
Stochastic Integration via Error-Correcting Codes

Dimitris Achlioptas
Computer Science Department

University of California, Santa Cruz
Santa Cruz, CA 95064, USA

Pei Jiang
Computer Science Department

University of California, Santa Cruz
Santa Cruz, CA 95064, USA

Abstract

We consider the task of summing a non-negative
function f over a discrete set Ω, e.g., to com-
pute the partition function of a graphical model.
Ermon et al. have shown that in a probabilistic
approximate sense summation can be reduced to
maximizing f over random subsets of Ω defined
by parity (XOR) constraints. Unfortunately,
XORs with many variables are computationally
intractable, while XORs with few variables have
poor statistical performance. We introduce two
ideas to address this problem, both motivated by
the theory of error-correcting codes. The first is
to maximize f over explicitly generated random
affine subspaces of Ω, which is equivalent to un-
constrained maximization of f over an exponen-
tially smaller domain. The second idea, closer in
spirit to the original approach, is to use systems
of linear equations defining Low Density Par-
ity Check (LDPC) error-correcting codes. Even
though the equations in such systems only con-
tain O(1) variables each, their sets of solutions
(codewords) have excellent statistical properties.
By combining these ideas we achieve dramatic
speedup over the original approach and levels of
accuracy that were completely unattainable.

1 INTRODUCTION

The partition function of a graphical model with unnormal-
ized probability function f over a domain Ω is the integral
(sum) of f over Ω. The partition function is a central object
of Bayesian statistics. While some inference tasks, such as
MAP or MLE, can be completed without it, knowledge of
(an approximation of) the partition function is necessary for
marginalization, prediction, sampling, and model compar-
ison, as a proper distribution is required. In general, parti-
tion function estimation is intractable [1] and, in practice,
becomes problematic rapidly as |Ω| increases.

To overcome this problem approximation schemes, such as
MCMC [7], or variational methods [5] are commonly used.
However, variational methods, in general, do not provide
accuracy certificates/guarantees, while the mixing time of
MCMC is similarly unpenetratable in most applications. In
recent years, Ermon, Gomes, Sabharwal, and Selman have
pioneered an alternative approach [14, 13, 15]. The gen-
eral idea is to reduce the counting problem into a collec-
tion of random optimization problems, the final estimate
being a statistic over the optima found. Each random prob-
lem amounts to maximizing f over a random set R ⊆ Ω,
defined via a random system of parity constraints. Realiz-
ing this idea, the WISH algorithm [14] is shown to yield
a constant-factor approximation for the partition function
given access to an optimization oracle. Importantly, the
approximation guarantee requires the induced optimization
problems to be solved to optimality, an assumption that
clearly does not hold in general. Nevertheless, empirically,
the WISH algorithm achieves remarkable accuracy com-
pared to other established algorithms [14, 13, 15], leverag-
ing the practical advancements in optimization software.

The idea of adding parity constraints originates in the work
of Sipser [16] as a reduction technique. Most famously,
it was used by Valiant and Vazirani [19] to reduce SAT to
Unique SAT. A variant of the technique plays an impor-
tant role in the proof of Toda’s theorem [18]. The idea has
since been applied to various counting problems including
#SAT [11], #k-SAT [17], and#CSP [12]. WISH [14] can
be regarded as a natural generalization to weighted CSPs
(or, equivalently, Markov Random Fields (MRFs)).

To provably approximate the partition function of an MRF
with n variables, the parity constraints added must each
have n/2 variables on average. Unfortunately, the addition
of such long constraints makes the MAP problem dramat-
ically harder since each constraint (i) amounts to a clique
involving half the variables of the MRF, and (ii) collapses
the probability function whenever violated. In practice, this
additional hardness can cause a MAP solver to submit dra-
matically suboptimal solutions under any reasonable time
constraint, impairing the accuracy of estimation.

In all prior works the addition of random parity constraints
is framed as hashing and the statistical properties of the
resulting subsets of the domain is discussed in terms of
independence properties of the corresponding families of
hash functions. We break with this paradigm by taking a
step back and asking: “how can we define subsets of the
domain so that they are computation-friendly while having
good statistical properties?” We answer the question twice,
the two answers corresponding to two different notions of
“friendliness” under the same notion of “goodness”.

Regarding goodness we will see that the key statistical
property is pairwise negative correlation of membership,
i.e., that for any two distinct σ, σ′ ∈ Ω, it should be that
Pr[Both σ, σ′ ∈ R] ≤ Pr[σ ∈ R] Pr[σ′ ∈ R]. (Long parity
constraints achieve this with equality.) Equivalently, con-
ditioning on σ ∈ R should not make any σ′ 6= σ more
likely to be in R (but can make it less). Visualizing this
as σ ∈ R exerting a repulsive force suggests an error-
correcting code. Indeed, any linear error-correcting code
C ⊆ Ω = {0, 1}n with 2n−d elements can be specified as
C = {σ ∈ Ω : Aσ = b}, where A ∈ {0, 1}d×n is any rank
d matrix and operations are over GF(2), i.e., as the set of
solutions to parity constraints.

Equipped with this idea, our first notion of computation-
friendliness can be seen as “dimensionality reduction”.
That is, instead of operating over {0, 1}n and maximizing
f overR by setting f(σ) = 0 for σ ∈ Ω\R, we can operate
over R directly by taking G ∈ {0, 1}n×d to be a generator
of the subspace Aσ = b and maximizing f(Gx + v) over
x ∈ {0, 1}d. We thus get an unconstrained optimization
problem over a domain of size 2d instead of 2n. For any
optimizer treating f as a black box, as is typical in MAP
estimation, this makes optimizing f dramatically easier.

