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Abstract

Spectral methods are a powerful tool for inferring
the parameters of certain classes of probability
distributions by means of standard eigenvalue-
eigenvector decompositions. Spectral algorithms
can be orders of magnitude faster than log-
likelihood based and related iterative methods,
and, thanks to the uniqueness of the spectral de-
composition, they enjoy global optimality guar-
antees. In practice, however, the applicability of
spectral methods is limited due to their sensitiv-
ity to model misspecification, which can cause
instability issues in the case of non-exact models.
We present a new spectral approach that is based
on the Schur triangularization of an observable
matrix, and we carry out the corresponding theo-
retical analysis. Our main result is a bound on the
estimation error that is shown to depend linearly
on the condition number of the ground-truth con-
ditional probability matrix and inversely on the
eigengap of an observable matrix. Numerical ex-
periments show that the proposed method is more
stable, and performs better in general, than the
classical spectral approach using direct matrix di-
agonalization.

1 INTRODUCTION

The problem of learning mixtures of probability distribu-
tions from sampled data is central in the statistical literature
(Titterington, 1985; Lindsay, 1995). In pioneering work,
Chang (1996) showed that it is possible to learn a mix-
ture of product distributions via the spectral decomposition
of ‘observable’ matrices, that is, matrices that can be esti-
mated directly from the data using suitable combinations of
the empirical joint probability distributions (Chang, 1996).
Extensions and improvements of this idea have been devel-
oped more recently in a series of works, where the spectral
technique is applied to a larger class of probability distribu-

tions, including Gaussian mixtures, Hidden Markov mod-
els, stochastic languages, and others (Mossel and Roch,
2006; Hsu et al., 2012; Anandkumar et al., 2012a,c; Balle
et al., 2014; Kuleshov et al., 2015). Some the most
widely studied algorithms include Chang’s spectral tech-
nique (Chang, 1996; Mossel and Roch, 2006), a tensor
decomposition approach (Anandkumar et al., 2012a), and
an indirect learning method for inferring the parameters of
Hidden Markov Models (Hsu et al., 2012).

Spectral algorithms are typically much faster than iterative
solvers such as the EM algorithm (Dempster et al., 1977),
and thanks to the uniqueness of the spectral decomposition,
they enjoy strong optimality guarantees. However, spec-
tral algorithms are more sensitive to model misspecifica-
tion than algorithms that maximize log-likelihood. Studies
in the field of linear system subspace identification have
shown that the solutions obtained via matrix decomposition
methods can be suboptimal (Favoreel et al., 2000; Buesing
et al., 2012). On the other hand, good results have been
obtained by using the output of a spectral algorithm to ini-
tialize the EM algorithm (Zhang et al., 2014).

The practical implementation of the spectral idea is a non-
trivial task because the stability of spectral decomposition
strongly depends on the spacing between the eigenvalues
of the empirical matrices (Anandkumar et al., 2012a; Hsu
and Kakade, 2012). Mossel and Roch (2006) obtain cer-
tain eigenvalue separation guarantees for Chang’s spec-
tral technique via the contraction of higher (order three)
moments through Gaussian random vectors. Anandkumar
et al. (2012a) describe a tensor decomposition method that
generalizes deflation methods for matrix diagonalization to
the case of symmetric tensors of order three. Another algo-
rithmic variant involves replacing the random contracting
vector of Chang’s spectral technique with an ‘anchor obser-
vation’, which guarantees the presence of at least one well
separated eigenvalue (Arora et al., 2012; Song and Chen,
2014) (See also Kuleshov et al. (2015) for a similar idea).
Finally, Zou et al. (2013) have presented a technique for
learning mixtures of product distributions in the presence
of a background model.

mailto:nicolo.colombo@uni.lu
mailto:vlassis@adobe.com


In this article we propose an alternative and more stable
approach to Chang’s method that is based on Schur de-
composition (Konstantinov et al., 1994). We show that an
approximate triangularization of all observables matrices
appearing in Chang’s spectral method can be obtained by
means of the orthogonal matrices appearing in the Schur
decomposition of their linear combination, an idea that has
been suggested earlier (Corless et al., 1997; Anandkumar
et al., 2012a). Our main result is a theoretical bound on
the estimation error that is based on a perturbation anal-
ysis of Schur decomposition (Konstantinov et al., 1994).
In analogy to related results in the literature, the bound is
shown to depend directly on the model mispecification er-
ror and inversely on an eigenvalue separation gap. How-
ever, the major advantage of the Schur approach is that the
bound depends very mildly on the condition number of the
ground-truth conditional probability matrix (see discussion
after Theorem 1). We compare numerically the proposed
Schur decomposition approach with the standard spectral
technique (Chang, 1996; Mossel and Roch, 2006), and we
show that the proposed method is more stable and does a
better job in recovering the parameters of misspecified mix-
tures of product distributions.

