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Abstract

We present an extensive analysis of the key prob-
lem of learning optimal reserve prices for gen-
eralized second price auctions. We describe
two algorithms for this task: one based on den-
sity estimation, and a novel algorithm benefit-
ing from solid theoretical guarantees and with
a very favorable running-time complexity of
O(nS log(nS)), where n is the sample size and
S the number of slots. Our theoretical guar-
antees are more favorable than those previously
presented in the literature. Additionally, we show
that even if bidders do not play at an equilibrium,
our second algorithm is still well defined and
minimizes a quantity of interest. To our knowl-
edge, this is the first attempt to apply learning
algorithms to the problem of reserve price opti-
mization in GSP auctions. Finally, we present
the first convergence analysis of empirical equi-
librium bidding functions to the unique symmet-
ric Bayesian-Nash equilibrium of a GSP.

1 INTRODUCTION

The Generalized Second-Price (GSP) auction is currently
the standard mechanism used for selling sponsored search
advertisement. As suggested by the name, this mechanism
generalizes the standard second-price auction of Vickrey
(1961) to multiple items. In the case of sponsored search
advertisement, these items correspond to ad slots which
have been ranked by their position. Given this ranking,
the GSP auction works as follows: first, each advertiser
places a bid; next, the seller, based on the bids placed, as-
signs a score to each bidder. The highest scored advertiser
is assigned to the slot in the best position, that is, the one
with the highest likelihood of being clicked on. The second
highest score obtains the second best item and so on, until
all slots have been allocated or all advertisers have been
assigned to a slot. As with second-price auctions, the bid-
der’s payment is independent of his bid. Instead, it depends

solely on the bid of the advertiser assigned to the position
below.

In spite of its similarity with second-price auctions, the
GSP auction is not an incentive-compatible mechanism,
that is, bidders have an incentive to lie about their valua-
tions. This is in stark contrast with second-price auctions
where truth revealing is in fact a dominant strategy. It is
for this reason that predicting the behavior of bidders in a
GSP auction is challenging. This is further worsened by the
fact that these auctions are repeated multiple times a day.
The study of all possible equilibria of this repeated game
is at the very least difficult. While incentive compatible
generalizations of the second-price auction exist, namely
the Vickrey-Clark-Gloves (VCG) mechanism, the simplic-
ity of the payment rule for GSP auctions as well as the large
revenue generated by them has made the adoption of VCG
mechanisms unlikely.

Since its introduction by Google, GSP auctions have gen-
erated billions of dollars across different online advertise-
ment companies. It is therefore not surprising that it has
become a topic of great interest for diverse fields such as
Economics, Algorithmic Game Theory and more recently
Machine Learning.

The first analysis of GSP auctions was carried out inde-
pendently by Edelman et al. (2005) and Varian (2007).
Both publications considered a full information scenario,
that is one where the advertisers’ valuations are publicly
known. This assumption is weakly supported by the fact
that repeated interactions allow advertisers to infer their ad-
versaries’ valuations. Varian (2007) studied the so-called
Symmetric Nash Equilibria (SNE) which is a subset of the
Nash equilibria with several favorable properties. In partic-
ular, Varian showed that any SNE induces an efficient allo-
cation, that is an allocation where the highest positions are
assigned to advertisers with high values. Furthermore, the
revenue earned by the seller when advertisers play an SNE
is always at least as much as the one obtained by VCG.
The authors also presented some empirical results showing
that some bidders indeed play by using an SNE. However,
no theoretical justification can be given for the choice of



this subset of equilibria (Börgers et al., 2013; Edelman and
Schwarz, 2010). A finer analysis of the full information
scenario was given by Lucier et al. (2012). The authors
proved that, excluding the payment of the highest bidder,
the revenue achieved at any Nash equilibrium is at least
one half that of the VCG auction.

Since the assumption of full information can be unrealis-
tic, a more modern line of research has instead considered
a Bayesian scenario for this auction. In a Bayesian setting,
it is assumed that advertisers’ valuations are i.i.d. samples
drawn from a common distribution. Gomes and Sweeney
(2014) characterized all symmetric Bayes-Nash equilibria
and showed that any symmetric equilibrium must be effi-
cient. This work was later extended by Sun et al. (2014)
to account for the quality score of each advertiser. The
main contribution of this work was the design of an algo-
rithm for the crucial problem of revenue optimization for
the GSP auction. Lahaie and Pennock (2007) studied dif-
ferent squashing ranking rules for advertisers commonly
used in practice and showed that none of these rules are
necessarily optimal in equilibrium. This work is comple-
mented by the simulation analysis of Vorobeychik (2009)
who quantified the distance from equilibrium of bidding
truthfully. Lucier et al. (2012) showed that the GSP auc-
tion with an optimal reserve price achieves at least 1/6 of
the optimal revenue (of any auction) in a Bayesian equilib-
rium. More recently, Thompson and Leyton-Brown (2013)
compared different allocation rules and showed that an an-
choring allocation rule is optimal when valuations are sam-
pled i.i.d. from a uniform distribution. With the exception
of Sun et al. (2014), none of these authors have proposed
an algorithm for revenue optimization using historical data.