Our second notion of computation-friendliness can be seen
as endowing Ω \R with a “gradient” (pointing towards R),
so that satisfying Aσ = b does not impose significant com-
putational burden. Again drawing insights from the the-
ory of error-correcting codes, the idea is to desire the num-
ber of violated equations of Aσ = b to be a function that
has few local minima that are not global minima, i.e., not
codewords, thus making its global minima easily accessi-
ble by some naive local method such as gradient descent.
In other words, to make the optimizer’s life easy, we would
like C = R to be an “easily decodable” code. This is pre-
cisely what we will achieve by taking the random sets R to
correspond to the codewords of LDPC codes constructed
by the Progressive-Edge-Growth construction [3].

Finally we note that independently of how the optimiza-
tion problems are constructed, the number of instances that
need to be solved can be reduced significantly in practice
by using branch-and-bound. Combined with the two ideas
mentioned above, this gives a dramatic speedup over WISH
and entirely new levels of accuracy.

2 BACKGROUND

For the benefit of clarity, as in previous works, we will
restrict our exposition to Ω = {0, 1}n and only approxi-
mate the partition function, Z, within a fixed constant fac-
tor, e.g., 32 (recall that, typically, Z ∼ exp(n)). All ideas
presented generalize readily to Ω = Dn for any finite D.

2.1 BINARY MARKOV RANDOM FIELD

Given Ω = {0, 1}n and a collection of non-negative func-
tions, F = {ψα}, defined on subcubes of Ω, let

f(σ) =
∏
ψα∈F

ψα({σ}α) ,

where {σ}α is the subset of variables entailed by ψα. The
partition function is the sum of f over all configurations:

Z =
∑
σ∈Ω

f(σ) .

2.2 ESTIMATION BY STRATIFICATION

We start by briskly revisiting (and, to some extent, refor-
mulating) the groundbreaking work of Ermon et al. [14]
connecting partition function estimation to optimization.

The first key idea is to stratify f over Ω into quantiles and
estimate Z by bounding from above and below the contri-
bution of each quantile. Specifically, and w.l.o.g., assume
that the configurations are sorted in descending order ac-
cording to f , i.e., f(σ1) ≥ f(σ2) ≥ . . . ≥ f(σ2n). Let
bi = f(σ2i). Now, define the lower sum as

L := b0 +

n−1∑
i=0

bi+12i

and the upper sum as

U := b0 +

n−1∑
i=0

bi2
i .

Trivially, L ≤ Z ≤ U . Moreover,

2L = b0 +

(
b0 +

n−1∑
i=0

bi+12i+1

)

= b0 +

n∑
i=0

bi2
i ≥ U .

Hence, if we compute b0, b1, . . . , bn, taking any Ẑ ∈ [L,U]
yields a 2-approximation of Z.

More generally, if for some integer c ≥ 0 and all i ∈ [n] an
estimate b̂i ∈ [bi+c, bi−c] is available, then letting Û and
L̂ be the counterparts of U and L with bi replaced by b̂i
we see that L̂ ≤ L ≤ Z ≤ U ≤ Û and Û/L̂ ≤ 22c+1.
Thus, any Ẑ ∈ [L̂, Û] is a 22c+1-approximation of Z, e.g.,
yielding a 32-approximation for c = 2.

2.3 STRATIFICATION BY THINNING

The second key idea is to estimate each bi = f(σ2i) as
the maximum of f over a random set Ri ⊆ Ω of (ex-
pected) size 2n−i. As mentioned, the essential requirement
for this approach to work is pairwise negative correlation
of membership in Ri. Including each element of Ω in Ri
independently with probability 2−i achieves this trivially
but at the cost of an exponentially large, and thus inoper-
able, representation of Ri. The foundation of this entire
line of research has been that it is possible to achieve pair-
wise independence for membership in R in compact form
via hashing. We introduce a somewhat more general, and
ultimately more fruitful, point of view reflected in our def-
inition of Thinning Sets below.

Thinning Sets. A random variable Ri taking values in 2Ω

is an i-thinner if

• ∀σ, Pr[σ ∈ Ri] = 2−i (Uniform)

• ∀σ 6= σ′, Pr[σ ∈ Ri ∧ σ′ ∈ Ri] ≤ 2−2i (Universal)

Given an i-thinner Ri and a solver capable of maximizing
f over Ri, estimating bi is entirely straightforward. Theo-
rem 1 below is identical to the main result of [14], except
for thinning sets replacing hash functions (for complete-
ness we prove Theorem 1 in Section 5.)

Theorem 1 ([14]). Let Ri be any i-thinner random vari-
able. Let {mj}tj=1 be i.i.d. random variables distributed
as mj = maxσ∈Ri f(σ). If M = median(m1, . . . ,mt),
then for every c ≥ 2,

Pr[bi+c≤M≤bi−c] ≥ 1− 2 exp

(
− t

2
(1− 2−c+1)2

)
.

One way to create an i-thinner is to take the solutions of a
random system of linear equations over GF(2), i.e., mod-
ulo 2. Let A ∼ Ber(m × n) denote that A is an m × n
random matrix whose entries are independent random vari-
ables with Pr[aij = 1] = Pr[aij = 0] = 1/2, for all i, j.

Random Linear Code. The random set

Ri = {σ ∈ {0, 1}n : Aσ = b} (1)

is an i-thinner if A ∼ Ber(i× n) and b ∼ Ber(i× 1).

