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Abstract

This supplementary material contains proofs for the theorems in Multitasking:
Efficient Optimal Planning for Bandit Superprocesses. This document is largely
self-contained and includes a copy of the relevant notation and definitions from
the paper.

1 Model Definitions & Notation
Definition 1. (Markov Decision Process [Puterman, 2009]) A (finite-state, discounted)
MDP, M , is a tuple M = 〈S,A, T,R, γ〉. S is a set of states. A is a set of actions.
T : S × A × S → [0, 1] is a function that assigns probability to state transitions for
each state–action pair. R is a (bounded) reward function that maps state–action pairs
to (positive) rewards R : S ×A → R+. γ ∈ [0, 1) is a discount factor.

A solution to M is a policy, π, that maps states to actions. The value of a state,
s, under π is the sum of expected discounted rewards received by starting in s and
selecting actions according to π:

V π(s) = E

[ ∞∑
t=0

γtR(st)|s0 = s, π

]
.

The optimal policy, π∗, maximizes this value. In the above definition, and the ones that
follow, we use superscripts to indicate dependence on the agent’s policy. To simplify
notation, we will omit these superscripts when the policy referred to is the optimal
policy (e.g., V (s) = V π

∗
(s)). The Q-function for the state–action pair, (s, a), is the

value of taking a in s and selecting future actions according to π∗.

Definition 2. (Bandit Superprocess [Nash, 1973]) Given kMDPs, {Mi = 〈Si,Ai, Ti, Ri, γ〉},
we define

M =
∑
i

Mi = 〈S, A, T, R, γ 〉

to be the bandit superprocess (BSP) with arms {Mi}. M has a state for each combi-
nation of arm states and a action for each arm action:

S = ×
i
Si A = ∪

i
Ai.
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The transition distribution is stationary for arms that are not selected and follows the
identical reward and transition distributions for the selected arm.

The classic multi-armed bandit (MAB) consists of a set of Markov reward processes
(MRPs). An MRP is a degenerate MDP with |A| = 1, and so is a special case of a
bandit superprocess. MABs and BSPs exhibit highly factored transition dynamics, a
useful tool to leverage this decomposition is a retirement process.

Definition 3. (Retirement Process [Whittle, 1980]) Let M be an MDP. For ρ ≥ 0,
the retirement process for M with retirement reward, ρ, is an MDP, Mρ, with a single
additional state, sR, and action, aR. aR transitions deterministically to sR and receives
reward ρ. sR is a sink state that accrues zero reward.

We will denote the retirement process value function as a function of a state and
retirement reward, V (s, ρ). We let the optimal policy for retirement reward ρ be π∗ρ . For
any fixed policy, π, and retirement reward, ρ, we write the set of states where retirement
is optimal as τπρ . We drop the superscript in the case where the policy is the optimal

policy under ρ: τρ = τ
π∗ρ
ρ . We adopt a convention from the MAB literature and abuse

notation somewhat to denote the (random) number of actions taken prior to retirement,
given that the agent is in state s, as τπρ (s). For s′ ∈ τπρ we let Pretire(s′|s, ρ, π) be
the probability that s′ is the first state in τπρ the agent will reach given that it is in state
s and executes policy π. We denote the expected discounted reward accrued prior to
retirement as Rπρ (s). We omit the superscript in the case where the policy is π∗ρ . This
allows us to write the following expression for the retirement process value function:

V (s, ρ) = Rρ(s) + E[γτρ(s)]ρ. (1)

V (s, ρ) is piecewise linear in ρ. In regions of retirement reward where the optimal
policy and stopping rule do not change, ∂V∂ρ (s, ρ) is defined and is equal to the expected
value of the discount parameter at retirement. Policies whose optimality is independent
of ρ are called dominating policies.

Definition 4. (Dominating Policy) Let π be a policy for an MDP,M . π is a dominating
policy iff

∀ρ ≥ 0 ∀s /∈ τρ π(s) = π∗ρ(s).

The values of retirement reward where the optimal stopping rule or the optimal
policy changes will characterize the interactions between arms of a BSP or MAB:

Definition 5. (Critical Values of an MDP) Let M be a Markov decision process. The
interaction values of M , C(M) = {ρi}, are the values of retirement reward such that
optimal stopping rule or policy changes.

2 Whittle Integral
In this section, we define the Whittle integral and state the Whittle condition. Then
we prove that it is equivalent to taking a weighted combination of retirement process
values for a single arm.
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Definition 6. (Whittle Integral) Let M be a BSP. Let i index the arms of M. For any
state, s = {si}, and ρ ≥ 0, the Whittle integral of s is defined as follows:

V̂ (s, ρ) = I −
∫ I

α=ρ

dα
∏
i

∂Vi
∂ρ

(si, α). (2)

Where I ≥ maxi Isi .

