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Abstract

We report a novel network reconstruction
method, which combines constraint-based and
Bayesian frameworks to reliably reconstruct
graphical models despite inherent sampling noise
in finite observational datasets. The approach
is based on an information theory result trac-
ing back the existence of colliders in graphi-
cal models to negative conditional 3-point in-
formation between observed variables. In turn,
this provides a confident assessment of structural
independencies in causal graphs, based on the
ranking of their most likely contributing nodes
with (significantly) positive conditional 3-point
information. Starting from a complete undi-
rected graph, dispensible edges are progressively
pruned by iteratively “taking off” the most likely
positive conditional 3-point information from the
2-point (mutual) information between each pair
of nodes. The resulting network skeleton is
then partially directed by orienting and propa-
gating edge directions, based on the sign and
magnitude of the conditional 3-point informa-
tion of unshielded triples. This “3off2” net-
work reconstruction approach is shown to out-
perform constraint-based, search-and-score and
earlier hybrid methods on a range of benchmark
networks.

1 INTRODUCTION

The prospect of learning the direction of causal de-
pendencies from mere correlations in observational data
has long defied practical implementations (Reichenbach,
1956). The fact that causal relationships can, to some ex-
tent, be inferred from nontemporal statistical data is now
known to hinge on the unique statistical imprint of colliders
in causal graphical models, provided that certain assump-
tions are made about the underlying process of data gen-
eration, such as its faithfulness to a tree structure (Rebane

and Pearl, 1988) or a directed acyclic graph model (Spirtes,
Glymour, and Scheines, 2000; Pearl, 2009).

These early findings led to the developments of two types
of network reconstruction approaches; on the one hand,
search and score methods (Cooper and Herskovits, 1992;
Heckerman, Geiger, and Chickering, 1995; Chickering,
2002) need heuristic strategies, such as hill-climbing al-
gorithms, to sample network space, on the other hand,
constraint-based methods, such as the PC (Spirtes and Gly-
mour, 1991) and IC (Pearl and Verma, 1991) algorithms,
rely on the identification of structural independencies, that
correspond to edges to be removed from the underlying net-
work (Spirtes, Glymour, and Scheines, 2000; Pearl, 2009).
Yet, early errors in removing edges from the complete
graph often lead to the accumulation of compensatory er-
rors later on in the pruning process. Hence, despite re-
cent, more stable implementations intending to overcome
order-dependency in the pruning process (Colombo and
Maathuis, 2014), constraint-based methods are not robust
to sampling noise in finite datasets.

In this paper, we present a more robust constrained-based
method and corresponding 3off2 algorithm. It is directly
inspired by the PC anc IC algorithms but relies on a quanti-
tative information theoretic framework to reliably uncover
conditional independencies in finite datasets and subse-
quently orient and propagate edge directions between con-
nected variables.

2 RESULTS

2.1 UNCOVERING CAUSALITY FROM A
STABLE / FAITHFUL DISTRIBUTION

Consider a network G = (V,E) and a stable (or faithful)
distribution P (X) over V , implying that each structural in-
dependency (i.e. missing edge XY in G) corresponds to a
vanishing conditional 2-point (mutual) information and re-
ciprocally as,

(X ⊥⊥ Y |{Ui})G ⇐⇒ (X ⊥⊥ Y |{Ui})P (1)
⇐⇒ I(X;Y |{Ui}) = 0 (2)



Eq. 1 assumes, in particular, that P (X) is a theoretical dis-
tribution, defined by a formal expression of its variables
X = {X,Y, U1, U2, . . .}. Note, however, that no such
expression is known a priori, in general, and P (X) must
typically be estimated from the available data. In princi-
ple, an infinite amount of data would be necessary to infer
an ‘exact’ stable distribution P (X) consistent with Eq. 1.
In the following, we will first assume that such an infinite
amount of data is available and distributed as a stable P (X)
to establish how causality can be inferred statistically from
conditional 2-point and 3-point information. We will then
consider the more realistic situation for which P (X) is not
known exactly and must be estimated from a finite amount
of data.

Let us first recall the generic decomposition of a condi-
tional 2-point (or mutual) information I(X;Y |{Ui}) by the
introduction of a third node Z and the conditional 3-point
information I(X;Y ;Z|{Ui}),

I(X;Y |{Ui})=I(X;Y;Z|{Ui}) + I(X;Y |{Ui}, Z) (3)

This relation can be taken as the definition of conditional
3-point information I(X;Y ;Z|{Ui}) which is in fact sym-
metric in X , Y and Z,

I(X;Y ;Z|{Ui}) = I(X;Y |{Ui})− I(X;Y |{Ui}, Z)
= I(X;Z|{Ui})− I(X;Z|{Ui}, Y )

= I(Y ;Z|{Ui})− I(Y ;Z|{Ui}, X)

Note that Eq. 3 is always valid, regardless of any assump-
tion on the underlying graphical model and of the amount
of data available to estimate conditional 2-point and 3-point
information terms. Eq. 3 will be used to prove the follow-
ing lemmas and propositions, which trace back the origin
of necessary causal relationships in a graphical model to
the existence of a negative conditional 3-point information
between three variables {X,Y, Z}, I(X;Y ;Z|{Ui}) < 0,
where {Ui} accounts for a structural independency be-
tween two of them, e.g. I(X;Y |{Ui})=0 (see Theorem 4).

