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Abstract

Covariate adjustment is a widely used approach
to estimate total causal effects from observational
data. Several graphical criteria have been de-
veloped in recent years to identify valid covari-
ates for adjustment from graphical causal mod-
els. These criteria can handle multiple causes,
latent confounding, or partial knowledge of the
causal structure; however, their diversity is con-
fusing and some of them are only sufficient, but
not necessary. In this paper, we present a cri-
terion that is necessary and sufficient for four
different classes of graphical causal models: di-
rected acyclic graphs (DAGs), maximum ances-
tral graphs (MAGs), completed partially directed
acyclic graphs (CPDAGs), and partial ancestral
graphs (PAGs). Our criterion subsumes the ex-
isting ones and in this way unifies adjustment set
construction for a large set of graph classes.

1 INTRODUCTION

Which covariates do we need to adjust for when estimat-
ing total causal effects from observational data? Graphical
causal modeling allows to answer this question construc-
tively, and contributed fundamental insights to the theory
of adjustment in general. For instance, a simple example
known as the “M-bias graph” shows that it is not always
appropriate to adjust for all observed (pre-treatment) co-
variates (Shrier, 2008; Rubin, 2008). A few small graphs
also suffice to refute the “Table 2 fallacy” (Westreich and
Greenland, 2013), which is the belief that the coefficients in
multiple regression models are “mutually adjusted”. Thus,
causal graphs had substantial impact on theory and practice
of covariate adjustment (Shrier and Platt, 2008).

The practical importance of covariate adjustment has in-
spired a growing body of theoretical work on graphical
criteria that are sufficient and/or necessary for adjustment.

Pearl’s back-door criterion (Pearl, 1993) is probably the
most well-known, and is sufficient but not necessary for
adjustment in DAGs. Shpitser et al. (2012) adapted the
back-door criterion to a necessary and sufficient graphi-
cal criterion for adjustment in DAGs. Others considered
graph classes other than DAGs, which can represent struc-
tural uncertainty. van der Zander et al. (2014) gave neces-
sary and sufficient graphical criteria for MAGs that allow
for unobserved variables (latent confounding). Maathuis
and Colombo (2015) presented a generalized back-door
criterion for DAGs, MAGs, CPDAGs and PAGs, where
CPDAGs and PAGs represent Markov equivalence classes
of DAGs or MAGs, respectively, and can be inferred di-
rectly from data (see, e.g., Spirtes et al., 2000; Chickering,
2003; Colombo et al., 2012; Claassen et al., 2013; Colombo
and Maathuis, 2014). The generalized back-door criterion
is sufficient but not necessary for adjustment.

In this paper, we extend the results of Shpitser et al. (2012),
van der Zander et al. (2014) and Maathuis and Colombo
(2015) to derive a single necessary and sufficient adjust-
ment criterion that holds for all four graph classes: DAGs,
CPDAGs, MAGs and PAGs.

To illustrate the use of our generalized adjustment crite-
rion, suppose we are given the CPDAG in Figure 1a and
we want to estimate the total causal effect of X on Y . Our
criterion will inform us that the set {A,Z} is an adjustment
set for this CPDAG, which means that it is an adjustment
set in every DAG that the CPDAG represents (Figure 1b).
Hence, we can estimate the causal effect without knowl-
edge of the full causal structure. In a similar manner, by
applying our criterion to a MAG or a PAG, we find ad-
justment sets that are valid for all DAGs represented by
this MAG or PAG. Our criterion finds such adjustment
sets whenever they exist; else, our knowledge of the model
structure is insufficient to compute the desired causal ef-
fect by covariate adjustment. We hope that this ability to
allow for incomplete structural knowledge or latent con-
founding or both will help address concerns that graphical
causal modelling “assumes that all [...] DAGs have been
properly specified” (West and Koch, 2014).
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Figure 1: (a) A CPDAG in which, according to our cri-
terion, {A,Z} is an adjustment set for the total causal ef-
fect of X on Y . (b) The Markov equivalence class of (a),
with node labels removed for simplicity and varying edges
highlighted. An adjustment set for a CPDAG (PAG) is
one that works in all DAGs (MAGs) of the Markov equiv-
alence class.

We note that, although we can find all causal effects that
are identifiable by covariate adjustment, we generally do
not find all identifiable causal effects, since some effects
may be identifiable by other means, such as Pearl’s front-
door criterion (Pearl, 2009, Section 3.3.2) or the ID algo-
rithm (Tian and Pearl, 2002; Shpitser and Pearl, 2006). We
also point out that MAGs and PAGs are in principle not
only able to represent unobserved confounding, but can
also account for unobserved selection variables. However,
in this paper we assume that there are no unobserved se-
lection variables. This restriction is mainly due to the fact
that selection bias often renders it impossible to identify
causal effects using just covariate adjustment. Bareinboim
et al. (2014) discuss these problems and present creative
approaches to work around them, e.g., by combining data
from different sources. We leave the question whether ad-
justment could be combined with such auxiliary methods
aside for future research.

2 PRELIMINARIES

Throughout the paper we denote sets in bold uppercase let-
ters (e.g., S), graphs in calligraphic font (e.g., G) and nodes
in a graph in uppercase letters (e.g., X)

Nodes and edges. A graph G = (V,E) consists of a set of
nodes (variables) V = {X1, . . . , Xp} and a set of edges E.