In coding theory the setRi in (1) is known as a random lin-
ear code, while the distribution A ∼ Ber(i × n) is known
as the Shannon ensemble. Note that the rows of A have,
on average, n/2 non-zero entries. We will refer to it as the
dense parity ensemble, to distinguish it from other distri-
butions on {0, 1}i×n which we will encounter shortly. By
Theorem 1, we can thus estimate bi given an oracle O for

max
σ∈{0,1}n
Aσ=b

f(σ) . (2)

The idea of adding long random parity constraints to
achieve unweighted counting, e.g., to count the number of
satisfying assignments of a CNF formula goes back to [11].
Ermon et al. in [14], after i-thinning Ω in the manner above,
solved the optimization problem (2) with ToulBar2 [2],
dedicated software for MAP estimation in graphical mod-
els (the parity constraints added as factors to f evaluating
to 0 when violated). In later work [13], the authors trans-
lated (2) to an Integer Linear Program, thus bringing to bear
CPLEX, a powerful commercial optimization software. Fi-
nally, for reasons to be discussed shortly, in [15], the dense
parity ensemble was replaced by the sparse parity ensem-
ble wherein the entries of A are i.i.d. Bernoulli random
variables where Pr[aij = 1] = p < 1/2.

3 OUR CONTRIBUTION

3.1 RANDOM AFFINE MAPS

Instead of starting with Ω = {0, 1}n and restricting it via
i random parity equations to a subset Ri of (expected) size
2n−i, we will start with {0, 1}n−i and generate Ri as the
image of {0, 1}n−i under a random affine transformation
g : {0, 1}n−i → {0, 1}n, where g(x) = Ax + b. Thus,
instead of solving the constrained optimization problem

max
σ∈{0,1}n
Aσ=b

f(σ) ,

we will solve the unconstrained optimization problem

max
x∈{0,1}n−i

(f ◦ g)(x) ,

over the exponentially smaller set {0, 1}n−i. The benefit of
such dimensionality reduction increases with i, i.e., smaller
Ri, in contrast to thinning by parity constraints which typ-
ically has worsening behavior as i is increased.

3.2 LOW DENSITY PARITY CHECK CODES

In certain settings, such as when performing “light” thin-
ning or when the function f can be optimized better than
black box, operating directly on the restriction of Ω induced
by parity constraints is preferable to operating through a
random affine map. In these settings, instead of forming the
constraint matrix A by having its entries be i.i.d. Bernoulli
random variables (either sparse or dense) we will take A to
be the parity check matrix of a Low Density Parity Check
(LDPC) code. As we demonstrate experimentally, this has
a stunning effect on the performance of CPLEX.

In the eyes of a solver operating on the variable represen-
tation of Ω (as opposed to a local search solver) a 3-XOR
is greatly preferable to an (n/2)-XOR, even though both
shrink the domain by half. This is because repairing a vi-
olated constraint of arity k represents a k-way choice, i.e.,

a branching factor of k. This motivated the introduction
of sparse i.i.d. Bernoulli parity check matrices in [11] and
later in [15]. While a step in the right direction, this does
not go far enough. To cover the remaining distance, we
exploit insights from the modern theory of LDPC codes.

Imagine a code C = {σ ∈ {0, 1}n : Aσ = b}, for some
fixed matrix A and vector b. Imagine further that σ ∈ C is
transmitted along a channel that erases a subset of the bits
of σ, so that the recipient receives τ ∈ {0, 1, ∗}n. Clearly,
equations (checks) with no ∗ variables offer no new infor-
mation regarding σ. On the other hand, equations with two
or more ∗ variables are ambiguous, as they can be satis-
fied in multiple ways. But any equation with exactly one ∗
variable is ideal: its erased bit can be recovered unambigu-
ously; moreover, this recovery may cause other equations
that had two ∗ variables to now only have one. Such a cas-
cade of “safe steps” will recover σ unless it encounters a
stopping set: a non-empty set V of erased bits, such that
no equation entails exactly 1 element of V . The amazing
performance of LDPC codes is, to first order, due to the ab-
sence of small stopping sets. Thus, if τ does not have too
many erased bits, safe steps will suffice to recover σ.

To readers familiar with satisfiability algorithms the par-
allel between “safe” decoding and unit-clause propagation
(UCP) will be immediate. The linear equations defining
code C can be thought of as a formula F very carefully
designed to have the following property: if one selects a
random subset of variables and assigns them random val-
ues (subject only to no empty clause being created), then
for the vast majority of random choices (corresponding to
the unerased bits in the communication setting) the residual
formula should be solvable by UCP alone. It is not hard to
imagine that adding such a formula F to a formula F ′ will
induce little “additional hardness” to any solver capable
of recognizing the presence of “safe” choices: as soon as
enough variables are instantiated to get within the “radius
of attraction” of a solution to F , the solver devolves to a
“safe choice decoder”, setting variables at a rapid pace with
minimal branching. We conjecture that this is precisely
what causes the stunning improvement we observe in the
performance of CPLEX when switching from dense/sparse
parity ensembles to LDPC codes. Unfortunately, verifying
this directly is non-trivial as CPLEX is commercial soft-
ware. As implicit evidence we offer the observed complete
insensitivity of stochastic local search to the structure of A
(we use LocalSolver [9] in our experiments).

3.3 BRANCH AND BOUND

Recall that to form our estimate Ẑ we multiply each b̂i =
f(σ2i) by 2i. As a result, in most cases, Ẑ is dominated
by the contribution of a set of quantiles I ⊆ [n], where
|I| � n. (Indeed, in physical terms, failure of this to be
true is the signature of criticality.) With this observation

in mind, rather than estimating all {b̂i}ni=1 in sequence, we
can save computation by starting with S = {b̂0, b̂n} and es-
timating more and more quantiles until sufficient accuracy
is achieved. In particular, simply enlarging S by the unesti-
mated quantile of greatest remaining potential contribution,
gives a speedup ranging from 2x to 10x in our experiments,
with 7x being the most common case.

4 RANDOM AFFINE MAPS

Throughout this section let d := n − i, where i ∈ [n]. Let
A ∈ {0, 1}n×d be a matrix of rank d and let b ∈ {0, 1}n.
If g(x) = Ax + b, then the image of {0, 1}d under g is an
affine subspace of {0, 1}n containing 2d distinct elements
(since A has full rank). Let {0, 1}n×dd denote the set of all
full rank, i.e., rank d, matrices in {0, 1}n×d.

