
Planning under Uncertainty with Weighted State Scenarios
Supplementary Material

Erwin Walraven
Delft University of Technology

Mekelweg 4, 2628 CD
Delft, The Netherlands

Matthijs T. J. Spaan
Delft University of Technology

Mekelweg 4, 2628 CD
Delft, The Netherlands

In this supplement we provide detailed descriptions of the
problem domains discussed in the paper, as well as imple-
mentation details of our algorithms, including pseudocode.
Section 1 describes the smart grids problem domain. The
option trading domain is discussed in Section 2. More im-
plementation details regarding the POMCP algorithm are
provided in Section 3.

1 SMART GRIDS DOMAIN

In this section we provide additional details regarding our
Scenario-POMDP formulation for matching demand and
supply in smart grids. In particular, the description of the
state variables is much more detailed than the high-level
description in the paper. We also explain how the size of
the action space is reduced from exponential to constant
using a rotating token.

1.1 STATE DESCRIPTION

The state description and corresponding dynamic Bayesian
network are shown in Table 1 and Figure 1. In the paper we
mentioned that mi

s denotes the state of task i. To make this
more detailed, we factormi

s into a tuple (mi
r,m

i
d,m

i
s,m

i
c).

The variable mi
r encodes the release time of task i. The

variable mi
d represents the number of steps task i can still

be postponed, which can be used to encode the deadline.
The variable mi

y represents the number of steps task i still
has to run, which can be used to encode the length of the
task. The last decision of agent i is represented by mi

c,
which is an auxiliary variable which we need to reduce the
size of the action space. This variable can be either run
(R) or idle (I). The factored state variables can be used to
determine which actions are feasible to execute given the
current state, which we discuss below.

1.2 REDUCING ACTION SPACE SIZE

We apply a technique to reduce the size of the action space
from exponential to constant. The state variable ma rep-
resents a token, which can be owned by one agent at the

same time. If the variable ma equals i, then agent i owns
the token and the action that is executed applies to the task
that is being controlled by agent i. The decision that is
made is recorded in the state variable mi

c. The additional
variable is needed because the reward also depends on de-
cisions made by other agents. Initially the token is owned
by the first agent, and after executing an action the token is
forwarded to the second agent, until every agent has made
a decision. In general, ma is always incremented by 1, but
when ma equals n then it is reset to 1, which represents
that the token is returned to the first agent. The Scenario-
POMDP state variable t is only incremented when agent n
makes a decision, because within one real-world timestep
n actions are executed. The same technique to reduce the
size of the action space is used by Scharpff et al. (2013).

1.3 ACTIONS AND STATE TRANSITIONS

In our model we define two actions: RUN and IDLE, cor-
responding to the decisions that can be made for each task.
If ma equals j (i.e., agent j owns the token), then action
RUN is feasible if mj

y > 0 and t ≥ mj
r. Thus, action RUN

can be executed if task j has been released and has not been
completed yet. For agent j, action RUN decrements mj

y by
1, sets mj

d to 0 and sets mj
c to R.

Similarly, if ma equals j, then action IDLE is feasible if
mj

d > 0. It decrements mj
d by 1 if mj

d > 0 and sets mj
c

to I . IDLE is also executed if the task has been completed
(i.e., mj

y equals 0).

After each action execution, the token variable ma is up-
dated such that the next agent receives the token. If ma

equals n, then t is also incremented by 1 to proceed to the
next timestep.

1.4 REWARD FUNCTION

In this section we define the reward function, assuming that
the current state is defined as follows:

s = (m1
r,m

1
d,m

1
y,m

1
c , · · · ,mn

r ,m
n
d ,m

n
y ,m

n
c ,ma, x, t).



Table 1: Task Scheduling State Variables.

VARIABLE DESCRIPTION

mi
r ∈ {1, . . . , T} release time of task i (i = 1, . . . , n)

mi
d ∈ {0, . . . , T} delay steps of task i (i = 1, . . . , n)

mi
y ∈ {0, . . . , T} remaining st. task i (i = 1, . . . , n)

mi
c ∈ {R, I} decision of agent i (i = 1, . . . , n)

ma ∈ {1, . . . , n} agent owning the token
x ∈ X scenario
t ∈ {1, . . . , T} time

m1
s

...

mn
s

ma

x

t

RUN

IDLE

o

m1
s

...

mn
s

′

′

m′
a

x′

t′

o′

R

Figure 1: Dynamic Bayesian network of the Scenario-
POMDP for task scheduling.

After executing the action IDLE, the reward for an individ-
ual task is always 0.

