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Abstract

Updating inference in response to new evidence
is a fundamental challenge in artificial intelli-
gence. Many real problems require large prob-
abilistic graphical models, containing millions of
interdependent variables. For such large mod-
els, jointly updating the most likely (i.e., MAP)
configuration of the variables each time new ev-
idence is encountered can be infeasible, even if
inference is tractable. In this paper, we introduce
budgeted online collective inference, in which
the MAP configuration of a graphical model is
updated efficiently by revising the assignments
to a subset of the variables while holding oth-
ers fixed. The goal is to selectively update cer-
tain variables without sacrificing quality with re-
spect to full inference. To formalize the conse-
quences of partially updating inference, we in-
troduce the concept of inference regret. We de-
rive inference regret bounds for a class of graph-
ical models with strongly-convex free energies.
These theoretical insights, combined with a thor-
ough analysis of the optimization solver, moti-
vate new approximate methods for efficiently up-
dating the variable assignments under a budget
constraint. In experiments, we demonstrate that
our algorithms can reduce inference time by 65%
with accuracy comparable to full inference.

1 INTRODUCTION

A key challenge of many artificial intelligence problems is
that the evidence grows and changes over time, requiring
updates to inferences. Every time a user rates a new movie
on Netflix, posts a status update on Twitter, or adds a con-
nection on LinkedIn, inferences about preferences, events,
or relationships must be updated. When constructing a
knowledge base, each newly acquired document prompts
the system to update inferences over related facts and re-

solve mentions to their canonical entities. Problems such as
these benefit from collective (i.e., joint) reasoning, but in-
corporating new evidence into a collective model is partic-
ularly challenging. New evidence can affect multiple pre-
dictions, so updating inference typically involves recom-
puting all predictions in an expensive global optimization.
Even when a full inference update is tractable—which, us-
ing the best known methods, can be linear in the number of
factors—it may still be impractical. For example, updating
a knowledge graph with millions of facts can take hours
(Pujara et al., 2013), thereby requiring some compromise,
either in the form of a deferment strategy or approximate
update. In this work, we consider the task of efficiently up-
dating the maximum-a-posteriori (MAP) state of a proba-
bilistic graphical model, conditioned on evolving evidence.
We refer to this problem as online collective inference.

In online collective inference, a single graphical model,
describing the conditional distribution of a set of random
variables with fixed dependency structure, is given. Over a
series of epochs, the true assignments (i.e., labels) of cer-
tain variables are revealed, introducing new evidence with
which we can update the assignments to the remaining un-
knowns. We constrain the problem by adding a budget,
such that only a fixed percentage of variables can be up-
dated in each epoch, necessitating some approximation to
full inference. This constraint distinguishes our work from
the vast body of literature on belief revision (e.g., Garden-
fors, 1992), Bayesian network updates (e.g., Buntine, 1991;
Friedman and Goldszmidt, 1997; Li et al., 2006), mod-
els for dynamic (Murphy, 2002) or sequential (Fine et al.,
1998) data, and adaptive inference (e.g., Acar et al., 2008),
which deal with exact updates to inference. We analyze
budgeted online collective inference from both the theo-
retical and algorithmic perspectives, addressing two funda-
mental questions: How do we choose which variables to
update? How “close” is the approximate inference update
to the full inference update?

To formalize the latter question, we introduce the con-
cept of inference regret. Informally, inference regret mea-
sures the amount of change induced by fixing (i.e., condi-



tioning on) certain variables in the inference optimization.
We specifically analyze the inference regret of continu-
ous graphical models whose inference objective is strongly
convex. One instantiation of this class of models is hinge-
loss Markov random fields (Bach et al., 2013), which have
been broadly applied and demonstrate state-of-the-art per-
formance in many applications. Using the duality between
strong convexity and stability, we upper-bound the infer-
ence regret. Our bound is proportional to the distance from
the fixed variables to the optimal values of the full inference
problem, scaled by a function of several model-specific
properties. We use our inference regret bound to quantify
the effect of approximate inference updates in response to
new evidence (in this case, revealed labels). The bound
highlights two terms affecting the regret: the accuracy of
the original predictions and the amount that the original
predictions change. This latter insight informs our approxi-
mate update methods with a simple intuition: fix the predic-
tions that are unlikely to change in a full inference update.

To efficiently determine which variables are least likely to
change, we turn to the optimization algorithm used dur-
ing inference. The alternating direction method of multi-
pliers (ADMM) (Boyd et al., 2011) is a popular convex
optimization technique that offers convergence guarantees
while remaining highly scalable. We analyze the optimiza-
tion process and catalog the features that allow us to de-
termine which variables will change the most. Using these
features to generate a score for each variable, we estab-
lish a ranking capturing the priority of including the vari-
ables in subsequent inference. Since the variable scores are
produced using the state of the optimization algorithm, our
method does not incur computational overhead. By ranking
variables, we approximate full inference with an arbitrary
budget and support an anytime online inference algorithm.

We evaluate the theoretical guarantees and approximation
quality in experiments on a synthetic collective classifica-
tion task and a real-world collaborative filtering task. These
experiments validate our theoretical bounds by measuring
the stability and quality of the MAP state as new evidence is
revealed. To connect theoretical guarantees with empirical
performance, we compare approximate inference to com-
puting the full MAP state at each epoch of graph evolution.
We find that our approach to online inference allows a sub-
stantial decrease in computation and running time while
maintaining the quality of the inferred values. In our ex-
periments, our methods consistently reduce running time
by 65% to 70%, show diminishing inference regret, and, in
some cases, have lower test error than full inference.

