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Abstract

Network analysis needs tools to compare net-
works and assess the significance of differences
between networks. We propose a principled sta-
tistical approach to network comparison that ap-
proximates networks as probability distributions
on negatively curved manifolds. We outline the
theory, as well as implement the approach on
simulated networks, where its accuracy can be
confirmed.

1 INTRODUCTION

Many scientific questions about networks amount to prob-
lems of network comparison: one wants to know whether
networks observed at different times, or in different lo-
cations, or under different environmental or experimental
conditions, actually differ in their structure. Such prob-
lems arise in neuroscience (e.g., comparing subjects with
disease conditions to healthy controls, or the same sub-
ject before and after learning), in biology (e.g., compar-
ing gene- or protein- interaction networks across species,
developmental stages or cell types), and in social science
(e.g., comparing different social relations within the same
group, or comparing social groups which differ in some
outcome). That the graphs being compared are not iden-
tical or even isomorphic is usually true, but scientifically
unhelpful. What we need is a way to say if the difference
between the graphs exceeds what we should expect from
mere population variability or stochastic fluctuations. Net-
work comparison, then, is a kind of two-sample testing,
where we want to know whether the two samples could
have come from the same source distribution. It is made
challenging by the fact that the samples being compared are
very structured, high-dimensional objects (networks), and
more challenging because we often have only one graph in
each sample.

We introduce a method for network comparison. The cru-
cial idea is to approximate networks by continuous geo-

metric objects, namely probability densities, and then do
two-sample bootstrap tests on those densities. Specifically,
we draw on recent work showing how many real-world
networks are naturally embedded in hyperbolic (negatively
curved) manifolds. Graphs then correspond to clouds of
points in hyperbolic space, and can be viewed as being
generated by sampling from an underlying density on that
space. We estimate a separate density for each of the two
networks being compared, calculate the distance between
those densities, and compare it to the distance expected un-
der sampling from a pooled density estimate.

Our method, while conceptually fairly straightforward, is
admittedly more complicated than the current practice in
the scientific literature, which is to compare networks by
taking differences in ad hoc descriptive statistics (e.g., av-
erage shortest path lengths, or degree distributions). It
is very hard to assess the statistical significance of these
differences, and counter-examples are known where the
usual summary statistics fail to distinguish graphs which
are qualitatively radically different (e.g., grid-like graphs
from highly clustered tree-like ones). Similarly, whole-
graph metrics and similarity measures are of little statistical
use, without probability models to gauge their fluctuations.
Below, we show through simulations that our method let
us do network comparisons where (i) we can assess signifi-
cance, (ii) power is high for qualitative differences, and (iii)
when we detect differences, we also get some idea how the
networks differ.

2 MOTIVATION AND BACKGROUND

A fundamental issue with network comparison, mentioned
in the introduction, is that we often have only two networks
to compare, and nonetheless need to make some assess-
ment of statistical significance. This can obviously only be
done by regarding the networks as being drawn from (one
or more) probability models, and restricting the form of the
model so that an observation of a single graph is informa-
tive about the underlying distribution. That is, we must
restrict ourselves to network models which obey some sort



of law of large numbers or ergodic theorem within a single
graph, or else we always have n = 1. As in any other test-
ing problem, the better the alignment between the model’s
restrictions and actual properties of the graphs, the more
efficiently the test will use the available information.

Salient properties of actual networks Over the last two
decades, it has become clear that many networks encoun-
tered in the real world, whether natural or human-made,
possess a number of mathematically striking properties
(Newman, 2010). They have highly right-skewed degree
distributions, they show the “small-world effect” of short
average path lengths (growing only logarithmically with
the number of nodes) but non-trivial transitivity of links,
and high clusterability, often with a hierarchical arrange-
ment of clusters. This is all a far cry from what is expected
of conventional random graphs. While a large literature of
parametric stochastic models has developed to try to ac-
count for these phenomena (Newman, 2010), there are few
situations where a data analyst can confidently assert that
one of these models is even approximately well-specified.

