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Abstract

Approximate Bayesian computation (ABC) is a
powerful and elegant framework for performing
inference in simulation-based models. However,
due to the difficulty in scaling likelihood esti-
mates, ABC remains useful for relatively low-
dimensional problems. We introduce Hamil-
tonian ABC (HABC), a set of likelihood-free
algorithms that apply recent advances in scal-
ing Bayesian learning using Hamiltonian Monte
Carlo (HMC) and stochastic gradients. We find
that a small number forward simulations can ef-
fectively approximate the ABC gradient, allow-
ing Hamiltonian dynamics to efficiently traverse
parameter spaces. We also describe a new sim-
ple yet general approach of incorporating random
seeds into the state of the Markov chain, further
reducing the random walk behavior of HABC.
We demonstrate HABC on several typical ABC
problems, and show that HABC samples com-
parably to regular Bayesian inference using true
gradients on a high-dimensional problem from
machine learning.

1 INTRODUCTION

In simulation-based science, models are defined by a sim-
ulator and its parameters. These are called likelihood-
free models because, in contrast to probabilistic models,
their likelihoods are either intractable to compute or must
be approximated by simulations. To perform inference in
likelihood-free models, a broad class of algorithms called
Approximate Bayesian Computation [3, 13, 20, 12] are em-
ployed.

At the core of every ABC algorithm is simulation. To eval-
uate the quality of a parameter vector θ, a simulation is run
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using θ as inputs and producing outputs x. If the pseudo-
data x is “close” to observations y, then θ is kept as a sam-
ple from the approximate posterior. Parameters θ are then
adjusted, depending upon the algorithm, to obtain the next
sample.

In ABC, there is a fundamental trade-off between the com-
putation required to obtain independent samples and the
approximation to the true posterior. If the parameter mea-
suring closeness is too small, then samplers “mix” poorly;
on the other hand, if it is too large, then the approxima-
tion is poor. As the dimension of the parameters grows, the
problem worsens, just as it does for general Bayesian in-
ference with probabilistic models, but it is more acute for
ABC due to its simulation requirement. There is therefore
a deep interest in improving the efficiency of ABC sam-
plers (in terms of computation per independent sample). In
this paper we address this issue directly by using Hamil-
tonian dynamics to approximately sample from likelihood-
free models with high-dimensional parameters.

Hamiltonian Monte Carlo (HMC) [7, 16] is perhaps the
only Bayesian inference algorithm that scales to high-
dimensional parameter spaces. The core computation of
HMC is the gradient of the log-likelihood. Two problems
arise if we consider HMC for ABC: one, how can the gra-
dients be computed for high-dimensional likelihood-free
models, and two, given a stochastic approximation to the
gradient, can a valid HMC algorithm be derived?

To answer the latter, we turn to recent developments in scal-
ing Bayesian inference using HMC and stochastic gradi-
ents [25, 5, 6]. We call these stochastic gradient Hamil-
tonian dynamics (SGHD) algorithms. SGHD algorithms
are computationally efficient for two reasons. First, they
avoid computing the gradient of the log-likelihood over
the entire data set, instead approximating it using small
batches of data, i.e. computing stochastic gradients. Sec-
ond, they can maintain reasonable approximations to the
Hamiltonian dynamics and therefore avoid a Metropolis-
Hastings correction step involving the full data set. Dif-
ferent strategies are employed to do this: small step-sizes
combined with Langevin dynamics [25] (stochastic gradi-



ent Langevin dynamics—SGLD), using friction to prevent
accumulation of errors in the Hamiltonian [5] (stochastic
gradient HMC—SGHMC), and using a thermostat to con-
trol the temperature of the Hamiltonian [6] (stochastic gra-
dient Nose-Hoover thermostats—SGNHT). Each of these
strategies can be used by HABC.

In HABC, we use forward simulations to approximate
the likelihood-free gradient. The key difference between
SGHD methods and HABC is that the stochasticity of the
gradient does not come from approximating the full data
gradient with a mini-batch gradient, but by the stochasticity
of the simulator. It is therefore not the expense of the sim-
ulator (though this could very well be the case for many in-
teresting simulation-based models – see Section 7) that re-
quires an approximation to the gradient, but the likelihood-
free nature of the problem.

