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Abstract

Markov logic uses weighted formulas to com-
pactly encode a probability distribution over pos-
sible worlds. Despite the use of logical formu-
las, Markov logic networks (MLNs) can be diffi-
cult to interpret, due to the often counter-intuitive
meaning of their weights. To address this issue,
we propose a method to construct a possibilis-
tic logic theory that exactly captures what can
be derived from a given MLN using maximum
a posteriori (MAP) inference. Unfortunately, the
size of this theory is exponential in general. We
therefore also propose two methods which can
derive compact theories that still capture MAP
inference, but only for specific types of evidence.
These theories can be used, among others, to
make explicit the hidden assumptions underlying
an MLN or to explain the predictions it makes.

1 INTRODUCTION

Markov logic [22] and possibilistic logic [9] are two pop-
ular logics for modelling uncertain beliefs. Both logics
share a number of important characteristics. At the syn-
tactic level, formulas correspond to pairs (↵,�), consisting
of a classical formula ↵ and a certainty weight �, while at
the semantic level, sets of these formulas induce a mapping
from possible worlds to [0, 1], encoding the relative plausi-
bility of each possible world.

Despite their close similarities, however, Markov logic and
possibilistic logic have been developed in different commu-
nities and for different purposes: Markov logic has mainly
been studied in a machine learning context whereas possi-
bilistic logic has been studied as a knowledge representa-
tion language. This reflects the complementary strengths
and weaknesses of these logics. On the one hand, the qual-
itative nature of possibilistic logic makes it challenging to
use for learning; although a few interesting approaches for

learning possibilistic logic theories from data have been ex-
plored (e.g. [24]), their impact on applications to date has
been limited. On the other hand, the intuitive meaning of
Markov logic theories is often difficult to grasp, which lim-
its the potential of Markov logic for knowledge representa-
tion. The main culprit is that the meaning of a theory can
often not be understood by looking at the individual formu-
las in isolation. This issue, among others, has been high-
lighted in [26], where coherence measures are proposed
that evaluate to what extent the formulation of a Markov
logic theory is misleading.
Example 1. Consider the following Markov logic formu-
las:

+1 : antarctic-bird(X) ! bird(X)

10 : bird(X) ! flies(X)

5 : antarctic-bird(X) ! ¬flies(X)

While the last formula might appear to suggest that antarc-
tic birds cannot fly, in combination with the other two for-
mulas, it merely states that antarctic birds are less likely to
fly than birds in general.

Possibilistic logic is based on a purely qualitative, compar-
ative model of uncertainty: while a Markov logic theory
compactly encodes a probability distribution over the set of
possible worlds, a possibilistic logic theory merely encodes
a ranking of these possible worlds. Even though a proba-
bility distribution offers a much richer uncertainty model,
many applications of Markov logic are based on MAP in-
ference, which only relies on the ranking induced by the
probability distribution.

In this paper, we first show how to construct a possibilistic
logic theory ⇥, given a Markov logic theory M, such that
the conclusions that we can infer from ⇥ are exactly those
conclusions that we can obtain from M using MAP infer-
ence. Our construction can be seen as the syntactic counter-
part of the probability-possibility transformation from [10].
In principle, it allows us to combine the best of both worlds,
using M for making predictions while using ⇥ for eluci-
dating the knowledge that is captured by M (e.g. to verify



that the theory M is sensible). However, the size of ⇥
can be exponential in the size of M, which is unsurprising
given that the computational complexity of MAP inference
is higher than the complexity of inference in possibilistic
logic. To overcome this problem, we begin by studying
ground (i.e. propositional) theories and propose two novel
approaches for transforming a ground MLN into a compact
ground possibilistic logic theory that still correctly captures
MAP inference, but only for specific types of evidence (e.g.
sets of at most k literals). Then we lift one of these ap-
proaches such that it can transform a first-order MLN into
a first-order possibilistic logic theory. Finally, we present
several examples that illustrate how the transformation pro-
cess can be used to help identify unintended consequences
of a given MLN, and more generally, to better understand
its behaviour.

The remainder of the paper is structured as follows. In
the next section, we provide some background on Markov
logic and possibilistic logic. In Section 3, we analyse the
relation between MAP inference in ground Markov logic
networks and possibilistic logic inference, introducing in
particular two methods for deriving compact theories. Sec-
tion 4 then discusses how we can exploit the symmetries
in the case of an ungrounded Markov logic network, while
Section 5 provides some illustrative examples. Finally, we
provide an overview of related work in Section 6.

Due to space limitations, some of the proofs have been
omitted from this paper. These proofs can be found in an
online appendix.1

2 BACKGROUND

2.1 MARKOV LOGIC

A Markov logic network (MLN) [22] is a set of pairs
(F,w

F

), where F is a formula in first-order logic and w
F

is
a real number, intuitively reflecting a penalty that is applied
to possible worlds (i.e. logical interpretations) that violate
F . In examples, we will also use the notation w

F

: F to
denote the formula (F,w

F

). An MLN serves as a template
for constructing a propositional Markov network. In par-
ticular, given a set of constants C, an MLN M induces the
following probability distribution on possible worlds !:

pM(!) =
1

Z
exp

0

@

X

(F,wF )2M

w
F

n
F

(!)

1

A , (1)

where n
F

(x) is the number of true groundings of F in the
possible world !, and Z is a normalization constant to en-
sure that pM can be interpreted as a probability distribu-
tion. Sometimes, formulas (F,w

F

) are considered where
w

F

= +1, to represent hard constraints. In such cases,
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we define pM(!) = 0 for all possible worlds that do not
satisfy all of the hard constraints, and only formulas with
a real-valued weight are considered in (1) for the possible
worlds that do. Note that a Markov logic network can be
seen as a weighted set of propositional formulas, which are
obtained by grounding the formulas in M w.r.t. the set of
constants C in the usual way. In the particular case that all
formulas in M are already grounded, M corresponds to a
theory in penalty logic [13].

