
Are You Doing What I Think You Are Doing?
Criticising Uncertain Agent Models

Stefano V. Albrecht
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, UK

s.v.albrecht@sms.ed.ac.uk

Subramanian Ramamoorthy
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, UK

s.ramamoorthy@ed.ac.uk

Abstract

The key for effective interaction in many multia-
gent applications is to reason explicitly about the
behaviour of other agents, in the form of a hypothe-
sised behaviour. While there exist several methods
for the construction of a behavioural hypothesis,
there is currently no universal theory which would
allow an agent to contemplate the correctness of
a hypothesis. In this work, we present a novel al-
gorithm which decides this question in the form
of a frequentist hypothesis test. The algorithm al-
lows for multiple metrics in the construction of the
test statistic and learns its distribution during the
interaction process, with asymptotic correctness
guarantees. We present results from a comprehen-
sive set of experiments, demonstrating that the
algorithm achieves high accuracy and scalability
at low computational costs.

1 INTRODUCTION

A common difficulty in many multiagent systems is the fact
that the behaviour of other agents may be initially unknown.
Important examples include adaptive user interfaces, robotic
elderly assistance, and electronic markets. Often, the key for
effective interaction in such systems is to reason explicitly
about the behaviour of other agents, typically in the form
of a hypothesised behaviour which makes predictions about
future actions based on a given interaction history.

A number of methods have been studied for the construction
of behavioural hypotheses. One method is to use opponent
modelling techniques to learn a behaviour from the inter-
action history. Two well-known examples include fictitious
play (Brown, 1951) and case-based reasoning (Gilboa and
Schmeidler, 2001), as well as their many variants. Another
method is to maintain a set of possible action policies, called
types, over which a posterior belief is computed based on
the interaction history (Albrecht and Ramamoorthy, 2014;
Gmytrasiewicz and Doshi, 2005). The hypothesis is then

obtained by using the posterior to mix the types. Related
methods have been studied in the plan recognition literature
(Carberry, 2001; Charniak and Goldman, 1993).

The learned behaviours (or models) of these methods can
be viewed as hypotheses because they are eventually either
true or false (subject to the various assumptions they are
based on), and because they are testable. Thus, the following
is a natural question: given an interaction history H and a
hypothesis π∗ for the behaviour of an agent, does the agent
indeed behave according to π∗? There are several ways
in which an answer to this question could be utilised. For
instance, if we persistently reject the hypothesis π∗, we may
construct an alternative hypothesis or resort to some default
plan of action (such as a “maximin” strategy).

Unfortunately, the above methods for hypothesis construc-
tion do not provide an answer to this question. Some oppo-
nent modelling methods use goodness-of-fit measures (e.g.
those that rely on maximum likelihood estimation), but these
measures describe how well the model fits the data (i.e. in-
teraction history) and not necessarily if the model is correct.
Similarly, the posterior belief in the type-based approach
quantifies the relative likelihood of types (relative to a set of
alternative types) but not the correctness of types.

To illustrate the source of difficulty, consider the below ex-
cerpt of an interaction process between two agents which
can choose from three actions. The columns show, respec-
tively, the current time t of the interaction, the actions chosen
by the agents at time t, and agent 1’s hypothesised probabil-
ities with which agent 2 would choose its actions at time t,
based on the prior interaction history.

t (at1, a
t
2) π∗2

1 (1, 2) 〈.3, .1, .6〉
2 (3, 1) 〈.2, .3, .5〉
3 (2, 3) 〈.7, .1, .2〉
4 (2, 3) 〈.0, .4, .6〉
5 (1, 2) 〈.4, .2, .4〉

Assuming that the process continues in this fashion, and
without any restrictions on the behaviour of agent 2, how

should agent 1 decide whether or not to reject its hypothesis
about the behaviour of agent 2?

A natural way to address this question is to compute some
kind of score from the information given in the above ta-
ble, and to compare this score with some manually chosen
rejecting threshold. A prominent example of such a score
is the empirical frequency distribution (Conitzer and Sand-
holm, 2007; Foster and Young, 2003). While the simplicity
of this method is appealing, there are two significant prob-
lems: (1) it is far from trivial to devise a scoring scheme that
reliably quantifies “correctness” of hypotheses (for instance,
an empirical frequency distribution taken over all past ac-
tions would be insufficient in the above example since the
hypothesised action distributions are changing), and (2) it is
unclear how one should choose the threshold parameter for
any given scoring scheme.

In this work, we present an efficient algorithm which decides
this question in the form of a frequentist hypothesis test. The
algorithm addresses (1) by allowing for multiple scoring cri-
teria in the construction of the test statistic, with the intent
of obtaining an overall more reliable scoring scheme. The
distribution of the test statistic is then learned during the
interaction process, and we show that the learning is asymp-
totically correct. Finally, analogous to standard frequentist
testing, the hypothesis is rejected at a given point in time
if the resulting p-value is below some “significance level”.
This eliminates (2) by providing a uniform semantic for re-
jection that is invariant to the employed scoring scheme. We
present a comprehensive set of experiments, demonstrating
that our algorithm achieves high accuracy and scalability at
low computational costs.

Of course, there is a long-standing debate on the role of
statistical hypothesis tests and quantities such as p-values
(e.g. Gelman and Shalizi, 2013; Berger and Sellke, 1987;
Cox, 1977). The usual consensus is that p-values should
be combined with other forms of evidence to reach a final
conclusion (Fisher, 1935), and this is the view we adopt as
well. In this sense, our method may be used as part of a
larger machinery to decide the truth of a hypothesis.

