
Averaging of Decomposable Graphs
by Dynamic Programming and Sampling

Kustaa Kangas Teppo Niinimäki Mikko Koivisto
University of Helsinki, Department of Computer Science,

Helsinki Institute for Information Technology HIIT, Finland
{jwkangas,tzniinim,mkhkoivi}@helsinki.fi

Abstract

We give algorithms for Bayesian learning of de-
composable graphical models from complete data.
We build on a recently proposed dynamic pro-
gramming algorithm that finds optimal graphs of
n nodes in O(4n) time and O(3n) space (Kangas
et al., NIPS 2014), and show how it can be turned
into accurate averaging algorithms. Specifically,
we show that certain marginals of the posterior
distribution, like the posterior probability of an
edge, can be computed inO(n33n) time, provided
that the prior over the graphs is of an appropri-
ate form. To overcome some limitations of the
exact approach, we also give sampling schemes
that—using essentially no extra space—can draw
up to 3n independent graphs from the posterior
in O(n4n) time. Through importance sampling,
this enables accurate Bayesian inference with a
broader class of priors. Using benchmark datasets,
we demonstrate the method’s performance and the
advantage of averaging over optimization when
learning from little data.

1 INTRODUCTION

A decomposable graphical model represents conditional
independence relations between a set of variables by an
undirected graph that is decomposable, or equivalently, tri-
angulated or chordal. Due to their various nice properties—
in particular, convenient parameterization, straightforward
parameter learning from complete data, and computation-
ally efficient inference—decomposable models have played
a central role in both methodological and applied works
(Lauritzen and Spiegelhalter 1988, Dawid and Lauritzen
1993, Abel and Thomas 2011).

It is common that the modeller hesitates to fix any specific
graph, and would rather like to learn the graph from data.
Learning the graph has, however, proved to be computation-
ally very challenging (Srebro 2003, Corander et al. 2013).

The Bayesian approach, in particular, requires us to turn a
prior into a posterior over all possible decomposable graphs.
Or more practically, the interest is in drawing a representa-
tive (random) sample from the posterior or summarizing the
posterior by some of its marginals. Solving these tasks by
exhaustive enumeration of all graphs is feasible only up to
about eight nodes. To manage with larger graphs, several
Markov chain Monte Carlo (MCMC) methods have been
proposed (Madigan and York 1995, Giudici and Green 1999,
Tarantola 2004, Corander et al. 2006, Green and Thomas
2013). While these methods may work well in many cases,
they offer essentially no guarantees concerning the accuracy
of the produced estimates.

In this paper, we present exact averaging and sampling al-
gorithms that admit Bayesian learning of decomposable
graphs up to about 20 nodes. We build on the recent dy-
namic programming (DP) algorithm of Kangas et al. (2014).
Their algorithm finds a decomposable graph that maximizes
a given decomposable scoring function, for example, the
posterior probability. For graphs with n nodes the algo-
rithm takes O(4n) time and O(3n) space. Generally, it is
straightforward to turn a DP algorithm, designed for an op-
timization problem, into a “corresponding” averaging or
sampling algorithm (and vice versa). At first glance, our
result may thus look nothing but a rephrasing of the result
of Kangas et al.

However, this view turns out to be only partial. Indeed,
replacing maximization by averaging opens new algorith-
mic opportunities, which allow us to give an asymptotically
faster,O(n33n)-time algorithm (Sect. 3). On the other hand,
the averaging viewpoint also brings new difficulties: First, it
turns out that the particular DP treatment applies to Bayesian
model averaging only when the prior over the graphs is of
a specific form; for example, the form cannot express the
uniform prior over all decomposable graphs, whereas it
can express the prior that is proportional to the number of
so-called rooted junction trees of the graph. Second, it ap-
pears that exact computations are feasible only for marginal
posterior probabilities of small subgraphs, like of an individ-
ual edge, but not of large subgraphs, not to mention more

complicated graph features. We overcome these difficulties
by designing schemes that, using the computed DP tables,
can efficiently generate large numbers of random samples
from the posterior or its computationally convenient proxy
(Sect. 4). We then feed the samples to usual Monte Carlo
estimators of the quantities of interest (Sect. 5).

We demonstrate the performance of the methods using
benchmark datasets (Sect. 6). First, we investigate whether
averaging over graphs yields significantly better prediction
results as compared to using a single maximum-a-posteriori
graph. Second, we study the accuracy of the sampling based
estimators for edge posterior probabilities.

Finally, we discuss straightforward ways to further enhance
the presented methods, and also mention some major open
questions (Sect. 7).

2 PRELIMINARIES

We review some fundamentals of decomposable models.
For a more thorough treatment, see Lauritzen (1996).

2.1 DECOMPOSABILITY AND LEARNING

Consider an undirected graph G on a set of nodes V =
{1, . . . , n}. We call a subset of nodes complete if it induces
a complete subgraph. Further, we call a complete set a
clique if it is maximal, that is, not a subset of any other
complete set. We denote the set of cliques of G simply by
C, assuming there is no ambiguity about the referred graph.

We call G decomposable if it has the running intersec-
tion property, that is, there is an ordering of its cliques,
C1, . . . , Ck, such that for each i = 2, . . . , k we have that
Si = (C1 ∪ · · · ∪ Ci−1) ∩ Ci ⊂ Cj for some j < i. The
sets Si are called the separators and they form a multiset,
which we denote by S . We note that S is uniquely specified
by G and does not depend on the ordering of the cliques.

