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Abstract

Given a discrete time finite state hidden Markov
model (HMM) and a sequence of observations,
there are different ways to estimate the hidden
behavior of the system. In this paper, the prob-
lem of finding the most probable state sequence
is considered. The state sequence, as opposed
to the state trajectory, specifies the sequence of
states that the HMM visits but does not spec-
ify the dwelling times in these states. This in-
ference problem is relevant in a variety of do-
mains, like text analysis, speech recognition, or
behavior recognition, where the exact timing of
hidden state transitions is not nearly as impor-
tant as the sequence of states visited. No existing
algorithm addresses this inference question ade-
quately. Leveraging previous work on continu-
ous time Markov chains, we develop a provably
correct algorithm, called state sequence analysis,
that addresses this inference question in HMMs.
We discuss and illustrate empirically the differ-
ences between finding the most probable state se-
quence directly and doing so through running the
Viterbi algorithm and collapsing repetitive state
visitations. Experimental results in two synthetic
domains demonstrate that the Viterbi-based ap-
proach can be significantly suboptimal compared
to state sequence analysis. Further, we demon-
strate the benefits of the proposed approach on a
real activity recognition problem.

1 INTRODUCTION

Hidden Markov models are a powerful and widely-
used formalism for analyzing sequential information
in a variety of domains, including speech recog-
nition [Bahl et al., 1986, Rabiner, 1989], text anal-
ysis [Blei and Moreno, 2001], behavior recognition
[Yamato et al., 1992, Nguyen et al., 2005], protein struc-

ture prediction [Sonnhammer et al., 1998], genomics
[Haussler and Eeckman, 1996, Wang et al., 2007], and so
on. As with graphical models generally, much of the utility
of HMMs derives from our ability to use them to make
estimates about hidden/unobserved variables based on
observable variables. HMMs are often used as models of
dynamical systems. In this context, the unobserved vari-
ables would be the true (underlying) state of the dynamical
system. The observed variables would be something
that we “see” when we observe or measure the system.
The observations typically have some relationship to the
underlying state, but the relationship may be imperfect or
noisy. A typical task would then involve receiving some
kind of observations of the system, and estimating the
underlying states that generated those observations. Of
course, an HMM can model sequential information that is
not dynamical in nature, as seen for instance in applications
in text analysis, genome annotation, etc. Regardless, the
most common task is to estimate underlying states based
on observations.

There are several different types of hidden state estimation
problems for HMMs. Although we define HMMs formally
in the next section, to distinguish different types of infer-
ence problems it is useful to introduce a small amount of
notation here. We let Xt be a random variable denoting
the underlying state at time t, and xt a realization of that
variable. Similarly, we let ot be the observation at time
t. Further, we let X1:t = (X1, X2, . . . , Xt) be a random
variable describing possible system trajectories, a realiza-
tion of which is denoted x1:t = (x1, x2, . . . , xt). Similarly,
a series of observations is denoted o1:t = (o1, o2, . . . , ot).

One of the fundamental HMM inference problems is to
compute the probabilities of different underlying system
states based on observations. More formally, if we receive
a stream of observations, o1, o2, o3, . . . then at each time
t = 1, 2, 3, . . . we may want to compute the probabili-
ties of different states x conditional on the observations:
P(Xt = x|o1:t). This can be done by the forward algo-
rithm [Rabiner, 1989], which is very efficient, and indeed
allows us to readily compute P(Xt = x|o1:t) incremen-



tally based on P(Xt−1 = x′|o1:t−1). If we are given an
entire sequence of observations, o1:t, and we want to esti-
mate the underlying state probabilities at all times, namely
P(Xt′ = x|o1:t) for all x and 1 ≤ t′ ≤ t, then the
forward-backward algorithm [Rabiner, 1989] gives us an
efficient solution. From those probabilities, one can eas-
ily compute the most probable state at each time: xmax

t′ =
argmaxx P(X

′
t = x|o1:t).

