Supplementary Material for 'A Finite Population Likelihood Ratio Test of the Sharp Null Hypothesis for Compliers'

Wen Wei Loh

Department of Statistics University of Washington wloh@u.washington.edu

A MAXIMIZING THE HYPERGEOMETRIC PROBABILITY IN A 2×2 TABLE

We review some existing results from [1] and [2] below. Recall the following 2×2 table where the row totals (k, N-k) and the counts in one row (b, (N-k)-b) are fixed.

Table 1: 2×2 Table With Unknown Column Totals

	Red	Green	Row
Not drawn	\boldsymbol{x}	k-x	k
Drawn	b	(N-k)-b	N-k
Column	b + x	N-(b+x)	N

Our interest is in maximizing the hypergeometric probability corresponding to Table 1 with respect to x:

$$\Pr(\mathbf{x} \mid (k, b, N)) = \binom{b + \mathbf{x}}{\mathbf{x}} \binom{N - (b + \mathbf{x})}{k - \mathbf{x}} / \binom{N}{k}.$$

Theorem 1. In a 2×2 table where the row totals (k, N-k) and the counts in one row (b, (N-k)-b) are fixed, the most likely value of $\mathbf{x} \in [0,k]$ under the randomization assumption is:

$$\hat{\boldsymbol{x}} = \arg\max_{\boldsymbol{x} \in [0,k]} \left\{ \boldsymbol{x} < (k+1) \frac{b}{N-k} \right\} = \left\lfloor \left\lfloor (k+1) \frac{b}{N-k} \right\rfloor \right\rfloor,$$

where the 'basement' function ||a|| is defined as:

$$\lfloor \lfloor a \rfloor \rfloor = \max\{0, \lceil a \rceil - 1\}.$$

Equivalently,

$$b + \hat{\boldsymbol{x}} = \left\{ \begin{array}{l} \left\lfloor b \frac{N}{N-k} \right\rfloor & \text{if } b \frac{N+1}{N-k} \leq \left\lceil b \frac{N}{N-k} \right\rceil, \\ \left\lceil b \frac{N}{N-k} \right\rceil & \text{otherwise.} \end{array} \right.$$

Proof. We are interested in the following k+1 binomial coefficient products to find the most likely value of x:

$$\left\{ \binom{b+x}{x} \binom{N-(b+x)}{k-x}, \quad x \in [0,k] \right\}.$$

Thomas S. Richardson

Department of Statistics University of Washington thomasr@u.washington.edu

The first terms in each product are an increasing sequence in x, the second terms are a decreasing sequence in x for all values of $x \in \{0, ..., k-1\}$.

The relationship between consecutive products due to a unit increase in \boldsymbol{x} is thus:

Since (k,b,N) are fixed, the sequence of binomial coefficient products will increase with \boldsymbol{x} until it exceeds the critical value $(k+1)\frac{b}{N-k}$ and the inequality no longer holds.

The most likely value of x is then:

$$\begin{split} \hat{\boldsymbol{x}} &= \arg\max_{\boldsymbol{x} \in [0,k]} \left\{ \boldsymbol{x} < (k+1) \frac{b}{N-k} \right\} \\ &= \left\{ \begin{array}{l} \left\lfloor (k+1) \frac{b}{N-k} \right\rfloor & \text{if } (k+1) \frac{b}{N-k} > \left\lfloor (k+1) \frac{b}{N-k} \right\rfloor, \\ (k+1) \frac{b}{N-k} - 1 & \text{if } (k+1) \frac{b}{N-k} = \left\lfloor (k+1) \frac{b}{N-k} \right\rfloor. \end{array} \right. \end{split}$$

This is the same result shown in [2]. Johnson and Kotz [1, page 146] give an equivalent result in terms of the column total (b + x).

If we define the 'basement' function as:

$$\lfloor \lfloor x \rfloor \rfloor = \max\{0, \lceil x \rceil - 1\},$$

then
$$\hat{\mathbf{x}} = \left\lfloor \left\lfloor (k+1) \frac{b}{N-k} \right\rfloor \right\rfloor$$
.

However, we may rewrite the critical value $(k+1)\frac{b}{N-k}$ as follows:

$$\begin{split} &(k+1)\frac{b}{N-k} = k\frac{b}{N-k} + \frac{b}{N-k} \\ &= \left\lceil k\frac{b}{N-k} \right\rceil + \frac{b}{N-k} - \left(\left\lceil k\frac{b}{N-k} \right\rceil - k\frac{b}{N-k} \right). \end{split}$$

Since $0<\frac{b}{N-k}<1$ and $0\le \left\lceil k\frac{b}{N-k}\right\rceil -k\frac{b}{N-k}<1$, we see that:

$$-1<(k+1)\frac{b}{N-k}-\left\lceil k\frac{b}{N-k}\right\rceil<1.$$

There are now two cases to consider:

1. If
$$1 > (k+1)\frac{b}{N-k} - \left\lceil k\frac{b}{N-k} \right\rceil > 0$$
, then

$$\begin{split} &(k+1)\frac{b}{N-k} > \left\lceil k\frac{b}{N-k} \right\rceil, \\ &\Rightarrow \left\lceil k\frac{b}{N-k} \right\rceil = \arg\max_{\mathbf{x} \in [0,k]} \left\{ \mathbf{x} < (k+1)\frac{b}{N-k} \right\}. \end{split}$$

When $k\frac{b}{N-k}$ is a positive integer, such as in a balanced table where k=N-k, then $k\frac{b}{N-k}=\left\lceil k\frac{b}{N-k}\right\rceil$. Since $\frac{b}{N-k}>0$,

$$\Rightarrow (k+1)\frac{b}{N-k} > k\frac{b}{N-k} = \left\lceil k\frac{b}{N-k} \right\rceil.$$

2. If
$$-1 < (k+1)\frac{b}{N-k} - \left[k\frac{b}{N-k}\right] \le 0$$
, then

$$\begin{split} \left\lceil k \frac{b}{N-k} \right\rceil - 1 &< (k+1) \frac{b}{N-k} \leq \left\lceil k \frac{b}{N-k} \right\rceil \\ \Rightarrow \arg \max_{\mathbf{x} \in [0,k]} \left\{ \mathbf{x} < (k+1) \frac{b}{N-k} \right\} \\ &= \left\lceil k \frac{b}{N-k} \right\rceil - 1 \\ &= \left\lfloor k \frac{b}{N-k} \right\rfloor. \end{split}$$

This gives us the following result:

$$\begin{split} \hat{\pmb{x}} &= \arg\max_{\pmb{x} \in [0,k]} \left\{ \pmb{x} < (k+1) \frac{b}{N-k} \right\} \\ &= \left\{ \begin{array}{l} \left\lfloor k \frac{b}{N-k} \right\rfloor & \text{if } (k+1) \frac{b}{N-k} \leq \left\lceil k \frac{b}{N-k} \right\rceil, \\ \left\lceil k \frac{b}{N-k} \right\rceil & \text{otherwise.} \end{array} \right. \end{split}$$

References

- [1] N L Johnson and S Kotz. *Discrete distributions*. Houghton Mifflin, Boston, 1969.
- [2] H Zhang. A note about maximum likelihood estimator in hypergeometric distribution. *Comunicaciones En Estadística*, 2(2):169–174, 2009.