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Abstract

In this supplement we provide more background
on spectral analysis of time series and the com-
plex normal and complex inverse Wishart distri-
butions. The hyper complex inverse Wishart is
then introduced in more detail and its marginal
likelihood is derived. We also provide more
detail about the periodogram smoothing plug
in method referenced in Section 4 of the main
text. Finally, we provide details about the global
stock index data set and compare the underly-
ing conditional independence graphs learned by
our method with that of Songsiri et al. [1]. We
also provide supplemental simulations showcas-
ing the predictive performance of our approach
in the frequency domain.

1 Spectral Analysis Background

Spectral analysis is an approach to analyzing stationary
time series where the main object of interest is the spec-
tral density. For many applications, the spectral density is
often a more informative object about the underlying phys-
ical process than autoregressive coefficients or the lagged
autocovariance. In particular, it allows one to read off
which frequency components are prominent in a time se-
ries, and usually certain frequency bands have scientific
relevance. The theoretical justification for caring about the
spectral density arises from the classic spectral representa-
tion theorem [2]. Informally, this theorem states that under
some conditions, any stationary vector stochastic process
x(t) ∈ Rp can be written as

x(t) =

∫ π

−π
e−itλdZ(λ) (1)

where dZ(λ) ∈ Cp is an orthogonal increments process
such that E(Z(λ)Z(λ)∗) = S(λ), where S(λ) is the spec-
tral density matrix and E(Z(λ)Z(λ′)∗) = 0 for λ 6= λ′.

Intuitively, this theorem states that the amplitudes of certain
frequencies in a stationary process are independent across
frequencies and the within frequency covariance is given by
the spectral density matrix. As noted in the main text, the
spectral density matrix also arises as the Fourier transfor-
mation of the lagged auto covariance matrices of the pro-
cess

S(λ) =

∞∑
h=−∞

Γ(h)e−iλh (2)

where Γ(h) = E(x(t)x(t+ h)T ). The statistical task then
becomes estimation of the spectral density matrix S(λ)
from a finite observed time series x = [x(1), ..., x(T )]. The
most basic estimator is given by the periodogram, defined
as:

Pk = dkd
∗
k (3)

where dk is the DFT of the observed time series at Fourier
frequency λk, (Eq. (7) of the main text). While this esti-
mator is asymptotically unbiased, it is not consistent since
its variance does not go to zero. Instead, techniques that
smooth across nearby frequencies provide consistent esti-
mators of the spectral density, and are commonly used in
practice [3]. Finally, the periodogram estimates at differ-
ent frequencies, Pk and P ′k, are asymptotically uncorre-
lated, providing some intuition as to why the Whittle ap-
proximation decomposes into independent terms for each
frequency [4]. More details on the spectral approach to
analyzing stationary time series is provided in Brillinger,
2001 [4].

2 Smoothing the Periodogram for a Single
Time Series via the Plug in Method

In this section we provide more details on the plug in
method for smoothing the periodogram obtained from a
single realization of a multivariate time series mentioned in
Sec. 4 of the main text. First we provide some background
on classical frequentist approaches to smoothing the pe-
riodogram to obtain consistent estimators of the spectral
density (as T increases).



When the spectral density itself is the primary object of
interest, a common frequentist method is to smooth the pe-
riodogram to obtain a consistent estimator of the spectral
density:

Ŝ(λk) =
∑
|j|<m

WT (j)Pk+j (4)

where Pk is the periodogram at frequency λk as introduced
in the main text and WT (j) ≥ 0,

∑
|j|<mWT (j) = 1

are some smoothing weights for a length T series and m
is the smoothing window. This approach was used in the
frequentist graph estimation frameworks in [5, 6, 7]. To
ensure consistency as T → ∞ we must have m → ∞,
m
n → 0, and

∑
|j|<mWT (j)2 → 0 [2]. The asymptotic

variance of Ŝk scales as
∑
|j|≤mW

2
T (j), implying that the

asymptotic effective sample size for a smoothed estimate of
this form is (

∑
|j|≤mW

2
T (j))−1 [2]. The Daniell smoother

corresponds to taking WT (j) = 1
2m+1 and has an intuitive

(effective) sample size of 2m + 1, the size of the smooth-
ing window. Intuitively, this holds asymptotically since as
T → ∞ the sample periodograms become independent at
different frequencies implying a sample size of 2m+1, the
number of (asymptotically) independent samples.

