
A Missing Details from Background section

Tree based aggregation scheme. Assume for simplicity that
T = 2α for some positive integer α. Let Tree be a complete
binary tree with its leaf nodes being f1, · · · , fT . Each internal
node x in Tree stores the sum of all the leaf nodes in the tree
rooted at x. First notice that one can compute any vt using at most
log T nodes of Tree. Second, notice that for any two neighbor-
ing data sets D and D′, at most log T nodes in Tree gets mod-
ified. So, if we flatten the complete tree as a vector then for
any neighboring data sets D and D′ one can easily show that
‖Tree(D)− Tree(D′)‖1 ≤ log T . Using the Laplace mecha-
nism, it follows that adding N ∼ Lap(1/ε) (sampled i.i.d.) to
each node of Tree(D) ensures (ε log T )-differential privacy for
the complete tree. Therefore, to ensure ε-differential privacy for
the complete tree, one needs to sample N ∼ Lap(log T/ε).
Since, the noise used in this scheme is exponential in nature, a
high-probability guarantee is also immediate.

It is easy to show that if one uses the noisy tree to recon-
struct vt’s, then the standard deviation of the noise in each vt is
O
(√

log T log T
ε

)
= O

(
log1.5 T

ε

)
. Since all the noise random

variables are exponentially distributed one can easily get tight
concentration too. It is trivial to extend the above scheme to the
case where ft ∈ Rp and ‖ft‖2 ≤ 1 for all t ∈ [T ], using the
Gamma mechanism.

B Proofs for Private UCB algorithm

B.1 Proof for Lemma 5

Proof. For the ease of notation, let Xa(t) be the true total reward
for arm a until time t. As argued in Section 2.1, Noisea(t) =
ra(t)−Xa(t) is a sum of at most log T Laplace distributed ran-
dom variables Lap( k log T

ε
). By the tail property of Laplace dis-

tribution, we know that for a given random variablew ∼ Lap (λ),
with probability 1 − α, |w| ≤ λ log(1/α). So, with proba-
bility at least (1 − α/(log T ))log T ≤ 1 − α, |Noisea(t)| ≤
k log2 T log((log T )/α)

ε
. Taking the union bound over all k-arms

and all time steps T and setting α = γ/(kT ), we have w.p.
≥ 1 − γ, for all a ∈ C and for all t ∈ [T ], |Noisea(t)| ≤
k log2 T log((kT log T )/γ)

ε
. This completes the proof.

C Proofs for Private Thompson algorithm

C.1 Proof for Lemma 9

Proof. For the brevity of notation let us divide the gap estima-
tion phase into batches b1, b2, · · · , where each batch corresponds
to one complete execution of Line 4 in Algorithm 2. Let mi be
the number of pulls of each arm ai in batch bi. In each batch
bi, by the tail property of Laplace distribution it follows that
with probability at least 1 − T−5

4 log2(1/∆)
, we have |µ̂a − µ̃a| ≤

2k log2(8T5 log2(1/∆))

εmi
for each arm a ∈ C. Here µ̃ refers to

the estimated mean prior to the addition of Laplace noise (see
Line 4 of Algorithm 2 for the definition). Also by the use of
Chernoff-Hoeffding’s bound, we have with probability at least
1 − T−5

4 log2(1/∆)
, and for T > 8 log2

1
∆

, we have |µa − µ̃a| ≤√
log2(8T5 log2(1/∆))

mi
for each arm a ∈ C. We can thus conclude

that with probability at least 1 − T−5

log2(1/∆)
, by applying triangle

inequality |µ̂a − µa| ≤ 12k
ε

log2 T

mi
+
√

6 log2 T

mi
for each of the

arms a ∈ C. If ∆̂i be the value of ∆̂ (in Algorithm 2) during the
execution of batch bi, then with the choice of mi = 192k log2 T

ε∆2

as in the algorithm, ensures that |µ̂a − µa| ≤ ∆̂i
4

. Also it is
easy to see that using union bound we get, Pr(|µ̂a(1)

− µa1 | ≥
∆̂i
4
∪ |µ̂a(2)

− µa2 | ≥
∆̂i
4

) ≤ kT−5

log2
1
∆

. Hence for T > k

with probability at least 1 − T−4

log2
1
∆

, |µ̂a(1)
− µa1 | ≤

∆̂i
4

and

|µ̂a(2)
− µa2 | ≤

∆̂i
4

In each batch bi, if
∣∣∣µ̂a(1)

− µ̂a(2)

∣∣∣ ≤ ∆̂i, then |µa1 − µa2 | ≤

1.5∆̂i. Similarly, if
∣∣∣µ̂a(1)

− µ̂a(2)

∣∣∣ > ∆̂i, then |µa1 − µa2 | >
∆̂i
2

. Let bi† be the batch after which the gap estimation phase
halts. From the above to conditions it follows that, ∆

3
≤ ∆̂i† ≤

2∆. Since ∆̂i = 1
2i , therefore when the algorithm halts i† ≤

log2(1/∆). Accounting for the failure probability T−4

log2(1/∆)
in

each of these i† batches and taking an union bound over the
batches, the bound on the estimated gap in Lemma 9 follows.