1.1 RELATED WORK

Updating inference is a longstanding problem in artificial
intelligence. The classic problem of belief revision (Gar-
denfors, 1992) considers revising and updating a set of

propositional beliefs using a set of axiomatic guarantees to
consistency. Diverse research has considered updating the
parameters or structure of Bayesian networks in response
to evolving evidence (Buntine, 1991; Friedman and Gold-
szmidt, 1997; Li et al., 2006, e.g.,). Finally, many mod-
els address dynamic or sequential data, such as Dynamic
Bayesian Networks (Murphy, 2002) and hierarchical hid-
den Markov models (Fine et al., 1998). Our work addresses
the specific problem of approximating full MAP inference
in the online setting when a model is given and provides
formal guarantees for the approximation quality.

Making efficient updates to the full inference result is
the goal of a related area of research, adaptive inference.
Adaptive marginal inference (Acar et al., 2008; Sümer et
al., 2011) can update the marginal probability of a query
in O

(
2tw(G) log n

)
-time, where tw(G) is the tree-width

of the graph and n is the number of variables. Adaptive
MAP inference (Acar et al., 2009) can update the MAP
state in O (m+m log(n/m))-time, where m is the num-
ber of variables that change their state. Though the al-
gorithm does not need to know m beforehand, a model
change could result in changes to all n variables’ states,
with cost equivalent to exact inference. These adaptive in-
ference techniques do not currently support partial updates
to the MAP state or accommodate budgeted updates.

Approximate adaptive inference was considered by Nath
and Domingos (2010), who proposed expanding frontier
belief propagation (EFBP), a belief propagation algorithm
that only updates messages in the vicinity of the up-
dated potentials. They showed that the beliefs generated
by EFBP lower- and upper-bound the beliefs of full BP,
thereby providing guarantees on the quality of the approx-
imation. This result differs from ours in that it bounds the
individual marginal probabilities, whereas we bound the
L1 distance between MAP states. Unlike our approxima-
tion algorithm, EFBP does not explicitly limit computation
and, in the worst case, may need to update all variables to
achieve convergence conditions.

The quantity we call inference regret is conceptually sim-
ilar to collective stability (London et al., 2013a). Collec-
tive stability measures the amount of change in the out-
put of a structured predictor induced by local perturba-
tions of the evidence. London et al. (2013a, 2014) ana-
lyzed the collective stability of marginal inference in dis-
crete graphical models, concluding that (approximate) in-
ference with a strongly convex entropy function enhances
stability. Our technical approach is similar, in that we also
leverage strong convexity. However, the types of perturba-
tions we consider—fixing target variables—are not covered
by their analysis. Stability analysis is closely related to sen-
sitivity analysis. Since the terms are used interchangeably
in the literature, we distinguish them as follows: sensitivity
analysis examines if and when the solution changes; sta-
bility analysis examines how much it changes by. Laskey



analyzed the sensitivity of queries (which can be used for
marginal inference) in Bayesian networks. Chan and Dar-
wiche studied the sensitivity of queries (2005) and MAP
inference (2006) in Markov networks. Their 2005 paper
also analyzes the stability of queries.

2 PRELIMINARIES

The theory and methods introduced in this paper apply to
any continuous-valued MRF with a strongly convex MAP
inference objective function. One case of particular in-
terest is a class of graphical models known as hinge-loss
Markov random fields (HL-MRFs) (Bach et al., 2013). An
HL-MRF is a continuous-valued Markov network in which
the potentials are hinge functions of the variables. Our
choice of HL-MRFs comes from technical considerations:
we reason about the strength of convexity of the inference
objective, and maximum a posteriori (MAP) inference in
HL-MRFs can be strongly convex. However, from a prac-
tical standpoint, HL-MRFs have many benefits. MAP in-
ference in HL-MRFs is provably and empirically efficient,
in theory growing O(N3) with the number of potentials,
N , but in practice often converging in O(N) time. Models
built using HL-MRFs achieve state-of-the-art performance
for a variety of applications (Bach et al., 2013; Beltagy et
al., 2014; Chen et al., 2014; Fakhraei et al., 2014; Lon-
don et al., 2013b; Ramesh et al., 2014). Finally, HL-MRFs
are easily specified through probabilistic soft logic (PSL)
(Bach et al., 2015), a probabilistic programming language
with a first-order logical syntax.

