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Abstract

Determinantal point processes (DPPs) offer a
powerful approach to modeling diversity in many
applications where the goal is to select a diverse
subset from a ground set of items. We study the
problem of learning the parameters (i.e., the ker-
nel matrix) of a DPP from labeled training data.
In this paper, we develop a novel parameter esti-
mation technique particularly tailored for DPPs
based on the principle of large margin separa-
tion. In contrast to the state-of-the-art method
of maximum likelihood estimation of the DPP
parameters, our large-margin loss function ex-
plicitly models errors in selecting the target sub-
sets, and it can be customized to trade off dif-
ferent types of errors (precision vs. recall). Ex-
tensive empirical studies validate our contribu-
tions, including applications on challenging doc-
ument and video summarization, where flexibil-
ity in balancing different errors while training the
summarization models is indispensable.

1 INTRODUCTION

Imagine we are to design a search engine to retrieve web
images that match user queries. In response to the search
term JAGUAR, what should we retrieve—the images of the
animal jaguar or the images of the automobile jaguar?

This frequently cited example illustrates the need to incor-
porate the notion of diversity. In many tasks, we want to
select a subset of items from a “ground set”. While the
ground set might contain many similar items, our goal is
not to discover all of the same ones, but rather to find a sub-
set of diverse items that ensure coverage (the exact defini-
tion of coverage is task-specific). In the example of retriev-
ing images for JAGUAR, we achieve diversity by including
both types of images.

∗Equal contribution

Recently, the determinantal point process (DPP) has
emerged as a promising technique for modeling diver-
sity [Kulesza and Taskar, 2012]. A DPP defines a proba-
bility distribution over the power set of a ground set. Intu-
itively, subsets of higher diversity are assigned larger prob-
abilities, and thus are more likely to be selected than those
with lower diversity. Since its original application to quan-
tum physics, DPP has found many applications in model-
ing random trees and graphs [Burton and Pemantle, 1993],
document summarization [Kulesza and Taskar, 2011b],
search and ranking in information retrieval [Kulesza and
Taskar, 2011a], and clustering [Kang, 2013]. Various ex-
tensions have also been studied, including k-DPP [Kulesza
and Taskar, 2011a], structured DPP [Kulesza and Taskar,
2011c], Markov DPP [Affandi et al., 2012], and DPP on
continuous spaces [Affandi et al., 2013].

The probability distribution of a DPP depends crucially on
its kernel—a square and symmetric, positive semidefinite
matrix whose elements specify how similar every pair of
items in the ground set are. This kernel matrix is often
unknown and needs to be estimated from training data.

This is a very challenging problem for several reasons.
First, the number of the parameters, i.e., the number of el-
ements in the kernel matrix, is quadratic in the number of
items in the ground set. For many tasks (for instance, im-
age search), the ground set can be very large. Thus it is
impractical to directly specify every element of the matrix,
and a suitable reparameterization of the matrix is necessary.
Secondly, the number of training samples is often limited
in many practical applications. One such example is the
task of document summarization, where our aim is to se-
lect a succinct subset of sentences from a long document.
There, acquiring accurate annotations from human experts
is costly and difficult. Thirdly, for many tasks, we need to
evaluate the performance of the learned DPP not only by its
accuracy in predicting whether an item should be selected,
but also by other measures like precision and recall. For
instance, failing to select key sentences for summarizing
documents might be regarded as being more catastrophic
than injecting sentences with repetitive information into the



summary.

Existing methods of parameter estimation for DPPs are in-
adequate to address these challenges. For example, max-
imum likelihood estimation (MLE) typically requires a
large number of training samples in order to estimate the
underlying model correctly. This also limits the number of
the parameters it can estimate reliably, restricting its use
to DPPs whose kernels can be parameterized with few de-
grees of freedom. It also does not offer fine control over
precision and recall.

