
Learning and Planning with Timing Information in Markov Decision Processes

Pierre-Luc Bacon, Borja Balle, and Doina Precup
Reasoning and Learning Lab,

School of Computer Science, McGill University
{pbacon,bballe,dprecup}@cs.mcgill.ca

Abstract

We consider the problem of learning and plan-
ning in Markov decision processes with tempo-
rally extended actions represented in the options
framework. We propose to use predictions about
the duration of extended actions to represent the
state and show that this leads to a compact pre-
dictive state representation model independent of
the set of primitive actions. Then we develop
a consistent and efficient spectral learning algo-
rithm for such models. Using just the timing in-
formation to represent states allows for faster im-
provement in the planning performance. We il-
lustrate our approach with experiments in both
synthetic and robot navigation domains.

1 INTRODUCTION

Modelling the dynamics of an agent embedded in a large,
complex environment is key to building good planning al-
gorithms for such agents. In most practical applications,
models are carefully designed by hand, and the agent’s
“state” is given by measurements which are understandable
by the designer of the system (such as spatial location and
velocity, in the case of a robot). However, learning dy-
namical models for such states from data, as well as plan-
ning with them can be quite tricky. An alternative idea is
to use models that are “subjective”, centered on the agent’s
own perception and action capabilities. For example, affor-
dances [Gibson, 1977] describe “state” through the courses
of action that are enabled. Similarly, in robotics, subjec-
tive representations have been used to model dynamics,
e.g. [Bowling et al., 2005; Stober et al., 2011]. Such mod-
els are appealing from a psychological point of view, but
run into computational problems in very large observation
spaces.

In this paper, we focus on a special class of subjective mod-
els, timing models, which arise from restricting the obser-
vations available to the agent to just information about the

duration of certain courses of action. Timing of events is
understood to be crucial to animal learning [Machado et
al., 2009]. The goal of this paper, however, is not learn-
ing of the timing of external events, but rather to learn the
duration of courses of action that an agent might take. The
ensemble of such durations will constitute the agent’s state,
which will be maintained as new data is received. We use
the framework of options [Sutton et al., 1999] to model ex-
tended courses of actions, and we present an approach for
learning a predictive model of option durations.

Our models over durations can be viewed as affordances
if we consider an option to be available when its pre-
dicted duration is within some reasonable bounds. Note
that these models are much simpler than full option mod-
els, which provide joint information on the timing as well
as the state or observation in which the option will termi-
nate, e.g. [Wolfe and Singh, 2006]. We emphasize that tim-
ing information is very cheap to measure and process, even
with simple hardware. Hence, a major area of application
for this type of approach is on devices in which process-
ing can be costly, such as simple, Roomba-like robots (as
in our experiments) or cellphones (on which using a lot of
sensors or computation drains the battery).

Our approach can also be interpreted as a computation-
ally and statistically efficient way of exploiting prior in-
formation about useful courses of action provided in the
form of options. The size of our models is independent of
the number of possible primitive actions in the underlying
system, which is very useful in large or continuous action
spaces. Moreover, because we are able to learn feature rep-
resentations for states using timing information only, our
method can be applied to observable settings with high-
dimensional, complex observations, as well as to partially
observable settings, where building a full model for plan-
ning would be too data and computation-hungry. Examples
include investment problems (where the best strategy may
include information about past performance, past trades,
news etc, which is too hard to process) or robotics (where
sensors may produce a lot of data, but this may not be easy
to process in real-time).



Of course, the utility of timing models depends on the na-
ture of the task to be solved by the agent, as well as on the
“quality” of the options available to the agent. The sim-
plest example in which option duration models are bene-
ficial is that of minimum time to goal problems, in which
an agent receives a fixed penalty per time step until its task
is completed. In this case, knowing the duration of an op-
tion immediately provides the reward model, so the option
duration model has direct value for a planner. More gen-
erally, option duration models are beneficial as a form of
localization. If you imagine a robot that has models for
options that move radially out from the current position,
this would allow localizing with respect to all neighbor-
ing walls. Finally, consider a problem in which a financial
agent is holding stocks, and options which hold a particu-
lar stock while it is above a certain value, and sell under
that value. In this case, timing models tell us exactly when
stocks would be crossing certain barriers. It is clear in this
case that, even though we are estimating only durations, the
model encodes important state information (because of the
way in which the options are defined).

In this paper, we analyze the capacity of option dura-
tion models to represent states in a Markov Decision
Process (MDP). We propose a spectral algorithm for
learning option duration models which builds on existing
work for learning transformed predictive state representa-
tions [Rosencrantz et al., 2004]. Finally we evaluate the
quality of learning and planning with this type of models in
experiments with discrete and continuous MDPs.

2 PRELIMINARIES AND NOTATION

We use bold letters to denote vectors v ∈ Rd and matrices
M ∈ Rd1×d2 . For matrix M, M+ denotes its Moore–
Penrose pseudo-inverse. Sometimes we name the columns
and rows of a matrix using ordered index sets I and J , so
M ∈ RI×J denotes a matrix of size |I| × |J | with rows
and columns indexed by I and J respectively.

Let Σ be a finite set of symbols. We use Σ? to denote the set
of all finite strings over Σ and λ for the empty string. Given
two strings u, v ∈ Σ?, w = uv is their concatenation, in
which case u is called a prefix of w, and v is a suffix of
w. Given two sets of strings P,S ⊆ Σ?, PS is the set
obtained by taking every string of the form uv with u ∈ P
and v ∈ S.