To better understand HL-MRFs and PSL, consider a model
for collective classification of network data, in which the
goal is to assign labels to nodes, conditioned on some local
evidence and network structure. Let G , (V, E) denote
an undirected graph on n , |V| nodes. Each node i ∈ V
is associated with a set of local observations, Xi, and an
unknown label, Li. (In some settings, a subset of the la-
bels are revealed.) In general, the observations and labels
can be real-valued; but for simplicity of exposition, let us
assume that each observation is binary-valued, and each la-
bel is categorical. The following logical rules define a PSL
program for a typical collective classification model:

wx,` : FEATURE(N, x)⇒ LABEL(N, `)

we,` : EDGE(N1, N2) ∧ LABEL(N1, `)⇒ LABEL(N2, `)

Variables N , N1 and N2 denote nodes; x indexes a local
feature; and ` denotes a label. The rules are weighted
by wx,` and we,` respectively. Given G and X ,
(X1, . . . , Xn) (and possibly some subset of the labels), the
rules are grounded out for all possible instantiations of the
predicates. The groundings involving unknown variables—
in this case, groundings of the LABEL predicate—are rep-
resented by [0, 1]-valued variables, Y , (Yi,`)i,`. Using
a relaxation of the MAX-SAT problem to continuous do-

mains (Globerson and Jaakkola, 2007), each grounding is
converted to a convex hinge function of the form

f(X,Y) = (max{0, ϕ(X,Y)})q ,

where ϕ is a linear function of (X,Y), and q ∈ {1, 2} is an
exponent that is set a priori for the given rule. Each hinge
function becomes a potential in an HL-MRF.

The resulting HL-MRF enables probabilistic inference over
the set of PSL rules. Fix a set of r PSL rules, with corre-
sponding weights w , (w1, . . . , wr). For the ith rule, let
G(i) denote its set of groundings in G, and let f ij denote
the jth grounding of its associated hinge function. To com-
pactly express the weighted sum of grounded rules, we let

f(X,Y) ,

 |G(1)|∑
j=1

f1
j (X,Y) , . . . ,

|G(r)|∑
j=1

frj (X,Y)

>

denote the aggregate of the grounded hinge functions.
We can thus write the weighted sum of groundings
as w · f(X,Y). This inner product defines a distri-
bution over (Y |X) with probability density function
p (Y = y |X = x;w) ∝ exp (−w · f(X,Y)). The max-
imizer of the density function (alternately, the minimizer
of −w · f(X,Y)) is the MAP state. The values of Y in
the MAP state can be interpreted as confidences. Addition-
ally, we can define a prior distribution over each Y. In this
case, we will use an L2, or Gaussian, prior. This can be
accomplished using the rule wp,` : ¬ LABEL(N, `), with a
squared hinge (i.e., q = 2). Let us assume, without loss
of generality, that each prior rule has weight wp,` = wp/2,
for some wp > 0. Thus, the corresponding hinge function
for grounding LABEL(i, `) is simply (Yi,`)

2; the aggregate
features for the prior are ‖Y‖22. So as to simplify notation,
let ẇ , (w, wp) and define an energy function,

E(y |x; ẇ) , w · f(x,y) +
wp

2
‖y‖22 . (1)

The resulting probability density function is

p (Y = y |X = x; ẇ) ∝ exp (−E(y |x; ẇ)) .

MAP inference, henceforth denoted h(x; ẇ), is given by

h(x; ẇ) = arg min
y

E(y |x; ẇ).

3 INFERENCE REGRET

The notion of regret has often been used to measure the
loss incurred by an online learning algorithm relative to
the optimal hypothesis. We extend this concept to online
inference. Fix a model. Suppose we are given evidence,
X = x, from which we make a prediction, Y = y, using
MAP inference. Then, some subset of the unknowns are



revealed. Conditioning on the new evidence, we have two
choices: we can recompute the MAP state of the remain-
ing variables, using full inference; or, we can fix some of
the previous predictions, and only update a certain subset
of the variables. To understand the consequences of fixing
our previous predictions we must answer a basic question:
how much have the old predictions changed?

We formalize the above question in the following concept.

Definition 1. Fix a budget m ≥ 1. For some subset S ⊂
{1, . . . , n}, such that its complement S , {1, . . . , n} \ S ,
has size

∣∣S∣∣ = m, let YS denote the corresponding subset
of the variables, and let YS denote its complement. As-
sume there is an operator Γ that concatenates YS and YS
in the correct order. Fix a model, ẇ, and an observation,
X = x. Further, fix an assignment, YS = yS , and let

h(x,yS ; ẇ) , Γ

(
yS , arg min

yS

E (Γ(yS ,yS) |x; ẇ)

)
denote the new MAP configuration for YS after fixing YS
to yS . We define the inference regret for (x,yS ; ẇ) as

Rn(x,yS ; ẇ) ,
1

n
‖h(x; ẇ)− h(x,yS ; ẇ)‖1 . (2)

In general, the inference regret can be as high as 1 for vari-
ables in [0,1]. For example, consider network classification
model in which probability mass is only assigned to config-
urations where all nodes have the same label. Fixing a vari-
able corresponding to a single node label in this setting is
tantamount to fixing the label for all nodes. In the presence
of strong evidence for a different label, incorrectly fixing a
single variable results in incorrectly inferring all variables.

In online inference, regret can come from two sources.
First, there is the regret of not updating the MAP state given
new evidence (in this case, revealed labels). If this regret is
low, it may not be worthwhile to update inference, which
can be useful in situations where updating inference is ex-
pensive (such as updating predicted attributes for all users
in a social network). The second type of regret is from
using an approximate inference update in which only cer-
tain variables are updated, while the rest are kept fixed to
their previous values. We describe several such approxima-
tions in Section 4. In practice, one may have both types of
regret, caused by approximate updates in response to new
evidence. Note that the inference regret obeys the triangle
inequality, so one can upper-bound the compound regret of
multiple updates using the regret of each update.