There are several difficulties in estimating gradients of
likelihood-free models that we address with HABC. The
first is due to the form of the ABC log-likelihood. As we
show in Section 2, using a conditional model for π(x|θ)
provides an estimate of the ABC likelihood that is less sen-
sitive to ε and therefore is more conducive to stochastic
gradient computations. The second difficulty is that for
high-dimensional parameter spaces, computing the gradi-
ents naively (i.e. by finite differences (FD) [9]) can squash
the gains brought by the Hamiltonian dynamics. Fortu-
nately, we can use existing stochastic approximation algo-
rithms [21, 22] that can be used to compute unbiased es-
timators of the gradient with a small number of forward
simulations that is independent of the parameter dimen-
sion. The stochastic perturbation stochastic approximation
(SPSA) [21] is described in Section 4

A further innovation of this paper is the use of persistent
random numbers (PRNs) to improve the efficiency of the
Hamiltonian dynamics. The idea behind PRNs is to use the
same set of random seeds for estimating a gradient by FD
or SPSA, i.e. when simulating π(x|θ+dθ) and π(x|θ−dθ)
use the same random seeds. This was applied successfully
to SPSA [10] (and is analogous to using the same mini-
batch in stochastic gradient methods). We extend and sim-
plify this approach by including the random seeds ω into
the state of the Markov chain; by keeping the random seeds
fixed for several consecutive steps, the second order gradi-
ent stochasticity is greatly reduced. We show that doing
this produces a valid MCMC procedure. This approach is
not exclusive to HABC; our experiments show it also helps
random-walk ABC-MCMC.

We briefly review ABC in Section 2. In Section 3 we re-
view three approaches to stochastic gradient inference us-
ing Hamiltonian dynamics: SGLD, SGHMC, and SGNHT.
We then introduce Hamiltonian ABC in Section 4, where
we will show how to improve the stability of the gradi-
ent estimates by using PRNs and local density estimators

of the simulator. Extensions to high-dimensional param-
eter spaces are also discussed. In Section 5 we show how
HABC behaves on a simple one-dimensional problem, then
in Section 6 we compare HABC with ABC-MCMC for two
problems: a low-dimensional model of chaotic population
dynamics and a high-dimensional problem.

2 APPROXIMATE BAYESIAN
COMPUTATION

Consider the Bayesian inference task of either drawing
samples from or learning an approximate model of the fol-
lowing (usually intractable) posterior distribution:

π(θ|y1, . . . ,yN ) ∝ π(θ)π(y1, . . . ,yN |θ) (1)

where π(θ) is a prior distribution over parameters θ ∈ IRD

and π(y1, . . . ,yN |θ) is the likelihood of N data observa-
tions, where yi ∈ IRJ . In ABC, the vector of J observa-
tions are typically informative statistics of the raw observa-
tions. It can be shown that if the statistics used in the likeli-
hood function are sufficient, then these algorithms sample
correctly from an approximation to the true posterior [12].
The simulator is treated as a generator of random pseudo-
observations, i.e. x

sim∼ π(x|θ) is a draw from the simula-
tor. Discrepancies between the simulator outputs x and the
observations y are scaled by a closeness parameter ε and
treated as likelihoods. This is the equivalent to putting an
ε-kernel around the observations, and using a Monte Carlo
estimate of the likelihood using S draws of x:

πε(y|θ) =

∫
πε(y|x)π(x|θ)dx ≈ 1

S

S∑
s=1

πε(y|x(s))

(2)

In ABC Markov chain Monte Carlo (MCMC) [13, 26] the
Metropolis-Hastings (MH) proposal distribution is com-
posed of the product of the proposal for the parameters θ
and the proposal for the simulator outputs:

q(θ′,x(1)′ , . . . ,x(S)′ |θ) = q(θ′|θ)
∏
s

π(x(s)′ |θ′) (3)

Using this form of the proposal distribution, and using the
Monte Carlo approximation eq 2, we arrive at the following
Metropolis-Hastings accept-reject probability,

α = min

(
1,
π (θ′)

∑S
s=1 πε(y|x(s)′)q(θ|θ′)

π (θ)
∑S
s=1 πε(y|x(s))q(θ′|θ)

)
(4)

If the simulations are part of the Markov chain, the algo-
rithm corresponds to the pseudo-marginal (PM) sampler
[2], otherwise it is a marginal sampler [13, 20]. For this
paper we will be interested in the PM sampler because this
is equivalent to having the random states that generated the
simulation outputs in the state of the Markov chain, which



we will use within a valid ABC sampling algorithm in Sec-
tion 4.

An alternative approach to computing the ABC likelihood
is to estimate the parameters of a conditional model π(x|θ),
e.g. using kernel density estimate [24] or a Gaussian model
[28]. While either approach should be adequate and both
have their own limits and advantages, for this paper we will
use a Gaussian model. In ABC, using a conditional Gaus-
sian model for π(x|θ) is called a synthetic likelihood (SL)
model [28]. For a SL log-likelihood model, we compute
estimators of the first and second moments of π(x|θ). The
advantage is that for a Gaussian ε-kernel, we can convolve
the two densities

πε(y|θ) =

∫
N (y|x, ε2)N (x|µθ, σ

2
θ)dx (5)

= N (y|µθ, σ
2
θ + ε2) (6)

Of particular concern to this paper is the behavior of the
log-likelihoods for different values of ε. In the ε-kernel
case, the log-likelihood is very sensitive to small values of
ε:

log πε(y|θ) = log
∑
s

N (y|x(s), ε2) (7)

= logN (y|x(s), ε2) + log (1 +H) (8)