Suppose G is decomposable and with each node v ∈ V
associate a random variable xv . The graph G together with
a joint distribution p over the variables form a decomposable
graphical model if p factorizes as

p(xV) =

∏
C∈C p(xC)∏
S∈S p(xS)

,

where we write xS for the tuple (xv : v ∈ S). The factoriza-
tion plays a central role in probabilistic inference in a given
decomposable model, and in learning a model for a fixed
graph from data, that is, multiple records over the variables.

The factorization is central also when learning the graph. In
the Bayesian approach to learning we turn a prior ρ over
the graphs into a posterior π by multiplying the prior by
the (marginal) likelihood `, and dividing by the normalizing
constant of the function ρ`, given as Zρ` =

∑
G ρ(G)`(G).

The likelihood `(G) is the probability (density) of the data,
givenG. It is obtained by integrating out the parameters that
specify the distribution p above. Under commonly adopted
parameter priors (Dawid and Lauritzen 1993), the likeli-
hood function factorizes into a product of local marginal
likelihoods, one term per clique and separator. Thus the like-
lihood function is an example of a decomposable function:
Definition 1 (decomposable function). Let V be a finite set
and let ϕ be a function from the decomposable graphs on V
to real numbers. We say that ϕ is decomposable over V if

ϕ(G) =

∏
C∈C ϕc(C)∏
S∈S ϕs(S)

for some functions ϕc and ϕs, we call the local components.

Clearly the product of two decomposable functions is also
decomposable. It can also be shown that any constant func-
tion is decomposable. In particular, if the prior is a decom-
posable function, so is the posterior.

We illustrate the notion of decomposable functions by two
further examples. Here and henceforth we use the Iverson
bracket [Q] to denote 1 when Q is true, and 0 otherwise.
Example 1 (uniform prior). Let w be a number. Let ρ be
the decomposable function over V defined by

ρc(X) = [|X| ≤ w] and ρs(X) = 1 for X ⊆ V .

We observe that ρ(G) = 1 if G contains only cliques of size
at most w, and 0 otherwise. Thus the normalized function
ρ/Zρ is the uniform distribution over the decomposable
graphs on V whose cliques are of size at most w.
Example 2 (absence of an edge). Let e ⊆ V , |e| = 2. Let
ϕe be the decomposable function over V defined by

ϕec (X) = [e 6⊆ X] and ϕes (X) = 1 for X ⊆ V .

We observe that ϕe(G) = 1 if the edge e is absent in G, and
0 otherwise. Thus ϕe is the indicator function of the set of
decomposable graphs that do not contain the edge e.

Note also that the indicator function for the presence of an
edge is not decomposable.

2.2 COMPUTATIONAL TASKS

We will consider two classes of computational problems:
(1) computing the marginal of a given function ϕ of de-
composable graphs, defined as Zϕ =

∑
G ϕ(G); and (2)

generating random samples of decomposable graphs from
a distribution that is proportional to a given function. The
first class includes the important task of computing poste-
rior expectations of graph features, in particular, marginal
posterior probabilities of edges (cf. Corollary 2 in Sect. 3).
In the second class the distribution of interest is usually
the posterior distribution. The input in these problems is
always specified by decomposable functions, like a prior
and a likelihood function. Thus we may assume an efficient
access to these functions through their local components.

2.3 ROOTED JUNCTION TREES

It is convenient to represent a decomposable graph as a
junction tree. Consider an undirected graph G and a tree J
that has the cliques ofG as its vertices. We call J a junction
tree of G if it satisfies the junction property, that is, for any
cliques C,C ′ the intersection C ∩ C ′ is contained within
every clique on the unique path between C and C ′ in J . A
graph has a junction tree if and only if it is decomposable.
Importantly, the representation is in general not unique, as a
graph may have multiple junction trees; we denote by τ(G)
the number of junction trees of G. In contrast, for each
junction tree J the represented graph, G(J), is unique.

For our purposes it will be convenient to work with rooted
junction trees. Specifically, we make use of the following
recursive characterization of junction trees, adopted from
the work of Kangas et al. (2014):
Definition 2 (recursive partition tree, RPT). A recursive
partition tree over a finite ground set V is a triplet
(C, {R1, . . . , Rk}, {T1, . . . , Tk}) such that

1. C is a non-empty subset of V , called the root;

2. {R1, . . . , Rk} is a partition of V \ C;

3. each Ti is an RPT over C ∪Ri rooted at Ci such that
C ∩ Ci is a proper subset of both C and Ci.

Note that the implicit base case of the definition is when
C = V and there are thus no subtrees.

An RPT T rooted at C can be viewed as a directed tree,
where C1, . . . , Ck are the children and T1, . . . , Tk the sub-
trees of C. Such a tree is a junction tree and, conversely, any
junction tree can be represented as an RPT, which is unique
up to the choice of the root (Kangas et al. 2014). Denoting
by κ(G) the number of cliques of a decomposable graph G,
we have that G has exactly τ(G)κ(G) distinct RPTs.