Theorem 2. Let A be uniform over {0, 1}n×dd and let v
be uniform over {0, 1}n. The image of {0, 1}d under x 7→
Ax+ v is an (n− d)-thinner.

Theorem 1 immediately implies the following.

Corollary 1. Let A be uniform over {0, 1}n×dd and let v
be uniform over {0, 1}n. Let {mj}tj=1 be i.i.d. random
variables distributed as

max
x∈{0,1}d

f(Ax+ v) .

If M = median(m1, . . . ,mt), then for every c ≥ 2,

Pr[bi+c ≤M ≤ bi−c] ≥ 1−2 exp

(
− t

2
(1− 2−c+1)2

)
.

In other words, replacing long parity constraints with ran-
dom affine maps, retains all statistical guarantees while giv-
ing rise to optimization instances over {0, 1}n−i instead of
{0, 1}n. As in the estimation of the partition function, i
ranges from 1 to n, at some point it becomes much more
efficient to operate on f ◦ g in the reduced domain that to
operate on f on Ω. Moreover, because |Ri| = 2n−i de-
terministically, rather than in expectation, the variance of
each estimate mi is smaller than for a random linear code.

To sample uniformly from {0, 1}n×dd it is convenient and
efficient to employ rejection sampling: trivially generate
A ∼ Ber(n× d) and accept only if rank(A) = d. Unifor-
mity follows from the uniformity of A ∼ Ber(n× d) over
{0, 1}n×d. By Lemma 1, the number of trials needed is a
geometric random variable with mean less than 4.

Lemma 1.
∣∣{0, 1}n×dd

∣∣ > 2dn−2.

4.1 EVALUATION

In Figure 1 we compare parity constraints vs. affine maps
on the 10 × 10 Ising grid with F = 0.1 and C = 1.0,
a noted hard problem in [14]. For the exact definition of

0 20 40 60 80 100
Number of parity constraints (i)

−20

0

20

40

60

80

100

120

140
B

es
t

so
lu

ti
on

Affine Map
100-i
Dense Parity
Sparse Parity

Figure 1: 10 × 10 Ising grid with C = 1.0 and F = 0.1.
Experiment: for i ∈ [0, 100] generateRi via i random pari-
ty constraints, or as a random affine subspace of dimension
n − i; seek maxσ∈Ri f(σ) for 30 seconds (see legend).
Plot: for each i, repeat the experiment 10 times and report
the binary logarithm of the median value found. We also
plot the number 100− i as a visual aid.

f see (9) in Section 7. The parity constraints are gener-
ated from the dense parity ensemble and the sparse parity
ensemble adopted in [15] and we use the ILP formulation
proposed in [13], with CPLEX being the solver. To opti-
mize f ◦ g for random affine maps we use LocalSolver [9],
since CPLEX is an ILP solver and does not natively sup-
port affine transformations over GF(2). While not as strong
as CPLEX on constrained optimization problems, Local-
Solver is specialized in stochastic local search under black-
box evaluation, hence a suitable choice for our setting.

As can be seen in Figure 1, when there are more than,
roughly, 10 parity constraints, the performance of both ran-
dom parity ensembles deteriorates rapidly, in sharp con-
trast to the robust performance of LocalSolver under affine
maps. Note that since the y-axis is in log2-scale and each
bi contributes roughly bi2i to the partition function, the fact
that the solutions found by LocalSolver are nearly parallel
to the line 100−i imply that the under-performance of opti-
mization under parity constraints is highly relevant and will
have dramatic effect on the accuracy of estimation.

Moreover, as shown in Figure 2, the best solutions found
under parity constraints in 10 minutes are still inferior to
those found via random affine maps in 30 seconds. In par-
ticular, when there are 50 constraints, CPLEX cannot find
a solution better than the initial one under either parity en-
semble, suggesting that the hardness of optimization under
parity constraints overwhelms the solver. Notably, the orig-
inal MAP inference maxσ∈Ω f(σ) can be solved to prov-
able optimality in 0.1 second by CPLEX, highlighting that
the hardness is due to the parity constraints.

30 120 240 360 480 600

Timeout (seconds)

−20

0

20

40

60

80

100

120

B
es

t
so

lu
ti

on

Affine Map 30 sec (i=20)
Sparse Parity (i=20)
Dense Parity (i=20)

Affine Map 30 sec (i=50)
Sparse Parity (i=50)
Dense Parity (i=50)

Figure 2: 10 × 10 Ising grid with C = 1.0 and F = 0.1.
Experiment: for i ∈ {20, 50} generate Ri via i random
parity constraints; seek maxσ∈Ri f(σ) with a timeout of
t ∈ {30, 120, 240, 360, 480, 600} seconds (see legend).
Plot: for each pair (i, t) repeat the experiment 10 times
and report the binary logarithm of the values found.

4.2 PROOF OF THEOREM 2 AND LEMMA 1

We will refer to A as a generator matrix for the subspace,
which we will represent by the pair (A, v).
Lemma 2. If A is uniform over {0, 1}n×dd and v is uni-
form over {0, 1}n, then (A, v) is uniform over all affine
subspaces of dimension d. In particular, for any fixed v0,
the subspace (A, v0) is uniform over all affine subspaces of
dimension d that contain v0.

Proof. It suffices to prove the second statement as the in-
dependence of A and v implies the first.

We will prove that for any fixed v0 and any affine subspace
A of dimension d that contains v0, the number of matrices
A ∈ {0, 1}n×dd such that (A, v0) = A is independent ofA.