Current approaches to network comparison The typi-
cal approach in the literature is ad hoc comparison of com-
mon descriptive statistics on graphs (path lengths, clus-
tering coefficients, etc.). These statistics are often mis-
applied, as in the numerous incorrect claims to have found
“power law” or “scale-free” networks (Clauset et al., 2009),
but that is not the fundamental issue. Even the recent au-
thoritative review of, and advocacy for, the “connectomics”
approach to neuroscience by Sporns (2010) takes this ap-
proach. Disturbingly, Henderson and Robinson (2011)
show that, with commonly used choices of statistics and
criteria, this approach cannot distinguish between com-
plex, hierarchically-structured networks, and simple two-
dimensional grids (such as a grid over the surface of the
cortex).

More formally, Pao et al. (2011) study the power of tests
based on such summaries to detect departures from the null
hypothesis of completely independent and homogeneous
edges (Erdos-Renyi graphs) in the direction of independent
but heterogeneous edges. Their results were inconclusive,
and neither their null nor the alternative models are plau-
sible for real-world networks. Apart from this, essentially
nothing is known about either the significance of such com-
parisons or their power, how to combine comparisons of
different descriptive statistics, which statistics to use, or if
significant differences are found, how to infer changes in
structure from them. The issue of statistical significance
also afflicts graph metrics and similarity measures, even
those with plausible rationales in graph theory (e.g., that
of Koutra et al. 2013).

Hunter et al. (2008) show one way to check goodness-of-
fit for a model of a single network, using simulations to

check whether the observed values of various graph statis-
tics are plausible under the model’s sampling distribution.
But they are unable to combine checks with different statis-
tics, cannot find the power of such tests, and do not touch
on differences across networks.

More relevantly to comparisons, Middendorf et al. (2005)
use machine-learning techniques to classify networks as
coming from one or another of various generative models,
taking features of the network (such as the counts of small
sub-graphs, or “motifs”) as the inputs to the classifier. They
demonstrate good operating characteristics in simulations,
but rely on having a good set of generative models to start
with.

The approach to network comparison most similar to ours
is Tang et al. (2014), which, like our proposed methods,
models the nodes as drawn from densities on a latent space
and attaches edges based on the geometric relationship be-
tween node coordinates. The primary difference between
both approaches is the choice of latent space. Tang et al.
(2014) use a Euclidean inner product space, allowing for
an algebraic method of network inference. Our choice is
motivated by the desire to pick a latent space that matches
geometric properties of the real-world networks we aim to
study.

A final related approach to network comparison is Ros-
vall and Bergstrom (2010), which like our proposed meth-
ods, uses bootstrap resampling from models fit to the orig-
inal networks to assess significance of changes. The goal
there however is not to detect global changes in the net-
work structure, but local changes in which nodes are most
closely tied to one another.

Hyperbolic geometry of networks While waiting for
scientifically-grounded parametric models, we seek a class
of non-parametric models which can accommodate the
stylized facts of complex networks. Here we draw on
the more recent observation that for many real-world net-
works, if we view them as metric spaces with distance
given by shortest path lengths, the resulting geometry is
hyperbolic (Albert et al., 2014, Kennedy et al., 2013, Kri-
oukov et al., 2010), rather than Euclidean. Said another
way, many real-world networks can be naturally embed-
ded into negatively-curved continuous spaces. Indeed, Kri-
oukov et al. (2010) show that if one draws points repre-
senting nodes according to a “quasi-uniform” distribution
on the hyperbolic plane (see (2) below), and then connects
nodes with a probability that decays according to the hyper-
bolic distance between the representative points, one nat-
urally obtains graphs showing right-skewed degree distri-
butions, short average path lengths, and high, hierarchical
clusterability.

