-
vation is about the partial dissociation of betting
at the pignistic level from believing at the credal
level in TBM. In our extended TBM, we coordi-
nate these two levels by employing the extended
Dempster model to represent beliefs at the credal
level. Pignistic probabilities are derived not from
the induced mass function for believing but from
the one for decision-making in the model and
hence need not rely on the choice of frame of dis-
cernment. Moreover, we show that the above two
proposed conditionings and marginalization (or
coarsening) are consistent with pignistic transfor-
mation in the extended TBM.

1 INTRODUCTION

Reasoning about uncertainty is a fundamental issue for
Artificial Intelligence [HALPERN, 2005]. Numerous ap-
proaches have been proposed, including the Dempster-
Shafer theory of belief functions [SHAFER, 1976] (also
called the theory of evidence or simply DS theory). Ev-
er since the pioneering works by Dempster and Shafer, the
theory of belief functions has become a powerful formal-
ism in Artificial Intelligence for knowledge representation

and decision-making.

The transferable belief model (TBM) is a model de-
veloped to justify the use of belief functions (includ-
ing Dempster’s rule of combination) to model someone’s
beliefs [SMETS AND KENNES, 1994]. A TBM M =
〈(Ω,m), Betp〉 is a two-level mental model which distin-
guishes between two aspects of beliefs on a frame of dis-
cernment Ω, beliefs for weighted opinions, and beliefs for
decision making. The two levels are: the credal level,
where beliefs are entertained and represented by a mass
function m, and the pignistic level, where beliefs are used
to make decisions and quantified as a probability distribu-
tion Betpm, which is derived from mass function m by
the so-called pignistic transformation (usually denoted by
Betp). The justification for the use of pignistic probabil-
ities is usually linked to “rational” behavior exhibited by
an ideal agent involved in some betting or decision con-
texts. But those probabilities do not represent the agent’s
beliefs; they are only the functions needed to derive the
best decision. Let’s consider a motivating example in TBM
[SMETS AND KENNES, 1994].

Example 1.1 (Betting under total ignorance) Consider a
guard in a huge power plant. On the emergency panel,
alarmsA1 andA2 are both on. The guard never heard about
these two alarms. He takes the instruction book and discov-
ers that A1 is on iff circuit C is in state C1 or C2 and that
alarm A2 is on iff circuit D is in state D1, D2 or D3. He
never heard about these C and D circuits. There, his be-
liefs on the C circuit will be characterized by a “vacuous”
belief function belΩC on space ΩC = {C1, C2}, i.e., a be-
lief function whose mass function satisfies mΩC (ΩC) = 1
(this particular belief function is the one that represents the
state of total ignorance). By the application of pignistic
transformation, his pignistic probabilities will be given by

BetpΩC (C1) = BetpΩC (C2) = 1
2 .

Similarly, for the D circuit, the guard’s belief belΩD on the
space ΩD = {D1, D2, D3} will be vacuous, i.e., its corre-
sponding mass function mΩD (ΩD) = 1, and the pignistic
probabilities are

962

BetpΩD (D1) = BetpΩD (D2) = BetpΩD (D3) = 1
3 .

Now by reading the next page on the manual, the guard
discovers that circuits C and D are so made that whenev-
er C is in the state C1, circuit D is in state D1 and vice
versa. So he learns that C1 and D1 are equivalent (given
what the guard knows) and that C2 and (D2 or D3) are e-
quivalent. In the TBM, this information does not modify
his belief about which circuit is broken. Within the trans-
ferable belief model, the only requirement is that equiva-
lent propositions should receive equal beliefs (it is satis-
fied as belΩC (C1) = belΩD (D1) = 0). Pignistic prob-
abilities depend not only on these beliefs but also on the
structure of the betting frame. In contrast, according to
Bayesian approach, equivalent propositions should receive
identical beliefs and therefore identical probabilities. How-
ever, BetpΩC (C1) = 1

2 and BetpΩD (D1) = 1
3 although

belΩC (C1) = belΩD (D1) = 0.

The fact that the TBM can cope easily with such states of
ignorance results from the partial dissociation between the
credal and the pignistic levels. But this kind of separa-
tion of betting from believing makes the TBM vulnerable
to Dutch books in decision-making [SNOW, 1998].

In this paper, we extend Smets’ TBM with a probabilistic
prior to coordinate reasoning at the credal and pignistic lev-
els. Our first motivation is about evidential reasoning when
the underlying prior knowledge base is Bayesian. In or-
der to incorporate the influence of the Bayesian knowledge
base, we extend standard Dempster models, which are used
for representing belief functions, with probabilistic priors.
For an extended Dempster model M with a prior probabil-
ity pr, there are two induced mass functions. The first one
mD is derived in the standard way from the Dempster part
D of M without the prior probability and hence complies
with the well-known DS theory, especially with Dempster’s
rule of combination. The second mM is induced by com-
bining mD with the prior probability pr. Conversely, mD

can be obtained from mM by removing the influence of
pr. So, there is a natural correspondence between mD and
mM . However, these two mass functions are essentially d-
ifferent: mD measures the belief update and mM absolute
belief or weighted opinion. We propose a new combina-
tion rule for the mass functions mM ’s which incorporate
prior probabilities. The new combination rule is shown to
be parallel to Dempster’s rule for the mass functions mD’s
without the influence of prior probabilities. According to
the new combination rule, we provide two prediction-style
conditioning rules: one for certain conditioning knowledge
and the other for uncertain knowledge.

Our second motivation is to coordinate reasoning at the
credal and pignistic levels. We extend Smets’ TBM by em-
ploying an extended Dempter modelM to represent beliefs
at the credal level and provide a corresponding generalized
pignistic transformation Betp for this extended TBM. We

prove that the above two new conditioning rules in M are
consistent with this pignistic transformation. In our extend-
ed TBM, since beliefs are represented by the induced mass
function mD of the Dempster part of M , they are insensi-
tive to the choice of frame. Pignistic probabilities are de-
rived not from the induced mass functionmD of the Demp-
ster part of M but from the induced mass function mM ,
which have incorporated the prior probability pr. We show
by transforming the prior probability that pignistic proba-
bilities obtained in this way need not rely on the choice of
frame of discernment.

2 BASIC DEFINITIONS AND NOTIONS

Let Ω be a frame of discernment and A = 2Ω be the
Boolean algebra of events. A mass function (or mass
assignment) is a mapping m : A → [0, 1] satisfying∑
A∈Am(A) = 1. A mass function m is called normal

if m(∅) = 0. Without further notice, all mass functions in
this paper are assumed to be normal. A set is called focal
if m(A) > 0. A mass function m is called categorical if
it has only one focal set. A belief function is a function
bel : A → [0, 1] satisfying the following conditions:

1. bel(∅) = 0, bel(Ω) = 1; and

2. bel(
⋃n
i=1Ai) ≥

∑
∅6=I⊆{1,··· ,n}(−1)|I|+1bel(∩i∈IAi)

where Ai ∈ A for all i ∈ {1, · · · , n}.

A mapping f : A → [0, 1] is a belief function if and only if
its Möbius transform is a mass function [SHAFER, 1976].
In other words, if m : A → [0, 1] is a mass function,
then it determines a belief function bel : A → [0, 1]
as follows: bel(A) =

∑
B⊆Am(B) for all A ∈ A.

Moreover, given a belief function bel, we can obtain it-
s corresponding mass function m as follows: m(A) =∑
B⊆A(−1)|A\B|bel(B) for all A ∈ A. Intuitively, for a

subset event A, m(A) measures the belief that an agen-
t commits exactly to A, not the total belief bel(A) that
an agent commits to A. The corresponding plausibility
function pl : 2Ω → [0, 1] is dual to bel in the sense that
pl(A) = 1 − bel(A) for all A ⊆ Ω. If m1 and m2 are two
mass functions on Ω induced by two independent evidential
sources, the combined mass function is calculated accord-
ing to Dempster’s rule of combination: for any C ⊆ Ω,

(m1 ⊕m2)(C) =

∑
A∩B=C m1(A)m2(B)∑
A∩B 6=∅m1(A)m2(B)

(1)

When an event E is observed, then the conditional mass
function of m is obtained according to Dempster condi-
tioning: for any C ⊆ Ω,

m(C | E) =

∑
B∩E=C m(B)

pl(E)
(2)

963

A transferable belief model M = 〈(Ω,m), Betp〉
[SMETS AND KENNES, 1994] is a two-level mental mod-
el: the credal level where beliefs are represented by a mass
function m, and the pignistic level where decisions are
made by maximizing expected utility. Hence we must build
a probability distribution to compute these expectations.
This probability distribution is based on the agent’s belief-
s, but should not be understood as representing the agent’s
beliefs. It is just a probability distribution derived from the
mass function through pignistic transformation Betp. The
pignistic transformation for the above mass function m is
given by

Betpm({ω}) :=
∑
ω∈B⊆Ω

1
|B|m(B) for any ω ∈ Ω.

Note that Betpm is a probability distribution on Ω and is
called a pignistic probability distribution. When the con-
text is clear, we usually use m to denote the belief model
M .

In order to show the sensitivity of pignistic transformation
to the choice of frames of discernment, we need to set up
a setting in terms of refinements and coarsenings of frames
of discernment. The idea that one frame Ω of discernmen-
t is obtained from another frame Θ by splitting some or
all of the elements of Θ may be represented mathemati-
cally by specifying, for each θ ∈ Θ, the subset ω({θ}) of
Ω consisting of those possibilities into which θ has been
split. Such a mapping ω is called a refining. Whenever
ω : 2Θ → 2Ω is a refining, we call Ω a refinement of Θ
and Θ a coarsening of Ω. In this paper, we are particular-
ly interested in the case when Θ is the set of equivalence
classes with respect to some partition Π of Ω. So the map-
ping ω({Π(w)}) = Π(w) for each w ∈ Ω is a refinement
and Θ is a coarsening of Ω where Π(w) is the equivalence
class of w. We denote this special coarsening Θ of Ω as
Ω/Π. On the other hand, Ω/Π may be regarded as a subal-
gebra B of the powerset of Ω with the set of atoms forming
the partition Π of Ω. In the following sections, we won’t
distinguish between Ω/Π and 〈Ω,B〉. For each A ⊆ Ω, we
define B(A) :=

⋂{B ∈ B : A ⊆ B}. In other words,
B(A) is the least element of B that contains A as a sub-
set and hence is called the upper approximation of A in
B. For example, Π = {{w1}, {w2, w3}, {w4, w5, w6}}
is a partition of Ω = {w1, w2, w3, w4, w5, w6}. Then
the associated subalgebra B consists of the sets

⋃
B⊆ΠB

with the atoms {w1}, {w2, w3}, and {w4, w5, w6} in B. If
A = {w1, w3, w5}, then B(A) = Ω.

Let 〈Ω,B〉 be a coarsening of Ω where B is a subalge-
bra of the powerset 2Ω with its atoms forming a partition
of Ω. Each element B of B is a disjoint union of some
atoms in B. Suppose that bel : 2Ω → [0, 1] is a be-
lief function on Ω with m as its corresponding mass func-
tion. Then the derived mass function mB on the coarsen-
ing 〈Ω,B〉 can be obtained through the formula: for any
B ∈ B, mB(B) =

∑
B(A)=B,A⊆Ωm(A). Let belB denote

the corresponding belief function. It is easy to check that,
for any B ∈ B, belB(B) = bel(B). Intuitively, belB is
the derived belief function on the coarsening frame of dis-
cernment with less distinctions. The beliefs in the same
propositions in these two frames with different distinctions
should be equal. In this sense, believing in terms of belief
functions is insensitive to the choice of frame of discern-
ment.

3 EXTENDED DEMPSTER MODELS

In order to motivate our work of extending Smets’ transfer-
able belief models with probabilistic priors, we first repre-
sent belief functions through Dempster models.

3.1 EXTENDED DEMPSTER MODELS

Definition 3.1 A Dempster model is a tuple
〈(U,Pr),Γ,Ω〉 where (U,Pr) is a probability space
and Γ is a multivalued mapping from U to Ω, i.e., a
mapping from U to 2Ω, the powerset of Ω. �

The multivalued mapping Γ is essentially a random subset
on Ω, and it induces a mass function m on Ω: m(A) :=
Pr(Γ−1(A)) for any A ⊆ Ω. We have the correspond-
ing belief function Bel(A) =

∑
B⊆A Pr(Γ

−1(B)). Con-
versely, any mass function on Ω can be represented as the
induced mass function of some Dempster model. Before
we extend Dempster models with probabilistic priors on Ω,
we use the well-known three prisoner paradox to show the
necessity of the probabilistic priors.

Example 3.2 (The Three Prisoners Paradox
[HALPERN, 2005]) Of three prisoners a, b and c, on-
ly one of them is to be executed but a does not know which
one. He therefore says to the jailer, “Since either b and c
is certainly going to be declared innocent, you will give
me no information about my chances if you give me the
name of one man, either b or c, who is going to be freed.”
Accepting this argument, the jailer truthfully replies,“b will
be freed.” Thereupon a feels sad because of the Bayesian
conditioning on U := {a, b, c}: before the jailer replied,
his own chances of being executed was one-third, but
afterwards there are only two people, himself and c, who
could be the one being executed, and so his chances of
execution increases and is one-half.

