
Locally Conditioned Belief Propagation

Thomas Geier and Felix Richter and Susanne Biundo
Institute of Artificial Intelligence

Ulm University, Germany
{thomas.geier, felix.richter, susanne.biundo}@uni-ulm.de

Abstract

Conditioned Belief Propagation (CBP) is an al-
gorithm for approximate inference in probabilis-
tic graphical models. It works by conditioning
on a subset of variables and solving the remain-
der using loopy Belief Propagation. Unfortu-
nately, CBP’s runtime scales exponentially in the
number of conditioned variables. Locally Condi-
tioned Belief Propagation (LCBP) approximates
the results of CBP by treating conditions locally,
and in this way avoids the exponential blow-up.
We formulate LCBP as a variational optimization
problem and derive a set of update equations that
can be used to solve it. We show empirically that
LCBP delivers results that are close to those ob-
tained from CBP, while the computational cost
scales favorably with problem size.

1 INTRODUCTION

Modern SAT solvers are capable of solving problem in-
stances with hundreds of thousands of variables (Katebi
et al., 2011), despite the fact that SAT is an NP-hard
problem. Most of today’s practical solvers are CDCL
(conflict-driven, clause-learning) solvers (Marques-Silva
et al., 2009). Their main algorithmic components are
branching, unit propagation, and clause learning (Katebi
et al., 2011). Generalizing these concepts, we could talk of
branching as analysis by cases, unit propagation as infer-
ence within a single case (both already found in the clas-
sic DPLL algorithm (Davis et al., 1962)), and clause learn-
ing (Silva and Sakallah, 1996) as reusing inference results
across cases.

The #P-hard (Roth, 1996) problem of computing marginal
probabilities (or the partition function) in discrete-valued
graphical models is closely related to #SAT—the task of
counting the models of a propositional formula. Proba-
bilistic inference generalizes the boolean conjunction of

clauses to a product over local real-valued functions. The
#SAT problem is usually tackled using modified CDCL
solvers (Bayardo Jr and Pehoushek, 2000; Sang et al.,
2004; Huang and Darwiche, 2005). Both for probabilistic
inference and #SAT, it is not enough to find one satisfy-
ing case, but one has to take into consideration all cases.
But while SAT problems are usually sparse, probabilistic
problems can often be strictly positive. It is thus not very
surprising that the basic probabilistic inference algorithms
do not employ analysis by cases, but rely on inference by
propagation only: Variable elimination (Koller and Fried-
man, 2009, Chapter 9), the Junction tree method (Shenoy
and Shafer, 1990), loopy Belief Propagation (Pearl, 1986),
and more generally the class of algorithms with varia-
tional interpretations (Wainwright and Jordan, 2008) can
be counted towards this class.

But there are also algorithms that complement propaga-
tion with an analysis by cases, such as the exact Recur-
sive Conditioning (Darwiche, 2001) and Value Elimina-
tion (Bacchus et al., 2002). Also there exist approximate
instances: Cutset Sampling (Bidyuk and Dechter, 2007),
SampleSearch (Gogate and Dechter, 2011), Conditioned
Belief Propagation (Eaton and Ghahramani, 2009) and col-
lapsed sampling algorithms in general, just to name a few.
These approaches appear to have an advantage when the
problem encodes a distribution that is not strictly positive,
i.e., factors can evaluate to zero (we call these factors deter-
ministic dependencies). Under the presence of determinis-
tic dependencies, analysis by cases is able to reveal context-
specific independencies, and prune the search space with-
out incurring an approximation error.

The third algorithmic component in SAT solvers is reusing
results across cases. Notably both named exact algorithms
heavily rely on this concept under the name of caching. Of
the named approximate inference algorithms that employ
analysis by cases, only the importance sampler Sample-
Search shares work across cases, and only for determin-
istic dependencies, by using no-good learning (Dechter,
1990). Conditioned Belief Propagation (CBP) (Eaton and
Ghahramani, 2009; Geier et al., 2014a) is the straight-

x3

refined context:
x7 = 1, x3 = 0

¬x3

x7 ¬x7

x3

x1 ¬x1

¬x3

x7 ¬x7

iteration 3 iteration 4

conditioned variable: x1

Figure 1: Iterative CBP (Geier et al., 2014a) is a divide-
and-conquer algorithm that splits the problem by recur-
sive conditioning. The state of the algorithm is defined
by a tree, where edges represent assignments to variables,
and nodes represent the partial assignment defined by their
path from the root (or the sub-problem obtained by condi-
tioning on this assignment). In each iteration a leaf node
(case, context) is chosen and further refined by splitting on
an unassigned variable. An approximation to the partition
function is obtained by summing the partition function es-
timates found by BP on each leaf. Marginal probabilities
can be obtained by forming a convex combination of the
corresponding estimates for the leafs, using their estimated
partition functions as weights.

forward combination of systematic analysis by cases (con-
ditioning) with loopy Belief Propagation (BP) as approx-
imate inference within each case. It works by recursively
splitting on the assignments to single variables, producing
an unbalanced and dynamically ordered tree in the pro-
cess (Figure 1). This appears to be a fertile combination,
as BP yields good results in weakly coupled (high entropy)
models and suffers under the presence of strong depen-
dencies (Montanari and Rizzo, 2005; Mooij and Kappen,
2007). Contrarily, conditioning provides benefits for low
entropy models with strong dependencies, but fails when
the probability mass is spread out evenly over a large num-
ber of similar conditions. As shown empirically by Geier
et al. (2014b), CBP is indeed able to deliver good improve-
ments over plain BP in particular for low entropy distribu-
tions (Figure 2). But the same work also highlights one ma-
jor shortcoming of CBP: To sustain the same proportional
improvement, the number of cases CBP has to evaluate in-
creases exponentially with problem size (Figure 2).