Each of these problems give us some information about un-
derlying states based on observations, but they do not ex-
plicitly give us any pathway information. The forward and
forward-backward algorithms, for example, give us only
state probabilities. The sequence of most probable states,
xmax
1 , xmax

2 , xmax
3 , . . ., may or may not comprise a valid

system path. That is, some transition xmax
t′ → xmax

t′+1 may
not even be allowed under the dynamics. Thus, while these
approaches are useful for estimating underlying states or
“classifying” time points into different states, they are not
directly useful for reconstructing underlying system paths.

For path reconstruction, by far the most common ap-
proach is the Viterbi algorithm [Rabiner, 1989], which is
an efficient means for computing the maximum proba-
bility trajectory underlying a given sequence of observa-
tions: argmaxx1:t P(x1:t|o1:t). Despite the many suc-
cesses of the Viterbi approach (e.g., in speech recogni-
tion, activity recognition and bioinformatics, as described
above), it has has been critiqued on a few different grounds.
For one, like any maximum a posteriori (MAP) estima-
tor, there is a question of how “representative” the maxi-
mum is. Intuitively, if the bulk of the posterior distribu-
tion contains trajectories that are “unlike” the MAP trajec-
tory in some way, then the MAP trajectory can be mislead-
ing in our attempt to interpret observational data (see, e.g.,
[Lember and Koloydenko, 2014] and references therein).
As a simple example, imagine the underlying state system
is a series of independent flips of a biased coin that comes
up heads with probability p > 0.5, and suppose we receive
totally non-informative observations. Then the MAP tra-
jectory is a series of all heads. But this path is “atypical”
in a number of senses. For instance, we do expect some
tails—in particular, about n(1− p) of them where n is the
number of flips. This and a great many other statistics about
the series of coin flips are not represented in the MAP path.
This is not a criticism of Viterbi per se, but merely of the
practice of thinking or hoping that the MAP path is some-
how representative of other probable paths as well.

In some other work, the authors have pointed out problems
with MAP paths for stochastic continuous-time discrete-
state systems [Perkins, 2009, Levin et al., 2012]. Such sys-
tems dwell in a state for random period of time, before
moving on to a randomly-chosen next state. Although
MAP paths can be efficiently computed [Perkins, 2009],
solutions are non-typical in that they involve “instant” tran-
sitions through low latency states and dwells in high latency

states. Similar issues can arise in discrete time HMMs, par-
ticularly, but not exclusively, when analyzing an HMM that
arises from discretizing a continuous-time process.

A second problem with MAP paths is that they consti-
tute an overly-specific inference. For example, in a simple
speech recognition scenario, a MAP path might assign a
word or phoneme to every timestep underlying the speech
signal. However, transitions between words are not truly
so crisp. Moreover, there is usually no point in assigning
precise start and end times to each word or phoneme. If
we hear, “The quick brown fox . . . ”, what is the value of
estimating that the word “The” ends and the word “quick”
begins precisely 0.823 seconds into a spoken signal? It is
the sequence of words spoken, and not their exact timing,
that is important. Similarly for gesture recognition, activity
recognition, etc.

Motivated by these criticisms of MAP trajectories, an al-
ternative inference method, called state sequence analysis,
was proposed earlier [Levin et al., 2012]. In this inference
problem, the objective is to find the maximum a posteriori
sequence of states, but averaging away (i.e. marginalizing
over) the transition times between those states—essentially
treating them as nuisance variables. In that work, how-
ever, the inference problem is solved for systems modeled
as continuous-time Markov chains with initial and/or ter-
minal probabilities; no observations during the time period
of interest are allowed. In the present work, we study state
sequence analysis for HMMs: the focus is on discrete time
setting, where a series of noisy observations is allowed. We
describe a provably-correct algorithm that finds the most
probable state sequence given a trajectory of observations.
Then, we demonstrate how state sequence analysis differs
from Viterbi path inference on synthetic and real examples,
and in particular (as it is designed to do) how state sequence
analysis provides more accurate estimates of the sequence
of states underlying a noisy series of observations.

2 BACKGROUND

Let X be a discrete finite state space and O the observa-
tion space of a hidden Markov model [Rabiner, 1989]. Let
T be the transition matrix of this HMM, with Tx,y repre-
senting the probability of transitioning from state x ∈ X
to state y ∈ X , and px(o) be the emission probability of
observation o ∈ O in state x ∈ X .

