Appendix

A Proof of Theorem 3

Proof. Taking the expectation over the choice of edges \((i_k, j_k)\) gives the following inequality

\[
\mathbb{E}_{i_k, j_k}[f(x^{k+1}) | \eta_k] \leq \mathbb{E}_{i_k, j_k} \left[f(x^k) - \frac{1}{4L} \| \nabla_y f(x^k) - \nabla_{y_k} f(x^k) \|^2 - \frac{1}{2L} \| \nabla_z f(x^k) \|^2 - \frac{1}{2L} \| \nabla_{z_{i_k}} f(x^k) \|^2 \right]
\]

\[
\leq f(x^k) - \frac{1}{2} \nabla_y f(x^k)^T (L \otimes I_{n_y}) \nabla_y f(x^k) - \frac{1}{2} \nabla_z f(x^k)^T (D \otimes I_{n_z}) \nabla_z f(x^k)
\]

\[
\leq f(x^k) - \frac{1}{2} \nabla f(x^k)^T \kappa \nabla f(x^k),
\]

where \(\otimes\) denotes the Kronecker product. This shows that the method is a descent method. Now we are ready to prove the main convergence theorem. We have the following:

\[
f(x^{k+1}) - f^* \leq \langle \nabla f(x^k), x^k - x^* \rangle \leq \|x^k - x^*\| \| \nabla f(x^k) \|_\kappa \leq R(x^0) \| \nabla f(x^k) \|_\kappa \quad \forall k \geq 0.
\]

Combining this with inequality (9), we obtain

\[
\mathbb{E}[f(x^{k+1}) | \eta_k] \leq f(x^k) - \frac{(f(x^k) - f^*)^2}{2R^2(x^0)}.
\]

Taking the expectation of both sides and denoting \(\Delta_k = \mathbb{E}[f(x^k)] - f^*\) gives

\[
\Delta_{k+1} \leq \Delta_k - \frac{\Delta_k^2}{2R^2(x^0)}.
\]

Dividing both sides by \(\Delta_k \Delta_{k+1}\) and using the fact that \(\Delta_{k+1} \leq \Delta_k\) we obtain

\[
\frac{1}{\Delta_k} \leq \frac{1}{\Delta_{k+1}} - \frac{1}{2R^2(x^0)}.
\]

Adding these inequalities for \(k\) steps \(0 \leq \frac{1}{\Delta_0} \leq \frac{1}{\Delta_k} - \frac{k}{2R^2(x^0)}\) from which we obtain the statement of the theorem where \(C = 2R^2(x^0)\).

B Proof of Theorem 5

Proof. In this case, the expectation should be over the selection of the pair \((i_k, j_k)\) and random index \(l_k \in [N]\). In this proof, the definition of \(\eta_k\) includes \(l_k\) i.e., \(\eta_k = \{(i_0, j_0, l_0), \ldots, (i_{l_k-1}, j_{l_k-1}, l_{k-1})\}\). We define the following:

\[
d_k^i = \left[\frac{\alpha_k}{2L}\left[\nabla_{y_k} f_{i_k}(x^k) - \nabla_{y_{i_k}} f_{i_k}(x^k) \right]^T, \quad -\frac{\alpha_k}{L} \left[\nabla_{z_{i_k}} f_{i_k}(x^k) \right]^T \right]^T,
\]

\[
d_k^j = \left[\frac{\alpha_k}{2L}\left[\nabla_{y_k} f_{j_k}(x^k) - \nabla_{y_{j_k}} f_{j_k}(x^k) \right]^T, \quad \frac{\alpha_k}{L} \left[\nabla_{z_{j_k}} f_{j_k}(x^k) \right]^T \right]^T,
\]

\[
d_{k, i}^{i, j_k} = U_{i_k} d_k^i - U_{j_k} d_k^j.
\]

