1 Introduction

Computations such as computing posterior probability distributions and finding joint value assignments with maximum posterior probability are of great importance in practical applications of Bayesian networks. These computations, however, are intractable in general, both when the results are computed exactly and when they are approximated. In order to successfully apply Bayesian networks in practical situations, it is crucial to understand what does and what does not make such computations (exact or approximate) hard. In this tutorial we give an overview of the necessary theoretical concepts, such as probabilistic Turing machines, oracles, and approximation strategies, and we will guide the audience through some of the most important computational complexity proofs. After the tutorial the participants will have gained insight in the boundary between 'tractable' and 'intractable' in Bayesian networks.

In these lecture notes we accompany the tutorial with more detailed background material. In particular we will go into detail into the computational complexity of the INFERENCE and MAP problems. In the next section we will introduce notation and give preliminaries on many aspects of computational complexity theory. In Section 3 we focus on the computational complexity of INFERENCE, and in Section 4 we focus on the complexity of MAP. These lecture notes are predominantly based on material covered in [10] and [13].

2 Preliminaries

In the remainder of these notes, we assume that the reader is familiar with basic concepts of computational complexity theory, such as Turing Machines, the complexity classes P and NP, and NP-completeness proofs. While we do give formal definitions of these concepts, we refer to classical textbooks like [7] and [16] for a thorough introduction to these subjects.

A Turing Machine (hereafter TM), denoted by \(M \), consists of a finite (but arbitrarily large) one-dimensional tape, a read/write head and a state machine, and is formally defined as a 7-tuple \((Q, \Gamma, b, \Sigma, \delta, q_0, F) \), in which \(Q \) is a finite set of states, \(\Gamma \) is the set of symbols which may occur on the tape, \(b \) is a designated blank symbol, \(\Sigma \subseteq \Gamma \setminus \{b\} \) is a set of input symbols, \(\delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R\} \) is a transition multivalued function (in which \(L \) denotes shifting the tape one position to the left, and \(R \) denotes shifting it one position to the right), \(q_0 \) is an initial state and \(F \) is a set of accepting states. In the remainder, we assume that \(\Gamma = \{0, 1, b\} \) and \(\Sigma = \{0, 1\} \), and we designate \(q_T \) and \(q_N \) as accepting and rejecting states, respectively, with \(F = \{q_T\} \) (without loss of generality, we may assume that every non-accepting state is a rejecting one).

A particular TM \(M \) decides a language \(L \) if and only if, when presented with an input string \(x \) on its tape, it halts in the accepting state \(q_T \) if \(x \in L \) and it halts in the rejecting state \(q_N \) if \(x \notin L \). If we only require that \(M \) accepts by halting in an accepting state if and only if \(x \in L \) and either halts in a non-accepting state or does not halt at all if \(x \notin L \), then \(M \) recognises a language \(L \). If the transition function \(\delta \) maps every tuple \((q_i, \gamma_k) \) to at most one tuple \((q_j, \gamma_l, p) \), then \(M \) is called a deterministic Turing Machine, else it is termed as a non-deterministic Turing Machine.

A non-deterministic TM accepts \(x \) if at least one of its possible computation paths accepts \(x \); similarly, a non-deterministic TT computes \(f(x) \) if at least one of its computation paths computes \(f(x) \). The time complexity of deciding \(L \) by \(M \), respectively computing \(f \) by \(T \), is defined as the maximum number of steps that \(M \), respectively \(T \) uses, as a function of the size of the input \(x \).

Formally, complexity classes are defined as classes of languages, where a language is an encoding of a computational problem. An example of such a problem is the SATISFIABILITY problem: given a Boolean formula \(\phi \), is there a truth assignment to the variables in \(\phi \) such that \(\phi \) is satisfied? We will assume that there exists, for every problem, a reasonable encoding that translates arbitrary instances of that problem to strings, such that the ‘yes’ instances form a language \(L \) and the ‘no’ instances are outside \(L \). While we formally define complexity classes using languages, we may refer in the remainder to problems rather than to their encodings. We will thus write ‘a problem \(II \) is in class \(C \)’ if there is a standard encoding from every instance of \(II \) to a string in \(L \) where \(L \) is in \(C \).

