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Abstract

We propose two efficient and general MCMC
algorithms to compute optimal Bayesian deci-
sions for Mallows’ model and Condorcet’s model
w.r.t. any loss function and prior. We show that
the mixing time of our Markov chain for Mal-
lows’ model is polynomial in ϕ−kmax , dmax, and
the input size, where ϕ is the dispersion of the
model, kmax measures agents’ largest total bias
in bipartitions of alternatives, and dmax is the
maximum ratio between prior probabilities. We
also show that in some cases the mixing time is at
least Θ(ϕ−kmax/2). For Condorcet’s model, our
Markov chain is rapid mixing for moderate prior
distributions. Efficiency of our algorithms are il-
lustrated by experiments on real-world datasets.

1 INTRODUCTION

In many social choice (a.k.a. rank aggregation) problems
we want to compute an objectively optimal joint decision
based on agents’ preferences. For example, the Condorcet
Jury Theorem (Condorcet, 1785) studies how to select a
“correct” leader in political elections when the votes are
noisy perceptions of the ground truth. Principles and al-
gorithms for social choice have also been used to aggre-
gate rankings in meta-search engines (Dwork et al., 2001),
recommender systems (Ghosh et al., 1999), crowdsourc-
ing (Mao et al., 2013), semantic webs (Porello and Endriss,
2013), and peer grading for MOOC (Raman and Joachims,
2014).

In these social choice applications it is natural to take a
Bayesian approach. Given a statistical model that describes
agents’ noisy perception of the ground truth, a prior distri-
bution, and a loss function that evaluates the joint decision
w.r.t. the ground truth, we compute an optimal joint deci-
sion that has the minimum Bayesian expected loss w.r.t. the
posterior distribution. This was recently formalized as a

statistical decision-theoretic framework for social choice
by Azari Soufiani et al. (2014).

A major challenge in previous research, especially in the
Bayesian approaches, is the high computational complex-
ity of decision making. For example, the maximum likeli-
hood estimator (MLE) of a popular ranking model called
Mallows’ model (Mallows, 1957) is NP-hard to com-
pute (Bartholdi et al., 1989). Computing optimal Bayesian
decisions for rank aggregation is a hard combinatorial opti-
mization problem because the parameter space is often dis-
crete and its size is often exponential. Most previous work
focused on designing efficient case-by-case algorithms for
computing MLEs and MAPs of popular ranking models.
However, the following question is left unanswered:

Are there general and efficient algorithms that compute op-
timal Bayesian decisions for a wide range of rank aggrega-
tion problems?

Our contributions. We give positive answers to this
question for two popular ranking models: Mallows’
model (Mallows, 1957) and Condorcet’s model (Condorcet,
1785; Young, 1988) by proposing two general Markov
chain Monte Carlo (MCMC) algorithms. Our algorithms
work for any prior distribution, any decision space, and any
loss function. In both algorithms, we first generate multiple
samples by a Markov chain whose stationary distribution
is the posterior distribution, which are used to compute the
optimal decision that minimizes the empirical loss. Our
Markov chains for both models are Metropolis-Hastings
samplers (Metropolis et al., 1953; Hastings, 1970). For
Mallows’ model, we apply a random transposition on adja-
cent pairs of alternatives in each step, and for Condorcet’s
model, we adopt an independent sampler, which samples a
candidate parameter with probability that is proportional to
its likelihood in each step.

We prove that our Markov chains have good theoretical
guarantees on the mixing time, which measures the rate of
convergence to the stationary distribution and is closely re-
lated to the overall running time of the algorithms (The-
orem 1). For Mallows’ model, we show that the mixing



time of our Markov chain is polynomial in ϕ−kmax , dmax,
and the input size, where ϕ is the dispersion of the model,
kmax measures agents’ largest total bias in bipartitions of
alternatives (Theorem 3), and dmax is the maximum ra-
tio between prior probabilities. We also show that in some
cases the mixing time is at least Θ(ϕ−kmax/2) (Proposi-
tion 1). For Condorcet’s model, our Markov chain is rapid
mixing for moderate prior distributions—its mixing time
is polynomial in the input size and (ln dmax

dmax−1 )−1 (The-
orem 5). Therefore, we can efficiently generate samples
to estimate the Bayesian expected loss with high accuracy,
for Mallows’ model when ϕ−kmax and dmax are not too
large, and for Condorcet’s model when dmax is not too
large, for a wide range of social choice problems includ-
ing those that are provably NP-hard to compute or even
approximate (Theorem 2 and 4).

Computational and statistical efficiency of our algorithms
are shown in preliminary experiments using real-world
election data from Preflib (Mattei and Walsh, 2013) (www.
Preflib.org). The key observation is that for Mallows’
model, when the number of alternatives is at least 11 the
brute-force search takes much more time than generating
10 million samples, based on which we can achieve a high
precision for estimating the Bayesian loss and making the
optimal Bayesian decision.

Related Work and Discussions. MCMC methods have
been widely applied in Bayesian statistics (Smith and
Roberts, 1993). However, obtaining non-trivial bounds on
the mixing time is a “considerable challenge” (Jerrum and
Sinclair, 1996). Our proofs involve novel applications of a
wide range of analytical tools, which we believe to have in-
dependent interest. To the best of our knowledge, this is the
first time that MCMC methods for Bayesian inference for
ranking models have been analytically studied. The theo-
retical bounds on the mixing time of the proposed Markov
chains are our main theoretical contribution.

