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1 Introduction

Computations such as computing posterior probability distribu-
tions and finding joint value assignments with maximum poste-
rior probability are of great importance in practical applications of
Bayesian networks. These computations, however, are intractable
in general, both when the results are computed exactly and when
they are approximated. In order to successfully apply Bayesian
networks in practical situations, it is crucial to understand what
does and what does not make such computations (exact or approx-
imate) hard. In this tutorial we give an overview of the necessary
theoretical concepts, such as probabilistic Turing machines, ora-
cles, and approximation strategies, and we will guide the audience
through some of the most important computational complexity
proofs. After the tutorial the participants will have gained insight
in the boundary between ’tractable’ and ’intractable’ in Bayesian
networks.

In these lecture notes we accompany the tutorial with more de-
tailed background material. In particular we will go into detail
into the computational complexity of the INFERENCE and MAP
problems. In the next section we will introduce notation and give
preliminaries on many aspects of computational complexity the-
ory. In Section 3 we focus on the computational complexity of IN-
FERENCE, and in Section 4 we focus on the complexity of MAP.
These lecture notes are predominantly based on material covered
in [10] and [13].

2 Preliminaries

In the remainder of these notes, we assume that the reader is fa-
miliar with basic concepts of computational complexity theory,
such as Turing Machines, the complexity classes P and NP, and
NP-completeness proofs. While we do give formal definitions of
these concepts, we refer to classical textbooks like [7] and [16]
for a thorough introduction to these subjects.

A Turing Machine (hereafter TM), denoted by M, consists of
a finite (but arbitrarily large) one-dimensional tape, a read/write
head and a state machine, and is formally defined as a 7-tuple
〈Q,Γ, b,Σ, δ, q0, F 〉, in which Q is a finite set of states, Γ is
the set of symbols which may occur on the tape, b is a desig-
nated blank symbol, Σ ⊆ Γ \ {b} is a set of input symbols,
δ : Q×Γ→ Q×Γ×{L,R} is a transition multivalued function
(in which L denotes shifting the tape one position to the left, and
R denotes shifting it one position to the right), q0 is an initial state
and F is a set of accepting states. In the remainder, we assume
that Γ = {0, 1, b} and Σ = {0, 1}, and we designate qY and qN as
accepting and rejecting states, respectively, with F = {qY } (with-
out loss of generality, we may assume that every non-accepting
state is a rejecting one).

A particular TM M decides a language L if and only if, when
presented with an input string x on its tape, it halts in the accepting
state qY if x ∈ L and it halts in the rejecting state qN if x 6∈ L. If
we only require thatM accepts by halting in an accepting state if
and only if x ∈ L and either halts in a non-accepting state or does
not halt at all if x 6∈ L, thenM recognises a language L. If the
transition function δ maps every tuple (qi, γk) to at most one tuple
(qj , γl, p), thenM is called a deterministic Turing Machine, else
it is termed as a non-deterministic Turing Machine.

A non-deterministic TM accepts x if at least one of its possible
computation paths accepts x; similarly, a non-deterministic TT
computes f(x) if at least one of its computation paths computes
f(x). The time complexity of decidingL byM, respectively com-
puting f by T , is defined as the maximum number of steps that
M, respectively T uses, as a function of the size of the input x.

Formally, complexity classes are defined as classes of languages,
where a language is an encoding of a computational problem. An
example of such a problem is the SATISFIABILITY problem: given
a Boolean formula φ, is there a truth assignment to the variables
in φ such that φ is satisfied? We will assume that there exists,
for every problem, a reasonable encoding that translates arbitrary
instances of that problem to strings, such that the ‘yes’ instances
form a language L and the ‘no’ instances are outside L. While we
formally define complexity classes using languages, we may refer
in the remainder to problems rather than to their encodings. We
will thus write ‘a problem Π is in class C’ if there is a standard
encoding from every instance of Π to a string in L where L is in
C.