2 RELATED WORK

In addition to the related works mentioned in the previous
section, there are a number of other related research areas:

There exists a large body of literature on what is often re-
ferred to as model criticism (e.g. Bayarri and Berger, 2000;
Meng, 1994; Rubin, 1984; Box, 1980). Model criticism at-
tempts to answer the following question: given a data set D
and model M , could D have been generated by M? This
is analogous to our question, in which D is a sequence of
observed actions of some agent and M is a hypothesised
behaviour for that agent. However, in contrast to our work,
model criticism usually assumes that the data are indepen-

dent and identically distributed, which is not the case in the
interactive settings we consider.

A related problem, sometimes referred to as identity testing,
is to test if a given sequence of data was generated by some
given stochastic process (Ryabko and Ryabko, 2008; Ba-
sawa and Scott, 1977). Instead of independent and identi-
cal distributions, this line of work assumes other properties
such as stationarity and ergodicity. Unfortunately, these as-
sumptions are also unlikely in interaction processes, and the
proposed solutions are very costly.

Model criticism and identity testing are not to be confused
with model selection, in which two or more alternative mod-
els are under consideration (e.g. Vehtari and Ojanen, 2012).
Similarly, we do not consider alternative hypotheses. How-
ever, our method can be applied individually to multiple
hypotheses, or the hypotheses may be fused into a single
hypothesis using a posterior belief (Albrecht and Ramamoor-
thy, 2014; Gmytrasiewicz and Doshi, 2005).

Another related problem is that of model checking, which
attempts to verify that a given system (or model) satisfies
certain formal properties (Clarke et al., 1999). Recently,
Albrecht and Ramamoorthy (2014) applied the concept of
probabilistic bisimulation (Larsen and Skou, 1991) to the
question of “incorrect” hypotheses and showed that a cer-
tain form of optimality is preserved if a bisimulation relation
exists. However, their work is not concerned with establish-
ing whether or not a given behavioural hypothesis is correct,
and their analysis is performed before any interaction.

Our method can be viewed as passive in the sense that it does
not actively probe different aspects of the hypothesis, and
we show in Section 5 that this can be a drawback. This is in
contrast to methods such as (Carmel and Markovitch, 1999),
which promote active exploration. However, this exploration
comes at high computational costs and limits the structure
of hypotheses, such as deterministic finite state machines.
On the other hand, our method has low computational costs
and leaves the structure of the hypothesis open.

3 PRELIMINARIES

We consider a sequential interaction process with m agents.
The process begins at time t = 0. At each time t, each agent
i ∈ {1, ...,m} receives a signal sti and chooses an action ati
from a finite set of actionsAi. (Agents choose actions simul-
taneously.) The process continues in this fashion indefinitely
or until some termination criterion is satisfied.

The signal sti specifies information that agent i receives at
time t and may in general be the result of a random variable
over past actions and signals. For example, sti may be a
discrete system state and its dynamics may be described by
some stochastic transition function. Note that we allow for
asymmetric information (i.e. sti 6= stj). For example, sti may
include a private payoff for agent i. In this work, we leave

the precise structure and dynamics of sti open.

We assume that each agent i can choose actions ati based on
the entire interaction history Ht

i = (s0
i , a

0, s1
i , a

1, ..., sti),
where aτ = (aτ1 , ..., a

τ
m) is the tuple of actions taken by the

agents at time τ . Formally, each agent i has a behaviour
πi which assigns a probability distribution over actions Ai
given a history Ht

i , denoted πi(Ht
i). We use Πi to denote

the infinite and uncountable space of all such behaviours.
Note that a behaviour may implement any kind of logic, and
it is useful to think of it as a black-box programme.

Given two agents i and j, we use Πi
j to denote i’s hypothesis

space for j’s behaviours. The difference between Πi
j and Πj

is that π∗j ∈ Πi
j are defined over Ht

i while πj ∈ Πj are de-
fined over Ht

j . Since we allow for asymmetric information,
any information that is contained in stj but not in sti, denoted
stj−i, becomes part of the hypothesis space Πi

j . For exam-
ple, if stj−i contains a private payoff for j, i can hypothesise
a payoff as part of its hypothesis for j’s behaviour.

Defining a behavioural hypothesis π∗j ∈ Πi
j as a function

π∗j (Ht
i) has two implicit assumptions: firstly, it assumes

knowledge of Aj , and secondly, it assumes that the informa-
tion in stj−i is a (deterministic) function of Ht

i . If, on the
other hand, we allowed stj−i to be stochastic (i.e. a random
variable over the interaction history), we would in addition
have to hypothesise the random outcome of stj−i. In other
words, π∗j (Ht

i) would itself be a random variable, which is
outside the scope of this work.

4 A METHOD FOR BEHAVIOURAL
HYPOTHESIS TESTING

Let i denote our agent and let j denote another agent. More-
over, let π∗j ∈ Πi

j denote our hypothesis for j’s behaviour
and let πj ∈ Πj denote j’s true behaviour. The central ques-
tion we ask is if π∗j = πj?

Unfortunately, since we do not know πj , we cannot directly
answer this question. However, at each time t, we know j’s
past actions atj = (a0

j , ..., a
t−1
j) which were generated by πj .

If we use π∗j to generate a vector âtj = (â0
j , ..., â

t−1
j), where

âτj is sampled using π∗j (Hτ
i), we can formulate the related

two-sample problem of whether atj and âtj were generated
from the same behaviour, namely π∗j .

In this section, we propose a general and efficient algorithm
to decide this problem. At its core, the algorithm computes
a frequentist p-value

p = P
(
|T (ãtj , â

t
j)| ≥ |T (atj , â

t
j)|
)

(1)

where ãtj ∼ δt(π∗j) = (π∗j (H0
i), ..., π∗j (Ht−1

i)). The value
of p corresponds to the probability with which we expect
to observe a test statistic at least as extreme as T (atj , â

t
j),

under the null-hypothesis π∗j = πj . Thus, we reject π∗j if p
is below some “significance level” α.