Practically, the main advantage of our algorithms is their
generality because they work for any decision space, any
loss function, and any prior distribution. For many nat-
ural loss functions (e.g. those in Definition 4), no effi-
cient algorithm was previously known. There have been
much work on computing MLE and MAP for Mallows’
model and Condorcet’s model in (computational) social
choice (Bartholdi et al., 1989; Hemaspaandra et al., 2005;
Betzler et al., 2008), theory (Ailon et al., 2005; Kenyon-
Mathieu and Schudy, 2007), and machine learning (Kuo
et al., 2009; Long et al., 2010; Lu and Boutilier, 2011; Liu,
2011; Negahban et al., 2012; Azari Soufiani et al., 2012,
2013a,b; Raman and Joachims, 2015). Also see the exper-
imental study by Ali and Meila (2012) for a comparison of
104 algorithms and combinations. Our algorithms are more
general, as MLEs and MAPs are special combinations of
decision space and loss function.

Specifically, we have not seen much work on MCMC al-
gorithms for rank aggregation. The work that is closest
to ours is by Raman and Joachims (2015), who proposed a
different Markov chain for Mallows’ model and tested it on
MOOC grading data. However, their paper did not analyze
the mixing time. Diaconis and Hanlon (1992) proposed
a Metropolis-Hastings algorithm to generate data accord-
ing to a Mallows-like model that is based on the Cayley
distance, which is different from both models studied in
this paper. Moreover, it is not clear whether the algorithm
by Diaconis and Hanlon can be leveraged to generate sam-
ples from the posterior distribution.

2 PRELIMINARIES

Let C denote a set of m alternatives. Let L(C) denote the
set of linear orders over C, that is, the set of all transitive,
antisymmetric, and total binary relations. Let B(C) denote
the set of all possibly cyclic orders over C, that is, all ir-
reflexive, antisymmetric, and total binary relations over C.
Clearly L(C) ⊆ B(C). Each agent uses a (possibly cyclic)
order over C to represent her preferences. Let R denote the
(preference) profile containing preferences from n agents.
Given R, we want to make a joint decision from a decision
space D, which can be different from C.

For any profile R, its weighted majority graph, denoted by
WMG(R), is a weighted directed graph whose vertices are
C, and there is an edge between each pair of alternatives
(a, b) with weight wR(a, b) = #{V ∈ R : a �V b} −
#{V ∈ R : b �V a}. Clearly wR(a, b) + wR(b, a) = 0.

For any V,W ∈ B(C), we let KT(V,W ) denote the
Kendall-tau distance between V and W , that is, the num-
ber of different pairwise comparisons in V and W . In this
paper, we focus on the following two ranking models.

Definition 1 (Mallows’ model with fixed dispersion). The
parameter space is ΘM = L(C), the sample space SM is
composed of n i.i.d. generated data in L(C), and for any
W ∈ L(C) and any profile R, we have PrM (R|W ) =∏
V ∈R

(
1
ZM

ϕKT(V,W )
)

, where ZM is the normalization

factor such that ZM =
∑
U∈L(C) ϕ

KT(U,W ).

Definition 2 (Condorcet’s model with fixed dispersion).
The parameter space is ΘC = B(C), the sample space
SC is composed of n i.i.d. generated data in B(C), and for
any W ∈ B(C) and any profile R, we have PrC(R|W ) =∏
V ∈R

(
1
ZC
ϕKT(V,W )

)
, where ZC is the normalization

factor such that ZC =
∑
U∈B(C) ϕ

KT(U,W ).1

In the above two definitions, the normalization factors ZM
and ZC are independent of the selection of W . We now re-
call the statistical decision-theoretic framework for social

1Our results also work for the variant where the sample space
is (L(C))n.



choice defined by Azari Soufiani et al. (2014) to formulate
the computational problem.

Definition 3 ((Azari Soufiani et al., 2014)). A statisti-
cal decision-theoretic framework for social choice (SDT
framework for short) is a tuple F = (MC ,D, L), where
C is the set of alternatives,MC = (Θ,Pr,S) is a ranking
model, D is the decision space, and L : Θ × D → R≥0 is
a loss function that is easy to compute.

In this paper, we focus on computing the Bayesian estima-
tors fB of a SDT framework that minimizes the expected
Bayesian loss for any prior and profile. More precisely,
given a SDT framework F , a prior over Θ, and a profile
R, fB(R) ∈ mind∈D Eθ∼Pr(·|R)L(θ, d). For example, the
maximum a posteriori (MAP) is the Bayesian estimator for
the SDT framework with D = Θ and the 0-1 loss function.

Natural choices of the decision space for ranking models
are: (1) D = C, and fB is called a resolute voting rule. (2)
D = 2C−{∅}, and fB is called a irresolute voting rule. (3)
D = L(C), and fB is called a preference function or social
welfare function.

In this paper, we focus on case (1) D = C and the exact
Top-k loss functions defined below. The proposed algo-
rithms and theorems on the mixing time work for any SDT
framework.

Definition 4. Let D = C. For any k ≤ m − 1, the exact
Top-k loss function LETop-k is defined as: for any W ∈
B(C) and d ∈ C, LETop-k(W,d) = 0 if there exits A ⊆ C
such that |A| = k, d ∈ A, and for all a ∈ A, b ∈ C −A we
have a �W b; otherwise LETop-k(W,d) = 1.

In words, the loss of an alternative d under the exact Top-k
loss function is 0 if d is clearly ranked within top k posi-
tions in the ground truth; otherwise the loss is 1.2

A Markov chain over a state space Θ is characterized by a
transition matrix P such that for any V,W ∈ Θ, P (V,W )
is the probability for the next state to be W given that
the current state is V . Therefore, for any V ∈ Θ, we
have

∑
W∈Θ P (V,W ) = 1. In this paper, the state space

is the parameter space because we want to sample from
the posterior distribution. The stationary distribution π
of a Markov chain with transition matrix P is a probabil-
ity distribution over Θ such that for any V ∈ Θ we have∑
W∈Θ π(W )P (W,V ) = π(V ), that is, π (as a row vec-

tor) is a left eigenvector of P with eigenvalue 1.