In this essay we describe a method to improve the CBP al-
gorithm in such a way that work between cases is shared
approximately—thus adding the third algorithmic compo-
nent found in modern SAT solvers. The basic idea focuses
on the observation that the influence of conditioning on
variables usually diminishes with graphical distance. We
underpin this assumption empirically by visualizing the ef-
fect of conditioning a single variable in randomly generated
grid problems in Figure 3. We exploit this “locality of ef-

Relative Error CBP Error CBP / Error BP

2e−05

5e−05

1e−04

2e−04

1 8 64
Iteration

0.02

0.05

0.10

0.20

0.50

0 1 2 3
σ

Figure 2: The plots show the typical behavior of iterative
CBP on random binary-valued 8×8 grid problems (Geier
et al., 2014b). The left plot shows the relative error in
lnZ (median over 500 problems, factor values sampled
from exp(N (0, σ)) with σ = 1), which improves only log-
arithmically with the number of distinguished cases (Iter-
ations). The right plot shows the CBP error after 64 itera-
tions as a fraction of the BP error for problems with varying
strength of interaction (higher σ corresponds to stronger in-
teractions, σ = 0 excluded, median over 250 problems).
The approximation error of CBP compared to the error of
BP consistently decreases with stronger dependencies.

fect” assumption in the proposed Locally Conditioned Be-
lief Propagation (LCBP) model. LCBP conceptually works
by merging nodes of the BP graph between different cases
of CBP, thus effectively sharing message values. An intu-
ition of the difference between CBP and LCBP is conveyed
by Figure 4.

2 PRELIMINARIES

We focus on undirected graphical models over n random
variables X1, X2, . . . , Xn, referring to the set of all vari-
ables as X . Each variable Xi ∈ X may assume values out
of its finite domain Dom(Xi). A problem is given by a fi-
nite set Φ of non-negative local functions (factors). Each
function φa ∈ Φ is defined over the valuations Val(Xa)
(assignments of values to variables) for a subset Xa ⊆ X
of variables. The (unnormalized) product over all factors is
p̃(x) =

∏
a φa(xa), and it implies a proper distribution by

p(x) =
1

Z
p̃(x) with Z =

∑
x

p̃(x). (1)

The normalizing constant Z is called the partition function.

2.1 BELIEF PROPAGATION AS OPTIMIZATION

Given a factorized distribution p, the basic problem of
probabilistic inference is to compute some property of
it. These properties are usually expectations, marginal
probabilities, the partition function, or most probable

0.1 0.5 1.0

0

5

10

15

0 5 10 15 0 5 10 15 0 5 10 15

1e−17 1e−12 1e−07 1e−02
Difference

Figure 3: Comparison between two runs of BP on a 16×16
grid problem of binary-valued variables. The color encodes
the difference of the marginal probabilities after condition-
ing the variable in the lower left (median over 100 random
instances). Factor values are drawn from an exponentiated
normal distribution exp(N (0, σ)) with standard deviation
σ ∈ {0.1, 0.5, 1}. Gray means the difference is lower than
than numerical accuracy. One can see that the effect of the
conditioning is local to the conditioned variable. The range
of the effect increases with stronger potentials.

assignments—and their exact computation is often in-
tractable (Roth, 1996). Variational inference (Wainwright
and Jordan, 2008) is a form of approximate inference that
works by substituting p by some element q from a class
of (pseudo-) distributions Q, on the members of which
inference is tractable. The instance q is chosen to be as
close to p as possible. The notion of closeness is captured
by some distance measure, which is often taken to be the
Kullback-Leibler divergence—though other measures are
possible (Minka, 2005).

From the KL-divergence between q and p one can obtain

lnZ = Eq[ln p̃] + H(q) + KL(q ‖ p). (2)

Here, H(q) denotes the entropy of q, and Eq[f(x)] denotes
the expectation of f(x) taken with respect to the measure
q. From Equation 2 we identify the functional F (q), known
as the negative free energy:

F (q) = Eq[ln p̃] + H(q) (3)

It yields the exact log-partition function if q = p, and can
serve as a lower bound to Z if the class Q contains only
valid distributions. The task in variational inference is to
find a q∗ that maximizes F . In general, either because there
exists no exact representation of p in Q, because the class
Q also contains non-distribution functions, or because we
cannot solve the optimization problem perfectly, the found
value of F (q) can only serve as an approximation for lnZ.
In addition, for many interesting classes Q, the functional
cannot be given in closed form and one has to resort to
further approximations.

We briefly summarize how to express the BP algorithm as

CBP

LCBP

Figure 4: The upper row represents how CBP works by
making full copies of the problem for each case. The lower
row shows how LCBP only makes copies of the nodes that
are local to the conditioned variable.

a variational optimization problem. A more detailed expo-
sition can be found in Yedidia et al. (2005) and Koller and
Friedman (2009, Chapter 11). For deriving the BP message
update equations using the variational approach, members
q of classQBP are defined by marginal distributions qi(Xi)
over the variables (called variable beliefs), and marginal
distributions qa(Xa) over the factors in Φ (called factor be-
liefs):

q(x) =
∏
a

qa(xa)
∏
i

qi(xi)
(1−di) (4)

Here, di = |{φa ∈ Φ|Xi ∈ Xa}| represents the number of
factors that depend on variable Xi. In addition to being
proper probability measures (sum to one, non-negative),
the variable and factor beliefs have to be consistent with
respect to their marginal probabilities. This is formalized
by requiring for all factors φa, adjacent variablesXi ∈ Xa,
and values xi ∈ Val(Xi):∑

xa|=xi

qa(xa) = qi(xi) (5)