2.4 DYNAMIC PROGRAMMING

Kangas et al. considered the problem of maximizing a given
decomposable function, and gave a DP algorithm that stems
from the recursive definition of RPTs. We next adapt the
DP algorithm to the problem of summing up the values of
a given function, that is, to compute the marginal. Due to
the many-to-one relationship of RPTs and decomposable
graphs, each value gets multiplied by the corresponding
number of RPTs. Put otherwise, for any function ϕ we have∑

T
ϕ (G(T)) =

∑
G

ϕ(G)τ(G)κ(G) , (1)

where T runs through all RPTs over V and G runs through
all decomposable graphs on V . Since our DP treatment re-
lies on the decomposability of the function ϕ, the computed
sum will not be the marginal of the decomposable ϕ, but of
the function ϕτκ, that we shall call RPT-decomposable:

Definition 3 (RPT-decomposable function). Let V be a fi-
nite set and let ϕ′ be a function from the decomposable
graphs on V to real numbers. We say that ϕ′ is RPT-
decomposable over V if ϕ′(G) = ϕ(G)τ(G)κ(G) for some
decomposable function ϕ over V .

Example 3 (RPT-uniform prior). Let ρ be as defined in
Example 1. Then ρτκ is a RPT-decomposable function that
is proportional to the uniform distribution on all RPTs over
V whose cliques are of size at most w.

We are ready to present the DP algorithm for computing the
sum (1) for a given a decomposable function ϕ. To this end,
we denote by RPT(S,R) the set of all RPTs over S ∪ R
rooted at a proper superset of S, and let

f(S,R) =
∑

T ∈RPT(S,R)

ϕ(G(T)) .

In particular, f(∅, V) equals the desired sum (1). Following
Kangas et al. we obtain the following recurrence system:

f(S,R) =
∑

S⊂C⊆S∪R

ϕc(C) g(C,R \ C) , (2)

g(C,U) =
∑

minU∈R⊆U

h(C,R) g(C,U \R) , (3)

h(C,R) =
∑
S⊂C

f(S,R)
/
ϕs(S) , (4)

with the base case g(C,∅) = 1. Each recurrence is defined
for all disjoint pairs of subsets of V such that C and R are
non-empty. A straightforward evaluation of f , g, and h by
using these recurrences takes O(4n) time and O(3n) space.
These bounds and the correctness of the recurrences can be
verified essentially by taking the proof of Kangas et al. and
replacing maximization with summation.

The intuition here is that f considers all possible choices for
the root clique C and factors in the ϕc(C). For each C it
then invokes g, which considers partitions {R1, . . . , Rk} of
the remaining nodes U by calling itself recursively. For each
part R it also calls h, which considers possible separators S
between C and the subtree in R and factors in the reciprocal
of the marginals ϕs(S). Finally, h calls f again to consider
possible root cliques of the subtree. In (3), the least element
of U , denoted minU , is always placed in the next part R
so as not to consider different permutations of the same
partition. The base case corresponds to the case where all
nodes have been assigned to some Ri and there are none
left to partition.

3 EXACT AVERAGING

In this section we show:

Theorem 1. The marginal of a given RPT-decomposable
function over a set of n nodes can be computed in O(n33n)
time and O(n3n) space.

In effect, we show that the recurrence system (2–4) can be
solved in the claimed time. Asymptotically, this is signifi-
cantly faster than the O(4n) time obtained by a straightfor-
ward evaluation. We achieve the improvement by computing
the exponential-size summations for each of the functions f ,
g, and h simultaneously for several pairs of arguments. Our
algorithms for f and h apply as well to the maximization
variant of the recurrence. In contrast, our algorithm for g
relies crucially on subtraction (i.e., the existence of additive
inverses), and thus does not apply to maximization.

Before we proceed to the proof (in Sections 3.1–3.5), let us
note the following implication:

Corollary 2. Suppose the probability distribution over de-
composable graphs on a set of n nodes is proportional to
a given RPT-decomposable function. Then the probability
that the graph contains k specified edges can be computed
in O(2kn33n) time and O(n3n) space.

Proof. Let e1, . . . , ek be distinct edges on the node set V =
{1, . . . , n}. Let Aj denote the event that the graph does not
contain the edge ej . By the inclusion–exclusion principle,
the probability that the graph contains the k edges is

Pr
[
Ā1 ∩ · · · ∩ Āk

]
=

∑
J⊆{1,...,k}

(−1)|J| Pr

⋂
j∈J

Aj

 .
Now, let ϕ′ be the given RPT-decomposable function. It
remains to observe that

Pr

⋂
j∈J

Aj

 =

∑
G ϕ
′(G)

∏
j∈J ϕ

ej (G)∑
G ϕ
′(G)

,

where each ϕej is the decomposable function that indicates
whether ej is absent in the graph, as defined in Example 2.
Thus each of the 2k probabilities is obtained as a ratio of
two marginals of RPT-decomposable functions.

3.1 ZETA TRANSFORM AND SUBSET
CONVOLUTION

Our algorithms employ the so-called fast zeta transform,
FZT (Yates 1937, Kennes and Smets 1990, Björklund et al.
2012). The zeta transform of a function α from the subsets
of a ground set {1, . . . , n} to real numbers is the set function
defined by α̂(Y) =

∑
X⊆Y α(X) for each subset Y of the

ground set. FZT computes the zeta transform of a given
function in O(n2n) time, as follows: Let α0 = α and for
i = 1, . . . , n let

αi(Y) = αi−1(Y) + [i ∈ Y] · αi−1(Y \ {i}) .

It follows that αn = α̂. Note that there are two different
ways to organize the computations: either compute the n
steps one after another, which requires onlyO(2n) space; or

compute all the n functions for each set Y one after another
in increasing order by the size |Y |, which requires O(n2n)
space. We will need the latter “level-wise” implementation.