Inspired by the use of this smoothing technique in previ-
ous TGM procedures [5, 6, 7] we develop a similar proce-
dure tailored to our objective function in Eq. (14). We
plug in a smoothed estimate of the spectral density ma-
trix, scaled by the asymptotic effective degrees of freedom,
for the priodogram, Pk, in Eq. (14). Specifically, we set
W ∗k = Wk + (

∑
|j|≤mW

2
T (j))−1Ŝk. The degrees of free-

dom parameter δ∗k is similarly updated by adding the ef-
fective sample size of the smoother to the prior degrees
of freedom: δ∗k = δk + (

∑
|j|≤mW

2
T (j))−1. If we use

the Daniell smoother outlined above the updates become
W ∗k = Wk +

∑
|j|≤m Pk+j and δ∗ = δk + 2m + 1. In

practice we setm = b
√
T

2 c to ensure that the conditions for
consistency of Ŝk are met.

3 The Complex Normal and Complex
Inverse Wishart Distributions

The complex normal distribution is a generalization of the
multivariate normal distribution to the complex domain.
Let Z ∈ Cp be a complex random variable. Z is dis-
tributed as a complex normal distribution, Nc(0,Σ), with
zero mean and complex Hermitian positive definite covari-
ance matrix Σ ∈ Cp×p if it has density given by

p(z) =
1

πp|Σ|
e−z

∗Σ−1z, (5)

where z∗ = z̄T denotes the conjugate transpose of z. If
Z ∼ Nc(0,Σ) then the distribution over Z can be repre-
sented equivalently as a joint distribution over the real and

imaginary elements of Z = X + iY , X,Y ∈ Rp[
X
Y

]
∼ N(0,

[
ReΣ −ImΣ
ImΣ ReΣ

]
, (6)

where ReΣ and ImΣ indicate the real and imaginary com-
ponents of Σ, respectively. Thus we see that the real and
imaginary components are independent iff ImΣ = 0. As
in the non-complex case, the marginal likelihood of XA

for some subset of nodes A ⊆ {1, . . . , p}, is given by
XA ∼ Nc(0,ΣA), where ΣA is the matrix formed by se-
lecting the rows and columns of Σ in A.

The conjugate prior distribution for Σ is given by the com-
plex inverse Wishart, Σ ∼ IWc(δ,W ), with degrees of
freedom parameter δ > 0 and centering matrixW ∈ Cp×p,
Hermitian positive definite. Its density is given by

p(Σ|W, δ) = B(W, δ)|Σ|−(δ+2p)e−trWΣ−1

(7)

with normalization constant

B(W, δ) =
|W |δ+p

π
p(p−1)

2

∏p
j=1(δ + p− j)!

.

Note that we have used an alternative parameterization
of the inverse Wishart distribution commonly used in the
graphical modeling literature [8]. The marginal distribu-
tion of ΣA where A ⊆ {1, . . . , p} is given by ΣA ∼
IWc(δ,WA).

4 Marginal Likelihood for the Hyper
Complex Inverse Wishart

We define the hyper-complex inverse Wishart distribution
for a graph G = {V,E} in the main paper as the restriction
of the complex inverse Wishart distribution to Σ ∈ Cp×p
with a zero pattern in Σ−1 specified by G. Its density is
given by:

p(Σ|δ,W,G) = 1Σ∈M+(G)h(W, δ,G)|Σ|−(δ+2p)e−trWΣ−1

(8)

where h(W, δ,G) is a normalization constant and M+(G)
is the set of positive definite matrices with zeros in their
inverse that obey the conditional independence properties
of G.

Due to the fact that the complex inverse Wishart distribu-
tion is conjugate to the complex normal distribution for
an unrestricted Σ, by Proposition 5.1 in [9] it follows that
the hyper complex inverse Wishart distribution is a strong
hyper-Markov distribution. It follows that for decompos-
able G the complex hyper inverse Wishart density can be
written in terms of the cliques, C, and separators, S, of G:

p(Σ|δ,W,G) = 1Σ∈M+(G)

∏
C∈C p(ΣC |WC , δ)∏
S∈S p(ΣS |WS , δ)

(9)



where p(ΣC |WC , δ) is the unrestricted complex inverse
Wishart density for ΣC . This decomposition implies that
the normalization constant for Equation (8) is also given
by the ratio of complex inverse Wishart normalization con-
stants for cliques and separators

h(W, δ,G) =

∏
C∈C B(WC , δ)∏
S∈S B(WS , δ)

. (10)

If Z1, ...ZN
i.i.d.∼ Nc(0,Σ), then the joint distribution of

Z1, . . . , ZN , and Σ can be written as:

p(z1, . . . , zN ,Σ|G,W, δ) ∝ (11)

1Σ∈M+(G)
h(W, δ,G)

πNp
|Σ|−(δ+N+2p)e−tr(W+

∑N
i=1 ziz

∗
i )Σ−1

.

