
Complexity of the Exact Solution to the Test Sequencing Problem

Wenhao Liu
Management Science and Engineering Dept

Stanford University
Stanford, California 94305

owenliu@stanford.edu

Ross D. Shachter
Management Science and Engineering Dept

Stanford University
Stanford, California 94305

shachter@stanford.edu

Abstract

Consider a doctor choosing a treatment for an
uncertain disorder for which there are n costly
tests available. Based on the test results observed
so far, the doctor can either order another test or
proceed to the treatment decision. Although test
sequencing is a problem that arises frequently in
many decision situations, finding an exact solu-
tion is NP-hard with respect to n. In this pa-
per, we analyze the time complexity of classic
symmetric and asymmetric formulations, using
influence diagrams and decision trees, to the gen-
eral test sequencing problem, making no assump-
tions of conditional independence among the test
results. We develop an alternative influence di-
agram formulation that scales better, and show
how a decision circuit formulation improves even
more on the decision tree solution through recur-
sive coalescence. We prove that this decision cir-
cuit formulation achieves the lower bound com-
plexity for any method for the general test se-
quencing problem that examines the entire pol-
icy space. As a result, the problem is tractable
for much larger n than has been possible to date.

1 INTRODUCTION

Consider a doctor who must choose a treatment for an un-
certain disorder for which there are n costly tests available.
After each test is performed, the doctor can order another
test or proceed to the treatment decision. Therefore, the
doctor would like an optimal strategy for sequencing the
tests, taking into account the costs of the tests and all of the
test results observed so far. In this paper we examine the
computational time complexity of exact solution methods
for this problem.

The test sequencing problem is an asymmetric deci-
sion problem, where many combinations of uncertain vari-
able states given decision variables have zero probability

(Bielza and Shenoy, 1999). The problem arises frequently
in many practical decision situations and is of theoretical
interest in operations research, machine learning, and the
design of experiments. Although finding an exact solu-
tion is NP-hard with respect to the number of tests n (Pa-
padimitriou and Tsitsiklis, 1987), the complexity of stan-
dard algorithms for this problem has not been analyzed or
compared explicitly in the literature. Traditional graphical
models used to solve such problems include decision trees
(von Neumann and Morgenstern, 1944) and influence dia-
grams (Howard and Matheson, 1981; Shachter, 1986). De-
cision trees with limited coalescence (Howard, 1977; Olm-
sted, 1983) reuse some of the calculations to improve effi-
ciency. There are many other asymmetric decision model
representations, primarily designed to improve model for-
mulation, including asymmetric influence diagrams (Smith
et al., 1993), valuation networks (Shenoy, 2000), sequen-
tial decision diagrams (Covaliu and Oliver, 1995), sequen-
tial valuation networks (Demirer and Shenoy, 2006), and
unconstrained influence diagrams (Jensen and Vomlelová,
2002). See Bielza et al. (2011) for a review and comparison
of such models.

The test sequencing problem involves a decision maker
with one key high-stakes decision and a set of informa-
tion gathering activities. There has been rich and varied
research on this problem dating back to the initial work
on dynamic programming (Bellman, 1956), but due to the
complexity of the problem much subsequent work in this
area has focused on designing heuristic and approximate
solution methods. Some exact methods feature state vari-
ables representing the belief of the decision maker, instead
of maintaining all of the observations in the state, such as
in Ulu and Smith (2009). Bickel and Smith (2006) consider
a test sequencing problem in the context of oil exploration,
and advocate “recombining” decision tree models for effi-
cient computation, an example of the recursive coalescence
that we focus on in this paper. Despite all of the research in
this area, however, there had been no significant improve-
ments in computational complexity for exact solutions to
the general test sequencing problem.



Decision circuits, a generalization of decision trees,
were developed by Bhattacharjya and Shachter (2007) and
Bhattacharjya (2009) to efficiently evaluate influence di-
agrams with methods similar to arithmetic circuits for
Bayesian networks (Darwiche, 2003). Although decision
circuits share similar “tree-like” structures with decision
trees, especially decision trees with coalescence, they are
also as capable of exploiting conditional independence as
influence diagrams, and as able to decompose problems
as junction trees (Shachter and Peot, 1992; Jensen et al.,
1994).