One common inference task in MLNs is full MAP infer-
ence. In this setting, given a set of ground literals (the ev-
idence) the goal is to compute the most probable configu-
ration of all unobserved variables (the queries). Two stan-
dard approaches for performing MAP inference in MLNs
are to employ a strategy based on MaxWalkSAT [22] or to
use a cutting plane based strategy [23, 18]. Given a set of
ground formulas E, we write max(M, E) for the set of
most probable worlds of the MLN that satisfy E. For each
! 2 max(M, E),

P

(F,wF )2M w
F

n
F

(!) evaluates to the
same value, which we will refer to as sat(M, E). We de-
fine the penalty pen(M, E) of E as follows:

pen(M, E) = sat(M, ;)� sat(M, E)

We will sometimes identify possible worlds with the set of
literals they make true, writing pen(M,!). We will also
write pen(M,↵), with ↵ a ground formula, as a shorthand
for pen(M, {↵}). We will consider the following inference
relation, which has been considered among others in [13]:

(M, E) `MAP ↵ iff 8! 2 max(M, E) : ! |= ↵ (2)

with M an MLN, ↵ a ground formula and E a set of ground
formulas. It can be shown that checking (M, E) `MAP ↵
for a ground network M is �P

2 -complete2 [4].

2.2 POSSIBILISTIC LOGIC

A possibility distribution in a universe ⌦ is a mapping ⇡
from ⌦ to [0, 1], encoding our knowledge about the pos-
sible values that a given variable X can take; throughout
this paper, we will assume that all universes are finite. For
each x 2 ⌦, ⇡(x) is called the possibility degree of x.
By convention, in a state of complete ignorance, we have
⇡(x) = 1 for all x 2 ⌦; conversely, if X = x0 is known,
we have ⇡(x0) = 1 and ⇡(x) = 0 for x 6= x0. Possibility
theory [27, 12] is based on the possibility measure ⇧ and
dual necessity measure N , induced by a possibility distri-
bution ⇡ as follows (A ✓ ⌦):

⇧(A) = max

a2A

⇡(a)

N(A) = 1�⇧(⌦ \A)

2The complexity class �P
2 contains those decision problems

that can be solved in polynomial time on a deterministic Turing
machine with access to an NP oracle.



Intuitively, ⇧(A) is the degree to which available evidence
is compatible with the view that X belongs to A, whereas
N(A) is the degree to which available evidence implies that
X belongs to A, i.e. the degree to which it is certain that X
belongs to A.

A theory in possibilistic logic [9] is a set of formulas of
the form (↵,�), where ↵ is a propositional formula and
� 2 [0, 1] is a certainty weight. A possibility distribution ⇡
satisfies (↵,�) iff N(J↵K) � �, with N the necessity mea-
sure induced by ⇡ and J↵K the set of propositional mod-
els of ↵. We say that a possibilistic logic theory ⇥ entails
(↵,�), written ⇥ |= (↵,�), if every possibility distribution
which satisfies all the formulas in ⇥ also satisfies (↵,�).
A possibility distribution ⇡1 is called less specific than a
possibility distribution ⇡2 if ⇡1(!) � ⇡2(!) for every !.
It can be shown that the set of models of ⇥ always has a
least element w.r.t. the minimal specificity ordering, which
is called the least specific model ⇡⇤ of ⇥. It is easy to see
that ⇥ |= (↵,�) iff ⇡⇤ satisfies (↵,�).

Even though the semantics of possibilistic logic is defined
at the propositional level, we will also use first-order for-
mulas such as (p(X) ! q(X,Y ),�) throughout the paper.
As in Markov logic, we will interpret these formulas as ab-
breviations for a set of propositional formulas, obtained us-
ing grounding in the usual way. In particular, we will al-
ways assume that first-order formulas are defined w.r.t. a
finite set of constants.

The �-cut ⇥
�

of a possibilistic logic theory ⇥ is defined as
follows:

⇥

�

= {↵ | (↵, µ) 2 ⇥, µ � �}

It can be shown that ⇥ |= (↵,�) iff ⇥
�

|= ↵, which means
that inference in possibilistic logic can straightforwardly be
implemented using a SAT solver.

An inconsistency-tolerant inference relation `
poss

for pos-
sibilistic logic can be defined as follows:

⇥ `
poss

↵ iff ⇥con(⇥) |= ↵

where the consistency level con(⇥) of ⇥ is the lowest cer-
tainty level � for which ⇥

�

is satisfiable (among the cer-
tainty levels that occur in ⇥). Note that all formulas with a
certainty level below con(⇥) are ignored, even if they are
unrelated to any inconsistency in ⇥. This observation is
known as the drowning effect.

We will write (⇥, E) `
poss

↵, with E a set of propositional
formulas, as an abbreviation for ⇥[ {(e, 1) | e 2 E} `

poss

↵. Despite its conceptual simplicity, `
poss

has many de-
sirable properties. Among others, it is closely related to
AGM belief revision [8] and default reasoning [2]. It can
be shown that checking ⇥ `

poss

(↵,�) is a ⇥P

2 complete
problem3 [17]. In this paper, `

poss

will allow us to capture
the non-monotonicity of MAP inference.

3The complexity class ⇥P
2 contains those decision problems

Example 2. Let ⇥ consist of the following formulas:

(penguin(X) ! bird(X), 1)

(penguin(X) ! ¬flies(X), 1)

(bird(X) ! flies(X), 0.5)

Then we find:

(⇥, {bird(tweety)}) `
poss

flies(tweety)
(⇥, {bird(tweety), penguin(tweety)}) `

poss

¬flies(tweety)

In general, `
poss

allows us to model rules with exceptions,
by ensuring that rules about specific contexts have a higher
certainty weight than rules about general contexts.