3.1 REGRET BOUNDS FOR STRONGLY
CONVEX INFERENCE

A convenient property of the L2 prior is that it is strongly
convex, by which we mean the following.

Definition 2. Let Ω ⊆ Rn denote a convex set. A differen-
tiable function, f : Ω → R, is κ-strongly convex (w.r.t. the
2-norm) if, for all ω,ω′ ∈ Ω,
κ

2
‖ω − ω′‖22 + 〈∇f(ω),ω′ − ω〉 ≤ f(ω′)− f(ω). (3)

Strong convexity has a well-known duality with stability,
which we will use in our theoretical analysis.

The function f(ω) , 1
2 ‖ω‖

2
2 is 1-strongly convex. There-

fore, the prior, wp

2 ‖y‖
2
2, is at least wp-strongly convex. We

also have that the aggregated hinge functions, f(x,y), are
convex functions of Y. Thus, it is easily verified that the
energy, E(y |x; ẇ), is at least a wp-strongly convex func-
tion of y. This yields the following upper bound on the
inference regret.
Proposition 1. Fix a model with weights ẇ. Assume there
exists a constant B ∈ [0,∞) such that, for any x, and any
y,y′ that differ at coordinate i,

‖f(x,y)− f(x,y′)‖2 ≤ B |yi − y
′
i| . (4)

Then, for any observations x, any budget m ≥ 1, any sub-
set S ⊂ {1, . . . , n} :

∣∣S∣∣ = m, and any assignments yS ,
with ŷ , h(x; ẇ), we have that

Rn(x,yS ; ẇ) ≤

√
1

n

(
3

2
+
B ‖w‖2
wp

)
‖yS − ŷS‖1.

Proof Due to space restrictions, the proof is some-
what abbreviated. Let ŷ , h(x; ẇ) denote the origi-
nal MAP configuration, i.e., the minimizer of E(· |x;w).
Let ŷ′ , h(x,yS ; ẇ) denote the updated MAP state
after conditioning, and note that ŷ′S is the minimizer
of E (Γ(yS , ·) |x; ẇ). Since ŷS may be different from
yS , we have that ŷ may not be in the domain of
E (Γ(yS , ·) |x; ẇ). We therefore define a vector ỹ ∈
[0, 1]n that is in the domain, and has minimal Hamming
distance to ŷ. Let ỹi , yi for all i ∈ S , and ỹj , ŷj for all
j /∈ S. It can be shown that∥∥ŷ′ − ŷ

∥∥2

2
=
∥∥ŷ′ − ỹ

∥∥2

2
+ ‖ỹ − ŷ‖22 . (5)

Further, since the domain of each Yi is [0, 1],

‖ỹ − ŷ‖22 = ‖yS − ŷS‖
2
2 ≤ ‖yS − ŷS‖1 . (6)

Therefore, combining Equations 5 and 6,∥∥ŷ − ŷ′
∥∥2

2
=

1

2

(∥∥ŷ − ŷ′
∥∥2

2
+
∥∥ŷ′ − ŷ

∥∥2

2

)
≤ 1

2

(∥∥ŷ − ŷ′
∥∥2

2
+
∥∥ŷ′ − ỹ

∥∥2

2
+ ‖yS − ŷS‖1

)
. (7)

For any κ-strongly convex function, ϕ : Ω → R, where
ω̂ = arg minω∈Ω ϕ(ω) is the minimizer, then ∀ω′ ∈ Ω,

1

2
‖ω̂ − ω′‖22 ≤

1

κ
(ϕ(ω′)− ϕ(ω̂)) . (8)



Applying this identify to the first two terms in Equation 7,
since E(· |x; ẇ) is wp-strongly convex, we have that

1

2

∥∥ŷ − ŷ′
∥∥2

2
+

1

2

∥∥ŷ′ − ỹ
∥∥2

2

≤ 1

wp
(E(ỹ |x; ẇ)− E(ŷ |x; ẇ)) . (9)

The E(ŷ′ |x; ẇ) terms cancel out. Expanding E(· |x; ẇ),

E(ỹ |x; ẇ)− E(ŷ |x; ẇ)

= w · (f(x, ỹ)− f(x, ŷ)) +
wp

2

(
‖ỹ‖22 − ‖ŷ‖

2
2

)
≤ ‖w‖2 ‖f(x, ỹ)− f(x, ŷ)‖2 + wp ‖yS − ŷS‖1 . (10)

The last inequality uses Cauchy-Schwarz and

‖ỹ‖22 − ‖ŷ‖
2
2 ≤ 2 ‖yS − ŷS‖1 .

Finally, we construct a series of vectors, indexed by each
i ∈ S, that transform ŷ into ỹ, one coordinate at a time. For
the following, let S(j) denote the jth element in S. First,
let ỹ(0) , ŷ; then, for j = 1, . . . ,m, let ỹ(j) be equal to
ỹ(j) with index S(j) replaced with value ỹS(j). Note that
ỹ(m) = ỹ. Using the triangle inequality, one can show that

‖f(x, ỹ)− f(x, ŷ)‖2 ≤
m∑
j=1

∥∥∥f(x, ỹ(j))− f(x, ỹ(j−1))
∥∥∥

2

≤ B ‖yS − ŷS‖1 . (11)

The last inequality uses Equation 4, since ỹ(j) and ỹ(j−1)

differ at a single coordinate, S(j). Combining Equations 7
and 9 to 11, we have that∥∥ŷ − ŷ′

∥∥2

2
≤
(

3

2
+
B ‖w‖2
wp

)
‖yS − ŷS‖1 .