In the next section we formally define the general test
sequencing problem, and in the following sections we for-
mulate and analyze the complexity of exact solutions us-
ing the symmetric approach of influence diagrams and the
asymmetric approaches of decision trees and decision cir-
cuits. We show that the decision circuit achieves the lower
bound complexity of any algorithm for the problem that
examines the entire policy space. We conclude with a com-
parison of the results and their implications.

2 NOTATION AND FRAMEWORK

In the general test sequencing problem, a doctor is treating
a patient who has an uncertain disorder D with b possible
states and probability distribution Pr{D}. The doctor will
choose a treatment Tx from among a alternatives in order to
maximize the expected dollar value V from the treatment.
Before making the treatment choice, there are n possible
tests available, each with at most c possible results. Al-
though we will evaluate the costs of the tests in dollars, the
costs could also arise in practice from the delay in treat-
ment or the side effects from performing the tests. At any
point in time the doctor can make the treatment decision
or order another test, knowing the results of all of the tests
that have been previously ordered. Because the choice the
doctor makes can depend on the results of those tests, the
policy space of the test sequencing problem is exponential
in the number of tests n, (c + 1)n, the number of possible
sets of observations available in the decision making pro-
cess.

Each test Tm has an associated cost Cm > 0, m =
1, . . . , n, and we assume that the time horizon is short
enough that its cost does not depend on when that partic-
ular test was performed. Therefore, the expected value of
the prospect of any scenario is the difference between the
dollar value of the treatment, E[V |Tx, T1, . . . , Tn], and the
costs of the tests ordered, C1 + · · · + Cn. Such a value
model is said to be separable, and we exploit that in our for-
mulations. We assume, without loss of generality, that the
same test will produce the same result if performed more
than once, so it would never be optimal to order the same
test twice. (A test that might be worth repeating could be
included as multiple available tests.) The test sequencing

problem is general as we impose no (conditional) inde-
pendence assumptions on the n-vector of observable test
results R conditioned on the disorder D, with probability
distribution Pr{R|D}.
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Figure 1: Influence diagram for the general test sequencing
problem with n tests

An influence diagram for the general test sequencing
problem is shown in Figure 1. There are n testing deci-
sions, T1, . . . , Tn, each with n + 1 alternatives (including
not to test), and the treatment decision, Tx. Corresponding
to each of the testing decisions Tm there is a dollar cost
Cm of testing, depending on the test chosen, and an ex-
pected dollar value V that depends on both the disorder D
and the treatment decision Tx,E[V |D,Tx]. The potentially
observable test results, R, depends onD, and the actual test
result Rm observed after testing decision Tm is therefore a
deterministic function of Tm and R,

Rm =

{
RTm if Tm 6= 0

1 if Tm = 0
for m = 1, . . . , n. (1)

Earlier observations and decisions are known at the
time of later decisions (Howard, 1977). Therefore, at the
time of decision Tm the doctor will know which tests
were ordered, T1, . . . Tm−1, and their corresponding re-
sults, R1, . . . , Rm−1. At the time of the treatment deci-
sion Tx the doctor will know all tests that were ordered,
T1, . . . , Tn, and their results, R1, . . . , Rn. These defini-
tions are summarized in Table 1. In the following sections
we will consider different approaches to the exact solution
of this problem.

3 INFLUENCE DIAGRAM SOLUTIONS

In this section we formulate an influence diagram solution
to the general test sequencing problem and a more efficient
formulation based on a Markov Decision Process (MDP)
model. This method is symmetric in the sense that the
probability distributions are full arrays and all variables are
included in the formulations of every scenario.



