
Classification of Sparse and Irregularly Sampled Time Series with
Mixtures of Expected Gaussian Kernels and Random Features

Steven Cheng-Xian Li Benjamin Marlin
College of Information and Computer Sciences

University of Massachusetts Amherst
Amherst, MA 01003

{cxl,marlin}@cs.umass.edu

Abstract

This paper presents a kernel-based framework for
classification of sparse and irregularly sampled
time series. The properties of such time series
can result in substantial uncertainty about the val-
ues of the underlying temporal processes, while
making the data difficult to deal with using stan-
dard classification methods that assume fixed-
dimensional feature spaces. To address these
challenges, we propose to first re-represent each
time series through the Gaussian process (GP)
posterior it induces under a GP regression model.
We then define kernels over the space of GP pos-
teriors and apply standard kernel-based classifi-
cation. Our primary contributions are (i) the de-
velopment of a kernel between GPs based on the
mixture of kernels between their finite marginals,
(ii) the development and analysis of extensions
of random Fourier features for scaling the pro-
posed kernel to large-scale data, and (iii) an ex-
tensive empirical analysis of both the classifica-
tion performance and scalability of our proposed
approach.

1 INTRODUCTION

In this paper, we address the problem of classification of
sparse and irregularly sampled time series. Irregularly sam-
pled (or non-uniformly sampled) time series are character-
ized by variable time intervals between successive obser-
vations. While all time series in a data set are typically de-
fined on the same continuous-time interval, the number of
observations per time series can vary. When the intervals
between successive observations are long, the time series
are said to be sparsely sampled.

Such time series data arise when sampling complex tempo-
ral processes in a number of important areas including cli-
mate science [Schulz and Stattegger, 1997], ecology [Clark

and Bjørnstad, 2004], biology [Ruf, 1999], medicine [Mar-
lin et al., 2012] and astronomy [Scargle, 1982]. In domains
including medicine, the data are both irregularly sampled
and sparsely sampled [Marlin et al., 2012]. Classification
in this setting is challenging both because the data cases are
not naturally defined in a fixed-dimensional feature space
due to irregular sampling and variable time series length,
and because there can be substantial uncertainty about the
underlying temporal processes due to the sparsity of obser-
vations.

To address these challenges, we begin by re-representing
each input time series using the Gaussian process (GP) pos-
terior it induces under a GP regression model [Rasmussen
and Williams, 2006]. We then define kernels over the space
of GP posteriors and apply standard kernel-based classifi-
cation methods [Cortes and Vapnik, 1995]. We propose a
kernel between GPs based on the mixture of kernels be-
tween finite dimensional GP marginal distributions defined
over sliding time windows. We refer to this as the mixture
of sliding GP marginal kernels (MSM) framework.

The MSM kernel framework requires a base kernel be-
tween finite-dimensional GP marginals, which are Gaus-
sian distributions. While the MSM framework can be used
with any valid base kernel between two Gaussian distri-
butions, we propose an uncertainty-aware base kernel that
we refer to as the expected Gaussian kernel to address the
uncertainty that results from sparse sampling. Using the
expected Gaussian kernel in the MSM framework yields a
kernel between Gaussian processes that we refer to as the
mixture of expected Gaussian kernels (MEG).

Next, we consider the problem of scaling our proposed
kernel-based time series classification framework to large-
scale data. Computing the exact Gram matrix for the pro-
posed MEG kernel with n time series takesO(n2d3k) time
when k sliding windows of length d are used. To ad-
dress this problem, we show how to extend the random
Fourier feature kernel approximation framework [Rahimi
and Recht, 2007] to the MEG kernel. Using our random
feature construction, it takes O(nMd2) time to compute
the random feature matrix using M random features for

{cxl,marlin}@cs.umass.edu

each time series. We then show how to use Fastfood [Le
et al., 2013] to reduce the random feature computation time
toO(nMd log d) when the window size d is large. With an
extra rank-r covariance approximation, we can further re-
duce this time to O(nMr log d) for r � d. Finally, we
provide a convergence analysis of our proposed approxi-
mation based on the recently developed matrix Bernstein
inequality [Lopez-Paz et al., 2014; Tropp, 2012a].

The primary contributions of this paper are:

1. The development of an uncertainty-aware kernel for
GPs based on the mixture of kernels between their
finite-dimensional marginals (Section 3).

2. The development and analysis of an extension of ran-
dom Fourier features for scaling the proposed kernel
to large-scale data (Section 4).

3. An extensive empirical analysis of both the classifica-
tion performance and scalability of our proposed ap-
proach (Section 5).

In Section 2, we begin by describing how to represent
sparse and irregularly sampled time series using Gaussian
processes, which are a fundamental building block of our
proposed framework.

2 SPARSE AND IRREGULARLY
SAMPLED TIME SERIES

Our focus in this paper is classification of time series data
in the presence of sparse and irregular sampling. Consider
a data set of n independent time series D = {S1, . . . ,Sn},
where each time series Si is represented as a list of time
points ti = [ti1, . . . , ti|Si|]

>, and a list of corresponding
values yi = [yi1, . . . , yi|Si|]

>. We assume that each time
series is defined over a common continuous-time interval
[0, T]. However, for irregularly sampled time series we do
not assume that all of the time series are defined on the
same collection of time points (i.e., ti 6= tj in general), we
do not assume that the intervals between time points are
uniform, and we do not assume that the number of obser-
vations in different time series is the same (i.e., |Si| 6= |Sj |
in general).

Learning in this setting is challenging because the data
cases are not naturally defined in a fixed-dimensional fea-
ture space due to irregular sampling, and there can be
substantial uncertainty about the underlying temporal pro-
cesses due to the sparsity of observations.