Lemma 1. Given a stable distribution P (X) on V ,
∀X,Y ∈ V not adjacent in G, ∃{Ui} ⊆ V\{X,Y }
s.t. I(X;Y |{Ui}) = 0 and ∀Z 6= X,Y, {Ui},
I(X;Y ;Z|{Ui}) 6 0.

Proof. If X,Y ∈ V are not adjacent in G, this corre-
sponds to a structural independency, i.e. ∃{Ui} ⊆ V\{X,Y }
s.t. I(X;Y |{Ui}) = 0. Then ∀Z 6= X,Y, {Ui} Eq. 3 im-
plies I(X;Y ;Z|{Ui})=−I(X;Y |{Ui}, Z)60, as condi-
tional mutual information is always positive. �

Corollary 2 (3-point contribution). ∀X,Y, Z ∈ V and
∀{Ui} ⊆ V\{X,Y,Z} s.t. I(X;Y ;Z|{Ui}) > 0, then
I(X;Y |{Ui}) > 0 (as well as I(X;Z|{Ui}) > 0 and
I(Y ;Z|{Ui}) > 0 by symmetry of I(X;Y ;Z|{Ui})).

Corollary 2, which is a direct consequence of Eq. 3
and the positivity of mutual information, will be the ba-

sis of the 3off2 causal network reconstruction algorithm,
which iteratively “takes off” 3-point information from 2-
point information, as I(X;Y |{Ui})− I(X;Y ;Z|{Ui}) =
I(X;Y |{Ui}, Z), and update {Ui} ← {Ui} + Z as long
as there remains some Z ∈ V with (significantly) positive
conditional 3-point information I(X;Y ;Z|{Ui}) > 0.

Lemma 3 (vanishing conditional 2-point and 3-point
information in undirected networks). If G is an undi-
rected (Markov) network, ∀X,Y ∈ V and ∀{Ui} ⊆
V\{X,Y } s.t. I(X;Y |{Ui}) = 0, then ∀Z 6= X,Y, {Ui},
I(X;Y ;Z|{Ui})=0.

Proof. If G is a Markov network, ∀X,Y ∈ V and ∀{Ui} ⊆
V\{X,Y } s.t. I(X;Y |{Ui}) = 0, then ∀Z 6= X,Y, {Ui},
I(X;Y |{Ui}, Z) = 0 as conditioning observation can-
not induce correlations in Markov networks (Koller and
Friedman, 2009). This implies that I(X;Y ;Z|{Ui}) = 0
through Eq. 3. �

Note, however, that the converse of Lemma 3 is not
true. Namely, (partially) directed networks can also have
vanishing conditional 3-point information associated to
all their structural independencies. In particular, tree-
like bayesian networks without colliders (i.e. without v-
structures, X → Z ← Y ) present only vanishing 3-
point information associated to their structural indepen-
dencies, i.e. I(X;Y ;Z|{Ui}) = 0, ∀X,Y, Z, {Ui} ∈ V
s.t. I(X;Y |{Ui}) = 0. However, such a directed network
must be Markov equivalent to an undirected network corre-
sponding to the same structural independencies but lacking
any trace of causal relationships (i.e. no directed edges).
The probability distributions faithful to such directed net-
works do not contain evidence of obligate causality; i.e. no
directed edges can be unambiguously oriented.

The following Theorem 4 establishes the existence of neg-
ative conditional 3-point information as statistical evidence
of obligate causality in graphical models. For the purpose
of generality in this section, we do not exclude the possi-
bility that unobserved ‘latent’ variables might mediate the
causal relationships among observed variables. However,
this requires dissociating the labelling of the two endpoints
of each edges. Let us first introduce three different end-
point marks associated to such edges in mixed graphs: they
are the tail (−), the head (>) and the unspecified (◦) end-
point marks. In addition, we will use the asterisk symbol
(∗) as a wild card denoting any of the three marks.

Theorem 4 (negative conditional 3-point information
as statistical evidence of causality). If ∃X,Y, Z ∈
V and {Ui} ⊆ V\{X,Y,Z} s.t. I(X;Y |{Ui}) = 0
and I(X;Y ;Z|{Ui}) < 0 then, G is (partially) directed,
i.e. some variables in G are causally linked, either directly
or indirectly through other variables, including possibly
unknown, ‘latent’ variables unobserved in G.



Proof. Theorem 4 is the contrapositive of Lemma 3, with
the additional use of Lemma 1. �

Proposition 5 (origin of causality at unshielded triples
with negative conditional 3-point information).
For all unshielded triple, X ∗−◦ Z ◦−∗ Y , ∃{Ui} ⊆
V\{X,Y } s.t. I(X;Y |{Ui}) = 0, if Z /∈ {Ui} then
I(X;Y ;Z|{Ui}) < 0 and the unshielded triple should be
oriented as X ∗→ Z ←∗ Y .