For a possible trajectory of states visited by a discrete time
HMM we are interested in identifying what is the corre-
sponding duration–free sequence of states, i.e. sequence of
states with self-loops removed. For example, given the tra-
jectory of states 〈x, x, x, y, y, y, x〉, the corresponding state
sequence will be 〈x, y, x〉. We denote the probability that
HMM trajectory follows the state sequence s given the se-



quence of n observations, as

P(X1:n ∈ seqn(s)|o1:n),

where seqn(s) is a set of all length n trajectories whose
duration–free sequence equals to s. Where possible, we
will use P(s|o1:n) as a shortcut to the above notation.

3 THE STATE SEQUENCE INFERENCE
PROBLEM

Finding the most probable state sequence, which we call
state sequence analysis (SSA), can be seen as a search
problem that requires evaluation of probabilities of state
sequences. Recall that, to find the most probable trajec-
tory of states, a naive exhaustive enumeration quickly be-
comes infeasible because the number of possible trajecto-
ries grows exponentially with the length of observation se-
quence. Similarly, a naive implementation of the search for
the most probable state sequence does not scale well. Even
a single evaluation of a probability of a state sequence in-
volves the summation over possibly large number of terms.
Specifically, the number of terms in the set seqn(s) is equal
to
(
n−1
|s|−1

)
for the state sequence s.

Nevertheless, inferring the most probable trajectory can be
done efficiently by a well–known Viterbi algorithm that
uses dynamic programming to do the search and evaluation
simultaneously. Although a Viterbi-like approach does not
appear to be possible to address the question we pose, in
what follows we develop search and evaluation algorithms
that make the problem tractable. First, we identify a par-
ticular structure within the search space that allows us to
prune large parts of the space as the search progresses. Sec-
ond, we provide a recursive relation that is used to effi-
ciently evaluate probabilities of new state sequences using
dynamic programming. However, prior to delving into the
algorithmic details, we begin with a little discussion about
the similarities and differences between most probable state
sequence and most probable state trajectory.

3.1 THE MOST PROBABLE STATE SEQUENCE
AND TRAJECTORY

The definition of a state sequence presented in an earlier
section leaves little doubt that the most probable state tra-
jectory is not necessarily the same as the most probable
state sequence, given a sequence of observations. Yet, to
better understand the nature of their differences it might be
helpful to pinpoint the cases where those two will, in fact,
be equal. In the first case, consider a HMM in which prob-
abilities of staying in any state are zero. Any state trajec-
tory generated by this HMM will have no repetitive states,
and therefore the only state sequences that have non zero
probability of happening must be of the same length as the
observation sequence. Hence, the most probable state tra-

jectory and the most probable state sequence will be the
same.

In the second case, suppose that the observations identify
the underlying hidden states exactly (observation sequence
is also Markov). It implies that there is only one state tra-
jectory that could generate a given sequence of observa-
tions. Hence, there is only one state sequence explaining
a given observation sequence; that state sequence can be
computed by collapsing repetitive states appearing in the
only possible state trajectory.

Of course, both of these cases are rather extreme, and in
their exact form can rarely be found in practice. However,
one can expect that the “closer” the given HMM is to one of
those extremes, the less evident will the difference be be-
tween the most probable state sequence and state trajectory
(in its collapsed form). This intuition is also backed up, to
some extent, by the experimental results presented in later
sections.

3.2 DOMINATION OF SEQUENCES

In [Levin et al., 2012], the authors develop a structural rela-
tion between state sequences of a continuous time Markov
chain that allows them to avoid searching all of the space of
sequences. In this section, we develop a similar relation be-
tween sequences in the setting of discrete time HMMs. The
following derivation, which serves as a basis for this de-
velopment, enables us to express the probability of longer
state sequences in terms of shorter state sequences. Let sx
be a state sequence that ends with state x , and let uy be a
one step shorter subsequence of sx such that sx = 〈uy, x〉.
Then,

P(sx|o1:n) =
∑n−1

i=1 P[X1:i ∈ seqi(uy);Xi+1:n = x|o1:n]