2 SPECTRAL LEARNING VIA SCHUR
DECOMPOSITION

Here we discuss the standard spectral technique (Chang,
1996; Mossel and Roch, 2006), and the proposed Schur de-
composition, in the context of learning mixtures of product
distributions. The complete algorithm is shown in Algo-
rithm 1. Its main difference to previous algorithms is step
13 (Schur decomposition).

The spectral approach in a nutshell. Consider ` dis-
tinct variables taking values in a discrete set with finite
number of elements {1, . . . , d}, and a sample S consisting
of a number of independent joint observations. The em-
pirical distribution corresponding to these observations is
computed by counting the frequencies of all possible joint
events in the sample (step 3), and it is modeled (approxi-
mated) by a mixture of product distributions with a given
number p of mixture components. For every p < d, spec-
tral methods allow one to recover the parameters of this
approximation by means of the simultaneous diagonalisa-
tion of a set of ‘observable’ nearly diagonalizable matrices
{M̂1, . . . , M̂p}, computed from the sample S (step 10).

If the sample is drawn exactly from a mixture of p com-
ponents, and in the limit of an infinite amount of data,
the mixture parameters, i.e., the conditional probability
distributions and the mixing weights of the mixture, are
contained exactly in the eigenvalues of the matrices M̂i

(Chang, 1996). If the sample is not drawn exactly from a
mixture of p product distributions, and in the typical finite

Algorithm 1 Spectral algorithm via Schur decomposition
Input: data sn = [xn, yn, zn] ∈ N , dimension d, number

of mixture components p
Output: estimated conditional probability matrices

X̂, Ŷ , Ẑ and mixing weights vector ŵ
1: P̂ = 0
2: for sn ∈ S do
3: P̂xnynzn = P̂xnynzn + 1
4: end for
5: for i = 1, . . . d do
6: [P̂Yi ]jk = P̂jik, [P̂Xi ]jk = P̂ijk, [P̂Zi ]jk = P̂jki
7: end for
8: compute [P̂xz] =

∑
i[P̂

Y
i ], [P̂yz] =

∑
i[P̂

X
i ],

[P̂xy] =
∑
i[P̂

Z
i ]

9: for i = 1, . . . , d do
10: compute M̂i = P̂Yi P̂

−1
xz

11: end for
12: find θ ∈ Rd such that M̂ =

∑
i θiM̂i has real non-

degenerate eigenvalues.
13: find Û such that ÛT Û = 1 and ÛT M̂Û is upper trian-

gular (Schur decomposition)
14: for i, j = 1, . . . , d do
15: let Ŷi,j = [ÛT M̂iÛ ]jj
16: set Ŷi,j = 0 if [ÛT M̂iÛ ]jj < 0
17: end for
18: normalize to 1 the columns of Ŷ
19: for i = 1, . . . , d do
20: compute M̂X

i = P̂Xi P̂
−1
yz

21: compute M̂Z
i = P̂Zi P̂

−1
xy

22: end for
23: for i, j = 1, . . . , d do
24: let X̂i,j = [Ŷ −1M̂X

i Ŷ ]jj and set X̂i,j = 0 if
[Ŷ −1M̂X

i Ŷ ]jj < 0

25: let Ẑi,j = [X̂−1M̂Z
i X̂]jj and set Ẑi,j = 0 if

[X̂−1M̂Z
i X̂]jj < 0

26: end for
27: normalize to 1 the columns of X̂ and Ẑ
28: compute ŵ = X̂−1P̂xy(Ŷ T )−1 and normalize to 1



sample setting, the model is only an approximation to the
empirical distribution, and as a result, the matrices M̂i are
no longer simultaneously diagonalizable and an approxi-
mate diagonalisation technique is required. The standard
approach consists of choosing one particular observable
matrix in the set, or a linear combination of all matrices,
and use its eigenvectors to diagonalize each M̂i (Mossel
and Roch, 2006).