Is a justified in believing that his chances of being exe-
cuted have increased? Now we formulate this problem in
the framework of a Dempter model. Consider the set of
all possible outcomes: Ω := {(a, b), (a, c), (b, c), (c, b)}
where, for example, (a, b) means that a is to be exe-
cuted and the jailer says that b will be freed. Suppose
that at first a assumes that the initial decision as to who
will be executed is made at random but assumes noth-
ing about how the jailer will act except that he will tel-

964

l the truth. Let the random choice of who will be ex-
ecuted be represented by the probability space (U,Pr)
where Pr is the uniform distribution on U . A multival-
ued mapping Γ : U → 2Ω for delineating the possible
outcomes when a, b or c is to be executed is given by:
Γ(a) = {(a, b), (a, c)},Γ(b) = {(b, c)},Γ(c) = {(c, b)}.
So the induced mass function m at the credal level is given
by: m({(a, b), (a, c)}) = m({(b, c)}) = m({(c, b)}) = 1

3 .
Let Ea denote the event that a will be executed and Jb the
event that the jailer says that b will be freed. Then Ea =
{(a, b), (a, c)} and Jb = {(a, b), (c, b)}. According to
Dempster’s rule of conditionalization, we get thatBel(Ea |
Jb) = Pl(Ea | Jb) = 1

2 . So Dempster’s conditioning
provides the same answer as that by the above a’s condi-
tioning on the “naive” space U according to Bayesian rule
[GRÜNWALD AND HALPERN, 2003]. By applying Smets’
pignistic transformation, we obtain its probability distribu-
tion at the pignistic level: Betpm(a, b) = Betpm(a, c) =
1/6 and Betpm(b, c) = Betpm(c, b) = 1/3.

More generally, we may assume that the jailer will tell the
truth and a’s knowledge about the jailer’s preference over
his possible choices is formulated by a probabilistic prior
on Ω, which is independent of the assumption that the ex-
ecuted prisoner is chosen at random. Now we extend stan-
dard Dempster models by incorporating this kind of proba-
bilities and express the induced beliefs at the credal level.

Definition 3.3 An extended Dempster-model M =
〈(U,Pr),Γ, (Ω, pr)〉 is a Dempster model 〈(U,Pr),Γ,Ω〉
plus a prior probability pr on Ω where pr is independent of
Γ with respect to Pr. �

Now we explain this independence through a representa-
tion result of extended Dempster models.

Lemma 3.4 Every extended Dempster model M =
〈(U,Pr),Γ, (Ω, pr)〉 can be represented as a standard
Dempster model 〈(U ′, P r′),Γ′,Ω〉 with an additional
mapping γ′ from U ′ to Ω for some probability space
(U ′, P r′) and some multivalued mapping Γ′ from U ′ to Ω.

Proof. For a given extended Dempster model M =
〈(U,Pr),Γ, (Ω, pr)〉, we define a new probability space
(U ′, P r′), which is essentially the Cartesian product of
(U,Pr) and (Ω, pr), as follows:

• U ′ = U × Ω;

• Pr′(x, y) = Pr(x)pr(y) for any (x, y) ∈ U ′.

Further we define a multivalued mapping Γ′ : U ′ → 2Ω

and a mapping γ′ : U ′ → Ω as follows:

• Γ′(x, y) = Γ(x),

• γ′(x, y) = y for any (x, y) ∈ U ′.

It is easy to check that Pr′((Γ′)−1(A)) = Pr(Γ−1(A)),
and Pr′((γ′)−1(A)) = pr(A) for any A ⊆ Ω. QED

So, in the following sections of this paper, we won’t dis-
tinguish these two forms of extended Dempster model-
s and will sometimes write an extended Dempster model
as M = 〈(U,Pr),Γ, γ,Ω〉 where 〈(U,Pr),Γ,Ω〉 is a s-
tandard Dempster model and γ is a mapping from U to
Ω. In M , the prior probability pr is obtained by pr(A) =
Pr({u ∈ Ω : γ(u) ∈ A}). In this paper, Γ = A is short-
hand for the event {u ∈ U : Γ(u) = A}, γ ∈ A for
{u ∈ U : γ(u) ∈ A} and γ ∈ Γ denotes {u ∈ U : γ(u) ∈
Γ(u)}. In M , the independence of the prior probability pr
of the multivalued mapping Γ with respect to Pr means the
independence of γ and Γ: for any subsets A and B of Ω,

Pr(Γ = A ∧ γ ∈ B) = Pr(Γ = A)Pr(γ ∈ B).

Just as in a Dempster model, we associate each extended
Dempster model M = 〈(U,Pr),Γ, γ,Ω〉 with a mapping
mM : 2Ω → [0, 1] which incorporates the mapping γ as
follows:

mM (A) := Pr(Γ = A | γ ∈ Γ) (3)

It is easy to see that, since Γ and γ are independent with
respect to Pr, Pr(γ ∈ Γ) =

∑
A⊆Ω Pr(γ ∈ A ∧ Γ =

A) =
∑
A⊆Ω Pr(γ ∈ A)Pr(Γ = A). And Pr(γ ∈ Γ) is

used to measure the degree of consistency of the evidence
represented by Γ with the prior represented by γ. It follows
that

∑

A⊆Ω

mM (A) =
∑

A⊆Ω

Pr(Γ = A | γ ∈ Γ)

=
∑

A⊆Ω

Pr(Γ = A ∧ γ ∈ Γ)

Pr(γ ∈ Γ)

=
∑

A⊆Ω

Pr(Γ = A ∧ γ ∈ A)

Pr(γ ∈ Γ)

=
∑

A⊆Ω

Pr(Γ = A)Pr(γ ∈ A)

Pr(γ ∈ Γ)

= 1

So such a defined mapping mM is actually a mass function
on Ω and is called the induced mass function of M .

Next we show that extended Dempster models are as ex-
pressive as standard Dempster models in the sense that any
mass function m on Ω can be represented as the induced
mass function mM of some extended Dempster model M .
We prove a lemma which implies this expressiveness result.

Lemma 3.5 For any mass function m and probability dis-
tribution pr on Ω, there is an extended Dempster model
M = 〈(U,Pr),Γ, γ,Ω〉 such that

965

1. mM (A) = m(A) for each A ⊆ Ω where mM is the
induced mass function of M ;

2. pr(A) = Pr(γ−1(A)) for any A ⊆ Ω.

Proof. Given a mass function m and a probability function
pr on Ω, we define a mappingmD : 2Ω → [0, 1] as follows:
for any A ⊆ Ω,

mD(A) =

m(A)
pr(A)∑

A⊆Ω
m(A)
pr(A)

(4)

Since
∑
A⊆ΩmD(A) = 1, mD is a mass function

on Ω. It follows that there is a standard Demp-
ster model 〈(UD, P rD),ΓD,Ω〉 such that mD(A) =
PrD(Γ−1

D (A)) for any A ⊆ Ω. From the proof of
Lemma 3.4, we know that the extended Dempster model
〈(UD, P rD),ΓD, (Ω, pr)〉with the prior probability pr can
be represented as a Dempster model 〈(U,Pr),Γ,Ω〉 with γ
as a mapping from U to Ω. For this equivalent representa-
tion M := 〈(U,Pr),Γ, γ,Ω〉 of the extended model, we
have that

• Pr(Γ = A) = Pr(Γ−1(A)) = PrD(Γ−1
D (A)) =

mD(A);

• Pr(γ ∈ A) = Pr(γ−1(A)) = pr(A).

It follows that

Pr(γ ∈ Γ) =
∑

A⊆Ω

Pr(Γ = A)Pr(γ ∈ A)

=
∑

A⊆Ω

mD(A)pr(A)

=
∑

A⊆Ω

m(A)
pr(A)∑

A⊆Ω
m(A)
pr(A)

pr(A)

=

∑
A⊆Ωm(A)

∑
A⊆Ω

m(A)
pr(A)

=
1

∑
A⊆Ω

m(A)
pr(A)

So we have that the induced mass function mM :

mM (A) = Pr(Γ = A | γ ∈ Γ)

=
Pr(γ ∈ A)Pr(Γ = A)

Pr(γ ∈ Γ)

= m(A).

QED

From the above proof, we know that, for any extend-
ed Dempster model M = 〈(U,Pr),Γ, (Ω, pr)〉, there
are two induced mass functions on Ω: the induced mass

function mD(A)(= Pr(Γ = A)) in the part D :=
〈(U,Pr),Γ,Ω〉, which is actually a standard Dempster
model, and the induced mass function mM (A)(= Pr(Γ =
A | γ ∈ Γ)) of M . mD measures the belief update
and is called basic certainty value, while mM measures
absolute belief. This distinction is crucial to our follow-
ing extension of Smets’ transferable belief models with
probabilistic priors. In our extended belief models, we
use mass functions mD for believing and mass function-
s mM for decision-making. Mass functions for believing
are based on the theory of evidence while mass function-
s for decision-making are essentially Bayesian and hence
consistent with pignistic transformation. Basic certainty
values are used in the probabilistic interpretation of CF
in MYCIN [HECKERMAN, 1985]. For a given extended
Dempster modelM = 〈(U,Pr),Γ, (Ω, pr)〉, there is a one-
to-one correspondence (see Eqs.(3) and (4)) between the
induced mass function mM of M and the induced mD in
the standard-Dempster-model part D = 〈(U,Pr),Γ,Ω〉.
Assume that pr is given. The induced mass function mM

can be expressed in terms of mD as follows: mM (A) =
pr(A)mD(A)∑
A⊆Ω pr(A)mD(A) . We denote this expression as mM =

mD ◦ pr. Moreover, mD can be expressed in terms of
mM : mD(A) = mM (A)/pr(A)∑

A⊆Ω mM (A)/pr(A) , which is denot-

ed as mD = mM/pr. From the proof of Lemma 3.5,
we know that the two operations ◦ and / are reverse to
each other in the sense that (mD ◦ pr)/pr = mD and
(mM/pr) ◦ pr = mM .

Let M1 = 〈(U1, P r1),Γ1, (Ω, pr)〉 and M2 =
〈(U2, P r2),Γ2, (Ω, pr)〉 be two extended Dempster mod-
els representing two independent bodies of evidence on
the same probability space (Ω, pr). Let mD1

and mD2
be

the two induced mass functions for belief updates in the
standard-Dempster-model parts D1 = 〈(U1, P r1),Γ1,Ω〉
and D2 = 〈(U2, P r2),Γ2,Ω〉, respectively. As in Demp-
ster models, mD1

and mD2
are combined according to the

well-known Dempster’s rule: for any C ⊆ Ω,

(mD1 ⊕D mD2)(C) =

∑
A1∩A2=C mD1

(A1)mD2
(A2)

KD

(5)

where KD =
∑
A1∩A2 6=∅mD1

(A1) ·mD2
(A2) is the nor-

malization factor. So the combination (mD1 ⊕D mD2) al-
so measures belief update for the same probability space
(Ω, pr). Let mM1

and mM2
denote the two induced mass

functions for absolute belief on the extended Dempster
models M1 and M2, respectively. Now we provide a new
combination rule for the extended Dempster models as fol-
lows: for any C ⊆ Ω,

(mM1 ⊕M mM2)(C)

=

∑
A1∩A2=C

pr(A1∩A2)
pr(A1)Pr(A2)mM1

(A1)mM2
(A2)

KM
(6)

966

where

KM :=
∑
A1∩A2 6=∅

pr(A1∩A2)
pr(A1)Pr(A2)mM1

(A1)mM2
(A2)

is the normalization factor. The following proposition says
that the new combination ⊕M of mass functions for ab-
solute beliefs is consistent with the Dempster combination
⊕D of their corresponding mass functions for belief up-
dates.

Proposition 3.6 The combination mM1 ⊕M mM2 of mM1

and mM2 for absolute belief satisfies the following proper-
ty:

mM1 ⊕M mM2 = (mD1 ⊕D mD2) ◦ pr. (7)

Proof. For any A ⊆ Ω,
∑
A⊆Ω[pr(A)

∑
A1∩A2=AmD1

(A1)mD2
(A2)]

=
∑
A⊆Ω[pr(A)

∑
A1∩A2=A

mM1
(A1)

pr(A1)

K1

mM2
(A2)

pr(A2)

K2
]

=
∑
A⊆Ω[

∑
A1∩A2=A

pr(A)
pr(A1)pr(A2)

mM1
(A1)

K1

mM2
(A2)

K2
]

where K1 =
∑
A⊆Ω

mM1
(A)

pr(A) and K2 =
∑
A⊆Ω

mM2
(A)

pr(A) .
The first equality comes from Eq.(3) and the second from
Eq.(4). So we have

((mD1
⊕D mD2

) ◦ pr)(A)

=
(mD1 ⊕D mD2)(A)pr(A)∑
A⊆Ω(mD1

⊕D mD2
)(A)pr(A)

=
pr(A)

∑
A1∩A2=AmD1(A1)mD2(A2)∑

A⊆Ω[pr(A)
∑
A1∩A2=AmD1

(A1)mD2
(A2)]

=

∑
A1∩A2=A

pr(A)
pr(A1)pr(A2)

mM1
(A1)

K1

mM2
(A2)

K2∑
A⊆Ω[

∑
A1∩A2=A

pr(A)
pr(A1)pr(A2)

mM1
(A1)

K1

mM2
(A2)

K2
]

=

∑
A1∩A2=A

pr(A)
pr(A1)pr(A2)mM1(A1)mM2(A2)

∑
A⊆Ω[

∑
A1∩A2=A

pr(A)
pr(A1)pr(A2)mM1

(A1)mM2
(A2)]

=(mM1
⊕M mM2

)(A)

QED

3.2 TWO CONDITIONING RULES

There are two types of conditioning in Bayesian proba-
bility theory [DUBOIS AND DENOEUX, 2012]. The first
one is known as revision. Given a probability function
Pr (which usually is a subjective probability), one learn-
s a hard evidence in terms of a sure event C. The prob-
lem is to determine the new subjective probability mea-
sure Pr′, such that Pr′(C) = 1, according to some min-
imal change principle. The other one is called predic-
tion. When dealing with prediction, we have at our dis-
posal a model of uncertainty in the form of a probability

measure Pr issued from a representative set of statistical
data. Moreover, given the knowledge C on the curren-
t state of the world, we combine this knowledge with the
belief model Pr and predict some property A of the cur-
rent world with its associated degree of belief Pr(A|C).
For belief functions, however, these two types of condi-
tioning are essentially different and the mainstream liter-
ature is a revision theory of handling singular uncertain
evidence [SHAFER, 1976], not so much an extension of
Bayesian statistical prediction, although Dempster’s pio-
neering works on upper and lower probabilities are moti-
vated by statistical reasoning. The well-known Dempster’s
rule of conditioning, which is a special case of Dempster’s
rule of combination, can be viewed as a revision process.
In general, prediction cannot be achieved using Demp-
ster conditioning [DUBOIS AND DENOEUX, 2012]. Fa-
gin and Halpern [FAGIN AND HALPERN, 1991] and Jaf-
fray [JAFFRAY, 1992] provided two prediction-style con-
ditioning rules which generalize Bayesian prediction by
interpreting belief functions as inner measures and lower
probabilities, respectively.