Zhu et al. (2009) introduced a ranking algorithm to learn an
optimal allocation rule. The proposed ranking is a convex
combination of a quality score based on the features of the
advertisement as well as a revenue score which depends on
the value of the bids. This work was later extended in (He
et al., 2014) where, in addition to the ranking function, a
behavioral model of the advertisers is learned by the au-
thors.

The rest of this paper is organized as follows. In Sec-
tion 2, we give a learning formulation of the problem of
selecting reserve prices in a GSP auction. In Section 3, we
discuss previous work related to this problem. Next, we
present and analyze two learning algorithms for this prob-
lem in Section 4, one based on density estimation extend-
ing to this setting an algorithm of Guerre et al. (2000), and a
novel discriminative algorithm taking into account the loss
function and benefiting from favorable learning guarantees.
Section 5 provides a convergence analysis of the empirical
equilibrium bidding function to the true equilibrium bid-
ding function in a GSP. On its own, this result is of great
interest as it justifies the common assumption of buyers
playing a symmetric Bayes-Nash equilibrium. Finally, in

Section 6, we report the results of experiments comparing
our algorithms and demonstrating in particular the benefits
of the second algorithm.

2 MODEL

For the most part, we will use the model defined by Sun
et al. (2014) for GSP auctions with incomplete information.
We consider N bidders competing for S slots with N ≥ S.
Let vi ∈ [0, 1] and bi ∈ [0, 1] denote the per-click valuation
of bidder i and his bid respectively. Let the position fac-
tor cs ∈ [0, 1] represent the probability of a user noticing
an ad in position s and let ei ∈ [0, 1] denote the expected
click-through rate of advertiser i. That is ei is the probabil-
ity of ad i being clicked on given that it was noticed by the
user. We will adopt the common assumption that cs > cs+1

(Gomes and Sweeney, 2014; Lahaie and Pennock, 2007;
Sun et al., 2014; Thompson and Leyton-Brown, 2013). De-
fine the score of bidder i to be si = eivi. Following Sun
et al. (2014), we assume that si is an i.i.d. realization of a
random variable with distribution F and density function
f . Finally, we assume that advertisers bid in an efficient
symmetric Bayes-Nash equilibrium. This is motivated by
the fact that even though advertisers may not infer what the
valuation of their adversaries is from repeated interactions,
they can certainly estimate the distribution F .

Define π : s 7→ π(s) as the function mapping slots to adver-
tisers, i.e. π(s) = i if advertiser i is allocated to position s.
For a vector x = (x1, . . . , xN ) ∈ RN , we use the notation
x(s) := xπ(s). Finally, denote by ri the reserve price for
advertiser i. An advertiser may participate in the auction
only if bi ≥ ri. In this paper we present an analysis of the
two most common ranking rules (Qin et al., 2014):

1. Rank-by-bid. Advertisers who bid above their re-
serve price are ranked in descending order of their
bids and the payment of advertiser π(s) is equal to
max(r(s), b(s+1)).

2. Rank-by-revenue. Each advertiser is assigned a qual-
ity score qi := qi(bi) = eibi1bi≥ri and the rank-
ing is done by sorting these scores in descending
order. The payment of advertiser π(s) is given by
max

(
r(s), q

(s+1)

e(s)

)
.

In both setups, only advertisers bidding above their reserve
price are considered. Notice that rank-by-bid is a particular
case of rank-by-revenue where all quality scores are equal
to 1. Given a vector of reserve prices r and a bid vector b,
we define the revenue function to be

Rev(r,b)

=

S∑
s=1

cs

(q(s+1)

e(s)
1q(s+1)≥e(s)r(s)+r

(s)1q(s+1)<e(s)r(s)≤q(s)
)



Using the notation of Mohri and Medina (2014), we define
the loss function

L(r,b) = −Rev(r,b).

Given an i.i.d. sample S = (b1, . . . ,bn) of realizations of
an auction, our objective will be to find a reserve price vec-
tor r∗ that maximizes the expected revenue. Equivalently,
r∗ should be a solution of the following optimization prob-
lem:

min
r∈[0,1]N

Eb[L(r,b)]. (1)

3 PREVIOUS WORK

It has been shown, both theoretically and empirically, that
reserve prices can increase the revenue of an auction (My-
erson, 1981; Ostrovsky and Schwarz, 2011). The choice
of an appropriate reserve price therefore becomes crucial.
If it is chosen too low, the seller might lose some revenue.
On the other hand, if it is set too high, then the advertisers
may not wish to bid above that value and the seller will not
obtain any revenue from the auction.

Mohri and Medina (2014), Pardoe et al. (2005), and Cesa-
Bianchi et al. (2013) have given learning algorithms that
estimate the optimal reserve price for a second-price auc-
tion in different information scenarios. The scenario we
consider is most closely related to that of Mohri and Med-
ina (2014). An extension of this work to the GSP auction,
however, is not straightforward. Indeed, as we will show
later, the optimal reserve price vector depends on the distri-
bution of the advertisers’ valuation. In a second-price auc-
tion, these valuations are observed since the corresponding
mechanism is an incentive-compatible. This does not hold
for GSP auctions. Moreover, for second-price auctions,
only one reserve price had to be estimated. In contrast, our
model requires the estimation of up to N parameters with
intricate dependencies between them.