Symbol Definition

Tx treatment decision
a number of treatment alternatives
D uncertain disorder
b number of disorder states
V expected dollar value of the treat-

ment Tx for the disorder D
n number of tests available
R n-vector of potentially observable

test results
c maximum number of possible re-

sults for each test
Tm decision which test to order mth,

m = 1, . . . , n
Rm results of the mth test ordered
Cm cost of the mth test ordered
Sm n-vector of test results observed af-

ter m decisions

Table 1: Symbol Definitions

We can solve the influence diagram shown in Figure
1 by constructing a rooted cluster tree, as shown in Fig-
ure 2 (Shachter and Peot, 1992), similar for our purposes
to a strong junction tree (Jensen et al., 1994), and minimal
because these cliques are necessary to represent the prob-
lem (Shachter, 1999). The computational time complexity
of the solution is determined by the total of the sizes of
cluster tables, abcn + ac2n(n + 1)n, recognizing that the
number of possible states for Tx, D, R, Tm, and Rm are
a, b, cn, n+ 1, and c, respectively.

R, T1, R1, T2, R2, …, Tn, Rn, Tx

D, R, Tx

Figure 2: Rooted cluster tree for the influence diagram in
Figure 1

Theorem 1. The computational complexity of the standard
influence diagram formulation of the general test sequenc-
ing problem is O(c2n(n+ 1)n).

An influence diagram formulation based on an MDP
model, however, is more efficient than the standard influ-
ence diagram model for large n. The key is to introduce
a Markov state variable, Sm, the observed test results af-
ter m testing decisions, which renders past observations
and decisions independent of future decisions. Sm is an
n-vector, with components corresponding to the different
possible test results, but with c + 1 possible values for

each component, including a new state “0” corresponding
to the “test results not yet observed”. Therefore, letting
S0 = 0 indicate that no tests have been performed before
the first testing decision, we can define Sm for each possi-
ble j,m = 1, . . . , n as a deterministic function of Sm−1,
Tm, and R by

(Sm)j =

{
RTm

if Tm = j 6= 0
(Sm−1)j otherwise . (2)

With this definition of Sm we can formulate the influ-
ence diagram shown in Figure 3. Because of the Markov
state, the decisions T2, . . . , Tn and Tx depend only on
the corresponding state variables S1, . . . ,Sn, respectively,
rather than any of the past decisions and observations.
However, this is not yet an MDP and would not be efficient
to solve because of the role played by the uncertain poten-
tially observable test results R. Nevertheless, the definition
of Sm allows us to reformulate this influence diagram into
an MDP influence diagram without R, as shown in Figure
4, that is efficient to solve.
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Figure 3: The influence diagram of the general test se-
quencing problem with Markov states

Theorem 2. The influence diagram shown in Figure 4 is
a valid representation of the general test sequencing prob-
lem.

Proof. Given the relationships represented by the influ-
ence diagram shown in Figure 3, D is conditionally
independent of T1, . . . , Tn,S1, . . . ,Sn given R. By
the definition of Sm, R is conditionally independent
of T1, . . . , Tn,S1, . . . ,Sn−1 given Sn. Therefore, it
follows that D must be conditionally independent of
T1, . . . , Tn,S1, . . . ,Sn−1 given Sn. Likewise, by the
definition of Sm, Sm+1 is conditionally independent of
T1, . . . , Tm,S1, . . . ,Sm−1 given Sm and Tm+1 for m =
1, . . . , n− 1, as shown in Figure 4.

Even though the earlier testing decisions and their re-
sults will be known at the time of later decisions, it is suffi-
cient to observe the Markov state Sm as shown in the MDP
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Figure 4: The MDP influence diagram for the general test
sequencing problem

influence diagram (Figure 4). Therefore, we can solve it
using the rooted cluster tree shown in Figure 5. As be-
fore, the computational time complexity of the solution
is determined by the total of the sizes of cluster tables,
(n+ 1)(c+ 1)n + (n− 1)(n+ 1)(c+ 1)2n + ab(c+ 1)n,
recognizing that the number of possible states for Tx, D,
Tm, and Sm are a, b, n + 1, and (c + 1)n, respectively.
We must also account for the cost of preprocessing to
reformulate the diagram to the MDP at a complexity of
bcn(c + 1)n + (n + 1)(c + 1)2n. Although this is dom-
inated by the expression above, we include it in our final
comparisons.