Clearly, (A, v0) = A iff the columns of A are linearly in-
dependent elements of A. For k ∈ [d], let ak be the k-
th column of A and let a0 = 0. Linear independence is
equivalent to ak /∈ span(a0, . . . , ak−1) for all k ∈ [d].
Since |span(a1, . . . , ak)| = 2k if the first k columns are
linearly independent, we see that for every k ∈ [d] there
are 2d − 2k−1 valid choices for the k-th column.

Proof of Theorem 2. By the first part of Lemma 2, (A, v)
is uniform over all affine subspaces of dimension d. There-
fore, by symmetry, Pr[σ ∈ (A, v)] is the same for all
σ ∈ {0, 1}n. Since (A, v) contains 2d elements, unifor-
mity follows. To prove universality we need to show that
Pr[σ′ ∈ (A, v) | σ ∈ (A, v)] ≤ Pr[σ′ ∈ (A, v)]. For this
we first observe that, by the second part of Lemma 2,

Pr[σ′ ∈ (A, v) | σ ∈ (A, v)] = Pr[σ′ ∈ (A, σ)] .

Since σ 6= σ′, this last probability equals the probability
that τ = σ′ − σ 6= 0 belongs in (A, 0). Let ak be the k-th
column of A and let Ak comprise the first k columns of A.
If we generate A column by column we see that this last
probability equals 1−∏d

k=1 Pr[ak /∈ span(Ak−1 ∪ {τ})]
which is the same for all τ 6= 0.

Proof of Lemma 1. If we construct A column by column
then, as shown in Lemma 2, there are 2n − 2k−1 choices
for the k-th column that lead toA being full rank. Induction
thus shows

∏d
k=1(2n − 2k−1) ≥ 1

4

(
2dn + 2

)
.

5 THINNING AS ERROR-CORRECTION

Let us start by deriving the statistical desiderata of thinning
sets from first principles. This will illuminate the suitabil-
ity of error-correcting codes for thinning and offer insight.
Recall that our goal is to estimate bi = f(σ2i), for i ∈ [n].
We start by observing that for this it suffices to construct
a random variable mi such that for some (small) integer c
and any ε > 0,

Pr[mi ≤ bi−c] ≥ 1/2 + ε (3)
Pr[mi ≥ bi+c] ≥ 1/2 + ε . (4)

This is because if we take b̂i to be the median of t indepen-
dent realizations of mi, by Hoeffding’s inequality,

Pr
[
bi+c ≤ b̂i ≤ bi−c

]
≥ 1− 2 exp(−2ε2t) .

Thus, in order for Pr[mi ∈ [bi+c, bi−c]] = 1−exp(−Θ(s))
it suffices to take O(s/ε2) samples.

Achieving (3) is trivial. Let Ωj = {σ1, σ2, . . . , σ2j}. If
Ri ⊆ Ω is any random set such that Pr[σ ∈ Ri] = 2−i for
all σ ∈ Ω and mi = maxσ∈Ri f(σ), then

Pr[mi > bi−c] < |Ωi−c|2−i = 2−c. (5)

In other words, for mi to be unlikely to be “too big” it suf-
fices for Ri to have the right (expected) size, without any
requirement of its geometry beyond uniformity. For exam-
ple,Ri could even be a random subcube of Ω, an extremely
computation-friendly constraint: pick i variables at random
and assign them random values.

Achieving (4) is far more subtle. This is because in or-
der for Pr[mi ≥ bi+c] to not vanish the random variable
Xi = |Ωi+c ∩Ri| must be well-behaved. In particular, ob-
serve that EXi = 2c and we aim for c to be small, e.g.,
c = 2, so the expectation of Xi is modest. If Xi realizes
its modest expectation via a lottery phenomenon, i.e., typi-
cally Xi = 0 but rarely Xi is very large we are in trouble.
To control for this possibility we use the Paley-Zygmund
inequality asserting that if X is any non-negative integer
random variable, then Pr[X > 0] ≥ (EX)2/EX2. Tak-
ing Ri to be a random cube is thus exposed as a bad idea:

if Ωi+c is also a cube, their potential alignment implies
EX2

i � (EXi)
2.

To minimize EX2
i we would like to find random sets Ri

that behave like “mists”, minimizing the probability of
having an atypically large intersection with any fixed set.
Error-correcting codes are ideal for this, with linear codes
particularly so, as they are specified via linear equations.
Motivated by these considerations, let

Ri = {σ ∈ {0, 1}n : Aσ = b} ,

where the vector b ∈ {0, 1}i is uniformly random, while
A ∈ {0, 1}i×n is arbitrary (even deterministic), for now.

It is easy to see that the uniformity of b over {0, 1}i alone
suffices to make Ri uniform over {0, 1}n, i.e., for all σ,

Pr[σ ∈ Ri] = 2−i . (6)

At the same time, for any S ⊆ Ω, if Xi = |S ∩Ri|, then

EX2
i = E

(∑
σ∈S

1σ∈Ri

)2

=
∑

σ,σ′∈S
E(1σ∈Ri 1σ′∈Ri)

= EXi +
∑

σ,σ′∈S
σ 6=σ′

Pr[Aσ = b = Aσ′] .

To deal with the sum above note that, trivially,

Pr[Aσ = b = Aσ′] = Pr[Aσ = b ∧A(σ − σ′) = 0] .

Fix any distinct pair σ, σ′. Choosing A first (to determine
if A(σ − σ′) = 0) and then choosing b (to determine if
Aσ = b) we see that Pr[Aσ = b = Aσ′] = 2−i Pr[A(σ −
σ′) = 0]. Therefore, without any assumptions on either the
set S or the distribution of A, we can conclude that

EX2
i = EXi + 2−i

∑
σ,σ′∈S
σ 6=σ′

Pr[A(σ − σ′) = 0] . (7)

To move beyond this point we must make some assump-
tions about (the distribution of) A. One such assumption,
of course, would be that for all σ − σ′ = τ 6= 0,

Pr[Aτ = 0] ≤ 2−i . (8)

It is not hard to see that if (8) holds then:

(a) Ri is an i-thinner.