≈ − log ε− 1

2ε2
(y − x(m))2 (9)

where m is the simulation that is closest to y, H is a sum
over terms close to 0. We can see that the log-likelihood
can be set arbitrarily small by decreasing ε. On the other
hand, by using a model of the simulation at θ

log πε(y|θ) ≈ −1

2
log(σ2

θ + ε2)− (y − µθ)2

2(σ2
θ + ε2)

(10)

For the SL model, ε acts as a smoothing term and can be set
to small values with little change to the log-likelihood, as
long as the SL estimators are fit appropriately. This insensi-
tivity to ε will be used in Section 4 for estimating gradients
of the ABC likelihood. Before describing HABC in full
detail however, we now explain how scaling Hamiltonian
dynamics in Bayesian learning can be accomplished using
stochastic gradients from batched data.

3 SCALING BAYESIAN INFERENCE
USING HAMILTONIAN DYNAMICS

Scaling Bayesian inference algorithms to massive datasets
is necessary for their continuing relevance in the so-called
big data era. We now review the role stochastic gradi-
ent methods combined with Hamiltonian dynamics have
played in recent advances in scaling Bayesian inference.
Most importantly, these methods have combined the abil-
ity of HMC to explore high-dimensional parameter spaces

with the computational efficiency of using stochastic gradi-
ents based on small mini-batches of the full dataset. After
an overview of HMC, we will briefly describe stochastic
gradient Hamiltonian dynamics (SGHD), starting with us-
ing Langevin dynamics [25], then HMC with friction [5],
and finally HMC with thermostats [6]. We will then make
the connection between SGHD and HABC in Section 4.

3.1 Hamiltonian Monte Carlo

Hamiltonian dynamics are often necessary to adequately
explore the target distribution of high-dimensional param-
eter spaces. By proposing parameters that are far from
the current location and yet have high acceptance probabil-
ity, Hamiltonian Monte Carlo [7, 16] can efficiently avoid
random walk behavior that can render proposals in high-
dimensions painfully slow to mix.

HMC simulates the trajectory of a particle along a friction-
less surface, using random initial momentum ρ and posi-
tion θ. The Hamiltonian function computes the energy of
the system and the dynamics govern how the momentum
and position change over time. The continuous Hamilto-
nian dynamics can be simulated by discretizing time into
small steps η. If η is small, the value of θ at the end of a
simulation can be used as proposals within the Metropolis-
Hastings algorithm. Hamiltonian dynamics should propose
θ that are always accepted, but errors due to discretization
may require a Metropolis-Hastings correction. It is this cor-
rection step that SGHD algorithms want to avoid as it re-
quires computing the log-likelihood over the full data set.

More formally, the Hamiltonian H (θ,ρ) = U(θ) +K(ρ)
is a function of the current potential energy U(θ) and ki-
netic energy K(ρ) = ρTM−1ρ/2 (M is a diagonal ma-
trix of masses which for presentation are set to 1). The
potential energy is defined by the negative log joint density
of the data and prior:

U(θ) = − log π(θ)−
N∑
i=1

log π(yi|θ) (11)

The Hamiltonian dynamics follow

dθ = ρdt dρ = −∇U(θ)dt (12)

in simulation dt = η.

3.2 Stochastic Gradient Hamiltonian Dynamics

If the log-likelihood over the full data set is replaced with a
mini-batch estimate, as is done for the following stochastic
gradient Hamiltonian dynamics (SGHD) algorithms, then
the error in simulating the Hamiltonian dynamics comes
not only from the discretization, but from the variance of
the stochastic gradient. As long as this error is controlled,
either by using small steps η (SGLD), or adding friction



terms B (SGHMC), or using a thermostat ξ (SGNHT), the
expensive MH correction step can be avoided and values of
θ from the Hamiltonian dynamics can be used as approxi-
mate samples from the posterior. SGHD algorithms belong
to a larger class of noisy Monte Carlo methods that target
intractable likelihoods; see [1] for an extensive overview of
noisy Monte Carlo.

We develop SGHD from the large-scale data case, where
the intractability is due to computing the full potential
energy and its gradient; it is approximated using mini-
batches:

Û(θ) = − log π(θ)− N

n

hn∑
i=h1

log π(yi|θ) (13)

∇Û(θ) = −∇ log π(θ)− N

n

hn∑
i=h1

∇ log π(yi|θ)(14)

where n is the mini-batch size, and hi are indices cho-
sen randomly without replacement from [1, N ] (i.e. it de-
fined a random mini-batch). In likelihood-free settings,
the stochasticity of the potential energy due to the mini-
batches is instead caused by simulation noise; further like-
lihood assumptions, such as a Gaussian model, add an-
other layer of approximation to our posterior. Below we
describe three SGHD algorithms, originally developed for
large-scale data applications, but for which we will apply
directly to likelihood-free inference using gradient approx-
imations in Section 4.