Given a Markov chain with transition matrix P (V,W ) and
a unique stationary distribution π(·), the variation distance
at time t w.r.t. starting state V is defined to be

∆V (t) = max
S⊆Θ
|P t(V, S)− π(S)|

2We note that for some W ∈ B(C) no alternative is clearly
ranked within top k. For any W ∈ L(C), there are always k
alternatives clearly ranked in top k.

where P t(V, S) is the probability for the Markov chain
starting at V to end in a state in S after t steps.

The convergence rate of a Markov chain to the stationary
distribution is measured by its mixing time τV (ε), which
is the number of steps that guarantee a variation distance
below ε. Formally, we define

τV (ε) = min{t : ∆V (t′) ≤ ε for all t′ ≥ t}

Let τ(ε) denote the maximum mixing time for all starting
states, that is, τ(ε) = maxV τV (ε).

Our algorithms first use a Markov chain sampler M that
runs a Markov chain for multiple steps to generate samples
from the parameter space Θ, then compute the optimal de-
cision w.r.t. these samples. Formally, we use Algorithm 1
to estimate the expected Bayesian loss of all decisions, then
choose one with minimum expected loss.

Algorithm 1 CompBayesianLoss
1: Input: a profile R, a SDT framework F =

(MC ,D, L) with prior Pr(·), a Markov chain sampler
M over Θ whose stationary distribution is Pr(·|R), and
a decision d ∈ D.

2: Use M to generate N independent samples, denoted
by Q.

3: return
∑
W∈Q L(W,d)/|Q|.

It is well-known that the mixing time is closely related to
the running time of approximate algorithms based on sam-
ples generated from the Markov chain. For SDT frame-
works, this relation is formalized in Theorem 1. For com-
pleteness we include a short proof.

Theorem 1. For any d ∈ D and any ε > 0, δ > 0, Algo-
rithm 1 can compute the expected Bayesian loss of d with
no more than ε additive error with probability at least 1−δ
in O(

l2max

ε2 ln δ−1τ( ε
2lmax

)η) time, where lmax is the maxi-
mum loss in L, τ(·) is the mixing time of the Markov chain
used by M, and η is running time for one step in M.

Proof: Let π denote the posterior distribution over Θ given
R and let π∗ denote the distribution by the Markov chain
sampler. We first prove that usingO(

l2max

ε2 ln δ−1) indepen-
dent samples, the output of Algorithm 1 is no more than ε/2
away from EV∼π∗L(V, d). We then choose a sampler M
with mixing time ε

2lmax
and show that |EV∼π∗L(V, d) −

EV∼πL(V, d)| ≤ ε
2 .

Let X1, . . . , XN denote N i.i.d. random variables dis-
tributed as L(V, d), where V is generated from π∗. Let
Y N = (

∑N
i=1X

i)/N . Because for any θ ∈ Θ and
d ∈ D, 0 ≤ L(θ, d) ≤ lmax, we have Var(X1) ≤ l2max
and Var(Y N ) ≤ l2max/N . Also it is easy to check that
EV∼π∗L(V, d) = E(X1) = E(Y N ). Therefore, by
Chebyshev’s inequality we have: Pr(|Y N − E(Y N )| ≥



ε
2 ) ≤ 4Var(Y N )

ε2 ≤ 4l2max

ε2N . When N ≥ 16
3
l2max

ε2 we have
Pr(|Y N − E(Y N )| ≥ ε

2 ) ≤ 3
4 . This can be leveraged to

an algorithm that outputs an estimation to E(X1) with no
more than ε

2 additive error with probability at least 1 − δ,

using O(
l2max

ε2 ln δ−1) calls to the sampler M. For any M
with mixing time τ( ε

2lmax
), we have |EV∼π∗L(V, d) −

EV∼πL(V, d)| ≤
∑
V ∈Θ L(V, d)|π(V ) − π∗(V )| ≤

lmax
ε

2lmax
= ε

2 .

Therefore, the total running time of Algorithm 1 is
O(

l2max

ε2 ln δ−1τ( ε
2lmax

)η). 2

In the remainder of this paper we focus on the Markov
chains for Mallows’ model and Condorcet’s model. For
both models, we will design Metropolis-Hastings sampling
algorithms (Metropolis et al., 1953; Hastings, 1970), which
work as follows. For each state V we first generate a can-
didate W for the next state from a proposal distribution
pV (·). Then, with probability min{1, π(W )pW (V )

π(V )pV (W ) } the next
state is W ; otherwise the next state remains at V .

3 MARKOV CHAIN FOR MALLOWS’
MODEL

To motivate the study, we first prove that the expected
Bayesian loss is hard to approximate for Mallows’ model
w.r.t. the exact Top-1 loss function and uniform prior. In the
BAYESIANLOSS problem, we are given a SDT framework,
a prior, and a decision d ∈ D. We are asked to compute the
expected Bayesian loss of d.3

Theorem 2. If BAYESIANLOSS for Mallows’ model
w.r.t. the exact Top-1 loss function and the uniform prior
has a polynomial-time approximation algorithm with con-
stant approximation ratio, then P = NP = PNP

|| .

PNP
|| is the class of problems that can be computed by a P

oracle machine using polynomial number of parallel access
to NP oracles. PNP

|| contains NP and co-NP.

Proof: The hardness is proved by a reduction from the
KEMENYWINNER problem, which is NP-hard (Bartholdi
et al., 1989) and PNP

|| -complete (Hemaspaandra et al.,
2005). Given a profile R, for any alternative c, the Kemeny
score of c is the smallest Kendall-tau distance between the
profile and any linear order where c is ranked at the top.
An alternative with the minimum Kemeny score is called a
Kemeny winner. In a KEMENYWINNER problem, we are
given a profile R and an alternative c, and we are asked if c
is a Kemeny winner.