A problem Π is hard for a complexity class C if every problem
in C can be reduced to Π. Unless explicitly stated otherwise, in
the context of these lecture notes these reductions are polynomial-
time many-one (or Karp) reductions. Π is polynomial-time many-
one reducible to Π′ if there exists a polynomial-time computable
function f such that x ∈ Π ⇔ f(x) ∈ Π′. A problem Π is
complete for a class C if it is both in C and hard for C. Such a
problem may be regarded as being ‘at least as hard’ as any other
problem in C: since we can reduce any problem in C to Π in
polynomial time, a polynomial time algorithm for Π would imply
a polynomial time algorithm for every problem in C.

The complexity class P (short for polynomial time) is the class
of all languages that are decidable on a deterministic TM in a
time which is polynomial in the length of the input string x. In
contrast, the class NP (non-deterministic polynomial time) is the
class of all languages that are decidable on a non-deterministic
TM in a time which is polynomial in the length of the input string
x. Alternatively NP can be defined as the class of all languages
that can be verified in polynomial time, measured in the size of the
input x, on a deterministic TM: for any problem L ∈ NP, there
exists a TMM that, when provided with a tuple (x, c) on its input



tape, can verify in polynomial time that c is a ‘proof’ of the fact
that x ∈ L; that is, there exists a c for whichM accepts (x, c) in
a time polynomial in the size of x, if and only if x ∈ L. We will
call c a certificate or witness of membership of x ∈ L. Note that
certificates are restricted to be of polynomially bounded size with
respect to the length of the input.

Trivially, P ⊆ NP. Whether P = NP is arguably the most im-
portant open problem in Computer Science presently. Note that if
a polynomial-time algorithm would be found for an NP-complete
problem, this would prove P = NP. However, it is widely be-
lieved [20, 8] that P 6= NP, thus an NP-completeness proof for a
problem P would strongly suggest that no polynomial algorithm
exists for P. It is common to use SATISFIABILITY (see above)
as the standard example of an NP-complete problem; SATISFIA-
BILITY is therefore also called the canonical NP-complete prob-
lem. We will follow this example and use variants of this problem
as canonical problems for various complexity classes.

The class #P is a function class; a function f is in #P if f(x)
computes the number of accepting paths for a particular non-
deterministic TM when given x as input; thus #P is defined as
the class of counting problems which have a decision variant in
NP. The canonical complete problem for #P are is #SAT (given
a formula φ, how many truth assignments satisfy it?).

A Probabilistic TM (PTM) is similar to a non-deterministic
TM, but the transitions are probabilistic rather than simply non-
deterministic: for each transition, the next state is determined
stochastically according to some probability distribution. In the
remainder of these notes, we assume (without loss of generality,
see, e.g., [1]) that a PTM has two possible next states q1 and q2
at each transition, and that the next state will be q1 with some
probability p and q2 with probability 1− p. A PTM accepts a lan-
guage L if the probability of ending in an accepting state, when
presented an input x on its tape, is strictly larger than 1/2 if and
only if x ∈ L. If the transition probabilities are uniformly dis-
tributed, the machine accepts if the majority of its computation
paths accepts.

The complexity classes PP and BPP are defined as classes of de-
cision problems that are decidable by a probabilistic Turing ma-
chine in polynomial time with a particular (two-sided) probabil-
ity of error. The difference between these two classes is in the
bound on the error probability. Yes-instances for problems in PP
are accepted with probability 1/2 + ε, where ε may depend ex-
ponentially on the input size (i.e., ε = 1/cn for a constant c > 1).
Yes-instances for problems in BPP are accepted with a probability
that is polynomially bounded away from 1/2 (i.e., ε = 1/nc). PP-
complete problems, such as the problem of determining whether
the majority of truth assignments to a Boolean formula φ satisfies
φ, are considered to be intractable; indeed, it can be shown that
NP ⊆ PP. In contrast, problems in BPP are considered to be
tractable. Informally, a decision problem Π is in BPP if there ex-
ists an efficient randomized (Monte Carlo) algorithm that decides
Π with high probability of correctness. Given that the error is
polynomially bounded away from 1/2, the probability of answer-
ing correctly can be boosted to be arbitrarily close to 1 while still
requiring only polynomial time. While obviously BPP ⊆ PP, the
reverse is unlikely; in particular, it is conjectured that BPP = PP
[2]. The canonical PP-complete problem is MAJSAT: given a for-
mula φ, does the majority of truth assignments satisfy it? BPP is
not known, nor conjectured, to have complete problems.