Proof. If I(X;Y |{Ui}) = 0 with Z /∈{Ui}, the unshiel-
ded triple has to be a collider and I(X;Y |{Ui}, Z)>0, by
faithfulness, hence, I(X;Y ;Z|{Ui})<0 by Eq. 3. �

Hence, the origin of causality manifests itself in the form of
colliders or v-structures in graphical models which reveal
‘genuine’ causations (X→ Z or Y→ Z) or, alternatively,
‘possible’ causations (X◦→ Z or Y ◦→ Z), provided that
the corresponding correlations are not due to unobserved
‘latent’ variables L or L′ as, X L99 L 99K Z or Y L99
L′ 99K Z.

Following the rationale of constraint-based approaches,
it is then possible to ‘propagate’ further the orientations
downstream of colliders, through positive (conditional) 3-
point information, if one assumes that the underlying dis-
tribution P (X) is faithful to an ancestral graph G on V .
An ancestral graph is a mixed graph, that is, with three
types of edges, undirected (−), directed (← or→) or bidi-
rectional (↔), but with i.) no directed cycle, ii.) no al-
most directed cycle (including one bidirectional edge) and
iii.) no undirected edge with incoming arrowhead (such
as X ∗→ Z−Y ). In particular, Directed Acyclic Graphs
(DAG) are subclasses of ancestral graphs (i.e. without undi-
rected nor bidirectional edges).

Proposition 6 (‘propagation’ of causality at unshielded
triples with positive conditional 3-pt information).
Given a distribution P (X) faithful to an ancestral
graph G on V , for all unshielded triple with already
one converging orientation, X ∗→ Z ◦−∗ Y , ∃{Ui} ⊆
V\{X,Y } s.t. I(X;Y |{Ui}) = 0, if Z ∈ {Ui} then
I(X;Y ;Z|{Ui}\Z) > 0 and the first orientation should
be ‘propagated’ to the second edge as X ∗→ Z → Y .

Proof. If I(X;Y |{Ui}) = 0 with Z ∈ {Ui}, the un-
shielded triple cannot be a collider and, since G is assumed
to be an ancestral graph, the edge Z−Y cannot be an undi-
rected edge either. Hence, it has to be a directed edge,
Z→ Y and I(X;Y ;Z|{Ui}\Z) > 0 by faithfulness and
Eq. 3. �

Note that the propagation rule of Proposition 6 can be
applied iteratively to successive unshielded triples corre-
sponding to positive conditional 3-point information. Yet,
all arrowhead orientations can be ultimately traced back to
a negative conditional 3-point information, Theorem 4 and

Proposition 5.

2.2 ROBUST RECONSTRUCTION OF CAUSAL
GRAPHS FROM FINITE DATASETS

We now turn to the more practically relevant situation of
finite datasets consisting of N independent data points.
The associated sampling noise will instrinsically limit the
accuracy of causal network reconstruction. In particu-
lar, conditional independencies cannot be exactly achieved
(I(X;Y |{Ui}) = 0) but can be reliably established using
statistical criteria that depend on the number of data points
N .

Given N independent datapoints from the available data
D, let us introduce the maximum likelihood, LD|G , that
they might have been generated by the graphical model G
(Sanov, 1957),

LD|G =
e−NH(G,D)

Z(G,D)
=
eN

∑
{xi}

p({xi}) log(q({xi}))

Z(G,D)
(4)

where H(G,D) = −
∑
{xi} p({xi}) log(q({xi})) is the

cross entropy between the “true” probability distribution
p({xi}) of the data D and the theoretical probability dis-
tribution q({xi}) of the model G and Z(G,D) is a data-
and model-dependent factor ensuring proper normalization
condition. The structural constraints of the model G can
be included a priori in the factorization form of the the-
oretical probability distribution, q({xi}). In particular, if
we assume a Bayesian network as underlying graphical
model, q({xi}) factorizes as q({xi}) =

∏
i p(xi|{paxi

}),
where {paxi

} denote the values of the parents of node Xi,
{PaXi}, and leads to the following maximum likelihood
expression,

LD|G =
e−N

∑
i H(Xi|{PaXi

})

Z(G,D)
(5)

The model G can then be compared to the alternative model
G\X→Y with one additional missing edge X → Y using
the maximum likelihood ratio,

LD|G\X→Y

LD|G
= e−NI(X;Y |{PaY }\X) Z(G,D)

Z(G\X→Y ,D)
(6)

where I(X;Y |{PaY }\X) = H(Y |{PaY }\X) −
H(Y |{PaY }). However, Eq. 6 cannot be used as
such to learn the underlying graphical model, as it assumes
that the order between the nodes and their parents is
already known (see however (de Campos, 2006)). Yet, fol-
lowing the rationale of constraint-based approaches, Eq. 6
can be reformulated by replacing the parent nodes with an
unknown separation set {Ui} to be learnt simultaneously
with the missing edge candidate XY ,

LG\XY |{Ui}

LG
= e−NI(X;Y |{Ui})+kX;Y |{Ui} (7)

kX;Y |{Ui} = log
(
Z(G,D)/Z(G\XY |{Ui},D)