Continuous latent space models The model of (Kri-
oukov et al., 2010) is an example of a continuous latent



space model, characterized by a metric space (M, ⇢), a link
probability function W , and a probability density f on M ,
the node density. Points representing nodes are drawn iidly
from f , and edges form independently between nodes at x
and y with probability W (x, y) = W (⇢(x, y)) decreasing
in the distance. As a hierarchical model,
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is the indicator variable for an edge between
nodes i and j. Holding M, ⇢,W fixed, but allowing f to
vary, we obtain different distributions over graphs. Two
densities f, g on M determine the same distribution over
graphs if f is the image of g under some isometry of
(M, ⇢). Note that node densities can be compared regard-
less of the number of nodes in the observed graphs.

The best-known continuous latent space model for social
networks is that of Hoff et al. (2002), where the metric
space is taken to be Euclidean and the density f is as-
sumed to be Gaussian. Our general methodology for net-
work comparison could certainly be used with such models.
However, the striking properties of large real-world graphs,
such as their highly-skewed degree distributions, lead us
to favor the sort of hyperbolic model used by Krioukov
et al. (2010), but without their restrictive assumptions on
f . Rather, we will show how to non-parametrically esti-
mate the node density from a single observed graph, and
then reduce network comparison to a comparison of these
probability densities.

Continuous latent space models are themselves special
cases of models called graphons, lifting the restriction that
M be a metric space, and requiring of the edge probability
function W (x, y) only that it be measurable and symmet-
ric in its arguments1. Any distribution over infinite graphs
which is invariant under permuting the order of the nodes
turns out to be a mixture of such graphons (Kallenberg,
2005, ch. 7). Moreover, as one considers larger and larger
graphs, the properties of the observed graph uniquely iden-
tify the generating graphon (Diaconis and Janson, 2008);
what almost comes to the same thing, the limit of a se-
quence of growing graphs is a graphon (Borgs et al., 2006,
Lovász, 2012, Borgs et al., 2014). One might, then, try
to use our approach to compare graphons with estimated
f and W . While graphon estimation is known to be possi-
ble in principle (Bickel et al., 2011, Choi and Wolfe, 2014),
there are no published, computationally feasible methods to
do it. Moreover, we expect to gain power by tailoring our
models to enforce salient network properties, as described
above. Accordingly, we turn to some of the important as-

1Graphons are often defined to have M = [0, 1] and f

Lebesgue measure. One can show that any graphon over another
measure space or with another node density is equivalent to one of
this form, i.e., generates the same distribution over infinite graphs
(Kallenberg, 2005, ch. 7).

FIGURE 1: Models of H2 A connected component of the hyper-
boloid x

2
3 = 1 + x

2
1 + x

2
2 (left), with the metric given by the

shortest possible Minkowski length of a path between points along
the surface, is isometric to the Poincaré half-plane (right) under a
suitable non-Euclidean metric. The half-plane is tiled into regions
of equal area with respect to the metric. (Images from Rocchini
(2007), under a Creative Commons license.)

pects of hyperbolic geometry.

2.1 HYPERBOLIC SPACES

Hyperbolic spaces are metric spaces which are negatively
curved — the angles in a triangle of geodesics sum to less
than 180 degrees. The oldest example of such a space is
the surface of (one sheet of) the hyperboloid, the surface of
points (x1, x2, x3) 2 R3 such that
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with the distance between points taken to be the smallest
possible Minkowski length of a path between them along
the surface. Another, and perhaps even more basic, exam-
ple of a hyperbolic space is a tree, again with the shortest-
path metric. Our starting data will be observed networks,
which are typically at least locally tree-like, and so also
possess a hyperbolic geometry (Jonckheere et al., 2008).

As explained above, we aim to represent this discrete hy-
perbolic geometry with a density over a continuous hyper-
bolic space. For concreteness, we will focus on the hyper-
bolic plane H2, whose most basic geometric model is just
the surface of the hyperboloid. It will be more convenient
to work with another model of H2: the Poincaré half-plane
of C,

H2 = {x+ iy | x 2 R, y 2 (0,1)}
equipped with the metric d⇢

2
= (dx

2
+ dy

2
)/y

2.

