
A APPENDIX: VARIATIONAL LOWER
BOUND

In this appendix we give some more details on the compu-
tation of the variational lower bound for the variationally
constrained model.

The augmented joint probability density (after introducing
the inducing points) takes the form,

p(Y,F,U,X|Xu)

= p(Y|F)p(F|U,X,Xu)p(U|Xu)p(X)

=

 p∏
j=1

p(yj |fj)p(fj |uj ,X,Xu)p(uj |Xu)

 p(X).

In the r.h.s above, the observed inputs Z do not appear, ex-
actly because we introduce them through the variational
constraint, which does not constitute a probabilistic map-
ping. In the above equations we have

p(fj |uj ,X,Xu) = N (fj |aj ,Σf ) ,

being the conditional GP prior with

aj = KfuK−1uuuj and Σf = K−KfuK−1uuKuf

and
p(uj |Xu) = N (uj |0,Kuu),

is the marginal GP prior over the inducing variables. In
the above expressions, Kuu denotes the covariance matrix
constructed by evaluating the covariance function on the
inducing points, Kuf is the cross-covariance between the
inducing and the latent points and Kfu = K>uf .

In order to perform variational inference in this expanded
probability model, we introduce the variational distribu-
tions q(X|Z) and q(U), which are both taken to be Gaus-
sian. For convenience, we drop the inducing points Xu

from our expressions for the remainder of the Appendix,
for convenience. We now have:

log p(Y|Xu) =

log

∫
U,X

p(U)p(X)

∫
F

p(Y|F)p(F|U,X).

By applying Jensen’s inequality, we obtain a lower bound
F(q(X), q(U)) on the above marginal likelihood, where:

F(q(X|Z), q(U)) =∫
U,X

q(U)q(X|Z) log
p(U)p(X)

∫
F
p(Y|F)p(F|U,X)

q(U)q(X|Z)

=

∫
U,X

q(U)q(X|Z) log
p(U)

∫
F
p(Y|F)p(F|U,X)

q(U)

− KL (q(X|Z) ‖ p(X))

:= F̂ − KL (q(X|Z) ‖ p(X)) .

At this point, our variational bound is similar to the one of
equation (7), but the first term, here denoted as F̂ , refers
to the expanded probability space and, thus, involves the
inducing inputs and the additional variational distribution
q(U). Since the second term (the KL term) is tractable (be-
cause it only involves Gaussian distributions), we are now
going to focus on the F̂ term. By breaking the logarithm
again, we can further write this term as:

F̂ =

∫
U,X

q(U)q(X|Z) log
(∫

F

p(Y|F)p(F|U,X)

)
− KL (q(U) ‖ p(U)) (A.1).

We notice that we can make use of Jensen’s inequality once
more, because:

log

(∫
F

p(Y|F)p(F|U,X)

)
≥
∫
F

p(F|U,X) log p(Y|F).

This expectation is analytically tractable. Indeed, for a sin-
gle dimension j, we can find this expectation as:∫

fj

p(fj |uj ,X) log p(yj |fj) =

logN
(
yj |aj , β−1I

)
− β

2
tr (K)

+
β

2
tr
(
K−1uuKufKfu

)
,

where K is the covariance matrix constructed by evaluating
the covariance function on the training inputs X. The full
expression can be found by taking the appropriate product
with respect to dimensions; indeed, since the joint proba-
bility factorises with respect to output dimensions j, then
a bound to the logarithm of the marginal likelihood can be
written as a sum over terms, where every term considers
a single dimension j. Notice that to obtain this tractable
bound we did not explicitly make the assumption of equa-
tion (9) about the form of the variational distribution. How-
ever, this assumption is still made implicitly and the equiv-
alence of the two derivations is rather instructive with re-
spect to the effect of a variational constraint.

We also notice that in the above expression, the covariance
matrix K is no longer inverted. Therefore, by writting the
term F̂ in this form, we manage to obtain an expression
which allows the uncertainty in X to be propagated through
the GP mapping.

It is possible to also obtain a “tighter” variational bound
F(q(X|Z)) ≥ F(q(U), q(X|Z)) which does not depend
on q(U). To do so, we need to “collect” all terms that
contain p(U) from equation (A.1) and find the stationary
point with respect to the distribution q(U) (by computing
the gradient w.r.t q(U) and setting it to zero). By doing
so, we are then able to replace q(U) with its optimal value
back to the variational bound. Titsias and Lawrence [2010]
further explain this trick.
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Figure 5: MSE for predictions obtained by different methods on semi-described learning (full version of figure 2). Compar-
ing our method (SD-GP), the standard GP method, multiple linear regression (MLR), nearest neighbour regression on the
input space (NN), the data-imputation method based on GP-LVM and the mean predictor (mean). The results for simulated
data are obtained from 4 trials. The GP method cannot handle partial observations, thus the uncertainty (2σ) is constant;
for clarity, the errorbar is plotted separately on the right of the dashed vertical line (for nonsensical x values). The GP-LVM
method produced huge errorbars (about 3.5 times larger than thos of MLR), thus we don’t plot them here, for clarity.