Stochastic gradient Langevin dynamics (SGLD) [25]
performs one full leap-frog step of HMC. In doing so,
SGLD avoids explicitly computing updates for momenta
ρ; the update for θ is

θt+1 = θt + ηN (0, Ip)− η2∇Û(θt)/2 (15)

One of the potential drawbacks of SGLD is that the mo-
mentum term is refreshed (implicitly) for every update of
the θ, and since this means the parameter update only uses
the current gradient approximation, it limits the benefits of
using Hamiltonian dynamics. On the other hand, this also
prevents SGLD from accumulating errors in the Hamil-
tonian dynamics. SGLD has been applied to another in-
tractable likelihood model, Gibbs random fields [1], which
closely resembles how SGLD is applied in this paper.

Stochastic Gradient HMC (SGHMC) [5] avoids ρ re-
freshment altogether. SGHMC makes the assumption
∇Û(θ) = ∇U(θ)+N (0,Vθ), where Vθ is the covariance
of the gradient approximation. To avoid a MH correction
step at the end of a trajectory, a friction term B propor-
tional to Vθ is added to ∆ρ. In practice, since we can only
approximate B, a user defined friction term C is used. In
our experiments we compute an online estimate V̂ and set
C = cIp + V̂ .

Stochastic Gradient thermostats (SGNHT) [6] addresses
the difficulty of estimating B by introducing a scalar vari-
able ξ who’s addition to the Hamiltonian dynamics main-
tains the temperature of the system constant, i.e. it acts as
a (Nose-Hoover) thermostat [11].

4 HAMILTONIAN ABC

The general approach of applying Hamiltonian dynamics
to ABC requires choosing one of the SGHD algorithms and
then plugging in the ABC gradient approximation ∇Û(θ).
With this in mind we leave the details of the Hamiltonian
updates to previous work [25, 5, 6] and focus on the details
of how stochastic gradients are computed in the likelihood-
free setting. Note that in our implementation, we do not
use a MH correction (except when switching seeds), though
this can easily be added for any particular problem.

4.1 Deterministic Representations of Simulations

Implicit in each simulation run x
sim∼ π(x|θ) is a sequence

of internally generated random numbers that are used to
produce random draws from π(x|θ). These random num-
bers are important to HABC because we wish to control
the stochasticity of the simulator when computing its gradi-
ent. Furthermore, we will control the random numbers over
multiple time steps. Instead of keeping track of random
numbers, we can equivalently keep a vector of S random
seeds ω. This allows HABC to treat the simulation func-
tion π(x|θ) as a blackbox, outside of which we can control
the random number generator (RNG), and represent x(s) as
the output of a deterministic function; i.e. x(s) = f(θ, ωs)

instead of x(s) sim∼ π(x|θ). We include ω as part of the
state of our Markov chain.

4.2 Kernel-ε versus Synthetic-likelihood -based
Gradients

In Section 2 we showed that the synthetic-likelihood rep-
resentation of Lε(θ) is less sensitive to small choices of
ε. This is particularly important to HABC as our gradient
approximations are proportional to differences in Lε(θ); if
the variance of the stochastic gradients is too high, then
we must choose a very small step-size η, eliminating the
usefulness of HMC for ABC. Under the deterministic rep-
resentation of x(s), we can write the log-likelihood as

Lε(θ) ∝ log
∑
s

N (y|f(θ, ωs), ε
2) (16)

≈ − log ε− 1

2ε2
(y − f(θ, ωm))2 (17)

In the second line we have assumed ε is very small and
m is the index of the random seed producing the clos-
est simulation to y. For a finite difference approximation,



Algorithm 1∇U SPSA-ABC
inputs: θ, dθ, f,ω,Lε, π,R
ĝ ← 0
for r = 1 : R do

∆ ∼ 2 · Bernouilli (1/2, D) - 1
for s = 1 : S do

x
(s)
+ ← f (θ + dθ∆, ωs)

x
(s)
− ← f (θ − dθ∆, ωs)

end for
ĝ ← ĝ +

(
Lε({x(s)

+ })− Lε({x(s)
− })

)
·∆−1

end for
ĝ ← ĝ/(2dθR) +∇ log π(θ)
return −ĝ

∂Lε(θ)/∂θ is

1

4dθε2
(
(y − f(θ − dθ, ω−m))2 − (y − f(θ + dθ, ω

+
m))2

)
(18)

On the other hand, the synthetic-likelihood is stable; using
a deterministic representation, we have

µθ =
1

S

∑
s

f(θ, ωs) σsθ =
1

S − 1

∑
s

(µθ−f(θ, ωs))
2

(19)
the gradients (for a 1-dim problem) use ε as a smoothness
prior in ∂Lε(θ)/∂θ:

−1

2
log

(
σ2
θ+ + ε2

σ2
θ− + ε2

)
− (y − µθ+)2

2(σ2
θ+ + ε2)

+
(y − µθ−)2

2(σ2
θ− + ε2)

(20)
In Figure 2, as part of our demonstration of HABC, we
compare the gradient approximations around the true θMAP
using SL versus kernel-ε for a simple problem. Although
there is a small bias using SL due to its Gaussian assump-
tion, it has much smaller variance, convergence to this (bi-
ased) posterior should be stable. Further, [19] showed that
convergence for SGHD type algorithms depends on the
tails of the log-posterior, which suggests that despite its
bias, the non-heavy tails of the Gaussian may allow SL to
produce a more efficient Markov chain.