A problem \(II \) is hard for a complexity class \(C \) if every problem in \(C \) can be reduced to \(II \). Unless explicitly stated otherwise, in the context of these lecture notes these reductions are polynomial-time \(many-one \) (or \(Karp \)) reductions. \(II \) is polynomial-time \(many-one \) reducible to \(III \) if there exists a polynomial-time computable function \(f \) such that \(x \in II \Leftrightarrow f(x) \in III \). A problem \(II \) is \(complete \) for a class \(C \) if it is both in \(C \) and hard for \(C \). Such a problem may be regarded as being ‘at least as hard’ as any other problem in \(C \): since we can reduce any problem in \(C \) to \(II \) in polynomial time, a polynomial time algorithm for \(II \) would imply a polynomial time algorithm for every problem in \(C \).

The complexity class \(P \) (short for \(polynomial time \)) is the class of all languages that are decidable on a deterministic TM in a time which is polynomial in the length of the input string \(x \). In contrast, the class \(NP \) (\(non-deterministic polynomial time \)) is the class of all languages that are decidable on a \(non-deterministic \) TM in a time which is polynomial in the length of the input string \(x \). Alternatively \(NP \) can be defined as the class of all languages that can be verified in polynomial time, measured in the size of the input \(x \), on a deterministic TM: for any problem \(L \in NP \), there exists a TM \(M \) that, when provided with a tuple \((x, c) \) on its input
tape, can verify in polynomial time that \(c \) is a ‘proof’ of the fact that \(x \in L \); that is, there exists a \(c \) for which \(M \) accepts \((x,c)\) in a time polynomial in the size of \(x \), if and only if \(x \in L \). We will call \(c \) a certificate or witness of membership of \(x \in L \). Note that certificates are restricted to be of polynomially bounded size with respect to the length of the input.

Trivially, \(P \subseteq NP \). Whether \(P = NP \) is arguably the most important open problem in Computer Science presently. Note that if a polynomial-time algorithm would be found for an NP-complete problem, this would prove \(P = NP \). However, it is widely believed [20, 8] that \(P \neq NP \), thus an NP-completeness proof for a problem \(P \) would strongly suggest that no polynomial algorithm exists for \(P \). It is common to use SATISFIABILITY (see above) as the standard example of an NP-complete problem; SATISFIABILITY is therefore also called the canonical NP-complete problem. We will follow this example and use variants of this problem as canonical problems for various complexity classes.

The class \#P is a function class; a function \(f \) is in \#P if \(f(x) \) computes the number of accepting paths for a particular non-deterministic TM when given \(x \) as input; thus \#P is defined as the class of counting problems which have a decision variant in NP. The canonical complete problem for \#P are is \#SAT (given a formula \(\phi \), how many truth assignments satisfy it?).

A Probabilistic TM (PTM) is similar to a non-deterministic TM, but the transitions are probabilistic rather than simply non-deterministic: for each transition, the next state is determined stochastically according to some probability distribution. In the remainder of these notes, we assume (without loss of generality, see, e.g., [1]) that a PTM has two possible next states \(q_1 \) and \(q_2 \) at each transition, and that the next state will be \(q_1 \) with some probability \(p \) and \(q_2 \) with probability \(1 - p \). A PTM accepts a language \(L \) if the probability of ending in an accepting state, when presented an input \(x \) on its tape, is strictly larger than \(1/2 \) if and only if \(x \in L \). If the transition probabilities are uniformly distributed, the machine accepts if the majority of its computation paths accepts.

The complexity classes PP and BPP are defined as classes of decision problems that are decidable by a probabilistic Turing machine in polynomial time with a particular (two-sided) probability of error. The difference between these two classes is in the bound on the error probability. Yes-instances for problems in PP are accepted with probability \(1/2 + \epsilon \), where \(\epsilon \) may depend exponentially on the input size (i.e., \(\epsilon = 1/c^n \) for a constant \(c > 1 \)). Yes-instances for problems in BPP are accepted with a probability that is polynomially bounded away from \(1/2 \) (i.e., \(\epsilon = 1/n^k \)). PP-complete problems, such as the problem of determining whether the majority of truth assignments to a Boolean formula \(\phi \) satisfies \(\phi \), are considered to be intractable; indeed, it can be shown that \(NP \subseteq PP \). In contrast, problems in BPP are considered to be tractable. Informally, a decision problem \(P \) is in BPP if there exists an efficient randomized (Monte Carlo) algorithm that decides \(P \) with high probability of correctness. Given that the error is polynomially bounded away from \(1/2 \), the probability of answering correctly can be boosted to be arbitrarily close to 1 while still requiring only polynomial time. While obviously \(BPP \subseteq PP \), the reverse is unlikely; in particular, it is conjectured that \(BPP = PP \) [2]. The canonical PP-complete problem is MAJSAT: given a formula \(\phi \), does the majority of truth assignments satisfy it? BPP is not known, nor conjectured, to have complete problems.