Another concept from complexity theory that we will use in these
lecture notes is the Oracle Machine. An Oracle Machine is a Tur-
ing Machine (or Transducer) which is enhanced with an oracle
tape, two designated oracle states qOY and qON , and an oracle for

deciding membership queries for a particular language LO. Apart
from its usual operations, the TM can write a string x on the or-
acle tape and query the oracle. The oracle then decides whether
x ∈ LO in a single state transition and puts the TM in state qOY
or qON , depending on the ‘yes’/‘no’ outcome of the decision. We
can regard the oracle as a ‘black box’ that can answer membership
queries in one step. We will writeMC to denote an Oracle Ma-
chine with access to an oracle that decides languages in C. A sim-
ilar notation is used for complexity classes. For example, NPSAT

is defined as the class of languages which are decidable in poly-
nomial time on a non-deterministic Turing Machine with access
to an oracle deciding SATISFIABILITY instances. In general, if an
oracle can solve problems that are complete for some class C (like
the PP-complete INFERENCE-problem), then we will write NPC

(in the example NPPP, rather than NPINF). Note that Aco-C = AC,
since both accepting and rejecting answers of the oracle can be
used.

2.1 Treewidth

An important structural property of a Bayesian network B is its
treewidth, which can be defined as the minimum width of any tree-
decomposition (or equivalently, the minimal size of the largest
clique in any triangulation) of the moralization GM

B of the net-
work. Tree-width plays an important role in the complexity anal-
ysis of Bayesian networks, as many otherwise intractable com-
putational problems can be rendered tractable, provided that the
tree-width of the network is small. The moralization (or ‘mor-
alized graph’) GM

B is the undirected graph that is obtained from
GB by adding arcs so as to connect all pairs of parents of a vari-
able, and then dropping all directions. A triangulation of GM

B is
any chordal graph GT that embeds GM

B as a subgraph. A chordal
graph is a graph that does not include loops of more than three
variables without any pair being adjacent.

A tree-decomposition [18] of a triangulation GT now is a tree
TG such that each node Xi in TG is a bag of nodes which con-
stitute a clique in GT; and for every i, j, k, if Xj lies on the path
from Xi to Xk in TG, then Xi ∩ Xk ⊆ Xj. In the context of
Bayesian networks, this tree-decomposition is often referred to
as the junction tree or clique tree of B. The width of the tree-
decomposition TG of the graph GT is defined as the size of the
largest bag in TG minus 1, i.e., maxi(|Xi| − 1). The tree-width
tw of a Bayesian network B now is the minimum width over all
possible tree-decompositions of triangulations of GM

B .

2.2 Fixed Parameter Tractability

Sometimes problems are intractable (i.e., NP-hard) in general,
but become tractable if some parameters of the problem can be
assumed to be small. A problem Π is called fixed-parameter
tractable for a parameter κ (or a set {κ1, . . . , κm} of parameters)
if it can be solved in time, exponential (or even worse) only in κ
and polynomial in the input size |x|, i.e., in timeO(f(κ) · |x|c) for
a constant c > 1 and an arbitrary computable function f . In prac-
tice, this means that problem instances can be solved efficiently,
even when the problem is NP-hard in general, if κ is known to
be small. In contrast, if a problem is NP-hard even when κ is
small, the problem is denoted as para-NP-hard for κ. The pa-
rameterized complexity class FPT consists of all fixed parame-
ter tractable problems κ−Π. While traditionally κ is defined as
a mapping from problem instances to natural numbers (e.g.,[6,
p. 4]), one can easily enhance the theory for rational parameters
[11]. In the context of this paper, we will in particular consider
rational parameters in the range [0, 1], and we will liberally mix
integer and rational parameters.



3 Complexity results for INFERENCE

In this section we give the known hardness and membership
proofs for the following variants of the general INFERENCE prob-
lem.