=
∑n−1

i=1 P[X1:i ∈ seqi(uy) | o1:n]

· P[Xi+1:n = x | o1:n;Xi = y]

=
∑n−1

i=1
P[o1:n | X1:i∈seqi(uy)]·P[X1:i∈seqi(uy)]

P(o1:n)

· P[Xi+1:n = x | oi+1:n;Xi = y]

=
∑n−1

i=1
P[o1:i | X1:i∈seqi(uy)]·P[X1:i∈seqi(uy)]

P(o1:i)

· P[oi+1:n | Xi=y]
P[oi+1:n | o1:i]

· P[Xi+1:n = x | oi+1:n;Xi = y]

=
∑n−1

i=1 P[X1:i ∈ seqi(uy) | o1:i]

· P[Xi+1:n=x;oi+1:n | Xi=y]
P[oi+1:n | o1:i]

=
∑n−1

i=1 P(uy | o1:i) ·
Ty,xT

n−i−1
x,x

∏n
j=i+1 px(oj)

P[oi+1:n | o1:i]

(1)

Eq. (1) makes the separation between the parameters of
the problem (HMM, observation sequence) and the shorter
state sequence explicit. Specifically, the probability of



longer state sequence equals to convolution of probabilities
of shorter state sequence and the probability of staying in
new state, normalized appropriately by the emission prob-
abilities. As a result, the following definition of dominance
between sequences turns out to be useful in speeding up the
search.

Definition 1. Given a sequence of observations o1:n, let s
and v be sequences that start from the same state and end
with the same state. Then we say that s dominates v, and
denote it by s�n v, if

∀i ∈ {1, ..., n} : P(s|o1:i) ≥ P(v|o1:i).

The dominance relation assures us that extensions of domi-
nated sequences should never be explored within the search
space, as the following lemma suggests.

Lemma 1. Let vy and sy be two state sequences that start
with the same state and end with state y. If vy is domi-
nated by sy given an observation sequence o1:n−1 for some
n > 1, then a one step extension of state sequence vy will
be dominated by some other state sequence, given an ob-
servation sequence o1:n.

Proof. Observe that if vy is dominated by sy for an obser-
vation sequence o1:n−1, then the same holds for shorter ob-
servation sequences, e.g. ∀i ∈ {1, ..., n− 1} : o1:i, simply
following the definition of the dominance. Now, let 〈vy, x〉
be a one step extension of a state sequence vy . Since vy is
dominated by sy for observation sequences o1:i (∀i < n),
following equation (1) we get that

∀i ≤ n : P(〈vy, x〉|o1:n) ≤ P(〈sy, x〉|o1:n).

Based on the above result, similarly to [Levin et al., 2012],
we devise the algorithm that performs the search within the
space of sequences by maintaining sets of non–dominated
sequences only. The pseudo-code of the algorithm is pro-
vided in Algorithm 1 box. Each new sequence is checked
against existing non–dominated sequences (line 6). If it
appears to be non–dominated by any of those sequences, it
is added to the set on non–dominated sequences (line 7).
All sequences that are dominated by the new sequence in
this set are removed (line 8), and all one step extensions of
the new sequence will be checked by the algorithm later on
(line 9).

3.3 COMPUTING THE PROBABILITY OF A
STATE SEQUENCE

As mentioned above, performing the search within the
space of state sequences will rely on evaluation of proba-
bilities of those sequences. One approach to do so is based
on implementing the recursive relation between sequences

given in Eq. (1) using dynamic programming. Following
this route it requires O(n2k) operations to evaluate the
probability of a state sequence of length k given n obser-
vations. On the other hand, the following recursive relation
can be used to evaluate probabilities in just O(nk) opera-
tions. As previously, let sx = 〈uy, x〉 be a state sequence
that consists of a shorter state sequence uy and a last state
x.