Another tool we use is known as the fast subset convolution,
FSC (Björklund et al. 2007). The subset convolution of
two functions α and β from the subsets of a ground set
{1, . . . , n} to real numbers is the set function defined by
(α ∗ β)(Y) =

∑
X⊆Y α(X)β(Y \ X) for each subset Y

of the ground set. FSC computes the subset convolution in
O(n22n) time and O(n2n) space. We refer to Björklund
et al. (2007) for details.

3.2 COMPUTING h

Consider first the recurrence for h. For a moment, fix a set
R ⊆ V and define the functions hR and fR by

hR(C) = h(C,R) and fR(S) = f(S,R)/ϕs(S) ,

where C and S are subsets of V \R. By the recurrence (4)
we have that hR(C) =

∑
S⊂C fR(S) = f̂R(C) − fR(C).

Using FZT we can compute hR in O(k2k) time for each
R, where k = n − |R|. Note that we use the level-wise
implementation and evaluate the k steps of the transform
for one C in turn. Thus computing h takes O(n3n) time
in total. (While we here used subtraction, it is not difficult
to see how FZT can be modified to avoid that, and that the
result thus applies to the maximization variant as well.)

3.3 COMPUTING f

Consider then the recurrence for f . It might be tempting to
try the above trick also in this case, that is, to fix either R
or S, and then employ a suitable fast zeta transform variant.
However, that approach fails because now the involved three
sets S, R, and C have more intricate dependencies. Instead,
we define the function g′ by

g′(C,R \ C) = ϕc(C) g(C,R \ C) ,

for C ⊆ R ⊆ V . The idea is to extend FZT to pairs of
disjoint sets and transform g′ into f by computing the sum
(2) in n steps: Let g′0 = g′ and for i = 1, . . . , n let

g′i(S,R) = g′i−1(S,R)+[i ∈ R] · g′i−1(S ∪ {i}, R \ {i}) .

It can be shown by simple induction that g′n(S,R) =
f(S,R) + g′(S,R \ S) (see the supplement). Thus, given
g′, we can compute f in O(n3n) time. Note that we use
the level-wise approach to compute the values f(S,R) in
decreasing order of |S| and in increasing order of |R|.

3.4 COMPUTING g

Finally consider the recurrence for g. Now we fix a C ⊆ V
for a moment and, for convenience, write gC(U) for g(C,U)

and hC(R) for h(C,R). We will show that the values

gC(U) =
∑

minU∈R⊆U

hC(R) gC(U \R)

can be computed for all U ⊆ V of size |U | = u in O(n22n)
time, assuming the values hC(R) and gC(U ′) are available
for all R,U ′ ⊆ V of sizes |R| ≤ u and |U ′| < u. This then
implies that computing g takes O(n33n) time in total (by
summing over u and C).

To compute the values gC(U), we break the computations
further into n separate subtasks. For each s ∈ V , define the
function gs by

gs(U) =
∑

s∈R⊆U

h(R) g(U \R) ,

where U ⊆ V such that |U | = u and minU = s. Note
that each such U is of the form {s} ∪ X with X ⊆ V \
{1, . . . , s}. We observe that for each s the task can be solved
using FSC inO(n22n−s) time, implying a time requirement
of O(n22n) in total. It remains to observe that g(U) is
obtained as gminU (U).

3.5 SPACE REQUIREMENT

The level-wise computations of h and f assume that the
intermediate values of the transforms are stored in memory.
This incurs a space requirement of (n3n) in total.

The computation of g, instead, uses FSC in a black-box
fashion and computes a bunch of values g(C,U) for a fixed
C and several sets U of a fixed size u, assuming only that
the values h(C,R) and g(C,U ′) are available for all R and
U ′ such that |R| ≤ u and |U ′| < u. Because the same space
can be reused for different C, the “extra” space requirement
is only that of FSC, O(n2n).

4 SAMPLING

We now turn to the task of sampling decomposable graphs
from the posterior. Specifically, we extend the DP algorithm
of Sect. 2 with a natural backtracking procedure that draws
an RPT by choosing its cliques, partitions, and separators
according to their conditional marginal probabilities, and
returns the corresponding graph. Since each graph G has
τ(G)κ(G) distinct RPTs, the resulting graph sample follows
the RPT-decomposable distribution π ∝ ϕτκ, where ϕ
is the decomposable function that the DP algorithm was
applied to. By employing importance sampling (Sect. 5)
that weights each graph sample G by (τ(G)κ(G))−1, we
are able to target the distribution proportional to ϕ instead.

For the remainder of this section we focus on sampling from
π ∝ ϕτκ. Given the DP tables for f , g, and h (for ϕ), the
backtracking procedure to sample from π works as follows.

Algorithm: Sampling a decomposable graph

Begin by visiting f(∅, V) and recursively visit f , g and
h as follows: In f(S,R), choose the root clique C of the
subtree over S ∪R randomly according to its marginal
distribution Pr(C) ∝ ϕc(C) g(C,R \ C) and proceed
to corresponding g(C,R \ C). In g(C,U), choose the
first part R of the partition according to its marginal
distribution Pr(R) ∝ h(C,R) g(C,U \ R) and recur-
sively proceed to h(C,R) and g(C,U \R). In h(C,R),
choose a separator S according to its marginal proba-
bility Pr(S) ∝ f(S,R)/ϕs(S) and proceed to f(S,R).
Continue the recursion until all branches terminate at a
visit to g(C,∅). Then, from the resulting recursion tree,
obtain the cliques C and return the corresponding graph.