Algorithm 1
1: Input: history Ht

i (including observed action at−1
j)

2: Output: p-value (reject π∗
j if p below some threshold α)

3: Parameters: hypothesis π∗
j ; score functions z1, ..., zK ;N>0

4: // Expand action vectors

5: Set at
j ← 〈at−1

j , at−1
j 〉

6: Sample ât−1
j ∼ π∗

j (H
t−1
i); set ât

j ← 〈ât−1
j , ât−1

j 〉
7: for n = 1, ..., N do
8: Sample ãt−1

j ∼ π∗
j (H

t−1
i); set ãt,n

j ← 〈ãt−1,n
j , ãt−1

j 〉
9: // Fit skew-normal distribution f

10: if update parameters? then
11: Compute D ←

{
T (ãt,n

j , ât
j) | n = 1, ..., N

}
12: Fit ξ, ω, β to D, e.g. using (12)

13: Find mode µ from ξ, ω, β

14: // Compute p-value

15: Compute q ← T (at
j , ât

j) using (2)/(5)

16: return p← f(q | ξ, ω, β) / f(µ | ξ, ω, β)

In the following subsections, we describe the test statistic T
and its asymptotic properties, and how our algorithm learns
the distribution of T (ãtj , â

t
j). A summary of the algorithm

is given in Algorithm 1.

4.1 TEST STATISTIC

We follow the general approach outlined in Section 1 by
which we compute a score from a vector of actions and their
hypothesised distributions. Formally, we define a score func-
tion as z : (Aj)

t×∆(Aj)
t → R, where ∆(Aj) is the set of

all probability distributions over Aj . Thus, z(atj , δt(π∗j)) is
the score for observed actions atj and hypothesised distribu-
tions δt(π∗j), and we sometimes abbreviate this to z(atj , π∗j).
We use Z to denote the space of all score functions.

Given a score function z, we define the test statistic T as

T (ãtj , â
t
j) =

1

t

t∑
τ=1

Tτ (ãτj , â
τ
j) (2)

Tτ (ãτj , â
τ
j) = z(ãτj , π

∗
j)− z(âτj , π

∗
j) (3)

where ãτj and âτj are the τ -prefixes of ãtj and âtj , respectively.

In this work, we assume that z is provided by the user. While
formally unnecessary (in the sense that our analysis does
not require it), we find it a useful design guideline to inter-
pret a score as a kind of likelihood, such that higher scores
suggest higher likelihood of π∗j being correct. Under this in-
terpretation, a minimum requirement for z should be that it
is consistent, such that, for any t > 0 and π∗j ∈ Πi

j ,

π∗j ∈ Πz = arg max
π′j∈Πij

Ea′j∼δt(π∗j)

[
z(a′j , π

′
j)
]

(4)

where Eη denotes the expectation under η. This ensures

that if the null-hypothesis π∗j = πj is true, then the score
z(atj , π∗j) is maximised on expectation.

Ideally, we would like a score function z which is perfect
in that it is consistent and |Πz| = 1. This means that π∗j can
maximise z(atj , π∗j) (where atj ∼ δt(πj)) only if π∗j = πj .
Unfortunately, it is unclear if such a score function exists for
the general case and how it should look. Even if we restrict
the behaviours agents may exhibit, it can still be difficult
to find a perfect score function. On the other hand, it is a
relatively simple task to specify a small set of score functions
z1, ..., zK which are consistent but imperfect. (Examples
are given in Section 5.) Given that these score functions are
consistent, we know that the cardinality | ∩k Πzk | can only
monotonically decrease. Therefore, it seems a reasonable
approach to combine multiple imperfect score functions in
an attempt to approximate a perfect score function.

Of course, we could simply define z as a linear (or otherwise)
combination of z1, ..., zK . However, this approach is at risk
of losing information from the individual scores, e.g. due
to commutativity and other properties of the combination.
Thus, we instead propose to compare the scores individually.
Given score functions z1, ..., zK ∈ Z which are all bounded
by the same interval [a, b] ⊂ R, we redefine Tτ to

Tτ (ãτj , â
τ
j) =

K∑
k=1

wk
(
zk(ãτj , π

∗
j)− zk(âτj , π

∗
j)
)

(5)

where wk ∈ R is a weight for score function zk. In this
work, we set wk = 1

K . (We also experiment with alternative
weighting schemes in Section 5.) However, we believe that
wk may serve as an interface for useful modifications of our
algorithm. For example, Yue et al. (2010) compute weights
to increase the power of their specific hypothesis tests.

4.2 ASYMPTOTIC PROPERTIES

The vectors atj and âtj are constructed iteratively. That is, at
time t, we observe agent j’s past action at−1

j , which was
generated from πj(H

t−1
j), and set atj = 〈at−1

j , at−1
j 〉. At

the same time, we sample an action ât−1
j using π∗j (Ht−1

i)

and set âtj = 〈ât−1
j , ât−1

j 〉. Assuming the null-hypothesis
π∗j = πj , will T (atj , â

t
j) converge in the process?

Unfortunately,T might not converge. This may seem surpris-
ing at first glance given that at−1

j , ât−1
j have the same distri-

bution πj(Ht−1
j) = π∗j (Ht−1

i), since Ex,y∼ψ [x− y] = 0
for any distribution ψ. However, there is a subtle but im-
portant difference: while at−1

j , ât−1
j have the same distri-

bution, zk(atj , π∗j) and zk(âtj , π∗j) may have arbitrarily dif-
ferent distributions. This is because these scores may de-
pend on the entire prefix vectors at−1

j and ât−1
j , respec-

tively, which means that their distributions may be different
if at−1

j 6= ât−1
j . Fortunately, our algorithm does not require

T to converge because it learns the distribution of T during
the interaction process, as we will discuss in Section 4.3.