To address these challenges, we begin by re-representing
each input time series using the Gaussian process (GP) pos-
terior it induces under a Gaussian process regression model
[Rasmussen and Williams, 2006]. This construction nat-
urally accommodates sparse and irregularly sampled time

series. To obtain the posterior GPs, we use a Gaussian like-
lihood function with noise variance σ2, and a zero-mean
GP prior with the squared exponential covariance function

KSE(ti, tj) = a exp(−b(ti − tj)2), for a, b > 0.

We learn the hyperparameters a, b, σ of the GP regression
model by maximizing the marginal likelihood of the data.1

Under this model, the posterior distribution induced by
each time series S is also a Gaussian process. By defini-
tion, any finite marginal of a GP is Gaussian distributed.
Let GP(u | S = {t,y}) = N (µ,Σ) denote the posterior
GP marginal of S over a collection of time points u. The
mean and covariance of the Gaussian posterior marginal
N (µ,Σ) is given below where [K(u, t)]ij = KSE(ui, tj).

µ = K(u, t)
(
K(t, t) + σ2I

)−1
y,

Σ = K(u,u)−K(u, t)
(
K(t, t) + σ2I

)−1
K(t,u).

(1)

Applying GP regression requires O(|S|3) time due to the
matrix inversion in (1). We note that efficient approxima-
tion algorithms are available when working with long time
series [Hensman et al., 2013; Quiñonero-Candela and Ras-
mussen, 2005].

In the next section, we describe our proposed framework
for defining kernels between time series based on Gaussian
processes.

3 KERNELS FOR TIME SERIES

In this section, we first introduce the general mixture of
sliding GP marginal kernels (MSM) framework for sparse
and irregularly sampled data. We then introduce the ex-
pected Gaussian kernel, which serves as an uncertainty-
aware base kernel within the MSM framework.

3.1 THE MIXTURE OF SLIDING GP MARGINAL
KERNELS

As described in Section 2, we represent each time series
S in a data set D using the posterior Gaussian process it
induces under a GP regression model. The proposed mix-
ture of sliding GP marginal kernels K(d)

MSM defines a ker-
nel between a pair of time series through a weighted av-
erage of a base kernel KB applied to a collection of fi-
nite posterior GP marginals. Specifically, let u1, . . . , uL
be a uniformly-spaced set of L time points on [0, T], and
u(s) = [us, . . . , us+d−1]

> be a window of d time points
starting at us. The MSM kernel compares the posterior GP
marginals over the complete collection of valid sliding win-
dows u(1), ...,uL−d+1 as shown below, provided ws ≥ 0
for all s.

K(d)
MSM(Si,Sj) =

L−d+1∑
s=1

wsKB

(
GP(u(s)|Si),GP(u(s)|Sj)

)
1See Rasmussen and Williams [2006] for details.

The length of the windows d is a hyper-parameter of the
MSM kernel. In this work, we choose uniform kernel mix-
ture weights ws = 1/k. Alternatively, the kernel weights
can be learned from data using multiple kernel learning al-
gorithms [Bach et al., 2004].

The base kernelKB can be any valid kernel that takes as in-
put two d-dimensional Gaussians. Of particular interest are
uncertainty-aware base kernels that use the covariance in-
formation in the posterior marginals to modulate the simi-
larity between the distributions. We present an uncertainty-
aware expected Gaussian kernel in Section 3.3, but first de-
scribe a simpler kernel to highlight the trade-offs induced
by the window length parameter d.

3.2 GAUSSIAN KERNEL ON MARGINAL MEANS

The Gaussian kernel KG below is one of the most widely
used kernels in machine learning.

KG(xi,xj) = exp

(
− 1

2γ2
‖xi − xj‖2

)
(2)

The parameter γ controls the bandwidth of the kernel.
The Gaussian kernel KG provides a simple kernel KGµ be-
tween Gaussian distributions Ni = N (µi,Σi) and Nj =
N (µj ,Σj) when applied to their mean vectors as follows.

KGµ(Ni,Nj) = KG(µi,µj) (3)

Importantly, this kernel is not uncertainty aware as it dis-
cards the covariances from the posterior Gaussians. We use
the notation K(d)

MG to denote the use of KGµ as the base ker-
nel within the MSM framework. In the case where d = 1,
theK(d)

MG kernel corresponds to taking the average similarity
between the means of the two marginal posterior distribu-
tions as seen below.

K(1)
MG(Si,Sj) =

1

L

L∑
s=1

exp

(
− 1

2γ2
(µis − µjs)2

)

On the other hand, when d = L, the K(d)
MG kernel is equiv-

alent to a product of the similarities between the means of
the two marginal posterior distributions as seen below.

K(L)
MG(Si,Sj) = exp

(
− 1

2γ2

L∑
s=1

(µis − µjs)2
)

=

L∏
s=1

exp

(
− 1

2γ2
(µis − µjs)2

)

This comparison shows that K(1)
MG is much more likely to

be robust to the influence of noise and outliers due to the
use of averaging, but it ignores the broader structure across
time points. On the other hand, K(L)

MG captures the broader
structure across time points, but may be more sensitive to

the presence of noise and outliers due to the product from
of the kernel. Importantly, the MSM kernel framework is
able to balance these considerations by allowing for the se-
lection of intermediate window lengths d.

3.3 THE EXPECTED GAUSSIAN KERNEL

In this section, we present an uncertainty-aware base kernel
KEG, which we refer to as the expected Gaussian kernel.
This kernel is obtained as the expectation of the standard
Gaussian kernel shown in (2) under the two independent
Gaussians Ni and Nj

KEG(Ni,Nj) = Exi∼Ni,xj∼Nj

[
KG(xi,xj)

]
.

Importantly, the value of the expected Gaussian kernel can
be computed analytically as shown in (4) where µ̃ = µi −
µj and Σ̃ = Σi + Σj + γ2I. (see Appendix A for the
derivation).