Given a predicate µ(x) we denote by I[µ(x)] the indicator
function which is one when µ(x) is true and zero otherwise.

2.1 Markov Decision Processes and Temporally
Extended Actions

A Markov decision process (MDP) is a tuple M =
〈S,A, P,R〉 where S is the state set, A is the action set,
P : S × A → (S → [0, 1]) defines a probability distribu-

tion over next states, and R : S × A → R is the expected
reward function (see [Puterman, 1994] for a review). We
refer to probability distributions on S by α, but sometimes
use α to stress that we view them as vectors in RS . Sup-
pose α is a distribution over S and π : S × A→ [0, 1] is a
stochastic action policy which, given state s, chooses action
a with probability π(s, a). The environment then returns a
state sampled from P ; and the resulting state distribution
α′ is given by:

α′(s′) =
∑
s∈S

α(s)
∑
a∈A

π(s, a)P (s, a)(s′) .

Temporal abstraction in MDPs has been used as a tool to
speed up learning and planning algorithms. We adopt the
framework of options [Sutton et al., 1999], with the goal of
learning state representations based on option timing mod-
els. An option is a tuple ω = 〈Iω, πω, βω〉 where Iω ⊆ S
is the set of initial states, πω : S × A → [0, 1] is the op-
tion’s stochastic action policy, and βω : S → [0, 1] is the
option termination probability for each state. We will drop
the option’s subscript and write ω = 〈I, π, β〉 when there
is no risk of confusion.

We say that an agent interacts with an MDP via a set of
options Ω if at all times the actions performed by the agent
follow the policy specified by some option ω ∈ Ω, which
is executed until termination.

Each option has an associated reward model R(s, ω) and
an associated transition model P (s, ω)(s′), which can be
computed using the MDP model and the definition of the
options (see [Sutton et al., 1999] for details). Given a set
of options Ω, the optimal option-value function satisfies the
following Bellman equation:

Q∗Ω(s, ω) = R(s, ω) +
∑
s′∈S

P (s, ω)(s′) max
ω′∈Ω

Q∗Ω(s′, ω′)

Planning with options aims to find the optimal policy over
options π∗Ω, which is achieved most often by estimating
Q∗Ω. This does not require a model to be known; instead,
it can be done using samples, in similar fashion as Q-
learning. If the state space is large or continuous, function
approximation can used to represent states. The option du-
ration model that we develop in this paper will be used as
a form of state representation in order to learn an approxi-
mation to Q∗Ω.

2.2 Predictive State Representations

A predictive state representation is a model of a dynam-
ical system in which the current state is represented as
a set of predictions about the future behavior of the sys-
tem [Littman et al., 2002; Singh et al., 2004]. We use a
particular instantiation of this general idea, the so-called
transformed linear predictive state representation [Rosen-
crantz et al., 2004], abbreviated as PSR.



Let Σ be a finite set of symbols. A PSR over Σ is a tuple
A = 〈αλ,α∞, {Aσ}σ∈Σ〉 where αλ,α∞ ∈ Rn are the
initial and final weights respectively, and Aσ ∈ Rn×n are
the transition weights. The dimension n of these vectors
and matrices is the number of states of the PSR. Though
PSR is the usual name for this type of model in the rein-
forcement learning literature, they are also called weighted
finite automaton (WFA) [Droste and Vogler, 2009] or ob-
servable operator models (OOM) [Jaeger, 2000]. This dis-
tinction reflects the fact that this same parametrization can
be used to define models with different semantics, depend-
ing on the meaning associated with the values computed by
the model.

A PSR A computes a function fA : Σ? → R that assigns a
number to each string x = x1x2 · · ·xt ∈ Σ? as follows:

fA(x) = α>λAx1Ax2 · · ·Axtα∞ = α>λAxα∞ .

In a PSR, a string x ∈ Σ? represents a sequence of events
produced by a dynamical system, and fA(x) is the proba-
bility that the system produces x. In many cases of interest,
Σ = A×O, where A is a set of actions and O a set of ob-
servations, so any x ∈ Σ? represents a sequence of action-
observation pairs. The vector αλ represents the initial state
of the system.

If a history u ∈ Σ? has already been observed, the condi-
tional probability of observing a sequence of events v ∈ Σ?

after u is:

fA,u(v) =
fA(uv)

fA(u)
=

α>λAuAvα∞
α>λAuα∞

=
α>uAvα∞
α>uα∞

.

Hence, given some history u, the initial state αλ can be
updated to a new state αu/(α

>
uα∞), which allows com-

puting probabilities of future observations conditioned on
the current history. Because the partition of a sequence of
observations x into a history u and a future v (also called
test) yields x = uv, we sometimes call histories prefixes
and futures suffixes.

2.3 Hankel and System Dynamics Matrices

The behavior of a stochastic dynamical system producing
observations in a finite set Σ can be entirely characterized
by the function f : Σ? → R giving the probability f(x)
of observing each possible sequence of observations x. A
convenient algebraic way to summarize all the information
conveyed by f is with its Hankel matrix, a bi-infinite matrix
Hf ∈ RΣ?×Σ?

with rows and columns indexed by strings
in Σ?. Strings indexing rows and columns are interpreted
as prefixes and suffixes respectively. The entries in Hf are
given by Hf (u, v) = f(u, v) for every u, v ∈ Σ?.

