
8 SUPPLEMENTARY

8.1 INFLUENCE MAXIMIZATION UNDER
PROGRESSIVE MODEL: A BRIEF REVIEW

CELF method of Leskovec et al. [8] attempts to speed up
the original greedy method, proposed by Kempe et al. [2],
by reducing the number of calls to Monte Carlo routine for
spread computation. CELF lazy method is based on the
submodularity of the influence spread and can be applied
to any submodular maximization problem. Although lazy
evaluation improves the running time of the original greedy
method by up to 700 times [8], it still does not scale to large
graphs [4].

Recently heuristics have been proposed to approximate in-
fluence spread for LT [4] and IC [5] which enables the
greedy method to scale for large networks. Chen et al. [4]
suggest to use a local directed acyclic graph (LDAG) per
node, instead of considering the whole graph, to approxi-
mate the influence flowing to the node. Goyal et al. pro-
pose SIMPATH method [9] under the LT model which is
built on CELF method [8]. They approximate the influ-
ence spread by enumerating the simple paths starting from
the seeds within a small neighborhood. Both of these meth-
ods have parameters to be tuned which control the trade-off
between running time and accuracy of influence spread es-
timation. Methods presented in [4, 9] accelerate the greedy
method [2] substantially and achieve high performance in
influence maximization.

Gomez-Rodriguez et al. [6] propose a progressive continu-
ous time influence model with dynamics similar to IC and
show that influence maximization is NP-hard for this model
as well. They show submodularity of influence spread and
exploit the same greedy algorithm. In contrast to all other
progressive models, influence spread has a closed form for
this model but the computation is not scalable for large
scale networks. A recent work [7] has scaled influence
computation by developing a randomized algorithm for ap-
proximating it.

8.2 PROOF OF THEOREM 1

For proving this theorem we need the following lemmas.

Lemma 1. When an interior node s is added to the current
absorbing set S, the new fundamental matrix F can be cal-
culated from the previous one using the following equation:
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Proof. The proof is straightforward based on Schur com-
plement theorem [30].

This lemma helps avoiding the matrix inversion required

for computing the new FS∪{s} whenever an interior node
s is added to the seed set S.

Lemma 2. The expected number of passages through an
interior node and the expected number of passages through
its interior neighbors has the following relation:
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Proof. We know FS = (I − RS)−1. Start with (I −
RS)−1(I−RS) = I and after multiplication and rearrang-
ing we get to the lemma’s statement: FS = I+FSRS

Lemma 3. Starting from node i the absorption probability
by node s, when S ∪ {s} is the absorbing set, can be ob-
tained from the expected number of passages through node
s when it was not absorbing:
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where the third and fifth equalities come from lemma 1 and
lemma 2 respectively.

Proof of Theorem 1 is simply an instantiation of Lemma
3 for the case that we add node s as the first seed to the
network and get Q{s}is =

F∅is
F∅ss

, where ∅ emphasizes that the
bias node is the only boundary. Note that all of the three
lemmas are general in a sense that absorbing set can contain
any type of boundary points, including zero-value node like
the bias node and one-value node like a seed node.

8.3 PROOF OF THEOREM 2

Proof. Consider an instance of the NP-complete Vertex
Cover problem defined by an undirected and unweighted n-
node graph G = (V, E) and an integer k; we want to know
if there is a set S of k nodes in G so that every edge has at



least one endpoint in S. We show that this can be viewed as
a special case of the influence maximization (9). Given an
instance of the Vertex Cover problem involving a graph G,
we define a corresponding instance of the influence max-
imization problem under HC for infinite time horizon, by
considering the following settings in (1): (i) ωij = ωji = 1,
if edge (i − j) ∈ E , otherwise ωij = ωji = 0, (ii) bias
node’s value is zero b = 0, and (iii) βi for all i’s are equal
to a known β. Note that since each interior node is con-
nected to the zero-value bias node with edge weight β it
cannot have value larger than 1 − β. Hence, if there is a
vertex cover S of size k in G, then one can deterministi-
cally make σ(A,∞) = k+(n−k)(1−β) by targeting the
nodes in the set A = S; conversely, this is the only way to
get a set A with σ(A,∞) = k + (n− k)(1− β).

8.4 PROOF OF THEOREM 3

As mentioned in Section 4.3 when t → ∞ superposition
principle applies for the HC model. We exploit this fact
to prove the submodularity of influence spread. First note
that σ(S,∞) computed from (8) is the sum of node values
and since the conic combination of submodular functions is
also submodular it is enough to show that each node value,
i.e., v(i) is submodular to proof Theorem 3. Here we need
to work with the general set of bias nodes (compare to sin-
gle bias node b) which we call ground set G. We intro-
duce a new notation where the value of node i is shown
with vS,G(i). Also seed nodes can have arbitrary value of
≥ b instead of all 1 values.For proving the submodularity
of v(i) we should prove:

vT ∪{s},G(i)− vT ,G(i) ≥ vS∪{s},G(i)− vS,G(i), T ⊆ S
(15)

We invoke superposition to perform the subtraction:

v{svL},G∪T (i) ≥ v{svR},G∪S(i), T ⊆ S (16)

where vL and vR emphasize that the value of the new seed
node is different in left and right hand side and is qual to
vL =

(
1 − vT ,G(s)

)
and vR =

(
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)
. Note that

vL ≥ vR since T ⊆ S . We can not compare the value
of nodes in two different networks unless they share same
grounds and seeds with possibly different values for each
seed. Therefore, we try to make the grounds of both sides
of (16) identical by expanding the LHS of (16) using su-
perposition law [31]:

v{svL},G∪T (i) = v{svL},G∪S(i) + vD,G∪S∪s,(i) (17)

where D = S − T . Although second term of (17) is com-
plicated but for our analysis it is enough to note that it is
a non-negative number α ≥ 0. Now the submodularity in-
equality (15) reduces to:

v{svL},G∪S(i) + α ≥ v{svR},G∪T (i) (18)

Now both sides have the same set of sources and grounds
and we now vL(u) ≥ vR(u) and α ≥ 0 which completes
the proof.


