
Supplementary Material for Fast Algorithms for Learning with Long N -grams
via Suffix Tree Based Matrix Multiplication

Hristo S. Paskov

1 Modified Sparse Matrix Format

The standard compressed sparse column (CSC) format for
a sparseM×N matrixX consisting of nz non-zero entries
stores three arrays:

1. The jc array, an array of sizeN+1 such that jc[i+1]−
jc[i] gives the number of non-zero entries in column i.

2. The ir array, an array of size nz in which indices
jc[i], . . . , jc[i+ 1]− 1 contain the row ids of the non-
zero entries in column i.

3. The x array, a double array of size nz containing the
non-zero entries of X in the same order that they are
listed in the ir array.

This matrix format is inefficient when storing frequency
data since we know all entries in x are non-negative in-
tegers. Moreover, the number of bits needed to store each
index in the jc array is dlog2 nze which can be significantly
larger than dlog2 U

Xe where UX is the largest number of
non-zero elements in any column. Our modified CSC for-
mat simply replaces the jc array with an integer array of
size N that stores the number of non-zero elements in each
column and it replaces x by an integer array of frequency
counts. This modifications can lead to substantial savings
when appropriate.

2 Examples for N -Gram and Node Matrix
Inefficiencies

We start with a canonical example from the suffix tree liter-
ature which highlights the inefficiency of the N -gram ma-
trix. Suppose that the document corpus consists of a single
document D1 = c1c2 . . . cn of n distinct characters, i.e.
ci 6= cj if i 6= j. There are n2+n

2 distinct substrings in
this document, so the N -gram matrix pertaining to all pos-
sible N -grams is a row vector of n2+n

2 ones. In contrast,
the node matrix X only consists of n entries pertaining to

every distinct character. Direct multiplication with X re-
quires Θ(n2) operations whereas multiplication with X re-
quires Θ(n) operations.

Next, to show that the node matrix can be inefficient, con-
sider a document corpus comprised ofK documents and an
alphabet of K distinct characters c1, . . . , cK . The ith docu-
ment Di = c1c2 . . . ci is comprised of the first i characters
of the alphabet and the total corpus length is n = K2+K

2 .
By inspecting the structure of the suffix tree TC for this cor-
pus, it is possible to show that both the all N -grams ma-
trix X and all N -grams node matrix X have Θ(K3) non-
zero entries and thus require Θ(n

√
n) memory to store and

Θ(n
√
n) operations to multiply.

In particular, consider the branch β1 corresponding to suf-
fix DK [1], i.e. the suffix consisting of K characters and
equal to the entire documentDK . Note that there is a docu-
ment Di equalling every prefix [i]DK = c1c2 . . . ci of DK .
By construction, for i = 1, . . . ,K− 1, every occurrence of
the substring [i]DK in C is either followed by ci+1 (for ex-
ample in document Di+1) or is the end of a document (i.e.
Di). This structure implies that β1 contains K − 1 inter-
nal nodes pertaining to the first K − 1 characters in DK [1]
and that the edge labels connecting these nodes contain a
single character. For i < K the internal node pertaining to
character ci has two children: a leaf indicating the end of
document Di and another internal node corresponding to
character ci+1. The final node in β1 has character label cK
and is a leaf signalling the end ofDK . If we count this node
(for simplicity), the node pertaining to character i appears
in exactly K − i + 1 documents, so the column for sub-
string [i]DK in the (all) node matrix X contains K − i+ 1
non-zero entries. The K prefixes of DK each pertain to a
node in β1 and have a column in X with a total of

K∑
i=1

(K − i+ 1) =
K2 +K

2

non-zero entries.

The other strings in the corpus are formed in a similar man-
ner by looking at the prefixes of ci . . . cK , i.e. all pre-

fixes of every suffix of DK . Note that the corpus length is
n = K2+K

2 and there are n distinct substrings, equivalence
classes, and nodes in TC (that correspond to these equiva-
lence classes) so X has n columns. By iterating our earlier
reasoning we see that branch βk corresponds to (all pre-
fixes of) suffix DK [k] and it accounts for k of these nodes.
In total these k nodes contribute

k∑
i=1

(k − i+ 1) =
k2 + k

2
(1)

non-zero entries to X .

By summing equation (1) from k = 1, . . . ,K we find that
X has Θ(K3), i.e. Θ(n

√
n), non-zero entries and therefore

is as inefficient as the naı̈ve all N -grams matrix!

3 Proof of Theorem 4

Suppose that f is J -PI where J = {ζ1, . . . , ζm} and let
X∗ be the set of minimizers of minx∈Rd f(x). If X∗ is
empty then our proof is trivial, so we assume thatX∗ is not
empty. The central idea behind our proof is that X∗ must
contain a Cartesian product of permutahedrons (Ziegler,
1995). In particular, given a finite vector a ∈ Rn, the per-
mutahedron P(a) ⊂ Rn on a is the polyhedron formed by
taking the convex hull of all n! n-vectors whose entries are
some permutation of the entries of a.

In order to see how this relates to f , let x ∈ X∗ be optimal
and let xζk denote the nk = |ζk| entries in x with indices
in ζk. Since f is J -PI, it follows that f ’s value remains
unchanged if we permute the xζk arbitrarily. In fact, by
definition, if x̂ is the vector formed by arbitrarily permuting
the entries within each ζk ∈ J , then f(x) = f(x̂) so x̂ ∈
X∗ is optimal as well. Assume, without loss of generality,
that ζ1 = {1, . . . , n1}, ζ2 = {n1 + 1, . . . , n1 + n2} and so
on and define

Q = P(xζ1)× P(xζ2)× · · · × P(xζm).

Our reasoning shows that any z ∈ Q is optimal and hence
Q ⊂ X∗.

Now consider the centroid of Q, µ ∈ Rd. The centroid of
P(a) for a ∈ Rn is simply the n-vector with 1

n

∑n
i=1 ai in

every entry (Ziegler, 1995). Moreover, since Q is a Carte-
sian product of polyhedra, its centroid is given by stacking
the centroids of its constituent polyhedra. Let η ∈ Rm have

its entries be ηk =
xTζk

1

nk
, i.e. the mean of the elements in

xζk and define V ∈ {0, 1}d×m to be the binary matrix in
which column k has ones in indices ζk and is all 0 other-
wise. It follows that µ = V η, and since µ ∈ Q ⊂ X∗,
there must be a minimizer of f whose entries are identical
in each of the ζk.

This reasoning then shows that constrained problem

minimize
x∈Rd

f(x) subject to x ∈ colV. (2)

is a constrained convex problem (with a linear constraint)
and therefore has a minimum that is lower bounded by the
minimum of our original (unconstrained) problem. By con-
struction of µ, we see that it satisfies the linear constraint
and is an optimal point for both problems. It follows, then,
that the minimizers of the problem in equation (2) are a
subset of X∗. Moreover, solving equation (2) will always
provide a minimizer of the original optimization problem.

We can then replace the subspace constraint by noting that
x ∈ colV if and only if x = V z for some z ∈ Rd. This
leads to a problem which is equivalent to the problem in
(2), namely

minimize
z∈Rm

. f(V z) (3)

It follows that we obtain a minimizer of our original prob-
lem simply by setting x = V z, i.e. xi = zk where i ∈ ζk.
Importantly, equation (3) is a smaller minimization prob-
lem over m variables and not d terms. We note that this
proof is entirely geometric and the details of how problem
(3) might further be reduced algebraically are problem de-
pendent. QED.

References

Ziegler, Günter M. Lectures on polytopes. Vol. 152.
Springer Science & Business Media, 1995.