Note that we write xa |= xi for all the (partial) assignment
xa ∈ Val(Xa) that are an extension of xi. A further in-
gredient in the variational derivation of standard BP exists
in an approximation to the entropy, known as the Bethe-
Peierls (also BP) approximation and given by

HBP(q) =
∑
a

H(qa) +
∑
i

(1− di)H(qi). (6)

A justification for HBP is usually given by the fact that it is
exact for tree-structured problems. The BP approximation
together with the assumption that the functions qa resemble
marginal distributions of q over the variables in Xa yields
the functional

FBP(q) =
∑
a

Eqa [lnφa] + HBP(q). (7)

Optimizing FBP(q) under the given constraints using the
method of Lagrange multipliers yields the update equations

of the BP algorithm. Loosely speaking, the Lagrange mul-
tipliers assume the role of messages between variables and
factors (mi→a(xi) and ma→i(xi)), each encoding a dis-
tribution over the respective variable Xi. With abuse of
notation, writing i ∈ Xa instead of Xi ∈ Xa, the update
equations are

mi→a(xi) ∝
∏

b:i∈Xb,b 6=a

mb→i(xi), (8)

ma→i(xi) ∝
∑

xa|=xi

φa(xa)
∏

j∈Xa,j 6=i

mj→a(xj). (9)

The BP algorithm recomputes the message values accord-
ing to those equations until convergence (which is not guar-
anteed). The variable beliefs can then be computed by
bi(xi) =

∏
a:i∈Xa

ma→i(xi), and factor beliefs are given
by ba(xa) = φa(xa)

∏
i∈Xa

mi→a(xi).

3 VARIATIONAL CBP

Before introducing the LCBP model, we want to interpret
CBP in a variational way as a mixture model. For this we
reduce the iterative CBP algorithm (Figure 1) to the BP in-
ference on the induced partitioning into cases (the leafs of
the tree), and ignore the way in which the partition was ob-
tained. We call this non-iterative interpretation variational
CBP, and use the term iterative CBP when we want to em-
phasize the recursive conditioning aspect. In variational
CBP, we are given a set of partial assignments/conditions
C whose extensions partition the set of all assignments
Val(X). The set C corresponds to the leafs of a tree pro-
duced when running iterative CBP. A member q of class
QCBP is then defined by

q(x) =
∑
c∈C

qC(c)
∏
a

qca(xa)
∏
i

qci (xi)
1−di . (10)

It can be interpreted as a mixture of BP approximations,
where qC(c) encodes the mixture weight. The necessary
constraints are the BP constraints for each set of beliefs
qca, q

c
i . The weight vector qC : C → [0, 1] is required to

be a proper distribution (non-negative, sum to one). And in
addition to the BP constraints, we require qci (xi) = 1 for
c |= xi to enforce the conditions within the mixture com-
ponents. As a result of this constraint, the mixture com-
ponents have mutually exclusive support. By defining an
appropriate energy functional, and solving the variational
problem forQCBP, one finds that a solution can be found by
solving the BP variational problem for each mixture com-
ponent independently.

The computational cost of CBP is about linear in the num-
ber of conditions, as each condition implies one run of the
BP algorithm. Let us assume that the number of condi-
tioned variables has to attain a certain ratio of the total num-
ber of variables for CBP to be able to produce a good ap-
proximation. This implies that the number of distinguished

conditions |C| (and thus inference cost) grows exponen-
tially with problem size when sustaining good approxima-
tion quality.

4 LCBP

LCBP is designed with the goal that its computational cost
scales sub-exponentially in the number of (fully) condi-
tioned variables. This means, we want to approximate vari-
ational CBP for an exponentially large set C, and have the
computational cost scaling only polynomially with ln |C|.
To achieve this we have to overcome two obstacles. The
first one is getting rid of the exponential number of pa-
rameters qca, q

c
i present in the variational CBP approxima-

tion. Under the assumptions that BP messages do not differ
much when far away from a disturbance (Figure 3), we can
substitute some qc1a by qc2a in equation 10 given that fac-
tor φa is far enough from all variables where conditions
c1 and c2 differ. The second problem is representing the
weight distribution qC . As we will observe in the sequel,
this problem will be solved by representing qC in factored
form, necessitating probabilistic inference over the condi-
tion variables.

4.1 CONDITIONING SCHEME

To formalize which local functions qca, q
c
i can be shared

between conditions, we introduce a concept termed con-
ditioning scheme. We focus on a particular form of con-
ditioning scheme that we call factored, local scheme (FL-
scheme). FL-schemes are not powerful enough to capture
all aspects of iterative CBP, i.e., they emulate only bal-
anced and statically ordered search trees. But their sim-
ple structure allows a formal derivation of the LCBP al-
gorithm, while they are expressive enough to capture the
essential improvement LCBP offers over CBP. For a dis-
cussion on lifting the restrictions implied by FL-schemes
see Section 6.1.