)



where the factor kX;Y |{Ui} > 0 tends to limit the complex-
ity of the models by favoring fewer edges. Namely, the con-
dition, I(X;Y |{Ui}) < kX;Y |{Ui}/N , implies that sim-
pler models compatible with the structural independency,
X ⊥⊥ Y |{Ui}, are more likely than model G, given the
finite available dataset. This replaces the ‘perfect’ condi-
tional independency condition, I(X;Y |{Ui}) = 0, valid
in the limit of an infinite dataset, N → ∞. A common
complexity criteria in model selection is the Bayesian In-
formation Criteria (BIC) or Minimal Description Length
(MDL) criteria (Rissanen, 1978; Hansen and Yu, 2001),

k
MDL

X;Y |{Ui} =
1

2
(rx − 1)(ry − 1)

∏
i

rui
logN (8)

where rx, ry and rui
are the number of levels of the corre-

sponding variables. The MDL complexity, Eq. 8, is simply
related to the normalisation constant reached in the asymp-
totic limit of a large dataset N → ∞ (Laplace approxi-
mation). However, this limit distribution is only reached
for very large datasets in practice. Alternatively, the nor-
malisation of the maximum likelihood can also be done
over all possible datasets including the same number of
data points to yield a (universal) Normalized Maximum
Likelihood (NML) criteria (Shtarkov, 1987; Rissanen and
Tabus, 2005) and its decomposable (Kontkanen and Myl-
lymäki, 2007; Roos et al., 2008) and XY -symmetric ver-
sion, k

NML

X;Y |{Ui}, defined in the Supplementary Methods.

Then, instead of exploring the combinatorics of sepset
composition {Ui} for each missing edge candidate XY as
in traditional constraint-based approaches, we propose that
Eq. 7 can be used to iteratively extend a likely sepset us-
ing the maximum likelihood ratios between two successive
sepset candidates, i.e. between the already ascertained {Ui}
and the possible extended {Ui}+ Z, as,

LD|G\XY |{Ui},Z

LD|G\XY |{Ui}

= eNI(X;Y ;Z|{Ui})+kX;Y ;Z|{Ui} (9)

using Eq. 3 for I(X;Y ;Z|{Ui}) and introducing a similar
3-point complexity conditioned on {Ui} as,

kX;Y ;Z|{Ui} = kX;Y |{Ui},Z − kX;Y |{Ui} (10)

where kX;Y ;Z|{Ui} > 0, unlike 3-point information,
I(X;Y ;Z|{Ui}) which can be positive or negative.

Introducing also the shifted 2-point and 3-point informa-
tion for finite datasets as,

I ′(X;Y |{Ui}) = I(X;Y |{Ui})−
kX;Y |{Ui}

N

I ′(X;Y ;Z|{Ui}) = I(X;Y ;Z|{Ui}) +
kX;Y ;Z|{Ui}

N

leads to maximum likelihood ratios equivalent to Eq. 7 and

Eq. 9,

LD|G\XY |{Ui}

LD|G
= e−NI′(X;Y |{Ui}) (11)

LD|G\XY |{Ui},Z

LD|G\XY |{Ui}

= eNI′(X;Y ;Z|{Ui}) (12)

As will become apparent in the following discussion, learn-
ing, iteratively, the most likely edge to be removed XY
and its corresponding separation set {Ui} will imply to si-
multaneously minimize 2-point information (Eq. 11) while
maximizing 3-point information (Eq. 12).

We start the discussion with 3-point information, Eq. 12.
The sign and magnitude of shifted conditional 3-point in-
formation I ′(X;Y ;Z|{Ui}) determine the probability that
Z should be included in or excluded from the sepset candi-
date {Ui},

• If I ′(X;Y ;Z|{Ui}) > 0, Z is more likely to be included
in {Ui} with probability,

Pnv(X;Y ;Z|{Ui}) =
LD|G\XY |{Ui},Z

LD|G\XY |{Ui}
+ LD|G\XY |{Ui},Z

=
1

1 + e−NI′(X;Y ;Z|{Ui})
(13)

• If I ′(X;Y ;Z|{Ui}) < 0, Z is more likely to be excluded
from {Ui}, suggesting obligatory causal relationships in
the form of a v-structure or collider between X,Y, Z with
probability,

Pv(X;Y ;Z|{Ui}) = 1− Pnv(X;Y ;Z|{Ui})

=
1

1 + eNI′(X;Y ;Z|{Ui})
(14)

But, in the case I ′(X;Y ;Z|{Ui}) > 0, Eq. 12
can also be interpreted as quantifying the likeli-
hood increase that the edge XY should be removed
from the model by extending the candidate sepset
from {Ui} to {Ui} + Z, i.e. LD|G\XY |{Ui},Z

=

LD|G\XY |{Ui}
× exp(NI ′(X;Y ;Z|{Ui})), with

exp(NI ′(X;Y ;Z|{Ui})) > 1. Yet, as the 3-point
information, I ′(X;Y ;Z|{Ui}), is actually symmetric
with respect to the variables, X , Y and Z, the factor
exp(NI ′(X;Y ;Z|{Ui})) > 1 provides in fact the same
likelihood increase for the removal of the three edges XY ,
XZ and ZY , conditioned on the same initial set of nodes
{Ui}, namely,

LD|G\XY |{Ui},Z

LD|G\XY |{Ui}

=
LD|G\XZ|{Ui},y

LD|G\XZ|{Ui}

=
LD|G\ZY |{Ui},x

LD|G\ZY |{Ui}

= eNI′(X;Y ;Z|{Ui})



However, despite this symmetry of 3-point information,
I ′(X;Y ;Z|{Ui}), the likelihoods that the edges XY , XZ
and ZY should be removed are not the same, as they
depend on different 2-point information, I ′(X;Y |{Ui}),
I ′(X;Z|{Ui}) and I ′(Z;Y |{Ui}), Eq. 11. In particular,
the likelihood ratio between the removals of the alternative
edges XY and XZ is given by,

LD|G\XY |{Ui},Z

LD|G\XZ|{Ui},Y

=
LD|G\XY |{Ui}

LD|G\XZ|{Ui}

=
e−NI′(X;Y |{Ui})

e−NI′(X;Z|{Ui})

(15)

and similarly between edges XY and ZY .