In this paper, we provide a new prediction-style condi-
tioning rule which is consistent with the revision style
of conditioning performed according to Dempster’s rule
of conditioning. For a given extended Dempster model
M = 〈(U,Pr),Γ, (Ω, pr)〉, the prediction conditioning
is carried out for the induced mass function mM while
the revision rule is for the induced mass function mD of
the part D = 〈(U,Pr),Γ,Ω〉 without the prior probabili-
ty pr. These two conditioning are consistent in the sense
of Proposition 3.6 when the certain knowledge C is rep-
resented by a categorical mass function with C as its on-
ly focal set. Our following rule for prediction-style con-
ditioning provides a formula of how to compute condi-
tional belief mM (·|C) on the knowledge C. Generally,
for each E ⊆ Ω, we transfer a proportion rE · mM (E),
where 0 ≤ rE ≤ 1, to E ∩ C and (1 − rE) · mM (E)
to E ∩ C [DUBOIS AND DENOEUX, 2012]. In particular,
whenE∩C = ∅, we set rE = 0, which contributes nothing
toE∩C; whenE ⊆ C, we set rE = 1 and leave the whole
mM (E) to E. According to this idea, we obtain a general
formula for conditioning:

m(A|C) :=
∑
E∩C=A rE ·mM (E)∑
E∩C 6=∅ rE ·mM (E) .

It is easy to check that

• m(A|C) is exactly the Dempster rule of conditioning
in the case when rE = 1 iff E ∩ C 6= ∅;

• m(A|C) is exactly the geometric rule of conditioning
in the case when rE = 0 iff E 6⊆ C.

In this paper, we define a new rule for prediction-style con-
ditioning between the above two by setting rE = pr(E∩C)

pr(E) :

967

mM (A|C) =
∑
E∩C=A

pr(E∩C)
pr(E)

·mM (E)

K

where K =
∑
E∩C 6=∅

pr(E∩C)
pr(E) · mM (E) is a normaliza-

tion factor. It is easy to see that the conditioning mM (·|C)
is a special case of the new combination rule for absolute
beliefs (Eq.(6)) when the knowledge C is represented by a
categorical mass function with C as its only focal set.

Example 3.7 (Continue with Example 3.2) Assume that
the jailer’s preference over possible choices according
to a’s knowledge is represented by a uniform distribu-
tion pr on Ω. We obtain the induced mass function
mM : mM ({(a, b), (a, c)}) = 1/2, mM (b, c) = 1/4,
mM (c, b) = 1/4 and hence the corresponding beliefs
BelM (Ea|Jb) = 1/2 = PlM (Ea|Jb).

By using our definition of conditioning rule mM (·|C) on
the certain knowledge C, we define its corresponding J-
effrey’s rule when the prior knowledge is uncertain and is
represented by a probability function pre on a coarsening
of Ω: (Ω,B) where B is a subalgebra of the powerset 2Ω

with its atoms forming a partition of Ω. Let At(B) denote
the set of atoms of B. A mass function m′M on (Ω, 2Ω)
is said to be obtained from mM by belief kinematics on
(Ω,B) if, for any B ∈ At(B),

mM (A|B) = m′M (A|B) for all A ⊆ Ω. (8)

m′M is called the mass function proposed by Jeffrey’s rule
if it is obtained as follows: for any A ⊆ Ω,

m′M (A) =
∑

B∈At(B)

mM (A|B)pre(B), (9)

Intuitively, the above principle of belief kinematics on
(Ω,B) says that, even though mM and m′M may disagree
on propositions on (Ω,B), they agree on their relevance to
every proposition A ⊆ Ω.

4 EXTENDED TRANSFERABLE BELIEF
MODELS WITH PROBABILISTIC
PRIORS

Definition 4.1 LetmM be the induced mass function of an
extended Dempster model 〈(U,Pr),Γ, (Ω, pr)〉. Its associ-
ated pignistic probability functionBetpmM on Ω is defined
as follows: for any A ⊆ Ω,

BetpmM (A) =
∑

E⊆Ω

mM (E)
pr(E ∩A)

pr(E)
(10)

The transformation betweenmM andBetpmM is called the
generalized pignistic transformation. When the context is
clear, we simply call it pignistic transformation. �

Since mM (A) = mD(A)pr(A)∑
E⊆Ω mD(E)pr(E) , the pignistic

probability function can be expressed in terms of the
mass function mD for belief updates: BetpmM (A) =∑

E⊆Ω mD(E)pr(E∩A)∑
E⊆Ω mD(E)pr(E) . Note that Smets’ pignistic transfor-

mation is not a special case of the above defined general-
ized pignistic transformation when the prior probability pr
is the uniform distribution on Ω.

Example 4.2 (Continue with Example 3.7) We may com-
plete the above partial model 〈Ω,m〉 and obtain a prob-
abilistic model according to the uniform distribution pr.
When a is to be executed, the “chances” of the jailer’s say-
ing b or c are equal. So a will distribute the mass m(Ea)
equally between (a, b) and (a, c). Then we have m(b, c) =
m(c, b) = 1/3 and m(a, b) = m(a, c) = 1/6, which is ex-
actly the probability function according to Smets’ pignistic
transformation. Also we obtain the corresponding belief-
s Bel(Ea|Jb) = 1/3 = Pl(Ea|Jb), which is the same
as expected according to Bayesian reasoning. However,
this distribution is not the same as the one obtained ac-
cording to the above generalized pignistic transformation
in Eq.(10). Instead, BetpmM (a, b) = BetpmM (a, c) =
BetpmM (c, b) = BetpmM (b, c) = 1/4.

Assume that m1, · · · ,ml are induced mass functions on
(Ω, pr) and p1, · · · , pl are non-negative numbers such that∑l
i=1 pi = 1. It is interesting to note that pignistic trans-

formation Betp satisfies the following linearity property:

Betp(
l∑

i=1

pimi) =
l∑

i=1

piBetp(mi). (11)

This property is both the major requirement that led
Smets to the solution for the pignistic transformation
[SMETS, 2005] and the crucial step to show the commu-
tativity of the diagrams in the following Theorem 4.5.
In addition to the linearity property, Smets proposed
other requirements: credal-pignistic link, projectivity,
continuity, efficiency, anonymity and impossible even-
t [SMETS, 2005]. These requirements lead to the u-
nique solution of Smets’ pignistic transformation. One can
check that our generalized pignistic transformation meet-
s all these requirements except the anonymity one. The
anonymity requirement rephrases a general form of insuf-
ficient reason principle and hence is equivalent to the con-
straint that the prior probability in the extended Dempster
model is uniform.

Definition 4.3 An extended transferable belief model
(ETBM) M = 〈M,Betp〉 is a two level mental model: the
credal level where beliefs are represented by an extended
Dempster model M = 〈(U,Pr),Γ, (Ω, pr)〉, and the pig-
nistic level where the pignistic probability function is ob-
tained from the induced mass function mM of M by the
generalized pignistic transformation Betp . �

968

Smets’ transferable belief model is a special case of the
above defined extended transferable belief model when the
prior probability is uniform.

Theorem 4.4 Let Condp and Cond denote the above de-
fined prediction style conditioning operator for mass func-
tions and the standard one for Bayesian probability func-
tions, respectively. We have that the following diagram
commutes:

(mM , C)

Betp

��

Condp // mM (·|C)

Betp

��
(Pr,C)

Cond // Pr(·|C)

Theorem 4.5 LetmM , pre andm′M be as in Eq.(9). Prob-
ability measures Pr and Pr′ denote the pignistic probabil-
ity functions of mM and m′M , respectively. Then the fol-
lowing diagram commutes:

(mM , pre)

Betp

��

J // m′M

Betp

��
(Pr, pre)

J // Pr′

where the first J is the Jeffrey conditioning for mass func-
tions as defined in Eq.(9) and the second J denotes the s-
tandard Jeffrey conditioning in Bayesian probability the-
ory. In other words, our Jeffrey’s rule is nothing but the
linearity property in Eq.(11).

The above two theorems tell us that in extended transfer-
able belief models the two new conditioning rules are con-
sistent with pignistic transformation; in other words, the
following two strategies are equivalent: we can revise the
pignistic probabilities which are transformed from the prior
beliefs with Bayes rule applied to the (certain or uncertain)
knowledge, or revise the prior beliefs at the credal level by
the above two conditioning rules and recompute the pignis-
tic transformation.

However, from Example 1.1, we know that marginalization
or coarsening is inconsistent with pignistic transformation.
That is to say, pignistic transformation is sensitive to the
choice of frame of discernment, which causes the partial
dissociation between the credal and pignistic levels. In the
remainder of this section, we show that, in an extended TB-
M, these two levels can be coordinated by transforming its
prior probability function.

Let M = 〈(U,Pr),Γ, (Ω, pr)〉 be a given extended Demp-
ster model. Let mM and mD denote the induced mass
functions for absolute beliefs and belief updates, respec-
tively. Let (Ω,B) be a coarsening of Ω where B is a
subalgebra of the powerset of Ω with its atoms C :=

{B1, · · · , Bn} forming a partition of Ω. So each elemen-
t of B is a disjoint union of some atoms from the basis
C. Correspondingly, the coarsening ΓC of the multival-
ued mapping Γ must be defined in the following way: for
any u ∈ U , ΓC(u) = B(Γ(u)) where B denotes the op-
eration of taking upper approximation in the subalgebra
B. The natural associated prior probability function prC0
in the coarsening frame is given by prC0 (B) := pr(B)
for all B ∈ B. Consider the coarsened extended Demp-
ster model MC

0 = 〈(U,Pr),ΓC , ((Ω,B), prC0)〉. It is easy
to check that the associated belief function for belief up-
date remains unchanged: for any B ∈ B, (BelD)B(B) =
BelD(B) where BelD and (BelD)B are the belief func-
tions corresponding to the mass functions mD and (mD)B,
respectively. But the pignsitic probabilities may change:
Betpm

MC0

(B) 6= BetpmM (B) for some B ∈ B.

In order to coordinate pignistic probabilities with coars-
ening, we need to transform the prior probability func-
tion prC0 to a new prior probability prC on the coarsen-
ing (Ω,B) such that the pignistic probabilities on the new
coarsening frame MC := 〈(U,Pr),ΓC , ((Ω,B), prC)〉
are the same as those on the original extended Demp-
ster model M(= 〈(U,Pr),Γ, (Ω, pr)〉): for all Bi ∈ C,
BetpmM (Bi) = BetpmMC (Bi). This equality is equiva-
lent to the following one:
∑
B∈B(mD)B(B)prC(B ∩Bi)∑

B∈B(mD)B(B)prC(B)
= BetpmM (Bi). (12)

Let Pl(Bi) denote the sum
∑
Bi⊆B(mD)B, where 1 ≤

i ≤ n. It is easy to see that
∑
B∈B(mD)B(B)prC(B) =∑

1≤i≤n pr
C(Bi)Pl(Bi) and

∑
B∈B(mD)B(B)prC(B ∩

Bi) = prC(Bi)Pl(Bi). So the equality (12) is reduced to
the following form: for any 1 ≤ i ≤ n,

prC(Bi)∑
1≤i≤n pr

C(Bi)Pl(Bi)
=
BetpmM (Bi)

Pl(Bi)
. (13)

In this equation, prC(Bi) is the only unknown quantity. S-
ince there are n equations with n unknowns in the group G
of Eq.(13), this group has at least one solution. But we
don’t know whether this solution is nonnegative or not.
Now we provide a constructive solution to G. Let K de-
note

∑
B pr

C(Bi)Pl(Bi) and ai =
BetpmM (Bi)

Pl(Bi)
. The

above group of equations can be simplified as follows:
prC(Bi) = aiK, 1 ≤ i ≤ n. Since

∑
1≤i≤n pr

C(Bi) = 1,
we get the following equation by adding the equations in
G together: 1 = (a1 + a2 + · · · + an)K. So we get:
K = 1

∑
1≤i≤n

BetpmM
(Bi)

Pli

. Finally we solve G and obtain

the following solutions: for any 1 ≤ i ≤ n,

prC(Bi) =

BetpmM (Bi)

Pl(Bi)∑
1≤i≤n

BetpmM (Bi)

Pli(Bi)

. (14)

969

Theorem 4.6 The above defined coarsening frame MC =
〈(U,Pr),ΓC , ((Ω,B), prC)〉 with the prior probability
prC given in Eq.(14) is consistent with pignistic transfor-
mation. Let mmMC

be the induced mass function of MC

and mDC be the induced mass function of the Dempster
part DC := 〈(U,Pr),ΓC , (Ω,B)〉. Then we have:

• (mD)B(B) = mDC (B);

• BetpmMC (B) = BetpmM (B) for all B ∈ B.

So prC serves as a coordinator between believing repre-
sented by mDC (= (mD)B) and betting by BetpmMC on
MC by recording the sensitivity of the pignistic probabili-
ties derived frommDC . Pignistic transformation provides a
credal-pignistic link (Assumption 3.1 in [SMETS, 2005]);
prC here offers another credal-pignistic link between pig-
nistic probabilities (BetpmM (Bi)) and plausibility Pl(Bi)
(defined in terms of mD) for belief update.

As for Example 1.1, according to the above for-
mulation, we have that BetpmDM (D1) = 1

3 and
BetpmDM ({D2, D3}) = 2

3 . So, since pignistic probabilities
are insensitive to the choice of frame, BetpmCM (C1) = 1

3

andBetpmCM (C2) = 2
3 . Moreover, we get that Pl(C1) = 1

and Pl(C2) = 1. Finally we obtain the prior probability on
the frame ΩC : prC(C1) = 1

3 and prC(C2) = 2
3 .