Given a KEMENYWINNER instance (R, c), we construct
a BAYESIANLOSS instance where there is a new alterna-
tive d and the profile R′ satisfies that WMG(R′) equals
to WMG(R) plus the edges d → a for all a 6= c, whose

3This problem is known to be NP-hard and PNP
|| -hard to com-

pute exactly (Procaccia et al., 2012; Azari Soufiani et al., 2014).

weights are 1 (if weights on edges in WMG(R) are odd)
or 2 (if weights on edges in WMG(R) are even). Given
any constant α > 1, we let ϕ = α2

2(m!)2 . We note that ϕ
can be represented using polynomial number of bits. This
instance can be constructed in polynomial time using Mc-
Garvey’s trick (McGarvey, 1953).

Clearly d is a Kemeny winner in R′. If the KEMENYWIN-
NER is a “yes” instance, then c is also a Kemeny winner in
R′ (where d is ranked in the second place in the winning
ranking). The Bayesian expected loss of d is at least 1

m!
because in at least one ranking d is not at the top.

If the KEMENYWINNER is a “no” instance, then d is the
unique Kemeny winner. Let V denote a ranking where d
is ranked in the top and KT(V,R′) equals to the Kemeny
score of d. It is easy to check that for any rankingW where
d is not ranked in the top, KT(V,R′) ≤ KT(W,R′) − 1,
which means that Pr(W |R′)

Pr(V |R′) ≤ ϕ. Therefore, the posterior
probability that d is not ranked in the top, which equals
to the expected Bayesian loss of d, is at most (m!−1)ϕ

1+(m!−1)ϕ .

When ϕ = α2

2(m!)2 , we have (m!−1)ϕ
1+(m!−1)ϕ <

α2

m! .

It follows that if there exists a polynomial-time α-
approximation algorithm for BAYESIANLOSS, then we can
use this algorithm to solve KEMENYWINNER in polyno-
mial time: if the output of the algorithm is no more than α

m!
then the KEMENYWINNER instance is a “no” instance; oth-
erwise the KEMENYWINNER instance is a “yes” instance.
This means that P = NP = PNP

|| . 2

We now present the Markov chain MM for Mallows’
model in Algorithm 2, which runs MM for N steps. In
each step, we first apply a random transposition of adja-
cent alternatives in the current state V (changing d � c to
c � d) to obtain a candidate ranking W , then with prob-
ability 1

2 min{PrM (W )
PrM (V ) ϕ

R[d�c]−R[c�d], 1} we let V = W ,
otherwise the next state stays at V , where R[c � d] is the
number of times c � d in R. The 1

2 factor is a popular trick
to prove bounds on the mixing time in Lemma 2.

Algorithm 2 Markov chain MM for Mallows’ model.
1: Inputs: a profile R, a prior PrM , an initial ranking V ,

and the number of iterations N .
2: for t =1 to N do
3: Switch a pair of adjacent alternatives uniformly at

random (from d � c to c � d). Let W denote the
new ranking.

4: With probability 1
2 min{PrM (W )

PrM (V ) ϕ
R[d�c]−R[c�d], 1}

let V = W .
5: end for
6: return V .

For any profile R, let kmax denote the max cut
of the undirected WMG(R). That is, kmax =
maxA⊆C

∑
a∈A,b∈C−A |wR(a, b)|. Let dmax denote the



maximum ratio between prior probabilities. That is,
dmax = maxV,W∈Θ

PrM (V )
PrM (W ) .

Theorem 3. The mixing time of the Markov
chain in Algorithm 2 for any starting state is
O(m4d3

maxϕ
−kmax(nm3 logm lnϕ−1 + ln ε−1)).

Proof: It is easy to check that the Markov chain MM in
Algorithm 2 is finite, ergodic, reversible and the transition
matrix PM (V,W ) is diagonally dominant. Therefore, all
eigenvalues of PM (V,W ) are real and positive, and the
largest one is 1. The following lemma shows that the mix-
ing time is closely related to the spectral gap 1 − λmax,
where λmax is the second largest eigenvalue of PM (V,W ).
It is easy to verify that the stationary distribution πM equals
to the posterior distribution PrM (·|R).

Lemma 1 (e.g. (Sinclair, 1992)).
(i) τV (ε) ≤ (1− λmax)−1(lnπ(V )−1 + ln ε−1);

(ii) maxV ∈Θ τV (ε) ≥ 1
2 (1− λmax)−1 ln(2ε)−1.

It is often hard to directly obtain lower bounds on the spec-
tral gap. We will take the canonical path approach, whose
idea is the following. Any reversible Markov chain can
be visualized as an undirected graph G where the ver-
tices are Θ and the weight on the edge between V and
W is Q(V,W ) = π(V )P (V,W ). For each pair of states
V,W ∈ Θ, we fix a directed path (canonical path) from V
to W in G, denoted by γVW . Let |γVW | denote the length
of γVW . Let Γ denote the set of all canonical paths defined
above, one for each pair (V,W ). The maximum loading of
a single edge in Γ provides a lower bound on the spectral
gap, thus it can be used to upper-bound the mixing time.
Formally, this was proved by Sinclair (1992) in the follow-
ing Lemma.

Lemma 2 ((Sinclair, 1992; Jerrum and Sinclair, 1996)).
Let M be a finite, reversible, and ergodic Markov chain
with loop probabilities P (V, V ) ≥ 1

2 for all states V . Let
Γ be a set of canonical paths with maximum edge loading

ρ = max
e

1

Q(e)

∑
γV W3e

π(V )π(W )|γVW |

Then the mixing time satisfies τV (ε) ≤ ρ(lnπ(V )−1 +
ln ε−1) for all V ∈ Θ.

To apply Lemma 2, we consider the following canonical
paths ΓM for MM . We note that the graph G for canoni-
cal paths, whose vertices are rankings over alternatives, is
different from the weighted majority graph, whose vertices
are the alternatives.