Hence, for XY to be the most likely edge to be removed
conditioned on the sepset {Ui} + Z, not only Z should
contribute through I ′(X;Y ;Z|{Ui}) > 0 with probabil-
ity Pnv(X;Y ;Z|{Ui}) (Eq. 13), but XY must also cor-
respond to the ‘weakest’ edge of XY , XZ and ZY con-
ditioned on {Ui}, as given by the lowest conditioned 2-
point information, Eq. 15. Note that removing the edge
XY with the lowest conditional 2-point information is con-
sistent, as expected, with the Data Processing Inequality,
I(X;Y |{Ui}) 6 min(I(X;Z|{Ui}), I(Z;Y |{Ui})), in
the limit of large datasets. However, quite frequently, XZ
or ZY might also have low conditional 2-point informa-
tion, so that the edge removal associated with the symmet-
ric contribution I(X;Y ;Z|{Ui}) will only be consistent
with the Data Processing Inequality (DPI) with probability,

Pdpi(XY ;Z|{Ui}) =

=
LD|G\XY |{Ui}

LD|G\XY |{Ui}
+ LD|G\XZ|{Ui}

+ LD|G\ZY |{Ui}

=
1

1 + e−NI′(X;Z|{Ui})

e−NI′(X;Y |{Ui})
+ e−NI′(Z;Y |{Ui})

e−NI′(X;Y |{Ui})

(16)

In practice, taking into account this DPI-consistency prob-
ability Pdpi(XY ;Z|{Ui}), as detailed below, significantly
improves the results obtained by relying solely on the ‘non-
v-structure’ probability Pnv(X;Y ;Z|{Ui}). Conversely,
the DPI-consistency probability Pdpi(XY ;Z|{Ui}) is
not sufficient on its own to uncover causal relation-
ships between variables, which require to compute 3-
point information I(X;Y ;Z|{Ui}) and the probability
Pnv(X;Y ;Z|{Ui}) (see Proposition 7 and Proposition 8,
below).

To optimize the likelihood that the edge XY can be ac-
counted for by the additional contribution of Z conditioned
on previously selected {Ui}, we propose to combine the
maximum of 3-point information (Eq. 13) and the mini-
mum of 2-point information (Eq. 16) by defining the score
S lb(Z;XY |{Ui}) as the lower bound of Pnv(X;Y ;Z|{Ui})
and Pdpi(XY ;Z|{Ui}), since both conditions need to be
fulfilled to warrant that edgeXY is likely to be absent from

the model G,

S lb(Z;XY |{Ui}) =

= min
[
Pnv(X;Y ;Z|{Ui}), Pdpi(XY ;Z|{Ui})

]
Hence, the pair of nodes XY with the most likely con-
tribution from a third node Z and likely to be absent
from the model can be ordered according to their rank
R(XY ;Z|{Ui}) defined as,

R(XY ;Z|{Ui}) = max
Z

(
S lb(Z;XY |{Ui})

)
(17)

Then, Z can be iteratively added to the set of contributing
nodes (i.e. {Ui} ← {Ui} + Z) of the top edge XY =
argmaxXYR(XY ;Z|{Ui}) to progressively recover the
most significant indirect contributions to all pairwise mu-
tual information in a causal graph.

Implementing this local optimization scheme, the 3off2 al-
gorithm eventually learns the network skeleton by collect-
ing the nodes of the separation sets one-by-one, instead
of exploring the full combinatorics of sepset composition
without any likelihood guidance. Indeed, the 3off2 scheme
amounts to identify {Ui} by “taking off” iteratively the
“most likely” conditional 3-point information from each 2-
point information as,

I(X;Y |{Ui}n) = I(X;Y )− I(X;Y ;U1)

− I(X;Y ;U2|U1)− · · ·
− I(X;Y ;Un|{Ui}n−1)

or equivalently between the shifted 2-point and 3-point in-
formation terms,

I ′(X;Y |{Ui}n) = I ′(X;Y )− I ′(X;Y ;U1)

− I ′(X;Y ;U2|U1)− · · ·
− I ′(X;Y ;Un|{Ui}n−1)

This leads to the following Algorithm 1 for the reconstruc-
tion of the graph skeleton using the 3off2 scheme. Note,
in particular, that the 3off2 scheme to reconstruct graph
skeleton is solely based on identifying structural indepen-
dencies, which can also be applied to graphical models for
undirected Markov networks.