As mentioned above, (Krioukov et al., 2010) showed that
if the density of nodes on the Poincaré half-plane is one of
the quasi-uniform densities,

q

�,R

(re

i✓

) =

� sinh �r

2⇡(sinh r) cosh (�R� 1)

, � > 0 (2)

one obtains graphs which reproduce the stylized facts of
right-skewed degree distributions, clusterability, etc., for



FIGURE 2: Densities on H2 1000 points drawn iidly from quasi-
uniform densities, Eq. 2 (top; � = 1, 10, 30 from left to right,
R = 1 throughout), and from hyperbolic Gaussian densities, Eq.
8 (bottom, � = 0.05, 0.1, 0.3 from left to right).

FIGURE 3: Hyperbolic latent-space graphs Graphs formed by
drawing 30 node locations as in Fig. 2, and applying the link
probability function W (x, y) = ⇥(⇢(x, y) � 1.5). Note how
the graphs in the bottom row become more clustered as the � pa-
rameter increases from left to right.

a wide range of link probability functions W , including
Heaviside step functions ⇥(⇢� c). Note that the mode of q
is always at 0+ i, with the parameter � > 0 controlling the
dispersion around the mode, and R > 0 being an over-all
scale factor. As � grows, the resulting graphs become more
clustered.

We will introduce another family of densities on H2, the
hyperbolic Gaussians, in the next section.

Fig. 2 shows samples from quasi-uniform distributions on
H2, and Fig. 3 the resulting graphs. While we will use
such networks as test cases, we emphasize that we will go
beyond (2) to a fully nonparametric estimation of the node
density.

3 METHOD

Our goal is to compare networks by comparing node den-
sities. Our procedure for estimating node densities has in

FIGURE 4: Schematic of network inference

turn two steps (Figure 4): we embed the nodes of an ob-
served network into H2 (§3.1), and then estimate a density
from the embedded points (§3.2). We may then compare
the observed difference between estimated node densities
from two graphs to what would be expected if we observed
two graphs drawn from a common node density (§3.3).

3.1 GRAPH EMBEDDING

An embedding of a graph G is a mapping of its nodes V
G

to points into a continuous metric space (M, ⇢) which pre-
serves the structure of the graph, or tries to. Specifically,
the distances between the representative points should
match the shortest-path distances between the nodes, as
nearly as possible. This is a multidimensional scaling prob-
lem, where typically one seeks the embedding � : V

G

7!
M minimizing

X

(v,w)2V

2
G

(⇢

G

(v, w)� ⇢(�(v),�(w)))

2
, (3)

where ⇢

G

is the shortest-path-length metric on V

G

. Clas-
sically, when M = Rn and ⇢ is the Euclidean metric, the
arg-min of (3) can be found by spectral decomposition of
the matrix of ⇢

G

(v, w) values (Hand et al., 2001, ch. 3).

Spectral decomposition does not however give the arg-min
of (3) when M = H2 with the appropriate non-Euclidean
metric. While the solution could be approximated by gra-
dient descent (Cvetkovski and Crovella, 2011), we fol-
low Begelfor and Werman (2005) in changing the problem
slightly. They propose minimizing

X

(v,w)2V

2
G

(cosh ⇢

G

(v, w)� cosh ⇢(�(v),�(w)))

2 (4)

which can be done exactly via a spectral decomposition.
Specifically, let R

ij

= cosh ⇢

G

(i, j), whose leading eigen-
vector is u1 and whose trailing eigenvectors are u2 and u3.
Then the ith row of the matrix (u1u2u3) gives the H2 coor-
dinates for node i. If R has one positive eigenvalue, exactly



2 negative eigenvalues, and all remaining eigenvalues van-
ish, this defines an exact isometric embedding (Begelfor
and Werman, 2005).

We have not found a way of estimating the node density
which avoids the initial step of embedding. Our method is,
however, fairly indifferent as to how the nodes are embed-
ded, so long as this is done well, and in a way which does
not pre-judge the form of the node density.

FIGURE 5: Re-embedded Generated Graphs Results of embed-
ding simulated graphs, formed as in Fig. 3, back into H2. Com-
parison with Fig. 2 illustrates the fidelity of the embedding pro-
cess.