Definition 5. In the canonical paths ΓM , for any pair of
different rankings V,W ∈ L(C), γVW contains the rank-
ings obtained in m − 1 stages of adjacent transpositions,
where in stage k, the alternative ranked at the k-th position
in W is moved up to the k-th position in V .

W.l.o.g. letW = [a1 � · · · � am]. In stage 1, we apply the
minimum number of adjacent transpositions on V to move
a1 to the top position. This process passes through no more
than m − 1 rankings, and let V1 denote the ranking at the
end of the process, where a1 is ranked at the top position
and the other part of V1 is the same as in V . In stage 2, if
a2 is not already ranked at the second position of V1, then
we apply the minimum number of adjacent transpositions
on V1 to move a2 to the second position. The process con-
tinues until we reach W . For example, when m = 4, V =
[a4 � a1 � a3 � a2], and W = [a1 � a2 � a3 � a4], we
have γVW = V → [a1 � a4 � a3 � a2] → [a1 � a4 �
a2 � a3]→ [a1 � a2 � a4 � a3]→W .

It is not hard to see that |γVW | ≤ m2. For any edge
e = E → E′ in a canonical path, we have QM (E,E′) =
πM (E)PM (E,E′) = πM (E′)PM (E′, E) ≥

1
2(m−1) min{πM (E), πM (E′)}. Therefore, we have

ρ ≤ max
e=E→E′

(
2m2(m− 1)

min{πM (E), πM (E′)}
∑

γV W3e
πM (V )πM (W ))

(1)

Lemma 3. Given the canonical paths ΓM defined in Defi-
nition 5 and any edge e = E → E′, we have:

(i)
∑

V,W :γV W3e
πM (V )πM (W )/πM (E) ≤ mϕ−kmax , and

(ii)
∑

V,W :γV W3e
πM (V )πM (W )/πM (E′) ≤ mϕ−kmax .

Proof: Let E = [T � d � c � B] and E′ = [T � c �
d � B]. For any 0 ≤ k ≤ |T |, we let Tk denote the top
k ordering of T and let T ∗k denote the remaining ordering.
That is, for any k ≤ |T | we have T = [Tk � T ∗k ]. It
is easy to check that e ∈ γVW if and only if there exists
0 ≤ k ≤ |T | ≤ m − 2 such that the following conditions
hold.

(1) T ∗k � d � B and d � c hold in V . Let Vk denote the
set of all such V ’s.

(2) The top k+ 1 alternatives in W are ranked as [Tk � c].
LetWk denote the set of all such W ’s.

We first prove the inequality for E. Let Ak denote the al-
ternatives in Tk, let A∗k denote the alternatives in T ∗k plus
d, let S denote the alternatives in B, and let Āk = C −Ak.
For each pairwise comparison a �E b in E, either we have
(1) a �V b for all V ∈ VK or (2) a �W b for all W ∈ VK .
This relationship is shown in Table 1.

For example, “W ” at (Ak, Ak) in Table 1 means that for all
W ∈ Wk, (a, b) ∈ Ak × Ak, a �W b if and only if a �E
b. (c, c) is marked N/A because the pairwise comparison
between c and c is not well defined.

For any J ⊆ L(C) × L(C) and V,W ∈ L(C), we let
DJ(V,W ) denote the number of different pairwise com-
parisons between V and W for all paris {a, b} such that



Ak A∗k c S
Ak W W W W
A∗k W V V V
c W V N/A W
S W V W V

Table 1: Pairwise comparisons in E that are the same as in
V ∈ Vk or W ∈ Wk.

(a, b) ∈ J or (b, a) ∈ J . Formally, DJ(V,W ) =
#{{a, b} : [(a, b) ∈ J or (b, a) ∈ J ] and [[a �V
b and b �W a] or [a �W b and b �V a]]}. In other words,
DJ(V,W ) is the Kendall-tau distance between the restric-
tion of V on J and the restriction of W on J . We note
that any unordered pair of alternatives {a, b} is counted
only once in J . In particular, for any a ∈ C and A ⊂ C,
D{a}×{a}(V,W ) = 0 and D({a}∪A)×({a}∪A)(V,W ) =
DA×({a}∪A)(V,W ) = D({a}∪A)×A(V,W ). We have

∑
V,W :γV W3e

πM (V )πM (W )/πM (E)

=
∑

0≤k≤|T |

∑
V ∈Vk,W∈Wk

πM (V )πM (W )/πM (E)

≤
∑

0≤k≤|T |

∑
V ∈Vk,W∈Wk

d3
max

PrM (R|V ) PrM (R|W )

PrM (R|E)
∑
U∈L(C) PrM (R|U)

(2)

=
∑

0≤k≤|T |

∑
V ∈Vk,W∈Wk

d3
maxf1(V,E)f2(W,E)∑

U∈L(C) ϕ
KT(U,R)

(3)

where f1(V,E) = ϕDAk×C(V,R)+D{c}×S(V,R) and
f2(W,E) = ϕ

DA∗
k
×Āk

(W,R)+DS×S(W,R). (2) is due to the
following lemma.

Lemma 4. For any ranking model, any V ∈ Θ, and
any profile R, we have Pr(V |R)

dmax
≤ Pr(R|V )∑

U∈Θ Pr(R|U) ≤
dmax Pr(V |R).

For (3), according to Table 1, we have (for all grids with
“V ” in Table 1)

DA∗k×Āk
(E,R) +DS×S(E,R)

= DA∗k×Āk
(V,R) +DS×S(V,R)

and (for all grids with “W ” in Table 1)

DAk×C(E,R) +D{c}×S(E,R)
= DAk×C(W,R) +D{c}×S(W,R)

We note that for any U ∈ L(C), Pr(R|U) ∝ ϕKT(U,R) and

KT(U,R) = DAk×C(U,R) +DA∗k×Āk
(U,R)

+D{c}×S(U,R) +DS×S(U,R)

Therefore,

KT(E,R) =DA∗k×Āk
(V,R) +DS×S(V,R)

+DAk×C(W,R) +D{c}×S(W,R)
(4)

(3) follows after substituting (4) into (2).