Interestingly, while T may not converge, it can be shown
that the fluctuation of T is eventually normally distributed,
for any set of score functions z1, ..., zK with bound [a, b].
Formally, let E[Tτ (aτj , â

τ
j)] and Var[Tτ (aτj , â

τ
j)] denote the

finite expectation and variance of Tτ (aτj , â
τ
j), where it is

irrelevant if aτj , â
τ
j are sampled directly from δτ (π∗j) or

generated iteratively as prescribed above. Furthermore, let
σ2
t =

∑t
τ=1Var[Tτ (aτj , â

τ
j)] denote the cumulative variance.

Then, the standardised stochastic sum

1

σt

t∑
τ=1

Tτ (aτj , â
τ
j)− E[Tτ (aτj , â

τ
j)] (6)

will converge in distribution to the standard normal distribu-
tion as t→∞. Thus, T is normally distributed as well.

To see this, first recall that the standard central limit theorem
requires the random variables Tτ to be independent and
identically distributed. In our case, Tτ are independent in
that the random outcome of Tτ has no effect on the outcome
of Tτ ′ . However, Tτ and Tτ ′ depend on different action
sequences, and may therefore have different distributions.
Hence, we have to show an additional property, commonly
known as Lyapunov’s condition (e.g. Fischer, 2010), which
states that there exists a positive integer d such that

lim
t→∞

σ̂2+d
t

σ2+d
t

= 0, with (7)

σ̂2+d
t =

t∑
τ=1

E
[∣∣Tτ (aτj , â

τ
j)− E[Tτ (aτj , â

τ
j)]
∣∣2+d

]
. (8)

Since zk are bounded, we know that Tτ are bounded. Hence,
the summands in (8) are uniformly bounded, say by U for
brevity. Setting d = 1, we obtain

lim
t→∞

σ̂3
t

σ3
t

≤ Uσ̂2
t

σ3
t

=
U

σt
(9)

The last part goes to zero if σt →∞, and hence Lyapunov’s
condition holds. If, on the other hand, σt converges, then
this means that the variance of Tτ is zero from some point
onward (or that it has an appropriate convergence to zero).
In this case, π∗j will prescribe deterministic action choices
for agent j, and a statistical analysis is no longer necessary.

4.3 LEARNING THE TEST DISTRIBUTION

Given that T is eventually normal, it may seem reasonable to
compute (1) using a normal distribution whose parameters
are fitted during the interaction. However, this fails to recog-
nise that the distribution of T is shaped gradually over an
extended time period, and that the fluctuation around T can
be heavily skewed in either direction until convergence to
a normal distribution emerges. Thus, a normal distribution
may be a poor fit during this shaping period.

What is needed is a distribution which can represent any nor-
mal distribution, and which is flexible enough to faithfully

represent the gradual shaping. One distribution which has
these properties is the skew-normal distribution (Azzalini,
1985; O’Hagan and Leonard, 1976). Given the PDF φ and
CDF Φ of the standard normal distribution, the skew-normal
PDF is defined as

f(x | ξ, ω, β) =
2

ω
φ

(
x− ξ
ω

)
Φ

(
β

(
x− ξ
ω

))
(10)

where ξ ∈ R is the location parameter, ω ∈ R+ is the
scale parameter, and β ∈ R is the shape parameter. Note
that this reduces to the normal PDF for β = 0, in which
case ξ and ω correspond to the mean and standard deviation,
respectively. Hence, the normal distribution is a sub-class
of the skew-normal distribution.

Our algorithm learns the shifting parameters of f during the
interaction process, using a simple but effective sampling
procedure. Essentially, we use π∗j to iteratively generate N
additional action vectors ãt,1j , ..., ãt,Nj in the exact same way
as âtj . The vectors ãt,nj are then mapped into data points

D =
{
T (ãt,nj , âtj) | n = 1, ..., N

}
(11)

which are used to estimate the parameters ξ, ω, β by min-
imising the negative log-likelihood

N log(ω)−
∑
x∈D

log φ

(
x− ξ
ω

)
+ log Φ

(
β

(
x− ξ
ω

))
(12)

whilst ensuring that ω is positive. An alternative is the
method-of-moments estimator, which can also be used to
obtain initial values for (12). Note that it is usually unneces-
sary to estimate the parameters at every point in time. Rather,
it seems reasonable to update the parameters less frequently
as the amount of evidence (i.e. observed actions) grows.

Given the asymmetry of the skew-normal distribution, the se-
mantics of “as extreme as” in (1) may no longer be obvious
(e.g. is this with respect to the mean or mode?). In addition,
the usual tail-area calculation of the p-value requires the
CDF, but there is no closed form for the skew-normal CDF
and approximating it is rather cumbersome. To circumvent
these issues, we approximate the p-value as

p ≈
f(T (atj , â

t
j) | ξ, ω, β)

f(µ | ξ, ω, β)
(13)

where µ is the mode of the fitted skew-normal distribution.
This avoids the asymmetry issue and is easier to compute.