Theorem 1. (Whittle Condition [Whittle, 1980]) Let M be a k-armed BSP with com-
ponents {Mi} and state space S. If each Mi has a dominating policy, then

∀s ∈ S,∀ρ ≥ 0, V̂ (s, ρ) = V (s, ρ).

Theorem 2. Let X,Y be Markov reward processes. Let Z = X + Y be the 2-armed
bandit that corresponds to their sum. ∀s = {sX , sY } ∈ SZ ,

VZ(s) =
∑

ρ∈C(Y )

VX(sX , ρ)∆Y (sY , ρ). (3)

Proof. For a fixed policy and stopping rule, VY (sY , ·) is linear. Thus, ρ /∈ C(Y ) implies
∆Y (sY , ρ) = 0.

∆Y
ρ (s, x) =


∆Y (s, x) x > ρ∑

x′≤x ∆Y (s, x′) x = ρ

0 x < ρ
.

Is = max
s′∈{sX ,sY }

Is′

Integrating Eq. 2 by parts, we have

V̂Z(s, ρ) = VX(sX , ρ)
∂VY
∂ρ

(sY , ρ) +

∫ Is

ρ

VX(sx, α)
∂2VY
∂ρ2

(sY , α)dα

= VX(sX , ρ)
∂VY
∂ρ

(sY , ρ) +
∑

{α∈C(Y )|α≥ρ}

Vx(sx, α) lim
δ→0

∫ α+δ

α−δ

∂2VY
∂ρ2

(s, β)dβ

= VX(sX , ρ)
∂VY
∂ρ

(sY , ρ) +
∑

{α∈C(Y )|α≥ρ}

VX(sX , α)∆Y (sY , α)

∂VY
∂ρ

(sY , ρ) =
∂VY
∂ρ

(sY , ρ)− ∂VY
∂ρ

(sY , 0) =

∫ ρ

0

∂2V

∂ρ2
(sY , α)dα = ∆Y

ρ (s, ρ) (4)

VZ(s, ρ) =
∑

α∈C(Y )

VX(sX , α)∆Y
ρ (s, α)

Where the equality in 4 holds because ∂VY
∂ρ (sY , 0) = 0. Furthermore,

∂VY
∂ρ

(sY , Is) = 1.
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Thus ∑
0≤m≤Is

∆Y
ρ (sY ,m) =

∑
0≤m≤Is

∆Y (sY ,m) =

∫ Is

m=0

∂2V

∂ρ2
(sY ,m)dm = 1.

Thus, we can see that VZ(s, ρ) is a convex combination of VX(sX , α) for α ∈ ρ, the
relative weights of which are specified by ∆Y

ρ . Taking ρ = 0 and invoking Theorem 1
shows the result.

3 Dominated Relaxation
In this section, we define our primary theoretical result: a relaxation for the arms of
a BSP so that a dominating policy exists. We prove that the retirement process value
function of the relaxed MDP is equivalent to the Whittle integral. This allows us to
derive a novel proof that the Whittle integral is an upper bound.

Definition 7. (Dominated Relaxation of an MDP) Let M be an MDP with discount
factor γ and state space S. Let s be a state in M . The dominated relaxation of P for
s, MD(s) is a semi-Markov decision process that fixes s as an initial state. Let we let
{πi} be polices that are optimal for some ρ: {π∗ρ|ρ ∈ C(M)}. This sequence is ordered
so that ρ−(πi) is increasing in i.

For each i, we introduce a copy of the state space, Si, where the agent is restricted
to following πi. Let s′i be the analogue of s′ in Si. For s′i ∈ τρ−(πi), we introduce a
single durative action, ai, that takes the agent from Si to Si−1 and characterize it as
follows:

• R(s′i) = Rρ+(πi−1)(s)−Rρ−(πi)(s)

• T (s′i, ai, s
′′
i−1) = Pretire(s

′′|πi−1, ρ+(πi−1), s)

• δ(ai) = logE[γτρ+(πi−1)(s)]− logE[γτρ−(πi)
(s)]

Finally, for each i, we introduce an action that transitions from s to si with δ = 0. We
will write VD(s) to represent the value of s in MD(s).