We next prove that
∑

V ∈Vk,W∈Wk

f1(V,E)f2(W,E)∑
U∈L(C) ϕ

KT(U,R) ≤

ϕ−kmax . To do so, we define a function g : Vk × Wk →
L(C) as follows: for any (V,W ) ∈ Vk ×Wk, g(V,W ) is
obtained from V by applying a permutation over A∗k ∪ S
so that the preferences of g(V,W ) over A∗k ∪ S become
the preferences of W over A∗k ∪ S, while the other pair-
wise comparisons stay the same as in V . This means that
the positions of Ak ∪ {c} in g(V,W ) are the same as in
V . It is not hard to verify that for all pairs (V1,W1) 6=
(V2,W2), we have g(V1,W1) 6= g(V2,W2), which means
that {g(V,W ) : V ∈ Vk,W ∈ Wk} ⊆ L(C).

Claim 1. For any (V,W ) ∈ Vk × Wk,
f1(V,E)f2(W,E) ≤ ϕKT(g(V,W ),R)−kmax .

Proof: By the definition of g(V,W ) we have
DAk×(Ak∪{c})(V,R) = DAk×(Ak∪{c})(g(V,W ), R)
and DA∗k×(A∗k∪S)(W,R) = DA∗k×(A∗k∪S)(g(V,W ), R).
Therefore,

f1(V,E)f2(W,E)/ϕg(V,W )

=
ϕ
DAk×(A∗

k
∪S)(V,R)+D{c}×S(V,R)+D{c}×A∗

k
(W,R)

ϕ
D(Ak∪{c})×(A∗

k
∪S)(g(V,W ),R)

≤ϕ−
∑

a∈Ak∪{c},b∈A
∗
k
∪S |wR(a,b)| ≤ ϕ−kmax

2

By Claim 1 we have

∑
0≤k≤|T |

∑
V ∈Vk,W∈Wk

f1(V,E)f2(W,E)∑
U∈L(C) ϕ

KT(U,P )

≤
∑

0≤k≤|T |

∑
V ∈Vk,W∈Wk

f1(V,E)f2(W,E)∑
V ∈Vk,W∈Wk

ϕKT(g(V,W ),R)

≤
∑

0≤k≤|T |

max
V ∈Vk,W∈Wk

f1(V,E)f2(W,E)/ϕKT(g(V,W ),R)

≤mϕ−kmax

This proves the inequality for E. The inequality for E′ is
proved similarly by lettingA∗k denote the alternatives in T ∗k
and letting S denote the alternatives in B plus d. 2

Combining Lemma 3 and inequality (1), we have ρ ≤
2m4d3

maxϕ
−kmax . We also note that for any state V ,

π(V ) ≥ ϕnm
2

/m!, which means that lnπ(V )−1 is
O(nm3 logm lnϕ−1). The theorem follows after applying
Lemma 2. 2



Remarks: The upper bound proved in Theorem 3 is poly-
nomial in m,n, dmax, ln ε−1, and is exponential in kmax
(with base ϕ−1). Therefore, the algorithm is efficient if
dmax and ϕ−kmax are small, that is, either ϕ is close to
1 or kmax is small. The next proposition shows that the
mixing time of MM is sometimes Ω(mϕ−kmax/2).
Proposition 1. There exists a constant α so that for any
m ≥ 3, there exists a profile R and the mixing time of MM

is at least αmϕ−kmax/2 ln(2ε)−1.

Proof: For any m ≥ 3 and any even number l we can con-
struct a profile Rl with polynomial many votes using Mc-
Garvey’s trick (McGarvey, 1953) such that the WMG(Rl)
contains only three edges: a1 → a2, a2 → a3, a3 → a1,
and the weight on all three edges is l.

It is easy to check that kmax = 2l. We prove the lower
bound on the mixing time by applying Lemma 2(ii) and the
conductance approach.
Definition 6 (Sinclair and Jerrum (1989)). The conduc-
tance of a Markov chain M is defined as

Φ(M) = min
S⊂Θ:π(S)≤1/2

Q(S,S̄)
π(S) ,

where Q(S, S̄) =
∑
V ∈S,W∈S̄ Q(V,W ).

The spectral gap is related to the conductance in the follow-
ing lemma proved by Sinclair and Jerrum (1989).
Lemma 5 ((Sinclair and Jerrum, 1989)). For any reversible
Markov chain whose conductance is Φ, the second eigen-
value λ1 satisfies 1− 2Φ ≤ λ1 ≤ 1− Φ2

2 .

We recall that all eigenvalues of MM are non-negative.
Therefore, the spectral gap of MM is 1 − λ1, which is at
most 2Φ. The following claim gives an upper bound on the
conductance for all Rl.
Claim 2. There exists β > 0 so that for all even number l,
Φ(MM ) ≤ β 1

mϕ
kmax/2 for all Rl.