5 EXPERIMENTS

We conducted a comprehensive set of experiments to inves-
tigate the accuracy (correct and incorrect rejection), scala-
bility (with number of actions), and sampling complexity of

our algorithm. The following three score functions and their
combinations were used:

z1(atj , π
∗
j) =

1

t

t−1∑
τ=0

π∗j (Hτ
i)[aτj]

maxaj∈Aj π
∗
j (Hτ

i)[aj]

z2(atj , π
∗
j) =

1

t

t−1∑
τ=0

1−Eaj∼π∗j (Hτi)

∣∣π∗j (Hτ
i)[aτj]−π∗j (Hτ

i)[aj]
∣∣

z3(atj , π
∗
j) =

∑
aj∈Aj

min

[
1

t

t−1∑
τ=0

[aτj = aj]1,
1

t

t−1∑
τ=0

π∗j (Hτ
i)[aj]

]

where [b]1 = 1 if b is true and 0 otherwise. Note that z1, z3

are generally consistent (cf. Section 4.1), while z2 is consis-
tent for |Aj | = 2 but not necessarily for |Aj | > 2. Further-
more, z1, z2, z3 are all imperfect. The score function z3 is
based on the empirical frequency distribution (cf. Section 1).

The parameters of the test distribution (cf. Section 4.3) were
estimated less frequently as t increased. The first estimation
was performed at time t = 1 (i.e. after observing one action).
After estimating the parameters at time t, we waited

⌊√
t
⌋
−1

time steps until the parameters were re-fitted. Throughout
our experiments, we used a significance level of α = 0.01
(i.e. reject π∗j if the p-value is below 0.01).

5.1 RANDOM BEHAVIOURS

In the first set of experiments, the behaviour spaces Πi,Πj

and hypothesis space Πi
j were restricted to “random” be-

haviours. Each random behaviour is defined by a sequence
of random probability distributions over Aj . The distribu-
tions are created by drawing uniform random numbers from
(0, 1) for each action aj ∈ Aj , and subsequent normalisa-
tion so that the values sum up to 1.

Random behaviours are a good baseline for our experiments
because they are usually hard to distinguish. This is due to
the fact that the entire set Aj is always in the support of the
behaviours, and since they do not react to any past actions.
These properties mean that there is little structure in the
interaction that can be used to distinguish behaviours.

We simulated 1000 interaction processes, each lasting 10000
time steps. In each process, we randomly sampled be-
haviours πi ∈ Πi, πj ∈ Πj to control agents i and j,
respectively. In half of these processes, we used a correct
hypothesis π∗j = πj . In the other half, we sampled a ran-
dom hypothesis π∗j ∈ Πi

j with π∗j 6= πj . We repeated each
set of simulations for |Aj | = 2, 10, 20 (with |Ai| = |Aj |)
and N = 10, 50, 100 (cf. Section 4.3).

5.1.1 Accuracy & Scalability

Figure 1 shows the average accuracy of our algorithm (for
N = 50), by which we mean the average percentage of time
steps in which the algorithm made correct decisions (i.e.
no reject if π∗j = πj ; reject if π∗j 6= πj). The x-axis shows

1 2 3 [1 2] [2 3] [1 3] [1 2 3]
0

10
20
30
40
50
60
70
80
90

100
%

 C
or

re
ct

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

πj* = πj

πj* ≠ πj

|Aj| = 2

|Aj| = 10

|Aj| = 20

Figure 1: Average accuracy with random behaviours, for N = 50 and |Aj | = 2, 10, 20. Results averaged over 500 processes
with 10000 time steps, for π∗j = πj and π∗j 6= πj each. X-axis shows score functions zk used in test statistic.

100 200 300 400 500
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Time

p−
va
lu
e

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

p−
va

lu
e

1
2
3
[1 2]
[2 3]
[1 3]
[1 2 3]

(a) |Aj | = 2

0.5 1 1.5 2
x 104

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Time

p−
va

lu
e

(b) |Aj | = 10

1 2 3 4 5
x 104

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Time

p−
va

lu
e

(c) |Aj | = 20

Figure 2: Average p-values with random behaviours, for N = 50 and π∗j 6= πj (i.e. hypothesis wrong). Results averaged
over 500 processes. Legend shows score functions zk used in test statistic.

the combination of score functions used to compute the test
statistic (e.g. [1 2] means that we combined z1, z2).

The results show that our algorithm achieved excellent accu-
racy, often bordering the 100% mark. They also show that
the algorithm scaled well with the number of actions, with
no degradation in accuracy. However, there were two excep-
tions to these observations: Firstly, using z3 resulted in very
poor accuracy for π∗j 6= πj . Secondly, the combination of
z2, z3 scaled badly for π∗j 6= πj .

The reason for both of these exceptions is that z3 is not a
good scoring scheme for random behaviours. The function
z3 quantifies a similarity between the empirical frequency
distribution and the averaged hypothesised distributions. For
random behaviours (as defined in this work), both of these
distributions will converge to the uniform distribution. Thus,
under z3, any two random behaviours will eventually be the
same, which explains the low accuracy for π∗j 6= πj .

As can be seen in Figure 1, the inadequacy of z3 is solved
when adding any of the other score functions z1, z2. These
functions add discriminative information to the test statis-
tic, which technically means that the cardinality |Πz| in (4)
is reduced. However, in the case of [z2, z3], the converge is
substantially slower for higher |Aj |, meaning that more ev-
idence is needed until π∗j can be rejected. Figure 2 shows
how a higher number of actions affects the average conver-
gence rate of p-values computed with z2, z3.

In addition to the score functions zk, a central aspect for
the convergence of p-values are the corresponding weights

wk (cf. (5)). As mentioned in Section 4.1, we use uniform
weights wk = 1

K . However, to show that the weighting is no
trivial matter, we repeated our experiments with four alterna-
tive weighting schemes: Let zτk = zk(ãτj , π∗j)− zk(âτj , π∗j)
denote the summands in (5). The weighting schemes
truemax /truemin assign wk = 1 for the first k that
maximises / minimises |zτk |, and 0 otherwise. Similarly, the
weighting schemes max /min assign wk = 1 for the first k
that maximises / minimises zτk , and 0 otherwise.