We propose a two-pronged approach for learning a DPP
from labeled data. First, we improve modeling flexibility
by reparameterizing the DPP’s kernel matrix with multiple
base kernels. This representation could easily incorporate
domain knowledge and requires learning fewer parameters
(instead of the whole kernel matrix). Then, we optimize
the parameters such that the probability of the correct sub-
set is larger than other erroneous subsets by a large mar-
gin. This margin is task-specific and can be customized to
reflect the desired performance measure—for example, to
monitor precision and recall. As such, our approach defines
objective functions that closely track selection errors and
work well with few training samples. While the principle
of large margin separation has been widely used in clas-
sification [Vapnik, 1998] and structured prediction [Taskar
et al., 2005], formulating DPP learning with the large mar-
gin principle is novel. Our empirical studies show that
the proposed method attains superior performance on two
challenging tasks of practical interest: document and video
summarization.

The rest of the paper is organized as follows. We provide
background on the DPP in section 2, followed by our ap-
proach in section 3. We discuss related work in section 4
and report our empirical studies in section 5. We conclude
in section 6.

2 BACKGROUND: DETERMINANTAL
POINT PROCESSES

We first review background on the determinantal point pro-
cess (DPP) [Macchi, 1975] and the standard maximum
likelihood estimation technique for learning DPP param-
eters from data. More details can be found in the excellent
tutorial [Kulesza and Taskar, 2012].

Given a ground set of M items, Y = {1, 2, . . . ,M}, a DPP
defines a probabilistic measure over the power set, i.e., all
possible subsets (including the empty set) ofY . Concretely,
let L denote a symmetric and positive semidefinite matrix
in RM×M. The probability of selecting a subset y ⊆ Y is
given by

P (y;L) = det(L+ I)−1 det(Ly), (1)

where Ly denotes the submatrix of L, with rows and

columns selected by the indices in y. I is the identity ma-
trix with the proper size. We define det (L∅) = 1. The
above way of defining a DPP is called an L-ensemble. An
equivalent way of defining a DPP is to use a kernel ma-
trix to define the marginal probability of selecting a random
subset:

Py =
∑
y′⊆Y

P (y′;L)I[y ⊆ y′ ] = det(Ky), (2)

where we sum over all subsets y′ that contain y (I[ · ] is
an indicator function). The matrix K is another positive
semidefinite matrix, computable from the L matrix

K = L(L+ I)−1, (3)

and Ky is the submatrix of K indexed by y. Despite the
exponential number of summands in eq. (2), the marginal-
ization is analytically tractable and computable in polyno-
mial time.

2.1 MODELING DIVERSITY

One particularly useful property of the DPP is its ability to
model pairwise repulsion. Consider the marginal probabil-
ity of having two items i and j simultaneously in a subset:

P{i,j} = det

∣∣∣∣∣ KiiKij

KjiKjj

∣∣∣∣∣ = KiiKjj −K2
ij

≤ KiiKjj = P{i}P{j} ≤ min(P{i}, P{j}). (4)

Thus, unless Kij = 0, the probability of observing i and j
jointly is always less than observing either i or j separately.
Namely, having i in a subset repulsively excludes j and
vice versa. Another extreme case is when i and j are the
same; then Kii = Kjj = Kij , which leads to P{i,j} =
0. Namely, we should never allow them together in any
subset.

Consequently, a subset with a large (marginal) probability
cannot have too many items that are similar to each other
(i.e., with high values ofKij). In other words, the probabil-
ity provides a gauge of the diversity of the subset. The most
diverse subset, which balances all the pairwise repulsions,
is the subset that attains the highest probability

yMAP = argmaxy P (y;L). (5)

Note that this MAP inference is computed with respect to
the L-ensemble (instead of K) as we are interested in the
mode, not the marginal probability of having the subset.
Unfortunately, the MAP inference is NP-hard [Ko et al.,
1995]. Various approximation algorithms have been in-
vestigated [Gillenwater et al., 2012, Kulesza and Taskar,
2012].



2.2 MAXIMUM LIKELIHOOD ESTIMATION

Suppose we are given a training set {(Yn,yn)}, where each
ground set Yn is annotated with its most diverse subset
yn. How can we discover the underlying parameters L or
K? Note that different ground sets need not have over-
lap. Thus, directly specifying kernel values for every pair
of items is unlikely to be scalable. Instead, we will need
to assume that either L or K for each ground set is repre-
sented by a shared set of parameters θ.