Here we propose a new approach that is based on the Schur
decomposition of a linear combination of the observable
matrices. In particular, we first mix the matrices M̂i to
compute a candidate matrix M̂ (step 12), and then we ap-
ply Schur decomposition to M̂ (step 13). The eigenvalues
of each M̂i, and thereby the model parameters, are then
extracted using the orthogonal matrix Û of the Schur de-
composition (steps 15-16). Effectively we exploit the fact
that the real eigenvalues of a matrixA always appear on the
diagonal of its Schur triangularization T = UTAU , even
though the entries of the strictly upper diagonal part of T
may not be unique. Using the perturbation analysis of the
Schur system of a matrix by Konstantinov et al. (1994), we
obtain a theoretical bound on the error of such eigenvalue
estimation as a function of the model misspecification er-
ror, the condition number of the ground-truth matrix X ,
and the separation of the eigenvalues of M̂ (Theorem 1).

Detailed description and the Schur approach. Con-
sider for simplicity a sample S of independent observations
s = [x, y, z] of three distinct variables taking values in the
discrete set {1, . . . , d}. The empirical distribution associ-
ated to the sample S is defined as

P̂i,j,k =
1

|S|
∑
s∈S

δx,iδy,jδz,k (1)

where |S| is the number of elements in S and δab = 1 if
a = b and zero otherwise. The empirical distribution P̂
is a nonnegative order-3 tensor whose entries sum to one.
Its nonnegative rank rank+(P̂ ) is the minimum number of
rank-1 tensors, i.e., mixture components, required to ex-
press P̂ as a mixture of product distributions. Such a de-
composition of P̂ (exact or approximate) is always pos-
sible (Lim and Comon, 2009). Hence, for any choice of
p ≤ rank+(P̂ ), we can hypothesize that P̂ is generated by
a model

P̂ = P + ε∆P, ε ≥ 0 (2)

where P ∈ [0, 1]dx×dy×dz is a nonnegative rank-p approx-
imation of P̂ , ε is a model mispecification parameter, and
∆P ∈ [0, 1]dx×dy×dz is a nonnegative tensor whose en-
tries sum to one. The rank-p component P is interpreted as
the mixture of product distributions that approximates the
empirical distribution, and it can be written

Pijk =

p∑
h=1

wh XihYjhZkh , (3)

wherewh ∈ [0, 1] for all h = 1, . . . , p, and we have defined
the conditional probability matrices

X ∈ [0, 1]d×p, 1TdX = 1Tp , (4)

(and similarly for Y,Z), where 1n is a vector of n ones.
The columns of the matrices X,Y, Z encode the condi-
tional probabilities associated with the p mixture compo-
nents, and the mixing weights satisfy

∑
h wh + ε = 1.

The conditional probability matrices X,Y, Z and the mix-
ing weight w of the rank-p mixture can be estimated from
the approximate eigenvalues of a set of observable matrices
M̂i, for i = 1, . . . p, that are computed as follows. Let for
simplicity p = d and consider the matrices [P̂Yi ]jk = P̂jik
(step 6) and [P̂xz] =

∑
i[P̂

Y
i ] (step 8). Assuming that P̂xz

is invertible, we define (step 10)

M̂i = P̂Yi P̂−1xz (5)

for i = 1, . . . , d. Under the model assumption P̂ = P +
ε∆P , it is easy to show that

M̂i = Mi + ∆Mi + o(ε2) (6)

where ∆Mi ∈ Rd×d is linear in the misspecification pa-
rameter ε, and

Mi = X diag(Yi1, . . . Yip)X
−1 (7)

where diag(v1, . . . vd) denotes a diagonal matrix whose di-
agonal entries are v1, . . . vd. If the model is exact, i.e.,
p = rank+(P̂ ) or equivalently ε = 0, the matrices {M̂i}
are simultaneously diagonalizable and the entries of the
conditional probability matrix Y are given (up to normal-
ization of its columns) by

Yij ∝ [V −1M̂iV ]jj , i, j = 1, . . . d (8)

where V is the matrix of the eigenvectors shared by all M̂i.