3 ENCODING GROUND NETWORKS

Throughout this section, we will assume that M is a ground
MLN in which all the weights are strictly positive. This can
always be guaranteed for ground MLNs by replacing for-
mulas (↵,�) with � < 0 by (¬↵,��), and by discarding
any formula whose weight is 0. For a subset X ✓ M,
we write X⇤ for the set of corresponding classical for-
mulas, e.g. for X = {(F1, w1), ..., (Fn

, w
n

)} we have
X⇤

= {F1, ..., Fn

}. In particular, M⇤ are the classical
formulas appearing in the MLN M.

The following transformation constructs a possibilistic
logic theory that is in some sense equivalent to a given
MLN. It is inspired by the probability-possiblity transfor-
mation from [10].
Transformation 1. We define the possibilistic logic theory
⇥M corresponding to an MLN M as follows:

{(
_

X⇤,�(¬
_

X⇤
)) |X ✓ M,�(¬

_

X⇤
) > 0} (3)

where for a propositional formula ↵:

�(↵) =

(

K+pen(M,↵)
L

if ↵ satisfies the hard constraints
1 otherwise

and the constants K and L are chosen such that 0 =

�(>)  �(↵) < 1 for every ↵ that satisfies the hard con-
straints (i.e. the formulas with weight +1).

In the following we will use the notations �(!) for a pos-
sible world ! and �(E) for a set of formulas E, defined
entirely analogously. Throughout the paper we will also
write (�K < x < L�K):

�
x

=

K + x

L

The correctness of Transformation 1 follows from the next
proposition, which is easy to show.

that can be solved in polynomial time on a deterministic Turing
machine, by making at most a logaritmic number of calls to an
NP oracle.



Proposition 1. Let M be a ground MLN and ⇥M the cor-
responding possibilistic logic theory. Let ⇡ be the least spe-
cific model of ⇥M. It holds that:

⇡(!) = 1� �(!)

Corollary 1. Let M be a ground MLN and ⇥M the corre-
sponding possibilistic logic theory. It holds that for � < 1:

⇥M |= (↵,�) iff pen(M,¬↵) � �L�K

and

⇥M |= (↵, 1) iff pen(M,¬↵) = +1

Corollary 2. Let M be a ground MLN and ⇥M the corre-
sponding possibilistic logic theory. For pM the probability
distribution induced by M and ⇡ the least specific model
of ⇥M, it holds that

pM(!1) > pM(!2) iff ⇡(!1) > ⇡(!2)

for all possible worlds !1 and !2. In particular, it fol-
lows that for every propositional formula ↵ and every set
of propositional formulas E:

(M, E) `MAP ↵ iff (⇥, E) `
poss

↵ (4)

Example 3. Consider the MLN M containing the follow-
ing formulas:

5 : a ! x 5 : a ! y 10 : a ^ b ! ¬y

Then ⇥M contains the following formulas:

�5 : a ! x �5 : a ! y

�10 : a ^ b ! ¬y �10 : a ! x _ y

�15 : a ^ b ! x _ ¬y

It can be verified that:

(⇥M, {a}) `
poss

x ^ y (⇥M, {a, b}) `
poss

x ^ ¬y

An important drawback of the transformation to possibilis-
tic logic is that the number of formulas in ⇥M is exponen-
tial in |M|. This makes the transformation inefficient, and
moreover limits the interpretability of the possibilistic logic
theory. In general, the exponential size of ⇥M cannot be
avoided if we want (4) to hold for any E and ↵. However,
more compact theories can be found if we focus on spe-
cific types of evidence. Sections 3.1 and 3.2 introduce two
practical methods to accomplish this.

3.1 SELECTIVELY AVOIDING DROWNING

In many applications, we are only interested in particu-
lar types of evidence sets E. For example, we may only

be interested in evidence sets that contain at most k lit-
erals, or in evidence sets that only contain positive liter-
als. In such cases, we can often derive a more compact
possibilistic logic theory ⇥E as follows. Let E be the
set of evidence sets that we wish to consider, where each
E 2 E is a set of ground formulas. Given E 2 E we
write S

E

for the set of all minimal subsets {F1, ..., Fl

} of
M⇤

E

= {F |F 2 M⇤, pen(M,¬F ) < pen(M, E)} s.t.

pen(M,
^

E ^ ¬F1 ^ ... ^ ¬F
l

) > pen(M, E) (5)

The following transformation constructs a possibilistic
logic theory that correctly captures MAP inference for ev-
idence sets in E . The basic intuition is that we want to
weaken the formulas in M⇤ just enough to ensure that
the resulting certainty level prevents them from drowning
when the evidence E becomes available.
Transformation 2. Given a ground MLN M and a set of
evidence sets E , we define the possibilistic logic theory⇥E

M
as follows:

{(F1,�(¬F1)) |F1 2 M⇤} (6)

[ {(¬
^

E _
_

Z,�(
^

E ^ ¬
^

Z)) |Z 2 S
E

, (7)

E 2 E} [ {(¬
^

E,�(
^

E)) |E 2 E} (8)

If M is clear from the context, we will omit the subscript in
⇥

E
M. The formulas in (6) are the direct counterpart of the

MLN. Intuitively, there are two reasons why these formulas
are not sufficient. First, due to the drowning effect, formu-
las F such that pen(M,¬F ) < pen(M, E) will be ignored
under the evidence E. In such cases we should look at min-
imal ways to weaken these formulas such that the certainty
level of the resulting formula is sufficient to avoid drown-
ing under the evidence E. This is accomplished by adding
the formulas in (7). Second, as ⇥E contains less informa-
tion than ⇥M, we need to ensure that the consistency level
for ⇥E is never lower than the consistency level for ⇥M,
given an evidence set E 2 E . To this end, ⇥E includes
the formulas in (8). The following example illustrates why
these formulas are needed.
Example 4. Consider the following MLN M:

3 : u 2 : a 10 : (a _ b) ^ (u _ v) ! ¬x
2 : b 1 : v

and let E = {{x}}, i.e. the only evidence set in which we
are interested is {x}. It holds that

S
E

= {{a, u}, {b, u}, {a, v}, {b, v}} (9)

and ⇥E
= ⇥ [ [ �, where:

⇥ = {(u,�3), (a,�2), ((a _ b) ^ (u _ v) ! ¬x,�10),

(b,�2), (v,�1)}
 = {(a _ u _ ¬x,�6), (b _ u _ ¬x,�6),

(a _ v _ ¬x,�5), (b _ v _ ¬x,�5)

� = {(¬x,�4)}



It is easy to verify that (⇥ [  , {x}) `
poss

u whereas
(M, {x}) 6`MAP u and (⇥ [ [ �, {x}) 6`

poss

u.