The efficiency of this backtracking procedure depends on
how much time is spent on choosing random sets C, R, and
S during the visits. Consider the general problem of drawing
a sample from a discrete distribution over s elements. A
naive method is to pick a number r from the continuous
uniform distribution on [0, 1), then iterate the elements in
a predefined order and select the first item for which the
cumulative probability exceeds r. The method uses O(s)
time and O(1) space. It can be shown that, if the sets C,
R, and S are sampled using this naive method, sampling
a single graph requires O(2n) time. (In fact, this result is
proved as a special case in the next subsection.) Next we
introduce a more general sampling scheme that allows us to
spend less time in sampling by using more space.

4.1 TRADING TIME FOR SPACE

We can avoid spending exponential time per sample by first
preprocessing the probabilities so that the sets can thereafter
be chosen much faster. First, it should be noted that it is
not possible to just precompute the cumulative probabilities
and use, for example, binary search to find the item that
corresponds to r, without increasing the asymptotic space
requirement. On the other hand, if we allow additional space
usage, then it is better to use the alias method (Vose 1991),
which requires O(s) additional space and O(s) preprocess-
ing time but allows us to draw samples in O(1) time per
sample. Moreover, it turns out we obtain a tunable tradeoff
between sampling time and extra space. Specifically, we
propose the following algorithm:

Subroutine: Parameterized sampling

Let b ∈ {0, ..., n} be a tradeoff parameter that is chosen
beforehand. As preprocessing, divide the s elements
into bins of size 2b (at most, the last bin can be smaller),
and for each bin, compute and store the sum of the
probabilities of its elements. This requires space that is
linear in the number of bins.

Now a new sample can be drawn in two phases: first a
bin is selected according to its precomputed total proba-

bility and then a term is selected from the bin according
to its relative probability in the bin. We apply the alias
method to the first phase, and the naive sampling to the
second phase. Thus, the first phase requires O(1) time
per sample. The additional space requirement is linear
in the number of bins. The second phase uses O(2b)
time and no additional space. The total space require-
ment is thus O(s/2b) and time requirement is O(s) for
preprocessing and O(2b) per sample.

By selecting a fixed b and applying the above algorithm to
each (nonterminating) f(S,R), g(C,U), and h(C,R) we
get the following theorem:

Theorem 3. For any b ∈ {0, . . . , n} we can draw T inde-
pendent graphs from π in O(4n + T · 2b(1 + n− b)) time
and O(4n/2b + 3n) space.

In order to prove the theorem, we first bound the number of
visits to f , g, and h by the following lemma:

Lemma 4. The sampling procedure makes at most n non-
terminating visits to functions f , g, and h each.

The proof of Lemma 4 is given in the supplement.

Now, by using Lemma 4 and the fact that on each visit to
f , g or h, the time required to choose the set C, R or S
correspondingly is at most O(2b), we get a bound O(2bn)
for the time consumption per sample. However, in order to
get the bound down toO(2b(1+n−b)) as in Theorem 3, we
need to bound the amount of work done on each visit more
carefully. To this end, observe that each nonterminating
visit to f(S,R), g(C,U), and h(C,R) involves drawing a
random set from a discrete distribution over 2|R| − 1 <
2|S|+|R|, 2|U |/2 < 2|C|+|U |, and 2|C| − 1 < 2|C|+|R| sets
respectively. The following lemma bounds |S|+ |R|, |C|+
|U |, and |C|+ |R| on different steps of the backtracking.

Lemma 5. For f , g, and h let (S1, R1), . . . , (Sdf , Rdf),
(C1, U1), . . . , (Cdg , Udg), and (C1, R1), . . . , (Cdh , Rdh)
be all the set pairs visited during backtracking. Then there
exist orderings of those set pairs such that,

|Si|+ |Ri| ≤ n− i+ 1 for all i = 1, . . . , df ,

|Ci|+ |Ui| ≤ n− i+ 1 for all i = 1, . . . , dg ,

|Ci|+ |Ri| ≤ n− i+ 1 for all i = 1, . . . , dh .

The proof of Lemma 5 is given in the supplement.

Now we are ready to prove the theorem presented above.

Proof of Theorem 3. Consider the space and time needed
for f (respectively: g, h).

Space: For each R (respectively: U , C) of size k there are
2n−k ways to choose S (respectively: C, R). The space
needed by the alias method for each such set pair is less

than max{2k/2b, 1}. Thus the total space requirement for
all set pairs of all sizes is∑
k

(
n

k

)
2n−k max{2k−b, 1} ≤

∑
k

(
n

k

)
(2n−b+ 2n−k)

= 4n/2b + 3n .

Time: The preprocessing requires enumeration over all
terms of the sums in the recurrences for all entries of f ,
g, and h. Like computing f , g, and h, this consumes O(4n)
time. It remains to analyze the time needed to draw a sin-
gle graph sample. Let (S1, R1), . . . , (Sd, Rd) (respectively:
(R1, U1), . . . , (Rd, Ud), (C1, R1), . . . , (Cd, Rd)) be the d
visited set pairs for f (respectively: g, h). In each visit
the algorithm first chooses a bin in constant time and then
chooses one of its elements in time linear in its size but at
most 2b. Therefore, the backtracking requires at most time

d∑
i=1

min{2b, 2ki} ,

where ki = |Ri| (respectively: ki = |Ui|, ki = |Ci|). By
Lemma 5, there exists an ordering of the set pairs such that
ki ≤ n− i+ 1. By Lemma 4, d ≤ n. We get

n∑
j=1

min{2b, 2j} ≤
n∑

j=b+1

2b +

b∑
j=1

2j

≤ (n− b)2b + 2b+1

= (2 + n− b)2b .