There is at most one edge between any pair of nodes, and
nodes are called adjacent if they are connected by an edge.
Every edge has two edge marks that can be arrowheads,
tails or circles. Edges can be directed →, bidirected ↔,
non-directed b b or partially directed b→ . We use • as a
stand in for any of the allowed edge marks. An edge is
into (out of ) a node X if the edge has an arrowhead (tail)
at X . A directed graph contains only directed edges. A

mixed graph may contain directed and bi-directed edges.
A partial mixed graph may contain any of the described
edges. Unless stated otherwise, all definitions apply for
partial mixed graphs.

Paths. A path p from X to Y in G is a sequence of distinct
nodes 〈X, . . . , Y 〉 in which every pair of successive nodes
is adjacent in G. A node V lies on a path p if V occurs
in the sequence of nodes. The length of a path equals the
number of edges on the path. A directed path from X to
Y is a path from X to Y in which all edges are directed
towards Y , i.e., X → · · · → Y . A directed path is also
called a causal path. A possibly directed path (possibly
causal path) from X to Y is a path from X to Y that has
no arrowhead pointing to X . A path from X to Y that is
not possibly causal is called a non-causal path from X to
Y . A directed path from X to Y together with an edge
Y → X (Y ↔ X) forms an (almost) directed cycle. For
two disjoint subsets X and Y of V, a path from X to Y is
a path from some X ∈ X to some Y ∈ Y. A path from X
to Y is proper if only its first node is in X.

Subsequences and subpaths. A subsequence of a path p is
a sequence of nodes obtained by deleting some nodes from
p without changing the order of the remaining nodes. A
subsequence of a path is not necessarily a path. For a path
p = 〈X1, X2, . . . , Xm〉, the subpath from Xi to Xk (1 ≤
i ≤ k ≤ m) is the path p(Xi, Xk) = 〈Xi, Xi+1, . . . , Xk〉.
We denote the concatenation of paths by ⊕, so that for ex-
ample p = p(X1, Xk) ⊕ p(Xk, Xm). We use the conven-
tion that we remove any loops that may occur due to the
concatenation, so that the result is again a path.

Ancestral relationships. If X → Y , then X is a par-
ent of Y . If there is a (possibly) directed path from X to
Y , then X is a (possible) ancestor of Y , and Y is a (pos-
sible) descendant of X . Every node is also a descendant
and an ancestor of itself. The sets of parents and (possi-
ble) descendants of X in G are denoted by Pa(X,G) and
(Poss)De(X,G) respectively. For a set of nodes X ⊆ V,
we have Pa(X,G) = ∪X∈X Pa(X,G), with analogous
definitions for (Poss)De(X,G).

Colliders and shields. If a path p contains
Xi•→Xj←•Xk as a subpath, then Xj is a collider
on p. A collider path is a path on which every non-
endpoint node is a collider. A path of length one is a trivial
collider path. A path 〈Xi, Xj , Xk〉 is an (un)shielded triple
if Xi and Xk are (not) adjacent. A path is unshielded if all
successive triples on the path are unshielded. Otherwise
the path is shielded. A node Xj is a definite non-collider
on a path p if there is at least one edge out of Xj on p, or if
Xi• bXj

b •Xk is a subpath of p and 〈Xi, Xj , Xk〉 is an
unshielded triple. A node is of definite status on a path if it
is a collider or a definite non-collider on the path. A path
p is of definite status if every non-endpoint node on p is
of definite status. An unshielded path is always of definite



status, but a definite status path is not always unshielded.

m-separation and m-connection. A definite status path
p between nodes X and Y is m-connecting given a set of
nodes Z (X,Y /∈ Z) if every definite non-collider on p is
not in Z, and every collider on p has a descendant in Z.
Otherwise Z blocks p. If Z blocks all definite status paths
between X and Y , we say that X and Y are m-separated
given Z. Otherwise, X and Y are m-connected given Z.
For pairwise disjoint subsets X, Y, Z of V, X and Y are
m-separated given Z if X and Y are m-separated by Z for
any X ∈ X and Y ∈ Y. Otherwise, X and Y are m-
connected given Z.

Causal Bayesian networks. A directed graph without
directed cycles is a directed acyclic graph (DAG). A
Bayesian network for a set of variables V = {X1, . . . , Xp}
is a pair (G, f ), where G is a DAG, and f is a joint
probability density for V that factorizes according to the
conditional independence relationships described via m-
separation, that is f(V) =

∏p
i=1 f(Xi|Pa(Xi,G)) (Pearl,

2009). We call a DAG causal when every edge Xi → Xj

in G represents a direct causal effect of Xi on Xj . A
Bayesian network (G, f ) is a causal Bayesian network if
G is a causal DAG. If a causal Bayesian network is given
and all variables are observed one can easily derive post-
intervention densities. In particular, we consider interven-
tions do(X = x) (X ⊆ V), which represent outside inter-
ventions that set X to x (Pearl, 2009):

f(v|do(X = x)) =

=


∏

Xi∈V\X f(xi|Pa(xi,G)), for values of V
consistent with x,

0, otherwise.
(1)

Equation (1) is known as the truncated factorization for-
mula (Pearl, 2009) or the g-formula (Robins, 1986).