THRESHOLD INFERENCE
Instance: A Bayesian network B = (GB,Pr), where V is
partitioned into a set of evidence nodes E with a joint value
assignment e, a set of intermediate nodes I, and an explanation
set H with a joint value assignment e. Furthermore, let
0 ≤ q < 1.
Question: Is the probability Pr(H = h | E = e) > q?

EXACT INFERENCE
Instance: A Bayesian network B = (GB,Pr), where V is
partitioned into a set of evidence nodes E with a joint value
assignment e, a set of intermediate nodes I, and an explanation
set H with a joint value assignment e.
Output: The probability Pr(H = h | E = e).

Note that the first problems is a decision problem and second one
is a function problem. We will first discuss membership of PP
and #P, respectively, for these problems.

3.1 Membership

Lemma 1. THRESHOLD INFERENCE is in PP.

Proof. To prove membership in PP, we need to show that
THRESHOLD INFERENCE can be decided by a Probabilistic Tur-
ing Machine M in polynomial time. To facilitate our proof, we
first show how to compute Pr(h) probabilistically; for brevity we
assume no evidence, the proof with evidence goes analogously.
M computes a joint probability Pr(y1, . . . , yn) by iterating over
i using a topological sort of the graph, and choosing a value for
each variable Yi conform the probability distribution in its CPT
given the values that are already assigned to the parents of Yi.
Each computation path then corresponds to a specific joint value
assignment to the variables in the network, and the probability
of arriving in a particular state corresponds with the probability
of that assignment. After iteration, we accept with probability
1/2 + (1 − q) · ε, if the joint value assignment to Y1, . . . , Yn is
consistent with h, and we accept with probability 1/2− q · ε if the
joint value assignment is not consistent with h. The probability
of entering an accepting state is hence Pr(h) · (1/2 + (1− q)ε) +
(1 − Pr(h)) · (1/2 − q · ε) = 1/2 + Pr(h) · ε − q · ε. Now, the
probability of arriving in an accepting state is strictly larger than
1/2 if and only if Pr(h) > q.

For EXACT INFERENCE, showing membership in #P is a bit
problematic as #P is defined as the class of counting problems
which have a decision variant in NP; a problem is in #P if it
computes the number of accepting paths on a particular TM given
an input x. Since EXACT INFERENCE is not a counting prob-
lem, technically EXACT INFERENCE cannot be in #P; however,
we will show that EXACT INFERENCE is in #P modulo a simple
normalization. We already showed in the PP-membership proof
of THRESHOLD INFERENCE, that we can construct a Probabilistic
Turing Machine that accepts with probability q on input h, where
Pr(h) = q. We now proceed to show1 that there exists a non-
deterministic Turing Machine that on input h accepts on exactly l
computation paths, where Pr(h) = l

(k!)p(|φ|)
for some number k

and polynomial p. The process is illustrated in Figure 1.

1Lane A. Hemaspaandra, personal communications, 2011.
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Figure 1: Uniformation, fixing path length and making branch
points binary.

Lemma 2. EXACT INFERENCE is in #P modulo normalization.

Proof. Assume we have a Probabilistic Turing Machine M
whose branches may be non-binary and non-uniform. First we
observe that we can translate every j-branch to a uniformly dis-
tributed j!-branch. Assume for example that at any banch point
the probability of the transition from ti to {tj1 , tj2 , tj3} is given
as 1/7 for tj1 , 1/5 for tj2 , and 1−(1/7+1/5) for tj3 . We can replace
this transition with a uniform 35-way branch, where five branches
end up in tj1 , seven branches end up in tj2 and 23 branches end
up in tj3 . Assume the maximum number of branches in the orig-
inal machineM was k. After this translation step, we might up
with some branches that are 2-way, some that are 3-way, . . ., and
some that are k-way. We again rework the machine to obtain only
k!-branches.