Another concept from complexity theory that we will use in these lecture notes is the Oracle Machine. An Oracle Machine is a Turing Machine (or Transducer) which is enhanced with an oracle tape, two designated oracle states \(q_{O_Y} \) and \(q_{O_N} \), and an oracle for deciding membership queries for a particular language \(L_O \). Apart from its usual operations, the TM can write a string \(x \) on the oracle tape and query the oracle. The oracle then decides whether \(x \in L_O \) in a single state transition and puts the TM in state \(q_{O_Y} \) or \(q_{O_N} \), depending on the ‘yes’/’no’ outcome of the decision. We can regard the oracle as a ‘black box’ that can answer membership queries in one step. We will write \(M^C \) to denote an Oracle Machine with access to an oracle that decides languages in \(C \). A similar notation is used for complexity classes. For example, \(NP_{SAT} \) is defined as the class of languages which are decidable in polynomial time on a non-deterministic Turing Machine with access to an oracle deciding SATISFIABILITY instances. In general, if an oracle can solve problems that are complete for some class \(C \) (the PP-complete inference-problem), then we will write \(NC \) (in the example \(NP_{PP} \), rather than \(NP_{NP} \)). Note that \(A^C = A^C \), since both accepting and rejecting answers of the oracle can be used.

2.1 Treewidth

An important structural property of a Bayesian network \(B \) is its treewidth, which can be defined as the minimum width of any tree-decomposition (or equivalently, the minimal size of the largest clique in any triangulation) of the moralization \(G_B^M \) of the network. Tree-width plays an important role in the complexity analysis of Bayesian networks, as many otherwise intractable computational problems can be rendered tractable, provided that the tree-width of the network is small. The moralization (or ‘moralized graph’) \(G_B^M \) is the undirected graph that is obtained from \(G_B \) by adding arcs so as to connect all pairs of parents of a variable, and then dropping all directions. A triangulation of \(G_B^M \) is any chordal graph \(G_T \) that embeds \(G_B^M \) as a subgraph. A chordal graph is a graph that does not include loops of more than three variables without any pair being adjacent.

A tree-decomposition [18] of a triangulation \(G_T \) now is a tree \(T \) such that each node \(X_i \) in \(T \) is a bag of nodes which constitute a clique in \(G_T \); and for every \(i, j, k \), if \(X_j \) lies on the path from \(X_i \) to \(X_k \) in \(T \), then \(X_i \cap X_k \subseteq X_j \). In the context of Bayesian networks, this tree-decomposition is often referred to as the junction tree or clique tree of \(B \). The width of the tree-decomposition \(T \) of the graph \(G_T \) is defined as the size of the largest bag in \(T \) minus 1, i.e., \(max_d (|X_d| - 1) \). The treewidth \(tw \) of a Bayesian network \(B \) now is the minimum width over all possible tree-decompositions of triangulations of \(G_B^M \).

2.2 Fixed Parameter Tractability

Sometimes problems are intractable (i.e., NP-hard) in general, but become tractable if some parameters of the problem can be assumed to be small. A problem \(P \) is called fixed-parameter tractable for a parameter \(\kappa \) (or a set \(\{\kappa_1, \ldots, \kappa_m\} \) of parameters) if it can be solved in time, exponential (or even worse) only in \(\kappa \) and polynomial in the input size \(|x| \), i.e., in time \(O(f(\kappa) \cdot |x|^c) \) for a constant \(c > 1 \) and an arbitrary computable function \(f \). In practice, this means that problem instances can be solved efficiently, even when the problem is NP-hard in general, if \(\kappa \) is known to be small. In contrast, if a problem is NP-hard even when \(\kappa \) is small, the problem is denoted as para-NP-hard for \(\kappa \). The parameterized complexity class \(\text{FPT} \) consists of all fixed parameter tractable problems \(\kappa \)-\(\text{FPT} \). While traditionally \(\kappa \) is defined as a mapping from problem instances to natural numbers (e.g.,[6, p. 4]), one can easily enhance the theory for rational parameters [11]. In the context of this paper, we will in particular consider rational parameters in the range \([0, 1]\), and we will liberally mix integer and rational parameters.
3 Complexity results for INFERENCE

In this section we give the known hardness and membership proofs for the following variants of the general INFERENCE problem.