For items i and j in Yn, suppose their kernel values Knij

can be computed as a function of xni
, xnj

and θ, where
xni

and xnj
are features characterizing those items. Our

learning objective is to optimize θ such that yn is the most
diverse subset in Yn, or attains the highest probability. This
gives rise to the following maximum likelihood estimate
(MLE) [Kulesza and Taskar, 2011b],

θMLE = argmaxθ
∑
n

logP (yn;Ln(Yn;θ)), (6)

where Ln(Yn;θ) converts features in Yn to the L matrix
for the ground set Yn. MLE has been a standard approach
for estimating DPP parameters. However, as we will dis-
cuss in section 3.2, it has important limitations.

Next, we introduce our method for learning the parameters.
We first present our multiple kernel based representation of
the L matrix and then the large-margin based estimation.

3 OUR APPROACH

Our approach consists of two components that are devel-
oped in parallel, yet work in concert: (1) the use of mul-
tiple kernel functions to represent the DPP; (2) applying
the principle of large margin separation to optimize the pa-
rameters. The former reduces the number of parameters to
learn and thus is especially advantageous when the number
of training samples is limited. The latter strengthens the ad-
vantage by optimizing objective functions that closely track
subset selection errors.

3.1 MULTIPLE KERNEL REPRESENTATION

Learning the L or K matrix for a DPP is an instance of
learning kernel functions, as those matrices are positive
semidefinite matrices, interpretable as kernel functions be-
ing evaluated on the items in the ground set. Thus, our goal
is essentially to learn the right kernel function to measure
similarity.

However, for many applications, similarity is just one of the
criteria for selecting items. For instance, in the previous
example of image retrieval, the retrieved images not only
need to be diverse (thus different) but also need to have
strong relevance to the query term. Similarly, in document
summarization, the selected sentences not only need to be

succinct and not redundant, but also need to represent the
contents of the document [Lin and Bilmes, 2010].

Kulesza and Taskar [2011b] propose to balance these two
potentially conflicting forces with a decomposable L ma-
trix:

Lij = qiqjSij = qiqjφ
T
iφj ,

qi = q(xi) = exp(θTxi), ∀ i, j ∈ Y, (7)

where qi is referred to as the quality factor, modeling how
representative or relevant the selected items are. It depends
on item i’s feature vector xi, which encodes i’s contextual
information and its representativeness of other items. For
example, in document summarization, possible features are
the sentence lengths, positions of the sentences in the text,
or others. Sij , on the other hand, measures how similar two
sentences are, computed from a different set of features,
φi and φj , such as bag-of-words descriptors that represent
each item’s individual characteristics.

However, prior work [Kulesza and Taskar, 2011b] does
not investigate whether this specific definition of similar-
ity could be made optimal and adapted to the data, thus
limiting the modeling power of the DPP largely to infer the
quality qi. Our empirical studies show that this limitation
can be severe, especially when the modeling choice is er-
roneous (cf. section 5.2).

In this paper, we retain the aspect of quality modeling but
improve the modeling of similarity Sij in two ways. First,
we use nonlinear kernel functions such as the Gaussian
RBF kernel to determine similarity. Secondly, and more
importantly, we combine several base kernels:

Sij =
∑
k

αk exp{−‖φi − φj‖22 /σ
2
k}+ βφT

iφj , (8)

where k indexes the base kernels and σk is a scaling fac-
tor. The combination coefficients are constrained such that∑

k αk+β = 1. They are optimized on the annotated data,
either via maximum likelihood estimation or via our novel
parameter estimation technique, to be described next.

3.2 LARGE-MARGIN ESTIMATION OF DPP

Maximum likelihood estimation does not closely track dis-
criminative errors [Ng and Jordan, 2002, Vapnik, 1998, Je-
bara, 2004]. While improving the likelihood of the ground-
truth subset yn, MLE could also improve the likelihoods of
other competing subsets. Consequentially, a model learned
with MLE could have modes that are very different sub-
sets yet are very close to each other in their probability val-
ues. Having highly confusable modes is especially prob-
lematic for DPP’s NP-hard MAP inference—the difference
between such modes can fall within the approximation er-
rors of approximate inference algorithms such that the true
MAP cannot be easily extracted.