For the expectation of objective value at \(x^{k+1}\), we have

\[
\mathbb{E}[f(x^{k+1}) | \eta_k] \leq \mathbb{E}_{i_k, j_k, l_k}[f(x^k) + \langle \nabla f(x^k), d_{i_k, j_k} \rangle + \frac{L}{2} \| d_{i_k, j_k} \|^2]
\]

\[
\leq \mathbb{E}_{i_k, j_k}[f(x^k) + \langle \nabla f(x^k), \mathbb{E}_{l_k}[d_{i_k, j_k}] \rangle + \frac{L}{2} \mathbb{E}_{l_k}[\| d_{i_k, j_k} \|^2]]
\]

\[
\leq \mathbb{E}_{i_k, j_k}[f(x^k) + \frac{\alpha_k}{2L} \langle \nabla_{y_k} f(x^k), \mathbb{E}_{l_k}[\nabla_{y_{i_k}} f_{i_k}(x^k) - \nabla_{y_{i_k}} f_{i_k}(x^k)] \rangle
\]

\[
+ \frac{\alpha_k}{2L} \langle \nabla_{y_k} f(x^k), \mathbb{E}_{l_k}[\nabla_{y_{j_k}} f_{j_k}(x^k) - \nabla_{y_{j_k}} f_{j_k}(x^k)] \rangle
\]

\[
- \frac{\alpha_k}{L} \langle \nabla_{z_{i_k}} f(x^k), \mathbb{E}_{l_k}[\nabla_{z_{i_k}} f_{i_k}(x^k)] \rangle - \frac{\alpha_k}{L} \langle \nabla_{z_{j_k}} f(x^k), \mathbb{E}_{l_k}[\nabla_{z_{j_k}} f_{j_k}(x^k)] \rangle + \frac{L}{2} \mathbb{E}_{l_k}[\| d_{i_k, j_k} \|^2]].
\]
Taking expectation over \(l_k \), we get the following relationship:

\[
\mathbb{E}[f(x^{k+1})|\eta_k] \leq \mathbb{E}_{\xi_k} \left[f(x^k) + \frac{\alpha_k}{2L} \left\langle \nabla y_k, f(x^k), \nabla y_k f(x^k) - \nabla y_k f(x^k) \right\rangle \right.
\]

\[
+ \frac{\alpha_k}{2L} \left\langle \nabla z_k, f(x^k), \nabla z_k f(x^k) - \nabla z_k f(x^k) \right\rangle - \frac{\alpha_k}{L} \left\langle \nabla z_k, f(x^k), \nabla z_k f(x^k) \right\rangle \right. \]

\[
- \frac{\alpha_k}{L} \left\langle \nabla z_k, f(x^k), \nabla z_k f(x^k) \right\rangle + \frac{L}{2} \mathbb{E}_{l_k}[\|d_{l_k}^k\|^2].
\]

We first note that \(\mathbb{E}_{l_k}[\|d_{l_k}^k\|^2] \leq 8M^2\alpha_k^2/L^2 \) since \(\|\nabla f_i\| \leq M \). Substituting this in the above inequality and simplifying we get,

\[
\mathbb{E}[f(x^{k+1})|\eta_k] \leq f(x^k) - \alpha_k \nabla f(x^k)^\top (\mathcal{L} \otimes I_n) \nabla f(x^k) - \alpha_k \nabla f(x^k)^\top (\mathcal{D} \otimes I_n) \nabla f(x^k) + \frac{4M^2\alpha_k^2}{L}.
\]

(10)

Similar to Theorem 3, we obtain a lower bound on \(\nabla f(x^k)^\top \mathcal{K} \nabla f(x^k) \) in the following manner.

\[
f(x^k) - f^* \leq \langle \nabla f(x^k), x^k - x^* \rangle \leq \|x^k - x^*\|_\mathcal{K} \cdot \|\nabla f(x^k)\|_\mathcal{K} \leq R(x^0)\|\nabla f(x^k)\|_\mathcal{K}.
\]

Combining this with inequality Equation 10, we obtain

\[
\mathbb{E}[f(x^{k+1})|\eta_k] \leq f(x^k) - \alpha_k \frac{(f(x^k) - f^*)^2}{R^2(x^0)} + \frac{4M^2\alpha_k^2}{L}.
\]