5 RELATED WORKS AND
CONCLUSIONS

Yen ([YEN, 1986]) extended the multivalued mapping in
the DS theory to a probabilistic one that uses condi-
tional probabilities to express the uncertain association-
s. He also proposed a combination similar to our rule in
Eq.(6) and discussed its relationship to Dempster’s rule of
combination. Moreover, he distinguished between mass
functions for belief update and those for absolute belief-
s. Such a distinction motivated our definition of gener-
alized pignistic transformation in extended TBM. But his
framework differs from ours in that Yen considered prob-
abilistic multivalued mapping while our probabilistic ex-
tension is about prior knowledge base. Our method of
combining evidence with prior knowledge is similar to
[MAHLER, 1996, FIXSEN AND MAHLER, 1997]. Mahler
proposed a similar combination rule and investigated its re-
lationship with Bayesian parallel combination. More im-
portantly, he pointed out the connection between his com-
bination rule and pignistic transformation. He extended D-
S theory mainly from the perspective of random sets while
we stick to the Dempster-model approach. Our work es-
sentially differs from those papers in that we focus on both
the partial dissociation of betting from believing and the
(in)sensitivity of pignistic probabilities to the choice of
frame of discernment. Wilson [WILSON, 1993] did study

the sensitivity problem of pignistic probabilities in TBM.
But he stayed within the DS theory without considering any
probabilistic extension.

In order to translate DS models into probability models
which are consistent with belief-function semantics (espe-
cially Dempster’s rule of combination), Cobb and Shenoy
[COBB AND SHENOY, 2006] proposed another probabili-
ty transformation method called plausibility transforma-
tion as an alternative to pignistic transformation. Plau-
sibility transformation enjoys many interesting proper-
ties. The most important one is the so-called regulari-
ty property, i.e., plausibility transformation turns Demp-
ster combination of belief functions into “pointwise” com-
bination of probability functions. But, as Cobb and
Shenoy [COBB AND SHENOY, 2006] pointed out, anoth-
er important operation in DS belief networks, coarsen-
ing (or marginalization), is not invariant under this trans-
formation. In fact there is no probability transforma-
tion for DS models with Dempster’s rule of combina-
tion that enjoys the regularity property and makes coars-
ening invariant [COBB AND SHENOY, 2006]. For a more
comprehensive survey of probability transformation, one
may refer to [CUZZOLIN, 2015]. There are many pro-
posals for Jeffrey’s rule in DS theory [MA ET AL., 2010,
MA ET AL., 2011, SMETS, 1993, ZHOU ET AL., 2014].
But none of these Jeffrey’s rules was proposed from the
perspective of pignistic transformation as in this paper. Our
proposed conditioning rules are consistent with pignistic
transformation.

In order to focus on pignistic transformation, we simpli-
fy the presentation in this paper by taking a closed world
assumption, which is different from Smets’ open world as-
sumption for TBM. Moreover, here we choose to represent
beliefs with Dempster models, which is opposed to Smet-
s’ TBM without probabilistic interpretation. So we would
like to investigate the extension of TBM with probabilistic
priors under the open-world assumption and its probabilis-
tic interpretation.

Acknowledgements

The first author is partly supported by Key project for ba-
sic research from the Ministry of Science and Technolo-
gy of China (Grant No. 2012CB316205), NSF of China
(Grant No. 61370053) and the RUC foundation (Grant
No. 2012030005). The second author is supported by AR-
C Discovery Project (ARC DP130102764), NSF of China
(Grant Nos. 61428208 and 61472412), AMSS-UTS Joint
Research Laboratory for Quantum Computation, Chinese
Academy of Sciences, and the CAS/SAFEA International
Partnership Program for Creative Research Team.

970

References

[COBB AND SHENOY, 2006] COBB, B. AND SHENOY, P.
(2006). ON THE PLAUSIBILITY TRANSFORMATION
METHOD FOR TRANSLATING BELIEF FUNCTION MOD-
ELS TO PROBABILITY MODELS. Int. J. Approx. Reason-
ing, 41(3):314–330.

[CUZZOLIN, 2015] CUZZOLIN, F. (2015). Geometry of
Uncertainty. SPRINGER. TO APPEAR.

[DUBOIS AND DENOEUX, 2012] DUBOIS, D. AND DE-
NOEUX, T. (2012). CONDITIONING IN DEMPSTER-
SHAFER THEORY: PREDICTION VS. REVISION. IN
DENOEUX, T. AND MASSON, M.-H., EDITORS, Belief
Functions, VOLUME 164 OF Advances in Soft Comput-
ing, PAGES 385–392. SPRINGER.

[FAGIN AND HALPERN, 1991] FAGIN, R. AND
HALPERN, J. (1991). A NEW APPROACH TO
UPDATING BELIEFS. IN BONISSONE, P., M., H.,
L., K., AND J., L., EDITORS, UAI, PAGES 347–374.
ELSEVIER.

[FIXSEN AND MAHLER, 1997] FIXSEN, D. AND
MAHLER, R. (1997). THE MODIFIED DEMPSTER-
SHAFER APPROACH TO CLASSIFICATION. IEEE
Transactions on Systems, Man, and Cybernetics, Part
A, 27(1):96–104.

[GRÜNWALD AND HALPERN, 2003] GRÜNWALD, P.
AND HALPERN, J. (2003). UPDATING PROBABILI-
TIES. J. Artif. Intell. Res. (JAIR), 19:243–278.

[HALPERN, 2005] HALPERN, J. (2005). Reasoning
about Uncertainty. MIT PRESS.

[HECKERMAN, 1985] HECKERMAN, D. (1985). PROB-
ABILISTIC INTERPRETATION FOR MYCIN’S CERTAIN-
TY FACTORS. IN KANAL, L. N. AND LEMMER, J. F.,
EDITORS, UAI ’85: Proceedings of the First Annual
Conference on Uncertainty in Artificial Intelligence, Los
Angeles, CA, USA, July 10-12, 1985, PAGES 167–196.
ELSEVIER.

[JAFFRAY, 1992] JAFFRAY, J. (1992). BAYESIAN UP-
DATING AND BELIEF FUNCTIONS. IEEE Transactions
on Systems, Man, and Cybernetics, 22(5):1144–1152.

[MA ET AL., 2010] MA, J., LIU, W., DUBOIS, D., AND
PRADE, H. (2010). REVISION RULES IN THE THEORY
OF EVIDENCE. IN ICTAI (1), PAGES 295–302. IEEE
COMPUTER SOCIETY.

[MA ET AL., 2011] MA, J., LIU, W., DUBOIS, D., AND
PRADE, H. (2011). BRIDGING JEFFREY’S RULE, AG-
M REVISION AND DEMPSTER CONDITIONING IN THE
THEORY OF EVIDENCE. International J. on AI Tools,
20 (4):691–720.

[MAHLER, 1996] MAHLER, R. (1996). COMBINING
AMBIGUOUS EVIDENCE WITH RESPECT TO AMBIGU-
OUS A PRIORI KNOWLEDGE. I. BOOLEAN LOGIC.
IEEE Transactions on Systems, Man, and Cybernetics,
Part A, 26(1):27–41.

[SHAFER, 1976] SHAFER, G. (1976). A Mathematical
Theory of Evidence. PRINCETON UNIVERSITY PRESS,
PRINCETON, N.J.

[SMETS, 1993] SMETS, P. (1993). JEFFREY’S RULE OF
CONDITIONING GENERALIZED TO BELIEF FUNCTION-
S. IN HECKERMAN, D. AND MAMDANI, E. H., EDI-
TORS, UAI, PAGES 500–505. MORGAN KAUFMANN.

[SMETS, 2005] SMETS, P. (2005). DECISION MAK-
ING IN THE TBM: THE NECESSITY OF THE PIGNIS-
TIC TRANSFORMATION. Int. J. Approx. Reasoning,
38(2):133–147.

[SMETS AND KENNES, 1994] SMETS, P. AND KENNES,
R. (1994). THE TRANSFERABLE BELIEF MODEL. Ar-
tif. Intell., 66(2):191–234.

[SNOW, 1998] SNOW, P. (1998). THE VULNERABILITY
OF THE TRANSFERABLE BELIEF MODEL TO DUTCH
BOOKS. Artif. Intell., 105(1-2):345–354.

[WILSON, 1993] WILSON, N. (1993). DECISION-
MAKING WITH BELIEF FUNCTIONS AND PIGNISTIC
PROBABILITIES. IN CLARKE, M., KRUSE, R., AND
MORAL, S., EDITORS, ECSQARU’93, Granada, Spain,
November 8-10, 1993, Proceedings, VOLUME 747 OF
Lecture Notes in Computer Science, PAGES 364–371.
SPRINGER.

[YEN, 1986] YEN, J. (1986). A REASONING MODEL
BASED ON AN EXTENDED DEMPSTER-SHAFER THEO-
RY. IN KEHLER, T., EDITOR, UAI, 1986. Volume 1:
Science., PAGES 125–131. MORGAN KAUFMANN.

[ZHOU ET AL., 2014] ZHOU, C., WANG, M., AND QIN,
B. (2014). BELIEF-KINEMATICS JERREFY’S RULES
IN THE THEORY OF EVIDENCE. IN ZHANG, N. AND
TIAN, J., EDITORS, UAI 2014, PAGES 917–926. AUAI
PRESS.

971

Probabilistic Graphical Models Parameter Learning with Transferred Prior
and Constraints

Yun Zhou†,‡, Norman Fenton†, Timothy M. Hospedales†, Martin Neil†
† Risk and Information Management (RIM) Research Group, Queen Mary University of London

‡ Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology

Abstract

Learning accurate Bayesian networks (BNs) is
a key challenge in real-world applications, es-
pecially when training data are hard to acquire.
Two approaches have been used to address this
challenge: 1) introducing expert judgements and
2) transferring knowledge from related domains.
This is the first paper to present a generic frame-
work that combines both approaches to improve
BN parameter learning. This framework is built
upon an extended multinomial parameter learn-
ing model, that itself is an auxiliary BN. It serves
to integrate both knowledge transfer and expert
constraints. Experimental results demonstrate
improved accuracy of the new method on a va-
riety of benchmark BNs, showing its potential to
benefit many real-world problems.

1 INTRODUCTION

Directed probabilistic graphical models, also known as
Bayesian networks (BNs), are a natural framework for
describing probabilistic dependencies among variables in
many real-world problems, such as medical symptom diag-
nosis (Velikova et al., 2014) and software defect prediction
(Fenton and Neil, 2014). However, in problem domains
with limited or no relevant training data, there are major
challenges in accurately learning BN parameters (Friedman
et al., 1999).

There are several methods for handling parameter learning
with limited or no relevant data, described in a rich liter-
ature of books, articles and software packages, which are
briefly summarized in (Druzdel and Van Der Gaag, 2000;
Neapolitan, 2004; O’Hagan et al., 2006). Without con-
sidering any domain knowledge, the simplest learning ap-
proaches usually fail to accurately estimate parameters in
a small dataset. To mitigate this problem, it may be possi-
ble to elicit numerical assessments from expert judgements,
but this process is inefficient and error-prone.

Researchers have shown that experts tend to feel more com-
fortable providing qualitative or semi-numerical judgments
(Feelders and van der Gaag, 2006) with less cognitive ef-
fort. Such judgments expressed as constraints between pa-
rameters of interest (e.g. “the probability of people get-
ting cancer is smaller than 1%”) are more reliable than nu-
merical assessments, and have drawn considerable atten-
tion recently. In the work of (Zhou et al., 2014a), these
kinds of constraints are modelled as nodes in an auxiliary
BN model called MPL-C (Multinomial Parameter Learning
model with Constraints), which includes nodes modelling
training data statistics. The MPL-C improves parameter es-
timation accuracy by constraining the estimation with the
expert constraints.

An alternative approach to improving BN learning in scarce
data situations is to transfer knowledge from different but
related BNs that may have more training data available
(Luis et al., 2010). For example, transferring knowledge
from the same medical diagnosis network learned in a dif-
ferent country. This can be effective if data for one or
more sufficiently related source domains is available. How-
ever, the practical limitation is that transfer is contingent
on availability of suitable related sources, and the related-
ness of each source to the target task may not be known
in advance. Estimating relatedness is thus important but
challenging in practice, particularly when there are multi-
ple potential sources of possibly varying relatedness.

While incorporating either parameter constraints or transfer
learning from related data in source domains can improve
parameter estimation accuracy, there exists no generic
learning framework to synergistically exploit the benefits
of both approaches. Achieving this is non-trivial because
typical approaches to transfer (Luis et al., 2010) and to con-
strained learning (Zhou et al., 2014a) use very different for-
malisations. In this paper we generalise the state-of-the-art
MPL-C model for learning with expert constraints to also
exploit knowledge from related source domains via a boot-
strap approach. The new model called MPL-TC (Multino-
mial Parameter Learning model with Transferred prior and
Constraints) synergistically exploits both forms of external

972

knowledge to improve learning performance in a target BN.

The rest of the paper is organized as follows. Section 2
discusses the related work. Section 3 provides a formal-
isation of the BN parameter learning problem. Section
4 introduces the MPL-C model and shows how it can be
used to learn with parameter constraints. Section 5 de-
scribes our novel generalisation for constrained parameter
learning with transfer from auxiliary sources (MPL-TC).
Our method estimates relatedness to pick the best source to
transfer from, and takes a bootstrap approach for generat-
ing target parameter priors from the source data. Section 6
gives empirical results on a set of benchmark datasets. Sec-
tion 7 concludes the paper and discusses the future work.

2 RELATED WORK

Several models have been proposed to integrate parame-
ter constraints and improve learning accuracy. The con-
strained convex optimization (CO) formulation (Altendorf
et al., 2005; Niculescu et al., 2006; de Campos and Ji, 2008;
de Campos et al., 2008; Liao and Ji, 2009; de Campos
et al., 2009; Yang and Natarajan, 2013) is the most popular
way to estimate the constrained parameters. In this setting,
the algorithm seeks the globaly optimal estimation (maxi-
mal data log-likelihood) with respect to the parameter con-
straints. The parameters also can be estimated by Monte
Carlo methods (Chang et al., 2008), where only the sam-
ples that satisfy the constraints are kept. Recently, auxiliary
BN models (Zhou et al., 2014a,b) have been developed for
solving this problem. This approach provides an extensible
framework for parameter learning with additional informa-
tion. However, these auxiliary models only use uniform
parameter priors to regularize learning, which can be im-
proved by informative priors (Neapolitan, 2004).