Still, some computation paths may be deeper than others. We rem-
edy this using an normalization approach as in [9] by extending
each path to a fixed length, so that each path has the same num-
ber of branching points, polynomial in the input size (i.e., p(|x|)).
Each extended path accepts if and only if the original path accepts
and the proportion of accepting and rejecting paths remains the
same. We thus have amplified the number of accepting paths to
(k!)p(|x|). Lastly, we observe that we can translate each branch
(which is a k!-way branch) to a sequence of binary branches by
taking z = 2i as the smallest power of 2 larger than k! and con-
structing a z-way branch (but implemented as i consecutive 2-way
branches), where the first k! branches mimic the original behav-
ior, and the remaining z − k! branches all reject. We now have
that the number of accepting paths is (k!)p(|x|) times the proba-
bility of acceptance of the original Probabilistic Turing Machine,
but now we have binary and uniformly distributed transitions and
all computation paths of equal length. Given these constraints,
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Figure 2: The Bayesian network corresponding to ¬(x1 ∨ x2) ∨
¬x3

this is essentially a #P function as the probability of any compu-
tation path is uniformly distributed: essentially we are counting
accepting paths on a non-deterministic Turing Machine, modulo
a straight normalization (division by (k!)p(|x|)) to obtain a prob-
ability rather than an integer. To be precise, there is a function f
in #P, a constant k, and a polynomial p such that the probability
Pr(h) is precisely f(x) divided by (k!)p(|x|).

3.2 Hardness

To prove hardness results for these three problems, we will use
a proof technique due to Park and Darwiche [17] that we will
use later to prove that MAP is NPPP-complete. In the proof, a
Bayesian network Bφ is constructed from a given Boolean for-
mula φ with n variables. For each propositional variable xi in φ,
a binary stochastic variable Xi is added to Bφ, with possible val-
ues TRUE and FALSE and a uniform probability distribution. For
each logical operator in φ, an additional binary variable in Bφ is
introduced, whose parents are the variables that correspond to the
input of the operator, and whose conditional probability table is
equal to the truth table of that operator. For example, the value
TRUE of a stochastic variable mimicking the and-operator would
have a conditional probability of 1 if and only if both its parents
have the value TRUE, and 0 otherwise. The top-level operator in
φ is denoted as Vφ. In Figure 2 the network Bφ is shown for the
formula ¬(x1 ∨ x2) ∨ ¬x3.

Now, for any particular truth assignment x to the set of all propo-
sitional variables X in the formula φ we have that the probability
of the value TRUE of Vφ, given the joint value assignment to the
stochastic variables matching that truth assignment, equals 1 if
x satisfies φ, and 0 if x does not satisfy φ. Without any given
joint value assignment, the prior probability of Vφ is #φ

2n , where
#φ is the number of satisfying truth assignments of the set of
propositional variables X. Note that the above network Bφ can be
constructed from φ in polynomial time.

Lemma 3. THRESHOLD INFERENCE is PP-hard.

Proof. We reduce MAJSAT to THRESHOLD INFERENCE. Let φ
be a MAJSAT-instance and let Bφ be the network as constructed
above. Now, Pr(Vφ = TRUE) > 1/2 if and only if the majority of
truth assignments satisfy φ.

Lemma 4. EXACT INFERENCE is #P-hard.

Proof. We reduce #SAT to EXACT INFERENCE, using a parsi-
moniously polynomial-time many-one reduction, i.e., a reduction
that takes polynomial time and preserves the number of solutions.

Let φ be a #SAT-instance and let Bφ be the network as constructed
above. Now, Pr(Vφ = TRUE) = l/2n if and only if l truth assign-
ments satisfy φ.

4 Complexity results for MAP

In this section we will give complexity results for MAP. In partic-
ular we will show that MAP has an NPPP-complete decision vari-
ant, that the special case where there are no intermediate variables
(MOST PROBABLE EXPLANATION or MPE) has an NP-complete
decision variant, and that the functional variant of MPE is FPNP-
complete. Using a considerably more involved proof one can also
show that the functional variant of MAP is FPNPPP

-complete–we
refer the interested reader to [12] for the details. We define the
four problem variants as follows.

THRESHOLD MAP
Instance: A Bayesian network B = (GB,Pr), where V is
partitioned into a set of evidence nodes E with a joint value
assignment e, a set of intermediate nodes I, and an explanation
set H; a rational number q.
Question: Is there a joint value assignment h to H such that
Pr(h | e) > q?

