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1 Discrete Fourier matrix

The N by N discrete Fourier transform matrix FN has entries

{FN}j,k =
1√
N

(ω)jk

with j, k = 0, 1, . . . , N − 1 and ω = ei2π/N , and as we mention in the main paper, the inverse Fourier
transform matrix ψ is given by its conjugate transpose. The partial M by N IDFT matrices A necessary in
Algorithm 1 are obtained by computing and stacking only a subset of M random rows from ψ.

2 Line search subroutine

We select step sizes with a simple line search algorithm summarized in the pseudocode below that works by
evaluating an easily computed upper bound f̂ on the objective f :

f̂L(Z, Y ) := f(Y ) +∇f(Y )T (Z − Y ) +
L

2
||Z − Y ||22. (1)

We follow Beck and Teboulle [2009], who provide further details. In implementation, we select L =
5× 10−6 and c = .5, and reuse the gradient computed in line-search for step 10 of Algorithm 1 in the
main paper: no additional evaluations of∇g are required for line-search.

Algorithm 1 line-search procedure.
1: Input: initial step size L, shrinking factor c, matrices Yk,∇g(Yk).
2: Set Z = softh(Yk − L∇g(Yk))
3: while g(Z) > f̂L(Z, Yk) do
4: Update L = cL
5: end while
6: return Lk = L
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Figure 1: Illustration of the three types of transposition—birth, death, shift—along a genome, represented
by circles [Rosenberg et al., 2003]. Transposons are depicted by rectangles occupying locations along the
circles/genomes. On the right set of diagrams, a birth event keeps the number of type 1 particles intact and
increments the number of type 2 particles by one, a death event changes the number of type 1 particles from
five to four and keeps the number of type 2 particles at zero, and finally a shift event decreases the number
of type 1 particles by one and increases the number of type 2 particles by one.

3 BDS model diagram

The branching process components X(t) = (xold, xnew) represent the number of originally occupied and
newly occupied sites at the end of each observation interval. As an example, assume six particles (trans-
posons) are present initially at time t0, and a shift and a birth occur before the first observation t1, and a
death occurs before a second observation at t2. When considering the first observation interval [t0, t1), we
have {X(t0) = (6, 0),X(t1) = (5, 2)}. When computing the next transition probability over [t1, t2), we
now have {X(t1) = (7, 0),X(t2) = (6, 0)}, since all seven of the particles at t1, now the left endpoint of
the observation interval, now become the initial population. Even with data over time, this seeming in-
consistency at the endpoints does not become a problem because transition probability computations occur
separately over disjoint observation intervals. See Xu et al. [2014] for further details.
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4 Derivation for hematopoiesis process PGF

Given a two-type branching process defined by instantaneous rates ai(k, l), denote the following pseudo-
generating functions for i = 1, 2:

ui(s1, s2) =
∑
k

∑
l

ai(k, l)s
k
1s
l
2

We may expand the probability generating functions in the following form:

φ10(t, s1, s2) = E(s
X1(t)
1 s

X2(t)
2 |X1(0) = 1, X2(0) = 0)

=

∞∑
k=0

∞∑
l=0

P(1,0),(k,l)(t)s
k
1s
l
2

=

∞∑
k=0

∞∑
l=0

(1k=1,l=0 + a1(k, l)t+ o(t))sk1s
l
2

= s1 + u1(s1, s2)t+ o(t).

We have an analogous expression for φ01(t, s1, s2) beginning with one particle of type 2 instead of type 1.
For short, we will write φ10 := φ1, φ01 := φ2.

Thus we have the following relation between the functions φ and u:

dφ1
dt

(t, s1, s2)|t=0 = u1(s1, s2)

dφ2
dt

(t, s1, s2)|t=0 = u2(s1, s2)

To derive the backwards and forward equations, Chapman-Kolmogorov arguments yield the symmetric
relations

φ1(t+ h, s1, s2) = φ1(t, φ1(h, s1, s2), φ2(h, s1, s2)) (2)

= φ1(h, φ1(t, s1, s2), φ2(t, s1, s2)) (3)

First, we derive the backward equations by expanding around t and applying (2):

φ1(t+ h, s1, s2) = φ1(t, s1, s2) +
dφ1
dh

(t+ h, s1, s2)|h=0h+ o(h)

= φ1(t, s1, s2) +
dφ1
dh

(h, φ1(t, s1, s2), φ2(t, s1, s2)|h=0h+ o(h)

= φ1(t, s1, s2) + u1(φ1(t, s1, s2), φ2(t, s1, s2)h+ o(h))