Then, given the skeleton obtained from Algorithm 1,
Eqs. 13 and 14 lead to the following Proposition 7 and
Proposition 8 for the orientation and propagation rules of
unshielded triples, which are equivalent to Proposition 5
and Proposition 6 but for underlying DAG models (assum-
ing no latent variables) and for finite datasets with the cor-
responding probabilities for the initiation/propagation of
orientations.



Algorithm 1: 3off2 Skeleton Reconstruction

In: observational data of finite size N
Out: skeleton of causal graph G

Initiation
Start with complete undirected graph
forall edges XY do

if I ′(X;Y )<0 then
XY edge is non-essential and removed
separation set of XY : SepXY = ∅

else
find the most contributing node Z neighbor of X
or Y and compute 3off2 rank, R(XY ;Z|∅)

end
end

Iteration
while ∃ XY edge with R(XY ;Z|{Ui}) > 1/2 do

for edge XY with highest rank R(XY ;Z|{Ui}) do

expand contributing set {Ui} ← {Ui}+ Z

if I ′(X;Y |{Ui})<0 then
XY edge is non-essential and removed
separation set of XY : SepXY = {Ui}

else
find next most contributing node Z neighbor
of X or Y and compute new 3off2 rank:
R(XY ;Z|{Ui})

end

sort the 3off2 rank list R(XY ;Z|{Ui})

end
end

Proposition 7 (Significantly negative conditional 3-point
information as robust statistical evidence of causality in
finite datasets).
Assuming that the underlying graphical model is a
DAG G on V , ∀X,Y, Z ∈ V and ∀{Ui} ⊆
V\{X,Y,Z} s.t. I ′(X;Y |{Ui}) < 0 (i.e. no XY edge)
and I ′(X;Y ;Z|{Ui}) < 0 then,

i. ifX,Y, Z form an unshielded triple, X ◦−◦ Z ◦−◦ Y ,
then it should be oriented as X → Z ← Y , with
probabilities,

P ◦X→Z = P ◦Y→Z =
1 + eNI′(X;Y ;Z|{Ui})

1 + 3eNI′(X;Y ;Z|{Ui})

ii. similarly, if X,Y, Z form an unshielded triple,

with one already known converging arrow,
X → Z ◦−◦ Y , with probability PX→Z > P ◦X→Z ,
then the second edge should be oriented to form a
v-structure, X → Z ← Y , with probability,

PY→Z = PX→Z

(
1

1 + eNI′(X;Y ;Z|{Ui})
− 1

2

)
+

1

2

Proof. The implications (i.) and (ii.) rely on Eq. 14 to
estimate the probability that the two edges form a collider.
We start proving (ii.) using the probability decomposition
formula:

PY→Z = PX→Z
PX→Z←Y

PX→Z←Y + PX→Z→Y

+ (1− PX→Z)
PX←Z←Y

PX←Z←Y + PX←Z→Y

= PX→Z

(
1

1 + eNI′(X;Y ;Z|{Ui})
− 1

2

)
+

1

2

which also leads to (i.) if one assumes PX→Z = PY→Z by
symmetry in absence of prior information on these orienta-
tions. �

Following the rationale of constraint-based approaches,
it is then possible to ‘propagate’ further the orientations
downstream of colliders, using Eq. 13 for positive (condi-
tional) 3-point information. For simplicity and consistency,
we only implement the propagation of orientation based on
likelihood ratios, which can be quantified for finite datasets
as proposed in the following Proposition 8. In particular,
we do not extend the propagation rules (Meek, 1995) to in-
force acyclic constraints that are necessary to have a com-
plete reconstruction of the Markov equivalent class of the
underlying DAG model.

Proposition 8 (robust ‘propagation’ of causality at un-
shielded triples with significantly positive conditional 3-
pt information). Assuming that the underlying graphical
model is a DAG G on V , ∀X,Y, Z ∈ V and ∀{Ui} ⊆
V\{X,Y,Z} s.t. I ′(X;Y |{Ui}, Z) < 0 (i.e. no XY edge)
and I ′(X;Y ;Z|{Ui}) > 0, then if X,Y, Z form an un-
shielded triple with one already known converging orienta-
tion, X→ Z ◦−∗ Y , with probability PX→Z > 1/2, this
orientation should be ‘propagated’ to the second edge as
X→ Z→ Y , with probability,

PZ→Y = PX→Z

(
1

1 + e−NI′(X;Y ;Z|{Ui})
− 1

2

)
+

1

2

Proof. This results is shown using the probability decom-



position formula,

PZ→Y = PX→Z
PX→Z→Y

PX→Z←Y + PX→Z→Y

+ (1− PX→Z)
PX←Z→Y

PX←Z←Y + PX←Z→Y

= PX→Z

(
1

1 + e−NI′(X;Y ;Z|{Ui})
− 1

2

)
+

1

2

�

Proposition 7 and Proposition 8 lead to the following Algo-
rithm 2 for the orientation of unshielded triples of the graph
skeleton obtained from Algorithm 1.

Algorithm 2: 3off2 Orientation / Propagation Step

In: Graph skeleton from Algorithm 1 and corresponding
conditional 3-point information I ′(X;Y ;Z|{Ui}).

Out: Partially oriented causal graph G with edge
orientation probabilities.