Although Hf is an infinite matrix, in some cases it can have
finite rank. In particular, a well-known result states that
Hf has rank at most n if and only if there exists a PSR A

with n states satisfying fA = f [Carlyle and Paz, 1971;
Fliess, 1974]. This result is the basis of recently developed
spectral learning algorithms for PSRs [Boots et al., 2011],
which we review in Sec. 4.

Instead of looking at the full Hankel matrix, algorithms
usually work with finite sub-blocks of this matrix. A con-
venient way to specify such blocks is to give the “names”
to the rows and columns. Specifically, given a finite set
of prefixes P ⊂ Σ? and a finite set of suffixes S ⊂
Σ?, the pair B = (P,S) is a basis defining the sub-
block HB ∈ RP×S of Hf , whose entries are given by
HB(u, v) = Hf (u, v). Note that every sub-block built in
this way satisfies rank(HB) ≤ rank(Hf ); when equality
is attained, the basis B is complete.

Sometimes it is also convenient to look at one-step shifts of
the finite Hankel matrices. Let H ∈ RP×S be a finite sub-
block of Hf specified by a basis B = (P,S). Then, for
every symbol σ ∈ Σ, we define the sub-block Hσ ∈ RP×S
whose entries are given by Hσ(u, v) = Hf (u, σv). For
a fixed basis, we also consider the vectors hS ∈ RS with
entries given by hS(v) = Hf (λ, v) for every v ∈ S , and
hP ∈ RP with hP(u) = Hf (u, λ).

The Hankel matrix Hf is tightly related to the system dy-
namics matrix (SDM) of the stochastic process described
by f [Singh et al., 2004], but while the entries of the Han-
kel matrix represent joint probabilities over prefixes and
suffixes, the corresponding entry in the SDM is the condi-
tional probability of observing a suffix given the prefix. In
particular, the SDM of f is the matrix H̄f ∈ RΣ?×Σ?

given
by Hf with the rows scaled by the probability of prefixes.
The SDM of f shares a lot of properties with its Hankel
counterpart. In particular, spectral learning algorithms for
f can be derived in terms of sub-blocks of both Hf and
H̄f . We will work with the Hankel matrices of f , but all
our algorithms can easily be adapted to work with the SDM
instead.

3 OPTION DURATION MODELS

We are interested in the dynamics of an agent interacting
with an MDP M via a set of options Ω. Recall that in this
setting the agent is not allowed to perform primitive ac-
tions, and options must be executed until termination. We
are interested in situations in which the duration of an op-
tion is an informative statistic about the state of the MDP.
That is, we would like to identify a state in M with the
distribution over the durations of a sequence of options ex-
ecuted starting from that state. This section introduces a
special PSR for this purpose that we call the option dura-
tion model (ODM). This is basically a dynamical model of
an MDP viewed through the lens of a fixed set of options,
in which the state is represented by a vector of parameters
sufficient for predicting the duration of future options. In
the following sections we present a spectral algorithm for



learning ODM from just information about the duration of
options in an MDP, and explore the possibilities the state
representation given by this ODM in order to plan with op-
tions in the original MDP.

The goal of this section is to understand what form the
probability distributions over option durations take, and
how to write these compactly in order to allow efficient
learning from just duration information. To begin, assume
we can reset the MDP M to a fixed state s0 and explore
the environment from there by performing a sequence of t
options ω1, . . . , ωt, e.g. chosen uniformly at random. From
the point of view of the MDP dynamics, this process will
generate a sequence of of state-action trajectories like the
following:
ω1 : (s0, πω1(s0), s1, πω1(s1), . . . , sT1−1, πω1(sT1−1), sT1)

ω2 : (sT1 , πω2(sT1), sT1+1, πω2(sT1+1), . . . , πω2(sT2−1), sT2)

. . . : . . .

ωt : (sTt−1 , πωt(sTt−1), . . . , πωt(sTt−1), sTt) ,

where πω(s) denotes an action chosen according to the dis-
tribution given by ω’s stochastic policy. Note that in this
trace, the sequence of visited states, the actions executed,
and the option stopping times form a stochastic dynami-
cal process whose distribution can be computed in terms of
the parameters of the MDP M , the parameters defining the
options in Ω, and the sequence of options ω1, . . . , ωt.

If one is only interested in the duration of the options ex-
ecuted in the above trace, then the interaction can be sum-
marized in terms of termination and continuation events for
the options being executed. That is, at each time step, we
can ignore the current observed state and the action being
chosen, and just focus on whether the current option termi-
nates in the current state. We will use the symbol ] (sharp)
to denote continuation, and ⊥ (bottom) to denote termina-
tion. Thus, at a given time step, we use (ω, ]) to denote op-
tion ω is being executed and does not terminate, and (ω,⊥)
if it terminates. Using this notation, the “duration informa-
tion” in the previous trajectory can be expressed as:
(ω1, ])

d1−1(ω1,⊥)(ω2, ])
d2−1(ω2,⊥) . . . (ωt, ])

dt−1(ωt,⊥) ,

where the durations are given by di = Ti − Ti−1, T0 = 0.
In more compact form, we can write the duration infor-
mation in a trace as a sequence of option-duration pairs:
(ω1, d1)(ω2, d2) · · · (ωt, dt), with ωi ∈ Ω and di ∈ N =
{1, 2, . . .}. Both notations will be convenient in our deriva-
tions.