An FL-scheme S : X → 2X assigns a set of conditioning
variables (conditioners) to each variable in X . The idea is
that, locally at a variableXi, we have a copy of the BP mes-
sages and beliefs for each assignment to the conditioners
S(Xi) of Xi. We use the notations Si = S(Xi) and Sa =⋃

i∈Xa
S(Xi) for the set of variable conditioners and fac-

tor conditioners respectively. We writeC =
⋃

Xi∈X S(Xi)
for the set of all conditioners. Given some variable Xc, we
call the set {Xi | Xc ∈ Si} the area of influence of con-
ditioner Xc or the set of Xc’s conditionees. For the lower
right example in Figure 4, we have C = {X}. The three
variables aroundX , andX itself are the conditionees ofX .
They have only X as their conditioner, and thus are repli-
cated for each possible value of X (0 and 1). The variable
at the left-most corner is not conditioned, and thus has an
empty set assigned by the scheme. Note that an FL-scheme
only tells how to split variables and the associated variable

beliefs. Factor beliefs are split by assignments to the union
of the conditioners of the variables in their scope Sa. They
are thus always split in a more fine-grained way than the
adjacent variables.

4.2 APPROXIMATING CLASS QLCBP

Given an FL-scheme S for a problem Φ, we define a
pseudo distribution q from class QLCBP. The parameters
are the variable beliefs qcii and factor beliefs qcaa known
from BP, but now each in multiple versions for each local
variable condition ci ∈ Val(Si) or local factor condition
ca ∈ Val(Sa). In addition we require a normalized proba-
bility measure qC : Val(C) → [0, 1] over all possible con-
ditions. Until the end of this section we assume that qC is
represented as a flat (unstructured) function. Writing x[A]
for restricting the assignment x ∈ Val(X) to the variables
in A ⊆ X , we define one mixture component qc as

qc(x) =
∏
a

qc[Sa]
a (xa)

∏
i

(
q
c[Si]
i (xi)

)1−di

. (11)

We define the pseudo distribution for the LCBP model as

q(x) =
∑

c∈Val(C)

qC(c)qc(x). (12)

To enforce that q is close to a probabilistic measure, we
formulate a set of constraints on its parameters. Non-
negativity constraints are assumed implicitly.

The normalization of the conditioning distribution:∑
c

qC(c) = 1 (13)

The normalization of factor beliefs for all φa ∈ Φ, ca ∈
Val(Sa): ∑

xa

qcaa (xa) = 1 (14)

The normalization of variable beliefs for all Xi ∈ X , ci ∈
Val(Si): ∑

xi

qcii (xi) = 1 (15)

The marginal consistency constraints for all φa ∈ Φ, Xi ∈
Xa, ci ∈ Val(Si), xi ∈ Val(Xi):∑

ca|=ci

qC(ca|ci)
∑

xa|=xi

qcaa (xa) = qcii (xi) (16)

We enforce the condition for all Xi ∈ C, ci ∈ Val(Si):

qcii (xi) = 1 (17)

Equation 16 is the LCBP version of the marginal consis-
tency constraints of the BP approximation. It formalizes
the way in which beliefs are merged between conditions by
taking the expectation with respect to the distribution over
conditions qC .

4.3 FREE ENERGY APPROXIMATION

We are now going to derive a set of fixed-point equations
that can be used to implement a message passing algorithm.
By partitioning the set of variables into conditioners and the
rest C̄ = X \C, applying the identity H(C, C̄) = H(C) +
H(C̄|C) for the conditioned entropy, and using the Bethe-
Peierls approximation (6), we obtain

HLCBP(q) = H(qC) + EqC [HBP(qc)]. (18)

Under the assumption that the conditioned factor beliefs qca
are truly the marginals of q over Xa under given condition
c, we can write the energy functional for LCBP as

FLCBP(q) =
∑
a

∑
ca

qC(ca)
∑
xa

qcaa (xa) lnφa(xa)

+ HLCBP(q).

(19)

4.4 UPDATE EQUATIONS

Optimizing (19) under the constraints (13) to (17) using the
method of Lagrange multipliers lets us derive the message
update rules1. The update equations work on these addi-
tional entities:

1. mci
i→a(xi) is a message from variable i to factor a

under variable condition ci ∈ Val(Si).

2. mci
a→i(xi) is a message from factor a to variable i

under variable condition ci ∈ Val(Si).

3. ncaa→i(xi) is a message from factor a to variable i
under factor condition ca ∈ Val(Sa).

We use the artificial factor ρcii (xi) = 1 [ci[Xi] = xi] to
enforce condition (17) on the variable beliefs2. The update
equations are as following:

mci
i→a(xi) ∝ ρcii (xi)

∏
b:i∈Xb,b 6=a

mci
b→i(xi) (20)

mci
a→i(xi) ∝

∑
ca|=ci

qC(ca|ci) · ncai→a(xi) (21)

ncaa→i(xa) ∝
∑

xa|=xi

φa(xa)
∏

j∈Xa,j 6=i

m
ca[Sj]
j→a (xj) (22)

The variable and factor beliefs are computed from the mes-
sages via the following formulas:

qcaa (xa) ∝ φa(xa)
∏
i∈Xa

mci
i→a(xi) (23)

qcii (xi) ∝ ρcii (xi)
∏

a:i∈Xa

mci
a→i(xi) (24)

1A more detailed derivation of the update equations is pro-
vided in the appendix available in the supplied materials.

21 [A] represents the indicator function that yields 1 when the
condition A is true and 0 otherwise.

And the update equation for the condition distribution is

qC(c) ∝ exp [FBP(qc)]
∏
a

∏
i∈Xa

∏
xi

δcaai (xi), (25)

with

δcaai (xi) = mci
i→a(xi)

m
ci
i→a(xi)(n

ca
a→i(xi)−m

ci
a→i(xi)). (26)

The fact that the stated update equations are suited to op-
timize the formulated variational problem is formalized by
the following theorem.

Theorem 1. The interior stationary points of the varia-
tional problem specified by maximizing the LCBP func-
tional (19) under the given constraints (13) through (17)
are exactly the fixed points of the LCBP update equa-
tions (20) through (25).