KEG(Ni,Nj) =
√
|Σ|
|Σ̃|

exp

(
−1

2
µ̃>Σ̃

−1
µ̃

)
. (4)

The positive definiteness of the expected Gaussian kernel
follows from the fact that the Gaussian kernel is positive
definite and therefore there exists a map φ such that the
kernel acts as a dot product 〈φ(xi),φ(xj)〉. With the in-
dependence assumption, the expected Gaussian kernel also
acts as a dot product over the expected map [Smola et al.,
2007].

KEG(Ni,Nj) = Exi∼Ni,xj∼Nj
〈φ(xi),φ(xj)〉

= 〈Ex∼Ni
[φ(x)],Ex∼Nj

[φ(x)]〉.

Interestingly, the probability product kernel of Jebara et al.
[2004] applied to a pair of Gaussian distributions

KPP(Ni,Nj) =
∫
N (x;µi,Σi)

ρN (x;µj ,Σj)
ρ dx

when ρ = 1 (also known as the expected likelihood kernel)
is a limiting case of the expected Gaussian kernel as γ → 0.
In this case, the KG term inside KEG degenerates to the
Dirac delta function δ(xi−xj), and the expected Gaussian
kernel collapses to the probability product kernel with ρ =
1 by the sifting property of the delta function.

We refer to the use of the expected Gaussian kernel within
the MSM framework as the mixture of expected Gaussian
kernels (MEG). Similar to K(d)

MG, the MEG kernel is able to
strike a balance between the use of averaging to mitigate
noise and the use of higher-dimensional marginals to cap-
ture broader temporal structure under uncertainty through
the choice of d.

In terms of computational complexity, computing the ex-
pected Gaussian kernel (4) for d-dimensional Gaussians
takes O(d3) time because of the inversion of Σ̃ and the

computation of its determinant. As a result, for the MEG
kernel involving k GP marginals of d dimensions, it takes
O(kn2d3) time to compute the n× n kernel matrix over n
data cases. In the next section, we discuss scaling learning
with MEG kernels to large data sets using random feature
approximations.

4 RANDOM FOURIER FEATURES

The O(n2) kernel matrix computation time is a signifi-
cant limitation when working with large data sets. Random
Fourier feature approximation [Rahimi and Recht, 2007]
is a kernel approximation algorithm based on Bochner’s
theorem that maps the input data into a randomized low-
dimensional feature space to approximate a shift-invariant
kernel. In this section, we show how to extend this idea to
scale-up learning with expected Gaussian kernels and ap-
ply the result to the MEG kernel.

4.1 RANDOM FEATURES FOR EXPECTED
GAUSSIAN KERNELS

Following the construction presented by Rahimi and Recht
[2007], the Gaussian kernel KG defined in (2) can be ap-
proximated by an m-dimensional random vector

z(x) =

√
2

m

[
cos(w>1 x + b1), . . . , cos(w

>
mx + bm)

]>
,

where wi ∼ N (0, γ−2I),2 and bi ∼ uniform(0, 2π) so that
KG(xi,xj) ≈ z(xi)

>z(xj).

The analytic form of the expected Gaussian kernel given
in (4) is not shift invariant in terms of the means and co-
variances of the input Gaussians, and therefore we cannot
directly expand the kernel as in Rahimi and Recht [2007].
However, we can derive the random Fourier features for
the expected Gaussian kernel by taking the expectation af-
ter Gaussian kernel expansion. With the independence of
the input Gaussians, we have

Exixj
[KG(xi,xj)] ≈ Exixj

[
z(xi)

>z(xj)
]

= Exi
[z(xi)]

>Exj
[z(xj)].

Next, we note that each entry of Ex∼N (µ,Σ)[z(x)] can be
obtained analytically as shown below. This result exploits
the fact that the expectation of the complex random feature
map exp(iw>x) derived from the Fourier expansion of the
kernel function is the characteristic function of the distri-
bution of x. A detailed derivation is given in Appendix B.

E[zi(x)] =
√

2

m
Ex∼N (µ,Σ)[cos(w

>
i x + bi)]

=

√
2

m
exp

(
−1

2
w>i Σwi

)
cos(w>i µ+ bi).

2 wi ∼ N (0, γ−2I) can be done with each entry drawn inde-
pendently fromN (0, γ−2).

Algorithm 1: Random Fourier Features for KEG

Input: A Gaussian N (µ,Σ) with mean µ and covariance
Σ. Width parameter γ2 of the Gaussian kernel.
Number of random features m.

w1, . . . ,wm
iid∼ N (0, γ−2I)

b1, . . . , bm
iid∼ uniform(0, 2π)

return
√

2

m

 exp
(
− 1

2w>1 Σw1

)
cos(w>1 µ+ b1)

...
exp

(
− 1

2w>mΣwm

)
cos(w>mµ+ bm)

As we can see, each random feature for an expected Gaus-
sian kernel is the product of

√
2/m cos(w>i µ + bi) and

exp
(
− 1

2w>i Σwi

)
. The former is identical to the random

Fourier feature with the Gaussian mean as input. The latter
is an exponential decay term that decreases as uncertainty
in the distribution increases.

The complete procedure for obtaining a random features
approximation for the expected Gaussian kernel is given in
Algorithm 1.

For the d-dimensional case, approximating an expected
Gaussian kernel withm random features using Algorithm 1
requires O(md2) time as it takes O(d2) time to compute
the quadratic term w>Σw. As a result, given a data set
of size n, it takes O(nmd2) to compute the n ×m feature
matrix. This is more efficient compared to the O(n2d3)
time needed to compute the exact kernel, especially when
n� m.

4.2 ACCELERATION FOR HIGH-DIMENSIONAL
GAUSSIANS

The O(d2) time for computing the random features can
be computationally prohibitive when working with high-
dimensional Gaussians. Le et al. [2013] proposed Fast-
food to accelerate the computation of the original ran-
dom Fourier features of Rahimi and Recht [2007]. Fast-
food utilizes the fast Walsh-Hadamard transform to simu-
late a full Gaussian random matrix using a small portion of
i.i.d. Gaussian samples. Essentially, given a vector x ∈ Rd,
Fastfood approximates the matrix-vector product Vx in
O(m log d) time instead of O(md), where V is an m × d
random matrix with each entry drawn independently from
N (0, γ−2).