We now prove the correctness of Transformation 2.
Proposition 2. For any formula ↵ and any evidence set
E 2 E , it holds that (⇥M, E) `

poss

↵ iff (⇥E , E) `
poss

↵.

Proof. Let us introduce the following notation:

�
E

= con(⇥M [ {(e, 1) | e 2 E})
�E
E

= con(⇥E [ {(e, 1) | e 2 E})
A = (⇥M [ {(e, 1) | e 2 E})

�E

AE

= (⇥

E [ {(e, 1) | e 2 E})
�

E
E

We need to show that A is equivalent to AE , for any E 2 E .

By Corollary 1, we know that every formula (↵,�) in
⇥

E
M is entailed by ⇥M, hence �E

E

 �
E

. Since �
E

is the smallest certainty level from ⇥M which is strictly
higher than �(E), it follows that AE contains every for-
mula which appears in ⇥E with a weight that is strictly
higher than �(E). Moreover, since ⇥E by construction
contains (¬

V

E,�(
V

E)), we find that AE can only con-
tain such formulas:

AE

= E [ {↵ | (↵,�) 2 ⇥E ,� > �(E)} (10)

It follows that A |= AE .

Let G1 _ ... _ G
s

be a formula from A. From Corollary 1
we know that:

pen(M,¬G1 ^ ... ^ ¬G
s

) > pen(M, E)

and a fortiori

pen(M, E ^ ¬G1 ^ ... ^ ¬G
s

) > pen(M, E)

This means that for any formula G1 _ ... _G
s

in A, either
pen(M,¬G

i

) > pen(M, E) for some i or S
E

contains
a subset {H1, ..., Hr

} of {G1, ..., Gs

}. Then ⇥E contains
either G

i

or the formula ¬E _ H1... _ H
r

with a weight
which is strictly higher than �(E) and thus either G

i

or
¬E _ H1... _ H

r

belongs to AE . In both cases we find
AE |= G1 _ ... _G

s

. We conclude AE |= A.

An alternative, which would make the approach in this sec-
tion closer to the standard encoding in (1), is to define S 0

E

as the set of minimal subsets {F1, ..., Fl

} of M⇤
E

such that

pen(M,¬F1 ^ ... ^ ¬F
l

) > pen(M, E) (11)

and then replace the formulas in (7) by

{(
_

Z,�(¬
^

Z)) |Z 2 S 0
E

} (12)

The advantage of (7), however, is that we can expect many
of the sets in S

E

to be singletons. To see why this is

the case, first note that for each world ! in max(M, E),
the set of formulas Y ✓ M⇤ satisfied by ! is such
that pen(M,¬

W

(M⇤ \ Y)) is minimal among all sets
Y 0 ✓ M⇤ for which E ^

V

Y 0 is consistent. Let us write
Cons

E

(M) for the set of all these maximally consistent
subsets of M⇤. Note that max(M, E) = J

W

{
V

Y |Y 2
Cons

E

(M)}K.
Lemma 1. For a set of formulas {F1, ..., Fl

} ✓ M⇤ it
holds that pen(M, E ^ ¬F1 ^ ... ^ ¬F

l

) > pen(M, E) iff
{F1, ..., Fl

} \ Y 6= ; for every Y in Cons
E

(M).
Corollary 3. Let Cons

E

(M) = {Y1, ...,Ys

}. It
holds that S

E

consists of the subset-minimal elements of
{{y1, ..., ys} | y1 2 Y1 \M⇤

E

, ..., y
s

2 Y
s

\M⇤
E

}.
Example 5. Consider again the MLN M from Example 4
and let E = {x}. It holds that Cons

E

(M) = {Y1,Y2},
where

Y1 = {(a _ b) ^ (u _ v) ! ¬x, a, b}
Y2 = {(a _ b) ^ (u _ v) ! ¬x, u, v}

M⇤
E

= {a, b, u, v}

From Corollary 3,it follows that S
E

is given by (9).

In practice, Cons
E

(M) will often contain a single element,
in which case all the elements of S

E

will be singletons.

3.2 MAP INFERENCE AS DEFAULT REASONING

A large number of approaches has been proposed for rea-
soning with a set of default rules of the form “if ↵ then
typically �” [15, 19, 14]. At the core, each of the proposed
semantics corresponds to the intuition that a set of default
rules imposes a preference order on possible worlds, where
“if ↵ then �” means that � is true in the most preferred
models of ↵. The approaches from [15] and [19] can be
elegantly captured in possibilistic logic [2], by interpreting
the default rule as the constraint⇧(↵^�) > ⇧(↵^¬�). In
Markov logic, the same constraint on the ordering of pos-
sible worlds can be expressed by imposing the constraint
(M,↵) `MAP �. In other words, we can view the MAP
consequences of an MLN as a set of default rules, and en-
code these default rules in possibilistic logic. The follow-
ing transformation is based on this idea.
Transformation 3. Given a ground MLN M and a posi-
tive integer k, we construct a possibilistic logic theory⇥k

M
as follows:

• For each hard rule F from M, add (F, 1) to ⇥k

M.