The problem of estimating valuations from observed bids in
a non-incentive compatible mechanism has been previously
analyzed. Guerre et al. (2000) described a way of estimat-
ing valuations from observed bids in a first-price auction.
We will show that this method can be extended to the GSP
auction. The rate of convergence of this algorithm, how-
ever, in general will be worse than the standard learning
rate of O

(
1√
n

)
.

Sun et al. (2014) showed that, for advertisers playing an
efficient equilibrium, the optimal reserve price is given by
ri = r

ei
where r satisfies

r =
1− F (r)

f(r)
.

The authors suggest learning r via a maximum likelihood
technique over some parametric family to estimate f and

F , and to use these estimates in the above expression.
There are two main drawbacks for this algorithm. The first
is a standard problem of parametric statistics: there are no
guarantees on the convergence of their estimation proce-
dure when the density function f is not part of the paramet-
ric family considered. While this problem can be addressed
by the use of a non-parametric estimation algorithm such as
kernel density estimation, the fact remains that the function
f is the density for the unobservable scores si and there-
fore cannot be properly estimated. The solution proposed
by the authors assumes that the bids in fact form a perfect
SNE and so advertisers’ valuations can be recovered using
the process described by Varian (2007). There is however
no justification for this assumption and, in fact, we show in
Section 6 that bids played in a Bayes-Nash equilibrium do
not in general form a SNE.

4 LEARNING ALGORITHMS

Here, we present and analyze two algorithms for learning
the optimal reserve price for a GSP auction when advertis-
ers play a symmetric equilibrium.

4.1 DENSITY ESTIMATION ALGORITHM

First, we derive an extension of the algorithm of Guerre
et al. (2000) to GSP auctions. To do so, we first derive a
formula for the bidding strategy at equilibrium. Let zs(v)
denote the probability of winning position s given that the
advertiser’s valuation is v. It is not hard to verify that

zs(v) =

(
N − 1

s− 1

)
(1− F (v))s−1F p(v),

where p = N − s. Indeed, in an efficient equilibrium, the
bidder with the s-th highest valuation must be assigned to
the s-th highest position. Therefore an advertiser with val-
uation v is assigned to position s if and only if s−1 bidders
have a higher valuation and p have a lower valuation.

For a rank-by-bid auction, Gomes and Sweeney (2014)
showed the following results.

Theorem 1 (Gomes and Sweeney (2014)). A GSP auction
has a unique efficient symmetric Bayes-Nash equilibrium
with bidding strategy β if and only if β is strictly increasing
and satisfies the following integral equation:

S∑
s=1

cs

∫ v

0

dzs(t)

dt
tdt (2)

=

S∑
s=1

cs

(
N−1

s−1

)
(1− F (v))s−1

∫ v

0

β(t)pF p−1(t)f(t)dt.

Furthermore, the optimal reserve price r∗ satisfies

r∗ =
1− F (r∗)

f(r∗)
. (3)



The authors show that, if the click probabilities cs are suffi-
ciently diverse, then, β is guaranteed to be strictly increas-
ing. When ranking is done by revenue, Sun et al. (2014)
gave the following theorem.

Theorem 2 (Sun et al. (2014)). Let β be defined by the pre-
vious theorem. If advertisers bid in a Bayes-Nash equilib-
rium then bi = β(vi)

ei
. Moreover, the optimal reserve price

vector r∗ is given by r∗i = r
ei

where r satisfies equation (3).

We are now able to present the foundation of our first algo-
rithm. Instead of assuming that the bids constitute an SNE
as in (Sun et al., 2014), we follow the ideas of Guerre et al.
(2000) and infer the scores si only from observables bi.
Our result is presented for the rank-by-bid GSP auction but
an extension to the rank-by-revenue mechanism is trivial.

Lemma 1. Let v1, . . . , vn be an i.i.d. sample of valua-
tions from distribution F and let bi = β(vi) be the bid
played at equilibrium. Then the random variables bi are
i.i.d. with distribution G(b) = F (β−1(b)) and density
g(b) = f(β−1(b))

β′(β−1(b)) . Furthermore,

vi = β−1(bi) (4)

=

∑S
s=1 cs

(
N−1
s−1

)
(1−G(bi))

s−1bipG(bi)
p−1g(bi)∑S

s=1 cs
(
N−1
s−1

)
dz
db (bi)

−
∑S
s=1cs(s−1)(1−G(bi))

s−2g(bi)
∫ bi

0
pG(u)p−1ug(u)du∑S

s=1 cs
(
N−1
s−1

)
dz
db (bi)

,

where zs(b) := zs(β
−1(b)) and is given by

(
N−1
s−1

)
(1 −

G(b))s−1G(b)p−1.