We then multiply both sides of the inequality by 1/n and
take the square root. Using 1

n

∥∥ŷ − ŷ′
∥∥

1
≤ 1√

n

∥∥ŷ − ŷ′
∥∥

2

finishes the proof.

Proposition 1 states that the inference regret is proportional
to the L1 distance from yS to ŷS , multiplied by a model-
dependent quantity, O

(
B‖w‖2
nwp

)
. Later in this section, we

discuss how to bound the features’ Lipschitz constant, B,
demonstrating that it is typically a small constant (e.g.,
1). Thus, assuming ‖w‖2 is bounded from above, and
the weight on the prior, wp, is bounded from below, the
model-dependent term should decrease with the number of
variables, n. For variables bounded in [0, 1], the Ham-
ming distance upper-bounds the L1 distance. Using this
identity, a pessimistic upper bound for the distance term is
‖yS − ŷS‖1 ≤ |S|. In this case, the regret is proportional
to O

(√
|S| /n

)
; i.e., the square root of the fraction of the

variables that are fixed. While this yields a uniform, ana-
lytic upper bound, we gain more insight by considering the
specific contexts.

For instance, suppose yS is a set of labels that has been
revealed. Then Rn(x,yS ; ẇ) is the regret of not updating
inference conditioned on new evidence, and ‖yS − ŷS‖1 is
the L1 error of the original predictions w.r.t. the true labels.
Now, suppose yS is a set of labels that are fixed from a pre-
vious round of inference. Then Rn(x,yS ; ẇ) is the regret
of an approximate inference update, and ‖yS − ŷS‖1 is the
L1 distance between the old predictions and the new pre-
dictions in the full inference update. Thus, to minimize this
regret, we must fix values that are already close to what we
think they will be in the updated MAP state. This criteria
motivates our approximate update methods in Section 4.

3.1.1 The Lipschitz Constant of the Features

In this section, we give some intuition on how to bound
the Lipschitz constant of the features, B, by consid-
ering a specific example. Suppose the model has a
single rule: X ⇒ Y . The corresponding hinge is
f(X,Y ) , max{0, X − Y }. Using the fact that
|max{0, a} −max{0, b}| ≤ |a− b|, one can show that
‖f(x,y)− f(x,y′)‖2 ≤ |yi − y′i| ≤ 1, so B = 1.

PSL models typically use rules of this nature, with varying
arity (i.e., diadic, triadic, etc.). In general, B should grow
linearly with the number of groundings involving any sin-
gle variable (i.e., the maximum degree of the factor graph).
The number of groundings generated by each rule depends
on its arity and the data. For instance, the relational rule
in Section 2 will ground out once for each edge and each
label; if there are 2 labels, and the maximum degree is
bounded by a constant, ∆, then the number of groundings
generated by this rule for any single variable is at most 2∆.
Thus, in many practical models,B will be a small constant.

4 BUDGETED ONLINE INFERENCE

The bounds presented in Section 3.1 suggest that online
collective inference under budget constraints is close to
the full inference update when one is able to successfully
choose and fix variables whose inferred values will have
little or no change. We refer to the complementary pro-
cess of selecting which variables to infer as activation. In
practice, designing an activation algorithm is difficult. The
optimization problem required to choose a set of variables,
each with heterogeneous regret and optimization cost, that
do not exceed an optimization budget is an instance of the
NP-hard knapsack problem. Given the intrinsic intractabil-
ity of selecting an optimal set of variables, we present two
algorithms that employ theoretical insights from the previ-
ous section and show promise in empirical experiments.



4.1 BACKGROUND: ADMM OPTIMIZATION

To develop activation algorithms, we turn to the opti-
mization technique used to determine the MAP state in
HL-MRFs. Bach et al. (2012) have shown that apply-
ing consensus optimization using the Alternating Direction
Method of Multipliers (ADMM) (Boyd et al., 2011) pro-
vides scalable inference for HL-MRFs. For clearer exposi-
tion, we express the inference in terms of the set of ground
rules, G and rewrite the energy function in Section 2 as:

E(y |x; ẇ) ,
∑
g∈G

wgfg(x,y) +
wp

2
‖y‖22

Here, wgfg(x,y) is a weighted potential corresponding to
a single ground rule. ADMM substitutes the global opti-
mization problem with local optimizations for each poten-
tial using independent copies of the variables. For each
grounding g ∈ G, let yg denote the variables involved in g
and ỹg indicate the local copy of those variables. To rec-
oncile the local optimizations, ADMM introduces a con-
straint that local variable copies agree with the global “con-
sensus” for each variable i involved in the grounding; that
is, yg[i] = ỹg[i]. This constraint is transformed into an
augmented Lagrangian with penalty parameter ρ > 0 and
Lagrange multipliers αg:

min
ỹg

wg fg(x, ỹg) +
ρ

2

∥∥∥ỹg − yg +
1

ρ
αg

∥∥∥2

(12)

ADMM iteratively alternates optimizing the local poten-
tials, then updating the consensus estimates and associated
Lagrange multipliers for each variable, as such:

ỹg ← argminỹg
wg fg(x, ỹg) +

ρ

2

∥∥∥ỹg − yg +
1

ρ
αg

∥∥∥2

;

y[i]← meang(ỹg[i]) ; αg[i]← αg[i] + ρ(ỹg[i]− yg[i]) .