T1, S1 S1, T2, S2 Sn-1, Tn, Sn Sn, D, Tx…

Figure 5: The rooted cluster tree for the MDP influence
diagram

Theorem 3. The computational complexity of the MDP in-
fluence diagram formulation of the general test sequencing
problem is O(n2(c+ 1)2n).

4 PURE DECISION TREE SOLUTION

In this section we formulate and analyze the computational
complexity of the exact solution to the general test sequenc-
ing problem using an asymmetric pure decision analysis
decision tree without coalescence, the reuse of sub-tree
calculations. Such decision trees maintain the strict tree
structure in which each node has at most one parent. De-
spite the prevalence and usefulness of decision tree models,
there has been limited evaluation of their complexity when
applied to asymmetric decision problems.

A decision tree is a natural representation for the asym-
metry in the general test sequencing problem, recognizing
that after we have observed m test results, there are only
n−m remaining tests to consider and the choice of which
test to order, if any, can depend on the test results that we
have already observed. To build a decision tree we will

need to preprocess the probability distributions for D, R,
and R1, . . . , Rn from the assessed distributions as shown
in the influence diagram in Figure 1 to the inferential order
they need to appear in the decision tree, where D and R
are not observed before any of the decisions. The compu-
tational effort to perform this pre-processing is substantial,
O(bc(c+1)n), but dominated by the work needed to evalu-
ate the decision tree. Hence, we can ignore it in our analysis
but include it in our final comparisons.

For each possible sequence of m tests and their ob-
served test results, m = 0, . . . , n, there is a decision node
in the decision tree corresponding to the choice of treat-
ment or of another test. There are

(
n
m

)
m!cm such possible

sequences in the tree.

Proposition 1. The total number of decision nodes in a
pure decision tree without coalescence is

n∑
m=0

(
n

m

)
m!cm.

...

a

b

V

n-m

c

C1 Cm

+

... ...

......

Figure 6: A generic decision node in the pure decision tree
without coalescence, with m observed test results

The computational time complexity of the decision
tree solution is determined by the number of arcs (or nodes)
in the tree. Figure 6 shows a generic decision node within
the decision tree whose ancestors include exactly m tests
and their corresponding test results. There are a + n −m
alternatives, corresponding to choosing from one of the re-
maining n −m tests or choosing to stop testing and make
the treatment decision. For each of the test alternatives
there are c possible test results, each leading to a different
decision node in the tree, and for each of the a treatment
alternatives there are b possible disorder states. There-
fore, for each of the decision nodes in the tree there are



a+ ab+ (n−m)c arcs in the tree, and the total number of
arcs is given by

n∑
m=0

(
n

m

)
m!cm[(a+ ab) + (n−m)c]

= (a+ ab)

n∑
m=0

n!

(n−m)!
cm +

n∑
m=0

n!

(n−m− 1)!
cm+1

= (a+ ab)cnn!

n∑
m=0

c−m

m!
+ cnn!

n−1∑
m=0

c−m

m!

≈ (a+ ab)cnn!e1/c + cnn!e1/c

= (a+ ab+ 1)cnn!e1/c = O(cnn!)

Theorem 4. The computational complexity of the decision
tree formulation with no coalescence of the general test se-
quencing problem is O(cnn!).

We will see in the next section that we can improve
on the efficiency of the influence diagram and decision tree
by allowing recursive coalescence, reusing subtree calcula-
tions as much as possible. Coalescence has traditionally
been applied with decision trees in a limited fashion, at
most once for any path in the tree (Howard, 1977; Olm-
sted, 1983), but we will apply it much more extensively in
a generalization of decision trees called decision circuits.

5 DECISION CIRCUIT SOLUTION

In this section we formulate a decision circuit solution
to the general test sequencing problem and show that it
achieves the lower bound complexity of any algorithm for
the problem that examines the entire policy space. Al-
though this solution can be viewed as an extension of the
pure decision tree solution with recursive coalescence, the
decision circuit naturally integrates such coalescence and,
unlike decision trees, does not need the distributions to be
preprocessed.