• For each set of literals E such that 0  |E|  k, let
X = {x | (M, E) `MAP x} be the set of literals that
are true in all the most plausible models of E. Unless
there is a literal y 2 E such that

V

(E \ {y}) `MAP y,
add

⇣

^

E !
^

X,�
E

⌘



to ⇥k

M, where �
E

= �(
V

E). If pen(M, E) >
pen(M, ;), add also

(¬(
^

E ^
^

X),�0
E

) (13)

where �0
E

is the certainty level just below �
E

in ⇥k

M,
i.e. �

E

0
= max{�

F

|�
F

< �
E

, |F |  k}.

If M is clear from the context, we will omit the subscript
in ⇥k

M. The possibilistic encoding of default rules used
in Transformation 3 is similar in spirit to the method from
[2], which is based on the Z-ranking from [19]. However,
because pM already provides us with a model of the default
rules, we can directly encode default rules in possibilistic
logic, without having to rely on the Z-ranking. Also note
that although the method is described in terms of an MLN,
it can be used for encoding any ranking on possible worlds
(assuming a finite set of atoms).

As illustrated in the following example, (13) is needed to
avoid deriving too much, serving a similar purpose to (8)
in the approach from Section 3.1.

Example 6. Consider the following MLN M:

2 : ¬a _ b 2 : a _ b 1 : a _ ¬b

Then ⇥1
= ⇥ [ , where

⇥ = {(> ! a ^ b,�0), (¬a ! b,�1), (¬b ! >,�2)}
 = {(b,�1), (a _ ¬b,�0)}

We find (⇥, {¬b}) `
poss

a while (M, {¬b}) 6`MAP a. Ac-
cordingly, we have (⇥ [ , {¬b}) 6`

poss

a.

Transformations 2 and 3 have complementary strengths.
For example, Transformation 2 may lead to more compact
theories for relatively simple MLNs, e.g. if for most of the
considered evidence sets, there is a unique set of formulas
from the MLN that characterizes the most probable models
of the evidence (cf. Lemma 1). On the other hand, Trans-
formation 3 may lead to substantially more compact theo-
ries in cases where the number of formulas is large relative
to the number of atoms.

We now show the correctness of Transformation 3.

Proposition 3. Let M be an MLN, k a positive integer
and ⇥k the proposed possibilistic logic encoding of M.
Furthermore, let E and C be sets of literals such that |E|+
|C|  k+ 1. It holds that (M, E) `MAP

W

C if and only if
(⇥

k, E) `
poss

W

C.

Before we prove Proposition 3, we present a number of
lemmas. In the lemmas and proofs below, M will always
be an MLN, ⇥k will be the corresponding possibilistic
logic theory and k will be the maximum size of the evi-
dence sets considered in the translation.

Lemma 2. If E is a set of literals, |E|  k, � = �(E) and
(M, E) `MAP x then
n⇣

^

E0 !
^

X
⌘

2 ⇥k

�

s.t. |E0|  |E|
o

`
^

E ! x

Lemma 3. If �(!)  � then ! is a model of ⇥k

�

.

Proof. If there were a formula F = (

V

E) ! (

V

X) in
⇥

k

�

that was not satisfied by !, then its body would have to
be true in ! but then necessarily

�  �(E)  �(!)  �.

The first inequality follows from the fact that, by the con-
struction of ⇥k, if the certainty weight of F is at least �
then it must be the case that �(E) � �. The second in-
equality follows from the fact that ! was assumed to be a
model of

V

E. It follows that:

pen(M,!) = pen(M, E).

However, this would mean that ! is also a most probable
world of (M, E), but then ! |= F by construction of ⇥k.

If there were an unsatisfied formula F = ¬ (

V

E ^
V

X)

in ⇥k

�

then by construction we would have �(E [X) > �.
However, from ! |=

V

E ^
V

X we find �(E [ X) 
�(!)  �, a contradiction.

Since all formulas in ⇥k are of the two considered types, it
follows that all formulas from ⇥

k whose certainty weight
is at least � must be satisfied in !.

Lemma 4. If (M, E) `MAP (y1 _ · · · _ y
m

) then

(i) for any i, either (M, E [ {¬y
i

}) `MAP (y1 _ · · · _
y
i�1 _ y

i+1 _ · · · _ y
m

) or (M, E) `MAP y
i

,

(ii) there exist a j and a set {y01, . . . , y0
m

0} ✓
{y1, . . . , ym} \ {y

j

} such that (M, E [
{¬y01, . . . ,¬y0

m

0}) `MAP y
j

.

Lemma 5. If |C| + |E|  k + 1, and � = �(E) then
⇥

k

�

[ E `
W

C if and only if (M, E) `MAP
W

C.

We now turn to the proof of Proposition 3.

Proof of Proposition 3. Let E be an evidence set such that
|E|  k and let � = �(E). Given Lemma 5, it is sufficient
to show that con(⇥k, E) = �. It follows from Lemma 3
that con(⇥k, E)  �. Let X = {x | (M, E) `MAP x} be
the set of literals which can be derived from (M, E) using
MAP inference. By construction, ⇥k contains a formula
¬(

V

E ^
V

X) with a certainty weight which is just below
�. Specifically, for �0 < � we either have ⇥k

�

= ⇥

k

�

0 or
⇥

k

�

0 |= ¬
V

E, from which we find con(⇥k, E) = �.