3.2 DENSITY ESTIMATION

Having embedded the graph into H2, we estimate the node
density. Our procedure for doing so is more easily grasped
by first reviewing the connections between kernel den-
sity estimation, convolution, and Fourier transforms in Eu-
clidean space.

Kernel density estimation in Euclidean space as con-
volution In Euclidean space, kernel density estimation
smooths out the empirical distribution by adding a little
bit of noise around each observation. Given observations
z1, z2, . . . zn 2 Rp, and a normalized kernel function K

h

,
the ordinary kernel density estimator bfn,h at a point z 2 Rp

is
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where the third line defines the empirical measure bP
n

, and
⇤ denotes convolution. In words, the kernel density esti-
mate is the convolution of the empirical measure with the

kernel. Here the role of the kernel K
h

is not so much to be a
distribution over the Euclidean space, as a distribution over
translations of the space: K

h

(z�z

i

) is really the density at
the translation mapping the data point z

i

into the operating
point z. As it happens, the group of translations of Rp is
also Rp, but when we adapt to non-Euclidean spaces, this
simplifying coincidence goes away.

Since, in Euclidean space, the Fourier transform F converts
convolutions into products (Stein and Weiss, 1971),

F
h
b
f

n,h

i
(s) = F [K

h

] (s)F
h
b
P
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i
(s)

This relation often greatly simplifies computing b
f

n,h. It
also lets us define the bandwidth h, through the relation
F [K

h

] (s) = F [K] (hs).

It is well known that kernel density estimators on Rp, with
h ! 0 at the appropriate rate in n, are minimax-optimal
in their L2 risk (van der Vaart, 1998). With suitable mod-
ifications, this still holds for compact manifolds (Pelletier,
2005), but the hyperbolic plane H2 is not compact.

3.2.1 H2-Kernel Density Estimator

Our method for density estimation on H2 is a generaliza-
tion of Euclidean kernel density estimation. In Rp, the
kernel is a density on translations of Rp. For H2, the ap-
propriate set of isometric transformations are not transla-
tions, but rather the class of “Möbius transformations” rep-
resented by the Lie group SL2 (Terras, 1985, Huckemann
et al., 2010). An H2 kernel, then, is a probability density
on SL2. We may write K

h

(z, z

i

) to abbreviate the density
the kernel K

h

assigns to the Möbius transform taking z

i

to
z. The generalized kernel density estimator on H2 takes the
form

b
f

n,h

(z) =

1

n

nX

i=1

K

h

(z, z

i

) (5)

= (K

h

⇤ bP
n

)(z) (6)

In Euclidean space, the Fourier transform analyzes func-
tions (or generalized functions, like bP

n

) into linear com-
binations of the eigenfunctions of the Laplacian opera-
tor. The corresponding operation for H2 is the Helga-
son, or Helgason-Fourier, transform H (Terras, 1985). The
Fourier basis functions are indexed by Rp, which is the
group of translations; for analogous reasons, the Helgason
basis functions are indexed by C⇥SO2. Many of the formal
properties of the Fourier transform carry over to the Helga-
son transform. (See App. A.) In particular, convolution still
turns into multiplication:

H
h
b
f

n,h

i
= H [K

h

]H
h
b
P
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i
, (7)

where H[K

h

] denotes the Helgason-Fourier transform of
the well-defined density on H2 induced by the density K

h



on SL2, and we define the bandwidth h through

H [K

h

] (s,M) = H [K] (hs,M).

As in Euclidean density estimation, h may be set through
cross-validation.

In a separate manuscript (Asta, 2014), we show that the
L2 risk of (5) goes to zero at the minimax-optimal rate,
under mild assumptions on the smoothness of the true den-
sity, and of the kernel K. (This is a special case of broader
results about generalized kernel density estimation on sym-
metric spaces.) The assumptions on the kernel are satisfied
by what Huckemann et al. (2010) calls “hyperbolic Gaus-
sians”, densities on H2 with parameter ⇢ defined through
their Helgason transforms,

H [K] (s,M) / e

⇢s(s�1)
. (8)

Just as the ordinary Gaussian density is the unique solution
to the heat equation with a point source in Euclidean space,
the hyperbolic Gaussian is the unique (SO2-invariant) so-
lution to the heat equation on H2 (Terras, 1985).