5.1 INTRODUCTION TO DECISION CIRCUITS

Decision circuits are generalized decision trees that main-
tain their asymmetry while exploiting any conditional in-
dependence. They were developed by Bhattacharjya and
Shachter (2007) and Bhattacharjya (2009) to efficiently
evaluate influence diagrams with methods similar to arith-
metic circuits for Bayesian networks (Darwiche, 2003). A
decision problem represented by an influence diagram, or
an intermediate structure, a decision circuit backbone, can
be transformed into a decision circuit for efficient eval-
uation and sensitivity analysis (Shachter and Bhattachar-
jya, 2010; Bhattacharjya and Shachter, 2008, 2010). Al-
though decision circuits were not developed as a repre-

sentation for communication, Bhattacharjya and Shachter
(2012) showed how formulating asymmetric decision cir-
cuits directly, instead of formulating an influence diagram
and transforming it into a decision circuit, could be desir-
able in many applications. They also showed how to build
decision circuits in assessed form, avoiding the probabil-
ity distribution preprocessing effort (Bayes Theorem “tree
flipping”) needed for decision trees.

Decision circuits generalize decision trees in several
key ways. Both decision circuits and decision trees are nat-
ural representations for asymmetric problems. Extensive,
even recursive, coalescence is encouraged in the decision
circuit, by allowing nodes to have multiple parents. Be-
cause the expectation operation for an uncertain variable
in decision trees is represented as separate sum and prod-
uct operations in the decision circuit, the probability dis-
tribution corresponding to the variable can appear further
downstream (Shenoy, 1998). As a result, probability distri-
butions can be incorporated into the decision circuit as as-
sessed and there is no need for preprocessing the assessed
distributions. Decision circuits are also able to exploit sep-
arable problem structure as found in influence diagrams
and junction trees (Tatman and Shachter, 1990; Shachter
and Peot, 1992; Jensen et al., 1994). Finally, once the prob-
ability and value distributions are specified the decision cir-
cuit can be compiled for even greater efficiency.

5.2 DECISION CIRUIT FORMULATION

An example of our decision circuit formulation is shown
in Figure 7 for the general test sequencing problem with
a = b = c = n = 2, that is, there are two treatment al-
ternatives, two disorder states, and two tests available with
two test results each. Decision circuits can have “indicator
variables” λ to control and manage evidence and sensitivity
analysis, but we have omitted them to simplify the diagram.
Including the indicators would not significantly affect the
computational complexity for the test sequencing problem.

At the leaves of the decision circuit shown in Fig-
ure 7 are the expected dollar values for each prospect
E[V |D,Tx], the costs C for each type of test, the proba-
bilities Pr{D}, and the likelihoods Pr{R|D}. The sepa-
rable costs are incorporated using branching sum (“B+”)
nodes (Shachter and Bhattacharjya, 2010). The quantities
at the leaves are combined and reused throughout the cir-
cuit both as probabilities and as unnormalized probability-
value hybrids for decision making. For example, we can
marginalize for the case where some of the tests are not
performed. The decision circuit is evaluated by sweeping
up from the leaves to the root and, in the process, making
all of the decisions at max nodes and determining the op-
timal expected value (Darwiche, 2003; Bhattacharjya and
Shachter, 2007). A sweep down through the circuit com-
putes derivatives of the optimal value with respect to any
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Figure 7: The decision circuit for general test sequencing involving two treatment alternatives, two disorder states, and two
tests with two test results each

of the nodes and assessed parameters for use in sensitivity
analysis (Bhattacharjya and Shachter, 2008, 2010). There-
fore, we can compute the computational time complexity
of a decision circuit by counting the number of arcs.

The coalescence in the decision circuit allows us to
exploit essential properties of the general test sequencing
problem. For example, when the results from m tests have
been observed, the order those tests were performed does
not matter (Jaynes, 2003; Bickel and Smith, 2006). In our
decision circuit those m! different test sequences (corre-
sponding to m equivalent observed test results) all lead
to the same decision (max) node for the selection of an
(m+1)st test or to make the treatment decision. The struc-
ture of our circuit relies on the fact that the same choice will
be optimal regardless what order the observed tests were
performed, similar to the Markov state in our MDP for-
mulation or an “information set” in game theory (Shenoy,
1998).