3.2.1 Multiplicative Large Margin Constraints

To address these deficiencies, our large-margin based ap-
proach aims to maintain or increase the margin between the
correct subset and alternative, incorrect ones. Specifically,
we formulate the following large margin constraints

logP (yn;Ln) ≥ max
y⊆Yn

log `(yn,y)P (y;Ln)

= max
y⊆Yn

log `(yn,y) + logP (y;Ln), (9)

where `(yn,y) is a loss function measuring the discrep-
ancy between the correct subset and an alternative y. We
assume `(yn,yn) = 0.

Intuitively, the more different y is from yn, the larger the
gap we want to maintain between the two probabilities.
This way, the incorrect one has less chance to be identified
as the most diverse one. Note that while similar intuitions
have been explored in multi-way classification and struc-
tured prediction, the margin here is multiplicative instead
of additive—this is by design, as it leads to a tractable opti-
mization over the exponential number of constraints, as we
will explain later.

3.2.2 Design of the Loss Function

A natural choice for the loss function is the Hamming dis-
tance between yn and y, counting the number of disagree-
ments between two subsets:

`H(yn,y) =
∑
i∈y

I[i /∈ yn] +
∑
i/∈y

I[i ∈ yn]. (10)

In this loss function, failing to select the right item costs
the same as adding an unnecessary item. In many tasks,
however, this symmetry does not hold. For example, in
summarizing a document, omitting a key sentence has more
severe consequences than adding a (trivial) sentence.

To balance these two types of errors, we introduce the gen-
eralized Hamming loss function,

`ω(yn,y) =
∑
i∈y

I[i /∈ yn] + ω
∑
i/∈y

I[i ∈ yn]. (11)

When ω is greater than 1, the learning biases towards
higher recall to select as many items in yn as possible.
When ω is significantly less than 1, the learning biases to-
wards high precision to avoid incorrect items as much as
possible. Our empirical studies demonstrate such flexibility
and its advantages in two real-world summarization tasks.

3.2.3 Numerical Optimization

To overcome the challenge of dealing with an exponen-
tial number of constraints in eq. (9), we reformulate it as
a tractable optimization problem. We first upper-bound

the hard-max operation with Jensen’s inequality (i.e., soft-
max):

logP (yn;Ln) ≥ log
∑
y⊆Y

elog `ω(yn,y)P (y;Ln)

= softmaxy⊆Yn log `ω(yn,y) + logP (y;Ln). (12)

With the loss function `ω(yn,y), the right-hand-side is
computable in polynomial time,

softmaxy⊆Yn
log `ω(yn,y) + logP (y;Ln)

= log

∑
i/∈yn

Knii + ω
∑
i∈yn

(1−Knii)

 , (13)

where Knii is the i-th element on the diagonal of Kn, the
marginal kernel matrix corresponding to Ln. The detailed
derivation of this result is in the supplementary material.
Note thatKn can be computed efficiently fromLn through
the identity eq. (3).

The softmax can be seen as a summary of all undesirable
subsets (the correct subset yn does not contribute to the
weighted sum as `ω(yn,yn) = 0). Our optimization bal-
ances this term with the likelihood of the target with the
hinge loss function [z]+ = max(0, z),

min
∑
n

[
− logP (yn;Ln)

+ λ log

( ∑
i/∈yn

Knii
+ ω

∑
i∈yn

(1−Knii
)

)]
+

,

(14)

where λ ≥ 0 is a tradeoff coefficient, to be tuned on vali-
dation datasets. Note that this objective function subsumes
maximum likelihood estimation where λ = 0. We optimize
the objective function with subgradient descent. Details are
in the supplementary material.

4 RELATED WORK

The DPP arises from random matrix theory and quantum
physics [Macchi, 1975, Kulesza and Taskar, 2012]. In ma-
chine learning, researchers have proposed different varia-
tions to improve its modeling capacity. Kulesza and Taskar
[2011a] introduced k-DPP to restrict the sets to have a con-
stant size k. Affandi et al. [2012] proposed a Markov DPP
which offers diversity at adjacent time stamps. A struc-
tured DPP was presented in [Kulesza and Taskar, 2011c]
to model trees and graphs. The MAP inference of DPP
is generally NP-hard [Ko et al., 1995]. Gillenwater et al.
[2012] developed an 1/4-approximation algorithm. In prac-
tice, greedy inference gives rise to decent results [Kulesza
and Taskar, 2011b] though it lacks theoretical guarantees.