With Fastfood, computing the cos(w>i µ + bi) term for
the expected Gaussian kernel for all i = 1, . . . ,m can be
done by first generating the random vector Vµ as described
above. Allm entries cos([Vµ]i+bi) can then be computed
in O(m log d) time.

The bottleneck for the expected Gaussian kernel is the com-
putation of the exponential term exp

(
− 1

2w>i Σwi

)
, which

needs O(d2) time if computed naively. This can also be

accelerated by using the Fastfood trick twice:

exp

(
−1

2
w>i Σwi

)
= exp

(
−1

2
[V(VΣ)>]ii

)
. (5)

Following the stacking strategy in Le et al. [2013], we
choose V in (5) to be a d × d square matrix3, and re-
peat this step dm/de times to produce all m features. This
leads to an overall cost of O(md log d) as opposed to the
O(md2) time mentioned before to computem random fea-
tures for the expected Gaussian kernel taking on a single
d-dimensional Gaussian input.

We can further reduce the cost by approximating the co-
variance matrix with a low rank matrix Σ ≈ ΦΦ> using
truncated SVD where Φ ∈ Rd×r. There exists efficient al-
gorithms to compute top-r SVD such as randomized SVD
[Halko et al., 2011] that requires O(d2 log r) time in con-
trast with O(d3) for classical algorithms. With Fastfood,
the exponential term can be approximated in O(r log d)
time:

exp

(
−1

2
w>i Σwi

)
≈ exp

−1

2

r∑
j=1

[VΦ]2ij

 . (6)

This leads to O(mr log d) time for some r < d to compute
m random features for a single data case.

4.3 RANDOM FEATURES FOR THE MIXTURE
OF EXPECTED GAUSSIAN KERNELS

Let z(N) denote the random features for the expected
Gaussian kernel computed by Algorithm 1. As described
in Section 3.1, each time series Si is summarized by a col-
lection of k Gaussian marginals {N (1)

i , . . . ,N (k)
i } for all i.

The mixture of expected Gaussian kernels can be approxi-
mated by the random features of the base kernel applied to
each marginal:

k∑
s=1

wsKEG(N (s)
i ,N (s)

j) ≈
∑
s

wszs(N (s)
i)>zs(N (s)

j)

=
∑
s

(√
wszs(N (s)

i)
)> (√

wszs(N (s)
j)

)
.

Equivalently, each time series can be expressed as the com-
pound random feature map below to approximate the MEG
kernel.

ẑ(S) =
[√

w1z1(N (1))>, . . . ,
√
wkzk(N (k))>

]>
. (7)

In this work, we set ws = 1/k for all k marginals, that is,
the base kernels are weighted equally. Furthermore, each
marginalN (s) is approximated by the same number of ran-
dom features m. Therefore, ẑ(S) has mk random features

3 Assume Σ is properly padded so that the dimension becomes
d = 2` in order to perform Hadamard transform [Le et al., 2013].

in total. In Section 4.4, we will show that having the same
number of random features for each marginal will lead to
the lowest error bound under uniform weights.

In general, ws can be the coefficients of any non-negative
combination, either chosen according to domain knowl-
edge or learned from data. Learning the weights from data
with the random features given in (7) can be viewed as
an approximation to multiple kernel learning [Bach et al.,
2004]. Optimizing w1, . . . , wk is similar to Mahalanobis
metric learning [Xing et al., 2002] for the diagonal case
except that all random features come from the same base
kernel share a scaling factor.

4.4 APPROXIMATION GUARANTEES

In this section, we analyze the approximation quality of
the expected Gaussian kernel random features computed by
Algorithm 1 in terms of the concentration of the approxi-
mating kernel matrix. Using the Hermitian matrix Bern-
stein inequality [Tropp, 2012a,b] and following a deriva-
tion similar to [Lopez-Paz et al., 2014], we can bound the
spectral norm (denoted ‖ · ‖) of the difference between the
exact expected Gaussian kernel and its approximation.4

Theorem 1. Given a data set with each example repre-
sented as a single Gaussian, N1, . . . ,Nn, let K ∈ Rn×n
be the expected Gaussian kernel matrix. Let K̂ ∈ Rn×n,
with each entry [K̂]ij = z(Ni)>z(Nj), be the approxima-
tion matrix constructed using Algorithm 1 with m random
features. Then we have

E‖K̂−K‖ ≤ 2n

m

√
2 log n

m
+

2n log n

3m2
.

The proof of Theorem 1 is given in Appendix C. It states
that the error E‖K̂ − K‖ is bounded by O(n log n) for
n data cases with a fixed number of random features m.
On the other hand, for a fixed number of data cases n,
increasing the number of random features m induces an
O(m−3/2) reduction in error.

As for the high-dimensional case described in Section 4.2,
Le et al. [2013] have shown that the Fastfood feature map is
unbiased, and therefore Theorem 1 also holds for the ran-
dom features computed by Fastfood using (5). However,
with the low-rank approximation used in (6), K̂ no longer
converges to K but instead converges to K̃ where

[K̃]ij = KEG

(
N (µi,ΦiΦ

>
i),N (µj ,ΦjΦ

>
j)
)
.

Following the construction described in Section 4.3, the
mixture of k expected Gaussian kernels has a total of
M = |ẑ(S)| = mk features. Since ws = 1/k for
all s, each entry of the feature vector is in the form of

4 This bound can also be applied to the original random
Fourier feature approximation [Rahimi and Recht, 2007].

√
2/M E[cos(w>x+b)], whose absolute value is bounded

by
√
2/M . Following the proof of Theorem 1, we can

bound the error of using the proposed random feature ap-
proximation to the MEG kernel.