3.3 NETWORK COMPARISON

Combining embedding with kernel density estimation in
H2 gives us a method of estimating node densities, and so
of estimating a hyperbolic latent space model for a given
network. We now turn to comparing networks, by compar-
ing these estimated node densities.

Our method follows the general strategy advocated in Gen-
ovese et al. (2013). Given two graphs G1 and G2, we may
estimate two separate network models

bP1 =

bP(G1),
b
P2 =

b
P (G2).

We may also pool the data from the two graphs to estimate
a common model

bP12 =

bP(G1, G2).

We calculate a distance d

⇤
= d(

bP1,
bP2) using any suit-

able divergence. We then compare d

⇤ to the distribution of
distances which may be expected under the pooled model
bP12. To do so, we independently generate G

0
1, G

0
2 ⇠ bP12,

and calculate
d(

bP(G

0
1),
bP(G

0
2)).

That is, we bootstrap two independent graphs out of the
pooled model, fit a model to each bootstrapped graph, and
calculate the distance between them. Repeated over many
bootstrap replicates, we obtain the sampling distribution of
d under the null hypothesis that G1 and G2 are drawn from
the same source, and any differences between them are due
to population variability or stochastic fluctuations.2

2This method extends easily to comparing sets of graphs,
G11, G12, . . . G1n vs. G21, G22, . . . G2m, but the notation grows
cumbersome.

In our case, we have already explained how to find bP1 and
bP2. Since we hold the latent space M fixed at H2, and the
link probability function W fixed, we can label our mod-
els by their node densities, bfn,h

1 and bfn,h

2 . To obtain the
pooled model bP12, we first embed G1 and G2 separately
using generalized multidimensional scaling, and then do
kernel density estimation on the union of their embedded
points.

The generalized multidimensional scaling technique we
use depends only on the eigendecomposition of matrices
determined by shortest path lengths. Therefore the L2 dif-
ference

k bfn,h

1 � b
f

n,h

2 k2 (9)

between two estimated node densities bfn,h

1 ,

b
f

n,h

2 is 0 if
and only if the original sets of vertices from the different
samples are isometric and hence (9) approximates a well-
defined metric d on our continuous latent space models.
Moreover, since the Plancherel identity carries over to the
Helgason-Fourier transform (Terras, 1985),

d2(f1, f2) = kH [f1]�H [f2] k2, (10)

and, for our estimated node densities, H [f ] is given by (7).
Appendix B gives full details on our procedure for comput-
ing the test statistic (10).

3.4 THEORETICAL CONSIDERATIONS

Let us sum up our method, before turning to theoretical
considerations. (0) We observe two graphs, G1 and G2. (1)
Through multi-dimensional scaling, we embed them sepa-
rately in H2 (§3.1), getting two point clouds, say Z1 and
Z2. (2) From each cloud, we estimate a probability density
on H2, using hyperbolic Gaussian kernels, getting bfn1,h1

and bfn2,h2 (§3.2). We calculate k bfn1,h1 � b
f

n2,h2k2 using
(10). We also form a third density estimate, bfn1+n2,h12 ,
from Z1 [ Z2. (3) We generate two independent graphs
G

⇤
1, G

⇤
2 from b

f

n1+n2,h12 according to (1), and subject these
graphs to re-embedding and density estimation, obtaining
b
f

n1,h1⇤ and bfn2,h2⇤ and so k bfn1,h1⇤ � b
f

n2,h2⇤k2. Finally,
(4) repeating step (3) many times gives us the sampling dis-
tribution of the test statistic under the null hypothesis that
G1 and G2 came from the same source, and the p-value is
the quantile of k bfn1,h1 � b

f

n2,h2k2 in this distribution.