After executing the action RUN, the reward is equal to the
cost of running the task, multiplied by −1. The cost is
dependent on the decisions made by other agents, because
they may have consumed cheap renewable energy already.
If agent j owns the token (i.e., ma equals j) and decides
to run, then the decisions m1

c ,. . . ,mj−1
c have to be taken

into account. The demand of an arbitrary task i, depending
on the decision made by the agent, can be computed as
follows:

pd(i) =

{
pi if mi

c equals R
0 otherwise

Now the total demand of agents 1, . . . , j − 1 can be writ-
ten as

∑j−1
i=1 pd(i), which is the total demand of agents

that have already made a decision. The available renew-
able supply q that is still left for agent j can be defined as
follows:

q = max

(
ut −

j−1∑
i=1

pd(i), 0

)

input: set of tasks J , horizon T , scenario set X ,
threshold ρ

ma ← 1
foreach ji ∈ J do

define initial task state mi
s

end
for t = 1, . . . , T do

ot ← observed wind speed
o1,t ← (o1, . . . , ot)
w ←WEIGHTS(o1,t, X, ρ)
for i = 1, . . . , n do

a← POMCP(w, t,ma,m
1
s, . . . ,m

n
s )

execute action a and update mi
s

ma ← 1 + (i mod n)
end

end
Algorithm 1: Task Scheduling Algorithm.

where ut is the number of renewable units available, gen-
erated by wind. This can be computed using the sigmoid
power curve function Z defined in the paper. The final re-
ward of agent j when running task j is:

−1 · c(max(pj − q, 0))

where c(u) is the grid cost function giving the cost of con-
suming u units from the grid.

1.5 PSEUDOCODE

Algorithm 1 shows the task scheduling algorithm, which is
an adaptation of the scenario planning algorithm presented
in the paper. The algorithm starts with defining the state for
each task in the set of tasks J . For each timestep, it makes
a decision for each agent i, and updates the corresponding
statemi

s. After every decision, the token is forwarded to the
next agent. For clarity and readability reasons we did not
factor mi

s into a tuple in the description of the algorithm.
However, the actual implementation uses factored states of
tasks, and the factored state variables are updated according
to the description above.

1.6 OTHER ALGORITHMS

In the experiments we compared the performance with the
consensus algorithm proposed by Ströhle et al. (2014). The
algorithm is shown below in Algorithm 2, where the sym-
bol⊥ denotes scheduling nothing and L(x|o1, . . . , ot) rep-
resents the likelihood that x predicts the future given obser-
vations o1, . . . , ot. Consensus uses an offline greedy algo-
rithm as subroutine, which is shown in Algorithm 3.



input : partial schedule S, set of tasks J , observations
(o1, . . . , ot), scenario set X and current timestep t

output: set of tasks Jt starting at time t

Jt = ∅
do

fi ← 0 (i = 1, . . . , n)
f⊥ ← 0
foreach x ∈ X do

Sx ← OFFLINEGREEDY(J, S, x)
p← set of tasks starting at time t in Sx

if Jt = p then
f⊥ ← f⊥ + L(x|o1, . . . , ot)

else
foreach ji ∈ J − Jt do

if ji starts at time t in p then
fi ← fi + L(x|o1, . . . , ot)

end
end

end
k ← argmaxi∈{1,...,n} fi
if j⊥ > fk then

j∗ ←⊥
else

j∗ ← jk
Jt ← Jt ∪ {jk}
add task jk to S with starting time t

end
end

while j∗ 6=⊥;

Algorithm 2: Consensus.

2 OPTION TRADING DOMAIN

In this section we give additional details regarding our
Scenario-POMDP formulation for trading financial op-
tions. We start with a definition of the function Bc to cal-
culate the Black-Scholes value of an option. We also give
a detailed description of the state transitions and reward
function, as well as pseudocode of the implementation.

2.1 BLACK-SCHOLES EQUATION

If the current stock price is S, then the value of a European
call option with strike E can be determined using the func-
tion Bc(S,E, t, r, v), where t is the time to expiry in years,
r is the annual interest rate and v is the volatility of the mar-
ket. Both the interest rate r and volatility v are parameters
between 0 and 1. The formula to compute the option value,
also known as the Black-Scholes value (Black and Scholes,
1973) is as follows:

Bc(S,E, t, r, v) = S ·N(d1)− E · e−r(H−t) ·N(d2),

input : tasks J , partial schedule S′ and scenario x
output: schedule S

sort tasks in J by decreasing length
S ← empty schedule
for t = 1, . . . , T do

ut ← units available at time t in scenario x
end
deduct renewable units consumed by tasks in S′ from u
foreach ji ∈ J do

hi ← minimum cost starting time of ji given u
assign starting time hi to task ji in schedule S
deduct renewable units consumed by ji from u

end
Algorithm 3: OFFLINEGREEDY.

Table 2: Option Trading State Variables.

VARIABLE DESCRIPTION

mo ∈ {T,F} represents whether agent owns a call
me ∈ N strike price of the call
mt ∈ {0, . . . , 9} time to expiry
x ∈ X scenario
t ∈ {1, . . . , T} time

where N represents the cumulative standard normal distri-
bution, and d1 and d2 are defined as shown below:

d1 =
log(S/E) + (r + 1

2v
2) · t

v ·
√
t

,

d2 = d1 − v ·
√
t.