Maximal ancestral graph. A mixed graph G without di-
rected cycles and almost directed cycles is called ancestral.
A maximal ancestral graph (MAG) is an ancestral graph
G = (V,E) where every two non-adjacent nodes X and Y
in G can be m-separated by a set Z ⊆ V\{X,Y }. A DAG
with unobserved variables can be uniquely represented by
a MAG that preserves the ancestral and m-separation re-
lationships among the observed variables (Richardson and
Spirtes, 2002). The MAG of a causal DAG is a causal
MAG.

Markov equivalence. Several DAGs can encode the same
conditional independence information via m-separation.
Such DAGs form a Markov equivalence class which can
be described uniquely by a completed partially directed
acyclic graph (CPDAG) . Several MAGs can also en-
code the same conditional independence information. Such
MAGs form a Markov equivalence class which can be
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Figure 2: Two configurations where the edge X → Y is
visible.

described uniquely by a partial ancestral graph (PAG)
(Richardson and Spirtes, 2002; Ali et al., 2009). We de-
note all DAGs (MAGs) in the Markov equivalence class
described by a CPDAG (PAG) G by [G].

Consistent density. A density f is consistent with a causal
DAGD if the pair (D, f ) forms a causal Bayesian network.
A density f is consistent with a causal MAGM if there ex-
ists a causal Bayesian network (D′, f ′), such thatM rep-
resents D′ and f is the observed marginal of f ′. A density
f is consistent with a CPDAG (PAG) G if it is consistent
with a DAG (MAG) in [G].

Visible and invisible edges. All directed edges in DAGs
and CPDAGs are said to be visible. Given a MAGM or a
PAG G, a directed edge X → Y is visible if there is a node
V not adjacent to Y such that there is an edge between V
and X that is into X , or if there is a collider path from V to
X that is into X and every non-endpoint node on the path
is a parent of Y . Otherwise, X → Y is said to be invisible
(Zhang, 2006; Maathuis and Colombo, 2015).

A directed visible edge X → Y means that there are no
latent confounders between X and Y .

3 MAIN RESULT

Throughout, let G = (V,E) represent a DAG, CPDAG,
MAG or PAG, and let X, Y and Z be pairwise disjoint
subsets of V, with X 6= ∅ and Y 6= ∅. Here X represents
the intervention variables and Y represents the set of re-
sponse variables, i.e., we are interested in the causal effect
of X on Y.

We define sound and complete graphical conditions for ad-
justment sets relative to (X,Y) in G. Thus, if a set Z satis-
fies our conditions relative to (X,Y) in G (Definition 3.3),
then it is a valid adjustment set for calculating the causal
effect of X on Y (Definition 3.1), and every existing valid
adjustment set satisfies our conditions (see Theorem 3.4).
First, we define what we mean by an adjustment set.

Definition 3.1. (Adjustment set; Maathuis and Colombo,
2015) Let G represent a DAG, CPDAG, MAG or
PAG. Then Z is an adjustment set relative to (X,Y)



in G if for any density f consistent with G we have

f(y|do(x)) =

{
f(y|x) if Z = ∅,∫
Z
f(y|x, z)f(z)dz = EZ{f(y|z,x)} otherwise.

If X = {X} and Y = {Y }, we call Z an adjustment set
relative to (X,Y ) in the given graph.

To define our generalized adjustment criterion, we intro-
duce the concept of amenability:

Definition 3.2. (Amenability for DAGs, CPDAGs,
MAGs and PAGs) A DAG, CPDAG, MAG or PAG G is
said to be adjustment amenable, relative to (X,Y) if every
possibly directed proper path from X to Y in G starts with
a visible edge out of X.

For conciseness, we will also write “amenable” instead of
“adjustment amenable”. The intuition behind the concept
of amenability is the following. In MAGs and PAGs, di-
rected edges X → Y can represent causal effects, but
also mixtures of causal effects and latent confounding; in
CPDAGs and PAGs, there are edges with unknown di-
rection. This complicates adjustment because paths con-
taining such edges can correspond to causal paths in some
represented DAGs and to non-causal paths in others. For
instance, when the graph X → Y is interpreted as a DAG,
the empty set is a valid adjustment set with respect to
(X,Y ) because there is only one path from X to Y , which
is causal. When the same graph is however interpreted as a
MAG, it can still represent the DAG X → Y , but also
for example the DAG X → Y with a non-causal path
X ← L → Y where L is latent. A similar problem arises
in the CPDAG X Y .

We will show that for a graph G that is not amenable rela-
tive to (X,Y), there is no adjustment set relative to (X,Y)
in the sense of Definition 3.1 (see Lemma 5.2). Note that
every DAG is amenable, since all edges in a DAG are vis-
ible and directed. For MAGs, our notion of amenability
reduces to the one defined by van der Zander et al. (2014).

We now introduce our Generalized Adjustment Criterion
(GAC) for DAGs, CPDAGs, MAGs and PAGs.

Definition 3.3. (Generalized Adjustment Criterion
(GAC)) Let G represent a DAG, CPDAG, MAG or PAG.
Then Z satisfies the generalized adjustment criterion
relative to (X,Y) in G if the following three conditions
hold:

(0) G is adjustment amenable relative to (X,Y), and

(1) no element in Z is a possible descendant in G of any
W ∈ V \ X which lies on a proper possibly causal
path from X to Y, and

(2) all proper definite status non-causal paths in G from
X to Y are blocked by Z.
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Figure 3: (a) PAG P , (b) MAGM1, (c) MAGM2 used
in Example 4.2.