Corollary 1. Consider the MEG kernel consisting of k
base kernels. Let K ∈ Rn×n be the MEG kernel matrix,
and K̂ be the approximating matrix using M = mk ran-
dom features. Then,

E‖K̂−K‖ ≤ 2n

M

√
2 log n

M
+

2n log n

3M2
. (8)

The expected error bound in Corollary 1 has the same form
as that in Theorem 1 except the bound is determined by the
number of total random features M . When the number of
kernels k is large, even if each kernel is approximated by
only a few random features, a low error bound can still be
achieved if M = mk is sufficiently large.

As a matter of fact, for a convex combination of k expected
Gaussian kernels with unequal weights, choosing the num-
ber of random features proportional to the corresponding
kernel weight will achieve an error bound identical to (8)
for a total of M random features.

5 EXPERIMENTS

We evaluate the proposed MEG kernel and the correspond-
ing random feature approximation in terms of time series
classification in the presence of sparse and irregular sam-
pling. In the sections below, we describe the experimental
methodology and the results.

5.1 EXPERIMENTAL METHODOLOGY

Data. We conduct experiments on all 43 time series data
sets from the UCR time series classification archive [Keogh
et al., 2011]. The UCR archive contains a diverse collec-
tion of time series data sets that vary significantly in terms
of length, number of classes, and number of data cases.
However, all the data sets are densely and uniformly sam-
pled. This allows us to perform controlled experiments
where we decrease the sampling density and observe the
effect on the relative performance of different classifica-
tion methods. We consider ten different sampling densities
from 10% to 100% in steps of 10%.

Gaussian Process Representation. Following Section 2,
for each data set and each sampling density, we first learn
the hyperparameters of the GP regression model by opti-
mizing the log marginal likelihood over the observed data.
As described in Section 3.1, we compute the posterior GP
marginals over a uniformly-spaced grid of L points on
[0, T], where T is the common length of the fully observed
time series of each data set. We select L = min(3T, 500).

Kernel and Feature Normalization. We apply standard

10 20 30 40 50 60 70 80 90 100
sampling density (%)

0.80
0.85
0.90
0.95
1.00

ac
cu

ra
cy

ra
tio

KMLIN KMG K(1)
MEG K(10)

MEG

Figure 1: Comparing MSM kernel framework with differ-
ent base kernels.

kernel normalization to all kernel matrices before averag-
ing. We also normalize each random feature vector to have
unit length. Empirically, we found that normalization im-
proves the classification performance.

Base Classifiers and Hyperparameters. We use support
vector machines (SVMs) for classification. For kernel-
based methods we use libsvm [Chang and Lin, 2011] with
precomputed kernels. For random feature approximation,
we use liblinear [Fan et al., 2008], which is tailored for
linear models. We use five-fold stratified cross validation
to jointly select the SVM regularization parameter and the
parameter γ for the expected Gaussian kernels.

Accuracy Measures. We assess the performance of each
method in terms of classification accuracy using the bench-
mark train/test splits in the UCR archive. We report re-
sults in terms of average accuracy ratios over all 43 data
sets to emphasize the relative differences between methods
across different sampling densities. For a given data set and
sampling density, the accuracy ratio for a method is the ac-
curacy of the method divided by the accuracy of the best
performing method on that data set and sampling density.
We also report one-standard-error error bars.

5.2 EXPERIMENTS AND RESULTS

Comparing Base Kernels for MSM Framework. We
evaluate several instances of the MSM framework using
different base kernels. The linear MSM kernel KMLIN

uses the linear kernel on the univariate marginal means
KLIN(Ni,Nj) = µiµj as the base kernel. The Gaussian
MSM kernel KMG uses KGµ defined in (3) also on the uni-
variate marginal means. We compare these baseline meth-
ods to two expected Gaussian kernel based MSM kernels:
the MEG kernel K(1)

MEG on the univariate marginals, and the
MEG kernel K(10)

MEG with a sliding window size of 10.

Figure 1 shows the classification performance of these
methods on each sampling density. The Gaussian MSM
kernel KMG significantly outperforms the linear MSM ker-
nel KMLIN. However, K(1)

MEG and K(10)
MEG both outperform

KMG, particularly under high sparsity. This is expected
since K(1)

MEG and K(10)
MEG both capture posterior uncertainty

while KMG does not.

t∗ time
0.0

0.5

1.0

(a) window size d = 1

t∗ time
0.0

0.5

1.0

(b) window size d = 10

Figure 2: Comparison of different window size d. The
plot on the top of each panel shows two time series from
the ECG200 data set at 50% sampling density with visu-
alization of their posterior Gaussian process. The plot on
the bottom shows the value of the corresponding expected
Gaussian kernel at each time slice.

0 50 100 150 200 250 300
window size

0.84
0.86
0.88
0.90
0.92
0.94

ac
cu

ra
cy

Figure 3: Comparison of classification accuracy under dif-
ferent window sizes on ECG200 at 50% sampling density.

Effect of Sliding Window Size for MEG Kernel. Figure 2
illustrates how different window sizes affect the similar-
ity output by the expected Gaussian kernel on the ECG200
data set from the UCR archive at 50% sampling density.
The two time series intersect at around t∗; however, they
have opposite trends at this time point. Since K(1)

MEG does
not take local correlation structure into account at all, it
achieves the highest possible value at t∗. On the other hand,
K(10)

MEG outputs a low value at t∗ since a larger window cap-
tures the fact that the two processes are anti-correlated in
the neighborhood of t∗.

Figure 3 shows the classification performance across vari-
ous window sizes ranging from 1 to L on the ECG200 data
set at 50% sampling density. For this experiment, we fixed
the SVM regularization parameter to C = 2000, and the
covariance parameter of the expected Gaussian kernel to
γ = 0.01d, which grows linearly as the window size d in-
creases. Empirically, such choice of γ makes the values of
the expected Gaussian kernels numerically stable.