In the context of transfer learning in BNs, the multi-task
framework of (Niculescu-mizil and Caruana, 2007) consid-
ers structure transfer. However, it assumes that all sources
are equally related and simply learns the parameters for
each task independently. The transfer framework of (Luis
et al., 2010) (referred to as CPTAgg in this paper) measures
the relatedness of tasks via calculating K-L divergence be-
tween target and source CPTs, and employs the heuristic
weighted sum model for aggregating target and selected
source parameters. The weights are proportional to the
number of training samples. Finally, the study (Oyen and
Lane, 2012) considers multi-task structure learning, again
with independently learned parameters. Their model shows
transfer performs poorly without knowledge of relatedness.
However, they address this by using manually specified re-
latedness.

No previous work considers a generic BN parameter learn-
ing framework combining both transferred knowledge and
constraints as discussed in this paper. Using the bootstrap
approach for variability measurement in BNs is not new.

For example, Friedman et al. (1999) study the robustness
of network features based on DAGs learned on bootstrap
resamples. Elidan (2011) uses bootstrap aggregation (bag-
ging) to find a stable prediction model through improved
computation of the log-likelihood score. However, to the
best of our knowledge, this is the first work to use boot-
strap to measure the variability of source MLEs and gener-
ate TNormal1 parameter priors for transfer purpose.

3 BACKGROUND

A Bayesian network (BN) consists of three components:
variables V = {X1, X2, X3, ..., Xn} corresponding to
nodes of the BN, a set of numerical parameters θ of the
variables in V , and a Directed Acyclic Graph (DAG) G
encoding the statistical dependencies among the variables.
For discrete variables, the probability distribution is de-
scribed by a conditional probability table (CPT) that con-
tains the probability of each value of the variable given each
instantiation of its parents as defined by graph G. We write
this as p(Xi|πi) where πi denotes the set of parents of vari-
able Xi in DAG G. Thus, the BN defines a simplified joint
probability distribution over V given by:

p(X1, X2, . . . , Xn) =
n∏

i=1

p(Xi|πi) (1)

Let ri denote the cardinality of the space of Xi, and |πi|
represent the cardinality of the space of parent configura-
tions of Xi. The k-th probability value of a conditional
probability distribution p(Xi|πi = j) can be represented
as θijk = p(Xi = k|πi = j), where θijk ∈ θ, 1 ≤ i ≤ n,
1 ≤ j ≤ |πi| and 1 ≤ k ≤ ri.
In our BN parameter learning setting, we have data D
combined with V and G to form the problem domain
D = {V,G,D}. Within a domain D, the goal of param-
eter learning is to determine parameters for all p(Xi|πi).
Given data D, the estimation of CPT parameters θ is con-
ventionally solved by the Maximum Likelihood Estima-
tion (MLE), θ̂ = arg maxθ log p(D|θ). Let Nijk be the
number of data samples in D for which Xi takes its k-
th value and its parents set πi takes its j-th value, and
Nij =

∑ri
k=1Nijk. The MLE estimate for each parame-

ter is:
θ̂ijk =

Nijk
Nij

(2)

However, it is common (even for large datasets) that cer-
tain parent-child state combinations seldom appear, and
MLE learning fails in this situation. Another classic pa-
rameter learning algorithm (Maximum a Posteriori, MAP)
mitigates this by introducing a Dirichlet prior on θ so that:
θ̂ = arg maxθ log p(D|θ)p(θ). This results in the MAP
estimate θ̂ijk =

Nijk+αijk
Nij+αij

. Intuitively, the hyperparam-
eters αijk in the Dirichlet prior correspond to an expert’s

1The abbreviation of Truncated Normal distribution.

973

guess of the corresponding virtual data counts. When
there is no expert judgment, the K2 (αijk = 1) or BDeu2

(αijk =
1

|πi|ri
, ∀i, j, k) priors are commonly used (Heck-

erman et al., 1995).

4 MPL-C MODEL

For parameter learning with constraints, the auxiliary
multinomial parameter model has been proposed (MPL-C
(Zhou et al., 2014a)). This method treats the parameters of
interest and constraints as nodes in an auxiliary model. The
parameter learning process is achieved via auxiliary model
inference given observed data statistics and constraint con-
ditions.

4.1 MODEL CONSTRUCTION

We use the estimation of probability distribution p(Xi|πi =
j) (i.e., the j-th column3 of the CPT associated with the
variable Xi) as an example to illustrate the construction of
the MPL-C model. Suppose there are ri states, and the
goal is to learn the ri probability parameters θij1, . . . , θijri
corresponding to these states. Assume we have Nijk data
observations of the k-th state (1 ≤ k ≤ ri) and the to-
tal number of observations is Nij . Then we can create a
multinomial parameter learning BN model for each CPT
column (shown schematically in Figure 1) to estimate pa-
rameters θij1, . . . , θijri .

C1

Nij1

sum

CM

������(0, 1)

��������(,)

��������(,)

�������(0, 1)

�������(0, 1)

equation	(3)	

equation	(3)	

 + +...

Nij

Nijri θ ijri

Nij

θ ij1Nij

θ ij1

θ ij1 θ ij2 θ ijri

θ ijri

Figure 1: Graphical model representation of MPL-C with M
constraints. For the constraint nodes, their equations follow the
representations in equation 3. The gray nodes are observed dur-
ing the inference.

Specifically, we start by creating an integer node named
Nijk (corresponding to Nijk as defined above) for each
k that is Binomial distributed. This node has two parents

2Bayesian Dirichlet likelihood equivalent uniform prior.
3Note in some other works, e.g., Netica BN software, each

CPT row represents a discrete probability distribution given a par-
ent configuration.

Nij and θijk to model the total number of trials and suc-
cess probability in the Binomial distribution. TheNij has a
Normal distribution4, which provides an infinite range for
the total number of trials. The prior distribution of each
θijk is uniform between 0 and 1. Finally, there is an integer
node sum, which is a shared child of θijk (k = 1, ..., ri).
This node models the normalization constraint for the all
success probabilities, i.e., that they should sum to 1.

4.2 INCORPORATING CONSTRAINTS

In real-world applications, many expert judgments can be
described with linear inequality constraints and approxi-
mate equality constraints (Zhou et al., 2014a) having the
following generic form:

{
β0 +

∑ri
k=1 βkθijk ≤ 0

|θijk − θijk′ | ≤ ε (0 < ε < 1)
(3)

Here the coefficients β0, βk (1 ≤ k ≤ ri) are real numbers,
and ε is an appropriate (small) positive value selected by
the expert to represent θijk ≈ θijk′ .
Given that an expert has identified a number of constraints
as defined above within a CPT column, then these con-
straints can be integrated as additional observed constraint
nodes within the MPL model to generate a new model
called MPL-C as shown in Figure 1.

Each constraint node Cm is a deterministic binary
(true/false) node with expressions that specify the con-
straint relationships between its parents:

if (β0 +
∑ri
k=1 βkθijk ≤ 0, true, false)

if (abs(θijk − θijk′) ≤ ε, true, false)

When the constraint is between a single parameter and a
constant (i.e., β0 + βkθijk ≤ 0), the constraint node will
only have a single parent. Inference for the unobserved
θijk in this auxiliary model implements constrained MAP
parameter learning for one CPT column of the target BN. In
the next section we show how to generalise this framework
to also take into account knowledge transfer from related
source domains.

5 MPL-C MODEL WITH
TRANSFERRED PRIOR

5.1 THE TRANSFER LEARNING MODEL

The idea behind transfer learning is to improve the accu-
racy of a target BN by making use of one or more related
source BNs. For example, the target BN may be a model

4This can be replaced with Poisson distribution to only allow
positive integers. Because this root node is always observed with
a valid number of trials during the inference, using Normal or
Poisson distribution will produce the same results.

974

for diagnosis of a particular disease based on limited data in
one district or country. If there are other (source) BNs with
similar variables and objectives but from a different district
or country, then it make sense to exploit such models to im-
prove the accuracy of the target BN. Transfer learning does
this by providing methods for both determining suitability
of the data in the source and its transfer to the target.

The obvious practical limitation of transfer learning –
which limits the applicability of all work in this area in-
cluding this paper – is that the relatedness is never truly
known. The necessary assumptions to overcome this in-
troduce inevitable bias into the results. In this paper we
assume there is at least one source domain that is sampled
from similar distributions as the target, and that this can be
transferred to help learn the target BN parameters. How-
ever determining relatedness in a data driven way means
there is an inevitable confirmation bias in the sense that the
source BNs most likely to be selected are those that most
closely match the current target estimate. This limits the
extent that the source can ‘change’ the target when it is
more ‘correct’ than the current noisy target estimates.

If the chosen source and target are not sampled from sim-
ilar distributions, directly applying parameters learned in
another domain may be impossible or result in negative
transfer: the underlying tasks may have major quantitative
or qualitative differences (e.g., care procedures vary across
hospitals). This limits the effectiveness of existing methods
such as CPTAgg in (Luis et al., 2010). Our framework will
address this by robustly measuring piecewise relatedness.

Given the scarce data for parameter estimation in the target
domain Dt = {V t, Gt, Dt}, the knowledge in available
source domains should be mined to help the learning in the
target domain. We aim to learn a target domain Dt lever-
aging sources {Ds}with potentially piecewise relatedness.
Typically relatedness is computed at domain or instance
level granularity, but for more flexible transfer we model
relevance as varying within-domain. Thus transfer can still
be exploited when different subsets of features/variables
are relevant to different source domains. Thus we allow
the heterogeneity V t 6= V s and Gt 6= Gs, and transfer at
the level of BN fragments.

Definition 1 BN fragment. A Bayesian network of do-
main D can be divided into a set of sub-networks (denoted
fragments) D = {Di} by considering the graph G. Each
fragment Di = {Vi, Gi, Di} is a single root node or a node
with its direct parents in the original BN, and encodes a sin-
gle CPT from the original BN. The number of fragments is
the number of variables in the original BN.

To achieve flexible BN parameter transfer, the target
domain and source domains are all broken into frag-
ments Dt = {Dt

i}, {Ds} = {{Ds
i′}}. Assuming for

now no latent variables in the target domain, then each
target fragment i can be learned independently θ̂ti =

arg maxθti p(θ
t
i |Cti ,Dt

i, {{Ds
i′}}). To leverage the bag of

source domain fragments {{Ds
i′}} in learning each θti , we

consider each source fragment Ds
i′ as potentially relevant.

Specifically, for each target fragment, every source frag-
ment is evaluated for relatedness and the best fragment
mapping is chosen. Once the best source fragment is cho-
sen for each target, it will be used as parameter priors in
the target MPL-C model. This auxiliary model can then be
updated to infer the parameter posteriors given target data
Dt
i , target constraints Cti and source networks {Ds}.

To realize this strategy, three issues must be addressed: 1)
which source fragments are transferrable, 2) how to deal
with variable name mapping, 3) how to quantify the re-
latedness of each transferrable source fragment in order to
find the best one. We next address each of these issues in
turn:

Fragment Compatibility For a target fragment i and pu-
tative source fragment i′, we say they are compatible if they
have the same structure and state space. That is, the same
number of states and parents states. Additionally, if the
target fragment contains parameter constraints Cti , the as-
sociated source parameter θsi′ should fall in the constrained
value ranges ΩCti , so

compatible(Dt
i,Ds

i′) =

1 if Gti = Gsi′ & θsi′ ∈ ΩCti
& dim(θti) = dim(θsi′)

0 otherwise

where dim(θti) = dim(θsi′) means rti = rsi′ and |πti | =
|πsi′ |. This assumption could be relaxed quite straightfor-
wardly at the expense of additional computational cost.
For example, if the target variable contains 2 states (true
and false), and one source variable contains 3 states
(high, medium and low), we can try multiple aggrega-
tions of the source states to generate three mappings to
the target: 1) true − high and false −medium, low; 2)
true−medium and false−high, low; 3) true− low and
false− high,medium.

Fragment Permutation Mapping For two fragments i
and i′ determined to be compatible, we still may not know
the mapping between variable names. For example, if i
has parents [a, b] and i′ has parents [d, c], the correspon-
dence could be a − d, b − c or b − d, a − c. The function
permutations(Gti, G

s
i′) returns an exhaustive list of pos-

sible mappings Pm that map states of i′ to states of i.

Fitness Measurement To measure the relatedness be-
tween compatible target and source fragments Dt

i and Ds
i′ ,

we use Bayesian model comparison for two hypotheses:
H1 is the relevance hypothesis5 that the source and target
data share a common CPT, andH0 (notH1) is the indepen-

5Simplifying the fragment notation, so H1 only refers the de-
pendent hypothesis between Dt

i and Ds
i′ .

975

dent hypothesis that the source and target data have distinct
CPTs. These two hypotheses are the outputs of our func-
tion fitness(Dt

i,Ds
i′ , p(H)), and can be computed with:

p(H1|Ds
i′ , D

t
i) ∝

∫
p(Dt

i |θi)p(θi|Ds
i′ , H1)p(H1)dθi,

p(H0|Ds
i′ , D

t
i) ∝

∫
p(Dt

i |θti)p(θti |H0)p(H0)dθti .

(4)

For discrete data, the likelihood of H1, integrating out the
unknown CPTs θi, is the Dirichlet compound multinomial
(DCM) or Pólya distribution:

p(Dt
i |Ds

i′ , H1) =

|πi|∑

j=1

(
Γ(αsi′j)

Γ(N t
ij + αsi′j)

ri∏

k=1

Γ(N t
ijk + αsi′jk)

Γ(αsi′jk)

)

(5)

where αsi′jk indicates the aggregate counts from the source
domain and distribution prior, and αsi′j =

∑
k α

s
i′jk. Max-

imising p(H1|Ds
i′ , D

t
i) over source networks s and frag-

ment i′ finds the fragment most likely to share the same
generating distribution as the target, and thus the best
source to transfer. Next we will discuss how to use the
selected source data to help learn the target parameters.