Broadly speaking, an option duration model for an MDP
M and a set of options Ω is a mapping that associates with
every state s in M a conditional probability distribution

Ps[d̄ | ω̄] = Ps[d1, . . . , dt | ω1, . . . , ωt]

that represents the stochastic process of stopping events
induced by executing the options ω̄ = ω1, . . . , ωt in M
starting from s. More formally, let Dt denote the set of

all1probability distributions over Nt, and for every state s
and ω̄ ∈ Ωt let Ds

ω̄ ∈ Dt denote the distribution Ps[· | ω̄].
Now, by letting ω̄ run over all possible sequence of op-
tions in Ω+ we can associate with every s a mapping
Ds
• : Ω+ → ∪t>0Dt. We say that the set of options Ω is

rich for MDP M if the maps Ds
• are different for all s, that

is, if the functional ∆(s) = Ds
• is injective, so for every

s, s′ ∈ S there exists some sequence of options ω̄ ∈ Ω+

such that Ds
ω̄ 6= Ds′

ω̄ . Clearly, in this case, ∆(s) uniquely
identifies the state s, indicating that the duration over op-
tions provides a unique representation for each state.

If ∆ is not injective, such models can still be sufficient for
planning in special circumstances. For example, consider
minimum-time-to-goal problems, in which fixed negative
rewards are attributed per time step, and suppose the agent
intends to plan using only options. In this case, states for
which ∆(s) = ∆(s′) will also have the same optimal value
function V ∗Ω (a result that follows directly from the way in
which option models are defined [Sutton et al., 1999]).

In next section we give a concrete realization of this ab-
stract ODM by showing how to encode the collection of
distributions ∆(s) using a PSR.

3.1 Representing Option Duration Models with PSR

We now show that the probability distributions of the tim-
ing of options can be compactly represented in the form of
a PSR. Given s ∈ S and an option ω ∈ Ω, we denote by
δ(s, ω) the random variable counting the number of steps
until termination when following ω from s. Note that s
might be an initial state for ω, but also a state traversed
during the execution of ω, in which case δ(s, ω) is the re-
maining number of steps until termination. Let s0 ∈ S,
ω = 〈I, π, β〉, and d > 0 be an integer. We start by consid-
ering the probability P[δ(s0, ω) = d], which is given by:

∑
s̄∈Sd

∑
ā∈Ad

P[s0, a0, s1, a1, · · · , ad−1, sd,⊥] ,

where s̄ = s1 · · · sd is the sequence of states traversed by
ω, ā = a0 · · · ad−1 is a sequence of actions chosen by πω ,
and⊥ denotes the option termination. Note the appearance
of ⊥ at the end explicitly requires the option to last for
exactly d steps; state trajectories which stop earlier are not

1We could be more precise and restrict ourselves to discrete
phase-type distributions because these are enough to model the
duration until absorption events in Markov chains; but this does
not simplify our arguments at this point. The class of distributions
we consider will become clear in Section 3.1



considered. By the Markov property,

P[s0, a0, · · · , sd−1, ad−1, sd,⊥]

=

(
d−1∏
i=0

P[ai, si+1|si] · P[]|si+1]

)
· P[⊥|sd]
P[]|sd]

=

(
d−1∏
i=0

π(si, ai)P(si, ai, si+1)(1− β(si+1))

)
· β(sd)

1− β(sd)
.

With some algebra, it can be shown that summing this ex-
pression over s̄ and ā yields:

P[δ(s0, ω) = d] = e>s0A
d−1
ω,] Aω,⊥1 , (1)

where es0 ∈ RS is an indicator vector with es0(s) =
I[s = s0], Aω,] ∈ RS×S is a matrix with Aω,](s, s

′) =∑
a∈A π(s, a)P (s, a, s′)(1 − β(s′)), Aω,⊥ ∈ RS×S is a

matrix with Aω,⊥(s, s′) =
∑
a∈A π(s, a)P (s, a, s′)β(s′),

and 1 ∈ RS is a vector of ones.

Using the ODM notation introduced in the previous sec-
tion, Equation (1) can be written as

Ps0 [d | ω] = e>s0A
d−1
ω,] Aω,⊥1 .

Now we would like to extend this expression to sequences
containing more than one option. Using a similar deriva-
tion, for any t > 0, d̄ ∈ Nt, and ω̄ ∈ Ωt, we can compute
Ps0 [d̄ | ω̄] as follows:

e>s0A
d1−1
ω1,]

Aω1,⊥A
d2−1
ω2,]

Aω2,⊥ · · ·A
dt−1
ωt,]

Aωt,⊥1 .

Note that the same reasoning applies if we consider distri-
butions over states. That is, instead of a fixed initial state
s0, we consider a state sampled according to some distribu-
tion α0 over S. In that case, we define the random variable
δ(α0, ω) representing the duration of option ω when started
from s0 ∼ α0. By the same argument as above,

Pα0 [d | ω] = P[δ(α0, ω) = d] = α>0 A
d−1
ω,] Aω,⊥1 ,

where α0 ∈ RS is the vector representation of α0. Again,
this can be extended in the same way to sequences with
more than one option. Therefore, we have proved the fol-
lowing result.

Theorem 1. LetM be an MDP with n states, Ω a set of op-
tions, and Σ = Ω× {],⊥}. For every distribution α0 over
the states of M , there exists a PSR A = 〈α0,1, {Aσ}〉
with at most n states that computes the distributions over
durations of options executed from a state sampled accord-
ing to α0.

Note that the MDP transition kernel and the options’
stochastic policies are coupled inside the transition matri-
ces of PSR A representing the ODM. This coupling is the
reason why we can model the timing of options in an MDP
via a process with observation on the set Ω×{],⊥} whose

size is independent of the set of primitive actions A, and
whose transitions operators have size at most |S|. Note
that this can be particularly interesting in settings where the
number of possible actions is very large but a small num-
ber of options is enough to specify the “useful” modes of
operation of an agent.