Note that condition (0) does not depend on Z. In other
words, if condition (0) is violated, then there is no set
Z′ ⊆ V \ (X ∪ Y) that satisfies the generalized adjust-
ment criterion relative to (X,Y) in G.

Condition (1) defines a set of nodes that cannot be used in
an adjustment set. Denoting this set of forbidden nodes by

FG(X,Y) = {W ′ ∈ V : W ′ ∈ PossDe(W,G) for some
W /∈ Xwhich lies on a proper possibly
causal path fromX toY}, (2)

condition (1) can be stated as: Z∩FG(X,Y) = ∅. We will
sometimes use this notation in examples and proofs.

We now give the main theorem of this paper.

Theorem 3.4. Let G represent a DAG, CPDAG, MAG or
PAG. Then Z is an adjustment set relative to (X,Y) in G
(Definition 3.1) if and only if Z satisfies the generalized ad-
justment criterion relative to (X,Y) in G (Definition 3.3).

4 EXAMPLES

We now provide some examples that illustrate how the gen-
eralized adjustment criterion can be applied.

Example 4.1. We first return to the example of the Intro-
duction. Consider the CPDAG C in Figure 1a. Note that C
is amenable relative to (X,Y ) and that FC(X,Y ) = {Y }.
Hence, any node other than X and Y can be used in an
adjustment set. Note that every definite status non-causal
path p from X to Y has one of the following paths as a
subsequence: p1 = 〈X,Z, Y 〉 and p2 = 〈X,A,B, Y 〉,
and nodes on p that are not on p1 or p2 are non-colliders
on p. Hence, if we block p1 and p2, then we block all defi-
nite status non-causal paths from X to Y . This implies that
any superset of {Z,A} and {Z,B} is an adjustment set
relative to (X,Y ) in C, and all adjustment sets are given
by: {Z,A}, {Z,B}, {Z,A, I}, {Z,B, I}, {Z,A,B} and
{Z,A,B, I}.

Example 4.2. To illustrate the concept of amenability, con-
sider Figure 3 with a PAG P in (a), and two MAGsM1

and M2 in [P] in (b) and (c). Note that P and M1 are
not amenable relative to (X,Y ). For P this is due to the
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Figure 4: (a) PAG P1, (b) PAG P2 used in Example 4.3.
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Figure 5: (a) CPDAG C, (b) PAG P used in Example 4.4.

path X b bY , and forM1 this is due to the invisible edge
X → Y . On the other hand, M2 is amenable relative to
(X,Y ), since the edges X → Y and X → V2 are visible
due to the edge V1 → X and the fact that V1 is not adja-
cent to Y or V2. Since there are no proper definite status
non-causal paths from X to Y in M2, it follows that the
empty set satisfies the generalized adjustment criterion rel-
ative to (X,Y ) inM2. Finally, note thatM1 could also be
interpreted as a DAG. In that case it would be amenable
relative to (X,Y ). This shows that amenability depends
crucially on the interpretation of the graph.

Example 4.3. Let P1 and P2 be the PAGs in Figure 4(a)
and Figure 4(b), respectively. Both PAGs are amenable
relative to (X,Y ). We will show that there is an adjust-
ment set relative to (X,Y ) in P1 but not in P2. This illus-
trates that amenability is not a sufficient criterion for the
existence of an adjustment set.

We first consider P1. Note that FP1(X,Y ) = {V4, Y } is
the set of nodes that cannot be used for adjustment. There
are two proper definite status non-causal paths from X to
Y in P1: X← bV3 → Y and X → V4 ← V3 → Y .
These are blocked by any set containing V3. Hence, all
sets satisfying the GAC relative to (X,Y ) in P1 are: {V3},
{V1, V3}, {V2, V3} and {V1, V2, V3}.

We now consider P2. Note that FP2 (X,Y ) =
FP1(X,Y ) = {V4, Y }. There are three proper definite sta-
tus non-causal paths from X to Y in P2: p1 = X ↔ V3 →
Y , p2 = X ↔ V3 ↔ V4 → Y and p3 = X → V4 ↔
V3 → Y . To block p1, we must also use V3. This implies
that we must use V4 to block p2. But V4 ∈ FP2 (X,Y ).
Hence, there is no set Z that satisfies the GAC relative to
(X,Y ) in P2.

Example 4.4. Let X = {X1, X2} and Y = {Y } and con-
sider the CPDAG C and the PAG P in Figures 5(a) and
5(b). We will show that for both graphs there is no set that
satisfies the generalized back-door criterion of Maathuis
and Colombo (2015) relative to (X,Y), but there are sets
that satisfy the generalized adjustment criterion relative to
(X,Y) in these graphs.

Recall that a set Z satisfies the generalized back-door cri-
terion relative to (X,Y) and a CPDAG (PAG) G if Z
contains no possible descendants of X in G and if for every
X ∈ X the set Z ∪ X \ {X} blocks every definite status
path from X to every Y ∈ Y in G that does not start with
a visible edge out of X .

We first consider the CPDAG C. To block the path X2 ←
V2 ← Y , we must use node V2, but V2 ∈ PossDe(X1, C).
Hence, no set Z can satisfy the generalized back-door cri-
terion relative to (X,Y) in C. However, {V1, V2} satisfies
the generalized adjustment criterion relative to (X,Y) in
C.