Figures 3 and 4 show the results for truemax and
truemin. As can be seen in the figures, truemax is very
similar to uniform weights while truemin improves the
convergence for [z2, z3] but compromises elsewhere. The re-
sults formax andmin are very similar to those oftruemin
and truemax, respectively, hence we omit them.

Finally, we recomputed all accuracies using a more lenient
significance level of α = 0.05. As could be expected, this
marginally decreased and increased (i.e. by a few percentage
points) the accuracy for π∗j = πj and π∗j 6= πj , respectively.
Overall, however, the results were very similar to those ob-
tained with α = 0.01.

5.1.2 Sampling Complexity

Recall thatN specifies the number of sampled action vectors
ãt,nj used to learn the distribution of the test statistic (cf.
Section 4.3). In the previous section, we reported results
for N = 50. In this section, we investigate differences in
accuracy for N = 10, 50, 100.

1 2 3 [1 2] [2 3] [1 3] [1 2 3]
0

10
20
30
40
50
60
70
80
90

100
%

 C
or

re
ct

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

πj* = πj

πj* ≠ πj

|Aj| = 2

|Aj| = 10

|Aj| = 20

Figure 3: Average accuracy with random behaviours, for N = 50 and |Aj | = 2, 10, 20. X-axis shows score functions zk
used in test statistic. Weights wk computed using truemax weighting.

1 2 3 [1 2] [2 3] [1 3] [1 2 3]
0

10
20
30
40
50
60
70
80
90

100

%
 C

or
re

ct

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

πj* = πj

πj* ≠ πj

|Aj| = 2

|Aj| = 10

|Aj| = 20

Figure 4: Average accuracy with random behaviours, for N = 50 and |Aj | = 2, 10, 20. X-axis shows score functions zk
used in test statistic. Weights wk computed using truemin weighting.

Figures 5 and 6 show the differences for |Aj | = 2, 20, re-
spectively. (The figure for |Aj | = 10 was virtually the same
as the one for |Aj | = 20, except with minor improvements
in accuracy for the [z2, z3] cluster. Hence, we omit it here.)
As can be seen, there were improvements of up to 10% from
N = 10 to N = 50, and no (or very marginal) improve-
ments from N = 50 to N = 100. This was observed for all
|Aj | = 2, 10, 20, and all constellations of score functions.
The fact that N = 50 was sufficient even for |Aj | = 20 is
remarkable, since, under random behaviours, there are 20t

possible action vectors to sample at any time t.

We also compared the learned skew-normal distributions
and found that they fitted the data very well. Figures 7 and
8 show the histograms and fitted skew-normal distributions
for two example processes after 1000 time steps. In Figure 8,
we deliberately chose an example in which the learned dis-
tribution was maximally skewed for N = 10, which is a
sign that N was too small. Nonetheless, in the majority of
the processes, the learned distribution was only moderately
skewed and our algorithm achieved an average accuracy of
90% even for N = 10. Moreover, if one wants to avoid
maximally skewed distributions, one can simply restrict the
parameter space when fitting the skew-normal (specifically,
the shape parameter β; cf. Section 4.3).

The flexibility of the skew-normal distribution was particu-
larly useful in the early stages of the interaction, in which
the test statistic typically does not follow a normal distri-
bution. Figure 9 shows the test distribution for an example
process after 10 time steps, using z2 for the test statistic and
N = 100 (the histogram was created using N = 10000).
The learned skew-normal approximated the true test distri-
bution very closely. Note that, in such examples, the normal

−0.035−0.03−0.025−0.02−0.015−0.01−0.005 0 0.005 0.01
0

200

400

Test statistic

Fr
eq

ue
nc

y

−0.035−0.03−0.025−0.02−0.015−0.01−0.005 0 0.005 0.01
0

50

100

D
en

si
ty

Figure 9: True test distribution for z2 (histogram) and
learned skew-normal distribution (red curve) after 10 time
steps, with |Aj | = 10 and N = 100.

and Student distributions do not produce good fits.

Our implementation of the algorithm performed all calcula-
tions as iterative updates (except for the skew-normal fitting).
Hence, it used little (fixed) memory and had very low com-
putation times. For example, using all three score functions
and |Aj | = 20, N = 100, one cycle in the algorithm (cf. Al-
gorithm 1) took on average less than 1 millisecond without
fitting the skew-normal parameters, and less than 10 mil-
liseconds when fitting the skew-normal parameters (using
an off-the-shelf Simplex-optimiser with default parameters).
The times were measured using Matlab R2014a on a Unix
machine with a 2.6 GHz Intel Core i5 processor.

5.2 ADAPTIVE BEHAVIOURS

We complemented the “structure-free” interaction of ran-
dom behaviours by conducting analogous experiments with

1 2 3 [1 2] [2 3] [1 3] [1 2 3]
0

10
20
30
40
50
60
70
80
90

100
%

 C
or

re
ct

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

πj* = πj

πj* ≠ πj

N = 10

N = 50

N = 100

Figure 5: Average accuracy with random behaviours, for |Aj | = 2 andN = 10, 50, 100. Results averaged over 500 processes
with 10000 time steps, for π∗j = πj and π∗j 6= πj each. X-axis shows score functions zk used in test statistic.