The final step of computing the p-value is a fairly unprob-
lematic bootstrap test. The previous step of generating new
graphs from the pooled model is also an unproblematic ex-
ample of a model-based bootstrap. The kernel density es-
timates themselves are consistent, and indeed converge at
the minimax rate (Asta, 2014), given the point clouds on
the hyperbolic plane. This makes it seem that the key step
is the initial embedding. Certainly, it would be convenient
if the graphs G1 and G2 were generated by a hyperbolic



FIGURE 6: Comparing Quasi-Uniforms Power of our test, at
size ↵ = 0.1, for detecting the difference between a 100-node
graph generated from the quasi-uniform density q1,1 and a 100-
node graph generated from q�,1, as a function of the dispersion
parameter �.

latent space model, and the embedding was a consistent es-
timator of the latent node locations. However, such strong
conditions are not necessary. Suppose that if G1 ⇠ P1

and G2 ⇠ P2 6= P1, then bfn,h

1 ! f1 and bfn,h

2 ! f2,
with kf1 � f2k2 > 0. Then at any nominal size (signifi-
cance level) ↵ > 0, the power of the test will go to 1. For
the nominal size of the test to match the actual size (prob-
ability of incorrectly rejecting the null hypothesis), how-
ever, will presumably require a closer alignment between
the hyperbolic latent space model and the actual generating
distribution.

4 SIMULATIONS

Comparison of Graphs with Quasi-Uniform Node Den-
sities In our first set of simulation studies, we generated
graphs which exactly conformed to the hyperbolic latent
space model, and in fact ones where the node density was
quasi-uniform (as in Fig. 3). One graph had 100 nodes,
with latent locations drawn from a q1,1 distribution; the
other, also of 100 nodes, followed a q

�,1 distribution, with
varying �. We used 50 bootstrap replicates (pairs of resam-
pled networks) in each test, kept the nominal size ↵ = 0.1,
and calculated power by averaging over 25 independent
graph pairs (the number of power tests). Despite the graphs
having only 100 nodes, Fig. 6 shows that our test has quite
respectable power.

Comparison of Watts-Strogatz Graphs We have ex-
plained above, §2, why we expect hyperbolic latent space
models to be reasonable ways of summarizing the structure
of complex networks. However, they will also be more or
less mis-specified for many networks of interest. We thus
applied our methods to a class of graph distributions which
do not follow a hyperbolic latent space model, namely
Watts-Strogatz networks (Watts and Strogatz, 1998). Our

simulations used 100 node networks, with the base topol-
ogy being a 1D ring with a branching factor of 40, and vari-
able re-wiring probabilities. These graphs show the small-
world property and high transitivity, but light-tailed degree
distributions. Even in these cases, where the hyperbolic
model is not the true generator, our comparison method had
almost perfect power (Fig. 7).

FIGURE 7: Comparing Watts-Strogatz models Above, Watts-
Strogatz graphs formed by re-wiring 1D ring lattices (85 nodes,
branching factor 40) with probability p per edge; from left to right
p = 0.1, 0.2, 0.3. Below, embeddings of the graphs into H2. At
nominal ↵ = 0.1, the power to detect these differences in p was
1.0 to within Monte Carlo error.

5 CONCLUSIONS

We have shown how nonparametric hyperbolic latent space
models let us compare the global structures of networks.
Our approach has its limits, and it may work poorly
when the networks being compared are very far from hy-
perbolic. However, our experiments with Watts-Strogatz
graphs show that it can detect differences among graph dis-
tributions from outside our model class. When we do detect
a change in structure, we have a model for each network,
namely their node densities, and the difference in node den-
sities is an interpretable summary of how the networks dif-
fer. Many important directions for future work are now
open. One important direction is a better handling of sparse
networks, network growth, and the comparison of networks
of different sizes — perhaps through some size-dependent
modification of the link-probability function W , as in Kri-
oukov et al. (2010), or the sort of scaling of graphons intro-
duced in Borgs et al. (2014). But this should only extend
our method’s scope.
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