Proof. By definition, bi = β(vi) is a function of only vi.
Since β does not depend on the other samples either, it
follows that (bi)

N
i=1 must be an i.i.d. sample. Using the

fact that β is a strictly increasing function we also have
G(b) = P (bi ≤ b) = P (vi ≤ β−1(b)) = F (β−1(b)) and a
simple application of the chain rule gives us the expression
for the density g(b). To prove the second statement observe
that by the change of variable v = β−1(b), the right-hand
side of (2) is equal to

S∑
s=1

(
N−1

s−1

)
(1−G(b))s−1

∫ β−1(b)

0

pβ(t)F p−1(t)f(t)dt

=

S∑
s=1

(
N−1

s−1

)
(1−G(b))s−1

∫ b

0

puG(u)p−1(u)g(u)du.

The last equality follows by the change of variable t =

β(u) and from the fact that g(b) = f(β−1(b))
β′(β−1(b)) . The same

change of variables applied to the left-hand side of (2)

yields the following integral equation:

S∑
s=1

(
N−1

s−1

)∫ b

0

β−1(u)
dz

du
(u)du

=

S∑
s=1

(
N−1

s−1

)
(1−G(b))s−1

∫ b

0

upG(u)p−1(u)g(u)du.

Taking the derivative with respect to b of both sides of this
equation and rearranging terms lead to the desired expres-
sion.

The previous Lemma shows that we can recover the valua-
tion of an advertiser from its bid. We therefore propose the
following algorithm for estimating the value of r.

1. Use the sample S to estimate G and g.
2. Plug this estimates in (4) to obtain approximate sam-

ples from the distribution F .
3. Use the approximate samples to find estimates f̂ and
F̂ of the valuations density and cumulative distribu-
tion functions respectively.

4. Use F̂ and f̂ to estimate r.

In order to avoid the use of parametric methods, a ker-
nel density estimation algorithm can be used to estimate
g and f . While this algorithm addresses both drawbacks
of the algorithm proposed by Sun et al. (2014), it can be
shown (Guerre et al., 2000)[Theorem 2] that if f isR times
continuously differentiable, then, after seeing n samples,
‖f − f̂‖∞ is in Ω

(
1

nR/(2R+3)

)
independently of the algo-

rithm used to estimate f . In particular, note that for R = 1
the rate is in Ω

(
1

n1/4

)
. This unfavorable rate of conver-

gence can be attributed to the fact that a two-step estimation
algorithm is being used (estimation of g and f ). But, even
with access to bidder valuations, the rate can only be im-
proved to Ω

(
1

nR/(2R+1)

)
(Guerre et al., 2000). Furthermore,

a small error in the estimation of f affects the denominator
of the equation defining r and can result in a large error on
the estimate of r.

4.2 DISCRIMINATIVE ALGORITHM

In view of the problems associated with density estima-
tion, we propose to use empirical risk minimization to find
an approximation to the optimal reserve price. In particu-
lar, we are interested in solving the following optimization
problem:

min
r∈[0,1]N

n∑
i=1

L(r,bi). (5)

We first show that, when bidders play in equilibrium, the
optimization problem (1) can be considerably simplified.
Proposition 1. If advertisers play a symmetric Bayes-Nash
equilibrium then

min
r∈[0,1]N

Eb[L(r,b)] = min
r∈[0,1]

Eb[L̃(r,b)],
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Figure 1: Plot of the loss function Li,s. Notice that the loss
in fact resembles a broken “V” .

where q̃i := q̃i(bi) = eibi and

L̃(r,b) = −
S∑
s=1

cs
e(s)

(
q̃(s+1)1q̃(s+1)≥r+r1q̃(s+1)<r≤q̃(s)

)
.

Proof. Since advertisers play a symmetric Bayes-Nash
equilibrium, the optimal reserve price vector r∗ is of
the form r∗i = r

ei
. Therefore, letting D = {r|ri =

r
ei
, r ∈ [0, 1]} we have minr∈[0,1]N Eb[L(r,b)] =

minr∈D Eb[L(r,b)]. Furthermore, when restricted to D,
the objective function L is given by

−
S∑
s=1

cs
e(s)

(
q(s+1)1q(s+1)≥r + r1q(s+1)<r≤q(s)

)
.

Thus, we are left with showing that replacing q(s) with q̃(s)

in this expression does not affect its value. Let r ≥ 0, since
qi = q̃i1q̃i≥r, in general the equality q(s) = q̃(s) does not
hold. Nevertheless, if s0 denotes the largest index less than
or equal to S satisfying q(s0) > 0, then q̃(s) ≥ r for all
s ≤ s0 and q(s) = q̃(s). On the other hand, for S ≥ s > s0,
1q(s)≥r = 1q̃(s)≥r = 0. Thus,

S∑
s=1

cs
e(s)

(
q(s+1)1q(s+1)≥r + r1q(s+1)<r≤q(s)

)
=

s0∑
s=1

cs
e(s)

(
q(s+1)1q(s+1)≥r + r1q(s+1)<r≤q(s)

)
=

s0∑
s=1

cs
e(s)

(
q̃(s+1)1q̃(s+1)≥r + r1q̃(s+1)<r≤q̃(s)

)
= −L̃(r,b),

which completes the proof.