To prevent division by zero, it is necessary that the time
to expiry is strictly greater than zero. The value at expiry
can be determined by computing the payoff max(S(H) −
E, 0), where S(H) denotes the stock price at the time of
expiry H .

2.2 ACTIONS AND STATE TRANSITIONS

The state description and corresponding dynamic Bayesian
network from the paper are shown in Table 2 and Figure 2.
Feasibility of actions can be determined using the fully ob-
servable state variables mo, me and mt. The state transi-
tions of the environment are deterministic, so the transition
probabilities are either 0 or 1.

The action BUY is feasible ifmo equals F, because then the
agent does not own an option. It sets mo to T, me is set to
the current stock price, and mt is set to 9. We assumed that
an option expires after 10 days, but after one state transition
one day has passed already, so we use the value 9.

The action SELL is feasible if mo equals T, because then



mt

x

t

o

m′
t

x′

t′

o′

R

me m′
e

mo m′
o

NOOP

BUY

SELL

Figure 2: Dynamic Bayesian network of the Scenario-
POMDP for option trading.

there is an option to be sold. It sets mo to F. SELL must
be executed if mo equals T and mt is 0, because then the
option has expired.

The action NOOP is always feasible, except when mo

equals T and mt equals 0, because then the agent must sell
the option.

After any action execution, the time counter t is incre-
mented. The state variable x never changes.

2.3 REWARD FUNCTION

In this section we define the reward function, assuming that
the current state is s = (mo,me,mt, x, t).

After executing the action BUY, the agent receives the re-
ward −1 · Bc(xt, xt, 10/365, r, v), where xt is the stock
price at time t in scenario x.

After executing the action SELL, the agent receives the re-
ward Bc(xt,me,mt/365, r, v), where xt is the stock price
at time t in scenario x.

After executing the action NOOP, the reward is 0.

2.4 PSEUDOCODE

Algorithm 4 below shows the planning algorithm for trad-
ing financial options. Compared to the general algorithm
in the paper, there are a few modifications. The algorithm
defines the observable state using the variablesmo, me and
mt. For each timestep t ≥ 4, it computes weights based
on the last three observations, and calls the POMCP algo-
rithm with a time parameter equal to 4. This allows for
a rolling horizon implementation, where weights are as-
signed based on the last three observations, and the scenar-
ios predict the future observations starting from the current
timestep. When choosing action BUY or SELL, the ob-
servable state variables are modified and the account bal-

input : horizon T , scenario set X , threshold ρ, interest
rate r, volatility v

output: account balance z

mo ← F
me ← 0
mt ← 0
z ← 0
for t = 1, . . . , T do

ot ← observation from the environment
if t ≥ 4 then

U ← (ot−3, ot−2, ot−1)
w ←WEIGHTS(U,X, ρ)
a← POMCP(w, 4,mo,me,mt)
if a = BUY then

mo ← T
me ← ot
mt ← 9
z ← z −Bc(ot, ot, 10/365, r, v)

else if a = SELL then
mo ← F
z ← z +Bc(ot,me,mt/365, r, v)

end
end

end
Algorithm 4: Option Trading Algorithm.

ance z is updated. The state transitions are deterministic,
so we can use the variables mo, me and mt to keep track
of the state of the environment.

3 POMCP IMPLEMENTATION DETAILS

Our planning algorithm uses POMCP to select actions (Sil-
ver and Veness, 2010). The algorithm needs two minor
modifications to be able to deal with the factored state
representation of the Scenario-POMDP model. A default
POMCP implementation samples states from a state proba-
bility distribution in the search procedure. However, in our
case there are weights associated with scenarios. There-
fore, POMCP samples scenarios x from X with a proba-
bility proportional to their weight. After sampling a sce-
nario x, a state can be constructed using the factored state
variables t and m, which are also given as input. The
POMCP algorithm described by Silver and Veness uses
UCB as action selection heuristic. In the smart grids do-
main, we use an ε-greedy heuristic, where the probability
to select random actions decreases linearly during the sim-
ulations. For each search a new search tree is created, be-
cause there is no explicit link between the weights assigned
to scenarios in consecutive timesteps.



References

Black, F. and Scholes, M. (1973). The Pricing of Op-
tions and Corporate Liabilities. In: The Journal of Political
Economy 81.3, pp. 637–654.

Scharpff, J., Spaan, M. T. J., Volker, L., and De Weerdt,
M. M. (2013). Planning under Uncertainty for Coordi-
nating Infrastructural Maintenance. In: Proceedings of the
23rd International Conference on Automated Planning and
Scheduling, pp. 425–433.

Silver, D. and Veness, J. (2010). Monte-Carlo Planning in
Large POMDPs. In: Advances in Neural Information Pro-
cessing Systems, pp. 2164–2172.

Ströhle, P., Gerding, E. H., De Weerdt, M. M., Stein, S., and
Robu, V. (2014). Online Mechanism Design for Schedul-
ing Non-Preemptive Jobs under Uncertain Supply and De-
mand. In: Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems, pp. 437–444.