THRESHOLD INFERENCE

Instance: A Bayesian network $B = (G_B, \Pr)$, where V is partitioned into a set of evidence nodes E with a joint value assignment e, a set of intermediate nodes I, and an explanation set H with a joint value assignment e. Furthermore, let $0 \leq q < 1$.

Question: Is the probability $\Pr(H = h \mid E = e) > q$?

PROOF. To prove membership in PP, we need to show that **THRESHOLD INFERENCE** can be decided by a Probabilistic Turing Machine M in polynomial time. To facilitate our proof, we first show how to compute $\Pr(h)$ probabilistically; for brevity we assume no evidence, the proof with evidence goes analogously. M computes a joint probability $\Pr(y_1, \ldots, y_n)$ by iterating over i using a topological sort of the graph, and choosing a value for each variable Y_i conform the probability distribution in its CPT given the values that are already assigned to the parents of Y_i. Each computation path then corresponds to a specific joint value assignment to the variables in the network, and the probability of arriving in a particular state corresponds with the probability of that assignment. After iteration, we accept with probability $1/2 + (1 - q) \cdot \epsilon$, if the joint value assignment to Y_1, \ldots, Y_n is consistent with h, and we accept with probability $1/2 - q \cdot \epsilon$ if the joint value assignment is not consistent with h. The probability of entering an accepting state is hence $\Pr(h) \cdot (1/2 + (1 - q)\epsilon) + (1 - \Pr(h)) \cdot (1/2 - q \cdot \epsilon) = 1/2 + \Pr(h) \cdot \epsilon - q \cdot \epsilon$. Now, the probability of arriving in an accepting state is strictly larger than $1/2$ if and only if $\Pr(h) > q$.

For **EXACT INFERENCE**, showing membership in $\#P$ is a bit problematic as $\#P$ is defined as the class of counting problems which have a decision variant in NP; a problem is in $\#P$ if it computes the number of accepting paths on a particular TM given an input x. Since **EXACT INFERENCE** is not a counting problem, technically **EXACT INFERENCE** cannot be in $\#P$; however, we will show that **EXACT INFERENCE** is in $\#P$ modulo a simple normalization. We already showed in the PP-membership proof of **THRESHOLD INFERENCE**, that we can construct a Probabilistic Turing Machine that accepts with probability q on input h, where $\Pr(h) = q$. We now proceed to show that there exists a non-deterministic Turing Machine that on input h accepts on exactly l computation paths, where $\Pr(h) = \frac{1}{(k!)^{(l)(p)}}$ for some number k and polynomial p. The process is illustrated in Figure 1.

Lemma 1. **THRESHOLD INFERENCE** is in PP.

Lemma 2. **EXACT INFERENCE** is in $\#P$ modulo normalization.

Still, some computation paths may be deeper than others. We remedy this using an normalization approach as in [9] by extending each path to a fixed length, so that each path has the same number of branching points, polynomial in the input size (i.e., $p(|x|)$). Each extended path accepts if and only if the original path accepts and the proportion of accepting and rejecting paths remains the same. We thus have amplified the number of accepting paths to $(k!)^{p(|x|)}$. Lastly, we observe that we can translate each branch (which is a $k!$-way branch) to a sequence of binary branches by taking $z = 2^k$ as the smallest power of 2 larger than $k!$ and constructing a z-way branch (but implemented as i consecutive 2-way branches), where the first $k!$ branches mimic the original behavior, and the remaining $z-k!$ branches all reject. We now have that the number of accepting paths is $(k!)^{p(|x|)}$ times the probability of acceptance of the original Probabilistic Turing Machine, but now we have binary and uniformly distributed transitions and all computation paths of equal length. Given these constraints,
this is essentially a \#P function as the probability of any computation path is uniformly distributed: essentially we are counting accepting paths on a non-deterministic Turing Machine, modulo a straight normalization (division by \((k!)^\rho_0(\phi)\)) to obtain a probability rather than an integer. To be precise, there is a function \(f\) in \#P, a constant \(k\), and a polynomial \(p\) such that the probability \(Pr(h)\) is precisely \(f(x)\) divided by \((k!)^\rho_0(\phi)\).