Let NGap be the total number of time steps for which the gap esti-
mation phase lasts. We have with probability at least 1− T−4,

NGap ≤
192k log2 T

ε

∞∑
i=0

1

2i
. (9)

Bounding the geometric series in (9), we get the required bound
on NGap. Finally, to obtain the bound on E[N1], notice that
N1 ≤ NGap. Now using the standard trick of converting a high-
probability guarantee to an expected guarantee, the proof is com-
plete.

D Missing Details from the Experiment
Section

D.1 Experimental Setup Parameters for Section 5

All the upper confidence bound (UCB) type sampling algorithms
have a common parameter, the confidence interval; same as Line 9
in Algorithm 1. For our experiment on private UCB sampling (Al-
gorithm 1), we use a particular confidence interval, given in [8],
which seems to perform the best. The confidence interval is given

as,
√
ra(t) log t

na(t)
+ log t
na(t)

,where ra(t) and na(t) are the reward and
number of pulls for arm a ∈ C up to time t respectively. For our
experiments on private Thompson sampling algorithm (see Algo-
rithm 2) we do not implement the gap estimation phase and for
the second phase that involves random pullings (see Line 10 of
2), we use a smaller value for m.

D.2 Differentially Private Contextual UCB Sampling

In this section we provide the missing details for the private con-
textual UCB sampling algorithm (Algorithm 3) used in our ex-
periments section (Section 5). The confidence interval parameter
in Algorithm 3 has a multiplier α in Line 7. The parameter α
controls the exploration and exploitation for the algorithm, lower
value of α, leads to more exploitation.



Algorithm 3 Private Contextual UCB Sampling
Input: Time horizon: T , arms: C = {a1, · · · , ak}, pri-

vacy parameter: ε, explore/exploit parameter: α, Con-
text vector length: d.

1: Initialize: A = Id (Identity matrix of size-d), µ = 0d
(Vector of length-d with all 0 entries), b = 0d.

2: Create empty trees TreeAi,j
∀i ≤ j ≤ d and

Treebi∀i ≤ d with (T )-leaves. Set ε0 ← 2ε
(d2+3d) .

3: for t← 1 to T do
4: Receive Arm context: za(t)∀a ∈ C.
5: Receive Ãi,j ← from TreeAi,j

, set Ãi,j = Ãj,i and
Receive b̃i ← from Treebi .

6: if Ã is positive definite then
7: Pull arm a∗ = arg max

a∈C
(za(t)T Ã−1b̃ +

α
√
za(t)T Ãza(t)), observe reward ft(a∗) .

8: else
9: Pull arm a∗ = arg max

a∈C
(za(t)T b̃ +

α
√
za(t)T za(t)), observe reward ft(a∗).

10: end if
11: Insert za∗(i)za∗(j) into TreeAi,j

∀i ≤ j ≤ d and
12: za∗(i)ft(a

∗) into Treebi ∀i ≤ d, using tree based
aggregation and privacy parameter ε0.

13: end for

D.3 Differentially Private Contextual Thompson
Sampling

In this section we provide the missing details for the private con-
textual Thompson sampling algorithm (Algorithm 4) used in our
experiments section (Section 5). Similar to differentially private
contextual UCB sampling algorithm, we restrict our access to the
parameters which aggregate over each time stamp and use tree
based aggregation scheme to retrieve those parameters. Addition-
ally, since the arm set is dynamic, unlike our private Thompson
algorithm (Algorithm 2), we do not run the gap-estimation and
random pulling phases.

Algorithm 4 Private Contextual Thompson Sampling
Input: Time horizon: T , arms: C = {a1, · · · , ak}, pri-

vacy parameter: ε, explore/exploit parameter: α, Con-
text vector length: d.

1: Initialize: A = Id (Identity matrix of size-d), µ = 0d
(Vector of length-d with all 0 entries), b = 0d.

2: Create empty trees TreeAi,j
∀i ≤ j ≤ d and

Treebi∀i ≤ d with (T )-leaves. Set ε0 ← 2ε
(d2+3d) .

3: for t← 1 to T do
4: Receive Arm context: za(t)∀a ∈ C
5: Receive Ãi,j ← from TreeAi,j

, set Ãi,j = Ãj,i and
Receive b̃i ← from Treebi .

6: if Ã is positive definite then
7: µ̂ = Ã−1b̃ and µ̃ ∼ N (µ̂, αÃ).
8: else
9: µ̂ = b̃ and µ̃ ∼ N (µ̂, αĨd).

10: end if
11: Pull arm a∗ = arg max

a∈C
(za(t)T µ̂(t)) and observe

reward ft(a∗).
12: Insert za∗(i)za∗(j) into TreeAi,j

∀i ≤ j ≤ d and
13: za∗(i)ft(a

∗) into Treebi ∀i ≤ d, using tree based
aggregation and privacy parameter ε0.

14: end for