The results show that the classification accuracy on
ECG200 improves as the window size increases and peaks
at around 0.75L. We note that using larger window size is
computationally more expensive, and that not all data sets
show a benefit with increasing window size.

Comparing MEG to Existing Methods. We compare the
MEG kernel with two existing methods for time series clas-
sification. The reproducing kernel Hilbert space (RKHS)

0.80
0.85
0.90
0.95
1.00

ac
cu

ra
cy

ra
tio

KH DTW K(1)
MEG

10 20 30 40 50 60 70 80 90 100
sampling density (%)

0.6
0.7
0.8
0.9
1.0

ac
cu

ra
cy

ra
tio

Figure 4: Comparison with other time series classification
methods. The plot on the top corresponds to the 20 data
sets whose optimal warping window size is at most 12; the
plot on the bottom corresponds to the rest of 23 data sets
with optimal warping window size greater than 12.

kernel KH proposed by Lu et al. [2008] is a time series
kernel also designed for irregularly sampled time series.
The RKHS kernel is defined as the squared norm between
two posterior GP mean functions in the RKHS induced by
a common prior covariance function. The kernel can be
computed in closed form, but also discards posterior uncer-
tainty since it only depends on the posterior GP means. It is
also not possible to focus the kernel on assessing similarity
over a specific time interval.

Dynamic time warping [Berndt and Clifford, 1994; Sakoe
and Chiba, 1971] (DTW) is a widely used distance func-
tion for misaligned and warped time series. We compare to
the 1-nearest neighbor algorithm using DTW distance sub-
ject to the Sakoe-Chiba warping constraint using the opti-
mal window size published along with the UCR time series
archive. Since classic DTW is not designed for irregularly
sampled time series data, we also use GP regression to in-
terpolate each time series on the same set of reference time
points as the MSM kernels, and use the posterior means as
the input to DTW.

In this experiment, we split the data sets into two groups ac-
cording to their published optimal warping window sizes.
Smaller warping window size implies the corresponding
time series are almost aligned and have minimal warping.
The 23 data sets with optimal window size greater than 12
are selected as the warped group, which implies that the
corresponding time series require significant alignment or
warping before direct comparison. The need for alignment
and warping violates the assumptions of the MSM kernel
as well as the RKHS kernel, which does not explicitly take
warping or alignment into account. The rest of the 20 data
sets are regarded as the aligned group.

Figure 4 shows that the RKHS kernel KH consistently per-
forms the worst on both groups, because it fails to fo-
cus on a finite time interval of interest where data points
are observed and does not account for uncertainty. For

10 20 30 40 50 60 70 80 90 100
sampling density (%)

.90

.92

.94

.96

.98
1

KMG K(1)
MEG R(1)

MEG K(10)
MEG R(10)

MEG

Figure 5: Comparison of the classification accuracy ratio
of the exact time series expected Gaussian kernel against
the random Fourier feature approximation. The baseline
method KMG is included as a reference.

the aligned group, our method always outperforms DTW.
When the time series is more sparsely sampled, the advan-
tage of our uncertainty-aware framework becomes more
significant. For the warped group, DTW achieves better
classification accuracy under low sparsity, but our approach
achieves comparable or better accuracy under high sparsity
while the RKHS kernel does not.

Random Features for MEG Kernels. To evaluate the ran-
dom feature approximation to the MEG kernel in terms of
classification accuracy, we use m = b10,000/kc random
features to approximate the expected Gaussian kernel on
each of k marginals, so that the total number of random
features M = mk is at most 10,000. In the experiment,
R(1)

MEG andR(10)
MEG denote the random feature approximation

for K(1)
MEG and K(10)

MEG with window size 1 and 10.

Figure 5 shows that the random feature approximation pro-
duces similar classification results compared to the exact
kernels for both marginal window sizes. The baseline
method KMG is included to show that even when the ac-
curacy declines due to approximation, it still outperforms
the baseline method.

Table 1 shows the classification training and prediction
time on the four largest data sets in the UCR archive. We
divide the training and prediction task using either K(1)

MEG

or R(1)
MEG into two steps: first, computing the kernel matrix

for K(1)
MEG or the random feature matrix for R(1)

MEG, which
are shown as the 3rd and 5th column (denoted prep.) in Ta-
ble 1; second, training and prediction time spent solely in
the classifier, denoted train and test in the table.

The results in Table 1 show that computing the fea-
ture/kernel matrix dominates the entire training/prediction
task. It is consistent with the time and space complexity
analysis given in Table 2. In terms of the data size, com-
puting the exact kernel takesO(n2) time, while computing
the random feature matrix takesO(n) time. As the window
size d increases, computing the exact kernel takes O(d3)
time as oppose toO(d2) for random feature approximation.

As for the actual classifier learning and prediction time, we
can see thatR(1)

MEG takes longer thanK(1)
MEG. This is because

Table 1: Comparison of classification time (in seconds) on
the four largest data sets using exact expected Gaussian
kernels as opposed to random feature approximation under
window sizes 1 and 10. In the table, the MEG kernel sub-
scripts are dropped from the notation for brevity. The two
numbers (n,L) for each data set denote the number of ex-
amples and the number of reference time points. Note that
a MEG kernel with window size d consists of k = L−d+1
base kernels (see Section 3).

data meth. prep. train prep. test
K(1) 13.88 0.01 13.76 0.00

TwoLead. R(1) 0.91 1.44 0.37 0.01
(1162, 246) K(10) 754.05 0.01 743.41 0.00

R(10) 10.73 1.91 5.32 0.01
K(1) 143.11 0.25 144.67 0.01

yoga R(1) 2.30 33.56 1.09 0.02
(3300, 500) K(10) 10751.85 0.32 10620.35 0.01

R(10) 50.44 31.08 12.86 0.02
K(1) 650.98 0.15 652.41 0.03

wafer R(1) 4.88 8.65 2.27 0.06
(7164, 456) K(10) 50452.40 0.17 49159.89 0.05

R(10) 58.76 45.13 29.71 0.09
K(1) 1103.91 0.21 1119.40 0.05

StarLight. R(1) 5.97 55.42 2.63 0.12
(9236, 500) K(10) 86676.10 0.46 83357.72 0.15

R(10) 99.30 17.44 35.26 0.11

the final kernel matrix for K(1)
MEG can be stored in O(n2)

space, as oppose to O(nmk) for R(1)
MEG, which is notably

larger for our choice of m (mk ≈ 10,000). By adjusting
m, the total time using R(1)

MEG can be further reduced, but
it is already significantly faster overall with the value of m
used here.