P(sx|o1:n) =
P[o1:n−1,on | X1:n∈seqn(sx)]·P [X1:n∈seqn(sx)]

P(on | o1:n−1)·P(o1:n−1)

= P[o1:n−1 | X1:n∈seqn(sx)]·P[X1:n∈seqn(sx)]
P(o1:n−1)

· P[on | Xn = x]

P(on | o1:n−1)

= P[X1:n ∈ seqn(sx)|o1:n−1]

· px(on)

P(on|o1:n−1)
. (2)

Now, the first term in the product of Eq. (2) can be ex-
panded as follows:

P[X1:n ∈ seqn(sx) | o1:n−1]

= P[X1:n ∈ seqn(sx);Xn−1 = y | o1:n−1]

+ P[X1:n ∈ seqn(sx);Xn−1 = x | o1:n−1]

= P[X1:n−1 ∈ seqn−1(uy);Xn = x | o1:n−1]

+ P[X1:n−1 ∈ seqn(sx);Xn = x | o1:n−1]

= P(uy|o1:n−1)Ty,x + P(sx|o1:n−1)Tx,x. (3)

Combining Eq. (2) and Eq. (3) we get,

P(sx|o1:n) =
px(on)

P(on|o1:n−1)
(4)

·
[
P(uy|o1:n−1)Ty,x + P(sx|o1:n−1)Tx,x

]
.

Algorithm 1 State Sequence Analysis for HMMs
1: Initialize ∀x, y : NDx,y = ∅ - sets of non–dominated

sequences for each pair of start and end states x, y
2: Initialize Queue CheckQ = {∀x : 〈x〉,∀x, y : 〈x, y〉}
3: while CheckQ is not empty do
4: Fetch sx,y ∈ CheckQ
5: Compute ∀i : P(sx,y|o1:i)
6: if sx,y is not dominated by NDx,y then
7: Add sx,y to NDx,y

8: Remove all ux,y ∈ NDx,y s.t. sx,y �n ux,y

9: ∀z 6= y : Add 〈sx,y, z〉 to CheckQ
10: end if
11: end while
12: return argmax∀x,y:s∈NDx,y P(s|o1:n)



4 EMPIRICAL EVALUATION

4.1 SYNTHETIC EVENT-DETECTION
EXAMPLES

To demonstrate state sequence analysis, and its difference
compared to the Viterbi algorithm, consider the HMM in
Figure 1A. Trajectories begin in state S and can remain
there through self-looping or move on either to state B
or state E. State E is absorbing. When the system is in
state B it can remain there through self-looping or proceed
to state E. All states emit normal-distributed observations
with standard deviation 1. However, the mean observation
is zero in states S and E, and µB in state B. Thus, states
S and E appear the same, whereas state B may appear dif-
ferent if µB 6= 0.

At a high level, this example models event detec-
tion problems—for instance, detecting a security in-
trusion [Qiao et al., 2002], detecting specific gestures
[Dardas and Georganas, 2011], detecting molecular events
[Schreiber and Karplus, 2015], etc. Essentially, there is a
series of noisy but harmless or uninteresting events, punc-
tuated, rarely and for a short time, with relevant activity.
But that relevant activity may still be subtle to detect, de-
pending on how different it is from the background.

We simulated state-observation trajectories of 100 steps
from the HMM. Because the chance of following the self-
loop on state S is 0.95, the chance that a trajectory remains
in that state for all 100 steps is 0.9599 ≈ 0.0062. Thus,
almost all trajectories move on from the initial state, and
they do so on average after 20 steps. From S, trajectories
are equally likely to proceed toE orB, thus approximately
half of all trajectories will contain a visit to state B, and
half will not. Because the self-loop probability on state B
is 2/3, trajectories remain there on average for just three
steps before moving on to state E. Figure 1B shows ex-
ample observation trajectories that respectively do not and
do include a visit to state B with µB = 4.5. In the second
trajectory, the visit to B happens on steps 15 and 16, as
indicated by the black bar below.