5.2 THE MPL-TC MODEL

Given a target fragment and selected source fragment, the
challenge is to fuse them in a robust manner. We solve this
fusion problem in a Bayesian way – treating the transferred
information as the target parameter priors. We refer to this
framework as MPL-TC, which contains three main steps:
1) for each BN fragment in the target domain, find its clos-
est source fragment and permutation in the source domain;
2) transfer the selected source fragment by converting the
source data statistics into prior distributions of parameters
in the target MPL-C model (see Section 4) and 3) perform
the inference in this auxiliary model to learn the target pa-
rameters. The detail can be found in Algorithm 1.

Fragment Fusion To fuse the selected source fragment
with the target fragment in the second step of our algo-
rithm, we perform the bootstrap approach in the source to
generate the priors of target parameters. Bootstrap is a re-
sampling method to measure the quality of true samples
(Duval, 1993). In this paper, we are interested in the qual-
ity of selected source parameters. We cannot access infinite
training samples of selected source, instead we only have
a sample of it (the selected best mapping source sample
Ds
i′j), which means the MLE of θsi′jk is not accurate.

From a specific subset of source samples, i.e., Ds
i′j , only

one estimate of the MLE for a parameter of interest θsi′jk
can be obtained. In order to reason about the population,
we need some sense of the variability of the estimated
MLE. Thus, we apply the simplest bootstrap method – sam-

INPUT : Target domain Dt, source domains {Ds}
and target constraints Ct.

OUTPUT: The target parameters θ̂t.

for each target fragment i do
for each source network s and fragment i′ do

if compatible(Dt
i,Ds

i′) then
P = permutations(Gti, G

s
i′);

for permutation m = 1 to M do
Measure relatedness:
fitness(Dt

i, Pm(Ds
i′)) =

p(H1|Dt
i , Pm(Ds

i′))
end

end
end
Find the best source fragment and permutation:
arg maxi′,s,m p(H1|Dt

i , Pm(Ds
i′))

for each parent state configuration j do
for each state value k do{

θsi′jk

}
=

bootstrap(100,@MLE,Pm(Ds
i′j))

Fit the
{
θsi′jk

}
with

ζsi′jk = TNormal(µijk, σijk, 0, 1)

end
Generate the auxiliary model in the target:
Ψt
ij = mpltc(Dt

ij , C
t
ij , ζ

s
i′jk)

Inference to get the parameters estimation:
θ̂tij = inference(Ψt

ij)

end
end
return θ̂t =

{
θ̂tij

}

Algorithm 1: Multinomial Parameter Learning with
Transferred Prior and Constraints

pling from the Ds
i′j to form a new sample (called a “resam-

ple” or bootstrap sample) that is also of size |Ds
i′j |. The

bootstrap sample is taken from the original using sampling
with replacement. This process is repeated multiple times
(100 or 1000), and for each of these bootstrap samples we
compute the MLE of θsi′jk (each of these are called boot-
strap estimates). We now have a set of bootstrap estimates,
which are used to fit a TNormal distribution to encode how
much the source MLE varies.

In our MPL-TC approach, these TNormal distributions
({ζsi′jk}) are used to replace the uniform parameter priors
on θtijk (Figure 1) of MPL-C models in the target domain.
Thus the transferred prior, target training samples and con-
straints are now all encoded in the target MPL-TC models
(referred to as Ψt

ij in Algorithm 1). After observing the
sources, the target data statistics (N t

ij , N
t
ij1, ..., N

t
ijri

) and
available constraints (The constraint nodes are all observed

976

with ‘true’ values), we can update (by inference(·) func-
tion in Algorithm 1) these auxiliary models to get the target
parameter posteriors:

p(θ̂tij1, ..., θ̂
t
ijrt
|N t

ij , N
t
ij1, ..., N

t
ijri

, ...
, Ct1, ..., C

t
M , ζ

s
i′jk, ..., ζ

s
i′jri′

, sum)

Because the auxiliary BNs are hybrid models, the up-
date/inference is performed via a state-of-the-art dynamic
discretization junction tree (DDJT) algorithm (Neil et al.,
2007) that is implemented in AgenaRisk6. The time com-
plexity of the inference is exponential in model treewidth,
which restricts the applicability at some point. However,
approximate inference could be used with dynamic dis-
cretization to improve the time efficiency.

5.3 ILLUSTRATIVE EXAMPLES

Bootstrap Fitting of TNormal Priors Figure 2 demon-
strates an example of fitted TNormal distributions for MLE
estimation θsi′jk = 0.2 learned from sample sizes 10 and
100. As we can see, although the parameter estimations
of two source samples are the same, the estimation from
the large sample are definitely more reliable than the es-
timation from the small sample, where the fitted TNormal
distribution in |Ds

i′j | = 100 is much sharper than the distri-
bution in |Ds

i′j | = 10. Moreover, the number of bootstrap
replicates does not change the results much, and we use
100 replicates in all subsequent experiments.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

|D
i’j
s |=10, bootstrap repeat 100 times

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

|D
i’j
s |=100, bootstrap repeat 100 times

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

|D
i’j
s |=10, bootstrap repeat 1000 times

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

|D
i’j
s |=100, bootstrap repeat 1000 times

Figure 2: The fitted TNormal distributions for a parameter of
interest with different source sample sizes 10 and 100. The origi-
nal source MLE estimation of this parameter is 0.2, which means
there are 2 and 20 appearances of this parameter in sample sizes
10 and 100 respectively. The bootstrap process in each case is
repeated 100 and 1000 times.

Fragment Transfer Here we provide an illustrative ex-
ample of our framework for fragment-based parameter
transfer and the target parameter estimation: the target is
a three node BN shown in the left part of Figure 3(a), and

6http://www.agenarisk.com/

the source is an eight node BN shown in the right part of
Figure 3(a). We aim to estimate the CPT of St, which has
four parent state configurations – πt1, πt2, πt3 and πt4. As we
can see, there are two source fragments ({T s, Ls, Es} and
{Es, Bs, Ss}) which are compatible with target fragment
(shown with dashed triangle in Figure 3(a)). Thus, there are
four permutations of compatible source fragments (assum-
ing binary parent nodes). All four of these options are then
evaluated for fitness, and the best fragment and permutation
is picked ({Bs, Es, Ss}). In Figure 3(b), we generate four
auxiliary BNs (MPL-TC model) for each target parameter
column, the right part of Figure 3(b) shows the MPL-TC
model of the first parameter column, which is used to es-
timate θt11 and θt12. The constraints and data statistics in
the target domain are modelled by nodes with gray color.
The parameter priors (nodes with white color) are TNormal
distributions fitted from source bootstrap samples. Finally,
these priors are updated by observing the target data statis-
tics and constraints to get the posterior parameter estimates.

(a)

(b)

T
s

L
s

M
s

A
s

E
s

S
s

B
s

X
s

B
t

E
t

S
t

Transfer

S
t

Shortness of breath

(Dyspnoea) ?

Yes

No

CPT

4 Auxiliary BNs

0 1 0 1

11

12

S
t π

θ

1

θ

...t

t

t

21

22

π

θ

2

θ

t

t

t

31

32

π

θ

3

θ

t

t

t

41

42

π

θ

4

θ

t

t

t

C 1
t

sum

N1
t

N12
tN11

t

11 12
s s

Figure 3: A simple example to show the framework of multi-
nomial parameter learning with transferred prior and constraints.
(a) The dashed triangle represents source fragments {T s, Ls, Es}
and {Es, Bs, Ss}, which are compatible to the target fragment.
(b) The structure representation of the MPL-TC model for esti-
mating θt11 and θt12 is in the first target parameter column, whose
parameter priors (θs11 and θs12) are converted form the most fit
source fragment {Bs, Es, Ss} via bootstrap.

6 EXPERIMENTS

6.1 EXPERIMENT SETTING

In all cases, we assume that the structure of the model is
known and that the ‘true’ CPTs that we are trying to learn

977

are those that are provided as standard with benchmark BN
models. For the purpose of the experiment we are not given
these true CPTs but instead are given a limited number of
sample observations which are randomly generated based
on the true target CPTs. To introduce noise between the
target and source for simulating varying relatedness, the
source datasets are also sampled from the true CPTs but
with ‘soft’ and ‘hard’ noise conditions: (1) soft: gener-
ate three source domains with 200, 300 and 400 sample
sizes to simulate continuously varying relatedness among a
set of sources; (2) hard: choose a portion (20%) of each
source’s fragments uniformly at random and randomise
their data/CPTs to make them irrelevant. This results in
a different subset of compatible but (un)related fragments
in each source. Introducing these two types of sampling
noise makes the sources similar but different to the target,
and hence simulates the kind of source-target relations that
may exist in practice.

The constraints are elicited from the true CPTs (so they are
certainly correct) and randomly assigned to parameters in
the network. Following the method of constraints genera-
tion in (Liao and Ji, 2009), for each true parameter θijk, we
create a constraint:

min((1 + ε)θijk, 1) ≥ θtijk ≥ max((1− ε)θijk, 0)

where the ε = 0.05 in the experiments. These elicited
constraints are encoded in the MPL-TC auxiliary models,
which are built with BN software AgenaRisk.

We compare our MPL-TC+5 against following algorithms
and settings (the upper right superscript value associated
with learning algorithms represents the number of con-
straints used in these algorithms):

• MLE and MAP, conventional BN parameter learning
algorithms.

• MPL-C+5, state-of-the-art parameter learning algo-
rithm with five constraints (Zhou et al., 2014a).

• CPTAgg, state-of-the-art parameter transfer learning
algorithm (Luis et al., 2010).

• MPL-TC+0, our MPL-TC algorithm with zero con-
straints.

The resulting learned CPTs are evaluated against the true
CPTs by using the K-L divergence measure (Kullback and
Leibler, 1951). The smaller the K-L divergence is, the
closer the estimated CPT is to the true CPT. Here the K-
L divergence is locally measured for each CPT column and
averaged over the whole model. This is to ensure that the fit
of each distribution is equally weighted in the overall met-
ric. Each experiment is repeated 10 times, and the results
are reported with the mean and standard deviation of the
K-L divergences between estimated and true CPTs.

0 10 20 30 40 50 60 70 80 90 100 110
0

0.5

1

1.5

2

2.5

Number of training data

A
ve

ra
ge

 K
−

L
di

ve
rg

en
ce

MLE
MAP

MPL−C+5

CPTAgg

MPL−TC+0

MPL−TC+5

Figure 4: Parameter learning performance in the Cancer BN un-
der different levels of data sparsity. Lower is better.

6.2 EXPERIMENTS ON CANCER BN

The Cancer BN (Korb and Nicholson, 2010) models the
interaction between risk factors and symptoms for the pur-
pose of diagnosing the most likely condition for a patient
getting lung cancer. This BN contains 5 Boolean nodes, so
each CPT column has just 2 parameters to learn; since the
parameters sum to 1, each column has only one indepen-
dent parameter. Hence there are 10 independent parame-
ters to learn in the model. In the target domain, training
samples under different sparsity levels (10 to 100 samples)
are drawn from the ground-truth Cancer BN.

Overall Figure 4 presents the results of all learning al-
gorithms under varying data volumes in the target Can-
cer BN. It is clear that the average K-L divergence of all
learning algorithms decreases with increasing target sam-
ple size. With increasing sample sizes, the performance gap
between the algorithms decreases7. Moreover, our MPL-
TC+5 always outperforms all the other competitors, which
demonstrates the effectiveness of our framework.

Considering models without parameter constraints (MLE,
CPTAgg, MAP and MPL-TC+0): MPL-TC+0 provides
overall K-L divergence reductions (performance improve-
ments) of 93.4%, 84.1% and 52.3% compared with MLE,
CPTAgg and MAP respectively, thus demonstrating the ef-
ficacy of knowledge transfer.

After introducing 5 sampled constraints, MPL-TC+5

achieves even greater reductions in comparison with MLE,
CPTAgg and MAP, which are 97.1%, 93.0% and 79.1%
respectively. Due to the benefit of introducing parameter
constraints, MPL-C+5 algorithm also outperforms MLE,
CPTAgg and MAP. However, MPL-TC+5 still outperforms
MPL-C+5 with 42.0% average K-L divergence reduction.

According to the results, the MPL-TC+5 greatly outper-
forms the conventional MLE and MAP algorithms, and the

7Given enough target training samples, the learning perfor-
mance of all algorithms converge.

978

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

Number of constraints

A
ve

ra
ge

 K
−

L
di

ve
rg

en
ce

a) Parameter Learning Performance with 20 Samples

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

Number of constraints

A
ve

ra
ge

 K
−

L
di

ve
rg

en
ce

b) Parameter Learning Performance with 100 Samples

MPL−C+m

MPL−TC+m

MPL−C+m

MPL−TC+m

Figure 5: Performance of MPL-C and MPL-TC when varying the
number of constraints (m = 1, ..., 10).

CPTAgg and MPL-C+5 that only use transfer or constraints
alone. This demonstrates the complementarity of both con-
straints and sources of external knowledge when learning
with scarce target data.

Varying Number of Constraints To investigate how the
number of introduced constraints affect the learning per-
formance of MPL-C and MPL-TC, we vary the number of
sampled constraints in parameter learning (shown in Fig-
ure 5). As we can see, K-L divergence decreases with
more constraints for both MPL-C and MPL-TC in both data
sparsity settings. However, when the number of constraints
is small, our MPL-TC greatly outperforms MPL-C due to
the benefit of transferred parameter priors. When the num-
ber of constraints increases to 10 (every parameter is con-
strained), the learning results of MPL-C and MPL-TC both
converge to zero in both settings.