3.2 Hardness

To prove hardness results for these three problems, we will use a proof technique due to Park and Darwiche [17] that we will use later to prove that MAP is \#P-\text{complete}. In the proof, a Bayesian network \(B_\phi\) is constructed from a given Boolean formula \(\phi\) with \(n\) variables. For each propositional variable \(x_i\) in \(\phi\), a binary stochastic variable \(X_i\) is added to \(B_\phi\), with possible values \text{TRUE} and \text{FALSE} and a uniform probability distribution. For each logical operator in \(\phi\), an additional binary variable in \(B_\phi\) is introduced, whose parents are the variables that correspond to the input of the operator, and whose conditional probability table is equal to the truth table of that operator. For example, the value \text{TRUE} of a stochastic variable mimicking the \text{and}-operator would have a conditional probability of 1 if and only if both its parents have the value \text{TRUE}, and 0 otherwise. The top-level operator in \(\phi\) is denoted as \(V_\phi\). In Figure 2 the network \(B_\phi\) is shown for the formula \(\neg(x_1 \lor x_2) \lor \neg x_3\).

Now, for any particular truth assignment \(\mathbf{x}\) to the set of all propositional variables \(\mathbf{X}\) in the formula \(\phi\) we have that the probability of the value \text{TRUE} of \(V_\phi\), given the joint value assignment to the stochastic variables matching that truth assignment, equals 1 if \(\mathbf{x}\) satisfies \(\phi\), and 0 if \(\mathbf{x}\) does not satisfy \(\phi\). Without any given joint value assignment, the prior probability of \(V_\phi\) is \(\frac{\#\phi}{2^n}\), where \(\#\phi\) is the number of satisfying truth assignments of the set of propositional variables \(\mathbf{X}\). Note that the above network \(B_\phi\) can be constructed from \(\phi\) in polynomial time.

Lemma 3. \textsc{Threshold Inference} is \#P-hard.

Proof. We reduce \textsc{MajSat} to \textsc{Threshold Inference}. Let \(\phi\) be a \textsc{MajSat}-instance and let \(B_\phi\) be the network as constructed above. Now, \(Pr(V_\phi = \text{TRUE}) > 1/2\) if and only if the majority of truth assignments satisfy \(\phi\).

Lemma 4. \textsc{Exact Inference} is \#P-hard.

Proof. We reduce \#\textsc{Sat} to \textsc{Exact Inference}, using a parsimoniously polynomial-time many-one reduction, i.e., a reduction that takes polynomial time and preserves the number of solutions.

Let \(\phi\) be a \#\textsc{Sat}-instance and let \(B_\phi\) be the network as constructed above. Now, \(Pr(V_\phi = \text{TRUE}) = 1/2^m\) if and only if \(l\) truth assignments satisfy \(\phi\).

4 Complexity results for MAP

In this section we will give complexity results for MAP. In particular we will show that MAP has an \#P\text{-}\text{complete} decision variant, that the special case where there are no intermediate variables (\textsc{Most Probable Explanation} or \textsc{MPE}) has an \#P-complete decision variant, and that the functional variant of \textsc{MPE} is \text{FP}\#P-complete. Using a considerably more involved proof one can also show that the functional variant of \textsc{MAP} is \text{FP}\#P-complete—we refer the interested reader to [12] for the details. We define the four problem variants as follows.

Threshold MAP

Instance: A Bayesian network \(B = (G_B, Pr)\), where \(V\) is partitioned into a set of evidence nodes \(E\) with a joint value assignment \(e\), a set of intermediate nodes \(I\), and an explanation set \(H\); a rational number \(q\).

Question: Is there a joint value assignment \(h\) to \(H\) such that \(Pr(h | e) > q\)?

Threshold MPE-\text{conditional}

Instance: A Bayesian network \(B = (G_B, Pr)\), where \(V\) is partitioned into a set of evidence nodes \(E\) with a joint value assignment \(e\) and an explanation set \(H\); a rational number \(q\).

Question: Is there a joint value assignment \(h\) to \(H\) such that \(Pr(h | e) > q\)?