We simulated 10,000 state-observation trajectories, and for
each observation series applied the Viterbi algorithm and
state sequence analysis. We “collapsed” the simulated state
trajectory into the sequence of states visited, and likewise
for the Viterbi solution. Then, we counted on how many of
the 10,000 simulations Viterbi and/or state sequence analy-
sis inferred the correct state sequence from the observation
series. Figure 1C shows the fraction of correct state se-
quence inferences for each algorithm as a function of µB .
When µB = 0, there is no information to distinguish any
of the states and so, unsurprisingly, both algorithms are
right approximately half the time. Conversely, when µB

is large, a brief visit to state B is so obvious that the se-
quence is clear, and both algorithms get nearly 100% of

state sequence correct. In between, both algorithms have
intermediate performance, but state sequence analysis is
correct a greater fraction of the time. Figure 1D reports
in greater detail the frequencies of simulated and inferred
state sequences when µB = 5. Both algorithms are cor-
rect more than 90% of the time, but state sequence analysis
demonstrates substantially fewer “false positive” detections
of state B than Viterbi does (66 versus 467), although it in-
curs a greater number of “false negatives” (inferring no B
visit when there was one, 115 versus 36).

Figure 2A shows a similar problem where more than one
event (visit to state B) can occur in a given trajectory, with
a sample observation trajectory displayed in Figure 2B with
µB = 4. Again, we ran 10,000 simulations of 100 time
steps to generate observation trajectories, and then applied
Viterbi and state sequence analysis to estimate the underly-
ing state sequences. Figure 2C shows the results. Similar
to the previous example, when µB is high, so that events
are clearly observed, both algorithms predict the number
of events correctly. However, when µB is lower, state se-
quence analysis outperforms Viterbi. Unlike the previous
example, state sequence analysis predicts correctly more
often than Viterbi even when µB = 0, so that observations
are uninformative. With uninformative observations, state
sequence analysis predicts the sequence with the highest a
priori probability, which turns out to be SBSBSBSBS.
By contrast, Viterbi computes the maximum probability
trajectory to be SS . . . S, but this corresponds to the state
sequence S, which is of much lower probability. So, even
with non-informative observations, state sequence analy-
sis “guesses” correctly a greater fraction of the time. In
part, this advantage extends to partially-informative obser-
vations. Figure 2D shows a heatmap of true numbers of
events versus predicted numbers of events by the two al-
gorithms, across our 10,000 simulations when µB = 2. In
this domain, we see that Viterbi tends to underestimate the
number of events, whereas state sequence analysis appears
much less biased.

4.2 ACTIVITY RECOGNITION DATASET

The increasing availability of various kinds of sensors al-
lows us to collect and analyze data that was previously
unthinkable. One place where sensors invade our lives is
houses and apartments. The data collected from those sen-
sors is the basis for designing various intelligent environ-
ments [Cook and Das, 2004, Augusto and Nugent, 2006]
and several healthcare applications [Abowd et al., 2002,
Suzuki et al., 2004]. In [van Kasteren et al., 2011], activ-
ity data was collected from several individuals living in an
apartment/house. The data consists of sensor readings and
activity annotations made either manually or automatically.
The sensors installed around the house report, for exam-
ple, open-close states of doors and cupboards, and pressure
measurements on the couch, while the activities might in-
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Figure 1: Demonstration of State Sequence Analysis, and
comparison with the Viterbi algorithm, on a simple detec-
tion problem. Based on a noisy time series, the problem is
to infer the underlying sequence of states, which is approx-
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contains a visit to the state B.
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clude cooking, eating, taking a shower, etc. The authors
trained several models that identify past activities given a
time series of sensor readings. Modeling the data with an
HMM and using the Viterbi algorithm to identify the activ-
ities was among the options that demonstrated competitive
recognition performance. The reported results offer a use-
ful benchmark to evaluate new methods of activity recog-
nition in this setting.

Interestingly, the current problem formulation for activity
recognition task around the house does not necessarily re-
flect the type of questions that the user is interested to find
answers to. In particular, it is easy to imagine that what
really matters to the user is the sequence of activities per-
formed in a period of time, regardless of their duration. If
an intelligent system is able to identify the activity perfectly
at each point of time, one can obtain the sequence of activ-
ities simply by collapsing repetitive activities into a single
value. Clearly, sensor readings do not always help to iden-
tify activities perfectly. As seen from the synthetic prob-
lem described earlier, when observations provide limited
information about the underlying state, collapsing repeti-
tive activities identified by the most probable state trajec-
tory (Viterbi output) is often inferior to finding the most
probable state sequence directly.