4.3 From Finite Differences to Simultaneous
Perturbations

If the dimension of θ is small, then finite difference stochas-
tic approximation (FDSA) [9] can be applied to ∇U(θ)
(conditioned on random seeds ω). The number of simula-
tions required for FDSA is 2SD, which may be acceptable
for some small ABC problems. Our main goal is to scale
ABC to high-dimensions and for that we need an alterna-
tive stochastic approximation to∇U(θ).

In the gradient-free setting, Spall [21, 22] provides a
stochastic approximate to the true gradient using only 2
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Simulation with Common Random Numbers

Figure 1: A view of a simulator using persistent random num-
bers; in other contexts, these are called common random numbers
[10]. The horizontal line represents y and red shading ±2ε. The
shaded curved region represents 2σ of π(x|θ). The dashed lines
are f(θ, ωs) for several values of ω. The blue circles are potential
random samples from π(x|θ). For a fixed value ωs, the simulator
produces deterministic outputs that change smoothly, even though
the simulator itself is quite noisy.

forward simulations for any dimension D (though the ap-
proximation can be improved by averaging R estimates).
Spall’s simultaneous perturbation stochastic approxima-
tion (SPSA) algorithm works as follows. Let L be the
gradient-free function we wish to optimize. Each approxi-
mation randomly generates a perturbation mask (our name)
∆ of dimensionD where entry ∆d ∼ 2Bernouilli(1/2)−1
(i.e. all entries randomly set to ±1). Then L is evaluated at
θ+ dθ∆ and θ− dθ∆, giving the gradient approximation
ĝ(θ) ≈ ∂L(θ)/∂θ:

ĝ(θ) =
L (θ + dθ∆)− L (θ − dθ∆)

2dθ


1/∆1

1/∆2

...
1/∆D

 (21)

If we let ĝr(θ) be the estimate using perturbation mask
∆r, the estimate ĝ(θ) can be improved by averaging
ĝ(θ) = 1/R

∑
r ĝr(θ). Algorithm 1 shows SPSA to es-

timate ∇U(θ). The number of simulations required for
SPSA is 2SR, where R ≥ 1.

Variations of SPSA include one-sided SPSA [22] (we use
what Spall calls 2SPSA) and an algorithm for estimating
the Hessian based on the same principle as SPSA [23].
The one-sided version is attractive computationally, but for
HABC, the updates for θ require simulating two-sides any-
way (once at θ, after a step is taken, and once for the
one-sided gradient). SPSA has also been used within a
procedure for maximum-likelihood estimation for hidden
Markov models using ABC [8].

4.4 Persistent Random Numbers

The usefulness of applying persistent random numbers
(PRNs) in SPSA has been previously demonstrated [10]. In



that work, the same random numbers are used to simulate
both sides of the optimization function within the SPSA
gradient. This makes sense intuitively, as we would gen-
erally assume that the expected simulation function varies
smoothly in dθ; by using PRNs, this smoothness is eas-
ily exploited (see Figure 1). If we were to apply SPSA
to Bayesian learning, then using PRNs in the gradient step
would be analogous to using the same mini-batch for both
sides of the computation. In the case where the number of
random numbers is unknown or is itself random, we can
simply consider seeds of the random number generator in-
stead of vectors of random numbers.

In addition to using PRNs in simulations for each gradient
computation, we have found that using PRNs helps HABC
explore the parameter landscape more easily for some al-
gorithms and problems. Intuitively, for a gradient-based
sampling algorithm, it means a particle can slide along a
smooth Hamiltonian landscape because the additive noise
is suppressed. This is very similar to using dependent ran-
dom streams to drive MCMC [15, 17], the main difference
we believe is that we are using the Hamiltonian dynam-
ics to drive proposals for θ and using persistent seeds ω to
suppress simulation noise. The full benefits of suppressing
the noise may be limited, however. Recent work has shown
that scaling HMC for large data applications may be funda-
mentally limited [4]: noise from mini-batches causes biases
in trajectories, which require either increasing mini-batch
sizes (in our case, running more simulations) or decreasing
the step size.

Using random seeds (versus, say, a set of random num-
bers) allows us to treat the simulator as a black-box, setting
the random seed of its RNG without knowing the internal
mechanisms it uses to generate random numbers. In light
of our arguments above, we propose including persistent
random seeds ω in the state of our Markov chain. We will
now describe a simple Metropolis-Hastings transition op-
erator that randomly proposes flipping each seed ωs at time
t with some probability γ.