Taking the expectation of both sides an denoting \(\Delta_k = \mathbb{E}[f(x^k)] - f^* \) gives

\[
\Delta_{k+1} \leq \Delta_k - \alpha_k \frac{\Delta_k^2}{R^2(x^0)} + \frac{4M^2\alpha_k^2}{L}.
\]

Adding these inequalities from \(i = 0 \) to \(i = k \) and use telescopy we get,

\[
\Delta_{k+1} + \sum_{i=0}^{k} \alpha_i \frac{\Delta_i^2}{R^2(x^0)} \leq \Delta_0 + \frac{4M^2}{L} \sum_{i=0}^{k} \alpha_i^2.
\]

Using the definition of \(\bar{x}_{k+1} = \arg\min_{0 \leq i \leq k+1} f(x_i) \), we get

\[
\sum_{i=0}^{k} \alpha_i \frac{(\mathbb{E}[f(\bar{x}_{k+1})] - f^*)^2}{R^2(x^0)} \leq \Delta_{k+1} + \sum_{i=0}^{k} \alpha_i \frac{\Delta_i^2}{R^2(x^0)} \leq \Delta_0 + \frac{4M^2}{L} \sum_{i=0}^{k} \alpha_i^2.
\]

Therefore, from the above inequality we have,

\[
\mathbb{E}[f(\bar{x}_{k+1}) - f^*] \leq R(x^0) \sqrt{\frac{(\Delta_0 + 4M^2 \sum_{i=0}^{k} \alpha_i^2/L)}{\sum_{i=0}^{k} \alpha_i^2}}.
\]

Note that \(\mathbb{E}[f(\bar{x}_{k+1}) - f^*] \to 0 \) if we choose step sizes satisfying the condition that \(\sum_{i=0}^{\infty} \alpha_i = \infty \) and \(\sum_{i=0}^{\infty} \alpha_i^2 < \infty \). Substituting \(\alpha_i = \sqrt{\Delta_0 L/(2M \sqrt{i+1})} \), we get the required result using the reasoning from [24] (we refer the reader to Section 2.2 of [24] for more details).

\[\square\]

C Proof of Theorem 4

Proof. For ease of exposition, we analyze the case where the unconstrained variables \(z \) are absent. The analysis of case with \(z \) variables can be carried out in a similar manner. Consider the update on edge \((i_k, j_k)\). Recall that \(D(k) \) denotes the index of the iterate used in the \(k \)th iteration for calculating the gradients. Let \(d^k = \frac{\alpha_k}{2} \left(\nabla y_{i_k} f(x^{D(k)}) - \nabla y_{i_k} f(x^{D(k)}) \right) \)

and \(d_{ik_{jk}}^k = x^{k+1} - x^k = U_i k d^k - U_j k d^k \). Note that \(\|d_{ik_{jk}}^k\|^2 = 2\|d^k\|^2 \). Since \(f \) is Lipschitz continuous gradient, we have

\[
 f(x^{k+1}) \leq f(x^k) + \left\langle \nabla y_{ik_{jk}} f(x^k), d_{ik_{jk}}^k \right\rangle + \frac{L}{2} \|d_{ik_{jk}}^k\|^2
 \]

The first step follows from triangle inequality. The second inequality follows from fact that \(u \) and \(d \) have \(\|u\| \leq \|D\| \|x\| \) and \(\|d\| \leq \|D\| \|x\| \). Since \(\|D\| \|x\| \leq \|x\|^\tau \), we have

\[
 f(x^{k+1}) \leq f(x^k) + \left\langle \nabla y_{ik_{jk}} f(x^k), d_{ik_{jk}}^k \right\rangle + \frac{L}{2} \|d_{ik_{jk}}^k\|^2
 \]

The third and fourth steps in the above derivation follow from definition of \(d_{ij}^k \) and Cauchy-Schwarz inequality respectively. The last step follows from the fact the gradients are Lipschitz continuous. Using the assumption that staleness in the variables is bounded by \(\tau \), i.e., \(k - D(k) \leq \tau \) and definition of \(d_{ij}^k \), we have

\[
 f(x^{k+1}) \leq f(x^k) - L \left(\frac{1}{\alpha_k} - \frac{1}{2} \right) \|d_{ik_{jk}}^k\|^2 + L \left(\sum_{t=1}^\tau \|d_{ik_{jk}}^k\|^2 \right) + \frac{L}{2} \|d_{ik_{jk}}^k\|^2
 \]