The claim thus follows.

Theorem 3 has, for example, the following corollaries. Set-
ting b = 0 allows us to draw each sample in linear time but
using O(4n) extra space, while setting b = n effectively
yields the naive method. From an asymptotical viewpoint,
it makes sense to set b ≤ n log2(4/3) ' 0.42n, since for
larger b the 3n term dominates the space requirement. Since
the DP phase requires O(4n) time, we can in a sense draw
O(4n/2n log2(4/3)n) = O(2n/n) samples for “free.”

4.2 ADAPTIVE SAMPLING

Usually most of the probability mass is concentrated on a
small set of graphs. Thus, when sampling graphs, some
of the indexing set pairs for f , g, and h are visited rarely
if at all. The additional space that is used by the alias
method for such set pairs may outweigh the gain in speed.
As an alternative, we propose the following approach that
periodically draws and caches multiple samples at once on
those indices that are visited more often.

Subroutine: Adaptive sampling

On the first visit to any f(S,R), g(C,U), or h(C,R),
draw and consume one set from the corresponding dis-
crete distribution using the naive method. On any sub-
sequent visit: If there are no cached samples left from

the previous visits, then use the alias method to draw
twice as many sets as the last time on the same index,
consume one and cache the rest. Otherwise, consume
one set from the cache.

The following lemma characterizes the space consumption
of the graph sampler that uses the above adaptive sampling
subroutine.

Lemma 6. After T sampled graphs, adaptive sampling
consumes at most O(nT) extra space.

Proof. A cache of size s is constructed when the correspond-
ing set pair is visited for the (s+ 1)th time. By Lemma 4
the total number of visits to all set pairs is at most nT . The
claim then trivially follows.

Furthermore, we get the following special case bounds for
space and time consumption:

Theorem 7. We can draw 3n independent samples from π
in O(n4n) time and O(n3n) space.

Proof. The space complexity follows from Lemma 6.

Consider then the time used on visits to f .

Without rebuilding the caches, the time per sample is O(n),
or O(n3n) in total. In order to analyze the time needed for
cache rebuilds, consider an arbitrary disjoint set pair (S,R)
and let k = |R|.

Let t be the number of visits to the set pair in question. Then
its cache is rebuilt blog2(t) + 1c times. As rebuilding the
cache the ith time requires O(2k + 2i) time (the first term
comes from constructing the distribution and initializing the
alias method, the second term comes from drawing the sets),
in total this requires time

blog2(t)+1c∑
i=1

O(2k + 2i) = O((log(t) + 1)2k) +O(t) .

To get the total time used to rebuild caches, we must sum
these for all set pairs (S,R). Since each backtracking visits
at most n set pairs (Lemma 4), the sum over the last term
O(t) results in O(n3n). It remains to analyze the first term.

For k = 1, . . . , n, let Lk consist of all the set pairs (S,R)
such that |R| = k. For a fixed k, there are |Lk| =

(
n
k

)
2n−k

such pairs, and each may be visited at most once per
sample, that is, at most 3n times in total. Thus, the
sum of the first term over all pairs in Lk amounts to
O
(
|Lk|(log(3n) + 1)2k

)
= O

(
n
(
n
k

)
2n
)
. Summing over

k yields the claimed running time bound.

The time used on visits to g and h can be bounded analo-
gously (selecting k = |U | and k = |C|, respectively).

5 MONTE CARLO ESTIMATION

We have observed in Sections 2 and 3 that the posterior
probabilities of some graph properties can be computed
exactly in O(4n) time, and asymptotically even faster in
O(n33n) time. However, we had to assume (i) that the
properties can be expressed by decomposable functions
(e.g., in terms of forbidden cliques), and (ii) that the prior,
and hence the posterior, is RPT-decomposable, ruling out
the natural uniform prior.

In this section, we employ Monte Carlo methods to relax
these restrictive assumptions and still obtain good approxi-
mations. Throughout the section, we consider an arbitrary
function ψ from decomposable graphs to {0, 1}. Our inter-
est is in estimating the quantity

Zπψ =
∑
G

π(G)ψ(G) ,

where π is the posterior distribution.

5.1 RPT-DECOMPOSABLE PRIOR

Consider first relaxing only the first assumption (i). Since
we keep the assumption that the prior is RPT-decomposable,
we can draw T independent graphs G1, . . . , GT from the
posterior π, using the methods described in Sect. 4. The
estimate

Ẑπψ =
1

T

T∑
i=1

ψ(Gi)

is unbiased and, by the law of large numbers, it concentrates
around Zπψ as T grows.

5.2 DECOMPOSABLE PRIOR

Consider then relaxing also the second assumption (ii). For
convenience, assume however that the prior is decompos-
able, for example, the uniform distribution over all decom-
posable graphs on the node set V . Now, we can draw T
independent graphs G1, . . . , GT from a distribution propor-
tional to πτκ, using the methods described in Sect. 4. In
this case, we need to correct the deviance of the sampling
distribution from the posterior. We do this by using the
self-normalized importance sampling estimate

Z̃πψ =

∑T
i=1 wiψ(Gi)∑T

i=1 wi
, wi =

1

τ(Gi)κ(Gi)
.

This estimate concentrates around Zπψ as T grows.