(b) EX2
i ≤ EXi + (EXi)

2. Thus, by the Payley-Zigmund
inequality, Pr[mi ≥ bi+c] > 1− 2−c.

(c) Taking c = 2 and recalling (5) we see that (3), (4) are
satisfied with ε = 1/4 (and we have proven Theorem 1).

The above viewpoint exposes how extraordinarily strict is
the requirement of universality: it asks that an element
τ ∈ Ω that has a single 1 should be no more likely to solve
Aτ = 0 than τ = 1. Clearly, this can only be satisfied if
the rows of A have very large expected mass. In [15] the
universality requirement was dropped and the case where
the entries of A are i.i.d. Bernoulli taking the value 1 with
probability p ≤ 1/2 was analyzed. The bound derived for
the contribution of each σ ∈ S to the sum in (7) under
this scheme is dominated by its pairing with σ′ forming a
Hamming ball centered at σ. Note, though, that if Ri is an
error-correcting code and σ ∈ Ri, then it is extremely un-
likely that any σ′ near σ will also be inRi. Indeed, the most
basic metric of the quality of an error-correcting code is its
distance, i.e, the minimum distance of any two codewords.
This “self-repulsive” property of error-correcting codes is
our key insight in regards to their statistical properties.

5.1 LOW DENSITY PARITY CHECK CODES

In the basic LDPC construction, the (random) system of
linear equations is represented as a bipartite graph with
variables on the left and equations (checks) on the right,
with adjacency denoting entailment, i.e., that the variable
participates in the equation. To create a code with n vari-
ables, i.e., with codewords in {0, 1}n, one first specifies the
numbers {λj} and {φj} of variables and equations, respec-
tively, of each degree j. In the simplest case, λj = φk = 0
for all but one value of j and k, respectively, i.e., the graph
is (bi-)regular. In general, with the degree sequences thus
fixed, a random bipartite graph is chosen uniformly at ran-
dom subject to the degree constraints. This uniformity im-
plies that Pr[Aτ = 0] depends only on the weight of τ , i.e.,
its number of 1s, for every τ ∈ {0, 1}n.

An even better construction of LDPC codes than the above
is the Progressive Edge Growth (PEG) construction [3]. Its
main feature, relative to the standard LDPC construction,
is that it tries to maximize the length of the shortest cy-
cle (girth) of the resulting bipartite graph, as short cycles
contribute significantly to the formation of small stopping
sets. Motivated by these considerations we replaced the
dense and sparse parity ensembles with PEG constructed
LDPC codes. If N(w) is the number of codewords of
weight w for a given code, then the probability in (8) is
P (w) = N(w)/

(
n
w

)
. Ideally, P (w) would be constant for

all w > 0, i.e., (8) would be an equality, which is precisely
what happens when A ∼ Ber(i × n). More generally, the
flatter P (w) is, the better the statistical properties of Ri.

To demonstrate the superiority of PEG LDPC over the
sparse ensemble we plot in Figure 3 the empirical value
of logP (w) for parity matrices of size 20× 40, derived by
exhaustively enumerating each code’s, roughly, 240/2 ≈ 1
million codewords (exhaustive enumeration was chosen be-
cause the number of codewords can have non-trivial fluctu-

0.2 0.4 0.6 0.8 1.0
Normalized Hamming weight

−20

−15

−10

−5

0

L
og

pr
ob

ab
ili

ty

Sparse Parity
PEG LDPC
Dense Parity

Figure 3: Empirical logP (w) for w ∈ [1, 40] of dense par-
ity ensemble (average 20 vars/equation), sparse parity en-
semble (avg 8 vars/eq), and PEG LDPC (avg 8 vars/eq.)

ations for small n.) For the dense and sparse parity en-
sembles we generated 100 matrices each and report the
mean; the PEG construction for LDPC is deterministic. We
only considered codes with n = 40 variables, as exhaustive
enumeration rapidly becomes intractable with n. Already,
though, for n = 40 the behavior is very stable and it is easy
to prove that flatness increases as n grows.

As can be seen, for a wide range of w both the sparse parity
ensemble and the LDPC ensemble match P (w) perfectly
(the fact that dense parity itself is not flat for w 6∈ [3, 36]
is a finite-size effect). Crucially, though, for small w there
is a big difference, with the sparse parity ensemble con-
taining many more codewords (note that the vertical axis is
logarithmic). The over-representation of low-weight code-
words causes nearby pairs in S ⊆ Ω to contribute dispro-
portionately to the sum in (7), potentially causing the vari-
ance of Xi to blow up if S is clustered, e.g., if S is a cube.
No such blowup occurs for the PEG codes even for such
small n, witnessing their very good statistical properties.
As the study of the codeword weight distribution function
of LDPC codes greatly exceeds the scope of this work, we
leave a formal proof that thinning by LDPC codes give rise
to small-variance estimators as future work.

We claimed earlier that LDPC codes should be far prefer-
able to random parity matrices. To that end we plot the per-
formance of CPLEX on the Ising grid in Figure 4. The only
difference between the three plots is in the parity matrix A
used to define Ri = Aσ + b. The collapse of CPLEX be-
yond a certain number of constraints was already pointed
out in Figure 1. For LDPC PEG codes no such collapse
occurs and CPLEX remains competitive with LocalSolver
and random affine maps until i ≈ 40 even with a time-
out at small as 30 seconds. In contrast, as demonstrated
in Figure 5, LocalSolver, unaware of the variable/product

0 20 40 60 80 100
Number of parity constraints (i)

−20

0

20

40

60

80

100

120

140
B

es
t

so
lu

ti
on

Affine Map
PEG LDPC
Sparse Parity
Dense Parity

Figure 4: 10 × 10 Ising grid with C = 1.0 and F = 0.1.
Experiment: for i ∈ [0, 100], generateRi via an i×100 par-
ity matrix chosen from 3 different ensembles (see legend);
seek maxσ∈Ri f(σ) for 30 seconds using CPLEX. Plot: for
each i and each ensemble repeat the experiment 10 times
and report the binary logarithm of the median value found.
(As a yardstick, we also plot the values found by Local-
Solver when Ri is a random affine subspace.)

structure of Ω (and the factorization of f over {ψα}) does
not “feel” the difference between different parity check ma-
trices, consistent with our hypothesis that it is the presence
(and exploitation) of “safe” decoding moves that causes the
dramatic improvement in the performance of CPLEX.