This Metropolis-Hastings transition conditions of the cur-
rent parameter location θ and proposes changing a single
random seed ω (it easily generalizes to S seeds). The
procedure is as follows: 1) propose a new seed ω

′ ∼
q(ω

′ |ω) = π(ω) (independent of the current seed and
from its uniform prior); 2) simulate deterministically x

′
=

f(θ, ω
′
); 3) compute the acceptance ratio (which reduces

to the ratio of π(y|x′)/π(y|x)). It is straightforward to
show that this leaves the target distribution invariant. The
probability of the proposal is q(x

′
, ω
′ |θ, ω) = π(ω

′
)δ(x

′−
f(θ, ω

′
)), where δ(a) is a delta function at a = 0. Because

the q has this form, the acceptance ratio simplifies:

πε(y|x
′
)π(ω

′
)π(x

′ |θ, ω′)π(ω)δ(x− f(θ, ω))

πε(y|x)π(ω)π(x|θ, ω)π(ω′)δ(x′ − f(θ, ω′))
=
πε(y|x

′
)

πε(y|x)
(22)

In pseudo-marginal ABC-MCMC one could propose
q(x

′(s)|θ) (fixing θ) and still sample correctly from the dis-
tribution of simulations with high likelihood at θ. What we
propose is slightly different. By instead keeping the ran-
dom seeds fixed, we can sample θ using HABC and use ω
as PRNs within the gradient computation step and suppress
gradient noise over time. In this way, random seeds carry
over the same additive noise from one step to the next.

5 Demonstration
We use a simple D = 1 problem to demonstrate HABC.
Let y = 1

N

∑
i ei, where ei ∼ Exp(1/θ?); θ? = 0.15,

N = 20, and y = 7.74 in our concrete example. Assum-
ing π(θ) = Gamma(α, β), the true posterior is a gamma
distribution with shape α+N and rate β+Ny. Our simu-
lator therefore generates the average of N exponential ran-
dom variates with rate λ = 1/θ. Data x sim∼ π(x|θ) are
shown in Figure 1. We have explicitly shown the smooth-
ness of the simulator by generating data along trajectories
of fixed seeds ωs; i.e. for several ωs we vary θ (dashed lines
are function f(θ, ωs)) and randomly reveal simulation data
(blue circles). The horizontal line with shading indicates
y ± 2ε, where ε = 0.37 is used throughout the demonstra-
tion.

5.1 Bias and Variance of∇Û(θ)

To test our assumption that the synthetic-likelihood model
is better suited for HABC, we ran FDSA at the true θMAP.
Using S = 5 and S = 50 and fixing ε = 0.37, we gather
10K gradients samples using kernel-ε and SL likelihoods.
These gradient estimate densities are shown in Figure 2.
An unbiased estimate of the gradient should be centered at
0. There are two important results. First, the SL estimates
have a small bias, even at S = 50. This is because it is esti-
mating the true Gamma distribution of π(x|θ) with a Gaus-
sian. We can analytically estimate this bias as S → ∞;
for this example it is −7.8 which is what SL estimates are
centered around (−9.3 for S = 5 and 7.3 for S = 50).
The kernel-ε likelihood, on the other hand, exhibits low
bias at S = 50. However, the second important result
is the variances. SL variances decrease quickly with S:
σ2 = 432 → 4.92, whereas kernel-ε starts very high and
remains high: σ2 = 1472 → 192. It is for this reason
that we have chosen to use SL likelihoods for our gradient
estimates, despite their small bias. As mentioned in Sec-
tion 4.2 it is possible that other likelihood models, such as
a kernel density estimate, might provide low bias and low
variance gradient estimates. We leave this for future work.

5.2 Posterior Inference using HABC

We ran chains of length 50K for SL-MCMC, SGLD,
SGHMC, and SGNHT versions of HABC using SL gra-
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Figure 2: Variance of gradient estimation using kernel-ε and SL
for different values of S ∈ {5, 50} and fixed ε = 0.37 (the same
used in the other results). When S = 5, the empirical estimates
of ∇Û(θMAP) are −12 ± 147 (kernel-ε) and −9.3 ± 43 (SL).
When S = 50 they are −0.80 ± 19 (kernel-ε) and −7.3 ± 4.9
(SL). Note the large discrepancy in variance. Note the limit of
S → ∞, ∇Û(θMAP) = −7.8. The bias if SL gradients is due to
its Gaussian approximation (smoothed by ε) of π(x|θ), which is
a heavy-tailed Gamma distribution (the sum of N exponentials).

dient estimates (S = 5). SL-MCMC refers to pseudo-
marginal ABC-MCMC. We note that SGHMC gave re-
sults nearly identical to SGNHT, so are not shown due to
space limitations. In one set of experiments, the same ran-
dom seeds were used for gradient computations but did not
persist over time steps; these experiments are called non-
persistent. In another set of runs, we resampled ωs at each
time step with probability γ = 0.1; these experiments are
persistent. In Figure 3 we show the posterior distributions
for these experiments; in Table 1 we report the total varia-
tional distance between the true posterior and the ABC pos-
teriors using the first 10K samples and after 50K samples
(averaged over 5 chains). Of note is the poor approximation
of SG-Thermostats when the seeds are not persistent. By
adding persistent seeds, SGNHT gives similar posteriors to
the other methods.