The proof is given by the derivation in the appendix avail-
able in the extended version of this paper.

The term (26) (and thus the triple product in (25)) vanishes
when the messages ncaa→i agree with the aggregate message
mci

a→i. According to Figure 3 this can happen when the set
of conditionees is chosen to be large. Empirically we could
not detect a significant difference in inference quality be-
tween calculating the δcaai terms according to (26) or setting
them to 1.

Until now we have treated the distribution over the condi-
tions qC(c) as flat. Taking a closer look at equation (25),
we notice that the right hand side is a product, with fac-
tors coming from the exponentiated BP energy and the δcaai
terms. These factors all depend on different subsets of vari-
ables from C. Thus the right side of equation (25) de-
scribes an undirected graphical model. We call it the con-
dition problem, while referring to the original problem as
the primal problem. When calibrating the message beliefs,
it becomes necessary to calculate conditional probabilities
qC(ca|ci) for this problem, and this can be done using any
inference algorithm for graphical models. The graphical
structure of the condition problem is determined by the
overlap between the sets of conditionees for different con-
ditioners, and exact inference in the condition problem can
become intractable.

5 EMPIRICAL EVALUATION

We conducted two experiments examining the performance
of LCBP on randomly generated problem instances. The
first experiment is meant to demonstrate that the quality
of the LCBP approximation approaches that of variational
CBP when increasing the area of influence around condi-
tioned nodes. A second experiment examines how the com-
putational effort of LCBP scales when the problem size in-
creases. In both experiments we condition fully on all con-
ditioners to obtain the variational CBP approximation.

For the experiments, we have implemented two variants of
LCBP using the derived update equations. The first vari-
ant (LCBP-JT) employs exact inference over the condi-
tion problem using the Junction tree method (Shenoy and
Shafer, 1990). The second variant (LCBP-BP) uses BP to
approximate the marginals of the condition problem. All
algorithms are implemented using Round-robin message
schedules with no damping. Except for plain BP, the al-
gorithms managed to converge every time. When reporting
accuracy we remove all instances where BP did not con-
verge, and thus favor BP in our presentation. We like to
remark that when running algorithms from the CBP class,
the tolerance for the convergence check has to be set very
low. Otherwise the numerical errors may pile up and dete-
riorate the result even below BP level.

For the first set of experiments, we applied LCBP-JT and
CBP to 6× 6 grid problems with binary variables and ran-
dom interactions (Figure 5). We selected four fixed vari-
ables as conditioners. We varied both the number of con-
ditionees and the interaction strength of the random grids.
As expected, the error produced by LCBP-JT approaches
the error of CBP both with decreasing interaction strength,
and with growing area of influence. We can thus conclude
that LCBP-JT acts as an approximation to the CBP result.

The second set of experiments is meant to examine the
scaling behavior of LCBP. While the number of parame-
ters of the variational approximation of LCBP grows more
slowly than variational CBP, it is conceivable that LCBP
takes significantly longer to converge (or even fails to con-
verge at all). To be able to demonstrate that LCBP can
yield good quality approximations, we designed a special
problem class that we call two-layer grid model (Figure 6).
Models with a similar geometry are used in image classi-
fication (Kato et al., 1996), sometimes called hierarchical
Markov random fields. CBP can achieve good results for
this class of problems when conditioning on the nodes of
the upper layer, if the variables in the remaining problem
(the lower layer) interact only weakly and can thus be ap-
proximated well by BP. We applied BP, CBP, LCBP-JT
and LCBP-BP to two-layer grid problems with weak inter-
action on the first and second layer, and strong interactions
between layers. We varied the size of the problems to ex-
amine the computational effort of the various algorithms.
The chosen FL-scheme marks all second layer nodes as
conditioners, with all directly connected first layer nodes
as respective conditionees.

Figure 7a shows the relative error in the inferred log par-
tition function for varying problem sizes. Notice how all
examined algorithms maintain about the same approxima-
tion quality once boundary effects are overcome; starting
with widths greater than 10. We can observe that all condi-
tioning algorithms improve over the plain BP approxima-
tion. CBP performs best, followed closely by LCBP-JT.
LCBP-BP produces the worst result among the condition-

ing approaches, though its result is still better than BP by
about two orders of magnitude. The difference between
the LCBP-JT and the LCBP-BP result was expected, since
the condition problem is not acyclic—it contains strong
dependencies induced by the explicit interactions between
the variables in the second layer. Experiments without in-
teractions in the second layer (not shown) put the LCBP-
BP result much closer to LCBP-JT, as paths going through
the lower grid induce only weak coupling in the condition
problem, while experiments with stronger interactions put
LCBP-BP closer to the BP results. For all examined pa-
rameter combinations the experiment produces the same
qualitative result, i.e., the same order among the exam-
ined algorithms. Figure 7b shows the CPU time for the
different algorithms. As expected CBP shows an expo-
nential growth with problem size and thus the number of
conditioners. In contrast, the effort for the LCBP variants
grows approximately linearly with problem size. Note that
the LCBP implementations underwent only moderate opti-
mization, as we are interested only in their asymptotic be-
havior. Thus, one should not draw any conclusions from
the concrete slopes of the curves in Figure 7b. Also note
that the generated problems have fixed tree-width; both the
primal problem and the condition problem. This explains
the linear scaling of LCBP-JT.