6 BRANCH-AND-BOUND

Our last observation is that not all b̂i are equally impor-
tant (or even necessary) for an accurate estimate Ẑ. For
instance, if f(σ) ∈ {0, 1}, it suffices to find the boundary
k such that bi = 1 for i ≤ k and bi = 0 for i > k. Using
binary search we can do this by solving only log n, instead
of n, optimization problems as in (2).

To generalize let I = {i0, i1, i2, . . . , is} be the set of quan-
tiles estimated so far, where 0 = i0 < i1 < . . . < is = n.
Now define

UI = b0 +

s−1∑
j=0

bij

ij+1−1∑
i=ij

2i

LI = b0 +

s−1∑
j=0

bij+1

ij+1−1∑
i=ij

2i

 .

By construction, UI ≥ U ≥ Z ≥ L ≥ LI . Let ÛI
and L̂I be the estimated counterparts, of UI , LI , respec-
tively, with b̂i in place of bi. To identify the next quan-
tile to estimate we consider the successive pairs (i`, i`+1)
in I and for each such pair (i`, i`+1) = (i, j) we define

0 5 10 15 20 25 30 35 40
Number of parity constraints (i)

40

50

60

70

80

90

100

110

120

130

B
es

t
so

lu
ti

on

Affine Map
PEG LDPC
Sparse Parity
Dense Parity

Figure 5: 10 × 10 Ising grid with C = 1.0 and F = 0.1.
Experiment: for i ∈ [0, 40], generate Ri via an i×100 par-
ity matrix chosen from 3 different ensembles, or as a ran-
dom affine subspace (see legend); seek maxσ∈Ri f(σ) for
30 seconds using LocalSolver. Plot: for each i and method
repeat the experiment 10 times and report the binary loga-
rithm of the median value found.

Gap(i, j) =
(
b̂i − b̂j

)∑j
q=i 2q . At each iteration, we

chose the pair (i, j) with maximum gap and estimate bk,
where k = b i+j2 c. Once the ratio ÛI/L̂I drops below the
desired accuracy threshold, the process can stop early (see
Table 6 for some indicative results).

Algorithm 1 Branch-and-Bound

1: b̂0 ← ESTIMATE(b0)
2: b̂n ← ESTIMATE(bn)
3: I ← {0, n}
4: ÛI ← b̂02n

5: L̂I ← b̂n2n

6: while (ÛI > L̂I · Tolerance) do
7: Find successive i, j ∈ I maximizing Gap(i, j)
8: k ← b(i+ j)/2c
9: b̂k ← Estimate(bk)

10: I ← I ∪ {k}
11: Compute ÛI , L̂I
12: end while
13: Return (ÛI + L̂I)/2

The benefit of branch and bound is universal, i.e., indepen-
dent of the {bi} estimation method. For example, over 24
problems on Ising grids it yielded a 7x average speedup.

C (F = 0.1) 0.25 0.5 1.0 1.5 2 2.5 3
Speedup (x) 11 5 3 7 9 11 12

Table 1: Speedup by Branch and Bound

7 EXPERIMENTS

The ferromagnetic Ising grid is a canonical spin glass
model. Binary variables (spins) xi ∈ {±1} are placed on
the vertices of a

√
n × √n grid (V,E) and have nearest-

neighbor interactions and a local (to each spin) field. Thus,

f(x) =
∏
i∈V

ψi(xi)
∏

(i,j)∈E

ψi,j(xi, xj) , (9)

with ψi(xi) = exp(Fixi) and ψij(xi) = exp(Cijxixj),
where the local fields Fi are i.i.d. U [−F, F] and the cou-
pling strengths Cij are i.i.d. U [0, C]. (As Cij ≥ 0, config-
urations where neighboring spins align are favored.)

The model has been widely used as a test case for partition
function estimation [4][8][14][15] due to its flexibility: as
C is increased, the dominant contribution to the partition
function shifts from configurations with many unaligned
neighbors to configurations with few unaligned neighbors.
We focus on the particularly challenging setting C ≈ 1. A
side benefit of this choice (not unrelated to hardness) is that
a wide range of quantiles contribute significantly to Z, thus
exercising each method for a wide range of thinning.

7.1 THE ALGORITHMS

Given the complementary nature of thinning via parity ma-
trices and thinning via affine subspaces, it is natural to com-
bine our two ideas into one algorithm that uses LDPC par-
ity check matrices for small i (“light” thinning) and random
affine subspaces for large i (“heavy” thinning). To reduce
the confounding factors we simply used parity matrices for
i ∈ [1, 33] and affine subspaces for i ∈ [34, 100].

Besides the junction-tree algorithm used to compute Z ex-
actly, we also evaluated the Mean Field approximation, and
Tree-Reweighted Belief Propagation (TRWBP) [6], pro-
viding a lower and an upper bound for the partition func-
tion, respectively. We use the libDAI [10] implementations
of all three algorithms. The WISH algorithm is the CPLEX
implementation by the authors of [14].