5.3 THE COMPLEXITY OF THE DECISION
CIRCUIT FORMULATION

In our decision circuit formulation, for each possible set
of m tests and their observed test results, m = 0, . . . , n,
there is a decision node in the decision tree corresponding
to the choice of treatment or another test. There are

(
n
m

)
cm

such possible sets in the circuit. Note that, by contrast,
in the decision tree there was a distinction about the order
of the tests, increasing the number of decision nodes by a
factor ofm!. The binomial theorem provides a closed-form
expression for the number of decision nodes in the decision
circuit.
Proposition 2. The total number of decision nodes in the
decision circuit is

n∑
m=0

(
n

m

)
cm = (c+ 1)n.

The number of arcs in the decision circuit determines
the computational time complexity for the circuit. Figure
8 shows a generic decision node within the decision cir-
cuit whose ancestors include exactly m tests and their cor-



responding test results. There are m arcs into the node,
corresponding to the m different tests that could have been
observed last. There are a+n−m alternatives, correspond-
ing to choosing from one of the remaining n −m tests or
choosing to stop testing and make the treatment decision.
For each of the a treatment alternatives and b possible dis-
order states we marginalize over c possible test results (ex-
cept when m is either 0 or n) to compute the probabilities
and probability-value hybrids of the disease and observed
test results from those used by decisions withm+1 test re-
sults. For each of the n−m test alternatives there are three
arcs into or out of the branching sum node used to regis-
ter the separable cost of the test, followed by c test results,
each leading to a different decision node in the circuit, and
counted as incoming arcs for those nodes. Therefore, for
each of the decision nodes in the circuit there are less than
m+ (a+ab+abc) + 3(n−m) arcs in the decision circuit.
We will compute the complexity from each of these three
terms separately.

max

+

+
Ct(T)

m

a
n-m

b
+

c

B+

Figure 8: A generic decision node in the decision circuit
with m observed test results

The first term corresponds to the m arcs directed into
the decision node. The total for all decision nodes is

n∑
m=0

(
n

m

)
mcm =

n∑
m=1

(
n

m

)
mcm

=

n∑
m=1

n!

(m− 1)!(n−m)!
cm

=nc

n∑
m=1

(n− 1)!

(m− 1)!(n−m)!
cm−1

=nc(c+ 1)n−1.

(3)

The second term is the less than abc arcs correspond-
ing to the treatment alternatives. The total for all decision

nodes is less than

(a+ ab+ abc)

n∑
m=0

(
n

m

)
cm =(a+ ab+ abc)(c+ 1)n.

(4)

The third term is the 3(n −m) arcs corresponding to
the next tests and the arcs needed to register the cost of the
test. The total for all decision nodes is

3

n−1∑
m=0

(
n

m

)
(n−m)cm =3

n−1∑
m=0

n!

m!(n−m)!
(n−m)cm

=3n

n−1∑
m=0

(n− 1)!

m!(n− 1−m)!
cm

=3n(c+ 1)n−1.
(5)

Finally, including the 2ab(cn + 1) arcs at the bot-
tom of the decision circuit that incorporate the E[V |D,Tx],
Pr{D}, and Pr{R|D} tables, the total number of arcs is less
than

2ab(cn +1)+n(c+3)(c+1)n−1 +(a+ab+abc)(c+1)n,

and we have shown the following result.

Theorem 5. The computational complexity of the decision
circuit formulation of the general test sequencing problem
is O(n(c+ 1)n−1).

In general the test sequencing problem can have an
arbitrary optimal policy for any of the (c + 1)n possible
sets of observations. Given m tests have been performed
and any of the cm possible test results, the corresponding
policy is determined by comparing the net expected values
among the remaining n−m tests that could be performed.
The number of such comparisons is

∑n−1
m=0

(
n
m

)
(n−m)cm,

similar to Equation 5, and this provides a lower bound on
the complexity of any algorithm for the general problem
that examines the entire policy space, O(n(c+1)n−1). Be-
cause the decision circuit formulation achieves this bound,
the bound must be tight.