We now prove that, for all \(k \geq 0 \)

\[
 \mathbb{E}[\|d_{ik_{jk}}^k\|^2] \leq \rho \mathbb{E}[\|d_{ik_{jk}}^k\|^2],
 \]

where we define \(\mathbb{E}[\|d_{ik_{jk}}^k\|^2] = 0 \) for \(k = 0 \). Let \(w^t \) denote the vector of size \(|E| \) such that \(w^t_{ij} = \sqrt{P_{ij}} \|d_{ij}^k\| \) (with slight abuse of notation, we use \(w^t_{ij} \) to denote the entry corresponding to edge \((i, j)\)). Note that \(\mathbb{E}[\|d_{ij}^k\|^2] = \mathbb{E}[\|w^t\|^2] \). We prove Equation (12) by induction.

Let \(u^k \) be a vector of size \(|E| \) such that \(u^k_{ij} = \sqrt{P_{ij}} \|d_{ij}^k - d_{ij}^{k-1}\| \). Consider the following:

\[
 \mathbb{E}[\|u^{k-1}\|^2] = \mathbb{E}[\|u^k\|^2] = \mathbb{E}[2\|u^{k-1}\|^2 - \|u^{k-1}\|^2 + \|u^k\|^2]
 \]

\[
 \leq 2\mathbb{E}[\|u^{k-1}\|^2] - 2\mathbb{E}[\|u^{k-1}, u^k\|]
 \]

\[
 \leq 2\mathbb{E}[\|u^{k-1}\| \|u^{k-1} - w^k\|]
 \]

\[
 \leq 2\mathbb{E}[\|u^{k-1}\| |w^k\|] \leq 2\mathbb{E}[\|u^{k-1}\| \sqrt{2\alpha_k} \|x^{D(k)} - x^{D(k-1)}\|]
 \]

\[
 \leq \sqrt{2\alpha_k} \sum_{t=\min(D(k-1), D(k))} (\mathbb{E}[\|u^{k-1}\|^2] + \mathbb{E}[\|d_{ij}^k\|^2]).
 \]

(13)
The fourth step follows from the bound below on $|u_{ij}^k|$.

$$|u_{ij}^k| = \sqrt{p_{ij}}|d_{ij}^k - d_{ij}^{k-1}|$$

$$\leq \sqrt{p_{ij}} \|((U_i - U_j) \alpha_k e_j - (U_j - U_i) \alpha_k e_i)\| \leq \sqrt{2p_{ij} \alpha_k \|x^{D(k)} - x^{D(k-1)}\|}.$$

Thus, the statement holds for k. Therefore, the statement holds for all $k \in \mathbb{N}$ by mathematical induction. Substituting the above in Equation (11), we get

$$E[\|w^{k-1}\|^2] < \frac{1 + \sqrt{2} \alpha_k \tau}{1 - \sqrt{2} \alpha_k (\tau + 2)} E[\|w^k\|^2] \leq \rho E[\|w^k\|^2].$$

This proves that the method is a descent method in expectation. Using the definition of d_{ij}^k, we have

$$E[f(x^{k+1})] \leq E[f(x^k)] - \frac{\alpha_k^2}{4L} \left(1 - \frac{1 + \tau + \tau_\rho \tau}{2}\right) E[\|\nabla f(x^{D(k)}) - \nabla f(x^{D(k)}\|)]$$

$$\leq E[f(x^k)] - \frac{\alpha_k^2}{4L} \left(1 - \frac{1 + \tau + \tau_\rho \tau}{2}\right) E[\|f(x^{D(k)}) - f(x^{D(k)})\|_K^2]$$

$$\leq E[f(x^k)] - \frac{\alpha_k^2}{2R^2(x^0)} \left(1 - \frac{1 + \tau + \tau_\rho \tau}{2}\right) E[(f(x^{D(k)}) - f^*)^2]$$

$$\leq E[f(x^k)] - \frac{\alpha_k^2}{2R^2(x^0)} \left(1 - \frac{1 + \tau + \tau_\rho \tau}{2}\right) E[(f(x^k) - f^*)^2].$$