(12)

We note that the part dependent on Σ is the kernel for
a HIWc(W +

∑N
i=1 ziz

∗
i , δ + N,G) distribution, it fol-

lows that the marginal distribution of Z1, . . . , Zn|G,W, δ
is given by the ratio of prior and posterior normalization
constants of the complex hyper inverse Wishart distribution
times a likelihood constant:

p(z1, . . . , zn|G,W, δ) =
h(W, δ,G)

πNph(W +
∑N
i=1 ziz

∗
i , δ +N,G)

.

(13)

4.1 Marginal Whittle Likelihood

The model in the main text places independent
HIWc(Wk, δk, G) priors on each spectral density
matrix in the Whittle likelihood, Sk ∼ HIWc(Wk, δk, G)
∀k ∈ [T − 1]. Applying the above marginal likelihood
result to each frequency component in the Whittle approx-
imation shows that the marginal likelihood of the data
given a graph, a set of centering matrices ,W0, . . . ,WT−1,
and degrees of freedom, δ0, . . . δT−1, for each frequency
can be approximated by a product of the normalization
constants across frequencies:

p(X1:N |G) ≈ π−NTp
T−1∏
k=0

h(Wk, δk, G)

h(W ∗k , δ
∗
k, G)

. (14)

where W ∗k = Wk + Pk and δ∗k = δk + N . Indeed, this
derivation shows that our prior specification for spectral
density matrices is conjugate to the entire Whittle likeli-
hood.

5 Prediction Simulations

To further validate our approach we analyze predictive per-
formance in the frequency domain on simulated VAR(1)
data as described in Section 6 of the main text. We set the
dimension to p = 10 and time series length to T = 2500.
We split the simulated series in half forming a training

set and test set and then learn a graph and smoothed pe-
riodogram on the test set of the time series. We use the
Whittle marginal likelihood presented in Eq. (14) to com-
pare predictions between four graphs: the learned graph in
the frequency domain, Ĝspectral, the learned iid graph that
treats the time series as independent observations, Ĝiid , the
full graph, Gfull, with all edges included, and the empty
graph, Gempty, with no edges. For prediction, the prior cen-
tering matrix, Wk, is given by the Daniell smoothed peri-
odogram on the training data with its respective degrees of
freedom, and W ∗k is given by W ∗k = Wk + P test

k , where
P test
k is the periodogram on the test data. Results are dis-

played in Table 1. We see that the learned spectral graph
does significantly better than the other graphs at prediction.

6 Global Stock Indices

6.1 Learned Graph Comparison with Previous
Methods

For comparison with the method of Songsiri et al. [1],
we provide the CIG graphs learned on the international
stock data set using both their autoregressive method and
our nonparametric Bayesian method in Figure 1. Further
details on the meaning of the edge weights can be found
in [1]. Notice that both graphs capture similar structure,
for instance the connections between the US, Canada, Aus-
tralia, and Japan. Additionally, both graphs contain tight
clusters containing European countries.

6.2 Stock Data

In Table 2, we list the stock indices that were used
in the main paper. The data was downloaded from
globalfinancialdata.com for the dates June 3,
1997 to June 30, 1999.
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Ĝspectral Ĝiid Gempty Gfull

Loglik. -81623 ± 205 -87712 ± 216 -90040 ± 211 -103964 ± 304
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the marginal Whittle likelihood in Eq. (14) under four different graphs (± indicates 1 standard error across simulation
replicates).
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Figure 1: CIG graph learned on international stock data using (left) method presented in this paper and (right) the autore-
gressive method presented in Songsiri et al. [1] (Figure taken directly from [1]).
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Table 2: Stock index information.

Index Name Ticker Country Country Code
Amsterdam Exchange Index AEX Netherlands NE

All Ordinary Composite AORD Australia AU
Austrian Traded Index ATX Austria AT

BEL 20 BFX Belgium BE
CAC 40 FCHI France FR

FTSEMIB FTMIB Italy IT
FTSE 100 FTSE United Kingdom UK
DAX 30 GDAX Germany GE

Toronto Stock Exchange 300 GSPTSE Canada CA
Hang Seng Composite HSI Hong Kong HK

IBEX 35 IBEX Spain SP
Irish Stock Exchange Index ISEQ Ireland IR

Nikkei 225 N225 Japan JP
OMX Helsinki 25 OMXH25 Finland FN

Portugal Stock Index PSI20 Portugal PO
S&P 500 SPX United States US

Swiss Market Index SSMI Switzerland CH