3.2 ODM for Explorable Trajectories

Note that the ODM representation A given by Theorem 1
can be used to query the probability of observing any tra-
jectory in (Ω×{],⊥})? starting from a state sampled from
α. In principle, this includes trajectories which are not
valid for an agent interacting with an MDP via options –
e.g. we can query the probability of trajectories of the form
(ω1, ])

d1(ω2, ])
d2 . . ., where ω1 was interrupted before ter-

mination. Note that this type of trajectories will never be
observed by an agent that explores an environment by inter-
acting with it only via options executed in call-and-return
fashion. In particular, an agent does not need to learn about
these trajectories if the goal is to plan via options only, and
cannot hope to learn about these trajectories if it only ex-
plores the environment via options. We now show that a
PSR representation for an ODM can be restricted to pro-
duce non-zero probabilities for legal trajectories only, with-
out increasing the size of the model too much.

Recall that Σ = Ω× {],⊥}. When options are always ex-
ecuted to termination, valid trajectories belong to a subset
of Σ?:

V =

(⋃
ω∈Ω

{(ω, ])?(ω,⊥)}

)?
.

That is, each sequence of option-continuation events must
end with an option-termination event before a new option
can be started.

Now we want to modify the model in Theorem 1 so that it
only assigns non-zero probabilities to trajectories in V . Let
f be the function computed by A. Then we want another
PSR computing the function given by f̃(x) = f(x) for x ∈
V and 0 otherwise. We now show that f̃ can also be com-
puted by a PSR with size close to that of A.

Theorem 2. If A has n states, then there exists a PSR Ã
with at most (|Ω|+ 1)n states computing f̃ .

Proof. By the Carlyle–Paz–Fliess theorem, it suffices to
show that rank(H̃) ≤ (|Ω| + 1)n, where H̃ ∈ RΣ?×Σ?

is the bi-infinite Hankel matrix associated with f̃ . Let
χV : Σ? → R be the characteristic function of the regu-
lar language V , which is given by χV (x) = 1 if x ∈ V
and χV (x) = 0 otherwise. Note that it is easy to construct
a DFA with |Ω| + 1 states recognizing V . Such a DFA
can also be written as a PSR with |Ω|+ 1 states computing
the function χV . Thus, the rank of the Hankel matrix HV

associated with χV is at most |Ω| + 1. Now note that we



can write H̃ = H ◦HV , where H is the Hankel matrix of
f and ◦ denotes entry-wise multiplication (also known as
Hadamard matrix product). Finally, we use an elementary
bound on the rank of Hadamard products to conclude that

rank(H̃) ≤ rank(H) · rank(HV ) = (|Ω|+ 1)n .

Note that the bound on the number of states of Ã is in gen-
eral not tight. For example, in our experiments with a grid-
like environment, we observed that starting with an MDP
with n states the true rank of H̃ is on the order of O(

√
n).

So the PSR representation of ODM can lead to more com-
pact models than the underlying MDP, and can potentially
lead to faster learning and planning algorithms. This issue
should be investigated further in future work.

4 SPECTRAL LEARNING OF ODM

The PSR representation of ODM given by the theorems in
previous section can be computed explicitly if the under-
lying MDP is known exactly. In this section we explore
the possibility of learning such a representation from data
about option durations, without exploiting any knowledge
about the underlying MDP. The rationale behind this ap-
proach is that it can lead to more compact representations
that do not depend on the set of primitive actions, and learn
only the parts of the MDP’s state space which are reachable
via options.

Because an option duration model over valid trajectories
can be represented with a PSR of moderate size, we can
use the spectral learning algorithm in [Boots et al., 2011]
to estimate an ODM from a set of trajectories in Σ? pro-
duced by the agent exploring the MDP using a fixed policy
over options. For each trajectory, the initial state is sam-
pled according to a fixed distribution α. We assume that
the options executed by the agent are selected according to
some fixed open-loop policy. This is important if we want
to use the sampled trajectories to learn a model of the envi-
ronment which is independent of the exploration policy.

The algorithm takes as input Σ and a basis B in Σ?, uses
them to estimate the corresponding Hankel matrices, and
then recovers a PSR by performing singular value decom-
position and linear algebra operations on these matrices.
Although the method works almost out-of-the-box, in prac-
tice the results tend to be sensitive to the choice of basis.
Thus, after briefly recapitulating how the spectral learning
algorithm proceeds, we will devote the rest of the section to
describe a procedure for building a basis which is tailored
for the case of learning option duration models.

Suppose the basis B is fixed and the desired number of
states n is given. Suppose that a set of sampled trajectories
was used to estimate the Hankel matrices H,Hσ ∈ RP×S
and vectors hP ∈ RP , hS ∈ RS defined in Sec. 2.3. The
algorithm starts by taking the truncated SVD UnDnV

>
n

of H, where Dn ∈ Rn×n contains the first n singular
values of H, and Un ∈ RP×n and Vn ∈ RS×n con-
tain the first left and right singular vectors respectively.
Finally, we compute the transition operators of a PSR as
Aσ = D−1

n U>nHσVn, and the initial and final weights as
α>λ = h>SVn and α∞ = D−1

n U>nhP . This yields a PSR
with n states. It was proved in [Boots et al., 2011] this
algorithm is statistically consistent: if the population Han-
kel matrices are known and the basis B is complete, then
the learned PSR is equivalent to the one that generated the
data.