Another popular alternative is to resort to fast sampling al-
gorithms [Kang, 2013, Kulesza and Taskar, 2012].

In spite of much research activity surrounding DPPs, there
is very little work exploring how to effectively learn the
model parameters. MLE is the most popular estimator.
Compared to MLE, our approach is more robust to the
number of training data or mis-specified models, and of-
fers greater flexibility by incorporating customizable error
functions. A recent Bayesian approach works with the pos-
terior over the parameters [Affandi et al., 2014]. In contrast
to that work, we develop a large-margin training approach
for DPPs and directly minimize the set selection errors.
The large margin principle has been widely used in clas-
sification [Vapnik, 1998] and structured prediction [Taskar
et al., 2005, Tsochantaridis et al., 2004, Taskar et al., 2004,
Sha and Saul, 2006], but its application to DPP is original.
In order to make it tractable for DPPs, we use multiplicative
rather than additive margin constraints.

5 EXPERIMENTS

We validate our large-margin approach to learn DPP pa-
rameters (DPPLME) with extensive empirical studies on both
synthetic data and two real-world summarization tasks with
documents and videos. While DPP also has applications
beyond summarization, this is a particularly good testbed
to illustrate diverse subset selection: a compact summary
ought to include high quality items that, taken together, of-
fer good coverage of the source content.

5.1 SETUP

5.1.1 Evaluation Metrics

We evaluate the quality of the selected subset yMAP against
the ground-truth y? using the F-score, which is the har-
monic mean of precision and recall:

F-score =
2Precision× Recall
Precision + Recall

,

Precision =
|yMAP ∩ y?|
|yMAP|

, Recall =
|yMAP ∩ y?|
|y?|

. (15)

All three quantities are between 0 and 1, and higher values
are better.

5.1.2 MAP Inference

We conduct the MAP inference of DPP by brute-forth
search on the synthetic data, and turn to the so called min-
imum Bayes risk (MBR) decoding [Goel and Byrne, 2000,
Kulesza and Taskar, 2012] for larger ground sets on real
data.

The MBR inference samples subsets S = {y1, · · · ,yT}
from the learned DPP and outputs the one ŷ which achieves

the highest consensus with the others, where the consensus
can be measured by different evaluation metrics depending
on applications. We use the F-score in our case. Particu-
larly,

ŷ ← arg max
yt′∈S

1

T

T∑
t=1

F-SCORE(yt′ ,yt). (16)

Note that the MBR inference has actually introduced some
degrees of flexibility to DPP (and to other probabilistic
models). It allows users to infer the desired output accord-
ing to different evaluation metrics. As a result, the selected
subset is not necessarily the “true” diverse subset, but is
biased towards the users’ specific interests.

5.2 SYNTHETIC DATASET

5.2.1 Data

Our ground set has 10 items, Y = {x1,x2, · · · ,x10}. For
each item, we sample a 5-dimensional feature vector from
a spherical Gaussian: xi ∼ N (0, I). To generate the L
matrix for the DPP, we follow the model in eq. (7); for the
parameter vector θ we sample from a spherical Gaussian,
θ ∼ N (0, I), and for the similarity we simply let φi = xi

and compute Sij = φ
T
iφj .

We identify the most diverse subset y? (eq. (5)) via exhaus-
tive search of all subsets, which is possible given the small
ground set. The resulting y? has 5 items on average. We
then add noise by randomly (with probability 0.1) adding
or dropping an item to or from y?. We repeat the process of
sampling another pair of the ground set and its most diverse
set. We do so 200 times and use 100 pairs for holdout and
100 for testing. We repeat the process to yield training sets
of various sizes.

5.2.2 Learning

We compare our large-margin approach using the Ham-
ming loss (eq. (10)) to the standard MLE method for learn-
ing DPP parameters.1 All hyperparameters are tuned by
cross-validation. After learning, we apply MAP inference
to the testing ground sets.

5.2.3 Results

The DPP is parameterized by two things: θ for the quality
of the items, and Sij for the similarity among them. Since
the ground-truth parameters are known to us, we conduct
experiments to isolate the impact of learning either one.