When ε 6= 0, the matrices M̂i are no longer simultane-
ously diagonalizable and an approximate simultaneous di-
agonalisation scheme is needed. The standard procedure
consists of selecting a representative matrix M̂ , compute
its eigenvectors V̂ , and use the matrix V̂ to obtain the ap-
proximate eigenvalues of all matrices M̂i and thereby esti-
mate Yij (Mossel and Roch, 2006; Hsu et al., 2012; Anand-
kumar et al., 2012b). In this case, the estimation error is
known to depend on the model misspecification parameter
ε and on the inverse of an eigenvalue separation γ (see, e.g.,
eq. (12)). Using matrix perturbation theorems and proper-
ties of the Gaussian distribution, Mossel and Roch (2006)
have shown that a certain separation γ > α is guaranteed
with probability proportional to (1−α) if V̂ is the matrix of
the eigenvectors of some M̂ =

∑
i θiM̂i, with θ sampled

from a Gaussian distribution of zero mean and unit vari-
ance. In practice, however, this approach can give rise to



instabilities (such as negative or imaginary values for Yij),
especially when the size of the empirical matrices grows.

Here we propose instead to triangularize the matrices M̂i

by means of the Schur decomposition of their linear com-
bination M̂ =

∑
i θiM̂i, for an appropriate θ (steps 12-13).

The orthogonal matrix Û obtained from the Schur decom-
position M̂ = Û T̂ ÛT is then used in place of the eigen-
vectors matrix of M̂ to approximately triangularize all the
observable matrices M̂i and thereby recover the mixture
parameters (steps 15 and 24, 25). For example, the condi-
tional probability matrix Y is estimated as

Ŷij ∝ [ÛT M̂iÛ ]jj , i, j = 1, . . . d (9)

and normalized so that its columns sum to one. Let ‖ ·‖ de-
note the Frobenius norm. Our main result is the following:

Theorem 1. Let M̂i and Mi be the real d × d matrices
defined in (5) and (6). Suppose it is possible to find θ ∈ Rd

such that M̂ =
∑
k θkM̂k has real distinct eigenvalues.

Then, for all j = 1, . . . , d, there exists a permutation π
such that

|Ŷij − Yiπ(j)| ≤
(
a1

k(X)λmax

γ̂
+ 1

)
E + o(E2) (10)

where k(X) = σmax(X)
σmin(X) is the condition number of the

ground-truth conditional probability matrix X , λmax =
maxi,j Yi,j ,

γ̂ = min
i 6=j

∣∣∣λi(M̂)− λj(M̂)
∣∣∣ > 0 (11)

with λi(M̂) being the ith eigenvalue of M̂ , a1 =

‖θ‖
√

23d2

d−1 , and E = maxi ‖∆Mi‖ = maxi ‖M̂i −Mi‖.

Proof. See appendix.

The analogous bound for the diagonalization approach is
(Anandkumar et al., 2012c, Section B6, eq.11)

|Ŷij−Yiπ(j)| ≤

(
a2k(X)4

λ̃max

γ
+ a3k(X)2

)
E, (12)

where γ = mini 6=j |λi(
∑
k θkMk)− λj(

∑
k θkMk)|,

λ̃max = max(maxi[θ
TY ]i,maxi,j Yi,j), and a2, a3 are

constants that depend on the dimensions of the involved
matrices.

When the model misspecification error E is not too large,
the error bound under the Schur approach (10) is charac-
terized by a much smoother dependence on k(X) than the
error bound (12). Moreover, the Schur bound depends on
the eigenvalue gap γ̂ of an observable matrix, and hence
it can be controlled in practice by optimizing θ. The sim-
plified dependence on k(X) of the Schur bound is due to

the good perturbation properties of the orthogonal matrices
involved in the Schur decomposition, as compared to the
eigenvector matrices of the Chang approach. The differ-
ence in the bounds suggests that, for a randomly generated
true model, a spectral algorithm based on the Schur de-
composition is expected to be more stable and accurate in
practice that an algorithm based on matrix diagonalization.
Intuitively, the key to the improved stability of the Schur
approach comes from the freedom to ignore the non-unique
off-diagonal parts in Schur triangulation.

During the reviewing process we were made aware of the
work of Kuleshov et al. (2015), who propose computing a
tensor factorization from the simultaneous diagonalization
of a set of matrices obtained by projections of the tensor
along random directions. Kuleshov et al. (2015) establish
an error bound that is independent of the eigenvalue gap,
but their approach does not come with global optimality
guarantees (but the authors report good results in practice).
It would be of interest to see whether such random projec-
tions combined with a simultaneous Schur decomposition
(see, e.g., De Lathauwer et al. (2004)) could offer improved
bounds.