A key element of this optimization is the interplay of two
components: the weighted potential corresponding to a
grounding and the Lagrangian penalty for deviating from
the consensus estimate. As optimization proceeds, the La-
grange multipliers are updated to increase the penalty for
deviating from the global consensus. At convergence, a
balance exists between the two components, reconciling
the local minimizer and the aggregate of global potentials.

4.2 ADMM FEATURES

The goal of activation is to determine which variables are
most likely to change in a future inference. From the analy-
sis in the previous section, we can identify several basic el-
ements for each variable in the model that serve as features
for an activation algorithm. For each variable, we have its
value at convergence (y[i]), and for each grounding g, the
weight (wg), the value of the potential (fg(x, ỹg)), and the

Lagrange multipliers (αg[i]) measuring the aggregate devi-
ation from consensus. We discuss each of these features to
motivate their importance in an activation algorithm.

The value of a variable at convergence can provide a use-
ful signal in certain situations, where a model has clear se-
mantics. For example, the formulation of HL-MRFs often
lends itself to a logical interpretation with binary outcomes,
as in the cases of collective classification of attributes that
are either present or absent. In this setting, assignments
in the vicinity of 0.5 represent uncertainty, and therefore
provide good candidates for activation. Unfortunately, this
feature is not universal. Many successful HL-MRF models
adopt semantics that use continuous values to model con-
tinuous variables, such as pixel intensity in image comple-
tion tasks or Likert-scale ratings in recommender systems.
In this case, the semantics of the variable’s consensus value
may provide an ambiguous signal for activation.

The weighted potentials of each variable contribute directly
to the probability of the MAP configuration. Since the log-
probability is proportional to the negated energy, −E, high
weights and high potential values decrease the probability
of the assignment. Intuitively, activating those variables
that contribute high weighted potentials provides the best
mechanism for approaching the full inference MAP state.
A complication to this approach is that each weighted po-
tential can depend on many variables. However, the poten-
tial value is a scalar quantity and there is no general mech-
anism to apportion the loss to the contributing variables.

In contrast, the Lagrange multipliers provide a granular
perspective on each variable’s effect on Equation 12. For
each variable copy (ỹg), the Lagrange multiplier aggre-
gates the difference between the copy and the global con-
sensus across iterations. High Lagrange multipliers signal
discord between the local minimizer and the global mini-
mizer, indicating volatility. Activating variables with high
Lagrange multipliers can resolve this discord in future in-
ference using updated evidence. However, updated evi-
dence may also resolve the disagreement between the local
and global minimum, obviating an update to the variable.

4.3 ACTIVATION ALGORITHMS

Building on our analysis of ADMM optimization, we in-
troduce two activation algorithms for online collective in-
ference, “agnostic activation” and “relational activation”.
Both algorithms produce a ranking that prioritizes each
variable for inclusion in inference. The key difference be-
tween these algorithms is whether new or updated evidence
is an input to the algorithm. Agnostic activation scores
variables concurrently with inference, based on their sus-
ceptibility to change in future inferences. In contrast, rela-
tional activation runs prior to inference, with scores based
primarily on relationships between variables and updated
evidence in the factor graph.



Each approach has different advantages. Agnostic activa-
tion scores variables during inference, providing a perfor-
mance advantage since the scoring algorithm does not de-
lay a future run of inference. However, this technique has
a slower response to new evidence since scoring occurs be-
fore such evidence is available. Relational activation can
respond to newly-arrived evidence and choose variables re-
lated to new evidence, but this requires delaying scoring
which can add a computational overhead to inference.

Both activation algorithms output a ranking of the vari-
ables, which requires a scoring function. We introduce
two scoring functions that use the ADMM features de-
scribed Section 4.2. Our first scoring function, VALUE,
captures the intuition that uncertain variables are valuable
activation candidates using the function 1 − |0.5 − y[i]|,
where y[i] is the consensus value for variable i. The sec-
ond scoring function, WLM, uses both the weight and La-
grange multipliers of each potential. For each variable, we
define a set of weighted Lagrange multiplier magnitudes,
Aw[i] , {|wgαg[i]|}. To obtain a single scalar score, we
take the maximum value of Aw[i].

The agnostic activation algorithm simply ranks each vari-
able by their score from a scoring function, irrespective of
the new evidence. The RELATIONAL algorithm combines
the score with information about the new evidence. Using
the existing ground model, RELATIONAL first identifies all
ground potentials dependent on the new evidence. Then,
using these ground potentials as a seed set, the algorithm
performs a breadth-first search of the factor graph adding
the variables involved in each factor it encounters to the
frontier. Traversing the factor graph can quickly identify
many candidate variables, so we prioritize variables in the
frontier by S

2d where S is the score assigned by a scoring
function and d is the minimum distance between the vari-
able and an element of the seed set in the factor graph.