Fig. 1(a) contrasts the two methods when learning θ
only, assuming all Sij are known and the ground-truths

1Adding a zero-mean Gaussian prior over θ while learning
with MLE, as in [Kulesza and Taskar, 2011b], did not yield im-
provement.
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Figure 1: On synthetic datasets, our method DPPLME significantly outperforms the state-of-the-art parameter estimation technique
DPPMLE [Kulesza and Taskar, 2011b] in various learning settings. See text for details. Best viewed in color.

are used. Our DPPLME method significantly outperforms
DPPMLE. When the number of training samples is increased,
the performance of our method generally improves and gets
very close to the oracle’s performance, for which the true
values of both Sij and θ are used.

Fig. 1(b) examines the two methods in the setting of model
mis-specification, where the Sij values deliberately devi-
ate from the true values. Specifically, we set them to
exp(−‖xi−xj‖22/σ2) where the bandwidth σ varies from
small to large, while the true values are xT

ixj . All meth-
ods generally suffer. However, our method is fairly robust
to the mis-specification while DPPMLE quickly deteriorates.
Our advantage is likely due to our method’s focus on learn-
ing to reduce subset selection errors, whereas MLE focuses
on learning the right probabilistic model (even if it is al-
ready mis-specified).

Fig. 1(c) compares the two methods when both θ and Sij

need to be learned from the data. We apply our mul-
tiple kernel parameterization technique to model Sij , as
in eq. (8), except β is set to be zero to avoid including
the ground-truth. We see that our parameterization over-
comes the problems of model mis-specification in Fig. 1(b),
demonstrating its effectiveness in approximating unknown
similarities. In fact, both learning methods match the per-
formance of the corresponding methods with ground-truth
similarity values, respectively. Nonetheless, our large-
margin estimation still outperforms MLE significantly.

In summary, our results on synthetic data are very encour-
aging. Our multiple kernel parameterization avoids the pit-
fall of model mis-specification, and the large-margin esti-
mation outperforms MLE due to its ability to track selec-
tion errors more closely.

5.3 DOCUMENT SUMMARIZATION

Next we apply DPP to the task of extractive multi-
document summarization [Dang, 2005, Kulesza and

Taskar, 2011b, Lin and Bilmes, 2010]. In this task, the in-
put is a document cluster consisting of several documents
on a single topic. The desired output is a subset of the sen-
tences in the cluster that serve as a summary for the entire
cluster. Naturally, we want the sentences in this subset to
be both representative and diverse.

5.3.1 Experimental Setting

We use the text data from Document Understanding Con-
ference (DUC) 2003 and 2004 [Dang, 2005] as the train-
ing and testing sets, respectively. There are 60 docu-
ment clusters in DUC 2003 and 50 in DUC 2004, each
collected over a short time period on a single topic. A
cluster includes 10 news articles and on average 250 sen-
tences. Four human reference summaries are provided
along with each cluster. Following prior work, we gener-
ate the oracle/ground-truth summary by identifying a sub-
set of the original sentences that best agree with the human
reference summaries [Kulesza and Taskar, 2011b]. On av-
erage, the oracle summary consists of 5 sentences. As is
standard practice, we use the oracles only during training.
During testing, the algorithm output is evaluated against
each of the four human reference summaries separately,
and we report the average accuracy [Dang, 2005, Kulesza
and Taskar, 2011b, Lin and Bilmes, 2010].

We use the widely-used evaluation package ROUGE [Lin,
2004], which scores document summaries based on n-gram
overlap statistics. We use ROUGE 1.5.5 along with Word-
Net 2.0, and report the F-score (F), Precision (P), and Re-
call (R) of both unigram and bigram matchings, denoted
by ROUGE-1X and ROUGE-2X respectively (X ∈ {F, P,
R}). Additionally, we limit the maximum length of each
summary to be 665 characters to be consistent with exist-
ing work [Dang, 2005]. This yields 5 sentences on average
for subsets generated by our algorithm.