3off2 Orientation / Propagation Step

sort list of unshielded triples, Lc = {〈X,Z, Y 〉X 6 Y }, in
decreasing order of their orientation/propagation
probability initialized at 1/2 and computed from:

- (i.) Proposition 7, if I ′(X;Y ;Z|{Ui})<0, or
- (ii.) Proposition 8, if I ′(X;Y ;Z|{Ui})>0

repeat

Take 〈X,Z, Y 〉X 6 Y ∈ Lc with highest orientation /
propagation probability > 1/2.

if I ′(X;Y ;Z|{Ui}) < 0 then
Orient/propagate edge direction(s) to form a
v-structure X→Z←Y with probabilities PX→Z

and PY→Z given by Proposition 7.
else

Propagate second edge direction to form a
non-v-structure X→Z→Y assigning
probability PZ→Y from Proposition 8.

end

Apply new orientation(s) and sort remaining list of
unshielded triples Lc ← Lc\〈X,Z, Y 〉X 6 Y after
updating propagation probabilities.

until no additional orient./propa. probability >1/2 ;

2.3 APPLICATIONS TO CAUSAL GRAPH
BENCHMARKS

We have tested the 3off2 method on a range of bench-
mark networks of 50 nodes with up to 160 edges
generated with the causal modeling tool Tetrad IV
(http://www.phil.cmu.edu/tetrad). The average connec-
tivity 〈k〉 of these benchmark networks ranges between
1.6 to 6.4, and the average maximal in/out-degree be-
tween 3.2 to 8.8 (see Table S1 for a detailed descrip-
tion). The evaluation metrics are the Precision, Prec =
TP/(TP + FP ), the Recall, Rec = TP/(TP + FN)
and the F−score = 2Prec.Rec/(Prec+Rec). How-
ever, in order to take into account the orientation/non-
orientation of edges in the predicted networks and compare
them with the CPDAG of the benchmark graphs, we define
orientation-dependent counts as, TP ′ = TP −TPmisorient

and FP ′ = FP + TPmisorient, where TPmisorient corre-
sponds to all true positive edges of the skeleton with dif-
ferent orientation/non-orientation status as in the CPDAG
reference.

The first methods used for comparison with 3off2 are the
PC-stable algorithm (Colombo and Maathuis, 2014) with
conservative (Ramsey, Spirtes, and Zhang, 2006) or ma-
jority orientation rules, implemented in the pcalg pack-
age (Kalisch et al., 2012; Kalisch and Bühlmann, 2008)
and the hybrid method MMHC combining constraint-based
skeleton and Bayesian orientation (Tsamardinos, Brown,
and Aliferis, 2006), implemented in the bnlearn pack-
age (Scutari, 2010). Figs. 1-5 give the average CPDAG
comparison results over 100 dataset replicates from 5 dif-
ferent benchmark networks (Table S1). The causal graph-
ical models predicted by the 3off2 method are obtained
using either the MDL/BIC or the NML complexities (see
Supplementary Methods). Figs. S1-S6 provide additional
results on the prediction of the network skeletons and ex-
ecution times. The PC and MMHC results are shown,
Figs. 1-5, for an independence test parameter α = 0.1, as
reducing α tends to worsen the CPDAG F-score for bench-
mark networks with 〈k〉 > 2.4 (Figs. S7-S18). All in all,
we found that 3off2 outperforms PC-stable on all tested
datasets, Figs. 1-5, and to a lesser extent, MMHC espe-
cially on less sparse networks, 〈k〉 > 2.4, Figs. 2-5.

Additional comparisons were obtained with Bayesian in-
ference implemented in the bnlearn package (Scu-
tari, 2010), using AIC, BDe and BIC/MDL scores and
hill-climbing heuristics with 30 to 100 random restarts,
Figs. S19-S30. 3off2 reaches equivalent or significantly
better F-scores than Bayesian hill-climbing on relatively
sparse benchmark networks, 〈k〉 6 4.8 (Figs. S19 & S23).
In particular, 3off2 with MDL scores reaches one of
the best F-scores on sparse networks (Figs. S19 & S20)
and eventually better Fscores on large datasets for less
sparse networks when combined to NML complexity
(Figs. S21 & S22). For somewhat denser networks



(〈k〉 ' 5), the 3off2 F-score appears slightly lower than for
Bayesian inference methods, Fig. S23, although it eventu-
ally becomes equivalent for large datasets (N > 1000).

On denser networks (〈k〉 > 5 − 6), Bayesian inference
exhibits better F-scores than 3off2, in particular with AIC
score, Fig. S24. However, the good performance with AIC
strongly relies on its high Recall (but low Precision), due to
its very small penalty term on large datasets, which makes
it favor more complex networks (Figs. S24) but perform
very poorly on sparse graphs (Figs. S19-S21). By con-
trast, the reconstruction of dense networks is impeded with
the 3off2 scheme, as it is not always possible to uncover
structural independencies, I(X;Y |{Ui}n) ' 0, in dense
graphs through an ordered set {Ui}n with only positive con-
ditional 3-point information, I ′(X;Y ;Uk|{Ui}k−1) > 0.
Indeed in complex graphs, there are typically many indi-
rect paths X → Uj → Y between unconnected node pairs
(X,Y ). At the beginning of the pruning process, this is
prone to suggest likely v-structures X → Y ← Uj , in-
stead of the correct non-v-structures, X → Uj → Y (for
instance if I(X;Uj) � I(X;Y ), I(X;Uj) � I(Uj ;Y )
and I(X;Uj)−I(X;Uj |Y ) = I(X;Y ;Uj)< 0, for all j).
Such elimination of FN edge X → Uj and conservation
of FP X → Y tend to decrease both Precision and Recall,
although 3off2 remains significantly more robust than PC
and MMHC, Fig. 5. Besides, for most practical applica-
tions on real life data, interpretable causal models should
remain relatively sparse and avoid to display multiple indi-
rected paths between unconnected nodes.