THRESHOLD MPE-CONDITIONAL
Instance: A Bayesian network B = (GB,Pr), where V is
partitioned into a set of evidence nodes E with a joint value
assignment e and an explanation set H; a rational number q.
Question: Is there a joint value assignment h to H such that
Pr(h | e) > q?

THRESHOLD MPE-MARGINAL
Instance: A Bayesian network B = (GB,Pr), where V is
partitioned into a set of evidence nodes E with a joint value
assignment e and an explanation set H; a rational number q.
Question: Is there a joint value assignment h to H such that
Pr(h, e) > q?

We differentiated between the conditional and marginal variants
of MPE as their complexity differs.

4.1 Membership

Lemma 5. THRESHOLD MPE-MARGINAL is in NP.

Proof. We can prove membership in NP using a certificate con-
sisting of a joint value assignment h. As B is partitioned into H
and E, we can verify that Pr(h, e) > q in polynomial time by a
non-deterministic Turing machine as we have a value assignment
for all variables.

PP-completeness of THRESHOLD MPE-CONDITIONAL was
proven in [5]. The added complexity is due to the conditioning
on Pr(e); the computation of that probability is in itself an IN-
FERENCE problem.

Lemma 6. THRESHOLD MAP is in NPPP.

Proof. We again prove membership in NPPP using a certifi-
cate consisting of a joint value assignment m. We can verify
that Pr(h, e) > q in polynomial time by a deterministic Tur-
ing machine with access to an oracle for INFERENCE queries to
marginalize over I.



4.2 Hardness

Let φ be a Boolean formula with n variables. We construct a
Bayesian network Bφ from φ as follows. For each propositional
variable xi in φ, a binary stochastic variable Xi is added to Bφ,
with possible values TRUE and FALSE and a uniform probabil-
ity distribution. These variables will be denoted as truth-setting
variables X. For each logical operator in φ, an additional binary
variable in Bφ is introduced, whose parents are the variables that
correspond to the input of the operator, and whose conditional
probability table is equal to the truth table of that operator. For
example, the value TRUE of a stochastic variable mimicking the
and-operator would have a conditional probability of 1 if and only
if both its parents have the value TRUE, and 0 otherwise. These
variables will be denoted as truth-maintaining variables T. The
variable in T associated with the top-level operator in φ is denoted
as Vφ. The explanation set H is X∪T\{Vφ}. We again refer to the
network Bφex constructed for the formula φex = ¬(x1∨x2)∧¬x3
in Figure 2.

Lemma 7. THRESHOLD MPE-MARGINAL is NP-hard

Proof. To prove hardness, we apply the construction as illustrated
above. For any particular truth assignment x to the set of truth-
setting variables X in the formula φ we have that the probabil-
ity of the value TRUE of Vφ, given the joint value assignment
to the stochastic variables matching that truth assignment, equals
1 if x satisfies φ, and 0 if x does not satisfy φ. With evidence
Vφ = TRUE, the probability of any joint value assignment to H is
0 if the assignment to X does not satisfy φ, or if the assignment to
T does not match the constraints imposed by the operators. How-
ever, the probability of any satisfying (and matching) joint value
assignment to H is 1/#φ, where #φ is the number of satisfying
truth assignments to φ. Thus there exists an joint value assign-
ment h to H such that Pr(h, Vφ = TRUE) > 0 if and only if φ
is satisfiable. Note that the above network Bφ can be constructed
from φ in time, polynomial in the size of φ, since we introduce
only a single variable for each variable and for each operator in
φ.

To prove NPPP-hardness of THRESHOLD MAP, we reduce
THRESHOLD MAP from the canonical satisfiability variant E-
MAJSAT that is complete for this class. E-MAJSAT is defined
as follows:

EMAJSAT
Instance: A boolean formula φ with n variables X1, . . . , Xn

partitioned into the set XH = X1, . . . , Xk and
XI = Xk+1, . . . , Xn.
Question: Is there a truth assignment to XH such that the
majority of truth assignments to XI satisfy φ?