In view of this proposition, we can replace the challenging
problem of solving an optimization problem in RN with
solving the following simpler empirical risk minimization
problem

min
r∈[0,1]

n∑
i=1

L̃(r,bi) = min
r∈[0,1]

n∑
i=1

S∑
s=1

Ls,i(r, q̃
(s), q̃(s+1)),

(6)

Algorithm 1 Minimization algorithm

Require: Scores (q̃
(s)
i ), 1 ≤ n, 1 ≤ s ≤ S.

1: Define (p
(1)
is , p

(2)
is ) = (q̃

(s)
i , q̃

(s+1)
i ); m = nS;

2: N :=
⋃n
i=1

⋃S
s=1{p

(1)
is , p

(2)
is };

3: (n1, ..., n2m) = Sort(N );
4: Set di := (d1, d2) = 0

5: Set d1 = −
∑n
i=1

∑S
s=1

cs
ei
p

(2)
is ;

6: Set r∗ = −1 and L∗ =∞
7: for j = 2, . . . , 2m do
8: if nj−1 = p

(2)
is then

9: d1 = d1 + cs
ei
p

(2)
is ; d2 = d2 − cs

ei
;

10: else if nj−1 = p
(1)
is then

11: d2 = d2 + cs
es

12: end if
13: L = d1 − njd2;
14: if L < L∗ then
15: L∗ = L; r∗ = nj ;
16: end if
17: end for
18: return r∗;

where Ls,i(r, q̃(s)), q̃(s+1)) := − cs
e(s)

(q̃
(s+1)
i 1

q̃
(s+1)
i ≥r −

r1
q̃
(s+1)
i <r≤q̃(s)i

). In order to efficiently minimize this
highly non-convex function, we draw upon the work of
Mohri and Medina (2014) on minimization of sums of v-
functions.

Definition 1. A function V : R3 → R is a v-function if it
admits the following form:

V (r, q1, q2)

=−a(1)1r≤q2−a(2)r1q2<r≤q1+
[ r
η
−a(3)

]
1q1<r<(1+η)q1 ,

with 0 ≤ a(1), a(2), a(3), η ≤ ∞ constants satisfying
a(1) = a(2)q2, −a(2)q11η>0 =

(
1
η q1 − a(3)

)
1η>0. Un-

der the convention that 0 · ∞ = 0.

As suggested by their name, these functions admit a char-
acteristic “V shape”. It is clear from Figure 1 that Ls,i is a
v-function with a(1) = cs

e(s)
q̃

(s+1)
i , a(2) = cs

e(s)
and η = 0.

Thus, we can apply the optimization algorithm given by
Mohri and Medina (2014) to minimize (6) inO(nS log nS)
time. Algorithm 1 gives the pseudocode of that the adap-
tation of this general algorithm to our problem. A proof
of the correctness of this algorithm can be found in (Mohri
and Medina, 2014).

We conclude this section by presenting learning guarantees
for our algorithm. Our bounds are given in terms of the
Rademacher complexity and the VC-dimension.

Definition 2. Let X be a set and let G := {g : X → R} be
a family of functions. Given a sample S = (x1, . . . , xn) ∈



X , the empirical Rademacher complexity ofG is defined by

R̂S(G) =
1

n
Eσ
[

sup
g∈G

1

n

n∑
i=1

σig(xi)
]
,

where σis are independent random variables distributed
uniformly over the set {−1, 1}.

Proposition 2. Let m = mini ei > 0 and M =
∑S
s=1 cs.

Then, for any δ > 0, with probability at least 1 − δ over
the draw of a sample S of size n, each of the following
inequalities holds for all r ∈ [0, 1]:

E[L̃(r,b)] ≤ 1

n

n∑
i=1

L̃(r,bi) + C(M,m, n, δ) (7)

1

n

n∑
i=1

L̃(r,bi) ≤ E[L̃(r,b)] + C(M,m, n, δ), (8)

where C(M,m, n, δ) = 1√
n

+
√

log(en)
n +

√
M log(1/δ)

2mn .

Proof. Let Ψ: S 7→ supr∈[0,1]
1
n

∑n
i=1 L̃(r,bi) −

E[L̃(r,b)]. Let Si be a sample obtained from S by re-
placing bi with b′i. It is not hard to verify that |Ψ(S) −
Ψ(Si)| ≤ M

nm . Thus, it follows from a standard learning
bound that, with probability at least 1− δ,

E[L̃(r,b)] ≤ 1

n

n∑
i=1

L̃(r,bi) + R̂S(R) +

√
M log(1/δ)

2mn
,

where R = {Lr : b 7→ L̃(r,b)|r ∈ [0, 1]}. We pro-
ceed to bound the empirical Rademacher complexity of the
class R. For q1 > q2 ≥ 0 let L(r, q1, q2) = q21q2>r +
r1q1≥r≥q2 . By definition of the Rademacher complexity
we can write

R̂S(R) =
1

n
Eσ
[

sup
r∈[0,1]

n∑
i=1

σiLr(bi)
]

=
1

n
Eσ
[

sup
r∈[0,1]

n∑
i=1

σi

S∑
s=1

cs
es
L(r, q̃

(s)
i , q̃

(s+1)
i )

]
≤ 1

n
Eσ
[ S∑
s=1

sup
r∈[0,1]

n∑
i=1

σiψs(L(r, q̃
(s)
i , q̃

(s+1)
i ))

]
,

where ψs is the cs
m -Lipschitz function mapping x 7→ cs

e(s)
x.