Threshold MPE-\text{marginal}

Instance: A Bayesian network \(B = (G_B, Pr)\), where \(V\) is partitioned into a set of evidence nodes \(E\) with a joint value assignment \(e\) and an explanation set \(H\); a rational number \(q\).

Question: Is there a joint value assignment \(h\) to \(H\) such that \(Pr(h, e) > q\)?

We differentiated between the conditional and marginal variants of \textsc{MPE} as their complexity differs.

4.1 Membership

Lemma 5. \textsc{Threshold MPE-\text{marginal} is in \#P}.

Proof. We can prove membership in \#P using a certificate consisting of a joint value assignment \(h\). As \(B\) is partitioned into \(H\) and \(E\), we can verify that \(Pr(h, e) > q\) in polynomial time by a non-deterministic Turing machine as we have a value assignment for all variables.

PP-completeness of \textsc{Threshold MPE-\text{conditional} was proven in [5]. The added complexity is due to the conditioning on \text{Pr}(e); the computation of that probability is in itself an \textsc{Inference} problem.

Lemma 6. \textsc{Threshold MAP is in \#P}.

Proof. We again prove membership in \#P using a certificate consisting of a joint value assignment \(m\). We can verify that \(Pr(h, e) > q\) in polynomial time by a deterministic Turing machine with access to an oracle for \textsc{Inference} queries to marginalize over \(I\).
4.2 Hardness

Let \(\phi \) be a Boolean formula with \(n \) variables. We construct a Bayesian network \(B_\phi \) from \(\phi \) as follows. For each propositional variable \(x_i \) in \(\phi \), a binary stochastic variable \(X_i \) is added to \(B_\phi \), with possible values \text{TRUE} and \text{FALSE} and a uniform probability distribution. These variables will be denoted as truth-setting variables \(X \). For each logical operator in \(\phi \), an additional binary variable in \(B_\phi \) is introduced, whose parents are the variables that correspond to the input of the operator, and whose conditional probability table is equal to the truth table of that operator. For example, the value \text{TRUE} of a stochastic variable mimicking the \text{AND}-operator would have a conditional probability of 1 if and only if both its parents have the value \text{TRUE}, and 0 otherwise. These variables will be denoted as truth-maintaining variables \(T \). The variable in \(T \) associated with the top-level operator in \(\phi \) is denoted as \(V_\phi \). The explanation set \(H \) is \(X \cup T \setminus \{ V_\phi \} \). We again refer to the network \(B_\phi \) constructed for the formula \(\phi_{\text{ex}} = \neg (x_1 \lor x_2) \land \neg x_3 \) in Figure 2.

Lemma 7. \textsc{Threshold MPE-Marginal} is \textsc{NP}-hard

Proof. To prove hardness, we apply the construction as illustrated above. For any particular truth assignment \(x \) to the set of truth-setting variables \(X \) in the formula \(\phi \), we have that the probability of the value \text{TRUE} of \(V_\phi \), given the joint value assignment to the stochastic variables matching that truth assignment, equals 1 if \(x \) satisfies \(\phi \), and 0 if \(x \) does not satisfy \(\phi \). With evidence \(V_\phi = \text{TRUE} \), the probability of any joint value assignment to \(H \) is 0 if the assignment to \(X \) does not satisfy \(\phi \), or if the assignment to \(T \) does not satisfy the constraints imposed by the operators. However, the probability of any satisfying (and matching) joint value assignment to \(H \) is \(1/\#_\phi \), where \#_\phi is the number of satisfying truth assignments to \(\phi \). Thus there exists an joint value assignment \(h \) to \(H \) such that \(\Pr(h, V_\phi = \text{TRUE}) > 0 \) if and only if \(\phi \) is satisfiable. Note that the above network \(B_\phi \) can be constructed from \(\phi \) in time, polynomial in the size of \(\phi \), since we introduce only a single variable for each formula and for each operator in \(\phi \).

To prove \textsc{NP}-hardness of \textsc{Threshold MAP}, we reduce \textsc{Threshold MAP} from the canonical satisfiability variant \textsc{E-MajSAT} that is complete for this class. \textsc{E-MajSAT} is defined as follows:

\textsc{E-MajSAT}

\textbf{Instance:} A boolean formula \(\phi \) with \(n \) variables \(X_1, \ldots, X_n \) partitioned into the set \(X_H = X_1, \ldots, X_k \) and \(X_I = X_{k+1}, \ldots, X_n \).