To illustrate the potential benefits of state sequence
analysis on a realistic problem, we evaluate it on
the largest out of three available datasets collected in
[van Kasteren et al., 2011]. This dataset, named House A,
contains 592 hours (nearly 25 days) of recorded activities
and sensor readings of a single individual living in a one
floor apartment. There are 14 sensors with binary out-
puts reporting different states of objects and 10 possible
activities that the person can do at any single time period
(see Table 1). A single record of activity and sensor read-
ings was recorded every minute. To compare Viterbi and
SSA approaches, 25 HMMs were trained, each on data
from different sets of 24 days. These HMMs were then
used, in combination with Viterbi or SSA, to make predic-
tions on 24 trajectories (one hour each) taken from the re-
maining single day. For more details about the dataset see
[van Kasteren et al., 2011].

As previously, we compared the performance of SSA to
the results obtained by collapsing repetitive activities in the
most probable state trajectory computed using the Viterbi
algorithm. Out of 592 sample trajectories, Viterbi and SSA
disagreed on 25 (≈ 5%) of those. Further, we measured
how well the produced state sequences match the true state
sequences using the insert-delete string comparison1. On
7 trajectories the results of Viterbi produced a better score,
while on 13 trajectories SSA performed better (for the other

1This is similar to the well known edit/Levenshtein string dis-
tance, except that the replace operation is not directly allowed.
In the context of activity recognition problems, it is better not to
report a particular activity at all then to report a wrong activity.

Activities: idle, leave house, use toilet, take shower,
brush teeth, go to bed, prepare breakfast, prepare din-
ner, get snack, get drink.

Sensors: microwave, hall-toilet door, hall-bathroom
door, cups cupboard, fridge, plates cupboard, front
door, toilet flush, freezer, pans cupboard, groceries cup-
board, hall-bedroom door.

Table 1: House A: activities and sensors.

5 the scores were equal). Although the difference might
appear not very meaningful at first glance, there are sev-
eral factors about the problem that need to be understood.
First, some sensors identify the activities rather precisely,
e.g., using toilet flush indicates that the toilet was used at
that time, or opening the front door means that the person
is leaving/coming back to the apartment. Second, most of
the true state sequences are short (see Table 2, first line).
In fact, around 75% of those contain only a single state,
the majority of which are either idling (unidentified activ-
ity), go to bed or leave house. However, hours that include
3 activities or more are much more likely to produce se-
quences of observations on which Viterbi and SSA differ
(see Table 2, second line). Considering that, it is expected
to have a small number of trajectories on which Viterbi and
SSA disagree. Among those, SSA provided a better pre-
diction on nearly twice the number of trajectories on which
Viterbi performed better. An example of a one hour trajec-
tory where SSA improves over Viterbi inference is given
in Figure 3. This is a typical example where sensor read-
ings provide only indirect information about an activity that
happens, which Viterbi algorithm fails to identify. From the
computational perspective, it took about 5 minutes to run
SSA algorithm on the entire dataset using a 3.40GHz CPU
with 16GB memory machine, and a fraction of a second to
find the most probable state trajectories (Viterbi).

To further establish the fact that SSA performs better as
compared to Viterbi algorithm on this domain, we trained
an HMM on the entire dataset and sampled a large number
of state and observation trajectories. Specifically, for each
starting state of an HMM we sampled 1000 one–hour–long
trajectories and evaluated SSA and Viterbi on this simu-
lated dataset. The results are presented in Figure 4. As
expected, depending on the initial state of the HMM, there
will be a different number of trajectories on which SSA and
Viterbi state sequences are not equal. Moreover, depend-
ing on the initial state, the general performance of SSA and
Viterbi, compared to each other, can be different. Never-
theless, in most cases SSA performed significantly better
then Viterbi. In total, Viterbi scored better on 286 trajec-
tories while SSA scored better on 494 trajectories, which
amounts to more than 70% improvement in performance.



length ≥ 1 length ≥ 2 length ≥ 3 length ≥ 4
100% (592) ≈ 25% ≈ 20% ≈ 12%
100% (25) 96% 92% 52%

Table 2: House A: the percentage of state sequences of dif-
ferent length appearing in the dataset (line 1), and those
whose Viterbi and SSA scores were different (line 2).