It is of interest to remove any formulas in⇥k that are redun-
dant, among others because this is likely to make the theory
easier to interpret. Although we can use possibilistic logic
inference to identify redundant formulas, in some cases we
can avoid adding the redundant formulas altogether. For
example, in the transformation procedure, we do not add
any rules for E if it holds that E \ {y} `MAP y for some
y 2 E. This pruning rule is the counterpart of the cau-
tious monotonicity property, which is well-known in the
context of default reasoning [15]. Any ranking on possi-
ble worlds also satisfies the stronger rational monotonicity
property, which translated to our setting states that when
(M, E \ {y}) `MAP x and (M, E \ {y}) 6`MAP ¬y it holds
that (M, E) `MAP x. Accordingly, when processing the
evidence set E in the transformation procedure, instead of
(

V

E !
V

X,�
E

) it is sufficient to add the following rule:

(

^

E !
^

(X \X0),�E

)

where

X0 = {x |E \ {y} `MAP x and E \ {y} 6`MAP ¬y}

The correctness of this pruning step follows from the fol-
lowing proposition.
Proposition 4. Let x and y be literals. If |E| < k,
(M, E) `MAP x and (M, E) 6`MAP ¬y then:

⇥

k \ {F} |=
�

^

E ^ y ! x,�
E[{y}

�

where F is the formula in⇥k corresponding to the evidence
set E [ {y}, i.e.:

F =

^

(E [ {y}) !
^

{x | (M, E [ {y}) `MAP x}

Proof. If (M, E) `MAP x and (M, E) 6`MAP ¬y then
(M, E [ {y}) `MAP x and pen(M, E) = pen(M, E [
{y}) = pen(M, E [ {x, y}). Therefore using Lemma 2,
we find that ⇥k

�E[{y}
`

V

E ! x. From Lemma 2, it
furthermore follows that

V

E ! x can be derived from
rules with antecedents of length at most |E|. In particular,
we find that

V

E ! x can be derived without using the
formula

V

E ^ y !
V

X .

Finally, note that formulas of the form (13) can be omitted
when �0

E

= �(E\{y}) for some y 2 E. Indeed, in such
a case we find from pen(M, E \ {y}) < pen(M, E) that
(M, E \ {y}) `MAP ¬y, hence (13) will be entailed by a
formula of the form

�

V

(E \ {y}) !
V

X,�
E\{y}

�

in ⇥k.

4 ENCODING NON-GROUND
NETWORKS

We now provide the counterpart to the construction from
Section 3.2 for non-ground MLNs. The first-order nature

of MLNs often leads to distributions with many symmetries
which can be exploited by lifted inference methods [20].
We can similarly exploit these symmetries for constructing
more compact possibilistic logic theories from MLNs.

For convenience, in the possibilistic logic theories, we will
use typed formulas. For instance, when we have the for-
mula ↵ = owns(person : X, thing : Y ) and the set of
constants of the type person is {alice, bob} and the set of
constants of the type thing is {car} then ↵ corresponds to
the ground formulas owns(alice, car) and owns(bob, car).
In cases where there is only one type, we will not write it
explicitly.

Two typed formulas F1 and F2 are said to be isomorphic
when there is a type-respecting substitution ✓ of the vari-
ables of F1 such that F1✓ ⌘ F2 (where ⌘ denotes equiv-
alence of logical formulas). Two MLNs M1 and M2 are
said to be isomorphic, denoted by M1 ⇡ M2, if there is a
bijection i from formulas of M1 to formulas of M2 such
that for i(F,w) = (F 0, w0

) it holds that w = w0 and the
formulas F and F 0 are isomorphic. When j is a permuta-
tion of a subset of constants from M then j(M) denotes
the MLN obtained by replacing any constant c from the
subset by its image j(c).

Given a non-ground MLN M, we can first identify sets of
constants which are interchangeable, where a set of con-
stants C

t

is said to be interchangeable if j(M) ⇡ M for
any permutation j of the constants in C

t

. Note that to check
whether a set of constants C

t

is interchangeable, it is suf-
ficient to check that j(M) ⇡ M for those permutations
which swap just two constants from C

t

. For every max-
imal set C

t

of interchangeable constants, we introduce a
new type t. For a constant c, we write ⌧(c) to denote its
type. When F is a ground formula, variabilize(F ) denotes
the following formula:

^

{V
c

6= V
d

| c, d 2 const(F ), ⌧(c) = ⌧(d)} ! F 0

where const(F ) is the set of constants appearing in F and
F 0 is obtained from F by replacing all constants c by a new
variable V

c

of type ⌧(c).

Transformation 4. Given an MLN M and a positive in-
teger k, we construct a possibilistic logic theory ⇥k

M as
follows:

• For each hard rule F from M, add (F, 1) to ⇥k

M.

• For each set of literals E such that 0  |E|  k,
let X = {x | (M, E) `MAP x}. For all x 2 X , unless
there is a literal y 2 E such that (M, E\{y}) `MAP y
and unless ⇥k

M already contains a formula isomor-
phic to variabilize (

V

E ! x), add

⇣

variabilize
⇣

^

E ! x

⌘

,�
E

⌘



to ⇥

k

M. If pen(M, E) > pen(M, ;) and ⇥

k

M
does not already contain a formula isomorphic to
variabilize (¬ (

V

E ^
V

X)), add also
⇣

variabilize
⇣

¬
⇣

^

E ^
^

X
⌘⌘

,�0
E

⌘

(14)

where �0
E

is the certainty level just below �
E

in ⇥k

M.

As before, we will usually omit the subscript in ⇥k

M. We
can show that after grounding, ⇥k is equivalent to the the-
ory that would be obtained by first grounding the MLN and
then applying the method from Section 3.2. The correct-
ness proof is provided in the online appendix.

Our implementation4 of Transformation 4 relies on an effi-
cient implementation of inference in possibilistic logic and
Markov logic, efficient generation of non-redundant candi-
date evidence sets and efficient filtering of isomorphic for-
mulas. For MAP inference in MLNs, we used a cutting-
plane inference algorithm based on a SAT-based optimiza-
tion. For inference in possibilistic logic, we also used
cutting-plane inference in order to avoid having to ground
the whole theory. To find the ground rules that need to
be added by the cutting-plane method, we used a modified
querying system from [16]. For solving and optimizing the
resulting ground programs, we used the SAT4J library [3].

Note that to check whether ⇥k

�

` F , where F is a (not
necessarily ground) clause, it is sufficient to find one (type-
respecting) grounding ✓ of F , and check whether ⇥k

�

[
{¬(F✓)} is inconsistent. In this way, we can check whether
a rule is implied by ⇥k without grounding the whole the-
ory because, as for MLNs, inference in non-ground pos-
sibilistic logic theories can be carried out by cutting-plane
inference methods.