The second and third steps are similar to the proof of Theorem 3. The last step follows from the fact that the method is a descent method in expectation. Following similar analysis as Theorem 3, we get the required result.

\[\square\]

D Proof of Theorem 6

\textbf{Proof.} Let $Ax = \sum_i x_i$. Let \tilde{x}^{k+1} be solution to the following optimization problem:

$$\tilde{x}^{k+1} = \arg\min_{\|x-Ax=0\|} \langle \nabla f(x^k), x - x^k \rangle + \frac{L}{2} \|x - x^k\|^2 + h(x).$$

To prove our result, we first prove few intermediate results. We say vectors $d \in \mathbb{R}^n$ and $d' \in \mathbb{R}^n$ are conformal if $d_i d'_i \geq 0$ for all $i \in [b]$. We use $d_{i,j,k} = x^{k+1} - x^k$ and $d = \tilde{x}^{k+1} - x^k$. Our first claim is that for any d, we can always find conformal vectors whose sum is d (see [22]). More formally, we have the following result.

\textbf{Lemma 7.} For any $d \in \mathbb{R}^n$ with $Ad = 0$, we have a multi-set $S = \{d_{i,j}\}_{i \neq j}$ such that d and $d_{i,j}$ are conformal for all $i \neq j$ and $i,j \in [b]$ i.e., $\sum_{i \neq j} d_{i,j} = d$, $Ad_{i,j} = 0$ and $d_{i,j}$ can be non-zero only in coordinates corresponding to x_i and x_j.

\textbf{Proof.} We prove by an iterative construction, i.e., for every vector d such that $Ad = 0$, we construct a set $S = \{s_{i,j}\}$ ($s_{i,j} \in \mathbb{R}^n$) with the required properties. We start with a vector $u^0 = d$ and multi-set $S^0 = \{s^0_{i,j}\}$ and $s^0_{i,j} = 0$ for all $i \neq j$ and $i,j \in [n]$. At the k-th step of the construction, we will have $Ax^k = 0$, $As = 0$ for all $s \in S^k$, $d = u^k + \sum_{s \in S^k} s$ and each element of s is conformal to d.

\[\square\]
In ℓth iteration, pick the element with the smallest absolute value (say v) in u^{k-1}. Let us assume it corresponds to y^k_j. Now pick an element from u^{k-1} corresponding to u^k_j for $p \neq q \in [m]$ with at least absolute value v albeit with opposite sign. Note that such an element should exist since $Au^{k-1} = 0$. Let p_1 and p_2 denote the indices of these elements in u^{k-1}. Let S^k be same as S^{k-1} except for s^{k}_{pq} which is given by $s^{k}_{pq} = s^{k-1}_{pq} + r = s^{k-1}_{pq} + u^{k-1}_{p_1}e_{p_1} - u^{k-1}_{p_2}e_{p_2}$ where e_i denotes a vector in \mathbb{R}^n with zero in all components except in ith position (where it is one). Note that $Ar = 0$ and r is conformal to d since it has the same sign. Let $u^{k+1} = u^k - r$. Note that $Au^{k+1} = 0$ since $Au^k = 0$ and $Ar = 0$. Also observe that $As = 0$ for all $s \in S^{k+1}$ and $u^{k+1} = \sum s \in S^k$. $s = d$.

Finally, note that each iteration the number of non-zero elements of u^k decrease by at least 1. Therefore, this algorithm terminates after a finite number of iterations. Moreover, at termination $u^k = 0$ otherwise the algorithm can always pick an element and continue with the process. This gives us the required conformal multi-set.