Therefore, by Talagrand’s contraction lemma (Ledoux and
Talagrand, 2011), the last term is bounded by

S∑
s=1

cs
nm

Eσ sup
r∈[0,1]

n∑
i=1

σiL(r, q̃
(s)
i , q̃

(s+1)
i )=

S∑
s=1

cs
m
R̂Ss(R̃),

where Ss =
(
(q̃

(s)
1 , q̃

(s+1)
1 ), . . . , (q̃

(s)
n , q̃

(s+1)
n )

)
and R̃ :=

{L(r, ·, ·)|r ∈ [0, 1]}. The loss L(r, q̃(s), q̃(s+1)) in fact
evaluates to the negative revenue of a second-price auction

with highest bid q̃(s) and second highest bid q̃(s+1) (Mohri
and Medina, 2014). Therefore, by Propositions 9 and 10 of
Mohri and Medina (2014) we can write

R̂Ss(R̃) ≤ 1

n
Eσ
[

sup
r∈[0,1]

n∑
i=1

rσi

]
+

√
2 log en

n

≤
( 1√

n
+

√
2 log en

n

)
,

which concludes the proof.

Corollary 1. Under the hypotheses of Proposition 2, let r̂
denote the empirical minimizer and r∗ the minimizer of the
expected loss. Then, for any δ > 0, with probability at least
1− δ, the following inequality holds:

E[L̃(r̂,b)]− E[L̃(r∗,b)] ≤ 2C
(
M,m, n,

δ

2

)
.

Proof. By the union bound, (7) and (8) hold simultane-
ously with probability at least 1− δ if δ is replaced by δ/2
in those expression. Adding both inequalities and using the
fact that r̂ is an empirical minimizer yields the result.

It is worth noting that our algorithm is well defined whether
or not the buyers bid in equilibrium. Indeed, the algorithm
consists of the minimization over r of an observable quan-
tity. While we can guarantee convergence to a solution of
(1) only when buyers play a symmetric BNE, our algorithm
will still find an approximate solution to

min
r∈[0,1]

Eb[L(r,b)],

which remains a quantity of interest that can be close to (1)
if buyers are close to the equilibrium.

5 CONVERGENCE OF EMPIRICAL
EQUILIBRIA

A crucial assumption in the study of GSP auctions, includ-
ing this work, is that advertisers bid in a Bayes-Nash equi-
librium (Lucier et al., 2012; Sun et al., 2014). This assump-
tion is partially justified by the fact that advertisers can in-
fer the underlying distribution F using as observations the
outcomes of the past repeated auctions and can thereby im-
plement an efficient equilibrium.

In this section, we provide a stronger theoretical justifica-
tion in support of this assumption: we quantify the dif-
ference between the bidding function calculated using ob-
served empirical distributions and the true symmetric bid-
ding function in equilibria. For the sake of notation sim-
plicity, we will consider only the rank-by-bid GSP auction.

Let Sv = (v1, . . . , vn) be an i.i.d. sample of values drawn
from a continuous distribution F with density function f .



Assume without loss of generality that v1 ≤ . . . ≤ vn and
let v denote the vector defined by vi = vi. Let F̂ denote
the empirical distribution function induced by Sv and let
F ∈ Rn and G ∈ Rn be defined by Fi = F̂ (vi) = i/n and
Gi = 1− Fi.

We consider a discrete GSP auction where the advertiser’s
valuations are i.i.d. samples drawn from a distribution F̂ .
In the event where two or more advertisers admit the same
valuation, ties are broken randomly. Denote by β̂ the bid-
ding function for this auction in equilibrium (when it ex-
ists). We are interested in characterizing β̂ and in providing
guarantees on the convergence of β̂ to β as the sample size
increases.

We first introduce the notation used throughout this section.

Definition 3. Given a vector F ∈ Rn, the backwards dif-
ference operator ∆ : Rn → Rn is defined as:

∆Fi = Fi − Fi−1,

for i > 1 and ∆F1 = F1.

We will denote ∆∆Fi by ∆2Fi. Given any k ∈ N and
a vector F, the vector Fk is defined as Fki = (Fi)

k. Let
us now define the discrete analog of the function zs that
quantifies the probability of winning slot s.

Proposition 3. In a symmetric efficient equilibrium of the
discrete GSP, the probability ẑs(v) that an advertiser with
valuation v is assigned to slot s is given by

ẑs(v)

=

N−s∑
j=0

s−1∑
k=0

(
N − 1

j, k,N−1−j−k

)
Fji−1G

k
i

(N − j − k)nN−1−j−k ,

if v = vi and otherwise by

ẑs(v) =

(
N − 1

s− 1

)
lim

v′→v−
F̂ (v′)p(1− F̂ (v))s−1 =: ẑ−s (v),

where p = N − s.