Comparing Random Features to Nyström Method. The
Nyström method [Williams and Seeger, 2001] is a com-
monly used kernel approximation algorithm based on low-
rank approximation to the full kernel matrix computed us-
ing a subset of the training data. We compare the time ver-
sus kernel approximation error trade-off when approximat-
ing the MEG kernel by the Nyström method and random
features using window sizes 1 and 10. The experiment
is conducted on the largest data set in the UCR archive,
StarLightCurves, at 10% sampling density. For Nyström
method, we plot the results using s = 10, 20, . . . , 500 sam-
ples. For the random feature approximation, we plot the
results using m = 1, 2, . . . , 100 random features for each
expected Gaussian kernel (at most 50,000 total features for
the largest m). Note that the number of training cases used
for the Nyström method is at most the size of the training
data; however, the number of random features can exceed
the size of the training data.

The results show that the Nyström approximation can
achieve higher approximation accuracy than random fea-
tures when sufficient training data samples are used [Yang

10−1 100 101 102 103

time (log scale)

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

ap
pr

ox
im

at
io

n
er

ro
r Nyström

R(1)
MEG

(a) d = 1, n = 9236

10−1 100 101 102 103 104

time (log scale)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

ap
pr

ox
im

at
io

n
er

ro
r Nyström

R(10)
MEG

(b) d = 10, n = 1000

Figure 6: Comparing time versus approximation error (in
terms of the relative error E‖K̂ − K‖/‖K‖) of Nyström
method under various sizes of the subset of training data
and random feature approximation with various numbers
of random features.

Table 2: Comparing time and space complexity of the clas-
sification using the MEG kernel with window size d con-
structed from k expected Gaussian kernels, where n is the
training data size, n′ is the test data size. Nyström method
uses a subset of the training data of size s, and R(d)

MEG uses
a total of M = mk random features.

K(d)
MEG Nyström R(d)

MEG

train time O(d3n2k) O(d3nsk + s3) O(d2nM)
test time O(d3n′nk) O(d3n′sk + n′s2) O(d2n′M)
train space O(n2) O(ns) O(nM)
test space O(n′n) O(n′s) O(n′M)

et al., 2012]. However, for d-dimensional Gaussians (for
the MEG kernel with window size d), computing a single
entry of the expected Gaussian kernel takesO(d3) compar-
ing to O(d2) to compute a single random feature, as in the
case of comparing to exact kernel computation. The de-
tailed complexity analysis is given in Table 2. Figure 6(b)
shows that for window size 10, the random feature approx-
imation needs significantly less time to achieve an accept-
able error rate.

Fastfood Method for High-Dimensional Marginals. We
compare the straightforward random feature computation
to two acceleration methods using Fastfood as described in
Section 4.2. This experiment is conducted on the data set
StarLightCurves from the UCR archive at 10% sampling
density with the full window size L = 500. That is, there
is a single expected Gaussian kernel with d = 500 in the
MEG kernel. We use randomized truncated SVD [Halko
et al., 2011] for the low-rank approximation of covariance
matrices with rank r = 10.

Figure 7 shows the time-versus-error relationship using
three different methods with 2` random features for ` =
9, . . . , 13 (from top to bottom). It shows that all three meth-
ods achieve similar errors (relative error in terms of spec-
tral norms) when using the same feature size. However, the
Fastfood method using (5), denoted Fastfood in the figure,
is at least 14 times faster among five feature sizes than the

101 102 103 104

time (log scale)

0.02

0.04

0.06

0.08

0.10

0.12

ap
pr

ox
im

at
io

n
er

ro
r

standard computation
Fastfood
Fastfood + low-rank

Figure 7: Comparing time versus approximation error (rel-
ative error) of the standard feature computation and the two
Fastfood methods under d = 500 and n = 1000. The
five points for each method correspond to using 512, 1024,
2048, 4096, and 8192 features from top to bottom.

standard method, due to the O(nMd log d) time for Fast-
food as opposed to O(nMd2). With low-rank covariance
approximation, the running time can be improved signif-
icantly again, even if an extra truncated SVD is required.
The SVD overhead is roughly a constant of 2.7 seconds,
which accounts for 86% time in the smallest case (512 fea-
tures) and 42% in the largest case (8192 features).

6 CONCLUSIONS AND FUTURE WORK

We have proposed a kernel-based framework for classifi-
cation of sparse and irregularly sampled time series that
re-represents time series using Gaussian process and then
assesses the similarity between the GPs based on the sim-
ilarity between their finite marginals defined over sliding
time windows. Our results show that the proposed ap-
proach achieves better average accuracy on a large time se-
ries classification benchmark compared to all other meth-
ods considered when the time series are alignedor under
high sparsity. Further, our extension to random Fourier fea-
tures achieves significant speedups relative to exact kernel
computations as well as Nyström approximation on large
time series data sets. Our application of Fastfood and low-
rank covariance approximations yields further speedups in
the case where large-dimensional marginals are required.

Possible directions for future work include learning kernel
combination weights, extending the MSM framework to
multi-output Gaussian processes for multivariate time se-
ries, and the extension of this framework to distributions
other than Gaussians or different base kernels. Moreover,
instead of performing classification on the random features
using linear SVMs, we can use the random feature vector
as an uncertainty-aware embedding of the data in various
deep learning architectures, as well as unsupervised learn-
ing models for problems like clustering.