Lemma 8. THRESHOLD MAP is in NPPP-hard.

Proof (from [17]). We again construct a Bayesian network from
Bφ from a given Boolean formula φ with n variables, in a similar
way as in the previous proof, but now we also designate a set
of variables H that correspond with the corresponding subset of
variables in the E-MAJSAT instance. Again the top-level operator
in φ is denoted as Vφ. In Figure 3 the network Bφ is shown for the
formula ¬(x1 ∨ x2)∨ (x3 ∧ x4). We set q = 1/2k+1. Note that the
above network Bφ can be constructed from φ in polynomial time.

We consider a joint value assignment h to H, corresponding to a
partial truth assignment to XH. We have that Pr(H = h, Vφ =
TRUE) = #φ/2n, where #φ is the number of satisfying truth as-
signments of the set of propositional variables X = XH ∪XI. If

X1 X2 X3

∨

¬

Vφ∨

H

∧

X4

Figure 3: The probabilistic network corresponding to¬(x1∨x2)∨
(x3 ∧ x4)

and only if more than half of the 2n−k truth assignments to the set
XI together with h satisfy φ, this probability will be larger than
1/2k+1. So, there exists a joint value assignment h to the MAP
variables H such that Pr(H = h, Vφ = TRUE) > 1/2k+1 if and
only if there exists a truth assignment to the set XH such that the
majority of truth assignments to XI satisfy φ. This proves that
THRESHOLD MAP is in NPPP-hard.

5 Restricted versions

We focus now on some restricted versions of MAP. In particular,
we investigate subcases of networks and employ the following no-
tation. THRESHOLD MPE-MARGINAL?-c-tw(L) and THRESH-
OLD MAP?-c-tw(L) define problems where it is assumed that

• ? is one of: 0 (meaning no evidence), + (positive, that is,
TRUE evidence only), or omitted (both positive and negative
observations are allowed). The restriction + may take place
only when c = 2.

• tw is an upper bound on the treewidth of the Bayesian net-
work (∞ is used to indicate no bound).

• c is an upper bound on the maximum cardinality of any vari-
able (∞ is used to indicate no bound).

• L defines propositional logic operators that are allowed for
non-root nodes (e.g. L = (∧)), that is, conditional probabil-
ity functions of non-root nodes are restricted to such opera-
tors in L. Root nodes are allow to be specified by marginal
probability functions.

We refrain from discussing further the THRESHOLD INFERENCE
problem, because it is PP-hard even in these very restricted nets,
as the following lemma shows.

Lemma 9. THRESHOLD INFERENCE in two-layer bipartite bi-
nary Bayesian networks with no evidence and nodes defined either
as marginal uniform distributions or as the disjunction ∨ opera-
tor is PP-hard (using only the conjunction ∧ also obtains hard-
ness), that is, THRESHOLD INFERENCE0-2-∞(∧) and THRESH-
OLD INFERENCE0-2-∞(∨) are PP-hard.

Proof. We reduce MAJ-2MONSAT, which is PP-hard [19], to
THRESHOLD INFERENCE:
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Figure 4: A Bayesian network (on the right) and the clauses as
edges (on the left): (xa ∨ xb), (xa ∨ xc), (xa ∨ xd), (xb ∨ xc).
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Figure 5: A Bayesian network (on the right) that solves VERTEX
COVER with the graph on the left.

Input: A 2-CNF formula φ(X1, . . . , Xn) with m
clauses where all literals are positive.
Question: Does the majority of the assignments to
X1, . . . , Xn satisfy φ?

The transformation is as follows. For each Boolean variable Xi,
build a root node such that Pr(Xi = TRUE) = 1/2. For each
clause Cj with literals xa and xb (note that literals are always
positive), build a disjunction node Yab with parents Xa and Xb,
that is, Yab ⇔ Xa ∨Xb. Now set all non-root nodes to be queried
at their true state, that is, h = {Yab = TRUE}∀ab.
So with this specification for h fixed to TRUE, at least one of the
parents of each of them must be set to TRUE too. These are ex-
actly the satisfying assignments of the propositional formula, so
Pr(H = h | E = e) for empty E is exactly the percentage of
satisfying assignments, with H = Y and h = TRUE. Finally,
Pr(H = h) =

∑
x Pr(Y = TRUE | x)Pr(x) = 1

2n

∑
x Pr(Y =

TRUE | x) > 1/2 if and only if the majority of the assignments
satisfy the formula. The proof for conjunctions in the Y nodes is
the very same but exchanging the meaning of true and false in
the specification of the nodes.