Theorem 6. Any algorithm for the general test sequencing
problem that examines the entire policy space of test re-
sults must have time complexity with lower bound Ω(n(c+
1)n−1), as achieved by the decision circuit formulation.

We compare the computational complexity of the four
models with the parameters a = b = c set to 2 and 3. The
results as a function of the number of tests available, n, are
displayed in Table 2, and the logs of the complexities are
shown in Figure 9 for a = b = c = 2. The plots would
appear similar, but with greater slopes, if we increased the
values of the parameters a, b, and/or c.
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Figure 9: Log of the computational complexity of different formulations with model parameters a = b = c = 2

State Space Formulation 5 Tests 10 Tests 15 Tests 20 Tests 25 Tests

a = b = c = 2

Decision Tree without Coalescence 4.43× 104 4.29× 1010 4.95× 1017 2.94× 1025 6.00× 1033

Standard Influence Diagram 1.59× 107 5.44× 1016 2.48× 1027 6.12× 1038 5.33× 1050

MDP Influence Diagram 1.79× 106 3.84× 1011 4.94× 1016 5.11× 1021 4.67× 1026

Decision Circuit 5.69× 103 1.82× 106 5.60× 108 1.65× 1011 4.72× 1013

a = b = c = 3

Decision Tree without Coalescence 5.29× 105 3.89× 1012 3.40× 1020 1.54× 1029 2.38× 1038

Standard Influence Diagram 1.38× 109 2.71× 1020 7.12× 1032 1.01× 1046 5.10× 1059

MDP Influence Diagram 3.22× 107 1.21× 1014 2.77× 1020 5.08× 1026 8.24× 1032

Decision Circuit 5.20× 104 5.77× 107 6.63× 1010 7.59× 1013 8.61× 1016

Table 2: Computational complexity of different formulations with model parameters a = b = c

6 CONCLUSIONS

The general test sequencing problem has been known to be
NP-hard with respect to the number of tests available, so
most past research efforts have searched for approximate
solution methods, heuristics, simulations, and simplifying
assumptions.

In this paper, we develop a decision circuit formula-
tion for the general test sequencing problem that solves the
problem exactly without imposing any additional assump-
tions. We analyze its computational complexity and com-
pare it with other frequently used sequential decision mak-
ing models, pure decision trees and influence diagrams, and
we develop a more efficient influence diagram model based
on an MDP. In our comparison, the decision circuit model
significantly outperforms the others. In fact, it achieves

the lower bound on the computational complexity for any
method for the general test sequencing problem that exam-
ines the entire policy space.

We could have obtained this same order of compu-
tational complexity by implementing decision trees with
recursive coalescence. To construct such decision trees
would have required explicit preprocessing of the assessed
distributions, which is more efficiently done implicitly
within our decision circuit formulation. It would also have
used coalescence in a recursive manner natural in decision
circuits but not common for decision trees.

In a similar fashion, we could have obtained a more
efficient MDP formulation by recognizing the structural
asymmetry in the problem. Because we observe at most
one test result in each time period we could prune from



the state space those paths with more observations. This
would improve the run-time computational complexity of
the MDP and lead to a problem structure quite similar to
the decision circuit.

Another advantage of using decision circuits is the effi-
cient sensitivity analysis available on the assessed problem
parameters, the probabilities and costs. The decision circuit
formulation developed here allows us to solve the general
test sequencing problem exactly for much larger values of
n than has been possible before.

Information gathering decisions are strategic compo-
nents in many decision problems in medicine, engineer-
ing, and other domains where they can significantly im-
prove performance (Bickel and Smith, 2006). This paper
has focused on the general test sequencing problem, with
no assumptions, such as probabilistic independence. We
realize that this is a specific class of problems, but we have
used its structure to analyze and compare different exact
techniques, and to demonstrate that a relatively new ap-
proach, decision circuits, allows us to achieve the com-
plexity lower bound. This suggests that well-crafted de-
cision circuits might perform relatively well on more gen-
eral problems, such as troubleshooting, where observations
and actions are interspersed and actions affect both the state
of the system and future observations (Breese and Hecker-
man, 1996).
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