In particular, notice that ẑ−s (vi) admits the simple expres-
sion

ẑ−s (vi) =

(
N − 1

s− 1

)
Fpi−1G

s−1
i−1 ,

which is the discrete version of the function zs. On the
other hand, even though ẑs(vi) does not admit a closed-
form, it is not hard to show that

ẑs(vi) =

(
N − 1

s− 1

)
Fpi−1G

s−1
i +O

( 1

n

)
. (9)

Which again can be thought of as a discrete version of zs.
The proof of this and all other propositions in this section

are deferred to the Appendix. Let us now define the lower
triangular matrix M(s) by:

Mij(s) = −
(
N − 1

s− 1

)
n∆Fpj∆Gs

i

s
,

for i > j and

Mii(s) =

N−s−1∑
j=0

s−1∑
k=0

(
N − 1

j, k,N−1−j−k

)
Fj

i−1G
k
i

(N−j−k)nN−1−j−k .

Proposition 4. If the discrete GSP auction admits a sym-
metric efficient equilibrium, then its bidding function β̂ sat-
isfies β̂(vi) = βi, where β is the solution of the following
linear equation.

Mβ = u, (10)

with M =
∑S
s=1 csM(s) and ui =

∑S
s=1

(
cszs(vi)vi −∑i

j=1 ẑ
−
s (vj)∆vj

)
.

To gain some insight about the relationship between β̂ and
β, we compare equations (10) and (2). An integration by
parts of the right-hand side of (2) and the change of variable
G(v) = 1− F (v) show that β satisfies

S∑
s=1

csvzs(v)−
∫ v

0

dzs(t)

dt
tdt

=

S∑
s=1

cs

(
N − 1

s− 1

)
G(v)s−1

∫ v

0

β(t)dF p. (11)

On the other hand, equation (10) implies that for all i

ui =

S∑
s=1

cs

[
Mii(s)βi −

(
N − 1

s− 1

)
n∆Gs

i

s

i−1∑
j=1

∆Fpjβj

]
.

(12)
Moreover, by Lemma 2 and Proposition 10 in the Ap-
pendix, the equalities −n∆Gs

i

s = Gs−1
i +O

(
1
n

)
and

Mii(s) =
1

2n

(
N − 1

s− 1

)
pFp−1

i−1G
s−1
i +O

( 1

n2

)
,

hold. Thus, equation (12) resembles a numerical scheme
for solving (11) where the integral on the right-hand side is
approximated by the trapezoidal rule. Equation (11) is in
fact a Volterra equation of the first kind with kernel

K(t, v) =

S∑
s=1

(
N − 1

s− 1

)
G(v)s−1pF p−1(t).

Therefore, we could benefit from the extensive literature
on the convergence analysis of numerical schemes for this
type of equations (Baker, 1977; Kress et al., 1989; Linz,
1985). However, equations of the first kind are in general
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Figure 2: (a) Empirical verification of Assumption 2. The
blue line corresponds to the quantity maxi ∆βi. In red we
plot the desired upper bound for C = 1/2.

ill-posed problems (Kress et al., 1989), that is small pertur-
bations on the equation can produce large errors on the so-
lution. When the kernel K satisfies mint∈[0,1]K(t, t) > 0,
there exists a standard technique to transform an equation
of the first kind to an equation of the second kind, which is
a well posed problem. Thus, making the convergence anal-
ysis for these types of problems much simpler. The kernel
function appearing in (11) does not satisfy this property and
therefore these results are not applicable to our scenario.
To the best of our knowledge, there exists no quadrature
method for solving Volterra equations of the first kind with
vanishing kernel.

In addition to dealing with an uncommon integral equa-
tion, we need to address the problem that the elements of
(10) are not exact evaluations of the functions defining (11)
but rather stochastic approximations of these functions. Fi-
nally, the grid points used for the numerical approximation
are also random.

In order to prove convergence of the function β̂ to β we
will make the following assumptions

Assumption 1. There exists a constant c > 0 such that
f(x) > c for all x ∈ [0, 1].

This assumption is needed to ensure that the difference be-
tween consecutive samples vi − vi−1 goes to 0 as n→∞,
which is a necessary condition for the convergence of any
numerical scheme.

Assumption 2. The solution β of (10) satisfies vi,βi ≥ 0
for all i and maxi∈1,...,n ∆βi ≤ C√

n
, for some universal

constant C.

Since βi is a bidding strategy in equilibrium, it is reason-
able to expect that vi ≥ βi ≥ 0. On the other hand, the
assumption on ∆βi is related to the smoothness of the so-
lution. If the function β is smooth, we should expect the ap-
proximation β̂ to be smooth too. Both assumptions can in
practice be verified empirically, Figure 2 depicts the quan-
tity maxi∈1,...,n ∆βi as a function of the sample size n.

Assumption 3. The solution β to (2) is twice continuously
differentiable.
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Figure 3: Approximation of the empirical bidding function
β̂ to the true solution β. The true solution is shown in red
and the shaded region represents the confidence interval of
β̂ when simulating the discrete GSP 10 times with a sam-
ple of size 200. Where N = 3, S = 2, c1 = 1, c2 = 0.5
and bids were sampled uniformly from [0, 1]

This is satisfied if for instance the distribution function F
is twice continuously differentiable. We can now present
our main result.