6 DISCUSSION AND FUTURE WORK

The presented LCBP algorithm provides a scalable approx-
imation to the variational interpretation of CBP. By shift-
ing our focus from iterative CBP to variational CBP, we
have lost the anytime behavior that iteratively refines the
approximation over time in a heuristically guided way. The
step from variational CBP to LCBP further removed the
possibility of having an unbalanced and dynamically or-
dered tree to represent the set of examined conditions. This
was necessary to achieve the factorization of the condition
problem. According to our assessment, LCBP can be ex-
tended to resemble iterative CBP more closely, although
we expect that this requires substantial further work. The
situation is not much different for Generalized Belief Prop-
agation (Yedidia et al., 2005), though. An iterative and
heuristically guided construction of region graphs for GBP
is as desirable as the adaptive construction of conditioning
schemes in the LCBP setting. Approaches to this prob-
lem for GBP are still rare, although some work does ex-
ist (Welling, 2004; Sibel et al., 2012). In this section we
will discuss some steps that point in this direction. Note
that some of the discussion is also applicable to GBP.

6.1 DESIGNING CONDITIONING SCHEMES

When looking at the iterative CBP algorithm, it is apparent
that one of its main strengths is its ability to focus its work
on the modes of the target distribution. The trees that can

0.25 1 4

●
●

●●
●●
●

●
●●

●
●●

●

●

●

●
●

● ●

●

●
● ●

●
●

●●
●●

●
●

●

●●
●

●
●

● ●
●

●

●
●

●

●
●

●●
●●
●
●

●●
●

●●

●

●

●

●
●

●●

●

●
●●

●
●

●●●●
●

●
●

●●
●
●

●

●●
●

●

●
●

●

●
●

●●
●●
●

●
●●

●
●●

●

●

●

●
●

●●

●

●
●●

●
●

●●●●
●
●
●

●●
●

●
●

●●
●

●

●
●

●

●

●

●

●

●
●

●
●
●

●●

● ●

●

●

●

●

●●

●

●

● ●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●●

●●

●

●

●

●

●●

●

●

● ●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●●

●

●

●

●●

●

●

●●●

●

●

●

●
●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

1e−08

1e−05

1e−02

1e−08

1e−05

1e−02

1e−08

1e−05

1e−02

0
1

2

1e−08 1e−05 1e−021e−08 1e−05 1e−021e−08 1e−05 1e−02
LCBP Relative Error

C
B

P
 R

el
at

iv
e

E
rr

or

Figure 5: Evaluation results comparing LCBP-JT relative
error in log partition function with CBP relative error on
randomly generated binary, 6×6 grid networks. Four sym-
metrically placed variables are conditioned. The set of con-
ditionees for LCBP-JT is increased along the rows, includ-
ing variables with a distance of at most 0, 1 or 2 accord-
ing to the max norm on the grid coordinates. The columns
stand for grids with stronger potentials from left to right
(sampled from exp(N (0, σ)), with σ ∈ {0.25, 1, 4}). One
can see that both with growing area of influence (going
down), and with weaker coupling (right to left!) the re-
sult of LCBP-JT approaches that of CBP. If both algorithms
disagree, CBP yields a lower error.

be constructed have no constraint on their shape, and they
can become very deep and narrow. This is also an advan-
tage of iterative CBP over GBP, where the approximation
is improved by using marginals over larger clusters of vari-
ables than the factor clusters qa used in BP. Given a clus-
ter, GBP can only improve by adding another variable to
the cluster, which multiplies the computational burden as-
sociated with the cluster by the domain size of the added
variable. CBP can circumvent this problem by refining
single leafs of its tree; basically making context-specific
refinements. LCBP faces the same problem as GBP, be-
cause of the limited expressiveness of FL-schemes. With
FL-schemes the complexity of LCBP scales exponentially
with the number of conditioners a conditionee has—they
define the size of the factor scopes for the condition prob-
lem. For practical purposes one would aim at using more
expressive schemes that allow for context-specific refine-
ments, e.g., conditioning some variable on the conditions
{X1 = 0, X2 = 0}, {X1 = 0, X2 = 1}, {X1 = 1}, thus
condition only on X2 for X1 = 0. A simple improve-
ment for problems with large variable domains is to branch
on elements of arbitrary partitions of assignments to single

1e−06

1e−04

0 10 20 30
width (cells)

re
la

tiv
e

er
ro

r

algorithm LCBP−BP LCBP−JT CBP BP

(a) relative error in log partition function

0

50

100

0 10 20 30
width (cells)

cp
u

tim
e

(s
)

algorithm LCBP−BP LCBP−JT CBP

(b) CPU time

Figure 7: Inference results and used CPU time for two-layer grid problems of varying size (see Figure 6). The x-axis
shows the number of columns (width) of the upper grid, where a “cell” is supposed to be a group of nodes on the lower
layer connected to a single node on the upper layer. The height of the upper grid is fixed to 2 to obtain problems where
exact inference is tractable. All variables have binary domains. Interactions within the lower and the upper layer are
weak (factor values drawn from exp{N (0, 0.5)}), while interactions between layers are strong (factor values drawn from
exp{N (0, 4)}). CBP was not applied to the larger instances, due to resource constraints. All lines are means over 500
random instances.

Figure 6: Illustration of the two-layer grid model used for
evaluation. Each upper node is connected to 3 × 3 lower
nodes. The upper nodes form a two-by-n grid, where n is
varied to obtain problems of different size.

variables, e.g., distinguish between X1 < 3 and X1 ≥ 3.

6.2 ITERATIVE, HEURISTIC CONSTRUCTION
OF SCHEMES

The iterative CBP algorithm has the big advantage of of-
fering an anytime approximation scheme that can be sen-
sitive both to problem structure, and to parameters. This
is achieved through the use of different types of heuristics,
choosing how to refine the approximation over the course
of the computation (Geier et al., 2014b).