1 2 3 [1 2] [2 3] [1 3] [1 2 3]
0

10
20
30
40
50
60
70
80
90

100

%
 C

or
re

ct

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

πj* = πj

πj* ≠ πj

N = 10

N = 50

N = 100

Figure 6: Average accuracy with random behaviours, for |Aj | = 20 and N = 10, 50, 100. Results averaged over 500
processes with 10000 time steps, for π∗j = πj and π∗j 6= πj each. X-axis shows score functions zk used in test statistic.

three additional classes of behaviours. Specifically, we used
a benchmark framework specified by Albrecht et al. (2015)
which consists of 78 distinct 2×2 matrix games and three
methods to automatically generate sets of behaviours for
any given game. The three behaviour classes are Leader-
Follower-Trigger Agents (LFT), Co-Evolved Decision Trees
(CDT), and Co-Evolved Neural Networks (CNN). These
classes cover a broad spectrum of possible behaviours, in-
cluding fully deterministic (CDT), fully stochastic (CNN),
and hybrid (LFT) behaviours. Furthermore, all generated
behaviours are adaptive to varying degrees (i.e. they adapt
their action choices based on the other player’s choices). We
refer to Albrecht et al. (2015) for a more detailed description
of these classes (we used the same parameter settings).

The following experiments were performed for each be-
haviour class, using identical randomisation: For each of
the 78 games, we simulated 10 interaction processes, each
lasting 10000 time steps. For each process, we randomly
sampled behaviours πi ∈ Πi, πj ∈ Πj to control agents i
and j, respectively, where Πi, Πj (and Πi

j) were restricted
to the same behaviour class. In half of these processes, we
used a correct hypothesis π∗j = πj , and in the other half, we
sampled a random hypothesis π∗j ∈ Πi

j with π∗j 6= πj . As
before, we repeated each simulation for N = 10, 50, 100
and all constellations of score functions, but found that there
were virtually no differences. Hence, in the following, we
report results for N = 50 and the [z1, z2, z3] cluster.

Figure 10 shows the average accuracy achieved by our algo-
rithm for all three behaviour classes. While the accuracy for
π∗j = πj was generally good, the accuracy for π∗j 6= πj was
mixed. Note that this was not merely due to the fact that the
score functions were imperfect (cf. Section 4.1), since we

[1 2 3]
0

10
20
30
40
50
60
70
80
90

100

%
 C

or
re

ct

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

πj* = πj

πj* ≠ πj

LFT

CDT

CNN

Figure 10: Average accuracy for behaviour classes LFT,
CDT, CNN (N = 50). Πi and Πj restricted to same class.

[1 2 3]
0

10
20
30
40
50
60
70
80
90

100

%
 C

or
re

ct

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

πj* = πj

πj* ≠ πj

LFT

CDT

CNN

Figure 11: Average accuracy for behaviour classes LFT,
CDT, CNN (N = 50). Πi set to random behaviours.

obtained the same results for all combinations. Rather, this
reveals an inherent limitation of our approach, which is that
we do not actively probe aspects of the hypothesis π∗j . In
other words, our algorithm performs statistical hypothesis
tests based only on evidence that was generated by πi.

To illustrate this, it is useful to consider the tree structure
of behaviours in the CDT class. Each node in a tree πj
corresponds to a past action taken by πi. Depending on how
πi chooses actions, we may only ever see a subset of the

0.02 0.025 0.03 0.035 0.04 0.045
0

1

2

Test statistic

Fr
eq

ue
nc

y

0.02 0.025 0.03 0.035 0.04 0.045
0

50

100

D
en

si
ty

(a) N = 10

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
0

1

2

3

Test statistic

Fr
eq

ue
nc

y

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
0

20

40

60

D
en

si
ty

(b) N = 50

−0.02−0.015−0.01−0.005 0 0.005 0.01 0.015 0.02 0.025
0

5

Test statistic

Fr
eq

ue
nc

y

−0.02−0.015−0.01−0.005 0 0.005 0.01 0.015 0.02 0.025
0

50

D
en

si
ty

(c) N = 100

Figure 7: Example histograms and fitted skew-normal distributions (red curve) after 1000 time steps, for random behaviours
with |Aj | = 10 and N = 10, 50, 100. Using score function z1 in test statistic.

0.012 0.014 0.016 0.018 0.02
0

0.5

1

1.5

2

Test statistic

Fr
eq

ue
nc

y

0.012 0.014 0.016 0.018 0.02
0

50

100

150

200
D

en
si

ty

(a) N = 10

−5 0 5 10 15
x 10−3

0

1

2

Test statistic

Fr
eq

ue
nc

y

−5 0 5 10 15
x 10−3

0

50

100

D
en

si
ty

(b) N = 50

−5 0 5 10 15
x 10−3

0

1

2

3

4

5

Test statistic

Fr
eq

ue
nc

y

−5 0 5 10 15
x 10−3

0

20

40

60

80

100

D
en

si
ty

(c) N = 100

Figure 8: Example histograms and fitted skew-normal distributions (red curve) after 1000 time steps, for random behaviours
with |Aj | = 10 and N = 10, 50, 100. Using score functions z1, z2, z3 in test statistic.

entire tree that defines πj . However, if our hypothesis π∗j
differs from πj only in the unseen aspects of πj , then there is
no way for our algorithm to differentiate the two. Hence the
asymmetry in accuracy for π∗j = πj and π∗j 6= πj . Note that
this problem did not occur in random behaviours because,
there, all aspects are eventually visible.

Following this observation, we repeated the same experi-
ments but restricted Πi to random behaviours, with the goal
of exploring π∗j more thoroughly. As shown in Figure 11,
this led to significant improvements in accuracy, especially
for the CDT class. Nonetheless, choosing actions purely ran-
domly may not be a sufficient probing strategy, hence the
accuracy for CNN was still relatively low. For CNN, this
was further complicated by the fact that two neural networks
πj , π

′
j may formally be different (πj 6= π′j) but have essen-

tially the same action probabilities (with extremely small
differences). Hence, in such cases, we would require much
more evidence to distinguish the behaviours.