To make this method practical, we need an efficient way to
count the number of junction trees τ(Gi) and the number of
cliques κ(Gi) of a given decomposable graph Gi. The latter
problem is easy, as the cliques are readily available in the
RPT (or junction tree) representation. For counting junction

Table 1: Benchmark datasets on n variables and m records.
Dataset n m
Asia 8 10000
Bridges 12 108
Flare 13 1066
House-votes 17 435

Table 2: The running time of our algorithm on the bench-
mark datasets. We measure in seconds the time spent on
the dynamic programming phase (DP) as well as sampling
of 105, 106, and 107 graphs. These include the time spent
finding the number of junction trees per sample.

Dataset DP 105 106 107

Asia 0.018 0.32 3.2 33
Bridges 5.6 0.66 5.5 54
Flare 24 1.5 8.8 77
House-votes 7497 16 40 167

trees, a method described by Thomas and Green (2009) has,
to our knowledge, the best worst case guarantees, running
in time O(n2). It also starts by finding a single junction tree
of the graph, which in our case is already given.

6 EXPERIMENTS

We report experimental results on the proposed sampling
and estimation methods, using benchmark datasets (Table 1).
Asia is sampled from a network defined by Lauritzen and
Spiegelhalter (1988) and others are from the UCI repository
(Bache and Lichman 2013). For all datasets we use the
Dirichlet–multinomial model with the equivalent sample
size parameter 1 (Dawid and Lauritzen 1993, Heckerman
et al. 1995). Our C++ implementation1 uses the straight-
forward O(4n) time dynamic programming (Sect. 2) and
the adaptive variant of the sampling phase (Sect. 4). The
running times are detailed in Table 2.

6.1 PREDICTION

We first study how well averaging over graphs using our sam-
pling method performs on a prediction task, as compared
to using a single maximum-a-posteriori graph. Specifically,
we split each dataset into a fixed test set and a training set.
From the training data we then learn both a maximum-a-
posteriori graph and the full posterior given a uniform prior
over decomposable graphs and measure how the probability
of the test data given the training data behaves under these
models as the size of the training set varies.

The maximum-a-posteriori graph is obtained using the

1Our implementation is available at
www.cs.helsinki.fi/u/jwkangas/junctor.

method of Kangas et al. (2014). The full posterior model
is approximated by sampling 2n graphs, where n is the
number of variables in the dataset, and then measuring the
average probability of the test data over the sampled graphs
(weighting each graph by the number of its RPTs).

Intuitively, the full posterior should in general yield better
results, as the maximum-a-posteriori graph has a tendency
to overfit the training data, especially for a small training set.
Our results (Fig. 1) conform to this expectation. We observe
that the probability of the test data under the full posterior
model tends to be significantly higher for small training sets
and the gap diminishes as the size of the training set grows.

6.2 EDGE POSTERIOR PROBABILITIES

In the second set of experiments we apply the Monte Carlo
methods described in Sect. 5 to estimating the posterior
probabilities of individual edges under the uniform prior
over decomposable models.

For each dataset, we use the method from Sect. 5.2 to esti-
mate the posterior probability of each edge. We compute
the estimation error, i.e., the difference between an edge’s
estimated probability and our best available estimate for
the probability. Ideally, we would like the best available
estimate to be the true posterior probability of the edge.
For Asia we are able to obtain the true probability by enu-
merating all decomposable graphs up to 8 nodes. As this
task comes infeasible for larger n, for other datasets we
instead compare to the best estimate given by our method
after drawing one million samples. Such “self-comparison”
is still useful for studying the rate of convergence.

To quantify convergence, we measure how the maximum
estimation error over edges develops as we draw more sam-
ples (Fig. 2). We also study the distribution of the error in a
more refined way by counting the number of edges whose
error exceeds 10−k for k ∈ {1, . . . , 4} (Fig. 3). We observe
that the rate of convergence remains steady for each dataset.
In all cases we reach a maximum error of about 0.01 or less
after 105 samples and a lot sooner for smaller datasets.

7 CONCLUDING REMARKS

We have presented algorithms for Bayesian learning of
moderate-size decomposable graphical models. Unlike the
recent related algorithm that finds a single optimal model
(Kangas et al. 2014), our algorithm enables more principled
treatment of the posterior uncertainty. Unlike the brute-force
approach, our algorithm scales well beyond 8 variables, up
to about 20 variables. Unlike the popular MCMC methods,
our algorithm enjoys accuracy guarantees (see also below).
We believe our algorithms can be valuable for solving ac-
tual data-analysis instances, for testing the performance of
other (approximate) methods, and as a building block for
developing new methods that scale to larger instances.

Asia Bridges Flare

100 101 102 103
−155
−150
−145
−140
−135
−130
−125
−120
−115
−110

full posterior averaging
maximum-a-posteriori

100 101 102
−760
−740
−720
−700
−680
−660
−640
−620
−600

100 101 102 103 104
−550

−500

−450

−400

−350

−300

−250

Figure 1: The (log unnormalized) probability of the test data given the training data (y-axis) as an average under sampled
graphs and under the maximum-a-posteriori model for various sizes of the training set (x-axis).

Asia Bridges Flare House-votes

100 101 102 103 104 105
10-3

10-2

10-1

100

100 101 102 103 104 105
10-3

10-2

10-1

100

100 101 102 103 104 105
10-3

10-2

10-1

100

100 101 102 103 104 105
10-3

10-2

10-1

100

Figure 2: The maximum error of the estimate over all edges (y-axis) as the number of samples (x-axis) grows.