We implemented the transformation as a modification of
the standard best-first search (BFS) algorithm which con-
structs incrementally larger candidate evidence sets, checks
their MAP consequences and adds the respective rules to
the possibilistic logic theory being constructed. Like the
standard BFS algorithm it uses a hash-table based data
structure closed, in which already processed evidence sets
are stored. In order to avoid having to check isomorphism
with every evidence set in closed, each time a new evidence
set is considered, the stored evidence sets are enriched by
fingerprints which contain some invariants, guaranteeing
that no two variabilized evidence sets with different fin-
gerprints are isomorphic. In this way, we can efficiently
check for a given evidence set E whether there is a previ-
ously generated evidence set E0 such that variabilize(E)

and variabilize(E0
) are isomorphic.

As a final remark, we note that for the non-ground
transformation, it may be preferable to replace any

4The implementation can be downloaded from:
https://github.com/supertweety/mln2poss.

rule (variabilize (¬ (

V

E ^
V

X)) ,�0
E

) by the rule
(variabilize (¬

V

E) ,�0
E

). The reason is that the former
rules may often become too long in the non-ground case.
On the other hand, for the ground transformation, the
advantage of the longer rules is that they will often be
the same for different sets E, which, in effect, means a
smaller number of rules in the possibilistic logic theory.
The correctness of this alternative to Transformation 4 is
also shown in the online appendix.

5 ILLUSTRATIVE EXAMPLES

The first example is a variation on a classical problem from
non-monotonic reasoning. Here, we want to express that
birds generally fly, but heavy antarctic birds do not fly, un-
less they have a jet pack. The MLN which we will con-
vert into possibilistic logic contains the following rules:
10 : bird(X) ! flies(X), 1 : antarctic(X) ! ¬flies(X),
10 : heavy(X) ! ¬flies(X), 100 : hasJetPack(X) !
flies(X). When presented with this MLN, Transformation
4 produces the following possibilistic logic theory.

(¬antarctic(X) _ ¬flies(X),�0)

(¬bird(X) _ flies(X),�0)

(¬heavy(X) _ ¬flies(X),�0)

(flies(X) _ ¬hasJetPack(X),�0)

(¬bird(X) _ flies(X) _ hasJetPack(X),�1)

(¬heavy(X) _ antarctic(X) _ ¬flies(X),�1)

(¬bird(X) _ ¬heavy(X),�1)

(¬antarctic(X) _ ¬heavy(X) _ ¬flies(X),�10)

(flies(X) _ ¬hasJetPack(X) _ bird(X),�11)

(¬bird(X) _ flies(X) _ ¬hasJetPack(X),�100)

Let us consider the evidence set E =

{bird(tweety), heavy(tweety)}. Then the levels �0

and �1 drown because of the inconsistency with the rule
(¬bird(X) _ ¬heavy(X),�1) which was produced as one
of the rules (14). We can see from the rest of the possibilis-
tic logic theory that unless we add either antarctic(tweety)
or hasJetPack(tweety), we cannot say anything about
whether tweety flies or not. It can be verified that the same
is true also for the respective MLN.

The second example consists of formulas from a classical
MLN about smokers. There are three predicates in this
MLN: a binary predicate f(A,B) denoting that A and B
are friends, and two unary predicates s(A) and c(A) denot-
ing that A smokes and that A has cancer, respectively. The
MLN contains the following hard rules: ¬f(A,B) _ f(B,A)
and ¬f(A,A). In addition, we have two soft rules. The first
soft rule 10: ¬s(A)_¬f(A,B)_ s(B) states that if A and B
are friends and A smokes then B is more likely to smoke
too. The second rule 10: ¬s(A) _ c(A) states that smoking
increases the likelihood of cancer. The following possi-



bilistic logic theory was obtained using Transformation 4
with k = 4.

(s(B) _ ¬f(A,B) _ ¬s(A) _ ¬alldiff(A,B),�0)

(¬s(A) _ c(A),�0)

(¬f(C,B) _ ¬f(A,B) _ s(A) _ s(C)
_¬alldiff(A,B,C) _ ¬s(B),�10)

(¬f(C,B) _ ¬s(A) _ ¬f(A,C) _ s(C)
_¬alldiff(A,B,C) _ ¬s(B),�10)

(¬s(A) _ ¬f(C,A) _ s(C) _ c(B)
_¬alldiff(A,B,C) _ ¬s(B),�10)

(¬s(A) _ c(A) _ c(B) _ ¬s(B) _ ¬alldiff(A,B),�10)

(s(B) _ ¬f(A,B) _ ¬s(A) _ c(A) _ ¬alldiff(A,B),�10)

(¬f(A,B) _ f(B,A), 1)
(¬f(A,A), 1)

At the lowest level �0 we find the counterparts of the soft
rules from the MLN, whereas at level 1 we find the hard
rules. At the intermediate level we intuitively find weak-
ened rules from the MLN. For instance, the rule (¬s(A) _
c(A)_c(B)_¬s(B)_¬alldiff(A,B),�1) can be interpreted
as: if A and B smoke then at least one of them has cancer.
It is quite natural that this rule has higher certainty weight
than the rule: if A smokes then A has cancer.

A final, more elaborate example is provided in the online
appendix.

6 RELATED WORK

One line of related work focuses on extracting a compre-
hensible model from another learned model that is difficult
or impossible to interpret. A seminal work in this area is
the TREPAN [5] algorithm. Given a trained neural network
and a data set, TREPAN learns a decision tree to mimic the
predictions of the neural network. In addition to produc-
ing interpretable output, this algorithm was shown to learn
accurate models that faithfully mimicked the neural net-
work’s predictions. More recent research has focused on
approximating complex ensemble classifiers with a single
model. For example, Popovic et al. [21] proposed a method
for learning a single decision tree that mimics the predic-
tions of a random forest.