4.1 Basis Selection

Finding a complete basis for a given function f : Σ? → R
is in general a hard combinatorial problem: although if Hf

has rank n, there exists a complete basis with n prefixes
and suffixes, the search space where these lie is doubly-
exponential in n. To overcome this problem, randomized
and greedy basis selection heuristics have been proposed
in the past [Wiewiora, 2005; Balle et al., 2012]. Greedy
selection is in general computationally expensive because
it requires re-learning the model every time a new element
is added to the basis. Randomized search does not work in
our case because it cannot take into account the fact that we
have syntactic constraints on the valid trajectories. There-
fore, we designed a procedure that takes the structure of our
problem into account.

Our procedure is parametrized by various quantities de-
pending on the environment and the observed trajectories:
the maximum possible duration Tω of each option ω ∈ Ω
in our training dataset, and T = maxω Tω; an upper bound
Kr ≥ 1 on the number of option executions needed to
reach every possible state in M when initial states are sam-
pled from α; and, an upper boundKd ≥ 1 on the number of
option executions needed to distinguish/disambiguate ev-
ery pair of states in M in terms of option duration informa-
tion.

We assume these quantities are given, either because they
can be derived from prior knowledge of the application do-
main, or because they are cross-validated. The definitions
imply that T and Kr are a function of the geometry of the
environment and how this relates to the available options.
On the other hand, Kd measures the statistical similarity
between states in M when seen through the lens of Ω. The
intuition is simple: we want to ensure that we have enough
prefixes in the Hankel matrix to get to all reachable states
inM , and enough suffixes to make sure each of these states
can be distinguished from each other. The following con-
struction formalizes this intuition.

We obtain the set P of prefixes in the basis as the union of



two disjoint sets. The first set is:

P⊥ =
{
x1x2 · · ·xt

∣∣ 1 ≤ t ≤ Kr, xi = (ωi, ])
di(ωi,⊥),

ωi ∈ Ω, 0 ≤ di ≤ Tωi} .

These are trajectories with at most Kr option executions,
containing all possible sequences of options, and all possi-
ble option durations allowed by the model. A simple cal-
culation shows that |P⊥| = O(KrT

Kr |Ω|Kr ). Note that
each trajectory in P⊥ terminates with a symbol (ω,⊥).
If we remove this last symbol for each trajectory, we ob-
tain a disjoint set of prefixes P] = {x | x(ω,⊥) ∈ P⊥}.
Then we take P = P⊥ ∪ P]. Note that again we have
|P| = O(KrT

Kr |Ω|Kr ).

Similarly, the set of suffixes will be obtained as the union
of two sets. These are defined as follows:

S] =
{
x1x2 · · ·xt

∣∣ 1 ≤ t ≤ Ks, xi = (ωi, ])
di(ωi,⊥),

ωi ∈ Ω, 0 ≤ di ≤ Tωi} ,

S⊥ = {(ω,⊥)x | x ∈ S], ω ∈ Ω} .

The suffixes in S] are obtained like the prefixes in P⊥,
with the only difference that the number of option execu-
tions is now upper bounded by Ks instead of Kr. Suf-
fixes in S⊥ are obtained by prefixing each string in S]
with each possible option termination symbol (ω,⊥). The
whole set of suffixes is S = S⊥ ∪ S], and we have
|S| = O(KsT

Ks |Ω|Ks+1).

Note that not every string in PS defines a valid trajectory.
This is required for the Hankel matrices Hσ to be different
from zero; otherwise the operators Aσ cannot be correctly
recovered. To see why this is the case, consider the ba-
sis B′ = (P⊥,S]). By construction we have P⊥S] ⊂ V .
However, if we consider a system where some ω never lasts
for just one step, then every trajectory in P⊥{(ω,⊥)}S]
has probability zero. In particular, in such a system the ma-
trix Hσ over the basis B′ is exactly zero. To work around
this problem, it is necessary to introduce non-valid trajec-
tories in the basis, to ensure that H will contain some sub-
blocks filled with zeros, but the Hσ will contain some non-
zero sub-blocks.

4.2 Scalability

Though at first glance the exponential dependence on Kr

and Ks in the size of the basis may seem prohibitive, in
practice the situation is much better. On one hand, these
are worst-case bounds that assume all possible sequences
of options and durations need to be considered. However,
in practice some of those might never be observed — e.g.
because the duration of certain options has little variance,
or because some options are not available in many configu-
rations. On the other hand, as already mentioned, we have
prior knowledge indicating that a significant fraction of
the entries appearing in the resulting Hankel matrices will

be zero because they correspond to non-valid trajectories.
This will lead to highly sparse matrices which can benefit
from sparse representations, sparse singular value decom-
positions, and sparse numerical linear algebra in general. In
those cases, the complexity of the operations involved will
not depend on the size of these matrices, but instead on the
number of non-zero entries. This quantity will in practice
be much smaller that the size of the Hankel matrices given
by our choice of basis, and we have observed such benefits
in our experiments.

5 PLANNING WITH ODM

In this section we want to briefly investigate the potential
utility of ODM representations for planning with options.
Specifically, we want to show how to use ODMs as a form
of state representation for value function learning. In a nut-
shell, our main result states that nothing is lost by planning
with options using a PSR representation of an ODM instead
of the original MDP representation.