Figure 3: Example of a one hour trajectory of observations.
Y axis enumerates binary sensor readings, and points on
the plot identify active sensors. Note that we use the sen-
sor readings representation that continues to be active until
there is any change in other sensor readings (see more de-
tails in [van Kasteren et al., 2011]). Vertical dashed lines
on the plots show the time of true activity change. The true
underlying activity sequence is: idle, brush teeth, use toilet,
go to bed. SSA outputs the true activity sequence, whose
probability equals to 0.53. However, Viterbi’s output omits
the brush teeth activity, and the probability of resulting ac-
tivity sequence is only 0.34.

5 CONCLUSION

Inference problem in Hidden Markov Models have re-
ceived considerable attention, and several algorithms have
been used in a variety of domains to infer the be-
havior of the underlying system this HMM represents,
given a sequence of noisy observations. Typically,
these algorithms estimate different quantities involving
hidden variables (e.g., Viterbi, posterior decoder, most
probable annotation sequence, etc. [Brejová et al., 2007,
Lember and Koloydenko, 2014]) and therefore, at their
core, address different inference problems. In this work,
we point out that in a variety of domains none of these
techniques is adequate enough to answer our question of
interest, which is to find the most probable state sequence.
Naturally, the closest existing approach that can be used to
find the most probable state sequence is to find the most
probable state trajectory using the Viterbi algorithm and
collapse repetitive state visitations. However, by doing so,
the recovered state sequence is not guaranteed to be the

Figure 4: Comparison of SSA and Viterbi evaluated on
simulated trajectories from House A dataset. X axis iden-
tifies the initial state of an HMM that the trajectories were
sampled from. For each state, 1000 trajectories were sam-
pled, and the performance of SSA was compared to Viterbi.
As previously, trajectories on which the outputs of SSA
and Viterbi differ were used to measure the performance
by means of insert-delete string distance (Viterbi/SSA vs.
true state sequence). Each bar in a category represents the
number of trajectories on which the corresponding method
scored better.

most probable state sequence. Moreover, the resulting state
sequence might actually have a much lower probability of
happening compared to the most probable one, as our ex-
perimental results suggest. In fact, those discrepancies are
not surprising since, using Bayesian networks terminology,
the Viterbi algorithm for HMMs produces most probable
explanation (MPE) solution, while we are seeking to find
a MAP solution different from MPE as we ignore dwelling
time (variables) [Darwiche, 2009].

Building on earlier work where an algorithm to find the
most probable state sequence in continuous time Markov
chains was proposed [Levin et al., 2012], in this work we
developed a state sequence analysis algorithm that finds the
most probable state sequence of an HMM given a sequence
of observations. The algorithm performs a search in the
space of state sequences by evaluating those sequences and
pruning parts of the search space by carefully maintaining
a domination relationship between the sequences. We eval-
uated the algorithm on synthetic event–detection problems
first to highlight its advantages over a Viterbi–based ap-
proach. Then, we used state sequence analysis to find the
most probable sequence of activities based on a real activ-
ity recognition dataset collected from individuals perform-
ing different duties at home [van Kasteren et al., 2011]. Al-
though the Viterbi algorithm performed reasonably well on
this problem, the advantages of using state sequence anal-
ysis were nevertheless apparent.

Much remains to be done with respect to the analysis and
evaluation of our proposed approach. One of the topics that



requires further attention is the computational complexity
of the algorithm. Although we did not experience diffi-
culties running the algorithm on the problems presented in
this paper, it is still not clear whether the problem of find-
ing the most probable state sequence is polynomial or NP
hard in general. Further, in many real dynamical systems
that involve hidden variables, the model of choice is Hid-
den Semi-Markov Models (HSMM) [Yu, 2010]. It seems
rather straightforward to adapt our algorithm to HSMMs,
however experimental results are needed to verify its bene-
fits and computational cost.
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