We now consider P . To block the path X2 ← V2 ↔ Y ,
we must use node V2. But, V2 ∈ De(X1,P) and thus
there is no set satisfying the generalized back-door cri-
terion relative to (X,Y) in P . However, sets {V1, V2},
{V1, V2, V3}, {V1, V2, V4}, {V1, V2, V3, V4} all satisfy the
generalized adjustment criterion relative to (X,Y) in P .

5 PROOF OF THEOREM 3.4

For DAGs and MAGs, our generalized adjustment crite-
rion reduces to the following adjustment criterion:
Definition 5.1. (Adjustment Criterion (AC)) Let G =
(V,E) represent a DAG or MAG . Then Z satisfies the
adjustment criterion relative to (X,Y) in G if the follow-
ing three conditions hold:

(0*) G is adjustment amenable with respect to (X,Y), and

(a) no element in Z is a descendant in G of any W ∈
V \X which lies on a proper causal path from X to
Y, and

(b) all proper non-causal paths in G from X to Y are
blocked by Z.

This adjustment criterion is a slightly reformulated but
equivalent version of the adjustment criterion of Shpitser
et al. (2012) for DAGs and of van der Zander et al. (2014)
for MAGs, with amenability directly included in the crite-
rion. This adjustment criterion was shown to be sound and
complete for DAGs (Shpitser et al., 2012; Shpitser, 2012)
and MAGs (van der Zander et al., 2014). We therefore only
need to prove Theorem 3.4 for CPDAGs and PAGs.

To this end, we need three main lemmas, given below.
Throughout, we let G = (V,E) represent a CPDAG or
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Figure 6: Proof structure of Theorem 3.4.

a PAG, and we let X, Y and Z be pairwise disjoint subsets
of V, with X 6= ∅ and Y 6= ∅. We use GAC and AC to re-
fer to the generalized adjustment criterion (Definition 3.3)
and adjustment criterion (Definition 5.1), respectively.

Lemma 5.2 is about condition (0) of the GAC:

Lemma 5.2. If a CPDAG (PAG) G satisfies condition (0)
of the GAC relative to (X,Y), then every DAG (MAG)
in [G] satisfies condition (0*) of the AC relative to (X,Y).
On the other hand, if G violates condition (0) of the GAC
relative to (X,Y), then there exists no set Z′ ⊆ V \ (X ∪
Y) that is an adjustment set relative to (X,Y) in G (see
Definition 3.1).

Next, we assume that G satisfies condition (0) of the GAC
relative to (X,Y). Under this assumption, we show that
Z satisfies conditions (1) and (2) of the GAC relative to
(X,Y) in G if and only if Z satisfies conditions (a) and (b)
of the AC relative to (X,Y) in every DAG (MAG) in [G].
This is shown in two separate lemmas:

Lemma 5.3. Let condition (0) of the GAC be satisfied rela-
tive to (X,Y) in a CPDAG (PAG) G. Then the following
two statements are equivalent:

• Z satisfies condition (1) of the GAC relative to (X,Y)
in G.

• Z satisfies condition (a) of the AC relative to (X,Y)
in every DAG (MAG) in [G].

Lemma 5.4. Let condition (0) of the GAC be satisfied rel-
ative to (X,Y) in a CPDAG (PAG) G, and let Z satisfy
condition (1) of the GAC relative to (X,Y) in G. Then the
following two statements are equivalent:

• Z satisfies condition (2) of the GAC relative to (X,Y)
in G.

• Z satisfies condition (b) of the AC relative to (X,Y)
in every DAG (MAG) in [G].

The proofs of Lemmas 5.2, 5.3 and 5.4 are discussed in
Sections 5.1, 5.2 and 5.3, respectively. Some proofs re-
quire additional lemmas that can be found in the supple-
ment. The proof of Lemma 5.4 is the most technical, and
builds on the work of Zhang (2006).

Figure 6 shows how all lemmas fit together to prove Theo-
rem 3.4.

Proof of Theorem 3.4: First, suppose that the CPDAG
(PAG) G and the sets X, Y and Z satisfy all conditions of
the GAC. By applying Lemmas 5.2, 5.3 and 5.4 in turn, it
directly follows that all conditions of the AC are satisfied
by X, Y and Z and any DAG (MAG) in [G].

To prove the other direction, suppose that the tuple G, X,
Y, Z does not satisfy all conditions of the GAC. First, sup-
pose that G violates condition (0) relative to (X,Y). Then
by Lemma 5.2, there is no adjustment set relative to (X,Y)
in G, and hence Z is certainly not an adjustment set.

Otherwise, Z must violate condition (1) or (2) of the GAC
relative to (X,Y). By applying Lemmas 5.3 and 5.4 in
turn, this implies that there is a DAG D (MAGM) in [G]
such that Z violates conditions (a) or (b) of the AC relative
to (X,Y) in D (M). Since the AC is sound and complete
for DAGs and MAGs, this implies that Z is not an adjust-
ment set relative to (X,Y) inD (M), so that Z is certainly
not an adjustment set relative to (X,Y) in G.

�

5.1 PROOF OF LEMMA 5.2

The proof of Lemma 5.2 is based on the following lemma:

Lemma 5.5. Let X and Y be nodes in a PAG P , such that
there is a possibly directed path p∗ from X to Y in P that
does not start with a visible edge out of X . Then there is
a MAGM in [P] such that the path p inM, consisting of
the same sequence of nodes as p∗ in P , contains a subse-
quence that is a directed path from X to Y starting with an
invisible edge inM.

The proof of Lemma 5.5 is given in the supplement.