7.2 THE RESULTS

WISH is not competitive with our algorithm in certain set-
tings, as indicated by Figure 6 (note that the vertical axis
is logarithmic). For example, our algorithm achieves bet-
ter accuracy with a 10-second timeout than WISH achieves
with 360 seconds. When this difference in accuracy is com-
bined with the Branch and Bound speedup, our algorithm
is over 100x faster than WISH.

In Figure 7 we compare all four algorithms for F = 0.1
and various values of C ∈ [0.25, 3.0]. Rather than com-
paring run times, which in order to be fair would require
adapting the timeout of each algorithm to the difficulty it

10 30 60 180 360

Timeout (seconds)

−14

−12

−10

−8

−6

−4

−2

0

2

L
og

er
ro

r

Exact
SECCO
WISH

Figure 6: 10 × 10 Ising grid with C = 1.0 and F = 0.1.
Experiment: run WISH and our algorithm with a timeout
of t ∈ {10, 30, 60, 180, 360} seconds per instance to get an
estimate Ẑ (see legend). Plot: report log2(Ẑ/Z).

experiences, we have chosen the more transparent experi-
ment of running each algorithm with the same timeout of
360 seconds across all instances and all i ∈ [n] and com-
paring the accuracy achieved in the final estimate of Ẑ.

The case of high coupling strengths is easy for both algo-
rithms as the dominant contribution to Z comes from few
configurations of high probability and, thus, only light thin-
ning is performed. For C ∈ {0.5, 0.75, 1.0}, though, our
algorithm outperforms WISH by a significant margin (the
vertical axis is logarithmic).

0.5 1.0 1.5 2.0 2.5 3.0
Coupling strength

−40

−30

−20

−10

0

10

20

L
og

er
ro

r

TRWBP
WISH
Exact
SECCO
Mean Field

Figure 7: 10×10 Ising grid with C ∈ [0.25, 3.0], F = 0.1.
Experiment: for C ∈ {0.25, 0.50, . . . , 3.0}, determine Z
and run four algorithms to get an estimate Ẑ (see legend).
Mean Field and TRWBP are run to termination. WISH and
our algorithm have a 360 second timeout for each instance.
Plot: For C ∈ {0.25, 0.50, . . . , 3.0} report log2(Ẑ/Z).

References

[1] A. Bulatov and M. Grohe. The complexity of parti-
tion functions. Theoretical Computer Science, 348(2-
3):148–186, 2005.

[2] D. Allouche, S. de Givry, and T. Schiex. Toulbar2, an
open source exact cost function network solver. Tech-
nical report, Technical report, INRIA, 2010.

[3] X. Hu, E. Eleftheriou, and D. Arnold. Regular and ir-
regular progressive edge-growth tanner graphs. IEEE
Transactions on Information Theory, 51(1):386–398,
2005.

[4] T. Hazan and T. Jaakkola. On the partition function
and random maximum a-posteriori perturbations. In
ICML. icml.cc / Omnipress, 2012.

[5] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul.
An introduction to variational methods for graphical
models. Machine Learning, 37(2):183–233, 1999.

[6] M. Wainwright, T. Jaakkola, and A. Willsky. Tree-
reweighted belief propagation algorithms and approx-
imate ml estimation by pseudo-moment matching.
In Workshop on Artificial Intelligence and Statistics,
volume 21, 2003.

[7] M. Jerrum and A. Sinclair. Approximation Algorithms
for NP-hard Problems, chapter The Markov Chain
Monte Carlo Method: An Approach to Approximate
Counting and Integration, pages 482–520. PWS Pub-
lishing Co., Boston, MA, USA, 1997.

[8] T. Hazan, S. Maji, and T. Jaakkola. On sampling
from the gibbs distribution with random maximum a-
posteriori perturbations. In NIPS, pages 1268–1276,
2013.

[9] T. Benoist, B. Estellon, F. Gardi, R. Megel, and
K. Nouioua. Localsolver 1.x: a black-box local-
search solver for 0-1 programming. 4OR, 9(3):299–
316, 2011.

[10] J. Mooij. libDAI: A free and open source C++ library
for discrete approximate inference in graphical mod-
els. Journal of Machine Learning Research, 11:2169–
2173, August 2010.

[11] C. Gomes, A. Sabharwal, and B. Selman. Model
counting: A new strategy for obtaining good bounds.
In AAAI, pages 54–61. AAAI Press, 2006.

[12] C. Gomes, W. Hoeve, A. Sabharwal, and B. Selman.
Counting CSP solutions using generalized XOR con-
straints. In AAAI, pages 204–209. AAAI Press, 2007.

[13] S. Ermon, C. Gomes, A. Sabharwal, and B. Selman.
Optimization with parity constraints: From binary
codes to discrete integration. In UAI. AUAI Press,
Corvallis, Oregon, 2013.

[14] S. Ermon, C. Gomes, A. Sabharwal, and B. Sel-
man. Taming the curse of dimensionality: Discrete
integration by hashing and optimization. In ICML,
volume 28 of JMLR Proceedings, pages 334–342.
JMLR.org, 2013.

[15] S. Ermon, C. Gomes, A. Sabharwal, and B. Selman.
Low-density parity constraints for hashing-based dis-
crete integration. In ICML, volume 32 of JMLR Pro-
ceedings, pages 271–279. JMLR.org, 2014.

[16] M. Sipser. A complexity theoretic approach to ran-
domness. In STOC, pages 330–335. ACM, 1983.

[17] M. Thurley. An approximation algorithm for #k-sat.
In STACS, volume 14 of LIPIcs, pages 78–87. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[18] S. Toda. PP is as hard as the polynomial-time hier-
archy. SIAM Journal on Computing, 20(5):865–877,
1991.

[19] L. Valiant and V. Vazirani. Np is as easy as detect-
ing unique solutions. Theoretical Computer Science,
47(3):85–93, 1986.