Since an analogous argument applies for φ2, we arrive at the system{
d
dtφ1(t, s1, s2) = u1(φ1(t, s1, s2), φ2(t, s1, s2))
d
dtφ2(t, s1, s2) = u2(φ1(t, s1, s2), φ2(t, s1, s2))

with initial conditions φ1(0, s1, s2) = s1, φ2(0, s1, s2) = s2.
Recall the rates defining the two-compartment hematopoiesis model are given by

a1(2, 0) = ρ a1(0, 1) = ν a1(1, 0) = −(ρ+ ν)

a2(0, 0) = µ a2(0, 1) = −µ

3



Thus, the pseudo-generating functions are

u1(s1, s2) = ρs21 + νs2 − (ρ+ ν)s1

u2(s1, s2) = µ− µs2 = µ(1− s2)

Plugging into the backward equations, we obtain

d

dt
φ1(t, s1, s2) = ρφ21(t, s1, s2) + νφ2(t, s1, s2)− (ρ+ ν)φ1(t, s1, s2)

and
d

dt
φ2(t, s1, s2) = µ− µφ2(t, s1, s2).

The φ2 differential equation corresponds to a pure death process and is immediately solvable: suppressing
the arguments of φ2 for notational convenience, we obtain

d

dt
φ2 = µ− µφ2

d

dt
φ2(

1

1− φ2
) = µ

ln(1− φ2) = −µt+ C

φ2 = 1− exp(−µt+ C)

Pluggin in φ2(0, s1, s2) = s2, we obtain C = ln(1− s2), and we arrive at

φ2(t, s1, s2) = 1 + (s2 − 1) exp(−µt) (4)

Plugging this solution into the other backward equation, we obtain

d

dt
φ1(t, s1, s2) = ρφ21(t, s1, s2)− (ρ+ ν)φ1(t, s1, s2) + ν(1 + (s2 − 1) exp(−µt)) (5)

This ordinary differential equation can be solved numerically given rates and values for the three argu-
ments, allowing computation of φi,j = φi1φ

j
2 which holds by particle independence.

5 Relative Errors

To supplement the error analysis in the main paper, here we include a discussion of the relative errors

εrel
kl =

{
εkl
Skl

Skl 6= 0

εkl Skl = 0
.

Most relative errors are extremely small but feature a few severe outliers due to dividing by negligibly small
probabilities in S relative to tolerance set for PGD convergence. For instance, in one trial of the HSC model
with N = 256, the median, mean, and maximum absolute values of relative errors |εrel

kl | are 0, 0.00908, and
91— note the mean is still low despite outlier skew, and even the 99th percentile relative error is 0.000118,
but the max error of 91 suggests the presence of rare but extreme outliers. Thus, while they are a more
standard measure of accuracy than those reported in the main paper, relative errors provide limited insight
to performance.

Nonetheless, we can again take a conservative look at accuracy by only considering relative errors among
the nonzero values of S that comprise most of the total transition mass. In the aforementioned HSC example
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Table 1: Summary statistics of absolute values of relative errors over transition probabilities comprising
98% of total mass, HSC model

N Median Mean 3rd Quartile 95 Percentile
128 0.013 0.023 0.030 0.080
256 0.021 0.068 0.093 0.27
512 0.039 0.094 0.14 0.33

1024 0.029 0.070 0.074 0.29
2048 0.043 0.098 0.13 0.38
4096 0.056 0.10 0.14 0.34

Table 2: Summary statistics of absolute values of relative errors over transition probabilities comprising
98% of total mass, BDS model

N Median Mean 3rd Quartile 95 Percentile
128 0.010 0.015 0.022 0.041
256 0.043 0.10 0.13 0.31
512 0.035 0.069 0.088 0.22

1024 0.10 0.16 0.24 0.42
2048 0.075 0.15 0.22 0.50
4096 0.083 0.13 0.19 0.41

withN = 256, 221 entries comprise 98% of support. This at once discards extreme numerical outliers while
being conservative in that the many zero-valued entries of S do not favorably affect this measure. Table 1
and 2 include summary statistics of the absolute values of these restricted relative error measures for both
models over 12 random restarts. We see that despite heavily restricting to a set that makes the relative errors
look less favorable, relative errors are low overall in all cases.

6 Implementation

We provide open-source R code for CSGF since existing software in the R community for compressed
sensing and `1 problems are inadequate for our purposes. For vector-valued signal recovery problems,
we recommend package R1magic [Süzen, 2013], which provides implementations of several compressed
sensing objectives using various norms. R1magic performs the optimization using nlm, which becomes
prohibitively slow when the length of the solution vector to be recovered grows. Similarly, to our knowl-
edge, R packages for LASSO and related problems– glmnet is one example providing extremely efficient
procedures for many classes of regularized models– are not suited for matrix valued optimization in the form
we require [Friedman et al., 2010, Simon et al., 2011]. As we have mentioned in the main paper, vectorizing
our problem is inefficient and negates the performance gains achieved by CSGF.

R code containing examples and implementation of the CSGF algorithm using proximal gradient descent
is available at https://github.com/jasonxu90. Users may readily replace the proximal gradient
descent function with their optimization routine of choice best suited for a given application. The package
bdsem used to evaluate ODE solutions for the BDS process is available at the same URL.
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