Acknowledgements

This material is based upon work supported by the National
Science Foundation under Grant No. 1350522.

References
Bach, F. R., Lanckriet, G. R., and Jordan, M. I. (2004).

Multiple kernel learning, conic duality, and the smo al-
gorithm. In Proceedings of the twenty-first international
conference on Machine learning, page 6. ACM.

Berndt, D. J. and Clifford, J. (1994). Using dynamic time
warping to find patterns in time series. In KDD work-
shop. Seattle, WA.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A li-
brary for support vector machines. ACM Transac-
tions on Intelligent Systems and Technology, 2:27:1–
27:27. Software available at http://www.csie.
ntu.edu.tw/˜cjlin/libsvm.

Clark, J. and Bjørnstad, O. (2004). Population time series:
process variability, observation errors, missing values,
lags, and hidden states. Ecology, 85(11):3140–3150.

Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine learning, 20(3):273–297.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and
Lin, C.-J. (2008). LIBLINEAR: A library for large linear
classification. Journal of Machine Learning Research,
9:1871–1874.

Halko, N., Martinsson, P.-G., and Tropp, J. A. (2011).
Finding structure with randomness: Probabilistic algo-
rithms for constructing approximate matrix decomposi-
tions. SIAM review, 53(2):217–288.

Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaus-
sian processes for big data. In Proceedings of the
Twenty-Ninth Conference on Uncertainty in Artificial In-
telligence, Bellevue, WA, USA, August 11-15, 2013.

Jebara, T., Kondor, R., and Howard, A. (2004). Probabil-
ity product kernels. The Journal of Machine Learning
Research, 5:819–844.

Keogh, E., Xi, X., Wei, L., and Ratanamahatana, C. A.
(2011). The UCR time series classification/clustering
homepage: www.cs.ucr.edu/˜eamonn/time_
series_data/.

Le, Q., Sarlós, T., and Smola, A. (2013). Fastfood–
approximating kernel expansions in loglinear time. In
ICML.

Lopez-Paz, D., Sra, S., Smola, A. J., Ghahramani, Z., and
Schölkopf, B. (2014). Randomized nonlinear component
analysis. In ICML.

Lu, Z., Leen, T. K., Huang, Y., and Erdogmus, D. (2008). A
reproducing kernel hilbert space framework for pairwise
time series distances. In Proceedings of the 25th interna-
tional conference on Machine learning, pages 624–631.
ACM.

Marlin, B. M., Kale, D. C., Khemani, R. G., and Wet-
zel, R. C. (2012). Unsupervised pattern discovery in
electronic health care data using probabilistic clustering

models. In Proceedings of the 2nd ACM SIGHIT Inter-
national Health Informatics Symposium, pages 389–398.

Quiñonero-Candela, J. and Rasmussen, C. E. (2005). A
unifying view of sparse approximate gaussian process
regression. The Journal of Machine Learning Research,
6:1939–1959.

Rahimi, A. and Recht, B. (2007). Random features for
large-scale kernel machines. In Advances in neural in-
formation processing systems, pages 1177–1184.

Rasmussen, C. and Williams, C. (2006). Gaussian pro-
cesses for machine learning.

Ruf, T. (1999). The lomb-scargle periodogram in biolog-
ical rhythm research: analysis of incomplete and un-
equally spaced time-series. Biological Rhythm Research,
30(2):178–201.

Sakoe, H. and Chiba, S. (1971). A dynamic programming
approach to continuous speech recognition. In Proceed-
ings of the Seventh International Congress on Acoustics,
volume 3, pages 65–69.

Scargle, J. D. (1982). Studies in astronomical time se-
ries analysis. ii-statistical aspects of spectral analysis
of unevenly spaced data. The Astrophysical Journal,
263:835–853.

Schulz, M. and Stattegger, K. (1997). Spectrum: Spectral
analysis of unevenly spaced paleoclimatic time series.
Computers & Geosciences, 23(9):929–945.

Smola, A., Gretton, A., Song, L., and Schölkopf, B. (2007).
A hilbert space embedding for distributions. In Algorith-
mic Learning Theory, pages 13–31. Springer.

Tropp, J. A. (2012a). User-friendly tail bounds for sums of
random matrices. Foundations of Computational Math-
ematics, 12(4):389–434.

Tropp, J. A. (2012b). User-friendly tools for random matri-
ces: An introduction. Technical report, DTIC Document.

Williams, C. and Seeger, M. (2001). Using the Nyström
method to speed up kernel machines. In Proceedings
of the 14th Annual Conference on Neural Information
Processing Systems.

Xing, E. P., Jordan, M. I., Russell, S., and Ng, A. Y. (2002).
Distance metric learning with application to clustering
with side-information. In Advances in neural informa-
tion processing systems, pages 505–512.

Yang, T., Li, Y.-F., Mahdavi, M., Jin, R., and Zhou, Z.-H.
(2012). Nyström method vs random fourier features: A
theoretical and empirical comparison. In Advances in
neural information processing systems, pages 476–484.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/

	INTRODUCTION
	SPARSE AND IRREGULARLY SAMPLED TIME SERIES
	KERNELS FOR TIME SERIES
	THE MIXTURE OF SLIDING GP MARGINAL KERNELS
	GAUSSIAN KERNEL ON MARGINAL MEANS
	THE EXPECTED GAUSSIAN KERNEL

	RANDOM FOURIER FEATURES
	RANDOM FEATURES FOR EXPECTED GAUSSIAN KERNELS
	ACCELERATION FOR HIGH-DIMENSIONAL GAUSSIANS
	RANDOM FEATURES FOR THE MIXTURE OF EXPECTED GAUSSIAN KERNELS
	APPROXIMATION GUARANTEES

	EXPERIMENTS
	EXPERIMENTAL METHODOLOGY
	EXPERIMENTS AND RESULTS

	CONCLUSIONS AND FUTURE WORK