Proof of Lemma 5.2: First suppose that G satisfies condi-
tion (0) of the GAC relative to (X,Y), meaning that every
proper possibly directed path from X to Y in G starts with
a visible edge out of X. Any visible edge in G is visible
in all DAGs (MAGs) in [G], and any proper directed path
in a DAG (MAG) in [G] corresponds to a proper possibly
directed path in G. Hence, any proper directed path from X
to Y in any DAG (MAG) in [G] starts with a visible edge
out of X. This shows that all DAGs (MAGs) in [G] satisfy
condition (0*) of the AC relative to (X,Y).

Next, suppose that G violates condition (0) of the GAC rel-
ative to (X,Y). We will show that this implies that there is
no set Z′ ⊆ V \ (X ∪Y) that is an adjustment set relative
to (X,Y) in G. We give separate proofs for CPDAGs and
PAGs.

Thus, let G represent a CPDAG and suppose that there is
a proper possibly directed path p from a node X ∈ X to a
node Y ∈ Y that starts with a non-directed edge ( b b).



Let p′ = 〈X,V1, . . . , Y 〉 (where V1 = Y is allowed) be
a shortest subsequence of p such that p′ is also a proper
possibly directed path from X to Y starting with a non-
directed edge in G. We first show that p′ is a definite status
path, by contradiction. Thus, suppose that p′ is not a defi-
nite status path. Then the length of p′ is at least 2, and we
write p′ = 〈X,V1, . . . , Vk = Y 〉 for k ≥ 2. Since the sub-
path p′(V1, Y ) is a definite status path (otherwise we can
choose a shorter path), this means that V1 is not of a defi-
nite status on p′. This implies the existence of an edge be-
tween X and V2. This edge must be of the form X → V2,
since X b bV2 implies that we can choose a shorter path,
and X ← V2 together with X b bV1 implies V1 ← V2 by
Lemma 1 from Meek (1995) (see Section 1 of the supple-
ment), so that p′ is not possibly directed from X to Y . But
the edge X → V2 implies that V1 → V2, since otherwise
Lemma 1 from Meek (1995) implies X → V1. But then V1

is a definite non-collider on p′, which contradicts that V1 is
not of definite status.

Hence, p′ is a proper possibly directed definite status path
from X to Y . By Lemma 7.6 from Maathuis and Colombo
(2015) (see Section 1 of the supplement), there is a DAG
D1 in [G] such that there are no additional arrowheads into
X , as well as a DAG D2 in [G] such that there are no addi-
tional arrowheads into V1. This means that the paths corre-
sponding to p′ are oriented as p′1 = X → V1 → · · · → Y
and p′2 = X ← V1 → · · · → Y in D1 and D2. An adjust-
ment set relative to (X,Y) inD2 must block the non-causal
path p′2, by using at least one of the non-endpoints nodes on
this path. But all these nodes are in FD1

(X,Y) (see (2)).
Hence, there is no set Z′ ⊆ V \ (X ∪Y) that satisfies the
AC relative to (X,Y) in D1 and D2 simultaneously. Since
the AC is sound and complete for DAGs, this implies that
there is no Z′ ⊆ V \ (X ∪ Y) that is an adjustment set
relative to (X,Y) in G.

Finally, let G represent a PAG and suppose that there is a
proper possibly directed path p from some X ∈ X to some
Y ∈ Y that does not start with a visible edge out of X in
G.

By Lemma 5.5, there is a subsequence p′ of p such that
there is a MAG M in [G] where the corresponding path
is directed from X to Y and starts with an invisible edge.
ThenM is not amenable relative to (X,Y). By Lemma 5.7
from van der Zander et al. (2014) (see Section 1 of the sup-
plement) this means that there is no set Z′ ⊆ V \ (X∪Y)
that is an adjustment set relative to (X,Y) inM. Hence,
there is no set Z′ ⊆ V \ (X ∪Y) that is an adjustment set
relative to (X,Y) in G. �

5.2 PROOF OF LEMMA 5.3

Proof of Lemma 5.3: First, suppose that Z satisfies con-
dition (1) of the GAC relative to (X,Y) in G. Then
Z ∩ FG(X,Y) = ∅. Since FD(X,Y) ⊆ FG(X,Y)

(FM(X,Y) ⊆ FG(X,Y)) for any DAG D (MAG M)
in [G], it follows directly that Z satisfies condition (a) of
the AC relative to (X,Y) in all DAGs (MAGs) in [G].

To prove the other direction, suppose that G satisfies con-
dition (0) of the GAC relative to (X,Y), but that Z does
not satisfy condition (1) of the GAC relative to (X,Y) in G.
Then there is a node V ∈ Z∩FG(X,Y), i.e., V ∈ Z and V
is a possible descendant of a node W on a proper possibly
directed path from some X ∈ X to some Y ∈ Y in G. We
denote this path by p = 〈X,V1, . . . , Vk, Y 〉, where k ≥ 1
and W ∈ {V1, . . . , Vk}. Then the subpaths q = p(X,W )
and r = p(W,Y ) are also proper possibly directed paths.
Moreover, there is a possibly directed path s from W to V ,
where this path is allowed to be of zero length (if W = V ).
We will show that the existence of these paths implies that
there is a DAG D (MAGM) in [G] such that Z violates
condition (a) of the AC relative to (X,Y) in D (M).