To allow the fairest comparison to existing DPP work for



Table 1: Accuracy on document summarization. Our methods outperform others with statistical significance.
Method ROUGE-1F ROUGE-1P ROUGE-1R ROUGE-2F ROUGE-2P ROUGE-2R
PEER 35 [Dang, 2005] 37.54 37.69 37.45 8.37 – –
PEER 104 [Dang, 2005] 37.12 36.79 37.48 8.49 – –
PEER 65 [Dang, 2005] 37.87 37.58 38.20 9.13 – –
DPPMLE+COS [Kulesza and Taskar, 2011b] 37.89±0.08 37.37±0.08 38.46±0.08 7.72±0.06 7.63±0.06 7.83±0.06
Ours (DPPLME+COS) 38.36±0.09 37.72±0.10 39.07±0.08 8.20±0.07 8.07±0.07 8.35±0.07
Ours (DPPMLE+MKR) 39.14±0.08 39.03±0.09 39.31±0.09 9.25±0.08 9.24±0.08 9.27±0.08
Ours (DPPLME+MKR) 39.71±0.05 39.61±0.08 39.87±0.06 9.40±0.08 9.38±0.08 9.43±0.08

this task, we use the same features designated in [Kulesza
and Taskar, 2011b]. To model quality, the features are the
sentence length, position in the original document, mean
cluster similarity, LexRank [Erkan and Radev, 2004], and
personal pronouns. To model the similarity, the features are
the standard normalized term frequency-inverse document
frequency (tf-idf) vectors.

5.3.2 Learning

We consider two ways of modeling similarities. The first
one is to use the cosine similarity (COS) between feature
vectors, as in [Kulesza and Taskar, 2011b]. The second is
our multiple kernel based similarity (MKR, eq. (8)). For
MKR, the bandwidths are σ = 2q , q = −6,−5, · · · , 6, and
the combination coefficients are learned on the data. We
implement the method in [Kulesza and Taskar, 2011b] as a
baseline (DPPMLE+COS). We also test an enhanced variant
of that method by replacing its cosine similarity with our
multiple kernel based similarity (DPPMLE+MKR).

5.3.3 Results

Table 1 compares several DPP-based methods, as well as
the top three results (PEER 35, 104, 65) from the DUC
2004 competition, which are not DPP-based (“-” indicates
results not available). Since the DPP MAP inference is NP-
hard, we use a sampling technique to extract the most di-
verse subset [Kulesza and Taskar, 2012]. We run inference
10 times and report the mean accuracy and standard error.

The state-of-the-art MLE-trained DPP model
(DPPMLE+COS) [Kulesza and Taskar, 2011b] achieves
about the same performance as the best PEER results
of DUC 2004. We obtain a noticeable improvement by
applying our large-margin estimation (DPPLME+COS). By
applying multiple kernels to model similarity, we obtain
significant improvements (above the standard errors)
for both parameter estimation techniques. In particular,
our complete method, DPPLME+MKR, attains the best
performance across all the evaluation metrics.

5.4 VIDEO SUMMARIZATION

Finally, we demonstrate the broad applicability of our
method by applying it to video summarization. In this
case, the goal is to select a set of representative and diverse

frames from a video sequence.

5.4.1 Experimental Setting

The dataset consists of 50 videos from the Open Video
Project (OVP)2. They are 30fps, 352×240 pixels, vary from
1 to 4 minutes, and are distributed across several genres in-
cluding documentary, educational, historical, etc. We use
the provided ground truth key frame summaries [de Avila
et al., 2011], where each video is labeled by five annotators
independently. We perform 5-fold validation and report the
average result. We apply several preprocessing steps to re-
move frames that are trivially redundant (due to high tem-
poral correlation) or of low visual quality. We use a sim-
ilar procedure as in the document summarization task to
generate the oracle/ground-truth subsets. On average, the
ground-truth has 9 frames (in contrast, our method yields
subsets from 5 to 20 frames). We use the public evalu-
ation package VSUMM to evaluate the system-generated
summary frames and again compute Precision, Recall and
F-score [de Avila et al., 2011]. More details are in the sup-
plementary material.

5.4.2 Features

We extract from each frame a color histogram and SIFT-
based Fisher vector [Lowe, 2004, Perronnin and Dance,
2007] to model pairwise frame similarity Sij . The two fea-
tures are combined via our multiple kernel representation.
To model the quality of each frame, we extract both intra-
frame and inter-frame representativeness features. They are
computed on the saliency maps [Rahtu et al., 2010, Hou
et al., 2012] and include the mean, standard deviation, me-
dian, and quantiles of the maps as well as the the visual
similarities between a frame and its neighbors. We z-score
them within each video sequence.