In Figure 4 we show the trace plots of the last 1000 samples
from a single chain for each algorithm. In the left column,
traces for non-persistent random seeds are shown, and on
the right, traces for persistent seeds. We can observe that
persistent random seeds further reduces the random walk
behavior of all three methods. We also observe small im-
provements in total variational distance for SL-MCMC and
SGLD, while SGNHT improves significantly. We find this
a compelling mystery. Is it because of the interaction be-
tween hyperparameters and stochastic gradients, or is this
an artifact of this simple model?

6 Experiments

We present experimental results comparing HABC with
standard ABC-MCMC for two challenging simulators. The
first is the blowfly model which uses stochastic differential
equations to model possibly chaotic population dynamics
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Figure 3: Posterior distributions for the demonstration prob-
lem; columns left to right: SL-MCMC, SGLD (SG-Langevin),
SGNHT (SG-Thermostats). Top row: No persistent seeds. Bot-
tom row: Persistent seeds with γ = 0.1. Histograms of the
posterior estimates are overlaid with the true posterior (dashed
line). All algorithms (except for SGNHT for non-persistent ω)
give roughly the same posterior estimate. By adding persistent ω
SGNHT achieved similar posteriors to the other algorithms.

Table 1: Average total variational distance (tvd) for the
demonstration problem. Non-persistent used no persistent
random seeds, whereas Persistent randomly proposes a new
ωs with γ = 0.1. Each algorithms’ parameters were opti-
mized for minimal tvd after 10K samples. The results for
SGHMC (not shown) and SGNHT are nearly identical.

Non-persistent Persistent
Algo 10K 50K 10K 50K

SL-MCMC 0.047 0.045 0.045 0.045
SGLD 0.049 0.048 0.048 0.043
SGNHT 0.232 0.239 0.055 0.051

[28]. Although it is a low-dimensional problem, the noise
and chaotic behavior of the model make it challenging for
gradient-based sampling. Our second experiment applies
HABC to a Bayesian logistic regression model. Although
we only use 2 classes (0’s versus 1’s), the dimensionality
is very high (D = 1568). We show that HABC can work
well despite using SPSA gradients.

6.1 Blowfly

For these experiments, a simulator of adult sheep blowfly
populations [28] is used with statistics set to those from
[14]. The observational vector y is a time-series of a fly
population counted daily. The population dynamics are
modeled using a stochastic differential equation1

Nt+1 = PNt−τ exp(−Nt−τ/N0)et +Nt exp(−δεt)

where et ∼ G(1/σ2
p, 1/σ

2
p) and εt ∼ G(1/σ2

d, 1/σ
2
d) are

sources of noise, and τ is an integer. In total, there areD =

1Equation 1 in Section 1.2.3 of the supplementary information
in [28].
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Figure 4: Trajectories of the last 1000 θ samples for the demonstration problem. Top row: Non-persistent random seeds. Bottom row:
Persistent random seeds with γ = 0.1. Each algorithm’s parameters were optimized to minimize the total variational distance. With
persistent seeds, each algorithm’s random walk behavior is suppressed. Without persistent seeds, the optimal step-size η for SGNHT is
small, resulting in an under-dispersed estimate of the posterior; when the seeds are persistent, the gradients are more consistent, and the
optimal step-size is larger and therefore there is larger injected noise. The resulting posteriors are shown in Figure 3.

6 parameters θ = {logP, log δ, logN0, log σd, log σp, τ}.
As [14] we place broad log-normal priors over θ1...5 and
a Poisson prior over τ . This is considered a challenging
problem because slight changes to some parameter settings
can produce degenerate x, while others settings can be very
noisy due to the chaotic nature of the equations. The statis-
tics from [14] are used (J = 10): the log average of 4
quantiles of N/1000, the average of 4 quantiles of the first-
order differences in N/1000, and the number of maximal
population peaks under two different thresholds.

We compare difference HABC algorithms with ABC-
MCMC for the blowfly population problem. We use
ε = {1/2, 1/2, 1/2, 1/2, 1/4, 1/4, 1/4, 1/4, 3/4, 3/4}
(slightly different ε from [14]) and S = 10 for all experi-
ments (this means that there are S random seeds). We use
SPSA with R = 2 using SL log-likelihoods for all HABC
gradient estimates. Without persistent seeds, the number of
simulations per time-step is 2SR (about double marginal
ABC-MCMC) and with it is 2SR+ 2Sγ.