Proof: We let S ⊆ Θ denote the set of rankings where
a1 � a2 � a3. For any V ∈ S and W ∈ S̄, if P (V,W ) >
0 then either a2 �W a1 �W a3 or a1 �W a3 �W a2,
which means that Q(V, S̄)/π(V ) ≤ 1

m−1ϕ
kmax/2. There-

fore, Q(S,S̄)
π(S) =

∑
V∈S Q(V,S̄)∑
V∈S π(V ) ≤

1
m−1ϕ

kmax/2. It is easy
to check that 1/6 ≤ π(S) ≤ 1/3, which means that there
exists β > 0 so that Φ(MM ) ≤ Q(S,S̄)

π(S) ≤ β
1
mϕ

kmax/2. 2

Combining Lemma 5 and Claim 2 we have 1 − λmax =
1 − λ1 ≤ β 1

mϕ
kmax/2. It follows from Lemma 1(ii) that

maxV τV (ε) ≥ β
2mϕ

−kmax/2 ln(2ε)−1. 2

4 MARKOV CHAIN FOR
CONDORCET’S MODEL

For Condorcet’s model it has been shown by Young (1988)
that for any W ∈ B(C) and any profile R, PrC(R|W ) ∝

∏
a�W b(

ϕ
1−ϕ )R[a�b], where we recall that R[a � b] is the

number of times a � b in R. This leads to the following
observation.
Proposition 2. Let R denote a profile of binary re-
lations. V ∈ B(C) maximizes the likelihood if and
only if for any pair of alternatives (a, b), we have
(R[a � b] > R[b � a])⇒ (a �V b).

An immediate corollary is that for any profileR, computing
the MLE is in P. While computing the expected Bayesian
loss w.r.t. the exact Top-1 loss function is in P (Young,
1988; Elkind and Shah, 2014; Azari Soufiani et al., 2014),
for some natural loss functions computing the minimum
expected Bayesian loss is NP-hard. Formally, in a MIN-
BAYESIANLOSS problem, we are given a SDT framework,
a prior, a decision d ∈ D, and a number l. We are asked
whether there exists a decision whose expected Bayesian
loss is no more than l.
Theorem 4. MINBAYESIANLOSS can be computed in
polynomial time for Condorcet’s model w.r.t. LETop-k and
the uniform prior for any fixed k. It is NP-hard to compute
MINBAYESIANLOSS for Condorcet’s model w.r.t. LETop- m2
and the uniform prior for even m.

Proof: For any fixed k, the Bayesian loss of any decision
can be computed by enumerating all combinations of alter-
natives ranked at top k positions in the ground truth, the
probability of which can be computed by Claim 3 below.

We prove the NP-hardness of MINBAYESIANLOSS for
Condorcet’s model w.r.t. LETop- m2 by a reduction from an
NP-hard problem called ONEWAYBISECTION (Feige and
Yahalom, 2003). In a ONEWAYBISECTION instance, we
are given an oriented graph G = (V, E) with m vertices,
where m is even, and we asked whether there exists a par-
tition of V = S ∪ T so that |S| = |T | = m

2 and there is no
edge from T to S. For any ONEWAYBISECTION instance,
we construct a MINBAYESIANLOSS instance as follows.

The alternatives are the vertices. The preferences R are
obtained by McGarvey’s trick (McGarvey, 1953) so that
the positive edges in WMG(R) are the same as in G, and
all positive weights are 2. ϕ = 2−m

2

. l = 1− 2−m
2/4.

For any A ⊆ C, we let Pr(A � Ā|R) denote the poste-
rior probability that all alternatives in A are preferred to all
alternatives in Ā. That is, h(A) =

∑
W :A�W Ā Pr(W |R).

The next claim follows after calculations in (Elkind and
Shah, 2014; Azari Soufiani et al., 2014).
Claim 3. Pr(A � Ā|R) =

∏
a∈A,b∈Ā F (a, b), where

F (a, b) =


1

1+ϕ2 if wR(a, b) = 2
ϕ2

1+ϕ2 if wR(a, b) = −2

1/2 if wR(a, b) = 0

Therefore, if the ONEWAYBISECTION instance has a so-
lution A, then the expected Bayesian loss for any alterna-
tive in A is at most 1 − Pr(A � Ā|R) ≤ 1 − 2−m

2/4,



which means that the MINBAYESIANLOSS instance is a
“yes” instance. If the ONEWAYBISECTION instance does
not have a solution, then for any alternative a ∈ C, the
expected Bayesian loss is at least 1 −

(
m
m/2

)
ϕ2

1+ϕ2 > 1 −
2m logm ϕ2

1+ϕ2 > 1 − 2−m
2/4, which means that the MIN-

BAYESIANLOSS instance is a “no” instance. 2

We now present the Markov chain MC for Condorcet’s
model in Algorithm 3, which runs MC for N steps. MC

is an independent sampler and starts at an arbitrary state
that maximizes the likelihood. In each step, a candidate
next state is drawn independent of the current state, which
means that pX(·) is the same for all X . We let p(·) denote
this proposal distribution.

In MC , p(·) is the posterior probability assuming that the
prior is uniform. In other words, for any W ∈ B(C), p(W )
is proportional to Pr(R|W ). A binary relation in B(C) can
be efficiently generated from p(·) by generating pairwise
comparisons between alternatives independently, such that
for each pair of alternatives (a, b), Pr(a�W b)

Pr(b�W a) = ϕR[b�a]

ϕR[a�b] =

ϕR[b�a]−R[a�b].

Algorithm 3 Markov chain MC for Condorcet’s model.
1: Inputs: a profile R, a prior PrC over L(C), and the

number of iterations N .
2: Let V ∈ B(C) denote a binary relation with the maxi-

mum likelihood computed by Proposition 2.
3: for t =1 to N do
4: Generate W ∈ B(C) where all pairwise compar-

isons are generated independently such that for any
(a, b), Pr(a�b)

Pr(b�a) = ϕR[b�a]−R[a�b].

5: With probability min{PrC(W )
PrC(V ) , 1} let V = W .

6: end for
7: return V .

Theorem 5. The mixing time of MC in Algorithm 3 is
O((ln dmax

dmax−1 )−1(ln dmax +m lnm+ ln ε−1)).

Proof: We apply a result by Liu (1996) to prove the upper
bound on the variation distance.