Priors vs. Posteriors To provide insight into the mecha-
nisms of our framework, we investigate the differences be-
tween MPL-TC(Priors) (transferred TNormal mean values)
and MPL-TC+5(Posteriors) (the updated parameter poste-
riors after inference given the target data and parameter
constraints) for each parameter in the Cancer BN. The re-
sults are presented in Figure 6, where the heights of the
bars represent the absolute differences between estimated
values and true CPT values.

As we can see, the MPL-TC(Priors) shows inaccurate
transfer in both two settings: parameters 7–9 in Figure 6(a)
and parameters 3–7 and 9 in Figure 6(b). This is caused
by the bias in target samples and noise in source domains.
Therefore, the estimates of MPL-TC(Priors) are far from
the true values, (average K-L divergence of 0.65 and 0.40
for sample sizes 20 and 100 respectively). However, af-
ter performing MAP learning in the MPL-TC+5 model,
the MPL-TC+5(Posteriors) reduces the average K-L diver-
gence between the estimated values and true values to 0.09
and 0.03 respectively. These results demonstrate the ro-
bustness of the Bayesian learning in MPL-TC+5, and the
importance of systematically inferring the new parameters

1 2 3 4 5 6 7 8 9 10
0

0.5

1

A
bs

ol
ut

e
di

ffe
re

nc
es

Index of parameter in the Cancer BN

a) Estimated Parameter Values with 20 Samples

MPL−TC(Priors) vs. Ground truth

MPL−TC+5(Posteriors) vs. Ground truth

1 2 3 4 5 6 7 8 9 10
0

0.5

1

A
bs

ol
ut

e
di

ffe
re

nc
es

Index of parameter in the Cancer BN

b) Estimated Parameter Values with 100 Samples

MPL−TC(Priors) vs. Ground truth

MPL−TC+5(Posteriors) vs. Ground truth

Figure 6: The differences between estimated probability values
(MPL-TC(Priors) and MPL-TC+5(Posteriors)) and ground truth
for all parameters in the Cancer BN.

given available data and constraints. Next, we will compare
the performance of all these algorithms in different BN pa-
rameter learning problems.

6.3 EXPERIMENTS ON STANDARD BNS

We evaluate the algorithms on 12 standard BNs8 (details in
Table 1). For each BN, 100 training samples and 5 con-
straints are drawn from the true CPTs in the target domain.

Overall Table 1 summarises the average K-L divergence
per parameter. The best results are presented in bold. The
statistically significant improvements of the best result over
competitors are indicated with asterisks * (two-sample t-
test at the default 5% significance level). In summary, the
MPL-C+5 and MPL-TC+5 methods outperform conven-
tional MLE and MAP in 11 out of 12 settings, the only ex-
ception is the learning performance in Weather BN, where
the learning results of these methods converge with enough
training samples9. These results demonstrate the bene-
fit of learning with both sources of external knowledge.
Compared with the state-of-the-art MPL-C+5, MPL-TC+5

wins in every setting (including the Weather BN, where
MPL-TC+5 achieves even smaller average K-L divergence
– 0.018 of MPL-TC+5 vs. 0.020 of MPL-C+5). Over all
BNs, MPL-TC+5 gets 83.2%, 33.5% and 26.9% average
reduction of K-L divergence compared with MLE, MAP
and MPL-C+5 respectively.

Transfer vs. No Transfer Considering transfer learning
only, both CPTAgg and MPL-TC+0 outperform conven-
tional MLE, which demonstrate the benefit of introducing
source domain knowledge. However, due to a simplistic
relatedness model and CPT fusion heuristic, CPTAgg even
fails to outperform MAP in some settings. In contrast, our
MPL-TC+0 outperforms CPTAgg and MAP with 74.1%

8http://www.bnlearn.com/bnrepository/
9As shown in Table 1, the Weather BN only contains 9 param-

eters to learn, therefore 100 training samples are already enough
to train a good model.

979

Table 1: Parameter learning performance (average K-L divergence) in 12 standard Bayesian networks.

Name Nodes Edges Para MLE MAP MPL-C+5 CPTAgg MPL-TC+0 MPL-TC+5

Alarm 37 46 509 2.36±0.10* 0.66±0.01* 0.61±0.02* 1.61±0.08* 0.42 ±0.02 0.42 ±0.01
Andes 223 338 1157 1.03±0.06* 0.17±0.01* 0.15±0.01* 0.65±0.05* 0.08 ±0.00 0.08 ±0.00
Asia 8 8 18 0.57±0.16* 0.34±0.04* 0.28±0.03* 0.31±0.05* 0.22±0.02* 0.18 ±0.03
Cancer 5 4 10 0.86±0.35* 0.09±0.04* 0.07±0.05* 0.54±0.11* 0.05±0.01* 0.03 ±0.01
Earthquake 5 4 10 1.50±0.82* 0.15±0.04* 0.13±0.03* 0.35±0.22* 0.11±0.01 0.10 ±0.01
Hailfinder 56 66 2656 2.85±0.01* 0.46±0.00* 0.41±0.00* 1.98±0.01* 0.31 ±0.01 0.31 ±0.01
Hepar2 70 123 1453 3.18±0.13* 0.33±0.01* 0.33±0.01* 2.58±0.15* 0.30±0.01 0.29 ±0.00
Insurance 27 52 984 1.95±0.18* 1.17±0.03* 1.07±0.03* 0.93±0.06* 0.75 ±0.03 0.75 ±0.02
Sachs 11 17 178 1.74±0.29* 0.78±0.04* 0.71±0.05* 0.98±0.08* 0.50 ±0.03 0.50 ±0.02
Survey 6 6 21 0.35±0.20* 0.05±0.01* 0.05±0.01* 0.24±0.15* 0.04±0.01 0.03 ±0.01
Weather 4 4 9 0.02±0.02 0.03±0.00 0.02±0.00 0.02±0.00 0.02±0.00 0.02±0.00
Win95pts 76 112 574 3.59±0.07* 0.81±0.01* 0.78±0.02* 3.20±0.10* 0.67±0.02* 0.64 ±0.01

and 31.2% average reduction of K-L divergence over all
the settings. In addition, after introducing both transferred
parameter priors and target constraints, our MPL-TC+5

shows additional improved learning performance over CP-
TAgg and MPL-TC+0 (75.0% and 3.5% average reduction
of K-L divergence).

Importance of Transfer vs. Constraints As we can see,
our MPL-TC+0 outperforms MPL-C+5, which indicates
the transferred prior is more helpful than a moderate num-
ber (i.e., 5) of constraints in improving parameter learn-
ing performance in these experiments. Given the burden
of constraint elicitation in the real world, we used a real-
istic limited number of constraints. Of course if sufficient
constraints were available, MPL-C would perform better
(cf Figure 5) and this result would be reversed. But in
this case, the transferred prior makes a greater contribu-
tion in improving performance – despite the noise process
between source and target domain, and the imperfect esti-
mation of relevance. This is especially in the larger BNs,
where the constraints are scarcer relative to the number of
parameters to learn. This also explains why MPL-TC+0

and MPL-TC+5 have similar results in the Alarm, Andes,
Hailfinder, Insurance and Sachs BNs.

7 DISCUSSION AND CONCLUSIONS

When data is scarce, purely data driven BN parameter
learning is inaccurate. The broad goal of this paper was
to introduce a new method (MPL-TC) that is the first at-
tempt at BN parameter learning incorporating both trans-
fer learning and qualitative constraints in a complementary
way. Using the public BN repository, we showed that learn-
ing performance was greatly improved in MPL-TC across
a range of networks. In particular, we demonstrated that
MPL-TC worked well in every data and constraint sparsity
in the Cancer BN, and achieved the best performance in all
BNs in the repository compared with other state-of-the-art
algorithms.

We currently assume there is at least one relevant source.
For each target fragment, we find the most relevant source
fragment to generate target parameter priors. Transferring
to a target fragment using information from >1 sources
would be a straightforward modification of the current
framework. However it would increase the risk of ‘nega-
tive transfer’ (Torrey and Shavlik, 2009) that could be detri-
mental to performance (if some apparently relevant sources
used for transfer are actually false positives). This trade off
between maximum exploitable transfer, and robustness to
negative transfer is pervasive in transfer learning.

We discussed the limitations of all BN transfer learning
approaches with respect to the fact that, in practice relat-
edness is hard to guarantee or estimate. Thus data-driven
transfer (source selection) may be biased by inaccurate tar-
get data (resulting in bad choice of source and thus negative
transfer) in extremely scarce settings. In the spirit of syner-
gistically combining source data and constraints, available
target constraints clearly provide an opportunity to guide
and disambiguate transfer. In this paper, we only used tar-
get parameter constraints to exclude individual incompat-
ible source fragments. Richer models for guiding transfer
with constraints including cross-node constraints, source-
domain constraints, and cross-domain constraints should
be investigated in future.

8 ACKNOWLEDGMENTS

The authors would like to thank three anonymous review-
ers for their valuable feedback. This work is supported by
the European Research Council (ERC-2013-AdG339182-
BAYES-KNOWLEDGE) and the European Union’s Hori-
zon 2020 research and innovation programme under grant
agreement No 640891. YZ is supported by China Schol-
arship Council (CSC)/Queen Mary Joint PhD scholar-
ships and National Natural Science Foundation of China
(61273322, 71471174).

980

References
Altendorf, E.E., Restificar, A.C., Dietterich, T.G., 2005. Learn-

ing from sparse data by exploiting monotonicity constraints, in:
Proceedings of the 21st Conference on Uncertainty in Artificial
Intelligence, pp. 18–26.

de Campos, C.P., Ji, Q., 2008. Improving Bayesian network pa-
rameter learning using constraints, in: Proceedings of the 19th
International Conference on Pattern Recognition, pp. 1–4.

de Campos, C.P., Tong, Y., Ji, Q., 2008. Constrained maxi-
mum likelihood learning of Bayesian networks for facial action
recognition, in: Proceedings of the 10th European Conference
on Computer Vision. Springer, pp. 168–181.

de Campos, C.P., Zeng, Z., Ji, Q., 2009. Structure learning of
Bayesian networks using constraints, in: Proceedings of the
26th Annual International Conference on Machine Learning,
ACM. pp. 113–120.

Chang, R., Stetter, M., Brauer, W., 2008. Quantitative infer-
ence by qualitative semantic knowledge mining with Bayesian
model averaging. Knowledge and Data Engineering, IEEE
Transactions on 20, 1587–1600.

Druzdel, M., Van Der Gaag, L.C., 2000. Building probabilistic
networks:“where do the numbers come from?”. IEEE Trans-
actions on knowledge and data engineering 12, 481–486.

Duval, R., 1993. Bootstrapping: A nonparametric approach to
statistical inference. 94-95, Sage.

Elidan, G., 2011. Bagged structure learning of Bayesian network,
in: Proceedings of the 14th International Conference on Artifi-
cial Intelligence and Statistics, pp. 251–259.

Feelders, A., van der Gaag, L., 2006. Learning Bayesian network
parameters under order constraints. International Journal of
Approximate Reasoning 42, 37–53.

Fenton, N.E., Neil, M., 2014. Decision support software for prob-
abilistic risk assessment using Bayesian networks. IEEE soft-
ware 31, 21–26.

Friedman, N., Goldszmidt, M., Wyner, A., 1999. Data analysis
with Bayesian networks: A bootstrap approach, in: Proceed-
ings of the Fifteenth conference on Uncertainty in artificial in-
telligence, Morgan Kaufmann Publishers Inc.. pp. 196–205.

Heckerman, D., Geiger, D., Chickering, D.M., 1995. Learning
Bayesian networks: The combination of knowledge and statis-
tical data. Machine Learning 20, 197–243.

Korb, K.B., Nicholson, A.E., 2010. Bayesian Artificial Intelli-
gence. CRC Press, New York.

Kullback, S., Leibler, R.A., 1951. On information and sufficiency.
The Annals of Mathematical Statistics , 79–86.

Liao, W., Ji, Q., 2009. Learning Bayesian network parameters un-
der incomplete data with domain knowledge. Pattern Recogni-
tion 42, 3046–3056.

Luis, R., Sucar, L.E., Morales, E.F., 2010. Inductive transfer for
learning Bayesian networks. Machine learning 79, 227–255.

Neapolitan, R.E., 2004. Learning Bayesian networks. Pearson
Prentice Hall.

Neil, M., Tailor, M., Marquez, D., 2007. Inference in hybrid
Bayesian networks using dynamic discretization. Statistics and
Computing 17, 219–233.

Niculescu, R.S., Mitchell, T., Rao, B., 2006. Bayesian network
learning with parameter constraints. The Journal of Machine
Learning Research 7, 1357–1383.

Niculescu-mizil, A., Caruana, R., 2007. Inductive transfer for
Bayesian network structure learning, in: Proceedings of the
11th International Conference on Artificial Intelligence and
Statistics, pp. 1–8.

O’Hagan, A., Buck, C.E., Daneshkhah, A., Eiser, J.R., Garth-
waite, P.H., Jenkinson, D.J., Oakley, J.E., Rakow, T., 2006.
Uncertain judgements: eliciting experts’ probabilities. Wiley.
com.

Oyen, D., Lane, T., 2012. Leveraging domain knowledge in mul-
titask Bayesian network structure learning, in: Proceedings of
the 26th AAAI Conference on Artificial Intelligence, pp. 1091–
1097.

Torrey, L., Shavlik, J., 2009. Transfer learning. Handbook of
Research on Machine Learning Applications and Trends: Al-
gorithms, Methods, and Techniques 1, 242.

Velikova, M., van Scheltinga, J.T., Lucas, P.J., Spaanderman, M.,
2014. Exploiting causal functional relationships in Bayesian
network modelling for personalised healthcare. International
Journal of Approximate Reasoning 55, 59–73.

Yang, S., Natarajan, S., 2013. Knowledge intensive learning:
Combining qualitative constraints with causal independence
for parameter learning in probabilistic models, in: Machine
Learning and Knowledge Discovery in Databases. Springer,
pp. 580–595.