3 EXPERIMENTS

We have compared the performance of the proposed spec-
tral algorithm based on Schur decomposition with the clas-
sical spectral method based on eigenvalue decomposition.
The two algorithms that we tested are equivalent except for
line 13 of Algorithm 1, which in the classical spectral ap-
proach should be “find V such that V −1MV = D, with
D diagonal”. In all experiments we used the same code
with decompositions performed via the two Matlab func-
tions schur(M) and eig(M) respectively. We tested the
two algorithms on simulated real multi-view and Hidden
Markov Model data. In what follows we denote by ‘schur’
the algorithm based on the Schur decomposition and by
‘eig’ the algorithm based on the eigenvalues-eigenvector
decomposition.

In the first set of experiments we generated multi-view data
from a mixture of product distributions of p mixture com-
ponents in d dimensions. For each experiment, we created
two different datasets N = {[xnynzn] ∈ [1, . . . , d]3},
and Ntest, one for training and one for testing, the latter
containing the labels L ∈ [1, . . . , p]|Ntest| of the mixture
components that generated each instance. The output was
evaluated by measuring the distance between the estimated
conditional probability distributions X̂, Ŷ , Ẑ and the cor-
responding ground-truth values X,Y, Z:

E = ‖X̂ −X‖2 + ‖Ŷ − Y ‖2 + ‖Ẑ − Z‖2. (13)

Since the order of the columns in X̂, Ŷ , Ẑ may be differ-
ent from X,Y, Z, the norms were computed after obtain-
ing the best permutation. We also tested according to a



|N |(d = 10, p = 5) Eschur Eeig Sschur Seig ‖T̂schur − T‖ ‖T̂eig − T‖
1000 0.057 (0.013) 0.066 (0.0167) 0.364 (0.135) 0.360 (0.135) 0.016 (0.004) 0.026 (0.009)
2000 0.039 (0.008) 0.120 (0.227) 0.415 (0.068) 0.356 (0.138) 0.011 (0.004) 0.019 (0.008)
5000 0.043 (0.012) 0.046 (0.013) 0.387 (0.114) 0.386 (0.084) 0.013 (0.004) 0.021 (0.004)

10000 0.036 (0.014) 0.047 (0.009) 0.390 (0.130) 0.402 (0.085) 0.013 (0.006) 0.022 (0.007)
20000 0.032 (0.014) 0.113 (0.230) 0.431 (0.124) 0.341 (0.157) 0.011 (0.007) 0.025 (0.007)
50000 0.019 (0.015) 0.025 (0.010) 0.475 (0.1887) 0.434 (0.143) 0.007 (0.006) 0.015 (0.009)

Table 1: Columns recovery error E, classification score S, and distance of the approximate distribution ‖T̂ − T‖ for
multi-view datasets of increasing size. The algorithm based on Schur decomposition obtained the best scores on almost all
datasets.

classification rule where the estimated conditional proba-
bility matrices [X̂, Ŷ , Ẑ] were used to assign each triple in
the test dataset to one of the mixture components. For ev-
ery run, we obtained a classification score by counting the
number of successful predictions divided by the number of
elements in the test dataset:

S =
1

|Ntest|
∑

n∈Ntest

f(n), (14)

f(n) =

{
0 arg maxi X̂xniŶyniẐzni 6= L(n)

1 arg maxi X̂xniŶyniẐzni = L(n)
. (15)

Finally we computed the distance in norm between the re-
covered tensor

T̂ijk =
∑
r

ŵr[X̂]ir[Ŷ ]jr[Ẑ]kr (16)

and the original tensor

Tijk =
∑
r

[w]r[X]ir[Y ]jr[Z]kr (17)

as follows

‖T̂ − T‖ =

√∑
i,j,k

[T̂ − T ]2ijk . (18)

In Table 1 we show the results obtained by the two algo-
rithms for d = 10, p = 5 and increasing size of the training
dataset |N |. In the table we report the average score over
10 analogous runs and the corresponding standard devia-
tion in brackets. When the recovered matrices contained
infinite values we have set E = ‖X‖2 + ‖Y ‖2 + ‖Z‖2,
and ‖T̂ − T‖ = ‖T‖. The proposed algorithm based on
Schur decomposition obtained the best scores on almost all
datasets.