Theorem 3. If Assumptions 1, 2 and 3 are satisfied, then,
for any δ > 0, with probability at least 1− δ over the draw
of a sample of size n, the following bound holds for all
i ∈ [1, n]:

|β̂(vi)− β(vi)| ≤ eC
[

log( 2
δ )

N
2

√
n

q
(
n,

2

δ

)3

+
Cq(n, 2

δ )

n3/2

]
.

where q(n, δ) = 2
c log(nc/2δ) with c defined in Assump-

tion 1, and where C is a universal constant.

The proof of this theorem is highly technical, thus, we defer
it to Appendix F.

6 EXPERIMENTS

Here we present preliminary experiments showing the ad-
vantages of our algorithm. We also present empirical ev-
idence showing that the procedure proposed in Sun et al.
(2014) to estimate valuations from bids is incorrect. In con-
trast, our density estimation algorithm correctly recovers
valuations from bids in equilibrium.

6.1 SETUP

Let F1 and F2 denote the distributions of two truncated log-
normal random variables with parameters µ1 = log(.5),
σ1 = .8 and µ2 = log(2), σ = .1; the mixture parameter
was set to 1/2 . Here, F1 is truncated to have support in
[0, 1.5] and the support of F2 = [0, 2.5]. We consider a
GSP with N = 4 advertisers with S = 3 slots and position
factors c1 = 1, c2 =, 45 and c3 = 1. Based on the results of
Section 5 we estimate the bidding function β with a sample
of 2000 points and we show its plot in Figure 4. We proceed
to evaluate the method proposed by Sun et al. (2014) for
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Figure 4: Bidding function for our experiments in blue and
identity function in red.

recovering advertisers valuations from bids in equilibrium.
The assumption made by the authors is that the advertisers
play a SNE in which case valuations can be inferred by
solving a simple system of inequalities defining the SNE
(Varian, 2007). Since the authors do not specify which SNE
the advertisers are playing we select the one that solves the
SNE conditions with equality.

We generated a sample S consisting of n = 300 i.i.d. out-
comes of our simulated auction. Since N = 4, the effec-
tive size of this sample is of 1200 points. We generated
the outcome bid vectors bi, . . . ,bn by using the equilib-
rium bidding function β. Assuming that the bids constitute
a SNE we estimated the valuations and Figure 5 shows an
histogram of the original sample as well as the histogram of
the estimated valuations. It is clear from this figure that this
procedure does not accurately recover the distribution of
the valuations. By contrast, the histogram of the estimated
valuations using our density estimation algorithm is shown
in Figure 5(c). The kernel function used by our algorithm
was a triangular kernel given by K(u) = (1 − |u|)1|u|≤1.
Following the experimental setup of Guerre et al. (2000)
the bandwidth h was set to h = 1.06σ̂n1/5, where σ̂ de-
notes the standard deviation of the sample of bids.

Finally, we use both our density estimation algorithm and
discriminative learning algorithm to infer the optimal value
of r. To test our algorithm we generated a test sample of
size n = 500 with the procedure previously described. The
results are shown in Table 1.

Density estimation Discriminative
1.42 ± 0.02 1.85 ± 0.02

Table 1: Mean revenue for our two algorithms.

7 CONCLUSION

We proposed and analyzed two algorithms for learning op-
timal reserve prices for generalized second price auctions.
Our first algorithm is based on density estimation and there-
fore suffers from the standard problems associated with
this family of algorithms. Furthermore, this algorithm is
only well defined when bidders play in equilibrium. Our
second algorithm is novel and is based on learning theory
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Figure 5: Comparison of methods for estimating valuations
from bids. (a) Histogram of true valuations. (b) Valuations
estimated under the SNE assumption. (c) Density estima-
tion algorithm.

guarantees. We show that the algorithm admits an efficient
O(nS log(nS)) implementation. Furthermore, our theo-
retical guarantees are more favorable than those presented
for the previous algorithm of Sun et al. (2014). Moreover,
even though it is necessary for advertisers to play in equi-
librium for our algorithm to converge to optimality, when
bidders do not play an equilibrium, our algorithm is still
well defined and minimizes a quantity of interest albeit over
a smaller set. We also presented preliminary experimental
results showing the advantages of our algorithm. To our
knowledge, this is the first attempt to apply learning algo-
rithms to the problem of reserve price selection in GSP auc-
tions. We believe that the use of learning algorithms in rev-
enue optimization is crucial and that this work may preface
a rich research agenda including extensions of this work to
a general learning setup where auctions and advertisers are
represented by features. Additionally, in our analysis, we
considered two different ranking rules. It would be inter-
esting to combine the algorithm of Zhu et al. (2009) with
this work to learn both a ranking rule and an optimal re-
serve price. Finally, we provided the first analysis of con-
vergence of bidding functions in an empirical equilibrium
to the true bidding function. This result on its own is of
great importance as it justifies the common assumption of
advertisers playing in a Bayes-Nash equilibrium.
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