By Lemma B.1 from Zhang (2008) (see Section 1 of the
supplement), there are subsequences q′, r′ and s′ of q, r and
s that are unshielded proper possibly directed paths (again
s′ is allowed to be a path of zero length). Moreover, q′

must start with a directed (visible) edge, since otherwise the
concatenated path q′ ⊕ r′, which is again a proper possibly
directed path from X to Y , would violate condition (0) of
the GAC.

Lemma B.1 from Zhang (2008) then implies that q′ is a
directed path from X to W in G. Hence, the path corre-
sponding to q′ is a directed path from X to W in any DAG
(MAG) in [G].

By Lemma 7.6 from Maathuis and Colombo (2015), there
is at least one DAG D (MAGM) in [G] that has no addi-
tional arrowheads into W . In this graph D (M), the path
corresponding to r′ is a directed path from W to Y , and the
path corresponding to s′ is a directed path W to V . Hence,
V ∈ FD(X,Y) (V ∈ FM(X,Y)), so that Z does not sat-
isfy condition (a) of the AC relative to (X,Y) in D (M).
�

5.3 PROOF OF LEMMA 5.4

We first define a distance between a path and a set in Def-
inition 5.6. We then give the proof of Lemma 5.4. This
proof relies on Lemma 5.7 and Lemma 5.8 which are given
later in this section.
Definition 5.6. (Distance-from-Z; Zhang, 2006) Given a
path p from X to Y that is m-connecting given Z in a DAG
or MAG, for every collider Q on p, there is a directed path
(possibly of zero length) from Q to a member of Z. Define
the distance-from-Z of Q to be the length of a shortest
directed path (possibly of length 0) from Q to Z, and define
the distance-from-Z of p to be the sum of the distances
from Z of the colliders on p.

Proof of Lemma 5.4: Let G represent an amenable



CPDAG (PAG) that satisfies condition (0) of the GAC rel-
ative to (X,Y), and let Z satisfy condition (1) of the GAC
relative to (X,Y) in G.

We first prove that if Z does not satisfy condition (2) of
the GAC relative to (X,Y) in G, then Z does not satisfy
condition (b) of the AC relative to (X,Y) in any DAG
(MAG) in [G]. Thus, assume that there is a proper definite
status non-causal path p from X ∈ X to Y ∈ Y that is
m-connecting given Z in G. Consider any DAG D (MAG
M) in [G]. Then the path corresponding to p in D (M) is
a proper non-causal m-connecting path from X to Y given
Z. Hence, Z violates condition (b) of the AC relative to
(X,Y) and D (M).

Next, we prove that if Z violates condition (b) of the AC
relative to (X,Y) in some DAG (MAG) in [G], then Z
violates condition (2) of the GAC relative to (X,Y) in G.
Thus, assume that there is a DAGD (MAGM) in [G] such
that there is a proper non-causal m-connecting path from X
to Y in D (M) given Z. We choose a shortest such path p,
such that no equally short proper non-causal m-connecting
path has a shorter distance-from-Z than p. By Lemma 5.8
below, the corresponding path p∗ in G is an m-connecting
proper definite status non-causal path from X to Y given
Z. Hence Z violates condition (b) of the GAC relative to
(X,Y) in G. �

Lemma 5.7. Let M represent a MAG (DAG) and let P
be the PAG (CPDAG) ofM. Let P satisfy condition (0)
of the GAC relative to (X,Y), and let Z satisfy condition
(1) of the GAC relative to (X,Y) in P . Let p be a shortest
proper non-causal path from X to Y that is m-connecting
given Z in M and let p∗ denote the corresponding path
constituted by the same sequence of variables in P . Then
p∗ is a proper definite status non-causal path in P .

Lemma 5.7 is related to Lemma 1 from Zhang (2006). The
proof of Lemma 5.7 is given in the supplement.

Lemma 5.8. Let M represent a MAG (DAG) and let P
be the PAG (CPDAG) ofM. Let P satisfy condition (0)
of the GAC relative to (X,Y), and let Z satisfy condition
(1) of the GAC relative to (X,Y) in P . Let p be a shortest
proper non-causal path from X to Y that is m-connecting
given Z in M, such that no equally short such path has
a shorter distance-from-Z than p. Let p∗ denote the cor-
responding path constituted by the same sequence of vari-
ables in P . Then p∗ is a proper definite status non-causal
path from X to Y that is m-connecting given Z in P .

Lemma 5.8 is is related to Lemma 2 from Zhang (2006).

Proof of Lemma 5.8. By Lemma 5.7, p∗ is a proper defi-
nite status non-causal path in P . It is only left to prove that
p∗ is m-connecting given Z in P .

Every definite non-collider on p∗ in P corresponds to a
non-collider on p in M, and every collider on p∗ is also

a collider on p. Since p is m-connecting given Z, no non-
collider is in Z and every collider has a descendant in Z.
Let Q be an arbitrary collider (if there is one). Then there
is a directed path (possibly of zero length) from Q to a node
in Z inM. Let d be a shortest such path from Q to a node
Z ∈ Z. Let d∗ denote the corresponding path in P , consti-
tuted by the same sequence of variables. Then d∗ is an un-
shielded possibly directed path from Q to Z in P (Lemma
B.1 from Zhang (2008)).

It is only left to show that d∗ is a directed path. If d∗ is
of zero length, this is trivially true. Otherwise, suppose for
contradiction that there is a circle mark on d∗. Then d∗

must start with a circle mark at Q (cf. Lemma B.2 from
Zhang, 2008 and Lemma 7.2 from Maathuis and Colombo,
2015; see Section 1 of the supplement).