In the second set of experiments we tested the two al-
gorithms on datasets generated by a d-dimensional Hid-
den Markov Model with p hidden states. For each
experiment we randomly picked a model Mtrue =
Mtrue(Otrue, Rtrue, htrue), where Otrue ∈ [0, 1]d×p is
the observation matrix, Rtrue ∈ [0, 1]p×p is the transition

matrix, and htrue ∈ [0, 1]p is the starting distribution, and
we generated two sample datasets, one for training and one
for testing. All sequences sn were simulated starting from
an initial hidden state drawn from htrue and following the
dynamics of the model according to Rtrue and Otrue. The
length of the sequences in the training and testing datasets
was set to 20. We evaluated the two algorithms based on
the columns recovery error E as in the previous set of
experiments. Also, letting Otrue = [otrue1, . . . , otruep]
and O = [o1, . . . , op], we considered a recovery ratio
R(M) = r

p , where r is the number of columns satisfying

‖otruei − oi‖2 < ξ, ξ = 0.052 ∗ d . (19)

In Table 2 we show the results for recovering a d =
{5, 10, 20, 30} HMM with p = 5 hidden states. All val-
ues are computed by averaging over 10 experiments and
the corresponding standard variation is reported between
brackets. The Schur algorithm is in general better than the
classical approach. We note that, for a fixed number of hid-
den states, the inference of the HMM parameters becomes
harder as the dimensionality of the space decreases. As the
recovery ratio R shows, in the limit situation d = p both
algorithms fail (values R = 0 imply unstable solutions).

4 CONCLUSIONS

We have presented a new spectral algorithm for learning
multi-view mixture models that is based on the Schur de-
composition of an observable matrix. Our main result is
a theoretical bound on the estimation error (Theorem 1),
which is shown to depend very mildly (and much more
smoothly than in previous results) on the condition num-
ber of the ground-truth conditional probability matrix, and
inversely on the eigengap of an observable matrix. Numer-
ical experiments show that the proposed method is more
stable, and performs better in general, than the classical
spectral approach using direct matrix diagonalization.

Appendix - Proof of Theorem 1

Theorem 1. Let M̂i and Mi be the real d × d matrices
defined in (5) and (6). Suppose it is possible to find θ ∈ Rd

such that M̂ =
∑
k θkM̂k has real distinct eigenvalues.



|N |(d = 30, p = 5) E(Tschur) E(Teig) R(Tschur) R(Teig)
100 0.011 (0.001) 0.014 (0.005) 1 (0) 1 (0)
500 0.011 (0.001) 0.012 (0.002) 1 (0) 1 (0)
1000 0.011 (0.001) 0.013 (0.002) 1 (0) 1 (0)
2000 0.011 (0.001) 0.011 (0.001) 1 (0) 1 (0)
5000 0.010 (0.001) 0.010 (0.001) 1 (0) 1 (0)

|N |(d = 20, p = 5) E(Tschur) E(Teig) R(Tschur) R(Teig)
100 0.019 (0.002) 0.026 (0.010) 1 (0) 0.880 (0.168)
500 0.018 (0.003) 0.044 (0.080) 1 (0) 0.900 (0.316)
1000 0.019 (0.004) 0.021 (0.002) 1 (0) 1 (0)
2000 0.017 (0.002) 0.017 (0.002) 1 (0) 1 (0)
5000 0.015 (0.002) 0.018 (0.006) 1 (0) 0.960(0.126)

|N |(d = 10, p = 5) E(Tschur) E(Teig) R(Tschur) R(Teig)
100 0.047 (0.011) 0.050 (0.011) 0.200 (0.188) 0.220 (0.175)
500 0.044 (0.008) 0.097 (0.154) 0.240 (0.157) 0.200 (0.188)
1000 0.046 (0.017) 0.051 (0.018) 0.260 (0.211) 0.120 (0.139)
2000 0.043 (0.016) 0.048 (0.011) 0.180 (0.220) 0.120 (0.139)
5000 0.040 (0.013) 0.089 (0.153) 0.380 (0.257) 0.200 (0.133)

|N |(d = 5, p = 5) E(Tschur) E(Teig) R(Tschur) R(Teig)
100 0.163 (0.089) 0.164 (0.074) 0 (0) 0 (0)
500 0.173 (0.063) 0.228 (0.294) 0 (0) 0.040 (0.084)
1000 0.191 (0.068) 0.251 (0.273) 0.020 (0.063) 0.040 (0.084)
2000 0.205 (0.070) 0.166 (0.052) 0.060 (0.096) 0 (0)
5000 0.142 (0.063) 0.164 (0.069) 0 (0) 0.020 (0.063)

Table 2: Columns recovery error E and recovery ratio R for recovering HMMs of various dimensionality and hidden
states using the Schur and the standard spectral approach. See text for details.