While, to the best of our knowledge, this is the first paper
that studies the relation between Markov logic and possi-
bilistic logic, the links between possibility theory and prob-
ability theory have been widely studied. For example, [10]
has proposed a probability-possibility transformation based
on the view that a possibility measure corresponds to a par-
ticular family of probability measures. Dempster-Shafer
evidence theory [25] has also been used to provide a prob-
abilistic interpretation to possibility degrees. In particular,
a possibility distribution can be interpreted as the contour

function of a mass assignment; see [11] for details. In [13]
it is shown how the probability distribution induced by a
penalty logic theory corresponds to the contour function of
a mass assignment, which suggests that it is indeed natu-
ral to interpret this probability distribution as a possibility
distribution. Several other links between possibility theory
and probability theory have been discussed in [6].

In this paper, we have mainly focused on MAP inference.
An interesting question is whether it would be possible to
construct a (possibilistic) logic base that captures the set
of accepted beliefs encoded by a probability distribution,
where A is accepted if P (A) > P (¬A). Unfortunately, the
results in [7] show that this is only possible for the limited
class of so-called big-stepped probability distributions. In
practice, this means that we would have to define a partition
of the set of possible worlds, such that the probability dis-
tribution over the partition classes is big-stepped, and only
capture the beliefs that are encoded by the latter, less in-
formative, probability distribution. A similar approach was
taken in [1] to learn default rules from data.

7 CONCLUSIONS

This paper has focused on how a Markov logic network M
can be encoded in possibilistic logic. We started from the
observation that it is always possible to construct a pos-
sibilistic logic theory ⇥M that is equivalent to M, in the
sense that the probability distribution induced by M is iso-
morphic to the possibility distribution induced by ⇥M. As
a result, applying possibilistic logic inference to⇥M yields
the same conclusions as applying MAP inference to M.
Although the size of ⇥M is exponential in the number of
formulas in M, we have shown how more compact theo-
ries can be obtained in cases where we can put restrictions
on the types of evidence that need to be considered (e.g.
small sets of literals).

Our main motivation has been to use possibilistic logic as
a way to make explicit the assumptions encoded in a given
MLN. Among others, the possibilistic logic theory could be
used to generate explanations for predictions made by the
MLN, to gain insight into the data from which the MLN
was learned, or to identify errors in the structure or weights
of the MLN. Taking this last idea one step further, our aim
for future work is to study methods for repairing a given
MLN, based on the mistakes that have thus been identified.

Acknowledgements

We would like to thank the anonymous reviewers for their
helpful comments. This work has been supported by a
grant from the Leverhulme Trust (RPG-2014-164). JD
is partially supported by the Research Fund KU Leuven
(OT/11/051), EU FP7 Marie Curie Career Integration Grant
(294068) and FWO-Vlaanderen(G.0356.12).



References

[1] S. Benferhat, D. Dubois, S. Lagrue, and H. Prade. A
big-stepped probability approach for discovering de-
fault rules. Int. Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 11:1–14, 2003.

[2] S. Benferhat, D. Dubois, and H. Prade. Nonmono-
tonic reasoning, conditional objects and possibil-
ity theory. Artificial Intelligence, 92(1-2):259–276,
1997.

[3] D. L. Berre and A. Parrain. The SAT4J library, release
2.2. Journal on Satisfiability, Boolean Modeling and
Computation, 7:50–64, 2010.

[4] C. Cayrol and M.-C. Lagasquie-Schiex. On the com-
plexity of non-monotonic entailment in syntax-based
approaches. In Proceedings of the 11th ECAI Work-
shop on Algorithms, Complexity and Commonsense
Reasoning, 1994.

[5] M. W. Craven and J. W. Shavlik. Extracting tree-
structured representations of trained networks. In
D. Touretzky, M. Mozer, and M. Hasselmo, editors,
Advances in Neural Information Processing Systems,
volume 8, pages 24–30. MIT Press, 1996.

[6] D. Dubois. Possibility theory and statistical rea-
soning. Computational statistics & data analysis,
51(1):47–69, 2006.

[7] D. Dubois, H. Fargier, and H. Prade. Ordinal and
probabilistic representations of acceptance. Journal
of Artificial Intelligence Research, 22:23–56, 2004.

[8] D. Dubois, J. Lang, and H. Prade. Automated reason-
ing using possibilistic logic: semantics, belief revi-
sion, and variable certainty weights. IEEE Trans. on
Knowledge and Data Engineering, 6(1):64–71, 1994.

[9] D. Dubois, J. Lang, and H. Prade. Possibilistic logic.
In D. N. D. Gabbay, C. Hogger J. Robinson, edi-
tor, Handbook of Logic in Artificial Intelligence and
Logic Programming, volume 3, pages 439–513. Ox-
ford University Press, 1994.

[10] D. Dubois and H. Prade. On several representations
of an uncertain body of evidence. In M. Gupta and
E. Sanchez, editors, Fuzzy Information and Decision
Processes, pages 167–181. North-Holland, 1982.

[11] D. Dubois and H. Prade. Fuzzy sets, probability and
measurement. European Journal of Operational Re-
search, 40(2):135–154, 1989.

[12] D. Dubois and H. Prade. Possibility theory: qual-
itative and quantitative aspects. In D. Gabbay and
P. Smets, editors, Handbook of Defeasible Reason-
ing and Uncertainty Management Systems, volume 1,
pages 169–226. Kluwer Academic, 1998.

[13] F. Dupin de Saint-Cyr, J. Lang, and T. Schiex. Penalty
logic and its link with Dempster-Shafer theory. In
Proc. of the 10th International Conference on Uncer-
tainty in Artificial Intelligence, pages 204–211, 1994.

[14] H. Geffner and J. Pearl. Conditional entailment:
Bridging two approaches to default reasoning. Ar-
tificial Intelligence, 53(2):209–244, 1992.

[15] S. Kraus, D. Lehmann, and M. Magidor. Nonmono-
tonic reasoning, preferential models and cumulative
logics. Artificial Intelligence, 44(1-2):167–207, 1990.
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