Let S be the first node on d after Q. If S is not a node on
p, then following the proof of Lemma 2 from Zhang (2006)
there is a path p′ = p(X,W ) ⊕W •→S←•V ⊕ p(V, Y ),
where W and V are nodes distinct from Q on p(X,Q) and
p(Q,Y ) respectively and p′ is m-connecting given Z inM.
Since p′ is non-causal and shorter than p, or as long as p but
with a shorter distance-from-Z than p, the path p′ must be
non-proper, i.e. S ∈ X. But, in that case the path 〈S, V 〉 ⊕
p(V, Y ) is a proper non-causal m-connecting path from X
to Y given Z that is shorter than p inM. This contradicts
our assumption about p.

If S is a node on p, then it lies either on p(X,Q) or
p(Q,Y ). Assume without loss of generality that S is on
p(Q,Y ). Following the proof of Lemma 2 from Zhang
(2006), there exists a path p′ = p(X,W ) ⊕ W •→S ⊕
p(S, Y ) in M, where W is a node on p(X,Q) distinct
from Q that is m-connecting given Z in M. Since p′

is proper, and shorter than p, or as long as p but with
a shorter distance-from-Z than p, the path p′ must be
causal in M. Let p′∗ denote the corresponding path con-
stituted by the same sequence of variables in P . Then
p′
∗ is a possibly causal path and Z ∈ PossDe(S,P), so

Z ∈ FP(X,Y) ∩ Z. This is in contradiction with our as-
sumption of Z satisfying condition (1) of the GAC relative
to (X,Y) in P .

Thus, the path d∗ is directed and Q is an ancestor of Z in
P . This proves that p∗ is a proper definite status non-causal
path from X to Y that is m-connecting given Z inM.

�

6 DISCUSSION

We have derived a generalized adjustment criterion that is
necessary and sufficient for adjustment in DAGs, MAGs,
CPDAGs and PAGs. Our criterion unifies existing crite-
ria for DAGs and MAGs, and provides a new result for
CPDAGs and PAGs, where only a sufficient criterion ex-



isted until now. This is relevant in practice, in particular
in combination with algorithms that can learn CPDAGs or
PAGs from observational data.

Our generalized adjustment criterion is stated in terms of
paths that need to be blocked, which is intuitively appeal-
ing. A logical next step for future research would be to
transform our criterion into an algorithmically construc-
tive version that could be used to efficiently perform tasks
like enumeration of all minimal adjustment sets for a given
graph. This has already been done for DAGs and MAGs
by van der Zander et al. (2014), and we strongly suspect
that their results can be extended to CPDAGs and PAGs
as well. In a similar spirit, it would be desirable to have an
easily checkable condition to determine if there exists any
adjustment set at all, as done for the generalized back-door
criterion for single interventions by Maathuis and Colombo
(2015). In turn, these results could then be used to char-
acterize distances between graphs, as done by Peters and
Bühlmann (2015). Future work might also explore under
which circumstances our restriction to not allow for latent
selection variables might be relaxed, or whether our crite-
rion could be combined with methods to recover from se-
lection bias (Bareinboim et al., 2014).

As pointed out in Section 4, our criterion sometimes has
to interpret PAGs or MAGs differently than DAGs or
CPDAGs. This is the case precisely when the first edge on
some proper possibly causal path in a MAG or PAG is not
visible. However, this difference in interpretation is irrele-
vant for DAGs or CPDAGs that would be amenable when
viewed as a MAG or PAG. For instance, if we are given a
DAG D that is amenable when interpreted as a MAGM,
then its adjustment sets also work for every DAG that the
MAGM represents, many of which could contain latent
confounding variables. Reading a DAG as a MAG (or a
CPDAG as a PAG) can thus allow computing adjustment
sets that are to some extent invariant to confounding.

We note that an adjustment set relative to (X,Y) in a given
graph can only exist if the total causal effect of X on Y is
identifiable in the graph. If the effect of X on Y is not
identifiable, one may be interested in computing all possi-
ble total causal effects of X on Y for DAGs represented by
the given graph. Such an approach is used in the IDA al-
gorithm of Maathuis et al. (2009, 2010), by considering all
DAGs represented by a CPDAG and applying back-door
adjustment to each of these DAGs. Similar ideas could be
used for MAGs and PAGs, but listing all relevant DAGs
described by a MAG or PAG seems rather non-trivial.

There is also an interesting connection between amenabil-
ity and instrumental variables: a MAG or PAG G with
X = {X} is amenable with respect to (X,Y) whenever
it contains an instrument I , i.e. there exists a variable that
is a parent of X but not a parent of any child of X (e.g., I in
Figure 1a). Thus, instruments are useful to find adjustment

sets in nonparametric graphical models that allow for latent
confounding. This connection is perhaps surprising given
that the notion of instruments originates from causal effect
identifications in linear models (Angrist et al., 1996).

In summary, our generalized adjustment criterion exhaus-
tively characterizes the options to identify total causal ef-
fects by covariate adjustment in DAGs, MAGs, CPDAGs,
and PAGs. Our results entail several existing, less general
or less powerful ones (Pearl, 1993; Shpitser et al., 2012;
Textor and Liśkiewicz, 2011; van der Zander et al., 2014;
Maathuis and Colombo, 2015) as special cases.
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