Asia Bridges Flare House-votes

100 101 102 103 104 105

5
10
15
20
25

100 101 102 103 104 105

45

50

55

60

65

100 101 102 103 104 105
30

40

50

60

70

100 101 102 103 104 105
70
80
90
100
110
120
130

Figure 3: The number of edges (y-axis) with an estimation error less than 10−k as the number of samples (x-axis) grows.
The curves represents k = 1, . . . , 4 from top to down.

While this work has touched several aspects of accurate
Bayesian learning of decomposable graphs, it also leaves
many questions for future work. Some are rather straightfor-
ward extension and implementation issues: From a practical
point of view, the most important one is to make the algo-
rithms accommodate a user-specified upper bound on the
clique sizes, and thereby expedite computations and reduce
memory requirements. Another issue is to tune the recur-
sive sampling schemes so as to fully exploit the (typical)
low entropy of the distributions. Conceptually, the biggest
shortcoming in our current importance sampling implemen-
tation is the lack of controllable approximation guarantees.
However, we believe this gap can be closed in an efficient
and practical way by using the so-called optimal Monte

Carlo algorithms (Cheng 2001, Dagum et al. 2000), as the
sampled graphs tend to have relatively few junction trees.

The main open research questions are: Can the asymptot-
ically faster algorithm be implemented to run fast also in
practice? Are there significantly faster and, particularly,
more space-efficient algorithms for Bayesian learning of
decomposable graphs, with good accuracy guarantees?

Acknowledgements

The authors thank the anonymous reviewers for valuable
suggestions to improve the presentation. This work was
supported in part by the Academy of Finland, Grant 276864
“Supple Exponential Algorithms” (M.K.).

References

H. Abel and A. Thomas. Accuracy and computational ef-
ficiency of a graphical modeling approach to linkage
disequilibrium estimation. Statistical Applications in Ge-
netics and Molecular Biology, 10:1–15, 2011.

K. Bache and M. Lichman. UCI machine learning repository,
2013.

A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto.
Fourier meets Möbius: fast subset convolution. In Pro-
ceedings of the 39th Annual ACM Symposium on Theory
of Computing (STOC), pages 67–74. ACM, 2007.

A. Björklund, M. Koivisto, T. Husfeldt, J. Nederlof, P. Kaski,
and P. Parviainen. Fast zeta transforms for lattices with
few irreducibles. In Proceedings of the 23rd Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages
1436–1444. SIAM, 2012.

J. Cheng. Sampling algorithms for estimating the mean of
bounded random variables. Computational Statistics, 16:
1–23, 2001.

J. Corander, M. Gyllenberg, and T. Koski. Bayesian model
learning based on a parallel MCMC strategy. Statistics
and Computing, 16(4):355–362, 2006.

J. Corander, T. Janhunen, J. Rintanen, H. Nyman, and J. Pen-
sar. Learning chordal Markov networks by constraint sat-
isfaction. In Advances in Neural Information Processing
Systems 26 (NIPS), pages 1349–1357. Curran Associates,
Inc., 2013.

P. Dagum, R. M. Karp, M. Luby, and S. M. Ross. An optimal
algorithm for Monte Carlo estimation. SIAM Journal on
Computing, 29(5):1484–1496, 2000.

A. P. Dawid and S. L. Lauritzen. Hyper Markov laws in
the statistical analysis of decomposable graphical models.
The Annals of Statistics, 21(3):1272–1317, 1993.

P. Giudici and P. J. Green. Decomposable graphical Gaus-
sian model determination. Biometrika, 86(4):785–801,
1999.

P. J. Green and A. Thomas. Sampling decomposable graphs
using a Markov chain on junction trees. Biometrika, 100
(1):91–110, 2013.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning
Bayesian networks: The combination of knowledge and
statistical data. Machine Learning, 20:197–243, 1995.

K. Kangas, M. Koivisto, and T. Niinimäki. Learning chordal
Markov networks by dynamic programming. In Advances
in Neural Information Processing Systems 27 (NIPS),
pages 2357–2365. Curran Associates, Inc., 2014.

R. Kennes and P. Smets. Computational aspects of the
Mobius transformation. In Proceedings of the Sixth An-
nual Conference on Uncertainty in Artificial Intelligence
(UAI), pages 401–416. Elsevier, 1990.

S. L. Lauritzen. Graphical Models. Oxford University Press,
1996.

S. L. Lauritzen and D. J. Spiegelhalter. Local computations
with probabilities on graphical structures and their appli-
cation to expert systems. Journal of the Royal Statistical
Society. Series B (Methodological), 50(2):157–224, 1988.

D. Madigan and J. York. Bayesian graphical models for
discrete data. International Statistical Review, 63:215–
232, 1995.

N. Srebro. Maximum likelihood bounded tree-width
Markov networks. Artificial Intelligence, 143(1):123–
138, 2003.

C. Tarantola. MCMC model determination for discrete
graphical models. Statistical Modelling, 4(1):39–61,
2004.

A. Thomas and P. J. Green. Enumerating the junction trees
of a decomposable graph. Journal of Computational and
Graphical Statistics, 18:930–940, 2009.

M. Vose. A linear algorithm for generating random numbers
with a given distribution. IEEE Transactions on Software
Engineering, 17:972–975, 1991.

F. Yates. The design and analysis of factorial experiments.
Imperial Bureau of Soil Science. Harpenden, 1937.