6 CONCLUSION

We hold the view that if an intelligent agent is to interact ef-
fectively with other agents whose behaviours are unknown,
it will have to hypothesise what these agents might be doing
and contemplate the truth of its hypotheses, such that appro-
priate measures can be taken if they are deemed false. In this
spirit, we presented a novel algorithm which decides this

question in the form of a frequentist hypothesis test. The
algorithm can incorporate multiple statistical criteria into
the test statistic and learns the test distribution during the in-
teraction process, with asymptotic correctness guarantees.
We presented results from a comprehensive set of experi-
ments, showing that our algorithm achieved high accuracy
and scalability at low computational costs.

There are several directions for future work: To bring some
structure into the space of score functions, we introduced
the concepts of consistency and perfection as minimal and
ideal properties. However, more research is needed to un-
derstand precisely what properties a useful score function
should satisfy, and whether the concept of perfection is fea-
sible or even necessary in the general case. Furthermore,
we used uniform weights to combine the computed scores
into a test statistic, and we also experimented with alterna-
tive weighting schemes to show that the weighting can have
a substantial effect on convergence rates. However, further
research is required to understand the effect of weights on
decision quality and convergence.

Finally, in this work, we assumed that the behaviour of the
other agent (j) could be described as a function of the infor-
mation available to our agent (i). An important extension
would be to also account for information that cannot be deter-
ministically derived from our observations, especially in the
context of robotics where observations are often described
as random variables.

References
S.V. Albrecht and S. Ramamoorthy. On convergence and

optimality of best-response learning with policy types
in multiagent systems. In Proceedings of the 30th Con-
ference on Uncertainty in Artificial Intelligence, pages
12–21, 2014.

S.V. Albrecht, J.W. Crandall, and S. Ramamoorthy. An em-
pirical study on the practical impact of prior beliefs over
policy types. In Proceedings of the 29th AAAI Conference
on Artificial Intelligence, pages 1988–1994, 2015.

A. Azzalini. A class of distributions which includes the
normal ones. Scandinavian Journal of Statistics, 12:171–
178, 1985.

I.V. Basawa and D.J. Scott. Efficient tests for stochastic
processes. Sankhyā: The Indian Journal of Statistics,
Series A, pages 21–31, 1977.

M.J. Bayarri and J.O. Berger. P values for composite null
models. Journal of the American Statistical Association,
95(452):1127–1142, 2000.

J.O. Berger and T. Sellke. Testing a point null hypothesis:
the irreconcilability of p values and evidence (with dis-
cussion). Journal of the American Statistical Association,
82:112–122, 1987.

G.E.P. Box. Sampling and Bayes’ inference in scientific
modelling and robustness. Journal of the Royal Statistical
Society. Series A (General), pages 383–430, 1980.

G.W. Brown. Iterative solution of games by fictitious play.
Activity Analysis of Production and Allocation, 13(1):374–
376, 1951.

S. Carberry. Techniques for plan recognition. User Model-
ing and User-Adapted Interaction, 11(1-2):31–48, 2001.

D. Carmel and S. Markovitch. Exploration strategies for
model-based learning in multi-agent systems: Exploration
strategies. Autonomous Agents and Multi-Agent Systems,
2(2):141–172, 1999.

E. Charniak and R.P. Goldman. A Bayesian model of plan
recognition. Artificial Intelligence, 64(1):53–79, 1993.

E.M. Clarke, O. Grumberg, and D.A. Peled. Model Check-
ing. MIT Press, 1999.

V. Conitzer and T. Sandholm. AWESOME: A general mul-
tiagent learning algorithm that converges in self-play and
learns a best response against stationary opponents. Ma-
chine Learning, 67(1-2):23–43, 2007.

D.R. Cox. The role of significance tests (with discussion).
Scandinavian Journal of Statistics, 4:49–70, 1977.

H. Fischer. A History of the Central Limit Theorem: From
Classical to Modern Probability Theory. Springer Sci-
ence & Business Media, 2010.

R.A. Fisher. The Design of Experiments. Oliver & Boyd,
1935.

D.P. Foster and H.P. Young. Learning, hypothesis testing,
and Nash equilibrium. Games and Economic Behavior,
45(1):73–96, 2003.

A. Gelman and C.R. Shalizi. Philosophy and the practice of
Bayesian statistics. British Journal of Mathematical and
Statistical Psychology, 66(1):8–38, 2013.

I. Gilboa and D. Schmeidler. A Theory of Case-Based Deci-
sions. Cambridge University Press, 2001.

P.J. Gmytrasiewicz and P. Doshi. A framework for sequen-
tial planning in multiagent settings. Journal of Artificial
Intelligence Research, 24(1):49–79, 2005.

K.G. Larsen and A. Skou. Bisimulation through probabilis-
tic testing. Information and Computation, 94(1):1–28,
1991.

X.-L. Meng. Posterior predictive p-values. The Annals of
Statistics, pages 1142–1160, 1994.

A. O’Hagan and T. Leonard. Bayes estimation subject to
uncertainty about parameter constraints. Biometrika, 63
(1):201–203, 1976.

D.B. Rubin. Bayesianly justifiable and relevant frequency
calculations for the applied statistician. The Annals of
Statistics, 12(4):1151–1172, 1984.

D. Ryabko and B. Ryabko. On hypotheses testing for er-
godic processes. In Proceedings of IEEE Information
Theory Workshop, pages 281–283, 2008.

A. Vehtari and J. Ojanen. A survey of Bayesian predictive
methods for model assessment, selection and comparison.
Statistics Surveys, 6:142–228, 2012.

Y. Yue, Y. Gao, O. Chapelle, Y. Zhang, and T. Joachims.
Learning more powerful test statistics for click-based re-
trieval evaluation. In Proceedings of the 33rd Interna-
tional ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 507–514, 2010.