The ranking output by either agnostic or relational activa-
tion lets us prioritize which variables to activate. Given
a budget for the number or percentage of variables to in-
fer, we activate a corresponding number of variables from
the ranking. The remaining variables are constrained to
their previously inferred values. We selectively ground the
model, including only those rules that involve an activated
variable. Following inference on the ground model, we use
the updated optimization state to produce new scores.

When an inactive variable is treated as a constant, it does
not have any associated Lagrange multipliers, and lacks
features for the WLM scoring function. Therefore, instead
of treating fixed variables as constants, we introduce them
as constrained variables in the optimization. This allows us
to generate features by capturing the discrepancy between a
variable’s constrained value and the value of its local copies
in groundings involving activated variables.

Our implementation of the agnostic activation algorithm is

extremely efficient; all necessary features are byproducts of
the inference optimization. Once scores are computed and
the activated atoms are selected, the optimization state can
be discarded to avoid additional resource commitments. In
relational activation, scoring is similarly efficient, but there
is an additional overhead of preserving the ground model
to allow fast traversal of the factor graph. By selectively
grounding the model, we replace queries that scan the en-
tire database, potentially many times, with precise queries
that exploit indices for faster performance. Finally, selec-
tively activating atoms produces an optimization objective
with fewer terms, allowing quicker optimization.

5 EVALUATION

To better understand the regret bounds and approximation
algorithms for online inference, we perform an empirical
evaluation on two online collective inference settings. The
first setting is a synthetic online collective classification
task where the data generator allows us to modulate the im-
portance of collective dependencies and control the amount
of noise. The second evaluation setting is a real-world col-
laborative filtering task, where user preferences are incre-
mentally revealed and the outputs of a recommender sys-
tem are correspondingly updated.

In both evaluation settings, we measure regret relative to
full inference and inference error relative to ground truth.
The results demonstrate that empirical regret follows the
form of our regret bounds. We also evaluate the approxi-
mation algorithms presented in Section 4.3, to investigate
whether features from the optimization algorithm can re-
liably determine which variables to activate. The results
show that our approximation algorithms are able to reduce
running time by upwards of 65%, with inference regret rel-
ative to full inference.

All experiments are implemented using the open-source
PSL framework and our code is available on GitHub1.

5.1 ONLINE COLLECTIVE CLASSIFICATION

Our evaluation data simulates a collective classification
problem of inferring labels for users in a social network
as new evidence is incrementally revealed. Each user is as-
signed one of two mutually exclusive labels. Some portion
of the users have observed labels, while the labels of the
remaining users are inferred. At each epoch, the label of
one more user is revealed, so the model must update the in-
ferred labels for the remaining users with unknown labels.

For each user, we generate local and collective features cor-
related with the user’s label. Local features are generated
for each user and label by drawing from a Gaussian distri-
bution conditioned on the label, such that the mean is t for

1
https://github.com/puuj/uai15-boci-code

https://github.com/puuj/uai15-boci-code
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Figure 1: Inference regret, w.r.t. full inference, of fixing the
original MAP state (i.e., no updates) in the HIGHLOCAL,
HIGHCOLLECTIVE and BALANCED data models.
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Figure 2: Inference regret (w.r.t. full inference) and MAE
(w.r.t. ground truth) using various approximation algo-
rithms, with 50% activation, in the COMPLEX data model.

the true label and 1−t for the incorrect label. The collective
features are links between users, generated randomly using
the following process: for each pair of users with the same
label, a link is generated with probability p; for each pair of
users with different labels, a link is created with probability
1− p. We refer to p as the affinity of the network.

We model the data using the PSL rules described in Sec-
tion 2 and learn weights for the model. Varying the param-
eters of the data generator impacts inference in the learned
model, since the learned weights are proportional to the dis-
criminative power of their associated rules. For example,
varying the distance between the conditional means of the
local features controls the importance of the local evidence
rule: when the means are far apart, local evidence has high
discriminative power; however, when the means are close,
local evidence does not provide much signal.

We introduce three data models: HIGHLOCAL (t = .8, p =
.75), HIGHCOLLECTIVE (t = .55, p = .9), and BAL-
ANCED (t = .7, p = .75). We combine these three con-
ditions in a fourth data model, COMPLEX, which samples
uniformly from the three settings on a per-user basis re-
sulting in heterogeneous evidence. For each condition, we
generate 10 trials, each with a training social network used
to learn the model parameters and a separate test social
network to evaluate inference quality. Both the training
and test graph have 100 users, with 60 observed user la-

bels in the training graph and 10 observed user labels in
the test graph. To infer user attributes, we use the simple
collective classification model introduced in Section 2. We
simulate the process of online inference by creating a se-
quence of observations consisting of 50 epochs. In each
epoch, the true label of a previously unknown user is re-
vealed, resulting in 60 observed user labels at the end of the
sequence. For each trial, we generate 10 such sequences
from a breadth-first traversal of the network from a ran-
domly chosen user, resulting in a total of 5000 inferences.

In the first experiment, shown in Figure 1 we measure
the inference regret of fixing variables to the initial MAP
state (i.e., not updating inference) over 50 epochs, com-
paring the HIGHLOCAL, HIGHCOLLECTIVE and BAL-
ANCED conditions. Our theoretical analysis predicts that
the worst-case regret grows at rate O

(
1/
√

epoch
)
. The ex-

perimental results exhibit the same growth rate, which is
very pronounced for the HIGHCOLLECTIVE data model,
where variables are strongly interdependent, and less so
for HIGHLOCAL, where variables are largely independent.
The key insight is that the collective nature of the inference
task determines the regret of online updates.