B APPENDIX: MORE DETAILS FOR
THE SEMI-DESCRIBED LEARNING
EXPERIMENT

In Section 3.1 we looked at performing predictions with
Gaussian processes trained from partially observed inputs.
Our method (semi-described GP or SD-GP) was compared
to other approaches in figure 2, but the limit in the y−axis
was fixed to a smaller value to show the comparison with
the standard GP method more clearly. For the same reason,
methods which produced very large errors were omitted. In
this appendix we show the full figure from all the obtained
results – figure 5.

The conclusion drawn from figure 5 is that our method is
very efficient in taking into account the extra, partially ob-
served input set ZU . This is true even if this extra set only
has a small proportion of features observed. On the other
hand, nearest neighbour runs into difficulties when real data
are considered and, even worse, produces huge errors when
more than 60% of the features are missing in ZU . Finally,
the baseline which uses the standard GP-LVM as a means
of imputing missing values produces bad results, in fact
worse compared to if the extra set ZU is just ignored (i.e.
the GP baseline). This is because the baseline using GP-
LVM treats the input space as single point estimates; by
not incorporating (and optimising jointly) the uncertainty
for each input location, the model has no way of ignoring
“bad” imputed values.

C APPENDIX: MORE DETAILS FOR
THE AUTO-REGRESSIVE
EXPERIMENT

This appendix refers to the auto-regressive Gaussian pro-
cess model developed in Section 3.2. In figure 3 we showed
the results from the last 310 steps of the iterative forecast-
ing task. Here (figure 6) we show the rest of the predictive
sequence, obtained for extrapolating up until 1110 steps.
The corresponding quantification of the error is shown in
Table 1.

Table 1: Mean squared and mean absolute error obtained
when extrapolating in the chaotic time-series data. GPuncert
refers to the basic (moment matching) method of Girard
et al. [2003] and the “naive” autoregressive GP approach is
the one which does not propagate uncertainties.

Method MAE MSE
ours 0.529 0.550

GPuncert 0.700 0.914
“naive” GP approach 0.799 1.157

D APPENDIX: THE EFFECT OF q, p, n IN
SEMI-DESCRIBED LEARNING

As mentioned in Section 3.1, we found that when q is large
compared to p and n, then the data imputation step of our



algorithm can be problematic as the percentage of miss-
ing features in ZU approaches 100%. This is somehow
a corner-case, but it still shows that the method is reliant
on having some covariates available. To investigate further
this issue we created simulated data as explained in Section
3.1, but this time multiple datasets were generated with dif-
ferent input and output dimensions, q and p respectively. In
figure 7 we show the comparison of SD-GP and the stan-
dard GP (which ignores ZU ) for different selections of q, p
and percentage of missing features in ZU .
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Figure 7: Comparison of our method (SD-GP) and the stan-
dard GP (which ignores ZU ) for different selections of q, p
and percentage of missing features in ZU .

The summary of this experiment is that:

• For the most usual scenarios, i.e. when the percentage
of features missing is not too high, SD-GP performs
very well, but as p and n become small compared to
q, then the performance of the method seems to dete-
riorate.

• Even if 100% of the features are missing in ZU , us-
ing our SD-GP can still be advantageous compared
to using a standard GP. This is because SD-GP can
utilise the extra information in the fully observed out-
puts, YU , which correspond to the fully missing set

ZU . However, when the percentage of missing fea-
tures is very large and the relative size of p and n is
small compared to q, then the method can produce
worst results compared to the standard GP.

To explain the challenge of handling missing values with
SD-GP, consider that a separate variational parameter ex-
ists for every input, namely the parameters µU

i,j , S
U
i,j , i =

1, ...n, j = 1, ..., q of step 7 in Algorithm 1. In the extreme
cases mentioned in the previous paragraph, the number of
variational parameters remains large but the available co-
variates to learn from are too few. This renders the optimi-
sation of the parameters very difficult.
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Figure 6: The full predictions obtained by the competing methods for the chaotic time-series data. The top 3 plots show the
values obtained in each predictive step for each of the compared methods; the plot on the bottom shows the corresponding
predictive uncertainties (2σ). GPuncert refers to the basic (moment matching) method of Girard et al. [2003] and the GP is
the “naive” autoregressive GP which does not propagate uncertainties.