Figure 5 show the posterior distributions for three pa-
rameters for SL-MCMC, SGLD, and SGNHT using non-
persistent seeds (persistent seeds, not shown, produced
very similar posteriors). In the second row we show the tra-
jectories of two parameters, clearly showing the suppressed
random walk behavior of SGLD and SG-Thermostats rela-
tive to ABC-MCMC. In Figure 6 the scatter plots of trajec-
tories are shown for two parameters. Though not shown
due to space limitations, we have found that persistent
seeds can improve convergence of the posterior predic-
tive distribution. Further experiments with persistent seeds
needs to be carried out to understand the extent to which
the help and how to determine when they are necessary, if
at all.

6.2 Bayesian Logistic Regression

We perform Bayesian inference on a logistic regression
model using the digits 0 and 1 from MNIST. Although
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Figure 6: Blowfly trajectories of two parameters over the last
1000 time-steps. Top: SGLD and Bottom: SGNHT (SG-
Thermostats). Relative to SL-MCMC (not shown), the Hamil-
tonian dynamics clearly show persistent θ trajectories.

not technically an ABC problem because we use the actual
likelihoods, it still represents a high-dimensional problem
(D = 1568) and is therefore useful to evaluate the poten-
tial of SPSA-like gradients in actual HABC problems. We
first ran stochastic gradient descent to determine θMAP us-
ing the true gradient. We then ran SGLD and SGNHT start-
ing θMAP to discover how well the algorithms explore the
posterior. We examine how SGLD and SGNHT trajectories
are affected by using SPSA instead of the true gradients.
We use n = 100 sized mini-batches and R = 10 pertur-
bations for SPSA. Figure 7 shows samples randomly pro-
jected onto 2 dimensions (1000 evenly sub-sampled from
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Figure 5: Blowfly posterior distributions (non-persistent seeds). Top row: Posteriors for three parameters for SL-MCMC (left set of
three), SGLD (SG-Langevin) (middle), and SGNHT (SG-Thermostats) (right). Bottom row: Last trajectories of the last 1000 samples
for two parameters for the same algorithms.

Figure 7: Bayesian logistic regression sampling trajectories ran-
domly projected. The yellow circle is the projected MAP of θ.

10K). We can clearly see that the trajectories using SPSA
exhibit very similar behavior to Bayesian learning with the
true gradients. This is very positive result that indicates
HABC can successfully exploit the noisy and less informa-
tive gradients of SPSA.

7 DISCUSSION AND CONCLUSION

Hamiltonian ABC proposes a new set of algorithms for
Bayesian inference of likelihood-free models. HABC
builds upon the connections between Hamiltonian Monte
Carlo with stochastic gradients and well-established gradi-
ent approximations based on a minimal number of forward
simulations, even in high-dimensions. We have performed
some preliminary experiments showing the feasibility of
running HABC on both small and large problems, and we
hope that the door has been opened for exploration of larger
simulation-based models using HABC.

Another innovation we introduce is the use of persistent
random seeds to suppress the simulator noise and there-
fore smooth the simulation landscape over a local region

of parameter space. For some algorithms run on certain
models, improved performance has been observed. This is
most likely to be the case for simulators with large additive
noise and algorithms that benefit from long Hamiltonian
trajectories (i.e. SGHMC and SGNHT). We feel that new
classes of ABC algorithms could develop from using per-
sistent random seeds, not just gradient-based samplers but
traditional ABC-MCMC.

There are several unresolved and open questions regarding
the application of stochastic gradients to ABC. The first
issue is the importance of the bias-variance relationship
for different ABC likelihood models. We found that using
gradients based on the synthetic-likelihood greatly reduced
their variance, but introduced a small bias, because of its
Gaussian assumption. The second issue is setting algorithm
parameters, in particular the step-sizes η, the injected noise
C (for SGHMC/SGNHT), and the number of SPSA repeti-
tionsR. All of these parameters are highly interactive. Can
we use statistical tests during the MCMC run to determine
R? Should η and C be set differently in the ABC setting?
One final issue is monitoring or determining whether the
correct amount of noise is being injected to ensure proper
sampling. In SGLD [25], for example, we can always turn
down η so that the injected noise term dominates, but when
our goal is efficient exploration of the posterior, this is not
a very satisfying solution.

Expensive simulators are an important class of models
that we do not address in this work. However, previous
work in Bayesian inference has shown the usefulness of
HMC-based proposals based on Gaussian process of log-
likelihood surfaces [18]. We could similarly use HABC
with ABC surrogate models [14, 27] to minimize simula-
tion calls, yet still benefit from Hamiltonian dynamics.
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ESAIM: Mathematical Modelling and Numerical
Analysis, 43(04):743–755, 2009.

[12] Marin, J.-M., Pudlo, P., Robert, C.P., and Ryder,
R.J. Approximate bayesian computational methods.
Statistics and Computing, 22:1167–1180, 2012.

[13] Marjoram, Paul, Molitor, John, Plagnol, Vincent, and
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