\textbf{Question:} Is there a truth assignment to \(X_H \) such that the majority of truth assignments to \(X_I \) satisfy \(\phi \)?

Lemma 8. \textsc{Threshold MAP} is in \textsc{NP}-hard.

Proof (from [17]). We again construct a Bayesian network from \(B_\phi \) from a given Boolean formula \(\phi \) with \(n \) variables, in a similar way as in the previous proof, but now we also designate a set of variables \(H \) that correspond with the corresponding subset of variables in the \textsc{E-MajSAT} instance. Again the top-level operator in \(\phi \) is denoted as \(V_\phi \). In Figure 3 the network \(B_\phi \) is shown for the formula \(\neg (x_1 \lor x_2) \lor (x_3 \land x_4) \). We set \(q = 1/2^{k+1} \). Note that the above network \(B_\phi \) can be constructed from \(\phi \) in polynomial time.

We consider a joint value assignment \(h \) to \(H \), corresponding to a partial truth assignment to \(X_H \). We have that \(\Pr(H = h, V_\phi = \text{TRUE}) = \#_\phi/2^n \), where \#_\phi is the number of satisfying truth assignments of the set of propositional variables \(X = X_H \cup X_I \). If and only if more than half of the \(2^n-k \) truth assignments to the set \(X_I \) together with \(h \) satisfy \(\phi \), this probability will be larger than \(1/2^{k+1} \). So, there exists a joint value assignment \(h \) to the MAP variables \(H \) such that \(\Pr(H = h, V_\phi = \text{TRUE}) > 1/2^{k+1} \) if and only if there exists a truth assignment to the set \(X_H \) such that the majority of truth assignments to \(X_I \) satisfy \(\phi \). This proves that \textsc{Threshold MAP} is in \textsc{NP}-hard. □

5 Restricted versions

We focus now on some restricted versions of \textsc{MAP}. In particular, we investigate subcases of networks and employ the following notation. \textsc{Threshold MPE-Marginal}^c-tw(L) and \textsc{Threshold MAP}^c-tw(L) define problems where it is assumed that

- \(\# \) is one of: 0 (meaning no evidence), + (positive, that is, true evidence only), or omitted (both positive and negative observations are allowed). The restriction + may take place only when \(c = 2 \).
- \(tw \) is an upper bound on the treewidth of the Bayesian network (\(\infty \) is used to indicate no bound).
- \(c \) is an upper bound on the maximum cardinality of any variable (\(\infty \) is used to indicate no bound).
- \(L \) defines propositional logic operators that are allowed for non-root nodes (e.g. \(L = (\land) \)), that is, conditional probability functions of non-root nodes are restricted to such operators in \(L \). Root nodes are allowed to be specified by marginal probability functions.

We refrain from discussing further the \textsc{Threshold Inference} problem, because it is \textsc{PP}-hard even in these very restricted nets, as the following lemma shows.

Lemma 9. \textsc{Threshold Inference} in two-layer bipartite binary Bayesian networks with no evidence and nodes defined either as marginal uniform distributions or as the disjunction \(\lor \) or operator is \textsc{PP}-hard (using only the conjunction \(\land \) also obtains hardness), that is, \textsc{Threshold Inference}^0,2-\(\infty \)(\(\land \)) and \textsc{Threshold Inference}^0,2-\(\infty \)(\(\lor \)) are \textsc{PP}-hard.

Proof. We reduce \textsc{MAJ-2MONSAT}, which is \textsc{PP}-hard [19], to \textsc{Threshold Inference}:
The transformation is as follows. For each Boolean variable X, build a root node such that $\Pr(X_i = \text{TRUE}) = 1/2$. For each clause C_j with literals x_a and x_b (note that literals are always positive), build a disjunction node $Y_{a,b}$ with parents X_a and X_b, that is, $Y_{a,b} \Leftrightarrow X_a \lor X_b$. Now set all non-root nodes to be queried at their true state, that is, $h = \{Y_{a,b} = \text{TRUE} \} \forall a, b$.

So with this specification for h fixed to TRUE, at least one of the parents of each of them must be set to TRUE too. These are exactly the satisfying assignments of the propositional formula, so $\Pr(H = h \mid E = e)$ for empty E is exactly the percentage of satisfying assignments, with $H = Y$ and $h = \text{TRUE}$. Finally, $\Pr(H = h) = \sum_x \Pr(Y = \text{TRUE} \mid x)\Pr(r_x) = \frac{1}{2}$ if and only if the majority of the assignments satisfy the formula. The proof for conjunctions in the Y nodes is the very same but exchanging the meaning of true and false in the specification of the nodes.