5.4.3 Results

Table 2 compares several methods for selecting key frames:
an unsupervised clustering method VSUMM [de Avila
et al., 2011] (we implemented its two variants, offering a
degree of tradeoff between precision and recall, and finely
tuned the parameters), DPPMLE with a multiple kernel pa-
rameterization of Sij , and our margin-based approach. For

2The Open Video Project: www.open-video.org



Table 2: Accuracy on video summarization. Our method performs the best and allows precision-recall control.

Metric VSUMM1 VSUMM2
DPPMLE+MKR

Ours (DPPLME+MKR)
[de Avila et al., 2011] [de Avila et al., 2011] ω = 1/64 ω = 1 ω = 64

F-score 70.25 68.20 72.94±0.08 71.25±0.09 73.46±0.07 72.39±0.10
Precision 70.57 73.14 68.40±0.08 74.00±0.09 69.68±0.08 67.19±0.11

Recall 75.77 69.14 82.51±0.11 72.71±0.11 81.39±0.09 83.24±0.09

our method, we illustrate its flexibility to target different
operating points, by varying the tradeoff constant ω in the
generalized Hamming distance loss function eq. (11). Re-
call that higher values of ω will promote higher recall,
while lower promote higher precision.

The results clearly demonstrate the advantage of our ap-
proach, particularly in how it offers finer control of the
tradeoff between precision and recall. By adjusting ω, our
method performs the best in each of the three metrics and
outperforms the baselines by a statistically significant mar-
gin measured in the standard errors. Controlling the trade-
off is quite valuable in this application; for example, high
precision may be preferable to a user summarizing a video
he himself captured (he knows what appeared in the video,
and wants a noise-free summary), whereas high recall may
be preferable to a user summarizing a video taken by a third
party (he has not seen the original video, and prefers some
noise to dropped frames).

More details are illustrated in Fig. 2, in which by varying
ω from 2−6 to 28 we obtain 8 pairs of (precision, recall)
values. We apply uniform interpolation among them and
draw the precision-recall curve. One can see that DPPLME

is able to control the characteristics of the DPP generated
summaries, biasing them to either high precision or high
recall and without sacrificing the other too much. Though
MLE or VSUMM does not supply such modeling flexibil-
ity, we also include them in the figure for reference.

We also present qualitative results on video summarization
in Fig. 3. For this particular video, DPPMLE, DPPLME with
ω = 1, and DPPLME with ω = 64 all give rise to high recalls.
Their output summaries are pretty lengthy, and may be bor-
ing to some users who just want to grasp something inter-
esting to watch. By turning down the weight to ω = 1/64,
our DPPLME dramatically improves the precision to 76% (in
contrast to the 48% of DPPMLE).

5.5 COMPUTATIONAL COMPLEXITY

The computational complexities of MLE and our large-
margin approach are the same, O(N× D3), for computing
the objective functions. Here N is the number of training
instances, and D is the size of the largest ground set. Our
softmax trick allows us to handle tractably an exponentially
large number of constraints. Using gradient descent in pa-
rameter learning, the computational complexity in each it-
eration is thus also O(N × D3) for both methods. MLE is
slightly faster (20% measured in wall-clock time).
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Figure 2: Balancing precision and recall. Through our large-
margin DPPs (DPPLME), we can balance precision and recall by
varying ω in the generalized Hamming distance. In contrast, nei-
ther MLE nor VSUMM (the two variants in [de Avila et al., 2011]
are plotted together) is readily able to support such flexibility.

6 CONCLUSION

The determinantal point process (DPP) offers a powerful
and probabilistically grounded approach for selecting di-
verse subsets. We proposed a novel technique for learning
DPPs from annotated data. In contrast to the status quo of
maximum likelihood estimation, our method is more flex-
ible in modeling pairwise similarity and avoids the pitfall
of model mis-specification. Empirical results demonstrate
its advantages on both synthetic datasets and challenging
real-world summarization applications.
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