Zhou, Y., Fenton, N., Neil, M., 2014a. Bayesian network ap-
proach to multinomial parameter learning using data and expert
judgments. International Journal of Approximate Reasoning
55, 1252 – 1268.

Zhou, Y., Fenton, N., Neil, M., 2014b. An extended MPL-C
model for Bayesian network parameter learning with exterior
constraints, in: van der Gaag, L., Feelders, A. (Eds.), Prob-
abilistic Graphical Models. Springer International Publishing.
volume 8754 of Lecture Notes in Computer Science, pp. 581–
596.

981

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

AUAI Press
P.O. Box 866
Corvallis, Oregon 97339
USA

	Preface
	Organizing Committee
	Acknowledgments
	Sponsors
	Best Paper Awards
	Proceedings
	 Bayesian Optimal Control of Smoothly Parameterized Systems. Yasin Abbasi-Yadkori, Csaba Szepesvári
	 Optimal expert elicitation to reduce interval uncertainty. Nadia Ben Abdallah, Sébastien Destercke
	 Stochastic Integration via Error-Correcting Codes. Dimitris Achlioptas, Pei Jiang
	 Learning the Structure of Sum-Product Networks via an SVD-based Algorithm. Tameem Adel, David Balduzzi, Ali Ghodsi
	 Robust reconstruction of causal graphical models based on conditional 2-point and 3-point information. Séverine Affeldt, Hervé Isambert
	 Are You Doing What I Think You Are Doing? Criticising Uncertain Agent Models. Stefano V. Albrecht, Subramanian Ramamoorthy
	 Disciplined Convex Stochastic Programming: A New Framework for Stochastic Optimization. Alnur Ali, J. Zico Kolter, Steven Diamond, Stephen Boyd
	 Intelligent Affect: Rational Decision Making for Socially Aligned Agents. Nabiha Asghar, Jesse Hoey
	 Representation Learning for Clustering: A Statistical Framework. Hassan Ashtiani, Shai Ben-David
	 Adversarial Cost-Sensitive Classification. Kaiser Asif, Wei Xing, Sima Behpour, Brian D. Ziebart
	 Geometric Network Comparisons. Dena Marie Asta, Cosma Rohilla Shalizi
	 Learning and Planning with Timing Information in Markov Decision Processes. Pierre-Luc Bacon, Borja Balle, Doina Precup
	 Parameterizing the Distance Distribution of Undirected Networks. Christian Bauckhage, Kristian Kersting, Fabian Hadiji
	 New Limits for Knowledge Compilation and Applications to Exact Model Counting. Paul Beame, Vincent Liew
	 Hashing-Based Approximate Probabilistic Inference in Hybrid Domains. Vaishak Belle, Guy Van den Broeck, Andrea Passerini
	 Bayesian Network Learning with Discrete Case-Control Data. Giorgos Borboudakis, Ioannis Tsamardinos
	 Efficient Algorithms for Bayesian Network Parameter Learning from Incomplete Data. Guy Van den Broeck, Karthika Mohan, Arthur Choi, Adnan Darwiche, Judea Pearl
	 Bayes Optimal Feature Selection for Supervised Learning with General Performance Measures. Saneem Ahmed C.G., Harikrishna Narasimhan, Shivani Agarwal
	 Visual Causal Feature Learning. Krzysztof Chalupka, Pietro Perona, Frederick Eberhardt
	 Large-Margin Determinantal Point Processes. Wei-Lun Chao, Boqing Gong, Kristen Grauman, Fei Sha
	 Fast Relative-Error Approximation Algorithm for Ridge Regression. Shouyuan Chen, Yang Liu, Michael R. Lyu, Irwin King, Shengyu Zhang
	 Selective Greedy Equivalence Search: Finding Optimal Bayesian Networks Using a Polynomial Number of Score Evaluations. David Maxwell Chickering, Christopher Meek
	 Stable Spectral Learning Based on Schur Decomposition. Nicolò Colombo, Nikos Vlassis
	 Semi-described and semi-supervised learning with Gaussian processes. Andreas Damianou, Neil D. Lawrence
	 Budget Constraints in Prediction Markets. Nikhil Devanur, Miroslav Dudík, Zhiyi Huang, David Pennock
	 A Probabilistic Logic for Reasoning about Uncertain Temporal Information. Dragan Doder, Zoran Ognjanovic
	 Training generative neural networks via Maximum Mean Discrepancy optimization. Gintare Karolina Dziugaite, Daniel M. Roy, Zoubin Ghahramani
	 Incremental Region Selection for Mini-bucket Elimination Bounds. Sholeh Forouzan, Alexander Ihler
	 Estimating Mutual Information by Local Gaussian Approximation. Shuyang Gao, Greg Ver Steeg, Aram Galstyan
	 Psychophysical Detection Testing with Bayesian Active Learning. Jacob R. Gardner, Xinyu Song, Kilian Q. Weinberger, Dennis Barbour, John P. Cunningham
	 Locally Conditioned Belief Propagation. Thomas Geier, Felix Richter, Susanne Biundo
	 Discriminative Switching Linear Dynamical Systems applied to Physiological Condition Monitoring. Konstantinos Georgatzis, Christopher K. I. Williams
	 Revisiting Non-Progressive Influence Models: Scalable Influence Maximization in Social Networks. Golshan Golnari, Amir Asiaee T., Arindam Banerjee, Zhi-Li Zhang
	 Scalable Recommendation with Hierarchical Poisson Factorization. Prem Gopalan, Jake M. Hofman, David M. Blei
	 State Sequence Analysis in Hidden Markov Models. Yuri Grinberg, Theodore J. Perkins
	 Multitasking: Optimal Planning for Bandit Superprocesses. Dylan Hadfield-Menell, Stuart Russell
	 Importance Sampling over Sets: A New Probabilistic Inference Scheme. Stefan Hadjis, Stefano Ermon
	 Progressive Abstraction Refinement for Sparse Sampling. Jesse Hostetler, Alan Fern, Thomas Dietterich
	 Zero-Truncated Poisson Tensor Factorization for Massive Binary Tensors. Changwei Hu, Piyush Rai, Lawrence Carin
	 Computing Optimal Bayesian Decisions for Rank Aggregation via MCMC Sampling. David Hughes, Kevin Hwang, Lirong Xia
	 Do-calculus when the True Graph Is Unknown. Antti Hyttinen, Frederick Eberhardt, Matti Järvisalo
	 Kernel-Based Just-In-Time Learning for Passing Expectation Propagation Messages. Wittawat Jitkrittum, Arthur Gretton, Nicolas Heess, S. M. Ali Eslami, Balaji Lakshminarayanan, Dino Sejdinovic, Zoltán Szabó
	 Averaging of Decomposable Graphs by Dynamic Programming and Sampling. Kustaa Kangas, Teppo Niinimäki, Mikko Koivisto
	 Novel Bernstein-like Concentration Inequalities for the Missing Mass. Bahman Yari Saeed Khanloo, Gholamreza Haffari
	 Minimizing Expected Losses in Perturbation Models with Multidimensional Parametric Min-cuts. Adrian Kim, Kyomin Jung, Yongsub Lim, Daniel Tarlow, Pushmeet Kohli
	 Population Empirical Bayes. Alp Kucukelbir, David M. Blei
	 Encoding Markov logic networks in Possibilistic Logic. Ondrej Kuželka, Jesse Davis, Steven Schockaert
	 On the Computability of AIXI. Jan Leike, Marcus Hutter
	 Tracking with ranked signals. Tianyang Li, Harsh Pareek, Pradeep Ravikumar, Dhruv Balwada, Kevin Speer
	 Classification of Sparse and Irregularly Sampled Time Series with Mixtures of Expected Gaussian Kernels and Random Features. Steven Cheng-Xian Li, Benjamin Marlin
	 Complexity of the Exact Solution to the Test Sequencing Problem. Wenhao Liu, Ross D. Shachter
	 Finite-Sample Analysis of Proximal Gradient TD Algorithms. Bo Liu, Ji Liu, Mohammad Ghavamzadeh, Sridhar Mahadevan, Marek Petrik
	 Estimating the Partition Function by Discriminance Sampling. Qiang Liu, Jian Peng, Alexander Ihler, John Fisher III
	 A Finite Population Likelihood Ratio Test of the Sharp Null Hypothesis for Compliers. Wen Wei Loh, Thomas S. Richardson
	 Structure Learning Constrained by Node-Specific Degree Distribution. Jianzhu Ma, Feng Zhao, Jinbo Xu
	 Active Search and Bandits on Graphs using Sigma-Optimality. Yifei Ma, Tzu-Kuo Huang, Jeff Schneider
	 Off-policy learning based on weighted importance sampling with linear computational complexity. A. Rupam Mahmood, Richard S. Sutton
	 Impact of Learning Strategies on the Quality of Bayesian Networks: An Empirical Evaluation. Brandon Malone, Matti Järvisalo, Petri Myllymäki
	 Learning the Structure of Causal Models with Relational and Temporal Dependence. Katerina Marazopoulou, Marc Maier, David Jensen
	 Hamiltonian ABC. Edward Meeds, Robert Leenders, Max Welling
	 (Nearly) Optimal Differentially Private Stochastic Multi-Arm Bandits. Nikita Mishra, Abhradeep Thakurta
	 Equitable Partitions of Concave Free Energies. Martin Mladenov, Kristian Kersting
	 Non-parametric Revenue Optimization for Generalized Second Price auctions.. Mehryar Mohri, Andrés Muñoz Medina
	 Polynomial-time algorithm for learning optimal tree-augmented dynamic Bayesian networks. José L. Monteiro, Susana Vinga, Alexandra M. Carvalho
	 Learning and Inference in Tractable Probabilistic Knowledge Bases. Mathias Niepert, Pedro Domingos
	 Multi-Context Models for Reasoning under Partial Knowledge: Generative Process and Inference Grammar. Ardavan S. Nobandegani, Ioannis N. Psaromiligkos
	 Annealed Gradient Descent for Deep Learning. Hengyue Pan, Hui Jiang
	 Max-Product Belief Propagation for Linear Programming: Applications to Combinatorial Optimization. Sejun Park, Jinwoo Shin
	 Fast Algorithms for Learning with Long N-grams via Suffix Tree Based Matrix Multiplication. Hristo S. Paskov, John C. Mitchell, Trevor J. Hastie
	 A Complete Generalized Adjustment Criterion. Emilija Perkovic, Johannes Textor, Markus Kalisch, Marloes H. Maathuis
	 Optimal Threshold Control for Energy Arbitrage with Degradable Battery Storage. Marek Petrik, Xiaojian Wu
	 Mesochronal Structure Learning. Sergey Plis, David Danks, Jianyu Yang
	 Budgeted Online Collective Inference. Jay Pujara, Ben London, Lise Getoor
	 Auxiliary Gibbs Sampling for Inference in Piecewise-Constant Conditional Intensity Models. Zhen Qin, Christian R. Shelton
	 Memory-Efficient Symbolic Online Planning for Factored MDPs. Aswin Raghavan, Roni Khardon, Prasad Tadepalli, Alan Fern
	 The Survival Filter: Joint Survival Analysis with a Latent Time Series. Rajesh Ranganath, Adler Perotte, Noémie Elhadad, David M. Blei
	 Communication Efficient Coresets for Empirical Loss Minimization. Sashank J. Reddi, Barnabás Póczos, Alex Smola
	 Large-scale randomized-coordinate descent methods with non-separable linear constraints. Sashank J. Reddi, Ahmed Hefny, Carlton Downey, Avinava Dubey, Suvrit Sra
	 An Upper Bound on the Global Optimum in Parameter Estimation. Khaled S. Refaat, Adnan Darwiche
	 A Markov Game Model for Valuing Player Actions in Ice Hockey. Kurt Routley, Oliver Schulte
	 Learning Latent Variable Models by Improving Spectral Solutions with Exterior Point Method. Amirreza Shaban, Mehrdad Farajtabar, Bo Xie, Le Song, Byron Boots
	 Missing Data as a Causal and Probabilistic Problem. Ilya Shpitser, Karthika Mohan, Judea Pearl
	 Improved Asymmetric Locality Sensitive Hashing (ALSH) for Maximum Inner Product Search (MIPS). Anshumali Shrivastava, Ping Li
	 Learning Optimal Chain Graphs with Answer Set Programming. Dag Sonntag, Matti Järvisalo, Jose Peña, Antti Hyttinen
	 How matroids occur in the context of learning Bayesian network structure. Milan Studený
	 The Long-Run Behavior of Continuous Time Bayesian Networks. Liessman Sturlaugson, John W. Sheppard
	 Online Bellman Residual Algorithms with Predictive Error Guarantees. Wen Sun, J. Andrew Bagnell
	 On the Error of Random Fourier Features. Danica J. Sutherland, Jeff Schneider
	 Bayesian Structure Learning for Stationary Time Series. Alex Tank, Nicholas J. Foti, Emily B. Fox
	 Learning from Pairwise Marginal Independencies. Johannes Textor, Alexander Idelberger, Maciej Liskiewicz
	 Bethe Projections for Non-Local Inference. Luke Vilnis, David Belanger, Daniel Sheldon, Andrew McCallum
	 A Smart-Dumb/Dumb-Smart Algorithm for Efficient Split-Merge MCMC. Wei Wang, Stuart Russell
	 Planning under Uncertainty with Weighted State Scenarios. Erwin Walraven, Matthijs T. J. Spaan
	 Generalization Bounds for Transfer Learning under Model Shift. Xuezhi Wang, Jeff Schneider
	 Clustered Sparse Bayesian Learning. Yu Wang, David Wipf, Jeong Min Yun, Wei Chen, Ian Wassell
	 Bethe and Related Pairwise Entropy Approximations. Adrian Weller
	 Efficient Transition Probability Computation for Continuous-Time Branching Processes via Compressed Sensing. Jason Xu, Vladimir N. Minin
	 Extend Transferable Belief Models with Probabilistic Priors. Chunlai Zhou, Yuan Feng
	 Probabilistic Graphical Models Parameter Learning with Transferred Prior and Constraints. Yun Zhou, Norman Fenton, Timothy M. Hospedales, Martin Neil