Theorem 3. Let M be an MDP with state space S. The following statements are true
for s ∈ S and ρ ≥ 0:

1. MD(s) satisfies the Whittle condition.

2. VD(s, ρ) = V̂ (s, ρ).

3. V̂ (s, ρ) ≥ V (s, ρ)
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Proof. 1. By construction, ρ−(πi) = ρ+(πi−1). We denote this as ρi. Let π′i be a
policy inMD that initially transitions to si, and then transitions to Si−1. We have

V π
′
i(s, ρi) = Rρ−(πi)(s) + E[R(s′i) + γτ

πi
ρi

(s)+δ(a′)ρi]

= Rρ−(πi)(s) +Rρ+(πi−1)(s)−Rρ−(πi)(s) + E[γτ
πi
ρi

(s)]E[γδ(a
′)]ρi

= Rρ+(πi−1)(s) + E[γτ
πi
ρi

(s)]
E[γτρ+(πi−1)(s)]

E[γτρ−(πi)
(s)]

ρi

= V πi−1(s, ρi)

Thus, the agent is indifferent between πi, πi−1, and π′i at ρi. By definition, the
distribution over states for π′i after transitioning to Si−1 is identical to that of
πi−1. The above reasoning also shows that the value of the discount parameter
is the same. This is sufficient to conclude that

∀ρ ∈ [ρi−1, ρi−2], V π
′
i(s, ρ) = V πi−1(s, ρ). (5)

This is sufficient to show that a policy that transitions to s0 initially and then
takes a durative action at each stopping state is optimal for all ρ. Thus, MD

satisfies the Whittle condition.

2. Eq. 5, it is easy to see that V π
′
k(s, ρ) = V (s, ρ). An appeal to Eq. 2 allows us to

conclude (2).

3. The optimal policy for M is a feasible policy for MD. Thus, V is a lower bound
on VD. This allows us to conclude (3) from (2).

4 Branch and Bound Value Iteration
In this section, we prove correctness for Branch and Bound Value Iteration (BBVI).
Pseudocode for BBVI can be found in Algorithm 2.

First, we show that the upper and lower bounds BBVI computes (Q+, Q−) actually
bound the value function.

Theorem 4. Let M be an MDP with state space S and action space A. Let S ′ ⊆ S
where S ′ = U ∪ E and ∀ s ∈ E , T (s, a, s′) 6= 0 ⇒ s′ ∈ S ′. LetMUB be an MDP
with state space S ′ ∪ {α}, with identical transition distribution and rewards for states
in E(expanded states), with each state in s ∈ U transitioning deterministically to α and
receiving reward that is an upper bound on V ∗(s). Let α be a sink state with 0 reward.
The value of any state in PUB is an upper bound on the value of the corresponding
state in the original MDP.

Proof. Initialize value iteration with upper bounds on the value at each state: ∀s ∈
S ′, V0(s) ≥ V ∗(s). Initialize V0(α) = 0. Consider the initial Bellman backup for state
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Algorithm 2 Branch-and-Bound Value Iteration
Define:BBVI(〈M0, . . . ,MK〉, s0, ε)
Input: BSP arms, Mk; Initial state, s0; Tolerance, ε
# Lower bound M by fixing a policy for each arm
LBk ←toMRP(Mk)
Compute critical points for Mk, LBk
Compute bounds on Q(s0, ·) with Whittle integrals for M and LB.
# Keep track of expanded region of state space
E ← ∅
# Keep track of states at boundary of M+,M−

B ← {s0}
a∗ ← argmax

a
Q−(s0, a)

while ∃a′ 6= a∗ s.t Q+(s0, a
′) ≥ Q−(s0, a

∗) do
s←pop(B)
E ← E ∪ {s}
for a ∈ A do

for s′ ∈ successors(s) do
Compute upper and lower bounds for Q(s′, ·)
B ← B ∪ {s′}

end for
end for
Q+ ← SOLVE(BOUNDMDP(E ,B, Q+))
Q− ← SOLVE(BOUNDMDP(E ,B, Q−))
a∗ ← argmax

a
Q−(s0, a)

end while
return ε-optimal action a∗
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s ∈ E .

V1(s) = max
a∈A

∑
s′∈S′

T (s, a, s′)[R(s, a, s′) + γV0(s′)]

≥ max
a∈A

∑
s′∈S′

T (s, a, s′)[R(s, a, s′) + γV ∗(s′)]

= max
a∈A

∑
s′∈S

T (s, a, s′)[R(s, a, s′) + γV ∗(s′)]

= V ∗(s)

Thus, for expanded states, the backup operator preserves upper bounds. Furthermore,
the backup operation for states in U does not change the value and so trivially preserves
bounds. Thus at all iterations, the current estimate of the value function is an upper
bound. The convergence of value iteration shows the desired result.

Theorem 5. Let M be a BSP and let s be a state in M . Let a be the action returned by
BBV I(M, s, ε).

V (s)−Q(s, a) < ε.

Proof. We proceed by contradiction. This implies that there exists and a′ such that
Q(s, a′)−Q(s, a) ≥ ε. At termination, all actions other that a have been pruned from
s. Thus,QU (s, a′)−QL(s, a) < ε. This implies thatQL(s, a)+ε > QU (s, a′) = V (s).
Thus,

QU (s, a) > V (s)− ε
QU (s, a)− V (s) > −ε
V (s)−QU (s, a) < ε

But this contradicts Theorem 4, which implies that ε > V (s)−QU (s, a).
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