The first important observation is that the construction in
Theorem 1 (and in consequence, the construction in The-
orem 2) leads to a PSR with identical transition operators
{Aσ} regardless of which initial distribution over the states
of M is chosen. That is, the only thing that needs to be
modified when we change the initial distribution over the
states is the initial state in the PSR. Thus, given an MDP
M and a set of options Ω, we can fix the transition struc-
ture of a PSR representation for the corresponding ODM
– either over all trajectories or only valid trajectories (the
distinction is not important for the purpose of this section).
These will be given by {Aσ} for σ ∈ Σ = Ω×{],⊥}, and
the corresponding final weights α∞. We denote by n′ the
dimension of this PSR. Then we can map each possible dis-
tribution α over the states of M to a PSR state θα ∈ Rn′ .
Note that although this mapping is straightforward for the
construction in Theorem 1, this is not the case for the con-
struction in Theorem 2, and even less for the PSR recov-
ered by the learning algorithm in Section 4 because such a
PSR is only equivalent to the original up to conjugation of
the transition weights by an invertible matrix [Boots et al.,
2011]. In addition to distributions over initial states, we
can also consider PSR states obtained by the state-update
procedure. That is, if we are given a valid trajectory u ∈ V
representing a history of options and associated continua-
tion and termination events, then we can obtain the updated
state

θ>α,u =
θ>αAu

θ>αAuα∞
.

This represents another probability distribution over the
states ofM . Note that by construction we have θα,λ = θα.
With this notation we can show that the state-option value
function of any policy over options is linear in the PSR
state.



Theorem 3. Let πΩ : S × Ω → [0, 1] be a stochastic
stationary policy over options on the MDP M . For every
ω ∈ Ω there exists a vector ρω ∈ Rn′ so that for every
distribution α over states in M and every history u ∈ V ,
we have Es[QπΩ(s, ω)] = θ>α,uρω , where the expectation
is over states s sampled from the distribution induced by
observing u after starting in a state drawn from α.

The above theorem includes as a special case the situation
in which the agent is at a fixed state in M ; i.e. no uncer-
tainty. The proof follows along the lines of a similar result
known for PSRs with reward structure induced by a corre-
sponding POMD [James et al., 2004]. The key difference
is that we need to take into account the semi-Markov na-
ture of option termination events, which make the compu-
tations involved in the discount factors and extended tran-
sition kernels more involved. Though the details are not
complicated, the algebra is too lengthy to be included in
this version and will be presented in full in an extended
version.

Although planning with PSRs has been studied using meth-
ods akin to POMDP planning [James et al., 2004; Izadi
and Precup, 2008; Boots et al., 2011], we chose a more
efficient alternative, the Fitted-Q Iteration (FQI) algorithm
of Ernst et al. [2005]. Similar uses of FQI with PSR states
have been proposed in Ong et al. [2012]; Hamilton et al.
[2013]. FQI learns a policy through an iterative re-fitting
process over batches of sampled transitions of the form:
〈s, a, r, s′〉. At every iteration, an ensemble of extremely
randomized trees (ExtraTrees) [Geurts et al., 2006] is fit
toQ(s, a)t = r+γmaxa′ Qt−1(s′, a′) over all quadruples
s, a, r, s′. In order to ensure convergence, the tree structure
must be kept fixed across iterations. Hence, we fit the re-
gressor in the first iteration and only refreshed the values
and not the structure on subsequent iterations. We plan di-
rectly over the ODM state vector updated at each step with
the corresponding operator (continuation or termination).
So, in the first step, we compute θ0 = α>λAσ0

, then update
θt = θ>t−1Aσt

. The ODM state vector is then normalized
in order to prevent difficulties with the regressor. This ap-
proach is leveraging a well-known planning approach, so it
is straightforward. It is possible that the structure of ODM
can be exploited further to design more efficient planning
algorithms. We leave this topic for future work.

6 EXPERIMENTS

We first assess the performance of the spectral learning al-
gorithm with our data-driven basis construction method for
Kr = 2 and Ks = 1. We use a 4-connected grid with four
actions representing the cardinal directions (NEWS). Un-
less the current state is a “wall” each action moves the agent
one step in the specified direction with probability 0.9, and
maintains the current state with probability 0.1. We also de-
fine one option for each cardinal direction. These options

take as many steps as possible in the specified direction un-
til they hit a wall, at which point the option terminates. A
uniformly random exploration policy is used for sampling
10000 episodes in which five options are executed to ter-
mination. We also collected a test set consisting of 10000
trajectories of 8 options sequences. We evaluate the pre-
diction accuracy by computing the relative error over the
estimated remaining number of steps in the currently exe-
cuting option. For each test trajectory, we picked a time in-
dex uniformly at random and conditioned the learned ODM
on the history up to this point. These random split points
were then kept fixed throughout all evaluations. Figure 1b
shows that the prediction accuracy increases with the di-
mension of the ODM. More samples also allow for better
predictions. Since the prediction task is inherently stochas-
tic, even the true ODM cannot achieve 0 relative error.

6.1 Planning in a grid world

We formulating the grid-world problem by giving a reward
of +100 for entering the bottom-right state and -10 per col-
lision, with discount factor 0.9. A dataset of 1000 trajecto-
ries of 8 options each was collected with a uniformly ran-
dom policy over options. For each curve in figure 1, we
use our dataset to simultaneously learn an ODM and plan
over it. We evaluate the performance of the greedy policy
by taking 100 Monte-Carlo estimates in the simulated en-
vironment. Given the true underlying MDP and a set of
options, we compute the resulting Semi-Markov Decision
Process (SMDP) (see p. 26 of Sutton et al. [1999]) and
solve it using value iteration, to obtain the baseline (op-
timal achievable return) for our evaluation. We extended
the ExtraTrees implementation of Pedregosa et al. [2011]
with the freezing mechanism required for FQI. We used all
available features for splitting internal nodes and fitted an
ensemble of 10 trees with maximum depth of 5. Figure 1c
shows that an optimal policy can be obtained using 1000
trajectories and one planning step.