Lemma 6 ((Liu, 1996)). For any independent sampler
starting at V , we have

∆V (t) ≤ (1−minW {p(W )/π(W )})t

2
√
π(V )

For any W , we have p(W ) = Pr(R|W )∑
U∈B(C) Pr(R|U)

and π(W ) = Pr(W |R) = Pr(R|W )·Pr(W )∑
U∈B(C) Pr(R|U)·Pr(U) .

Therefore p(W )
π(W ) = 1

Pr(W ) ·
∑

U∈B(C) Pr(R|U)·Pr(U)∑
U∈B(C) Pr(R|U) ≥

minU{Pr(U)
Pr(Y )} ≥ 1

dmax
. By Lemma 6 we have

∆V (t) ≤ 1

2
√
π(V )

· (1 − 1
dmax

)t. Therefore, τV (ε) is

O((ln dmax

dmax−1 )−1(lnπ(V )−1 + ln ε−1)). When V maxi-

mizes the likelihood, we have π(V ) ≥ 1
dmaxm! . Apply-

ing Stirling’s formula we have lnπ(V )−1 is O(ln dmax +
m lnm), which proves the theorem. 2

5 EXPERIMENTS

Most theoretical results in this paper are based on worst-
case analysis. In this section we present some preliminary
experimental results to illustrate the efficiency of our algo-
rithms for real-world ranking data.

Dataset: We use the weighted majority graph dataset from
Preflib (Mattei and Walsh, 2013) (www.Preflib.org).
Most of these datasets are collected from political elections.
For each WMG, we normalize the weights to [−1, 1] by
dividing all weights by the heaviest one. This is without
loss of generality because we can set ϕ appropriately.

All experiments were run on a laptop with Intel i7-4600U
processor, 8GB memory, and 256 GB SSD hard drive, run-
ning Windows 8.1 (64bit) and Python 2.7.9 (32bit).

5.1 MALLOWS’ MODEL

We tested Algorithm 1 with Algorithm 2 for the decision
problem with Mallows’ model, ϕ = 0.9, D = C, uniform
prior, and the exact Top-1 loss function for m = 5 through
11. We use brute-force enumeration to compute the optimal
decision and discard the first 1/8 samples in our MCMC
algorithm as burn-in. The average running time and con-
vergence of Bayesian loss computed for all datasets with
the same number of alternatives are shown in Figure 1.4

In Figure 1 (a) we observe that the running time of brute-
force search grows exponentially in m (because the num-
ber of parameters is m!) while the running time for our
MCMC algorithm grows linearly in m. Figure 1 (b) shows
the reduction of the total difference between the estimated
Bayesian loss via MCMC and the ground truth computed
by brute-force search w.r.t. the number of samples. We note
that this is not the variance distance. The average is taken
over all datasets with the same number of alternatives. We
observe that the total difference can be effectively reduced
by increasing the number of samples. Moreover, when we
use 10 million samples, the optimal Bayesian decision is
correct in 109 out of 115 datasets (≈ 95%) as shown in
Table 2.

m = 5 6 7 8 9 10 11 Total
correct 18 13 18 11 17 20 12 109

incorrect 0 0 2 1 3 0 0 6

Table 2: The number of correct and incorrect Bayesian decisions
for Mallows’ model.

4We have also tested the efficiency of the algorithm with larger
N in Algorithm 2, and observe that the efficiency is in general
lower than the efficiency when all samples are used.



(a)Average running time. (b)Average total difference.

Figure 1: The average running time and average total difference of our algorithm for Mallows’ model.

5.2 CONDORCET’S MODEL

We tested Algorithm 1 with Algorithm 3 for the decision
problem with Condorcet’s model, ϕ = 0.9, D = C, uni-
form prior, and the exact Top-bm2 c loss function for m = 5
through 11. Given a binary relation W ∈ B(C) and an al-
ternative d, the exact Top-k loss can be computed by the
following polynomial-time algorithm. We say an alterna-
tive a dominates another alternative b in W , if there is a
directed path from a to b in W . For each alternative c, we
first compute the set of all alternatives that dominate c, de-
noted by Dc. By definition we have c ∈ Dc. Then, the loss
of d is 0 if and only if there exists an alternative c such that
(1) |Dc| = k and (2) d ∈ Dc; otherwise the loss of d is 1.

By Theorem 4, when k is small there exists a polynomial-
time algorithm to compute the Bayesian losses. This makes
experiments on Preflib data hard because the algorithm can
efficiently compute the optimal Bayesian losses for reason-
ably large m (for example m = 20), and there are not
enough datasets with m > 20. Therefore, we only show
the reduction in average total difference in Figure 2. Ex-
tensive experimental studies on real-world datasets are left
for future work.

In Figure 2 we observe that (i) for the same number of sam-
ples the total difference for Condorcet’s model is smaller
than the total difference for Mallows’ model, and (ii) with
the same number of samples, larger m corresponds to
smaller total difference. (The total difference for m = 11
is too small to be seen clearly in Figure 2.) This may be due
to two reasons. First, MC has a better theoretical guarantee
(that it is fast mixing) than MM . Second, for Condorcet’s
model the probability for the loss of any decision (alterna-
tive) to be 0 w.r.t. the exact Top-bm2 c loss function is small,
which means that for most generated samples the loss of all
alternatives is 1.

Figure 2: The average total difference for Condorcet’s model.

6 SUMMARY AND FUTURE WORK

We have proposed and analyzed two MCMC algorithms for
making optimal Bayesian decisions for two popular rank-
ing models w.r.t. any prior and loss function. There are
many open questions and future directions. Can we im-
prove the analysis to show that the Markov chain for Mal-
lows’ model is rapid mixing or prove that the Bayesian de-
cision problems are hard to approximate by efficient ran-
domized algorithms? Can we design and analyze other
Markov chain samplers? How to further improve the per-
formance of the Markov chain sampler in practice? How
does the Markov chain approach compare to other popu-
lar statistical and machine learning techniques, for example
importance sampling?
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