Now consider a set $\{d'_{ij}\}$ which is conformal to d. We define \hat{x}^{k+1} in the following manner:

$$
\hat{x}^{k+1}_i = \begin{cases}
\hat{x}^{k}_i + d'_{ij} & \text{if } (i, j) = (i_k, j_k) \\
\hat{x}^{k}_i & \text{if } (i, j) \neq (i_k, j_k)
\end{cases}
$$

Lemma 8. For any $x \in \mathbb{R}^n$ and $k \geq 0$,

$$
\mathbb{E}[\|\hat{x}^{k+1} - x^k\|^2] \leq \lambda(\|\hat{x}^{k+1} - x^k\|^2).
$$

We also have

$$
\mathbb{E}(h(\hat{x}^{k+1})) \leq (1 - \lambda)h(x^k) + \lambda h(\hat{x}^{k+1}).
$$

Proof. We have the following bound:

$$
\mathbb{E}_{i \neq j}[\|\hat{x}^{k+1} - x^k\|^2] = \lambda \sum_{i \neq j} \|d'_{ij}\|^2 \leq \lambda \sum_{i \neq j} \|d'_{ij}\|^2 = \lambda \|d\|^2 = \lambda \|\hat{x}^{k+1} - x^k\|^2.
$$

The above statement directly follows the fact that $\{d'_{ij}\}$ is conformal to d. The remaining part directly follows from [22].

The remaining part essentially on similar lines as [22]. We give the details here for completeness. From Lemma 1, we have

$$
\mathbb{E}_{i \neq j}[F(x^{k+1})] \leq \mathbb{E}_{i \neq j}[f(x^k) + \langle \nabla f(x^k), d_{i,j} \rangle] + \frac{L}{2} \|d_{i,j}\|^2 + h(x^k + d_{i,j})
$$

$$
\leq \mathbb{E}_{i \neq j}[f(x^k) + \langle \nabla f(x^k), d'_{i,j} \rangle] + \frac{L}{2} \|d'_{i,j}\|^2 + h(x^k + d'_{i,j})
$$

$$
= f(x^k) + \lambda \left(\langle \nabla f(x^k), d_{i,j} \rangle + \sum_{i \neq j} \frac{L}{2} \|d'_{i,j}\|^2 + \sum_{i \neq j} h(x^k + d_{i,j}) \right)
$$

$$
\leq (1 - \lambda)F(x^k) + \lambda f(x^k) + \langle \nabla f(x^k), d \rangle + \frac{L}{2} \|d\|^2 + h(x + d)
$$

$$
\leq \min_{y \in A}\{(1 - \lambda)F(x^k) + \lambda(F(y) + \frac{L}{2} \|y - x^k\|^2)
$$

$$
\leq \min_{\beta \in [0, 1]}(1 - \lambda)F(x^k) + \lambda(F(\beta x + (1 - \beta)x^k) + \frac{\beta^2 L}{2} \|x^k - x^*\|^2)
$$

$$
\leq (1 - \lambda)F(x^k) + \lambda \left(F(x^k) - \frac{2(F(x^k) - F(x^*))^2}{LR^2(x^0)} \right).
$$

The second step follows from optimality of $d_{i,j,k}$. The fourth step follows from Lemma 8. Now using the similar recurrence relation as in Theorem 2, we get the required result.
E Reduction of General Case

In this section we show how to reduce a problem with linear constraints to the form of Problem 4 in the paper. For simplicity, we focus on smooth objective functions. However, the formulation can be extended to composite objective functions along similar lines. Consider the optimization problem

$$\min_x f(x) \quad \text{s.t.} \quad Ax = \sum A_i x_i = 0,$$

where f_i is a convex function with an L-Lipschitz gradient.

Let \bar{A}_i be a matrix with orthonormal columns satisfying $\text{range}(\bar{A}_i) = \ker(A_i)$, this can be obtained (e.g. using SVD). For each i, define $y_i = A_i x_i$ and assume that the rank of A_i is less than or equal to the dimensionality of x_i. Then we can rewrite x as a function $h(y, z)$ satisfying

$$x_i = A_i^+ y_i + \bar{A}_i z_i,$$

for some unknown z_i, where C^+ denote the pseudo-inverse of C. The problem then becomes

$$\min \ g(y, z) \quad \text{s.t.} \quad \sum_{i=1}^N y_i = 0,$$

where

$$g(y, z) = f(\phi(y, z)) = f \left(\sum_i U_i (A_i^+ y_i + \bar{A}_i z_i) \right).$$

(15)

It is clear that the sets $S_1 = \{ x | Ax = 0 \}$ and $S_2 = \{ \phi(y, z) | \sum_i y_i = 0 \}$ are equal and hence the problem defined in 14 is equivalent to that in 1.