Looking at iterative CBP, it appears natural to build the
scheme for LCBP incrementally—refining the approxima-
tion after running inference and looking at the result. For
CBP there exist basically two decision points: Choose the
condition/leaf on which to work, then choose the variable
to condition on. For LCBP with an FL-scheme choosing

a branch is not possible, as this requires context-specific
schemes. If those are available, then LCBP must blur both
decision points of CBP into one: Choose which variable to
refine under which condition—as the available conditions
depend on the chosen variable. This is in contrast to CBP,
where all variables are available under every condition (un-
less they are already conditioned). In addition, for LCBP
there exists the new choice of extending the set of condi-
tionees of a conditioner. For this decision we can think of
promising candidates for evaluation, like the disagreement
among the aggregated messages of the sub-conditions. Us-
ing this heuristic would result in splitting variables on the
condition until the effect of conditioning has fallen below
some threshold (remember Figure 3). Clearly this require-
ment is too strong, as for tree-structured problems the mes-
sages under different conditions can be combined at any
moment while still obtaining an exact result.

To find truly informed heuristics, we have to look at the
source of the error within the BP approximations. A
promising way to construct heuristics for iteratively refin-
ing LCBP appears to be exploitation of the loop series ex-
pansion (Montanari and Rizzo, 2005). It specifies a cor-
rection for the BP functional (Equation 4), that allows to
reconstruct the exact value of the partition function. This
is done by adding a term for each generalized loop of the
graph. Since error contribution is associated with loops, it
is not focused on variables, but decentralized. By condi-
tioning on one variable of a loop, while placing the com-
plete loop in the area of influence, the loop can be cor-

rected. In this way the loop series expansion could provide
guidance on choosing both conditioners and conditionees
consistently in an error-oriented manner.

6.3 THE CONDITION PROBLEM

One nice aspect about FL-schemes is their property to
induce ordinary Markov networks as condition problem.
As demonstrated in the evaluation, one can use any al-
gorithm that computes (conditional) marginal probabili-
ties for Markov networks to solve the condition problem.
This choice can be influenced by the expected characteris-
tics of the condition problem. If the primal problem con-
tains deterministic dependencies, it is conceivable to “pre-
solve” the condition problem. When inference during pre-
solving assigns zero probability to some marginal assign-
ments, the corresponding elements of the LCBP calcula-
tion can be safely pruned. In addition, elements with very
low marginal probability can be pruned on a heuristic basis,
incurring a further approximation of the final result.

If a message passing algorithm is chosen for inference
within the condition problem, it becomes possible to run
it interleaved with the LCBP message updates. This opens
the door to using more sophisticated message update sched-
ules, for example Residual Belief Propagation (Elidan,
2006), making it possible to balance the ratio of LCBP up-
dates against inference in the condition problem.

An interesting idea is recursively using LCBP for inference
in the condition problem. A perceivable application are hi-
erarchical grid problems with more layers. We expect this
construction to scale well, meaning that nesting analysis by
cases using LCBP does not incur an exponential growth in
model size. It is not clear how to create such a deep hier-
archical approximation using other variational techniques,
such as GBP.

7 RELATED WORK

There exists some prior work on using mixture models for
variational inference. Jaakkola and Jordan (1998) use mix-
tures of mean field approximations to improve inference
quality. Beside the weaker approximation of mean field
compared to BP and the locality of conditions, the main
difference to LCBP is the use of mixture components with
overlapping support in contrast to mutually exclusive con-
ditions. The overlapping approach is more powerful in the-
ory, because the mixture components are not restricted in
the sense that they are clamped to an intended condition.
But in contrast to this, only a weaker approximation to the
entropy is used by Jaakkola and Jordan (1998) as the mu-
tually exclusiveness allows for better analytical treatment.
Split Variational Inference (Bouchard and Zoeter, 2009)
is another application of conditioning and the variational
method applied to arbitrary integrals.

The “Gates” model (Minka and Winn, 2008) is also in-
tended as a variational treatment of local mixture compo-
nents, and arrives at similar update equations for expec-
tation propagation and variational message passing. The
LCBP model can be described using Gates with the con-
ditioners being the selector variables, and the conditionees
(and incident factors) being placed inside the gate. The
LCBP derivation is more explicitly cast as a variational
problem by specifying the variational distribution and the
constraints, and, more importantly, it allows overlap be-
tween gates, which Minka and Winn explicitly forbid. One
could say that FL-schemes are more expressive then the
(implicit) schemes allowed by Minka and Winn.

8 CONCLUSION

We have formulated a variational interpretation of CBP as
a mixture of BP approximations. Based on this, we have
derived LCBP, which yields inference results that approx-
imate those obtained from CBP. We have shown empiri-
cal evidence that supports the claims that LCBP approxi-
mates CBP, while scaling much more favorably with prob-
lem size.

LCBP allows a non-trivial integration between an arbi-
trary probabilistic inference algorithm used for solving the
condition problem and BP used for inference over the re-
mainder. The automatic construction of good conditioning
schemes for LCBP remains an open research question. But
we were able to construct schemes for a motivated problem
class resembling hierarchical Markov random fields, which
are used in image recognition. We are currently work-
ing on formulating more expressive classes of conditioning
schemes, together with an informed heuristic based on the
loop series expansion for BP. We also plan to investigate
the relationship between LCBP and GBP more closely.

Acknowledgements

This work was done within the Transregional Collaborative
Research Centre SFB/TRR 62 ”Companion-Technology
for Cognitive Technical Systems” funded by the German
Research Foundation (DFG).