In the second experiment (Figure 2), we compare the ap-
proximate scoring algorithms with a budget of 50% of un-
knowns to running full inference on the COMPLEX net-
work. We measure significance across 100 total sequences
using a paired t-test with rejection threshold .05. For in-
ference regret, we compare against the static algorithm,
DONOTHING, which does not update the MAP state, and a
random baseline, RANDOM, that fixes an arbitrary subset of
50% of the variables. We compare these to three approxi-
mation algorithms described in Section 4.1: VALUE, which
uses the value assigned to the variable; WLM, which uses
the maximum of the weighted Lagrange multipliers; and
RELATIONAL, which uses WLM to prioritize exploration.

All methods exhibit low regret relative to full inference,
contrasting the high regret of the static algorithm, although
VALUE exhibits somewhat higher regret. The WLM and
RELATIONAL methods have significantly lower regret rel-
ative to RANDOM, in 98% and 100% of epochs, respec-
tively. We also compare the mean average error (MAE),
with respect to ground truth, of using full inference vs. the
approximations. This illustrates that the approximation al-
gorithms remain competitive with full inference, although
VALUE again lags in accuracy. Here, the WLM and RELA-
TIONAL methods have significantly lower error than RAN-
DOM in 80% and 100% of epochs, respectively. Compar-
ing the running times highlights the computational benefit
of using the approximation algorithms. The average run-
ning time for a single trial (which includes training and 10
random sequences of revealed variables) using full infer-
ence is 3076 seconds, while approximate inference requires
only 955 seconds, a reduction of 69%, with inference time
varying less than 3% across methods.
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Figure 3: Inference regret (w.r.t. full inference) and RMSE
(w.r.t. ground truth) for the Jester dataset.

5.2 COLLABORATIVE FILTERING

Our second evaluation task is a collaborative filtering task
that employs a collective model to infer the preferences of
users. We use the Jester dataset (Goldberg et al., 2001)
which includes ratings from 24,983 users on a set of 100
jokes. The task in this setting is to infer the user’s rating
of each joke. We use the model from Bach et al. (2013)
which assigns ratings to jokes based on the joke’s simi-
larity to other jokes rated highly by the user. Joke simi-
larity is measured using the mean-adjusted cosine similar-
ity of the observed ratings of two jokes. (Refer to Bach
et al. (2013) for further model details.) We sample 200
users who have rated all 100 jokes and split them into 100
training users and 100 testing users. We generate 10 se-
quences, each of which consists of a training and testing
phase. Model weights are learned using 75% of the training
users’ ratings observed. During testing, we incrementally
reveal [25%, 30%, 40%, . . . , 75%] of the testing users’ rat-
ings, performing online collective inference at each epoch.

We compare inference regret, relative to full inference, for
the RANDOM, VALUE, WLM and RELATIONAL approxi-
mate methods. We also plot the RMSE, relative to ground
truth, for full inference and all approximate methods. Fig-
ure 3a-b show results for 25% activation, and Figure 3c-d
show 50% activation. Inference regret follows a similar
pattern for both budgets, with VALUE showing increasing
regret over epochs, and the remaining methods exhibiting
level or diminishing regret after the first few epochs. The
high regret for VALUE can be explained by considering the
RMSE—VALUE actually improves the results of full infer-
ence, incurring high regret but low RMSE. Our intuition for

this improvement is that VALUE fixes polarized user ratings
and allows these ratings to have greater influence on other
unknown ratings, while full inference produces more mod-
erate ratings for the entire set. The other approximation al-
gorithms remain close to the full inference RMSE (at 50%
activation) or perform slightly worse (at 25% activation).
Comparing the running times, we find a similar improve-
ment in speed. The average time for a sequence using full
inference is 137 seconds, while the approximate methods
require only 46 seconds, yielding a speedup of 66%. Ap-
proximation methods had consistent timing, varying less
than 6%.

6 CONCLUSION

In this paper, we introduce a new problem, budgeted online
collective classification, which addresses a common prob-
lem setting where online inference is necessary but full in-
ference is infeasible, thereby requiring approximate infer-
ence updates. Our contributions are: (1) a formal analy-
sis of online collective inference, introducing the concept
of inference regret to measure the quality of the approxi-
mation; (2) analytic upper bounds on the inference regret
incurred by strongly convex inference; and (3) several al-
gorithms to address the practical problem of activation (i.e.,
choosing which variables to infer at each epoch), through
a close analysis of the MAP inference optimization. Our
empirical results demonstrate that our activation algorithms
exhibit low inference regret and error that is competitive
with full inference, while reducing the time required for
inference by 65% or more.

This work inspires many exciting areas of future research.
One open question is whether one can derive a tighter regret
bound using the mechanics of the activation strategy, thus
characterizing how performance degrades as a function of
the budget. We are also interested in training an “optimal”
activation policy that is trained using the variables whose
values change the most during full inference. Finally, a
crucial assumption in our analysis is that the model struc-
ture is fixed, but it is useful to consider the setting in which
the set of variables change over time, allowing us to address
situations such as new users joining a social network.
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