6.2 Planning with a simulated robot

Using the same methodology, we experimented with the
proposed ODM learning and planning approach in a simu-
lated robot environment with continuous state space, non-
linear dynamics, and actions that correspond to real actua-
tors of the robot. We leverage the simulation capabilities of
the 2D physics engine Box2D 2 to obtain realistic acceler-
ations, collisions and friction effects.

We set the density of a circular differential wheeled robot
to 3.0 and its radius to 0.17 cm. A primitive action in
this domain consists in the application of force vector of
(0.1, 0.1) on both wheels every 1/10 of a simulated sec-
ond. At the beginning of every episode, the robot is ini-
tialized at position (0.5, 0.5) of a 2x2 meters environment.

2http://box2d.org

http://box2d.org


0 2 4 6 8 10

0

2

4

6

8

S

G

(a)

0 50 100 150
0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

R
el

at
iv

e 
er

ro
r

1 0 0
1000
10000
True  ODM

Hankel rank

(b)

0 1 5 10 15 20 25
Fitted-Q Iteration

0

2

4

6

8

10

12

D
is

co
un

te
d 

R
et

ur
n

SMDP Exact
FQI-ODM Approx 10
FQI-ODM Approx 100
FQI-ODM Approx 1000

(c)

0 .0 0 .5 1 .0 1 .5 2 .0
0 .0

0 .5

1 .0

1 .5

2 .0

G

S

(d)

0 1 2 3 4
Fitted-Q Iteration

0

200

400

600

800

1000

D
is

co
un

te
d 

R
et

ur
n

Optimal de te rm inis tic

FQI-ODM Approx 1000

FQI-ODM Approx 500

FQI-ODM Approx 100

Random

(e)

0 1 2 3 4
Fitted-Q Iteration

45000

50000

55000

60000

65000

70000

B
el

lm
an

 R
es

id
ua

l

1 0 0
500
1000

(f)
Figure 1: Gridworld environment: (a) grid layout and optimal policy over options (b) relative error vs rank (c) average discounted
cumulative return. Simulated robot environment: (c) trajectory of an optimal policy (d) average discounted cumulative reward (f) mean
square Bellman residual

A 10cm thick wall separates the robot from the goal loca-
tion at (0.25, 0.75). The episode finishes when the robot is
within 25cm of the target.

As in the grid-world problem, we define a set of options
over four radial directions. The termination condition trig-
gers when the front-facing distance sensor detects an ob-
stacle 6cm ahead. Because of the nonlinear dynamics, the
hand-defined options controller does not always stop ex-
actly within this distance. Given enough acceleration, the
robot might sometimes touch the walls. This additional
source of noise due to an imperfect controller is interesting
from an experimental point of view. A stochastic compo-
nent also makes the forward action ineffective 5% of the
time. The rewards are 1000 for reaching the goal region
and -10 by collision. Taking a primitive action incurs no
cost but there is a discount factor γ = 0.999.

We collected 2000 trajectories of at most 10 options with
a uniformly random policy over options. Due to the size
of the environment, we found that trajectories of at most
5 options were insufficient to consistently learn good poli-
cies. We used Kr = 2,Ks = 1 for the basis, considered
all features for node splitting and used 10 trees of max-
imum depth 8. The results presented in Figure 1e were
obtained by resampling 10 times the original dataset with-
out replacement, to characterize the stability of the learn-
ing algorithm. The greedy policy derived from FQI was
then evaluated with 10 Monte-Carlo rollouts. Since the
underlying MDP is unknown, we could not compute the
exact optimal policy, so we upper-bounded the achievable
return through the policy in Figure 1d under 100% success
rate for the forward command. We used the average re-
turn of a uniform random policy as baseline. As expected,

the mean square Bellman residual [Ernst et al., 2005] de-
creases for larger sample sizes and over longer planning
horizon (Fig. 1f). While 100 episodes yield ODM policies
slightly better than random, 1000 episodes are sufficient to
recover a close-to-optimal solution (Fig. 1e).

7 DISCUSSION

The approach we presented learns a predictive model for
option durations, and we illustrates its use in robot navi-
gation tasks. As discussed, timing models are simple, yet
in many problems they are sufficient for good quality plan-
ning. To see why having simpler models might be use-
ful, consider the prevalence of bandit problems in ad place-
ment; the task could be done better with full MDPs, data
efficiency is more important for the application. Similarly,
we believe that being able to exploit simple yet efficient
timing models is interesting and important. The use of
this type of model in planning algorithms should be in-
vestigated further. Models of states in terms of what hap-
pens after executing certain actions are known to be useful,
e.g. Dayan [1993]. But our models are simplified, hence
different both from action-respecting embeddings Bowling
et al. [2005, 2007] and predictive state representations with
options Wolfe and Singh [2006], which aim to learn full ob-
servation models conditioned on extended actions, in order
to characterize the current state. Timing models get around
the problem of both large action spaces (by using a finite set
of options) and the problem of large observation spaces (by
focusing only on continuation and termination). A theoret-
ical analysis of the error of planning with timing models
instead of true transition models is left for future work. We
also aim to study the sample efficiency of this approach.
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