References

Bacchus, F., S. Dalmao, and T. Pitassi (2002). Value elim-
ination: Bayesian inference via backtracking search. In
Proceedings of the 18th Conference on Uncertainty in
Artificial Intelligence, pp. 20–28.

Bayardo Jr, R. J. and J. D. Pehoushek (2000). Counting
models using connected components. In Proceedings of
the 17th National Conference on Artificial Intelligence,
pp. 157–162.

Bidyuk, B. and R. Dechter (2007). Cutset sampling for

Bayesian networks. Journal of Artificial Intellenge Re-
search 28, 1–48.

Bouchard, G. and O. Zoeter (2009). Split variational infer-
ence. In Proceedings of the 26th International Confer-
ence on Machine Learning, pp. 57–64. ACM.

Darwiche, A. (2001). Recursive conditioning. Artificial
Intelligence 126(1), 5–41.

Davis, M., G. Logemann, and D. Loveland (1962). A ma-
chine program for theorem-proving. Communications of
the ACM 5(7), 394–397.

Dechter, R. (1990). Enhancement schemes for constraint
processing: Backjumping, learning, and cutset decom-
position. Artificial Intelligence 41(3), 273–312.

Eaton, F. and Z. Ghahramani (2009). Choosing a variable to
clamp: Approximate inference using conditioned belief
propagation. In Proceedings of the 12th International
Conference on Artificial Intelligence and Statistics, Vol-
ume 5, pp. 145–152.

Elidan, G. (2006). Residual belief propagation: Informed
scheduling for asynchronous message passing. In Pro-
ceedings of the 22nd Conference on Uncertainty in Arti-
ficial Intelligence.

Geier, T., F. Richter, and S. Biundo (2014a). Condi-
tioned belief propagation revisited. In Proceedings of
the 21st European Conference on Artificial Intelligence,
pp. 1011–1012.

Geier, T., F. Richter, and S. Biundo (2014b). Conditioned
belief propagation revisited: Extended version. Techni-
cal Report UIB 2014-03, Ulm University.

Gogate, V. and R. Dechter (2011). SampleSearch: Impor-
tance sampling in presence of determinism. Artificial
Intelligence 175(2), 694–729.

Huang, J. and A. Darwiche (2005). DPLL with a trace:
From SAT to knowledge compilation. In Proceedings
of the 19th International Joint Conference on Artificial
Intelligence, Volume 5, pp. 156–162.

Jaakkola, T. S. and M. I. Jordan (1998). Improving the
mean field approximation via the use of mixture distribu-
tions. In M. Jordan (Ed.), Learning in Graphical Models,
Volume 89, pp. 163–173. Springer.

Katebi, H., K. A. Sakallah, and J. P. Marques-Silva (2011).
Empirical study of the anatomy of modern SAT solvers.
In Theory and Applications of Satisfiability Testing, pp.
343–356. Springer.

Kato, Z., M. Berthod, and J. Zerubia (1996). A hierar-
chical Markov random field model and multitemperature
annealing for parallel image classification. Graphical
models and image processing 58(1), 18–37.

Koller, D. and N. Friedman (2009). Probabilistic Graphi-
cal Models: Principles and Techniques. MIT Press.

Marques-Silva, J., I. Lynce, and S. Malik (2009). Hand-
book of satisfiability, Chapter CDCL Solvers, pp. 131 –
150. IOS Press.

Minka, T. (2005). Divergence measures and message pass-
ing. Technical report, Microsoft Research.

Minka, T. and J. Winn (2008). Gates. In Advances in Neu-
ral Information Processing Systems, pp. 1073–1080.

Montanari, A. and T. Rizzo (2005). How to compute loop
corrections to the Bethe approximation. Journal of Sta-
tistical Mechanics: Theory and Experiment 2005(10),
10011.

Mooij, J. M. and H. J. Kappen (2007). Sufficient conditions
for convergence of the sum–product algorithm. IEEE
Transactions on Information Theory 53(12), 4422–4437.

Pearl, J. (1986). Fusion, propagation, and structuring in
belief networks. Artificial Intelligence 29(3), 241–288.

Roth, D. (1996). On the hardness of approximate reason-
ing. Artificial Intelligence 82(1), 273–302.

Sang, T., F. Bacchus, P. Beame, H. A. Kautz, and T. Pitassi
(2004). Combining component caching and clause learn-
ing for effective model counting. In Proceedings of the
7th International Conference on Theory and Applica-
tions of Satisfiability Testing.

Shenoy, P. P. and G. Shafer (1990). Axioms for probability
and belief-function proagation. In Proceedings of the 6th
Conference on Uncertainty in Artificial Intelligence, pp.
169–198.

Sibel, J.-C., S. Reynal, and D. Declercq (2012). A novel
region graph construction based on trapping sets for the
generalized belief propagation. In International Confer-
ence on Communication Systems (ICCS), pp. 305–309.
IEEE.

Silva, J. P. M. and K. A. Sakallah (1996). GRASP—a
new search algorithm for satisfiability. In Proceedings
of the International Conference on Computer-Aided De-
sign, pp. 220–227. IEEE.

Wainwright, M. J. and M. I. Jordan (2008). Graphical
models, exponential families, and variational inference.
Foundations and Trends in Machine Learning 1(1-2), 1–
305.

Welling, M. (2004). On the choice of regions for gener-
alized belief propagation. In Proceedings of the 20th
Conference on Uncertainty in Artificial Intelligence, pp.
585–592.

Yedidia, J. S., W. T. Freeman, and Y. Weiss (2005). Con-
structing free-energy approximations and generalized
belief propagation algorithms. IEEE Transactions on In-
formation Theory 51(7), 2282–2312.