Finally, 3off2 running times on these benchmark networks
are similar to MMHC and Bayesian hill-climbing heuristic
methods (with 100 restarts) and 10 to 100 times faster than
PC for large datasets, Figs. S1-S30.

3 DISCUSSION

In this paper, we propose to combine constraint-based and
score-based frameworks to improve network reconstruc-
tion. Earlier hybrid methods, including MMHC, have also
attempted to exploit the best of these two types of infer-
ence approaches by combining the robustness of Bayesian
scores with the attractive conceptual features of constraint-
based approaches (Dash and Druzdzel, 1999; Tsamardi-
nos, Brown, and Aliferis, 2006; Cano, Gomez-Olmedo,
and Moral, 2008; Claassen and Heskes, 2012). In partic-
ular, (Dash and Druzdzel, 1999) have proposed to exploit
an intrinsic weakness of the PC algorithm, its sensitivity to
the order in which conditional independencies are tested on
finite data, to rank these different order-dependent PC pre-
dictions with Bayesian scores. More recently, (Claassen
and Heskes, 2012) have also combined constraint-based
and Bayesian approaches to improve the reliability of
causal inference. They proposed to use Bayesian scores
to directly assess the reliability of conditional independen-
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Figure 1: CPDAG comparison between 3off2, PC-stable and
MMHC. 50 node, 40 edge benchmark networks generated using
Tetrad. 〈k〉 = 1.6, 〈kin

max〉 = 3.2, 〈kout
max〉 = 3.6. PC-stable

benchmarks were tested up to N=10,000 due to their sharp in-
crease in execution time, see Figs. S7-S12.
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Figure 2: CPDAG comparison between 3off2, PC-stable and
MMHC. 50 node, 60 edge benchmark networks generated using
Tetrad. 〈k〉 = 2.4, 〈kin

max〉 = 4.6, 〈kout
max〉 = 3.6. PC-stable

benchmarks were tested up to N=10,000 due to their sharp in-
crease in execution time, see Figs. S7-S12.
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Figure 3: CPDAG comparison between 3off2, PC-stable and
MMHC. 50 node, 80 edge benchmark networks generated using
Tetrad. 〈k〉 = 3.2, 〈kin

max〉 = 4.8, 〈kout
max〉 = 5.6. PC-stable

benchmarks were tested up to N=10,000 due to their sharp in-
crease in execution time, see Figs. S7-S12.
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Figure 4: CPDAG comparison between 3off2, PC-stable and
MMHC. 50 node, 120 edge benchmark networks generated us-
ing Tetrad. 〈k〉 = 4.8, 〈kin

max〉 = 8.8, 〈kout
max〉 = 7.2. PC-stable

benchmarks were tested up to N=10,000 due to their sharp in-
crease in execution time, see Figs. S7-S12.

100 1000 10000 50000
0.0

0.2

0.4

0.6

0.8

1.0

PC 1e-1 Maj. cpdag

PC 1e-1 Csv. cpdag

MMHC 1e-1 BDe cpdag

MMHC 1e-1 BIC cpdag

3off2 MDL cpdag

3off2 NML cpdag

50n. 160e.  Precision  TP/(TP+FP)

100 1000 10000 50000
0.0

0.2

0.4

0.6

0.8

1.0

Fscore  2.Prec.Rec./(Prec.+Rec.)

100 1000 10000 50000
0.0

0.2

0.4

0.6

0.8

1.0

50n. 160e.  Recall  TP/(TP+FN)

Figure 5: CPDAG comparison between 3off2, PC-stable and
MMHC. 50 node, 160 edge benchmark networks generated us-
ing Tetrad. 〈k〉 = 6.4, 〈kin

max〉 = 8.6, 〈kout
max〉 = 8.6. PC-stable

benchmarks were tested up to N=10,000 due to their sharp in-
crease in execution time, see Figs. S7-S12.

cies by summing the likelihoods over compatible graphs.
By contrast, we propose to use Bayesian scores to progres-
sively uncover the best supported conditional independen-
cies, by iteratively “taking off” the most likely indirect con-
tributions of conditional 3-point information from every 2-
point (mutual) information of the causal graph. In addition,
using likelihood ratios (Eqs. 11 & 12) instead of likelihood
sums (Claassen and Heskes, 2012) circumvents the need
to score conditional independencies over a potentially in-
tractable number of compatible graphs.

All in all, we found that 3off2 outperforms constraint-
based, search-and-score and earlier hybrid methods on a
range of benchmark networks, while displaying similar
running times as hill-climbing heuristic methods.
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