Then, for all j = 1, . . . , d, there exists a permutation π
such that

|Ŷij − Yiπ(j)| ≤
(
a1

k(X)λmax

γ̂
+ 1

)
E + o(E2) (20)

with Ŷ estimated from (9), and where k(X) = σmax(X)
σmin(X) is

the condition number of the ground-truth conditional prob-
ability matrix X , λmax = maxi,j Yi,j ,

γ̂ = min
i 6=j

∣∣∣λi(M̂)− λj(M̂)
∣∣∣ > 0 (21)

with λi(M̂) being the ith eigenvalue of M̂ , a1 =

‖θ‖
√

23d2

d−1 , and E = maxi ‖∆Mi‖ = maxi ‖M̂i −Mi‖.

Proof. Consider the set of real commuting matrices Mi,
i = 1, . . . d, and their random perturbations M̂i = Mi +
∆Mi defined in (5) and (6). Assume that ‖∆Mi‖ < E for
all i = 1, . . . , d and that θ ∈ Rd is such that the eigenval-
ues of M̂ = M + ∆M =

∑
i θi(Mi + ∆Mi) are real and

non-degenerate. Let Û be the orthogonal matrix defined
by the Schur decomposition of M̂ = ÛT T̂ Û computed by
the matrix decomposition subroutine in Algorithm 1. Note
that Û may not be unique and different choices of Û lead
to different entries in the strictly upper-diagonal part of T̂ .
However, for any given Û such that ÛT T̂ Û is upper trian-
gular, there exists an orthogonal matrix U and a real matrix
∆U ∈ Rd,d such that U = Û + ∆U and

UTMU = (Û + ∆U)T (M̂ −∆M)(Û + ∆U) (22)

= T̂ −∆T (23)
= T (24)

with T upper triangular. Let Yij be the ground-truth matrix
defined in (3) and Ŷ the estimation output by Algorithm 1.
Then, assuming that ∆M and ∆U are small, there exists a
permutation of the indexes π such that, for all i, j = 1, . . . d

δy = |Ŷij − Yiπ(j)| (25)

= |[ÛT M̂iÛ ]jj − [UTMiU ]π(j)π(j)| (26)

≤ ‖(U −∆U)T (Mi + ∆Mi)(U −∆U)− Ti‖ (27)

=‖∆UTUTi + TiU
T∆U − UT∆MiU + o(∆2)‖(28)

= ‖xTi − Tix+ UT∆MiU + o(∆2)‖ (29)

≤ 2 ‖x‖‖Ti‖+ ‖∆Mi‖+ o(‖∆2‖) (30)

≤ 2 ‖x‖µ+ E + o(‖∆2‖) (31)

where we have defined x = UT∆U , µ = maxi ‖Mi‖ and
used 1 = (U + ∆U)T (U + ∆U) = 1 + xT + x + o(∆2)
where o(∆2) = o(x2) + o(∆Mx).

Following (Konstantinov et al., 1994), a linear bound of
‖x‖ can be estimated as follows. First, observe that the
Schur decomposition of M in (24) implies

low(T̂ x̂− x̂T̂ ) = low(ÛT∆MÛ) + o(∆2) (32)

where low(A) denotes the strictly lower diagonal part of
A and x̂ = ÛT∆U . Since T̂ is upper triangular, one has
low(T̂ x̂− x̂T̂ ) = low(T̂ low(x̂)− low(x̂)T̂ ), i.e. the linear
operator defined by LT̂ (x̂) = low(T̂ x̂− x̂T̂ ) maps strictly
lower-triangular matrices to strictly lower-triangular matri-
ces. Let L̃T̂ (·) be the restriction of LT̂ (·) to the subspace



of lower-triangular matrices, then from (32) one has

L̃T̂ (low(x̂)) = low(ÛT∆MÛ) + o(∆2) (33)

and the operator L̃T̂ is invertible. The invertibility of L̃T̂

follows form the non-singularity of its matrix representa-
tion mat(L̃T̂ ) defined by

vec
(
L̃T̂ (low(x̂))

