
Mesochronal Structure Learning:
Supplementary Materials

1 Proofs of Lemmas

These supplemental materials contain the proofs for the
lemmas in the main paper, presented largely without any
exposition. Throughout, we assume knowledge of the ter-
minology and notation provided in the main paper.

Lemma 3.1. Conflict persistence: If a virtual node iden-
tification results in a conflict, then no further node identifi-
cations will eliminate that conflict.

Proof: The identification of the virtual node for A → B
with node X corresponds to the addition of A → X and
X → B to G1. By definition, a conflict means that there is
at least one edge S → T or S ↔ T in G2 that is not found
in H2. Edge addition in G1 monotonically (though not
strictly) increases the sets of length-2 paths and balanced
forks of length 1 in G1, and so monotonically increases the
set of edges in G2. Thus, once S → T or S ↔ T is in G2,
further node identifications cannot remove that edge, and
so the conflict will persist. �

Lemma 3.3. The MSL algorithm is correct and complete:
givenH2, it finds all and only the G1 such that G2 = H2.

Proof : The correctness of the algorithm follows imme-
diately from the fact that every G1 in the output set was
directly tested to determine whether G2 = H2. For com-
pleteness of the algorithm, consider some arbitrary G1 in
the actual equivalence class. Since G2 = H2, there must be
a length-2 path in G1 for every edge in H2. If there is only
one such path for each H2 edge, then that G1 must eventu-
ally be formed through virtual node identifiation. Suppose
there are multiple such paths for some H2 edge, but they
are not formable through different virtual node identifia-
tions, nor is this G1 a supergraph of some other member
of the actual equivalence class. That implies that no vir-
tual node identification leads to any of those length-2 paths
being created, else this G1 would be a supergraph of some
other member of the equivalence class. But there must be
some virtual node identification for the H2 edge, since the
algorithm ultimately identifies every virtual node, and there
is one for that edge. Hence, we have a contradiction, and

so the algorithm is complete. �

Lemma 3.4. A virtual node V in S
V−→ E cannot be iden-

tified with node X if any of the following holds:

1. ∃W ∈ chG1(S) \X s.t. @W ↔ X inH2

2. ∃W ∈ chG1(X) \ E s.t. @W ↔ E inH2

3. ∃W ∈ chG1(X) s.t. @S →W inH2

4. ∃W ∈ chG1(E) s.t. @X →W inH2

5. ∃W ∈ paG1(S) s.t. @W → X inH2

6. ∃W ∈ paG1(X) s.t. @W → E inH2

Proof : V being identified with X just means that we add
S → X and X → E to G1. Each constraint is now proven
separately:

1. For every non-X child W of S, G1 now contains
W ← S → X , so G2 will contain W ↔ X . If that is
not inH2, then we have a conflict.

2. For every non-E child W of X , G1 now contains
W ← X → E, so G2 will contain W ↔ E. If that is
not inH2, then we have a conflict.

3. For every child W of X , G1 now contains S → X →
W , so G2 will contain S → W . If that is not in H2,
then we have a conflict.

4. For every child W of E, G1 now contains X → E →
W , so G2 will contain X → W . If that is not in H2,
then we have a conflict.

5. For every parent W of S, G1 now contains W → S →
X , so G2 will contain W → X . If that is not in H2,
then we have a conflict.

6. For every parent W of X , G1 now contains W →
X → E, so G2 will contain W → E. If that is not in
H2, then we have a conflict.

�

Lemma 3.5. A virtual node pair V1, V2 for a fork E1
V1←−

S
V2−→ E2 cannot be identified with nodes X1, X2 if any of

the following holds:

1. V1 in E1
V1←− S cannot be identified with X1

2. V2 in S
V2−→ E2 cannot be identified with X2

3. V1 ≡ E2 ∧ V2 6∈ paH2(E1)



4. V2 ≡ E1 ∧ V1 6∈ paH2(E2)
5. S ≡ V2 ∧ V1 6= V2 ∧ V1 6= E2 and @E2 ↔ V1 inH2

6. S ≡ V1 ∧ V1 6= V2 ∧ V2 6= E1 and @V2 ↔ E1 inH2

7. S ≡ V1 ∧ (V1 ≡ V2 ∨ V2 ≡ E2) and @E1 ↔ E2 in
H2

8. S ≡ V2 ∧ (V1 ≡ V2 ∨ V1 ≡ E1) and @E1 ↔ E2 in
H2

9. V1 ≡ V2 and @E1 ↔ E2 inH2

Proof : V1, V2 being identified with X1, X2 just means that
we add E1 ← X1, X1 ← S, S → X2, and X2 → E2 to
G1. Each constraint is now proven separately:

1. If V1 cannot be identified with X1 on other grounds,
then this constraint fails

2. If V2 cannot be identified with X2 on other grounds,
then this constraint fails

3. The first conjunct implies V2 → E2 ≡ V1 → E1

in G1, so V2 → E1 in G2, which conflicts with the
second conjunct.

4. The first conjunct implies V1 → E1 ≡ V2 → E2

in G1, so V1 → E2 in G2, which conflicts with the
second conjunct.

5. The initial conjuncts imply V1 ← S ≡ V2 → E2 in
G1, so V1 ↔ E2 in G2, which conflicts with the last
conjunct

6. The initial conjuncts imply E1 ← V1 ≡ S → V2 in
G1, so E1 ↔ V2 in G2, which conflicts with the last
conjunct

7. The initial conjuncts imply E1 ← V1 ≡ S and either
S → V2 ≡ E2 or S ≡ V2 → E2 in G1, so E1 ↔ E2

in G2, which conflicts with the last conjunct
8. The initial conjuncts imply S ≡ V2 → E2 and either

E1 ≡ V1 ← S or E1 ← V1 ≡ S in G1, so E1 ↔ E2

in G2, which conflicts with the last conjunct
9. The initial conjunct implies E1 ← V1 ≡ V2 → E2

in G1, so E1 ↔ E2 in G2, which conflicts with the
second conjunct.

�

Lemma 3.6. A virtual node pair V1, V2 for two-edge se-
quence S

V1−→ M
V2−→ E cannot be identified with X1, X2

if any of the following holds:
1. V1 in S

V1−→M cannot be merged to X1

2. V2 in M
V2−→ E cannot be merged to X2

3. V1 ≡ V2 ∧ (M 6∈ paH2(M) ∨ V1 6∈ paH2(V2) ∨ S 6∈
paH2(E))

Proof : V1, V2 being identified with X1, X2 just means that
we add S → X1, X1 → M , M → X2, and X2 → E to
G1. Each constraint is now proven separately:

1. If V1 cannot be identified with X1 on other grounds,
then this constraint fails

2. If V2 cannot be identified with X2 on other grounds,
then this constraint fails

3. Let V ≡ V1 ≡ V2. The first conjunct implies S →
V → M → V → E in G1, so M and V both have
self-loops in G2, and S → E in G2, each of which
conflicts with part of the second conjunct.

�

2 Supergraphs in equivalence class
algorithm

Algorithm 1: Find class-equivalent supergraphs of G1

Input: G1
1 from G1 compute G2
2 initialize an empty set S

3 begin add edges G∗, L, G2
4 if L has elements then
5 forall the edges in L do
6 if edge creates a conflict remove it from L

7 if len(L) == 0 then
8 stop

9 forall the edges in L do
10 add the edge to G∗ add the new G∗ to S

recurse into add edges with new G∗ and L
remove the edge to G∗

11 put all edges missing from G1 into list L
12 call add edges G1, L, G2
13 return S