Unfortunately, the hardness of some THRESHOLD MPE-MARGINAL also continues unaltered under such restrictions.

Lemma 10. THRESHOLD MPE-MARGINAL$^{++-\infty}(\lor)$ is NP-hard.

Proof. To prove hardness, we use a reduction from VERTEX COVER:

Input: A graph $G = (V, A)$ and an integer k.

Question: Is there a set $C \subseteq V$ of cardinality at most k such that each edge in A is incident to at least one node in C?

Construct a Bayesian network containing nodes $X_v, v \in V$, associated with the probabilistic assessment $\Pr(X_v = \text{TRUE}) = 1/4$ and nodes $E_{uv}, (u, v) \in A$, associated with the logical equivalence $E_{uv} \Leftrightarrow X_u \lor X_v$. By forcing observations $E_{uv} = \text{TRUE}$ for every edge (u, v), we guarantee that such edge will be covered (at least one of the parents must be TRUE).

Let $C(v) = \{v : X_v = \text{TRUE}\}$. Then $\Pr(X = v, E = \text{TRUE}) = \prod_{v \in C(v)} \Pr(X_v = \text{TRUE}) \prod_{v \notin C(v)} (1 - \Pr(X_v = \text{TRUE})) = \frac{3^n-|C|}{4^n}$ which is greater than or equal to $\frac{3^{n-k}}{4^n}$ if and only if $C(v)$ is a vertex cover of cardinality at most k.

Now we turn our attention to cases that might be easier under the restrictions.

Lemma 11. THRESHOLD MPE-MARGINAL$^{++-\infty}(\lor)$ is in P.

Proof. The operation \oplus (XOR or exclusive-OR) is supermodular, hence the logarithm of the joint probability is also supermodular and the MPE-MARGINAL problem can be solved efficiently [15].

Lemma 12. THRESHOLD MPE-MARGINAL$^{++-\infty}(\land)$ and THRESHOLD MPE-MARGINAL$^{0-\infty}(\lor)$ are in P.

Proof. For solving THRESHOLD MPE-MARGINAL$^{++-\infty}(\land)$, propagate the evidence up the network by making all ancestors of evidence nodes take on value true, which is the only configuration assigning positive probability. Now, for both THRESHOLD MPE-MARGINAL$^{0-\infty}(\lor)$ and THRESHOLD MPE-MARGINAL$^{0-\infty}(\land)$, the procedure is as follows. Assign values of the remaining root nodes as to maximize their marginal probability independently (i.e., for every non-determined root node X select $X = \text{TRUE}$ if and only if $\Pr(X = \text{TRUE}) \geq 1/2$). Assign the remaining internal nodes the single value which makes their probability non-zero. This can be done in polynomial time and achieves the maximum probability.

Further details on these proofs and the proofs of other results for restricted networks can be found in [3, 4, 5, 14]. Some problems that were not discussed here include:

- THRESHOLD MPE-MARGINAL$^{0-\infty}(\land)$ is NP-complete.
- THRESHOLD MAP$^{++-\infty}(\lor)$ is NPPP-complete (this follows trivially from the proof used in this document).
- THRESHOLD MAP$^{0-\infty}(\land)$ is NPPP-complete.
- THRESHOLD MAP$^{0-\infty}(\land)$ is NPPP-complete.
- THRESHOLD MAP$^{0-\infty}(\land)$ is NPPP-complete.
- THRESHOLD MAP$^{0-\infty}(\land)$ with naive-like structure and THRESHOLD MAP$^{0-\infty}(\land)$ with HMM structure (and single observation) are NP-complete.

There are also many open questions:

- THRESHOLD MAP$^{0-\infty}(\land)$ and THRESHOLD MAP$^{0-\infty}(\lor)$ are complete for PP? They are known to be PP-hard.
- THRESHOLD MAP$^{0-\infty}(\land)$ is known to be in NP, but is it hard? Interestingly, THRESHOLD MINAP$^{2-1}$ can be shown to be NP-complete.
- THRESHOLD MAP$^{0-\infty}(\land)$ is known to be in NP, but is it hard for some small c?
References