)
= mat(L̃T̂ )L vec(low(x̂)) (34)

where vec(A) is the columnwise vector representation of
A and L = [Lij ] ∈ [0, 1]

d(d−1)
2 ×d2 the projector to the

subspace of vectorized lower-triangular matrices

Lij ∈ [0, 1]d−i×d, i, j = 1, . . . , d− 1 (35)

Lij =

{
0d−i,d i 6= j
[0d−i,i, 1d−i] i = j

(36)

More explicitly, mat(L̃T̂ ) = L (1 ⊗ T̂ − T̂T ⊗ 1) LT

is a block lower-triangular matrix mat(L̃T̂ ) = [Mij ] ∈
R

d(d−1)
2 × d(d−1)

2 where

[Mij ] ∈ Rd−i×d−j , i, j = 1, . . . , d− 1 (37)

Mij =

 [0d−i,i−j , 1d−j ] i > j
[mi] i = j
0 i < j

(38)

[mi]jk =

 T̂j+i−1,k+i j < k

T̂j+i,j+i − Ti,i j = k
0 j > k

(39)

for i, j = 1, . . . d−1. The determinant of M is the product
of the determinants of its diagonal blocks, i.e.

det(M) =
∏
i>j

(T̂ii − T̂jj) (40)

and is not null provided that the eigenvalues of T̂ are real
separated. In this case, the matrix M and hence the opera-
tor L̃T̂ (·) are invertible. From (32) one has

low(x̂) = L̃ −1
T̂

low (ÛT∆MÛ) + o(∆2) (41)

and in particular

‖x̂‖ =
√

2‖low(x̂)‖ (42)

=
√

2‖L̃ −1T ‖F ‖∆M‖+ o(‖∆‖2) (43)

where the first equality is obtained using the linear approxi-
mation x̂ = −x̂T and ‖A‖2 = ‖low(A)‖2 +‖diag(A)‖2 +
‖up(A)‖2, with diag(A) and up(A) denoting the diagonal
and upper-diagonal parts of A. The norm of the inverse
operator can be bound using its matrix realization, i.e.

‖L̃ −1
T̂
‖F = ‖M−1‖ ≤ 1

σmin(M )
(44)

where σmin(A) is the smallest singular value of A. We can
estimate σmin(M ) by using the following lemma

σmin(A) = min
rank(B)<n

‖A−B‖, rank(A) = n (45)

and observing that the rank deficient matrix closest to M
is obtained by setting T̂ = Tsingular in (38), where Tsingular
is defined by

[Tsingular]i,j =

{
T̂j∗,j∗ if i = j = i∗

T̂i,j otherwise
(46)

with (i∗, j∗) = arg mini 6=j |T̂ii − T̂jj |. One has

σmin(M ) = ‖M −Msingular‖ (47)

=

√∑
i,j

(M −Msingular)2i,j (48)

=
√
d− 1 γ̂ (49)

γ̂ = |T̂i∗i∗ − T̂j∗j∗ | = min
i 6=j
|T̂ii − T̂jj | (50)

where the last equality is obtained by noting that, for all
i = 1, . . . , d, the element T̂ii appears d− 1 times in M .

The norm upper bound µ in (31) obeys

µ = max
i
‖Mi‖ (51)

= max
i
‖X diag(Yi1, . . . Yid)X

−1‖ (52)

≤ ‖X‖‖X−1‖max
i
‖diag(Yi1, . . . , Yid)‖ (53)

≤ k(X)
√
dmax

i,j
Yij (54)

= k(X)
√
d λmax . (55)

where X is the ground-truth matrix defined in (3) and
k(X) = σmax(X)

σmin(X) is the condition number of X .

Finally, the statement (10) follows from (31), (43), ‖x̂‖ =
‖x‖, (44), (49), (55) and

‖∆M‖2 = ‖
d∑
i

θi∆Mi‖2 (56)

=

d∑
j,k

∣∣∣∣∣
d∑
i

θi[∆Mi]jk

∣∣∣∣∣
2

(57)

≤
d∑
j,k

‖θ‖2
d∑
i

[∆Mi]
2
jk (58)

= ‖θ‖2‖
d∑
i

∆Mi‖2 (59)

≤ d‖θ‖2E2 (60)

where we have used the Cauchy-Schwarz inequality and
the definition of E. In particular, for all higher orders
terms contained in ∆2, one has o(‖∆2‖) = o(‖x‖2) +
o(‖∆M‖2) = o(E2).
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