Unfortunately, the hardness of some THRESHOLD MPE-
MARGINAL also continues inaltered under such restrictions.

Lemma 10. THRESHOLD MPE-MARGINAL+-2-∞(∨) is NP-
hard.

Proof. To prove hardness, we use a reduction from VERTEX
COVER:

Input: A graph G = (V,A) and an integer k.
Question: Is there a set C ⊆ V of cardinality at most k
such that each edge in A is incident to at least one node
in C?

Construct a Bayesian network containing nodes Xv , v ∈ V , asso-
ciated with the probabilistic assessment Pr(Xv = TRUE) = 1/4
and nodes Euv, (u, v) ∈ A, associated with the logical equiva-
lence Euv ⇔ Xu∨Xv . By forcing observations Euv = TRUE for
every edge (u, v), we guarantee that such edge will be covered (at
least one of the parents must be TRUE).

Let C(v) = {v : Xv = TRUE}. Then Pr(X = v,E = TRUE) =

=
∏

v∈C(v)

Pr(Xv = TRUE)
∏

v 6∈C(v)

(1−Pr(Xv = TRUE)) =
3n−|C|

4n

which is greater than or equal to 3n−k/4n if and only if C(v) is a
vertex cover of cardinality at most k.

Now we turn our attention to cases that might be easier under the
restrictions.

Lemma 11. THRESHOLD MPE-MARGINAL+-2-∞(⊕) is in P.

Proof. The operation⊕ (XOR or exclusive-OR) is supermodular,
hence the logarithm of the joint probability is also supermodular
and the MPE-MARGINAL problem can be solved efficiently [15].

Lemma 12. THRESHOLD MPE-MARGINAL+-2-∞(∧) and
THRESHOLD MPE-MARGINAL0-2-∞(∨) are in P.

Proof. For solving THRESHOLD MPE-MARGINAL+-2-∞(∧),
propagate the evidence up the network by making all ancestors of
evidence nodes take on value true, which is the only configuration
assigning positive probability. Now, for both THRESHOLD MPE-
MARGINAL+-2-∞(∧) and THRESHOLD MPE-MARGINAL0-2-
∞(∨), the procedure is as follows. Assign values of the re-
maining root nodes as to maximize their marginal probability in-
dependently (i.e., for every non-determined root node X select
X = TRUE if and only if Pr(X = TRUE) ≥ 1/2). Assign the re-
maining internal nodes the single value which makes their proba-
bility non-zero. This can be done in polynomial time and achieves
the maximum probability.

Further details on these proofs and the proofs of other results for
restricted networks can be found in [3, 4, 5, 14]. Some problems
that were not discussed here include:

• THRESHOLD MPE-MARGINAL-2-∞(∧) is NP-complete.

• THRESHOLD MAP+-2-∞(∨) is NPPP-complete (this fol-
lows trivially from the proof used in this document).

• THRESHOLD MAP-2-∞(∧) is NPPP-complete.

• THRESHOLD MAP-2-2 and THRESHOLD MAP-3-1 are NP-
complete.

• THRESHOLD MAP0-∞-1 with naive-like structure and
THRESHOLD MAP-5-1 with HMM structure (and single ob-
servation) are NP-complete.

There are also many open questions:

• THRESHOLD MAP0-2-∞(∧) and THRESHOLD MAP0-2-
∞(∨) are complete for PP? They are known to be PP-hard.

• THRESHOLD MAP-2-1 is known to be in NP, but is it hard?
Interestingly, THRESHOLD MINAP-2-1 can be shown to be
NP-complete.

• THRESHOLD MAP0-c-1 is known to be in NP, but is it hard
for some small c?
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