Note that such a transformation preserves convexity of the objective function. It is also easy to show that it preserves the block-wise Lipschitz continuity of the gradients as we prove in the following result.

Lemma 9. Let f be a function with L_i-Lipschitz gradient w.r.t x_i. Let $g(y, z)$ be the function defined in 15. Then g satisfies the following condition

$$\| \nabla_y g(y, z) - \nabla_y g(y', z) \| \leq \frac{L_i}{\sigma_{\min}(A_i)} \| y_i - y_i' \|$$

$$\| \nabla_z g(y, z) - \nabla_z g(y, z') \| \leq L_i \| z_i - z_i' \|,$$

where $\sigma_{\min}(B)$ denotes the minimum non-zero singular value of B.

Proof. We have

$$\| \nabla_y g(y, z) - \nabla_y g(y', z) \| = \| (U_i A_i^+)^T [\nabla_x f(\phi(y, z)) - \nabla_x f(\phi(y', z))] \|$$

$$\leq \| A_i^+ \| \| \nabla_x f(\phi(y, z)) - \nabla_x f(\phi(y', z)) \|$$

$$\leq L_i \| A_i^+ \| \| A_i^+ (y_i - y_i') \| \leq L_i \| A_i^+ \| ^2 \| y_i - y_i' \| = \frac{L_i}{\sigma_{\min}(A_i)} \| y_i - y_i' \|,$$

Similar proof holds for $\| \nabla_z g(y, z) - \nabla_z g(y, z') \|$, noting that $\| \bar{A}_i \| = 1$. \qed

It is worth noting that this reduction is mainly used to simplify analysis. In practice, however, we observed that an algorithm that operates directly on the original variables x_i (i.e. Algorithm 1) converges much faster and is much less sensitive to the conditioning of A_i compared to an algorithm that operates on y_i and z_i. Indeed, with appropriate step sizes, Algorithm 1 minimizes, in each step, a tighter bound on the objective function compared to the bound based 14 as stated in the following result.

\footnote{If the rank constraint is not satisfied then one solution is to use a coarser partitioning of x so that the dimensionality of x_i is large enough.}
Lemma 10. Let g and ϕ be as defined in 15. And let

$$d_i = A_i^+ d_{y_i} + \bar{A}_i d_{z_i}.$$

Then, for any d_i and d_j satisfying $A_i d_i + A_j d_j = 0$ and any feasible $x = \phi(y, z)$ we have

$$\langle \nabla_i f(x), d_i \rangle + \langle \nabla_j f(x), d_j \rangle + \frac{L_i}{2\alpha} \|d_i\|^2 + \frac{L_j}{2\alpha} \|d_j\|^2$$

$$\leq \langle \nabla_{y_i} g(y, z), d_{y_i} \rangle + \langle \nabla_{z_i} g(y, z), d_{z_i} \rangle + \langle \nabla_{y_j} g(y, z), d_{y_j} \rangle + \langle \nabla_{z_j} g(y, z), d_{z_j} \rangle + \frac{L_i}{2\alpha \sigma_{\text{min}}^2(A_i)} \|d_{y_i}\|^2 + \frac{L_j}{2\alpha \sigma_{\text{min}}^2(A_j)} \|d_{y_j}\|^2 + \frac{L_i}{2\alpha} \|d_{z_i}\|^2 + \frac{L_j}{2\alpha} \|d_{z_j}\|^2.$$

Proof. The proof follows directly from the fact that

$$\nabla_i f(x) = A_i^+ \nabla_{y_i} g(y, z) + \bar{A}_i \nabla_{z_i} g(y, z).$$